Compare commits

...

2072 Commits

Author SHA1 Message Date
Mary Hipp
b5d7471326 add tests and readme 2025-09-17 13:53:08 -04:00
Mary Hipp
ae8bb9a9a7 enqueue refactor 2025-09-17 11:40:11 -04:00
psychedelicious
efcb1bea7f chore: bump version to v6.8.0rc1 2025-09-17 13:57:43 +10:00
psychedelicious
e0d7a401f3 feat(ui): make ref images croppable 2025-09-17 13:43:13 +10:00
psychedelicious
aac979e9a4 fix(ui): issue w/ setting initial aspect ratio in cropper 2025-09-17 13:43:13 +10:00
psychedelicious
3b0d7f076d tidy(ui): rename from "editor" to "cropper", minor cleanup 2025-09-17 13:43:13 +10:00
psychedelicious
e1acbcdbd5 fix(ui): store floats for box 2025-09-17 13:43:13 +10:00
psychedelicious
7d9b81550b feat(ui): revert to original image when crop discarded 2025-09-17 13:43:13 +10:00
psychedelicious
6a447dd1fe refactor(ui): remove "apply", "start" and "cancel" concepts from editor 2025-09-17 13:43:13 +10:00
psychedelicious
c2dc63ddbc fix(ui): video graphs 2025-09-17 13:43:13 +10:00
psychedelicious
1bc689d531 docs(ui): add comments to startingframeimage 2025-09-17 13:43:13 +10:00
psychedelicious
4829975827 feat(ui): make the editor components not care about the image 2025-09-17 13:43:13 +10:00
psychedelicious
49da4e00c3 feat(ui): add concept for editable image state 2025-09-17 13:43:13 +10:00
psychedelicious
89dfe5e729 docs(ui): add comments to editor 2025-09-17 13:43:13 +10:00
psychedelicious
6816d366df tidy(ui): editor misc 2025-09-17 13:43:13 +10:00
psychedelicious
9d3d2a36c9 tidy(ui): editor listeners 2025-09-17 13:43:13 +10:00
psychedelicious
ed231044c8 refactor(ui): simplify crop constraints 2025-09-17 13:43:13 +10:00
psychedelicious
b51a232794 feat(ui): extract config to own obj 2025-09-17 13:43:13 +10:00
psychedelicious
4412143a6e feat(ui): clean up editor 2025-09-17 13:43:13 +10:00
psychedelicious
de11cafdb3 refactor(ui): editor (wip) 2025-09-17 13:43:13 +10:00
psychedelicious
4d9114aa7d refactor(ui): editor (wip) 2025-09-17 13:43:13 +10:00
psychedelicious
67e2da1ebf refactor(ui): editor (wip) 2025-09-17 13:43:13 +10:00
psychedelicious
33ecc591c3 refactor(ui): editor init 2025-09-17 13:43:13 +10:00
psychedelicious
b57459a226 chore(ui): lint 2025-09-17 13:43:13 +10:00
psychedelicious
01282b1c90 feat(ui): do not clear crop when canceling 2025-09-17 13:43:13 +10:00
psychedelicious
3f302906dc feat(ui): crop doesn't hide outside cropped region 2025-09-17 13:43:13 +10:00
psychedelicious
81d56596fb tidy(ui): cleanup 2025-09-17 13:43:13 +10:00
psychedelicious
b536b0df0c feat(ui): misc iterate on editor 2025-09-17 13:43:13 +10:00
psychedelicious
692af1d93d feat(ui): type narrowing for editor output types 2025-09-17 13:43:13 +10:00
psychedelicious
bb7ef77b50 tidy(ui): lint/react conventions for editor component 2025-09-17 13:43:13 +10:00
psychedelicious
1862548573 feat(ui): image editor bg checkerboard pattern 2025-09-17 13:43:13 +10:00
psychedelicious
242c1b6350 feat(ui): tweak editor konva styles 2025-09-17 13:43:13 +10:00
psychedelicious
fc6e4bb04e tidy(ui): editor component cleanup 2025-09-17 13:43:13 +10:00
psychedelicious
20841abca6 tidy(ui): editor cleanup 2025-09-17 13:43:13 +10:00
psychedelicious
e8b69d99a4 chore(ui): lint 2025-09-17 13:43:13 +10:00
Mary Hipp
d6eaff8237 create editImageModal that takes an imageDTO, loads blob onto canvas, and allows cropping. cropped blob is uploaded as new asset 2025-09-17 13:43:13 +10:00
Mary Hipp
068b095956 show warning state with tooltip if starting frame image aspect ratio does not match the video output aspect ratio' 2025-09-17 13:43:13 +10:00
psychedelicious
f795a47340 tidy(ui): remove unused translation string 2025-09-16 15:04:03 +10:00
psychedelicious
df47345eb0 feat(ui): add translation strings for prompt history 2025-09-16 15:04:03 +10:00
psychedelicious
def04095a4 feat(ui): tweak prompt history styling 2025-09-16 15:04:03 +10:00
psychedelicious
28be8f0911 refactor(ui): simplify prompt history shortcuts 2025-09-16 15:04:03 +10:00
Kent Keirsey
b50c44bac0 handle potential for invalid list item 2025-09-16 15:04:03 +10:00
Kent Keirsey
b4ce0e02fc lint 2025-09-16 15:04:03 +10:00
Kent Keirsey
d6442d9a34 Prompt history shortcuts 2025-09-16 15:04:03 +10:00
Josh Corbett
4528bcafaf feat(model manager): add ModelFooter component and reusable ModelDeleteButton 2025-09-16 12:29:57 +10:00
Josh Corbett
8b82b81ee2 fix(ModelImage): change MODEL_IMAGE_THUMBNAIL_SIZE to a local constant 2025-09-16 12:29:57 +10:00
Josh Corbett
757acdd49e feat(model manager): 💄 update model manager ui, initial commit 2025-09-16 12:29:57 +10:00
psychedelicious
94b7cc583a fix(ui): do not reset params state on studio init nav to generate tab 2025-09-16 12:25:25 +10:00
psychedelicious
b663a6bac4 chore: bump version to v6.7.0 2025-09-15 14:37:56 +10:00
psychedelicious
65d40153fb chore(ui): update whatsnew 2025-09-15 14:37:56 +10:00
Riccardo Giovanetti
c8b741a514 translationBot(ui): update translation (Italian)
Currently translated at 98.4% (2120 of 2153 strings)

translationBot(ui): update translation (Italian)

Currently translated at 97.3% (2097 of 2153 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-15 14:25:41 +10:00
psychedelicious
6d3aeffed9 fix(ui): dedupe prompt history 2025-09-15 14:22:44 +10:00
psychedelicious
203be96910 fix(ui): render popovers in portals to ensure they are on top of other ui elements 2025-09-15 14:19:54 +10:00
psychedelicious
b0aa48ddb8 feat(ui): simple prompt history 2025-09-12 10:19:48 -04:00
psychedelicious
867dbe51e5 fix(ui): extend lora weight schema to accept full range of weights
This could cause a failure to rehydrate LoRA state, or failure to recall
a LoRA.

Closes #8551
2025-09-12 11:50:10 +10:00
psychedelicious
ff8948b6f1 chore(ui): update whatsnew 2025-09-11 18:09:31 +10:00
psychedelicious
fa3a6425a6 tests(ui): update staging area test to reflect new behaviour 2025-09-11 18:09:31 +10:00
psychedelicious
c5992ece89 fix(ui): better logic in staging area when canceling the selected item 2025-09-11 18:09:31 +10:00
psychedelicious
12a6239929 chore: bump version to v6.7.0rc1 2025-09-11 18:09:31 +10:00
Riccardo Giovanetti
e9238c59f4 translationBot(ui): update translation (Italian)
Currently translated at 96.5% (2053 of 2127 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-11 17:42:41 +10:00
Linos
c1cbbe51d6 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2127 of 2127 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-09-11 17:42:41 +10:00
Hosted Weblate
4219b4a288 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-09-11 17:42:41 +10:00
psychedelicious
48c8a9c09d chore(ui): lint 2025-09-11 17:25:57 +10:00
psychedelicious
a67efdf4ad perf(ui): optimize curves graph component
Do not use whole layer as trigger for histo recalc; use the canvas cache
of the layer - it more reliably indicates when the layer pixel data has
changed, and fixes an issue where we can miss the first histo calc due
to race conditiong with async layer bbox calculation.
2025-09-11 17:25:57 +10:00
psychedelicious
d6ff9c2e49 tidy(ui): split curves graph into own component 2025-09-11 17:25:57 +10:00
psychedelicious
e768a3bc7b perf(ui): use narrow selectors in adjustments to reduce rerenders
dramatically improves the feel of the sliders
2025-09-11 17:25:57 +10:00
psychedelicious
7273700f61 fix(ui): sharpness range 2025-09-11 17:25:57 +10:00
psychedelicious
f909e81d91 feat(ui): better types & runtime guarantees for filter data stored in konva node attrs 2025-09-11 17:25:57 +10:00
psychedelicious
8c85f168f6 refactor(ui): make layer adjustments schemas/types composable 2025-09-11 17:25:57 +10:00
psychedelicious
263d86d46f fix(ui): points where x=255 sorted incorrectly 2025-09-11 17:25:57 +10:00
psychedelicious
0921805160 feat(ui): tweak adjustments panel styling 2025-09-11 17:25:57 +10:00
psychedelicious
517f4811e7 feat(ui): single action to reset adjustments 2025-09-11 17:25:57 +10:00
psychedelicious
0dc73c8803 tidy(ui): move some histogram drawing logic out of components and into calblacks 2025-09-11 17:25:57 +10:00
psychedelicious
26702b54c0 feat(ui): tweak layouts, use react conventions, disabled state 2025-09-11 17:25:57 +10:00
dunkeroni
2d65e4543f minor padding changes 2025-09-11 17:25:57 +10:00
dunkeroni
309113956b remove unknown type annotations 2025-09-11 17:25:57 +10:00
dunkeroni
0ac4099bc6 allow negative sharpness to soften 2025-09-11 17:25:57 +10:00
dunkeroni
899dc739fa defaultValue on adjusters 2025-09-11 17:25:57 +10:00
dunkeroni
4e2439fc8e remove extra edit comments 2025-09-11 17:25:57 +10:00
dunkeroni
00864c24e0 layout fixes 2025-09-11 17:25:57 +10:00
dunkeroni
b73aaa7d6f fix several points of curve editor jank 2025-09-11 17:25:57 +10:00
dunkeroni
85057ae704 splitup adjustment panel objects 2025-09-11 17:25:57 +10:00
dunkeroni
c3fb3a43a2 blue mode switch indicator 2025-09-11 17:25:57 +10:00
dunkeroni
51d0a15a1b use default factory on reset 2025-09-11 17:25:57 +10:00
dunkeroni
5991067fd9 simplify adjustments type to optional not null 2025-09-11 17:25:57 +10:00
dunkeroni
32c2d3f740 remove extra casts and types from filters.ts 2025-09-11 17:25:57 +10:00
dunkeroni
c661f86b34 fix: crop to bbox doubles adjustment filters 2025-09-11 17:25:57 +10:00
dunkeroni
cc72d8eab4 curves editor syntax and structure fixes 2025-09-11 17:25:57 +10:00
dunkeroni
e8550f9355 move constants in curves editor 2025-09-11 17:25:57 +10:00
dunkeroni
a1d0386ca4 move memoized slider to component 2025-09-11 17:25:57 +10:00
dunkeroni
495d089f85 clean up right click menu 2025-09-11 17:25:57 +10:00
dunkeroni
913b91e9dd remove redundant en.json colors 2025-09-11 17:25:57 +10:00
dunkeroni
3e907f4e14 remove extra title 2025-09-11 17:25:57 +10:00
dunkeroni
756df6ebe4 Finish button on adjustments 2025-09-11 17:25:57 +10:00
dunkeroni
2a6be99152 Fix tint not shifting green in negative direction 2025-09-11 17:25:57 +10:00
dunkeroni
3099e2bf9d fix disable toggle reverts to simple view 2025-09-11 17:25:57 +10:00
dunkeroni
6921f0412a log scale and panel width compatibility 2025-09-11 17:25:57 +10:00
dunkeroni
022d5a8863 curves editor 2025-09-11 17:25:57 +10:00
dunkeroni
af99beedc5 apply filters to operations 2025-09-11 17:25:57 +10:00
dunkeroni
f3d83dc6b7 visual adjustment filters 2025-09-11 17:25:57 +10:00
psychedelicious
ebc3f18a1a ai(ui): add CLAUDE.md to frontend 2025-09-11 13:26:39 +10:00
Mary Hipp
aeb512f8d9 ruff 2025-09-11 12:41:56 +10:00
Mary Hipp
a1810acb93 accidental commit 2025-09-11 12:41:56 +10:00
Mary Hipp
aa35a5083b remove completed_at from queue list so that created_at is only sort option, restore field values in UI 2025-09-11 12:41:56 +10:00
psychedelicious
4f17de0b32 fix(ui): ensure mask image is deleted when no more inputs to select object 2025-09-11 12:15:41 +10:00
psychedelicious
370c3cd59b feat(ui): update select object info tooltip 2025-09-11 12:15:41 +10:00
psychedelicious
67214e16c0 tidy(ui): organize select object components 2025-09-11 12:15:41 +10:00
psychedelicious
4880a1d946 feat(nodes): accept neg coords for bbox
This actually works fine for SAM.
2025-09-11 12:15:41 +10:00
psychedelicious
0f0988610f feat(ui): spruce up UI a bit 2025-09-11 12:15:41 +10:00
psychedelicious
6805d28b7a feat(ui): increase hit area for bbox anchors 2025-09-11 12:15:41 +10:00
psychedelicious
9b45a24136 fix(ui): respect selected point type 2025-09-11 12:15:41 +10:00
psychedelicious
4e9d66a64b tidy(ui): clean up CanvasSegmentAnythingModule 2025-09-11 12:15:41 +10:00
psychedelicious
8fec530b0f fix(ui): restore old tooltip for select object
need to add translation strigns for new functionality
2025-09-11 12:15:41 +10:00
psychedelicious
50c66f8671 fix(ui): select obj box moving on mmb pan 2025-09-11 12:15:41 +10:00
psychedelicious
f0aa39ea81 fix(ui): prevent bbox from following cursor after middle mouse pan
Added button checks to bbox rect and transformer mousedown/touchstart handlers to only process left clicks. Also added stage dragging check in onBboxDragMove to clear bbox drag state when middle mouse panning is active.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-11 12:15:41 +10:00
psychedelicious
faac814a3d fix(ui): prevent middle mouse from creating points in segmentation module
When middle mouse button is used for canvas panning, the pointerup event was still creating points in the segmentation module. Added button check to onBboxDragEnd handler to only process left clicks.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-11 12:15:41 +10:00
psychedelicious
fb9545bb90 fix(ui): bbox no shrinkies 2025-09-11 12:15:41 +10:00
psychedelicious
8ad2ee83b6 fix(ui): prevent bbox scale accumulation in SAM module
Fixed an issue where bounding boxes could grow exponentially when created at small sizes. The problem occurred because Konva Transformer modifies scaleX/scaleY rather than width/height directly, and the scale values weren't consistently reset after being applied to dimensions.

Changes:
- Ensure scale values are always reset to 1 after applying to dimensions
- Add minimum size constraints to prevent zero/negative dimensions
- Fix scale handling in transformend, dragend, and initial bbox creation

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-11 12:15:41 +10:00
psychedelicious
f8ad62b5eb tidy(backend) cleanup sam pipelines 2025-09-11 12:15:41 +10:00
psychedelicious
03ae78bc7c tidy(nodes): clean up sam node 2025-09-11 12:15:41 +10:00
psychedelicious
ec1a058dbe fix(backend): issue w/ multiple bbox and sam1 2025-09-11 12:15:41 +10:00
psychedelicious
9e4d441e2e feat(ui): allow adding point inside bbox 2025-09-11 12:15:41 +10:00
psychedelicious
3770fd22f8 tidy(ui): ts issues 2025-09-11 12:15:41 +10:00
psychedelicious
a0232b0e63 feat(ui): combine points and bbox in visual mode for SAM
Revised the Select Object feature to support two input modes:
- Visual mode: Combined points and bounding box input for paired SAM inputs
- Prompt mode: Text-based object selection (unchanged)

Key changes:
- Replaced three input types (points, prompt, bbox) with two (visual, prompt)
- Visual mode supports both point and bbox inputs simultaneously
- Click to add include points, Shift+click for exclude points
- Click and drag to draw bounding box
- Fixed bbox visibility issues when adding points
- Fixed coordinate system issues for proper bbox positioning
- Added proper event handling and interaction controls

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-11 12:15:41 +10:00
psychedelicious
e1e964bf0e experiment(ui): support bboxes in select object 2025-09-11 12:15:41 +10:00
psychedelicious
1b1759cffc feat(ui): support prompt-based selection for object selection 2025-09-11 12:15:41 +10:00
psychedelicious
d828502bc8 refactor(backend): simplify segment anything APIs
There was a really confusing aspect of the SAM pipeline classes where
they accepted deeply nested lists of different dimensions (bbox, points,
and labels).

The lengths of the lists are related; each point must have a
corresponding label, and if bboxes are provided with points, they must
be same length.

I've refactored the backend API to take a single list of SAMInput
objects. This class has a bbox and/or a list of points, making it much
simpler to provide the right shape of inputs.

Internally, the pipeline classes take rejigger these input classes to
have the correct nesting.

The Nodes still have an awkward API where you can provide both bboxes
and points of different lengths, so I added a pydantic validator that
enforces correct lenghts.
2025-09-11 12:15:41 +10:00
psychedelicious
7a073b6de7 feat(ui): hold shift to add inverse point type 2025-09-11 12:15:41 +10:00
psychedelicious
338ff8d588 chore: typegen 2025-09-11 12:15:41 +10:00
psychedelicious
a3625efd3a chore: ruff 2025-09-11 12:15:41 +10:00
Kent Keirsey
5efb37fe63 consolidate into one node. 2025-09-11 12:15:41 +10:00
Kent Keirsey
aef0b81d5b fix models 2025-09-11 12:15:41 +10:00
Kent Keirsey
544edff507 update uv.lock 2025-09-11 12:15:41 +10:00
Kent Keirsey
42b1adab22 init Sam2 2025-09-11 12:15:41 +10:00
Attila Cseh
a2b9d12e88 prettier errors fixed 2025-09-10 11:28:50 +10:00
Attila Cseh
7a94fb6c04 maths enabled on numeric input fields in worklow editor 2025-09-10 11:28:50 +10:00
psychedelicious
efcd159704 fix(app): path traversal via bulk downloads paths 2025-09-10 11:18:12 +10:00
psychedelicious
997e619a9d feat(ui): address feedback 2025-09-09 14:42:30 +10:00
Attila Cseh
4bc184ff16 LoRA number input min/max restored 2025-09-09 14:42:30 +10:00
psychedelicious
0b605a745b fix(ui): route metadata to gemini node 2025-09-09 14:31:07 +10:00
Attila Cseh
22b038ce3b unused translations removed 2025-09-08 20:41:36 +10:00
psychedelicious
0bb5d647b5 tidy(app): method naming snake case 2025-09-08 20:41:36 +10:00
psychedelicious
4a3599929b fix(ui): do not pass scroll seek props to DOM in queue list 2025-09-08 20:41:36 +10:00
psychedelicious
f959ce8323 feat(ui): reduce overscan for queue
makes it a bit less sluggish
2025-09-08 20:41:36 +10:00
Attila Cseh
74e1047870 build errors fixed 2025-09-08 20:41:36 +10:00
Attila Cseh
732881c51b createdAt column fixed 2025-09-08 20:41:36 +10:00
Attila Cseh
107be8e166 queueSlice cleaned up 2025-09-08 20:41:36 +10:00
Attila Cseh
3c2f654da8 queue api listQueueItems removed 2025-09-08 20:41:36 +10:00
Attila Cseh
474fd44e50 status column not sortable 2025-09-08 20:41:36 +10:00
Attila Cseh
0dc5f8fd65 getQueueItemIds cache invalidation added 2025-09-08 20:41:36 +10:00
Attila Cseh
d4215fb460 isOpen refactored 2025-09-08 20:41:36 +10:00
Attila Cseh
0cd05ee9fd ListContext reverted with queryArgs 2025-09-08 20:41:36 +10:00
Attila Cseh
9fcb3af1d8 ListContext removed 2025-09-08 20:41:36 +10:00
Attila Cseh
c9da7e2172 typegen fixed 2025-09-08 20:41:36 +10:00
Attila Cseh
9788735d6b code review fixes 2025-09-08 20:41:36 +10:00
Attila Cseh
d6139748e2 Update invokeai/frontend/web/src/features/queue/components/QueueList/QueueList.tsx
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-09-08 20:41:36 +10:00
Attila Cseh
602dfb1e5d Update invokeai/frontend/web/src/features/queue/components/QueueList/QueueList.tsx
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-09-08 20:41:36 +10:00
Attila Cseh
5bb3a78f56 Update invokeai/frontend/web/src/features/queue/components/QueueList/QueueItemComponent.tsx
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-09-08 20:41:36 +10:00
Attila Cseh
d58df1e17b schema re-generated 2025-09-08 20:41:36 +10:00
Attila Cseh
5d0e37eb2f lint errors fixed 2025-09-08 20:41:36 +10:00
Attila Cseh
486b333cef queue list virtualized 2025-09-08 20:41:36 +10:00
Attila Cseh
6fa437af03 get_queue_itemIds endpoint created 2025-09-08 20:41:36 +10:00
Attila Cseh
787ef6fa27 ColumnSortIcon refactored 2025-09-08 20:41:36 +10:00
Attila Cseh
7f0571c229 QueueListHeaderColumnProps.field turned into SortBy 2025-09-08 20:41:36 +10:00
Attila Cseh
f5a58c0ceb QueueListHeaderColumn created 2025-09-08 20:41:36 +10:00
psychedelicious
d16eef4e66 chore: bump version to v6.6.0 2025-09-08 14:01:02 +10:00
psychedelicious
681ff2b2b3 chore(ui): update whatsnew 2025-09-08 14:01:02 +10:00
psychedelicious
0d81b4ce98 tidy(ui): make names a bit clearer 2025-09-08 13:54:23 +10:00
psychedelicious
99f1667ced tidy(ui): remove unused dependency 2025-09-08 13:54:23 +10:00
psychedelicious
aa5597ab4d feat(ui): use resize observer directly in component 2025-09-08 13:54:23 +10:00
psychedelicious
9bbb8e8a5e feat(ui): simpler strategy to conditionally render slider brush width 2025-09-08 13:54:23 +10:00
psychedelicious
f284d282c1 feat(ui): color picker number input outline styling 2025-09-08 13:54:23 +10:00
Attila Cseh
4231488da6 number input height set 2025-09-08 13:54:23 +10:00
Attila Cseh
a014867e68 slider number input height set 2025-09-08 13:54:23 +10:00
Attila Cseh
22654fbc9c redundant translations removed 2025-09-08 13:54:23 +10:00
Attila Cseh
daa4fd751c ToolWidthPicker refactored 2025-09-08 13:54:23 +10:00
Attila Cseh
3fd265c333 slider for brush and eraser tool 2025-09-08 13:54:23 +10:00
psychedelicious
26a3a9130c Revert "build(ui): port clean translations script to js"
This reverts commit 8a00d855b4.
2025-09-08 11:20:55 +10:00
psychedelicious
3dfeaab4b2 Revert "build(ui): add package script to check and clean translatoins"
This reverts commit 9610f34dd4.
2025-09-08 11:20:55 +10:00
psychedelicious
a33707cc76 Revert "ci: add translation string check to frontend checks"
This reverts commit 98945a4560.
2025-09-08 11:20:55 +10:00
psychedelicious
21e13daf6e Revert "chore(ui): clean translations"
This reverts commit a0dceecab9.
2025-09-08 11:20:55 +10:00
psychedelicious
fa2614ee02 Revert "tidy(ui): remove python clean translations script"
This reverts commit 8a81c05caf.
2025-09-08 11:20:55 +10:00
Hosted Weblate
4be6ddb23d translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-09-05 12:28:33 +10:00
Riccardo Giovanetti
bba0e01926 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2093 of 2122 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-05 12:28:33 +10:00
psychedelicious
20d57d5ccf gh: update pr template 2025-09-05 11:27:02 +10:00
psychedelicious
d9121271a2 fix(ui): rehydration + redux migration design issue
Certain items in redux are ephemeral and omitted from persisted slices.
On rehydration, we need to inject these values back into the slice.

But there was an issue taht could prevent slice migrations from running
during rehydration.

The migrations look for the `_version` key in state and migrate the
slice accordingly.

The logic that merged in the ephemeral values accidentally _also_ merged
in the `_version` key if it didn't already exist. This happened _before_
migrations are run.

This causes problems for slices that didn't have a `_version` key and
then have one added via migration.

For example, the params slice didn't have a `_version` key until the
previous commit, which added `_version` and changed some other parts of
state in a migration.

On first load of the updated code, we have a catch-22 kinda situation:
- The persisted params slice is the old version. It needs to have both
`_version` and some other data added to it.
- We deserialize the state and then merge in ephemeral values. This
inadvertnetly also merged in the `_version` key.
- We run the slice migration. It sees there is a `_version` key and
thinks it doesn't need to run. The extra data isn't added to the slice.
The slice is parsed against its zod schema and fails because the new
data is missing.
- Because the parse failed, we treat the user's persisted data as
invalid and overwrite it with initial state, potentially causing data
loss.

The fix is to be more selective when merging in the ephemeral state
before migration - this is now done by checking which keys are on the
persist denylist and only adding those key.
2025-09-05 11:27:02 +10:00
psychedelicious
30b487c71c tidy(ui): remove unused x/y coords from params slice 2025-09-05 11:27:02 +10:00
psychedelicious
8a81c05caf tidy(ui): remove python clean translations script 2025-09-05 11:02:37 +10:00
psychedelicious
a0dceecab9 chore(ui): clean translations 2025-09-05 11:02:37 +10:00
psychedelicious
98945a4560 ci: add translation string check to frontend checks 2025-09-05 11:02:37 +10:00
psychedelicious
9610f34dd4 build(ui): add package script to check and clean translatoins 2025-09-05 11:02:37 +10:00
psychedelicious
8a00d855b4 build(ui): port clean translations script to js 2025-09-05 11:02:37 +10:00
psychedelicious
25430f04c5 chore: bump version to v6.6.0rc2 2025-09-04 16:43:41 +10:00
psychedelicious
b2b53c4481 fix(ui): set a react key on the current image viewer's components
This tells react that the component is a new instance each time we
change the image. Which, in turn, prevents a flash of the
previously-selected image during image switching and
progress-image-to-output-image-ing.
2025-09-04 16:35:40 +10:00
psychedelicious
c6696d7913 fix(ui): ensure origin is set correctly for generate tab batches
This prevents an issue in the image viewer's logic for simulating the
progress image "resolving" to a completed image
2025-09-04 16:35:40 +10:00
psychedelicious
8bcb6648f1 fix(ui): stop dragging when user clicks mmb once
This has been an issue for a long time. I suspect it wasn't noticed
until now because it's finicky to trigger - you have to click and
release very quickly, without moving the mouse at all.
2025-09-04 16:16:04 +10:00
psychedelicious
0ee360ba6c fix(ui): show fallback when no image is selected 2025-09-04 16:13:01 +10:00
psychedelicious
09bbe3eef9 fix(ui): clear gallery selection when switching boards and there are no items in the new board 2025-09-04 16:13:01 +10:00
psychedelicious
d14b7a48f5 fix(ui): clear gallery selection when last image on selected board is deleted 2025-09-04 16:13:01 +10:00
Mary Hipp
1db55b0ffa cleanup 2025-09-03 10:11:32 -04:00
Mary Hipp
3104a1baa6 remove crossOrigin for thumbnail loading 2025-09-03 10:11:32 -04:00
psychedelicious
0e523ca2c1 fix(ui): browser image caching cors race condition
Must set cross origin whenever we load an image from a URL to prevent
race conditions where browser caches an image with no CORS, then canvas
attempts to load it with CORS, resulting in browser rejecting the
request before it is made
2025-09-03 10:11:32 -04:00
psychedelicious
75daef2aba fix(ui): fix situation where progress images are super tiny
Missed a spot
2025-09-03 22:56:55 +10:00
psychedelicious
b036b18986 chore: bump version to v6.6.0rc1 2025-09-03 18:02:37 +10:00
Hosted Weblate
93535fa3c2 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-09-03 17:57:27 +10:00
Riccardo Giovanetti
dcafb44f8a translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2088 of 2117 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-03 17:57:27 +10:00
Mary Hipp
44b1d8d1fc remove video base models from image aspect/ratio logic 2025-09-03 10:22:14 +10:00
Attila Cseh
6f70a6bd10 prettier fix 2025-09-02 19:23:24 +10:00
Attila Cseh
0546aeed1d code review changes 2025-09-02 19:23:24 +10:00
Attila Cseh
8933f3f5dd LoRA weight default values turned into constant 2025-09-02 19:23:24 +10:00
Attila Cseh
29cdefe873 type conversion fixed 2025-09-02 19:23:24 +10:00
Attila Cseh
df299bb37f python source code reformatted 2025-09-02 19:23:24 +10:00
Attila Cseh
481fb42371 lint errors fixed 2025-09-02 19:23:24 +10:00
Attila Cseh
631a04b48c LoRA default weight 2025-09-02 19:23:24 +10:00
Attila Cseh
547e1941f4 code review changes 2025-09-02 19:16:26 +10:00
Attila Cseh
031d25ed63 switchable foreground/background colors 2025-09-02 19:16:26 +10:00
Riccardo Giovanetti
27f4af0eb4 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2087 of 2116 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-02 15:05:51 +10:00
psychedelicious
e0a0617093 chore(ui): bump dockview
This brings in a fix for Chrome that allowed you to drag tabs and split
the panels.

Closes #8449
2025-09-02 11:05:41 +10:00
psychedelicious
e6a763b887 fix(ui): move getItemsPerRow to frontend src dir
Not sure how but it was in repo root

Closes #8509
2025-09-02 11:02:56 +10:00
psychedelicious
3c9c49f7d9 feat(ui): add readiness checks for LoRAs
If incompatible LoRAs are added, prevent Invoking.

The logic to prevent adding incompatible LoRAs to graphs already
existed. This does not fix any generation bugs; just a visual
inconsistency where it looks like Invoke would use an incompatible LoRA.
2025-09-01 14:41:03 +10:00
Attila Cseh
26690d47b7 lint errors fixed 2025-09-01 14:34:35 +10:00
Attila Cseh
fcaff6ce09 remove LoRAs for recall use all 2025-09-01 14:34:35 +10:00
Damian
afd7296cb2 Add 'sd-2' to supported negative prompt base models
add back negative prompt support for sd2
2025-08-31 10:20:31 -04:00
psychedelicious
d6f42c76d5 fix(app): board count queries not getting categories as params 2025-08-29 11:07:52 +10:00
Mary Hipp
68f39fe907 cleanup 2025-08-28 16:38:48 -04:00
Mary Hipp
23a528545f match screen capture button to the others 2025-08-28 16:38:48 -04:00
Mary Hipp
c69d04a7f0 handle large videos 2025-08-28 15:29:47 -04:00
Mary Hipp
60f1e2d7ad do not show negative prompt for video 2025-08-28 12:59:23 -04:00
Mary Hipp
cb386bec28 do not show reference images on video tab 2025-08-28 12:59:23 -04:00
Mary Hipp
f29ceb3f12 add translations 2025-08-28 10:17:00 -04:00
Mary Hipp
4f51bc9421 add credit estimate for video generation 2025-08-28 10:17:00 -04:00
Mary Hipp
0c41abab79 add label for starting image field 2025-08-28 10:17:00 -04:00
Mary Hipp
cb457c3402 default resolution to 1080p 2025-08-28 10:17:00 -04:00
Mary Hipp
606ad73814 use first video model if none selected 2025-08-28 10:17:00 -04:00
psychedelicious
fe70bd538a fix(ui): hide unused queue actions menu item category 2025-08-28 10:17:00 -04:00
psychedelicious
b5c7316c0a chore(ui): lint 2025-08-28 10:17:00 -04:00
psychedelicious
460aec03ea fix(ui): more video translations 2025-08-28 10:17:00 -04:00
psychedelicious
6730d86a13 fix(ui): make ctx menu star label not refer to iamges 2025-08-28 10:17:00 -04:00
psychedelicious
c4bc03cb1f fix(ui): make ctx menu download tooltip not refer to iamges 2025-08-28 10:17:00 -04:00
psychedelicious
136ee28199 feat(ui): remove unimplemented context menu items for video 2025-08-28 10:17:00 -04:00
psychedelicious
2c6d266c0a fix(ui): metadata viewer translations 2025-08-28 10:17:00 -04:00
psychedelicious
f779920eaa chore(ui): lint 2025-08-28 10:17:00 -04:00
psychedelicious
01bef5d165 fix(ui): do not highlight starting frame image in red when it is not required 2025-08-28 10:17:00 -04:00
psychedelicious
72851d3e84 feat(ui): tweak video settings padding 2025-08-28 10:17:00 -04:00
psychedelicious
4ba85c62ca feat(ui): add border around starting frame image 2025-08-28 10:17:00 -04:00
psychedelicious
313aedb00a fix(ui): graph builder check for veo 2025-08-28 10:17:00 -04:00
psychedelicious
85bd324d74 tweak(ui): nav bar divider not so bright 2025-08-28 10:17:00 -04:00
psychedelicious
4a04411e74 fix(ui): tab hotkeys for video 2025-08-28 10:17:00 -04:00
psychedelicious
299a4db3bb chore(ui): lint 2025-08-28 10:17:00 -04:00
psychedelicious
390faa592c chore: ruff 2025-08-28 10:17:00 -04:00
Mary Hipp
2463aeb84a studio init action for video tab 2025-08-28 10:17:00 -04:00
Mary Hipp
ec8df163d1 launchpad cleanup 2025-08-28 10:17:00 -04:00
Mary Hipp
a198b7da78 fix view on large screens, restore auth for screen capture 2025-08-28 10:17:00 -04:00
Mary Hipp
fb11770852 rearrange image | video | asset for boards 2025-08-28 10:17:00 -04:00
Mary Hipp
6b6f3d56f7 add option for video upsell, rearrange navigation bar and gallery tabs 2025-08-28 10:17:00 -04:00
Mary Hipp
29d00eef9a hide video features if video is disabled 2025-08-28 10:17:00 -04:00
psychedelicious
6972cd708d feat(ui): delete confirmation for videos 2025-08-28 10:17:00 -04:00
psychedelicious
82893804ff feat(ui): metadata recall for videos 2025-08-28 10:17:00 -04:00
psychedelicious
47ffe365bc fix(ui): do not store whole model config in state 2025-08-28 10:17:00 -04:00
psychedelicious
f7b03b1e63 fix(ui): do not change canvas bbox on video model change 2025-08-28 10:17:00 -04:00
psychedelicious
356e38e82a feat(ui): use correct model config object in video graph builders 2025-08-28 10:17:00 -04:00
psychedelicious
5ea077bb8c feat(ui): add selector to get model config for current video model 2025-08-28 10:17:00 -04:00
psychedelicious
3c4b303555 feat(ui): simplify and consolidate video capture logic 2025-08-28 10:17:00 -04:00
psychedelicious
b8651cb1a2 fix(ui): rebase conflict 2025-08-28 10:17:00 -04:00
Mary Hipp
a6527c0ba1 lint again 2025-08-28 10:17:00 -04:00
Mary Hipp
6e40eca754 lint 2025-08-28 10:17:00 -04:00
Mary Hipp
53fab17c33 use context to track video ref so that toolbar can also save current frame 2025-08-28 10:17:00 -04:00
Mary Hipp
3876d88b3c add save frame functionality 2025-08-28 10:17:00 -04:00
Mary Hipp
82b4526691 add video_count and asset_count to boards UI 2025-08-28 10:17:00 -04:00
Mary Hipp
f56ba11394 add asset_count to BoardDTO and split it out from image count 2025-08-28 10:17:00 -04:00
Mary Hipp
32eb5190f2 add video_count to boardDTO 2025-08-28 10:17:00 -04:00
Mary Hipp
72e378789d video metadata support 2025-08-28 10:17:00 -04:00
Mary Hipp
f10ddb0cab split out video aspect/ratio into its own components 2025-08-28 10:17:00 -04:00
Mary Hipp
286127077d updates for new model type 2025-08-28 10:17:00 -04:00
Mary Hipp
36278bc044 add UI support for new model type Video 2025-08-28 10:17:00 -04:00
Mary Hipp
7a1c7ca43a add Video as new model type 2025-08-28 10:17:00 -04:00
psychedelicious
8303d567d5 docs(ui): add note about visual jank in gallery 2025-08-28 10:17:00 -04:00
psychedelicious
1fe19c1242 fix(ui): use correct placeholder for vidoes 2025-08-28 10:17:00 -04:00
psychedelicious
127a43865c fix(ui): locate in gallery, galleryview when selecting image/video 2025-08-28 10:17:00 -04:00
psychedelicious
24a48884cb chore(ui): lint 2025-08-28 10:17:00 -04:00
psychedelicious
47cee816fd chore(ui): dpdm 2025-08-28 10:17:00 -04:00
psychedelicious
90bacaddda feat(ui): video dnd 2025-08-28 10:17:00 -04:00
psychedelicious
c0cc9f421e fix(ui): generate tab graph builder 2025-08-28 10:17:00 -04:00
psychedelicious
dbb9032648 fix(ui): iterations works for video models 2025-08-28 10:17:00 -04:00
psychedelicious
b9e32e59a2 fix(ui): missing tranlsation 2025-08-28 10:17:00 -04:00
psychedelicious
545a1d8737 fix(ui): fetching imageDTO for video 2025-08-28 10:17:00 -04:00
psychedelicious
c4718403a2 tidy(ui): remove unused VideoAtPosition component 2025-08-28 10:17:00 -04:00
psychedelicious
eb308b1ff7 feat(ui): simpler layout for video player 2025-08-28 10:17:00 -04:00
Mary Hipp
a277bea804 fix video styling 2025-08-28 10:17:00 -04:00
Mary Hipp
30619c0420 add runway back as a model and allow runway and veo3 to live together in peace and harmony 2025-08-28 10:17:00 -04:00
Mary Hipp
504d8e32be add runway to backend 2025-08-28 10:17:00 -04:00
Mary Hipp
f21229cd14 update redux selection to have a list of images and/or videos, update image viewer to show either image or video depending on what is selected 2025-08-28 10:17:00 -04:00
Mary Hipp
640ec676c3 lint 2025-08-28 10:17:00 -04:00
Mary Hipp
6370412e9c tsc 2025-08-28 10:17:00 -04:00
Mary Hipp
edec2c2775 lint the dang thing 2025-08-28 10:17:00 -04:00
psychedelicious
bd38be31d8 gallery 2025-08-28 10:17:00 -04:00
psychedelicious
b938ae0a7e Revert "feat(ui): consolidated gallery (wip)"
This reverts commit 12b70bca67.
2025-08-28 10:17:00 -04:00
Mary Hipp
6e5b1ed55f add videos to change board modal 2025-08-28 10:17:00 -04:00
Mary Hipp
5970bd38c2 add resolution as a generation setting 2025-08-28 10:17:00 -04:00
Mary Hipp
e046417cf5 replace runway with veo, build out veo3 model support 2025-08-28 10:17:00 -04:00
Mary Hipp
27a2cd19bd add Veo3 model support to backend 2025-08-28 10:17:00 -04:00
psychedelicious
0df631b802 feat(ui): consolidated gallery (wip) 2025-08-28 10:17:00 -04:00
psychedelicious
5bb7cd168d feat(ui): gallery optimistic updates for video 2025-08-28 10:17:00 -04:00
psychedelicious
b4ba84ad35 fix(ui): panel names on video tab 2025-08-28 10:17:00 -04:00
Mary Hipp
d1628f51c9 stubbing out change board functionality 2025-08-28 10:17:00 -04:00
Mary Hipp
17c1304ce2 hook up starring, unstarring, and deleting single videos (no multiselect yet), adapt context menus to work for both images and videos and start on video context menu 2025-08-28 10:17:00 -04:00
Mary Hipp
cc9a85f7d0 add readiness logic to video tab 2025-08-28 10:17:00 -04:00
psychedelicious
7e2999649a feat(ui): more video stuff 2025-08-28 10:17:00 -04:00
psychedelicious
1473142f73 feat(ui): fiddle w/ video stuff 2025-08-28 10:17:00 -04:00
psychedelicious
49343546e7 feat(ui): fiddle w/ video stuff 2025-08-28 10:17:00 -04:00
psychedelicious
39d5879405 chore: ruff 2025-08-28 10:17:00 -04:00
psychedelicious
4b4ec29a09 feat(nodes): update VideoField & VideoOutput 2025-08-28 10:17:00 -04:00
psychedelicious
dc6811076f feat(ui): add dnd target for video start frame 2025-08-28 10:17:00 -04:00
Mary Hipp
0568784ee9 add duration and aspect ratio to video settings 2025-08-28 10:17:00 -04:00
Mary Hipp
895eac6bcd integrating video into gallery - thinking maybe a new category of image would make more senes 2025-08-28 10:17:00 -04:00
Mary Hipp
fe0efa9bdf add noop video router 2025-08-28 10:17:00 -04:00
Mary Hipp
acabc8bd54 add video models 2025-08-28 10:17:00 -04:00
Mary Hipp
89f999af08 combine nodes that generate and save videos 2025-08-28 10:17:00 -04:00
Mary Hipp
9ae76bef51 build out adhoc video saving graph 2025-08-28 10:17:00 -04:00
Mary Hipp
0999b43616 push up updates for VideoField 2025-08-28 10:17:00 -04:00
Mary Hipp
e6e4f58163 update VideoField 2025-08-28 10:17:00 -04:00
Mary Hipp
b371930e02 split out RunwayVideoOutput from VideoOutput 2025-08-28 10:17:00 -04:00
Mary Hipp
9b50e2303b rough rough POC of video tab 2025-08-28 10:17:00 -04:00
Mary Hipp
49d1810991 video_output support 2025-08-28 10:17:00 -04:00
psychedelicious
b1b009f7b8 chore: bump version to v6.5.1 2025-08-28 22:57:14 +10:00
psychedelicious
3431e6385c chore: uv lock 2025-08-28 22:57:14 +10:00
psychedelicious
5db1027d32 Pin sentencepiece version in pyproject.toml
Pin sentencepiece version to 0.2.0 to avoid coredump issues.
2025-08-28 22:57:14 +10:00
Hosted Weblate
579f182fe9 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-08-28 22:51:40 +10:00
Riccardo Giovanetti
55bf41f63f translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2053 of 2082 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-28 22:51:40 +10:00
psychedelicious
fc32fd2d2e fix(ui): progress image renders at physical size 2025-08-28 22:47:52 +10:00
psychedelicious
a2b6536078 fix(ui): konva caching opt-out doesn't do what i thought it would 2025-08-28 22:45:03 +10:00
Mary Hipp Rogers
144c54a6c8 Revert "video_output support"
This reverts commit 453ef1a220.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
ca40daeb97 Revert "rough rough POC of video tab"
This reverts commit e89266bfe3.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e600cdc826 Revert "split out RunwayVideoOutput from VideoOutput"
This reverts commit 97719b0aab.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
b7c52f33dc Revert "update VideoField"
This reverts commit bd251f8cce.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e78157fcf0 Revert "push up updates for VideoField"
This reverts commit 94ba840948.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
7d7b98249f Revert "build out adhoc video saving graph"
This reverts commit 07565d4015.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
f5bf84f304 Revert "combine nodes that generate and save videos"
This reverts commit eff9c7b92f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
c30d5bece2 Revert "add video models"
This reverts commit 295b5a20a8.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
27845b2f1b Revert "add noop video router"
This reverts commit e9c4e12454.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
bad6eea077 Revert "integrating video into gallery - thinking maybe a new category of image would make more senes"
This reverts commit 5c93e53195.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
9c26ac5ce3 Revert "add duration and aspect ratio to video settings"
This reverts commit 4d8bcad15b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
b7306bb5c9 Revert "feat(ui): add dnd target for video start frame"
This reverts commit 530d20c1be.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0c115177b2 Revert "feat(nodes): update VideoField & VideoOutput"
This reverts commit 67de3f2d9b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
5aae41b5bb Revert "chore: ruff"
This reverts commit 9380d8901c.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
7ad09a2f79 Revert "feat(ui): fiddle w/ video stuff"
This reverts commit f98bbc32dd.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
5a6d3639b7 Revert "feat(ui): fiddle w/ video stuff"
This reverts commit 79e8482b27.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
84617d3df2 Revert "feat(ui): more video stuff"
This reverts commit 963c2ec60c.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e05f30749e Revert "add readiness logic to video tab"
This reverts commit 288ac0a293.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
88a2e27338 Revert "hook up starring, unstarring, and deleting single videos (no multiselect yet), adapt context menus to work for both images and videos and start on video context menu"
This reverts commit a918198d4f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
15a6fd76c8 Revert "stubbing out change board functionality"
This reverts commit 67042e6dec.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
6adb46a86c Revert "fix(ui): panel names on video tab"
This reverts commit 64dfa125d2.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e8a74eb79d Revert "feat(ui): gallery optimistic updates for video"
This reverts commit 0ec6d33086.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
dcd716c384 Revert "feat(ui): consolidated gallery (wip)"
This reverts commit 6ef1c2a5e1.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
56697635dd Revert "add Veo3 model support to backend"
This reverts commit 49d569ec59.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
5b5657e292 Revert "replace runway with veo, build out veo3 model support"
This reverts commit d95a698ebd.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
ad3dfbe1ed Revert "add resolution as a generation setting"
This reverts commit b71829a827.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
59ddc4f7b0 Revert "add videos to change board modal"
This reverts commit 45b4432833.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
4653b79f12 Revert "Revert "feat(ui): consolidated gallery (wip)""
This reverts commit 637d19c22b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
778d6f167f Revert "gallery"
This reverts commit aa4e3adadb.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
05c71f50f1 Revert "lint the dang thing"
This reverts commit 1b0d599dc2.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
406e0be39c Revert "tsc"
This reverts commit 7828102b67.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0d71234a12 Revert "lint"
This reverts commit b377b80446.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e38019bb70 Revert "update redux selection to have a list of images and/or videos, update image viewer to show either image or video depending on what is selected"
This reverts commit 8df3067599.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
a879880b42 Revert "add runway to backend"
This reverts commit f631b5178f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
71c8accbfe Revert "add runway back as a model and allow runway and veo3 to live together in peace and harmony"
This reverts commit b2026d9c00.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
154fb99daf Revert "fix video styling"
This reverts commit 3d9889e272.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0df476ce13 Revert "feat(ui): simpler layout for video player"
This reverts commit 3a1cedbced.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e7ad830fa9 Revert "tidy(ui): remove unused VideoAtPosition component"
This reverts commit e55d39a20b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e81e0a8286 Revert "fix(ui): fetching imageDTO for video"
This reverts commit fbf8aa17c8.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
d0f7e72cbb Revert "fix(ui): missing tranlsation"
This reverts commit 89efe9c2b1.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
fdead4fb8c Revert "fix(ui): iterations works for video models"
This reverts commit 24f22d539f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
31c9945b32 Revert "fix(ui): generate tab graph builder"
This reverts commit 84dc4e4ea9.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
22de8a4b12 Revert "feat(ui): video dnd"
This reverts commit f5fdba795a.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
89cb3c3230 Revert "chore(ui): dpdm"
This reverts commit 6a7fe6668b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
7bb99ece4e Revert "chore(ui): lint"
This reverts commit 55139bb169.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
28f040123f Revert "fix(ui): locate in gallery, galleryview when selecting image/video"
This reverts commit 26fe937d97.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
1be3a4db64 Revert "fix(ui): use correct placeholder for vidoes"
This reverts commit 7e031e9c01.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
cb44c995d2 Revert "docs(ui): add note about visual jank in gallery"
This reverts commit 2d9c82da85.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
9b9b35c315 Revert "add Video as new model type"
This reverts commit fb0a924918.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
f6edab6032 Revert "add UI support for new model type Video"
This reverts commit c6f2d127ef.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
f79665b023 Revert "updates for new model type"
This reverts commit 23cde86bc4.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
6b1bc7a87d Revert "split out video aspect/ratio into its own components"
This reverts commit 6c375b228e.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
c6f2994c84 Revert "video metadata support"
This reverts commit b16d1a943d.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0cff67ff23 Revert "add video_count to boardDTO"
This reverts commit 1cc6893d0d.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e957c11c9a Revert "add asset_count to BoardDTO and split it out from image count"
This reverts commit d4378d9f2a.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
4baa685c7a Revert "add video_count and asset_count to boards UI"
This reverts commit e36490c2ec.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
1bd5907a12 Revert "add save frame functionality"
This reverts commit 6a20271dba.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
2fd56e6029 Revert "use context to track video ref so that toolbar can also save current frame"
This reverts commit 1bf25fadb3.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
b0548edc8c Revert "lint"
This reverts commit 378f33bc92.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
41d781176f Revert "lint again"
This reverts commit 41e1697e79.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
8709de0b33 Revert "fix(ui): rebase conflict"
This reverts commit bc6dd12083.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
af43fe2fd4 Revert "feat(ui): simplify and consolidate video capture logic"
This reverts commit c5a76806c1.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
ebbb11c3b1 Revert "feat(ui): add selector to get model config for current video model"
This reverts commit 5cabc37a87.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0fc8c08da3 Revert "feat(ui): use correct model config object in video graph builders"
This reverts commit 9fcba3b876.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
bfadcffe3c Revert "fix(ui): do not change canvas bbox on video model change"
This reverts commit 8eb3f40e1b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
49c2332c13 Revert "fix(ui): do not store whole model config in state"
This reverts commit b2ed3c99d4.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
dacef158c4 Revert "feat(ui): metadata recall for videos"
This reverts commit 4c32b2a123.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0c34d8201e Revert "feat(ui): delete confirmation for videos"
This reverts commit 505c75a5ab.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
77132075ff Revert "hide video features if video is disabled"
This reverts commit 0de5097207.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
f008d3b0b2 Revert "add option for video upsell, rearrange navigation bar and gallery tabs"
This reverts commit 4845d31857.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
4e66ccefe8 Revert "rearrange image | video | asset for boards"
This reverts commit 8a60def51f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
5d0ed45326 Revert "fix view on large screens, restore auth for screen capture"
This reverts commit 1f526a1c27.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
379d633ac6 Revert "launchpad cleanup"
This reverts commit ab41f71a36.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
93bba1b692 Revert "studio init action for video tab"
This reverts commit 431fd83a43.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
667e175ab7 Revert "chore: ruff"
This reverts commit 3ae99df091.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
de146aa4aa Revert "chore(ui): lint"
This reverts commit 36c16d2781.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
ed9c2c8208 Revert "fix(ui): tab hotkeys for video"
This reverts commit 20813b5615.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
9d984878f3 Revert "tweak(ui): nav bar divider not so bright"
This reverts commit 269d4fe670.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
585eb8c69d Revert "fix(ui): graph builder check for veo"
This reverts commit 239fb86a46.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
c105bae127 Revert "feat(ui): add border around starting frame image"
This reverts commit 8642e8881d.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
c39f26266f Revert "feat(ui): tweak video settings padding"
This reverts commit 842d729ec8.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
47dffd123a Revert "fix(ui): do not highlight starting frame image in red when it is not required"
This reverts commit 0b05b24e9a.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
b946ec3172 Revert "chore(ui): lint"
This reverts commit 8c2e6a3988.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
024c02329d Revert "fix(ui): metadata viewer translations"
This reverts commit 2a6cfde488.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
4b43b59472 Revert "feat(ui): remove unimplemented context menu items for video"
This reverts commit a6b0581939.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
d11f115e1a Revert "fix(ui): make ctx menu download tooltip not refer to iamges"
This reverts commit e4f24c4dc4.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
92253ce854 Revert "fix(ui): make ctx menu star label not refer to iamges"
This reverts commit ec793cb636.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0ebbfa90c9 Revert "fix(ui): more video translations"
This reverts commit 0d827d8306.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
fdfee11e37 Revert "chore(ui): lint"
This reverts commit 3971382a6d.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
6091bf4f60 Revert "fix(ui): hide unused queue actions menu item category"
This reverts commit 07271ca468.
2025-08-28 08:32:47 -04:00
psychedelicious
07271ca468 fix(ui): hide unused queue actions menu item category 2025-08-28 08:23:58 -04:00
psychedelicious
3971382a6d chore(ui): lint 2025-08-28 08:23:58 -04:00
psychedelicious
0d827d8306 fix(ui): more video translations 2025-08-28 08:23:58 -04:00
psychedelicious
ec793cb636 fix(ui): make ctx menu star label not refer to iamges 2025-08-28 08:23:58 -04:00
psychedelicious
e4f24c4dc4 fix(ui): make ctx menu download tooltip not refer to iamges 2025-08-28 08:23:58 -04:00
psychedelicious
a6b0581939 feat(ui): remove unimplemented context menu items for video 2025-08-28 08:23:58 -04:00
psychedelicious
2a6cfde488 fix(ui): metadata viewer translations 2025-08-28 08:23:58 -04:00
psychedelicious
8c2e6a3988 chore(ui): lint 2025-08-28 08:23:58 -04:00
psychedelicious
0b05b24e9a fix(ui): do not highlight starting frame image in red when it is not required 2025-08-28 08:23:58 -04:00
psychedelicious
842d729ec8 feat(ui): tweak video settings padding 2025-08-28 08:23:58 -04:00
psychedelicious
8642e8881d feat(ui): add border around starting frame image 2025-08-28 08:23:58 -04:00
psychedelicious
239fb86a46 fix(ui): graph builder check for veo 2025-08-28 08:23:58 -04:00
psychedelicious
269d4fe670 tweak(ui): nav bar divider not so bright 2025-08-28 08:23:58 -04:00
psychedelicious
20813b5615 fix(ui): tab hotkeys for video 2025-08-28 08:23:58 -04:00
psychedelicious
36c16d2781 chore(ui): lint 2025-08-28 08:23:58 -04:00
psychedelicious
3ae99df091 chore: ruff 2025-08-28 08:23:58 -04:00
Mary Hipp
431fd83a43 studio init action for video tab 2025-08-28 08:23:58 -04:00
Mary Hipp
ab41f71a36 launchpad cleanup 2025-08-28 08:23:58 -04:00
Mary Hipp
1f526a1c27 fix view on large screens, restore auth for screen capture 2025-08-28 08:23:58 -04:00
Mary Hipp
8a60def51f rearrange image | video | asset for boards 2025-08-28 08:23:58 -04:00
Mary Hipp
4845d31857 add option for video upsell, rearrange navigation bar and gallery tabs 2025-08-28 08:23:58 -04:00
Mary Hipp
0de5097207 hide video features if video is disabled 2025-08-28 08:23:58 -04:00
psychedelicious
505c75a5ab feat(ui): delete confirmation for videos 2025-08-28 08:23:58 -04:00
psychedelicious
4c32b2a123 feat(ui): metadata recall for videos 2025-08-28 08:23:58 -04:00
psychedelicious
b2ed3c99d4 fix(ui): do not store whole model config in state 2025-08-28 08:23:58 -04:00
psychedelicious
8eb3f40e1b fix(ui): do not change canvas bbox on video model change 2025-08-28 08:23:58 -04:00
psychedelicious
9fcba3b876 feat(ui): use correct model config object in video graph builders 2025-08-28 08:23:58 -04:00
psychedelicious
5cabc37a87 feat(ui): add selector to get model config for current video model 2025-08-28 08:23:58 -04:00
psychedelicious
c5a76806c1 feat(ui): simplify and consolidate video capture logic 2025-08-28 08:23:58 -04:00
psychedelicious
bc6dd12083 fix(ui): rebase conflict 2025-08-28 08:23:58 -04:00
Mary Hipp
41e1697e79 lint again 2025-08-28 08:23:58 -04:00
Mary Hipp
378f33bc92 lint 2025-08-28 08:23:58 -04:00
Mary Hipp
1bf25fadb3 use context to track video ref so that toolbar can also save current frame 2025-08-28 08:23:58 -04:00
Mary Hipp
6a20271dba add save frame functionality 2025-08-28 08:23:58 -04:00
Mary Hipp
e36490c2ec add video_count and asset_count to boards UI 2025-08-28 08:23:58 -04:00
Mary Hipp
d4378d9f2a add asset_count to BoardDTO and split it out from image count 2025-08-28 08:23:58 -04:00
Mary Hipp
1cc6893d0d add video_count to boardDTO 2025-08-28 08:23:58 -04:00
Mary Hipp
b16d1a943d video metadata support 2025-08-28 08:23:58 -04:00
Mary Hipp
6c375b228e split out video aspect/ratio into its own components 2025-08-28 08:23:58 -04:00
Mary Hipp
23cde86bc4 updates for new model type 2025-08-28 08:23:58 -04:00
Mary Hipp
c6f2d127ef add UI support for new model type Video 2025-08-28 08:23:58 -04:00
Mary Hipp
fb0a924918 add Video as new model type 2025-08-28 08:23:58 -04:00
psychedelicious
2d9c82da85 docs(ui): add note about visual jank in gallery 2025-08-28 08:23:58 -04:00
psychedelicious
7e031e9c01 fix(ui): use correct placeholder for vidoes 2025-08-28 08:23:58 -04:00
psychedelicious
26fe937d97 fix(ui): locate in gallery, galleryview when selecting image/video 2025-08-28 08:23:58 -04:00
psychedelicious
55139bb169 chore(ui): lint 2025-08-28 08:23:58 -04:00
psychedelicious
6a7fe6668b chore(ui): dpdm 2025-08-28 08:23:58 -04:00
psychedelicious
f5fdba795a feat(ui): video dnd 2025-08-28 08:23:58 -04:00
psychedelicious
84dc4e4ea9 fix(ui): generate tab graph builder 2025-08-28 08:23:58 -04:00
psychedelicious
24f22d539f fix(ui): iterations works for video models 2025-08-28 08:23:58 -04:00
psychedelicious
89efe9c2b1 fix(ui): missing tranlsation 2025-08-28 08:23:58 -04:00
psychedelicious
fbf8aa17c8 fix(ui): fetching imageDTO for video 2025-08-28 08:23:58 -04:00
psychedelicious
e55d39a20b tidy(ui): remove unused VideoAtPosition component 2025-08-28 08:23:58 -04:00
psychedelicious
3a1cedbced feat(ui): simpler layout for video player 2025-08-28 08:23:58 -04:00
Mary Hipp
3d9889e272 fix video styling 2025-08-28 08:23:58 -04:00
Mary Hipp
b2026d9c00 add runway back as a model and allow runway and veo3 to live together in peace and harmony 2025-08-28 08:23:58 -04:00
Mary Hipp
f631b5178f add runway to backend 2025-08-28 08:23:58 -04:00
Mary Hipp
8df3067599 update redux selection to have a list of images and/or videos, update image viewer to show either image or video depending on what is selected 2025-08-28 08:23:58 -04:00
Mary Hipp
b377b80446 lint 2025-08-28 08:23:58 -04:00
Mary Hipp
7828102b67 tsc 2025-08-28 08:23:58 -04:00
Mary Hipp
1b0d599dc2 lint the dang thing 2025-08-28 08:23:58 -04:00
psychedelicious
aa4e3adadb gallery 2025-08-28 08:23:58 -04:00
psychedelicious
637d19c22b Revert "feat(ui): consolidated gallery (wip)"
This reverts commit 12b70bca67.
2025-08-28 08:23:58 -04:00
Mary Hipp
45b4432833 add videos to change board modal 2025-08-28 08:23:58 -04:00
Mary Hipp
b71829a827 add resolution as a generation setting 2025-08-28 08:23:58 -04:00
Mary Hipp
d95a698ebd replace runway with veo, build out veo3 model support 2025-08-28 08:23:58 -04:00
Mary Hipp
49d569ec59 add Veo3 model support to backend 2025-08-28 08:23:58 -04:00
psychedelicious
6ef1c2a5e1 feat(ui): consolidated gallery (wip) 2025-08-28 08:23:58 -04:00
psychedelicious
0ec6d33086 feat(ui): gallery optimistic updates for video 2025-08-28 08:23:58 -04:00
psychedelicious
64dfa125d2 fix(ui): panel names on video tab 2025-08-28 08:23:58 -04:00
Mary Hipp
67042e6dec stubbing out change board functionality 2025-08-28 08:23:58 -04:00
Mary Hipp
a918198d4f hook up starring, unstarring, and deleting single videos (no multiselect yet), adapt context menus to work for both images and videos and start on video context menu 2025-08-28 08:23:58 -04:00
Mary Hipp
288ac0a293 add readiness logic to video tab 2025-08-28 08:23:58 -04:00
psychedelicious
963c2ec60c feat(ui): more video stuff 2025-08-28 08:23:58 -04:00
psychedelicious
79e8482b27 feat(ui): fiddle w/ video stuff 2025-08-28 08:23:58 -04:00
psychedelicious
f98bbc32dd feat(ui): fiddle w/ video stuff 2025-08-28 08:23:58 -04:00
psychedelicious
9380d8901c chore: ruff 2025-08-28 08:23:58 -04:00
psychedelicious
67de3f2d9b feat(nodes): update VideoField & VideoOutput 2025-08-28 08:23:58 -04:00
psychedelicious
530d20c1be feat(ui): add dnd target for video start frame 2025-08-28 08:23:58 -04:00
Mary Hipp
4d8bcad15b add duration and aspect ratio to video settings 2025-08-28 08:23:58 -04:00
Mary Hipp
5c93e53195 integrating video into gallery - thinking maybe a new category of image would make more senes 2025-08-28 08:23:58 -04:00
Mary Hipp
e9c4e12454 add noop video router 2025-08-28 08:23:58 -04:00
Mary Hipp
295b5a20a8 add video models 2025-08-28 08:23:58 -04:00
Mary Hipp
eff9c7b92f combine nodes that generate and save videos 2025-08-28 08:23:58 -04:00
Mary Hipp
07565d4015 build out adhoc video saving graph 2025-08-28 08:23:58 -04:00
Mary Hipp
94ba840948 push up updates for VideoField 2025-08-28 08:23:58 -04:00
Mary Hipp
bd251f8cce update VideoField 2025-08-28 08:23:58 -04:00
Mary Hipp
97719b0aab split out RunwayVideoOutput from VideoOutput 2025-08-28 08:23:58 -04:00
Mary Hipp
e89266bfe3 rough rough POC of video tab 2025-08-28 08:23:58 -04:00
Mary Hipp
453ef1a220 video_output support 2025-08-28 08:23:58 -04:00
psychedelicious
faf8f0f291 chore: bump version to v6.5.0 2025-08-28 13:32:37 +10:00
psychedelicious
5d36499982 chore: update whatsnew 2025-08-28 13:32:37 +10:00
Linos
151d67a0cc translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2082 of 2082 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-08-28 13:02:16 +10:00
Riccardo Giovanetti
72431ff197 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2053 of 2082 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-28 13:02:16 +10:00
psychedelicious
0de1feed76 chore(ui): lint 2025-08-28 12:59:35 +10:00
psychedelicious
7ffb626dbe feat(ui): add image load errors to logging 2025-08-28 12:59:35 +10:00
psychedelicious
79753289b1 feat(ui): log image failed to load errors at error level 2025-08-28 12:59:35 +10:00
psychedelicious
bac4c05fd9 feat(ui): log "destroying module" at debug level 2025-08-28 12:59:35 +10:00
psychedelicious
8a3b5d2c6f fix(ui): do not cache canvas entities when they have no w/h 2025-08-28 12:59:35 +10:00
psychedelicious
309578c19a fix(ui): progress image gets stuck on viewer when generating on canvas 2025-08-28 12:55:36 +10:00
Mary Hipp
fd58e1d0f2 update copy for API models without w/h controls 2025-08-27 09:24:22 -04:00
psychedelicious
04ffb979ce fix(ui): deny the pull of the square 2025-08-27 08:56:15 -04:00
psychedelicious
35c00d5a83 chore(ui): lint 2025-08-27 08:56:15 -04:00
psychedelicious
c2b49d58f5 fix(ui): gemini 2.5 unsupported gen mode error message 2025-08-27 08:56:15 -04:00
psychedelicious
6ff6b40a35 feat(ui): support unknown output image dimensions on canvas
Gemini 2.5 Flash makes no guarantees about output image sizes. Our
existing logic always rendered staged images on Canvas at the bbox dims
- not the image's physical dimensions. When Gemini returns an image that
doesn't match the bbox, it would get squished.

To rectify this, the canvas staging area renderer is updated to render
its images using their physical dimensions, as opposed to their
configured dimensions (i.e. bbox).

A flag on CanvasObjectImage enables this rendering behaviour.

Then, when saving the image as a layer from staging area, we use the
physical dimensions.

When the bbox and physical dimensions do not match, the bbox is not
touched, so it won't exactly encompass the staged image. No point in
resizing the bbox if the dimensions don't match - the next image could
be a different size, and the sizes might not be valid (it's an external
resource, after all).
2025-08-27 08:56:15 -04:00
psychedelicious
1f1beda567 fix(ui): remove gemini aspect ratio checking in graph builder 2025-08-27 08:56:15 -04:00
psychedelicious
91d62eb242 fix(ui): update ref image type when switching to gemini 2025-08-27 08:56:15 -04:00
psychedelicious
013e02d08b feat(ui): show w/h, scaled bbox settings only when relevant 2025-08-27 08:56:15 -04:00
psychedelicious
115053972c feat(ui): handle api model determination in a clearer way w/ list of base models; use it in dimensions component 2025-08-27 08:56:15 -04:00
psychedelicious
bcab754ac2 docs(ui): add note about reactflow types 2025-08-27 08:56:15 -04:00
psychedelicious
f1a542aca2 docs(ui): add note about extraneous coordiantes in paramsSlice 2025-08-27 08:56:15 -04:00
psychedelicious
0701cc63a1 feat(ui): hide width/height sliders for api models
These models only support aspect ratio inputs; not pixel dimensions
2025-08-27 08:56:15 -04:00
psychedelicious
9337710b45 chore(ui): lint 2025-08-27 08:56:15 -04:00
psychedelicious
592ef5a9ee feat(ui): improved support model handling when switching models
- Disable LoRAs instead of deleting them when base model changes
- Update toast message to indicate that we may have _updated_ a model
(prev just sayed cleared or disabled)
- Do not change ref image models if the new base model doesn't support
them. For example, changing from SDXL to Imagen does not update the ref
image model or alert the user, because Imagen does not support ref
images. Switching from Imagen to FLUX does update the ref image model
and alert the user. Just a bit less noisy.
2025-08-27 08:56:15 -04:00
psychedelicious
5fe39a3ae9 fix(ui): add gemini 2.5 to ref image supporting models 2025-08-27 08:56:15 -04:00
psychedelicious
1888c586ca feat(ui): do not prevent invoking when ref images are added but model does not support ref images 2025-08-27 08:56:15 -04:00
psychedelicious
88922a467e feat(ui): hide ref images UI when selected models does not support ref images 2025-08-27 08:56:15 -04:00
psychedelicious
84115e598c fix(ui): lock height slider when using api model 2025-08-27 08:56:15 -04:00
Mary Hipp
370fc67777 UI support for gemini 2.5 API model 2025-08-27 08:56:15 -04:00
Mary Hipp
fa810e1d02 add gemini 2.5 to base model 2025-08-27 08:56:15 -04:00
Attila Cseh
ec5043aa83 useNodeFieldElementExists turned private 2025-08-26 11:39:16 +10:00
Attila Cseh
9a2a0cef74 node field dnd logic updatedto prevent duplicates 2025-08-26 11:39:16 +10:00
Attila Cseh
c205c1d19e current board removed from options 2025-08-26 11:33:39 +10:00
Attila Cseh
ae1a815453 change board - sorting order of boards alphabetical 2025-08-26 11:33:39 +10:00
psychedelicious
687bc281e5 chore: prep for v6.5.0rc1 (#8479)
## Summary

Bump version

## Related Issues / Discussions

n/a

## QA Instructions

n/a

## Merge Plan

This is already released.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-08-26 11:25:01 +10:00
psychedelicious
567316d753 chore: bump version to v6.5.0rc1 2025-08-25 18:10:18 +10:00
psychedelicious
53ac7c9d2c feat(ui): bbox aspect ratio lock is always inverted by shift 2025-08-25 17:59:20 +10:00
Riccardo Giovanetti
90be2a0cdf translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2050 of 2079 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-25 17:57:54 +10:00
Attila Cseh
c7fb8f69ae code review fixes 2025-08-25 17:53:59 +10:00
Attila Cseh
7fecb8e88b formatting fixed 2025-08-25 17:53:59 +10:00
Attila Cseh
ee6a2a6603 respect direction of selection in Gallery 2025-08-25 17:53:59 +10:00
Attila Cseh
2496ac19c4 remove input field from form 2025-08-25 16:33:09 +10:00
psychedelicious
e34ed199c9 feat(ui): respect aspect ratio when resizing bbox on canvas 2025-08-25 15:30:01 +10:00
psychedelicious
569533ef80 fix(ui): toggle bbox visiblity translation 2025-08-25 14:51:34 +10:00
psychedelicious
dfac73f9f0 fix(ui): disable color picker while middle-mouse panning canvas 2025-08-25 14:47:42 +10:00
psychedelicious
f4219d5db3 chore: uv lock 2025-08-23 14:17:56 +10:00
psychedelicious
04d1958e93 feat(app): vendor in invisible-watermark
Fixes errors like `AttributeError: module 'cv2.ximgproc' has no
attribute 'thinning'` which occur because there is a conflict between
our own `opencv-contrib-python` dependency and the `invisible-watermark`
library's `opencv-python`.
2025-08-23 14:17:56 +10:00
psychedelicious
47d7d93e78 fix(ui): float input precision
Determine the "base" step for floats. If no `multipleOf` is provided,
the "base" step is `undefined`, meaning the float can have any number of
decimal places.

The UI library does its own step constrains though and is rounding to 3
decimal places. Probably need to update the logic in the UI library to
have truly arbitrary precision for float fields.
2025-08-22 13:35:59 +10:00
psychedelicious
0e17950949 fix(ui): race condition when setting hf token and downloading model
I ran into a race condition where I set a HF token and it was valid, but
somehow this error toast still appeared. The conditional feel through to
an assertion that we never expected to get to, which crashed the UI.

Handled the unexpected case gracefully now.
2025-08-22 13:30:38 +10:00
psychedelicious
b0cfdc94b5 feat(ui): do not sample alpha in Canvas color picker
Closes #7897
2025-08-21 21:38:03 +10:00
psychedelicious
bb153b55d3 docs: update quick start 2025-08-21 21:26:09 +10:00
psychedelicious
93ef637d59 docs: update latest release links 2025-08-21 21:26:09 +10:00
Attila Cseh
c5689ca1a7 code review changes 2025-08-21 19:42:38 +10:00
Attila Cseh
008e421ad4 shuffle button on workflows 2025-08-21 19:42:38 +10:00
psychedelicious
28a77ab06c Revert "experiment: add non-lfs-tracked file to lfs-tracked dir"
This reverts commit 4f4b7ddfb0.
2025-08-21 15:49:20 +10:00
psychedelicious
be48d3c12d ci: give workflow perms to label/comment on pr 2025-08-21 15:49:20 +10:00
psychedelicious
518b21a49a experiment: add non-lfs-tracked file to lfs-tracked dir 2025-08-21 15:49:20 +10:00
psychedelicious
68825ca9eb ci: add workflow to catch incorrect usage of git-lfs 2025-08-21 15:49:20 +10:00
psychedelicious
73c5f0b479 chore: bump version to v6.4.0 2025-08-19 12:19:02 +10:00
psychedelicious
7b4e04cd7c git: move test LoRA to LFS 2025-08-19 11:56:59 +10:00
Linos
ae4368fabe translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2073 of 2073 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-08-19 10:28:35 +10:00
psychedelicious
df8e39a9e1 chore: bump version to v6.4.0rc2 2025-08-19 00:01:48 +10:00
psychedelicious
45b43de571 fix(ui): prevent node drag when editing title
Closes #8435
2025-08-18 23:20:28 +10:00
psychedelicious
6d18a72a05 fix(ui): fit to bbox when bbox is not aligned to 64px grid 2025-08-18 23:17:45 +10:00
Kent Keirsey
af58a75e97 Support PEFT Loras with Base_Model.model prefix (#8433)
* Support PEFT Loras with Base_Model.model prefix

* update tests

* ruff

* fix python complaints

* update kes

* format keys

* remove unneeded test
2025-08-18 09:14:46 -04:00
psychedelicious
fd4c3bd27a refactor: estimate working vae memory during encode/decode
- Move the estimation logic to utility functions
- Estimate memory _within_ the encode and decode methods, ensuring we
_always_ estimate working memory when running a VAE
2025-08-18 21:43:14 +10:00
psychedelicious
1f8a60ded2 fix(ui): export NumericalParameterConfig type 2025-08-18 21:38:17 +10:00
psychedelicious
b1b677997d chore: bump version to v6.4.0rc1 2025-08-18 21:34:09 +10:00
psychedelicious
f17b43d736 chore(ui): update whatsnew 2025-08-18 21:34:09 +10:00
psychedelicious
c009a50489 feat(ui): reduce storage persist debounce to 300ms
matches pre-server-backed-state-persistence value
2025-08-18 21:34:09 +10:00
psychedelicious
97a16c455c fix(ui): update board totals when generation completes 2025-08-18 21:34:09 +10:00
psychedelicious
a8a07598c8 chore: ruff 2025-08-18 21:14:00 +10:00
psychedelicious
23206e22e8 tests: skip excessively flaky MPS-specific tests in CI 2025-08-18 21:14:00 +10:00
psychedelicious
f4aba52b90 feat(ui): use flushSync for locateInGallery to ensure panel api calls finish before selecting image 2025-08-18 19:55:06 +10:00
psychedelicious
d17c273939 feat(ui): add locate in gallery button to current image buttons toolbar 2025-08-18 19:55:06 +10:00
psychedelicious
aeb5e7d50a feat(ui): hide locate in gallery from context when unable to actually locate
e.g. when on a tab that doesn't have a gallery, or the image is
intermediate
2025-08-18 19:55:06 +10:00
psychedelicious
580ad30832 feat(ui): use bold icon for locate in gallery 2025-08-18 19:55:06 +10:00
psychedelicious
6390f7d734 fix(ui): more reliable scrollIntoView/"Locate in Gallery"
Three changes needed to make scrollIntoView and "Locate in Gallery" work
reliably.

1. Use setTimeout to work around race condition with scrollIntoView in
gallery.

It was possible to call scrollIntoView before react-virtuoso was ready.
I think react-virtuoso was initialized but hadn't rendered/measured its
items yet, so when we scroll to e.g. index 742, the items have a zero
height, so it doesn't actually scroll down. Then the items render.

Setting a timeout here defers the scroll until after the next event loop
cycle, by which time we expect react-virutoso to be ready.

2. Ensure the scollIntoView effect in gallery triggers any time the
selection is touched by making its dependency the array of selected
images, not just the last selected image name.

The "locate in gallery" functionality works by selecting an image.
There's a reactive effect in the gallery that runs when the last
selected image changes and scrolls it into view.

But if you already have an image selected, selecting it again will not
change the image name bc it is a string primitive. The useEffect ignores
the selection.

So, if you clicked "locate in gallery" on an image that was already
selected, it wouldn't be scrolled into view - even if you had already
scrolled away from it.

To work around this, the effect now uses the whole selection array as
its dependency. Whenever the selection changes, we get a new array,
which triggers the effect.

3. Gallery slice had some checks to avoid creating a new array of
selected image names in state when the selected images didn't change.

For example, if image "abc" was selected, and we selected "abc" again,
instead of creating a new array with the same "abc" image, we bailed
early. IIRC this optimization addressed a rerender issue long ago.

This optimization needs to be removed in order for fix #2 above to work.
We now _want_ a new array whenever selection is set - even if it didn't
actually change.
2025-08-18 19:55:06 +10:00
psychedelicious
5ddbfefb6a feat(ui): add trace logging to scrollIntoView 2025-08-18 19:55:06 +10:00
psychedelicious
bbf5ed7956 fix(ui): use is_intermediate to determine if image is gallery image 2025-08-18 19:55:06 +10:00
Attila Cseh
19cd6eed08 locate in gallery image context menu 2025-08-18 19:55:06 +10:00
Attila Cseh
9c1eb263a8 new entity added above the currently selected one 2025-08-18 18:46:40 +10:00
Attila Cseh
75755189a7 prettier fixes 2025-08-18 18:46:40 +10:00
Attila Cseh
a9ab72d27d new layers created on the top of the existing layers 2025-08-18 18:46:40 +10:00
Attila Cseh
678eb34995 duplicate layer appear above original one 2025-08-18 18:46:40 +10:00
Attila Cseh
ef7050f560 merged layers order retained 2025-08-18 18:46:40 +10:00
Attila Cseh
9787d9de74 prettier fix 2025-08-18 18:30:08 +10:00
Attila Cseh
bb4a50bab2 confirmation before downloading starter bundle 2025-08-18 18:30:08 +10:00
Attila Cseh
f3554b4e1b prettier fixed 2025-08-14 21:10:21 +10:00
Attila Cseh
9dcb025241 build error fixed 2025-08-14 21:10:21 +10:00
Attila Cseh
ecf646066a CLIP skip value clamped 2025-08-14 21:10:21 +10:00
Attila Cseh
3fd10b68cd recall CLIP skip 2025-08-14 21:10:21 +10:00
Attila Cseh
6e32c7993c CLIP Skip zod schema created 2025-08-14 21:10:21 +10:00
Riccardo Giovanetti
8329533848 translationBot(ui): update translation (Italian)
Currently translated at 98.5% (2041 of 2071 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (2039 of 2067 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-14 12:14:27 +10:00
psychedelicious
fc7157b029 fix(ui): do not add pos style prompt to metadata 2025-08-14 10:56:24 +10:00
psychedelicious
a1897f7490 chore(ui): lint 2025-08-14 10:56:24 +10:00
psychedelicious
a89b3efd14 feat(ui): remove SDXL style prompt from linear UI
This feature added a lot of unexpected complexity in graph building /
metadata recall and is unintuitive user experience. 99% of the time, the
style prompt should be exactly the main prompt.

You can still use style prompts in workflows, but in an effort to reduce
complexity in the linear UI, we are removing this rarely-used feature.
2025-08-14 10:56:24 +10:00
jiangmencity
5259693ed1 chore: fix some comments
Signed-off-by: jiangmencity <jiangmen@52it.net>
2025-08-14 09:32:54 +10:00
Tikal
d77c24206d Update NODES.md 2025-08-14 09:18:47 +10:00
psychedelicious
c5069557f3 fix(mm): fail when model exists at path instead of finding unused new path
When installing a model, the previous, graceful logic would increment a
suffix on the destination path until found a free path for the model.

But because model file installation and record creation are not in a
transaction, we could end up moving the file successfully and fail to
create the record:
- User attempts to install an already-installed model
- Attempt to move the downloaded model from download tempdir to
destination path
- The path already exists
- Add `_1` or similar to the path until we find a path that is free
- Move the model
- Create the model record
- FK constraint violation bc we already have a model w/ that name, but
the model file has already been moved into the invokeai dir.

Closes #8416
2025-08-13 10:40:06 +10:00
psychedelicious
9b220f61bd translations(ui): add translation for gallery settings 2025-08-12 23:34:24 +10:00
psychedelicious
7fc3af12cc translations(ui): add translation for select your model in launchpad 2025-08-12 23:34:24 +10:00
psychedelicious
e2721b46b6 translations(ui): add atranslations for add/remove negative promtp 2025-08-12 23:34:24 +10:00
psychedelicious
17118a04bd feat(ui): dynamic dockview tab title translations
Requires a ui slice migration and reset of users's layout settings to
get the right titles into dockview params state, which is persisted.
2025-08-12 23:34:24 +10:00
psychedelicious
24788e3c83 fix(ui): input field error styling specificity 2025-08-12 23:30:34 +10:00
psychedelicious
056387c981 feat(ui): allow recall of prompt and seed on upscaling tab 2025-08-12 16:21:51 +10:00
psychedelicious
8a43d90273 fix(ui): positive prompt in upscale metadata 2025-08-12 16:21:51 +10:00
psychedelicious
4f9b9760db feat(ui): debounce persistence instead of throttle 2025-08-12 16:16:11 +10:00
psychedelicious
fdaddafa56 fix(mm): only add suffix to model paths when path is file 2025-08-12 15:31:43 +10:00
psychedelicious
23d59abbd7 chore: ruff 2025-08-12 10:51:05 +10:00
psychedelicious
cf7fa5bce8 perf(backend): clear torch cache after encoding each image in kontext extension
Slightly reduces VRAM allocations.
2025-08-12 10:51:05 +10:00
psychedelicious
39e41998bb feat(ui): use latent-space kontext ref image concat in flux graph
Prevents a large spike in VRAM when preparing to denoise w/ multiple ref
images.

There doesn't appear to be any different in image quality / ref
adherence when concatenating in latent space vs image space, though
images _are_ different.
2025-08-12 10:51:05 +10:00
psychedelicious
c6eff71b74 fix(backend): bug in kontext canvas dimension tracking when concating in latent space
We weren't tracking the canvas dimensions properly which coudl result in
FLUX not "seeing" ref images after the first very well
2025-08-12 10:51:05 +10:00
psychedelicious
6ea4c47757 chore: ruff 2025-08-12 10:51:05 +10:00
psychedelicious
91f91aa835 feat(mm): prepare kontext latents before loading transformer
If the transformer fills up VRAM, then when we VAE encode kontext
latents, we'll need to first offload the transformer (partially, if
partial loading is enabled).

No need to do this - we can encode kontext latents before loading the
transformer to reduce model thrashing.
2025-08-12 10:51:05 +10:00
psychedelicious
ea7868d076 Revert "experiment(mm): investigate vae working memory calculations"
This reverts commit bc9ed57d5cd134dc7c9117395e91d22a3c4aa6de.
2025-08-12 10:51:05 +10:00
psychedelicious
7d86f00d82 feat(mm): implement working memory estimation for VAE encode for all models
Tell the model manager that we need some extra working memory for VAE
encoding operations to prevent OOMs.

See previous commit for investigation and determination of the magic
numbers used.

This safety measure is especially relevant now that we have FLUX Kontext
and may be encoding rather large ref images. Without the working memory
estimation we can OOM as we prepare for denoising.

See #8405 for an example of this issue on a very low VRAM system. It's
possible we can have the same issue on any GPU, though - just a matter
of hitting the right combination of models loaded.
2025-08-12 10:51:05 +10:00
psychedelicious
7785061e7d experiment(mm): investigate vae working memory calculations
This commit includes a task delegated to Claude to investigate our VAE
working memory calculations and investigation results.

See VAE_INVESTIGATION.md for motivation and detail. Everything else is
its output.

Result data includes empirical measurements for all supported model
architectures at a variety of resolutions and fp16/fp32 precision.
Testing conducted on a 4090.

The summarized conclusion is that our working memory estimations for
decoding are spot-on, but decoding also needs some extra working memory.
Empirical measurements suggest ~45% the amount needed for encoding.

A followup commit will implement working memory estimations for VAE
encoding with the goal of preventing unexpected OOMs during encode.
2025-08-12 10:51:05 +10:00
psychedelicious
3370052e54 fix(ui): restore deduping logic in node field element selectors
This is required for some publishing functionality
2025-08-11 22:50:05 +10:00
Attila Cseh
325dacd29c same field cannot be added to form multiple times in workflow editor 2025-08-11 22:50:05 +10:00
psychedelicious
f4981a6ba9 tidy(ui): minor cleanup 2025-08-11 22:37:46 +10:00
Attila Cseh
8c159942eb add to form icon included 2025-08-11 22:37:46 +10:00
Attila Cseh
deb4dc64af error nodes outlined in red 2025-08-11 22:37:46 +10:00
psychedelicious
1a11437b6f feat(ui): add hidden bbox hotkey to alert
If you accidentally hit the hotkey and hide the bbox it could be
difficult to figure out how to un-hide it without the hotkey called out
in the alert.
2025-08-11 22:30:45 +10:00
Attila Cseh
04572c94ad setting bbox visibility moved into render method 2025-08-11 22:30:45 +10:00
Attila Cseh
1e9e78089e Add toggle for bbox with hotkey 2025-08-11 22:30:45 +10:00
Heathen711
e65f93663d bugfix(container-builder) Use the mnt space instead of root space for docker images 2025-08-06 12:36:07 -04:00
psychedelicious
2a796fe25e chore: bump version to v6.3.0 2025-08-05 10:35:22 +10:00
psychedelicious
61ff9ee3a7 feat(ui): add button to ref image to recall size & optimize for model
This is useful for FLUX Kontext, where you typically want the generation
size to at least roughly match the first ref image size.
2025-08-05 10:28:44 +10:00
psychedelicious
111408c046 feat(mm): add flux krea to starter models 2025-08-05 10:25:14 +10:00
psychedelicious
d7619d465e feat(mm): change anime upscaling model to one that doesn't trigger picklescan 2025-08-05 10:25:14 +10:00
Kent Keirsey
8ad4f6e56d updates & fix 2025-08-05 10:10:52 +10:00
Cursor Agent
bf4899526f Add 'shift+s' hotkey for fitting bbox to canvas
Co-authored-by: kent <kent@invoke.ai>
2025-08-05 10:10:52 +10:00
psychedelicious
6435d265c6 fix(ui): overflow w/ long board names 2025-08-05 10:06:55 +10:00
Linos
3163ef454d translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2065 of 2065 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-08-05 10:04:20 +10:00
Riccardo Giovanetti
7ea636df70 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2037 of 2065 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (2037 of 2065 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (2036 of 2065 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (2014 of 2042 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-05 10:04:20 +10:00
Hosted Weblate
1869824803 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-08-05 10:04:20 +10:00
psychedelicious
66fc8af8a6 fix(ui): reset session button actions
- Do not reset dimensions when resetting generation settings (they are
model-dependent, and we don't change model-dependent settings w/ that
butotn)
- Do not reset bbox when resetting canvas layers
- Show reset canvas layers button only on canvas tab
- Show reset generation settings button only on canvas or generate tab
2025-08-05 10:01:22 +10:00
psychedelicious
48cb6b12f0 fix(ui): add style ref launchpad using wrong dnd config
I don't think this actually caused problems bc the two DND targets were
very similar, but it was wrong.
2025-08-05 09:57:11 +10:00
psychedelicious
68e30a9864 feat(ui): prevent creating new canvases while staging
Disable these items while staging:
- New Canvas From Image context menu
- Edit image hook & launchpad button
- Generate from Text launchpad button (only while on canvas tab)
- Use a Layout Image launchpad button
2025-08-05 09:57:11 +10:00
psychedelicious
f65dc2c081 chore(ui): typegen 2025-08-05 09:54:00 +10:00
psychedelicious
0cd77443a7 feat(app): add setting to disable picklescan
When unsafe_disable_picklescan is enabled, instead of erroring on
detections or scan failures, a warning is logged.

A warning is also logged on app startup when this setting is enabled.

The setting is disabled by default and there is no change in behaviour
when disabled.
2025-08-05 09:54:00 +10:00
Mary Hipp
185ed86424 fix graph building 2025-08-04 12:32:27 -04:00
Mary Hipp
fed817ab83 add image concatenation to flux kontext graph if more than one refernece image 2025-08-04 11:27:02 -04:00
Mary Hipp
e0b45db69a remove check in readiness for multiple reg images 2025-08-04 11:27:02 -04:00
psychedelicious
2beac1fb04 chore: bump version to v6.3.0rc2 2025-08-04 23:55:04 +10:00
psychedelicious
e522de33f8 refactor(nodes): roll back latent-space resizing of kontext images 2025-08-04 23:03:12 +10:00
psychedelicious
d591b50c25 feat(ui): use image-space concatenation in FLUX graphs 2025-08-04 23:03:12 +10:00
psychedelicious
b365aad6d8 chore(ui): typegen 2025-08-04 23:03:12 +10:00
psychedelicious
65ad392361 feat(nodes): add node to prep images for FLUX Kontext 2025-08-04 23:03:12 +10:00
psychedelicious
56d75e1c77 feat(backend): use VAE mean encoding for Kontext reference images
Use distribution mean without sampling noise for more stable and
consistent reference image encoding, matching ComfyUI implementation
2025-08-04 23:03:12 +10:00
psychedelicious
df77a12efe refactor(backend): use torchvision transforms for Kontext image preprocessing
Replace numpy-based normalization with torchvision transforms for
consistency with other image processing in the codebase
2025-08-04 23:03:12 +10:00
psychedelicious
faf662d12e refactor(backend): use BICUBIC resampling for Kontext images
Switch from LANCZOS to BICUBIC for smoother image resizing to reduce
artifacts in reference image processing
2025-08-04 23:03:12 +10:00
psychedelicious
44a7dfd486 fix(backend): use consistent idx_offset=1 for all Kontext images
Changes from per-image index offsets to a consistent value of 1 for
all reference images, matching the ComfyUI implementation
2025-08-04 23:03:12 +10:00
psychedelicious
bb15e5cf06 feat(backend): add spatial tiling for multiple Kontext reference images
Implements intelligent spatial tiling that arranges multiple reference
images in a virtual canvas, choosing between horizontal and vertical
placement to maintain a square-like aspect ratio
2025-08-04 23:03:12 +10:00
psychedelicious
1a1c846be3 feat(backend): include reference images in negative CFG pass for Kontext
Maintains consistency between positive and negative passes to prevent
CFG artifacts when using Kontext reference images
2025-08-04 23:03:12 +10:00
psychedelicious
93c896a370 fix(backend): use img_cond_seq to check for Kontext slicing
Was incorrectly checking img_input_ids instead of img_cond_seq
2025-08-04 23:03:12 +10:00
psychedelicious
053d7c8c8e feat(ui): support disabling roarr output styling via localstorage 2025-07-31 23:02:45 +10:00
psychedelicious
5296263954 feat(ui): add missing translations 2025-07-31 22:51:33 +10:00
psychedelicious
a36b70c01c fix(ui): add image name data attr to gallery placeholder image elements
This fixes an issue where gallery's auto-scroll-into-view for selected
images didn't work, and users instead saw a "Unable to find image..."
debug log message in JS console.
2025-07-31 22:48:42 +10:00
psychedelicious
854a2a5a7a chore: bump version to v6.3.0rc1 2025-07-31 14:17:18 +10:00
psychedelicious
f9c64b0609 chore(ui): update whats new 2025-07-31 14:17:18 +10:00
psychedelicious
5889fa536a feat(ui): add migration path for client state from IndexedDB to server-backed storage 2025-07-31 14:09:45 +10:00
Linos
0e71ba892f translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2044 of 2044 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-07-31 13:59:21 +10:00
Riccardo Giovanetti
d766a21223 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2016 of 2044 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-31 13:59:21 +10:00
psychedelicious
5c8c54eab8 chore: ruff 2025-07-31 06:38:48 +10:00
psychedelicious
f296f4525c tidy(ui): disable logging middleware 2025-07-31 06:38:48 +10:00
psychedelicious
7c9ba4cb52 refactor(ui): add persistence gate logic to prevent race conditions with slow rehydration 2025-07-31 06:38:48 +10:00
psychedelicious
6784fd5b43 refactor(ui): use new routes for _all_ client state persistence (no override/custom drivers) 2025-07-31 06:38:48 +10:00
psychedelicious
11d68cc646 chore(ui): typegen 2025-07-31 06:38:48 +10:00
psychedelicious
ea8c877025 refactor(app): move client state persistence to own route, add queue_id 2025-07-31 06:38:48 +10:00
psychedelicious
7a3c2332dd feat(ui): add visual indicator when input field is added to form 2025-07-31 06:33:22 +10:00
psychedelicious
3835fd2f72 feat(ui): zhoosh image comparison ui 2025-07-30 07:20:47 -04:00
psychedelicious
6f8746040c docs(ui): update comments in readiness re: flux kontext via bfl api 2025-07-30 12:26:48 +10:00
psychedelicious
35e3940a09 feat(ui): update warning when using multiple ref images on BFL API kontext
It only supports 1 image.
2025-07-30 12:26:48 +10:00
psychedelicious
415616d83f feat(ui): support multiple kontext ref images in studio 2025-07-30 12:26:48 +10:00
psychedelicious
afb67efef9 chore(ui): typegen 2025-07-30 12:26:48 +10:00
psychedelicious
1ed1fefa60 feat(nodes): support multiple kontext ref images
Images are concatenated in latent space.
2025-07-30 12:26:48 +10:00
Ar7ific1al
fa94a05c77 Update CanvasStateApiModule.ts
Add temporary grid snap with ctrl, optional small step with ctrl+shift, while grid snap is off
2025-07-30 12:16:42 +10:00
psychedelicious
7a23d8266f feat(ui): simpler storage driver impl 2025-07-30 05:53:20 +10:00
psychedelicious
a44de079dd perf(ui): instantiate logger for storage error handler once 2025-07-30 05:53:20 +10:00
psychedelicious
c3c1a3edd8 chore(ui): typegen 2025-07-30 05:53:20 +10:00
psychedelicious
ea26b5b147 feat(app): client state persistence endpoints accept stringified data 2025-07-30 05:53:20 +10:00
Eugene Brodsky
4226b741b1 fix(docker) rocm 6.3 based image (#8152)
1. Fix the run script to properly read the GPU_DRIVER
2. Cloned and adjusted the ROCM dockerbuild for docker
3. Adjust the docker-compose.yml to use the cloned dockerbuild
2025-07-29 10:16:42 -04:00
Eugene Brodsky
1424b7c254 Merge branch 'main' into bugfix/heathen711/rocm-docker 2025-07-29 10:12:13 -04:00
psychedelicious
933fb2294c fix(ui): zod rejects any board id besides "none"
Turns out the string autocomplete TS hack does not translate to zod.
Widen the zod schema to any string, but use the hack for the TS type.
2025-07-29 08:45:16 -04:00
psychedelicious
5a181ee0fd build(ui): export loading component 2025-07-29 08:43:03 -04:00
psychedelicious
3b0d59e459 tests(app): update mm tests to test updated behaviour 2025-07-29 16:08:15 +10:00
psychedelicious
fec296e41d fix(app): move (not copy) models from install tmpdir to destination
It's not clear why we were copying downloaded models to the destination
dir instead of moving them. I cannot find a reason for it, and I am able
to install single-file and diffusers models just fine with the change.

This fixes an issue where model installation requires 2x the model's
size (bc we were copying the model over).
2025-07-29 16:08:15 +10:00
Heathen711
ae4e38c6d0 Merge branch 'main' into bugfix/heathen711/rocm-docker 2025-07-28 21:24:34 -07:00
psychedelicious
a9f3f1a4b2 fix(app): handle model files with periods in their name
Previously, we used pathlib's `with_suffix()` method to change add a
suffix (e.g. ".safetensors") to a model when installing it.

The intention is to add a suffix to the model's name - but that method
actually replaces everything after the first period.

This can cause different models to be installed under the same name!

For example, the FLUX models all end up with the same name:
- "FLUX.1 schnell.safetensors" -> "FLUX.safetensors"
- "FLUX.1 dev.safetensors" -> "FLUX.safetensors"

The fix is easy - append the suffix using string formatting instead of
using pathlib.

This issue has existed for a long time, but was exacerbated in
075345bffd in which I updated the names of
our starter models, adding ".1" to the FLUX model names. Whoops!
2025-07-29 14:15:59 +10:00
psychedelicious
8a73df4fe1 fix(ui): progress image does not hide on viewer with autoswitch disabled 2025-07-29 12:53:45 +10:00
psychedelicious
ea2e1ea8f0 fix(ui): queue count badge renders when left panel collapsed 2025-07-29 12:51:23 +10:00
psychedelicious
e8aa91931d fix(ui): connect metadata to output node for ext api nodes 2025-07-29 06:46:17 +10:00
psychedelicious
8d22a314a6 docs(ui): add some comments for race condition handling 2025-07-29 06:34:08 +10:00
psychedelicious
57ce2b8aa7 chore(ui): lint 2025-07-29 06:34:08 +10:00
psychedelicious
6b810cb3fb fix(ui): race condition w/ queue counts 2025-07-29 06:34:08 +10:00
psychedelicious
4f3a5dcc43 tidy(ui): remove unused progress related logic and components 2025-07-29 06:34:08 +10:00
psychedelicious
c3ae14cf73 fix(ui): ignore events for already-completed queue items 2025-07-29 06:34:08 +10:00
psychedelicious
b9c44b92d5 fix(ui): clear progress images from viewer at the right time 2025-07-29 06:34:08 +10:00
psychedelicious
5a68b4ddbc build(ui): skip logging ctx plugin when running tests 2025-07-29 06:31:30 +10:00
psychedelicious
18a722839b chore(ui): update knip conifg 2025-07-29 06:31:30 +10:00
psychedelicious
7370cb9be6 build(ui): add vite plugin to add relative file path to logger context 2025-07-29 06:31:30 +10:00
Kent Keirsey
cc4df52f82 feat: server-side client state persistence (#8314)
## Summary

Move client state persistence from browser to server.

- Add new client state persistence service to handle reading and writing
client state to db & associated router. The API mirrors that of
LocalStorage/IndexedDB where the set/get methods both operate on _keys_.
For example, when we persist the canvas state, we send only the new
canvas state to the backend - not the whole app state.
- The data is very flexibly-typed as a pydantic `JsonValue`. The client
is expected to handle all data parsing/validation (it must do this
anyways, and does this today).
- Change persistence from debounced to throttled at 2 seconds. Maybe
less is OK? Trying to not hammer the server.
- Add new persistence storage driver in client and use it in
redux-remember. It does its best to avoid extraneous persist requests,
caching the last data it persisted and noop-ing if there are no changes.
- Storage driver tracks pending persist actions using ref counts (bc
each slice is persisted independently). If there user navigates away
from the page during a persist request, it will give them the "you may
lose something if you navigate away" alert.
- This "lose something" alert message is not customizable (browser
security reasons).
- The alert is triggered only when the user closes the tape while a
persist network request is mid-flight. It's possible that the user makes
a change and closes the page before we start persisting. In this case,
they will lose the last 2 seconds of data.
- I tried making triggering the alert when a persist was waiting to
start, and it felt off.
- Maybe the alert isn't even necessary. Again you'd lose 2s of data at
most, probably a non issue. IMO after trying it, a subtle indicator
somewhere on the page is probably less confusing/intrusive.
- Fix an issue where the `redux-remember` enhancer was added _last_ in
the enhancer chain, which prevented us detecting when a persist has
succeeded. This required a small change to the `unserialze` utility
(used during rehydration) to ensure slices enhanced with `redux-undo`
are set up correctly as they are rehydrated.
- Restructure the redux store code to avoid circular dependencies. I
couldn't figure out how to do this without just smooshing it all into
the main `store.ts` file. Oh well.

Implications:
- Because client state is now on the server, different browsers will
have the same studio state. For example, if I start working on something
in Firefox, if I switch to Chrome, I have the same client state.
- Incognito windows won't do anything bc client state is server-side.
- It takes a bit longer for persistence to happen thanks to the
debounce, but there's now an indicator that tells you your stuff isn't
saved yet.
- Resetting the browser won't fix an issue with your studio state. You
must use `Reset Web UI` to fix it (or otherwise hit the appropriate
endpoint). It may be possible to end up in a Catch-22 where you can't
click the button and get stuck w/ a borked studio - I think to think
through this a bit more, might not be an issue.
- It probably takes a bit longer to start up, since we need to retrieve
client state over network instead of directly with browser APIs.

Other notes:
- We could explore adding an "incognito" mode, enabled via
`invokeai.yaml` setting or maybe in the UI. This would temporarily
disable persistence. Actually, I don't think this really makes sense, bc
all the images would be saved to disk.
- The studio state is stored in a single row in the DB. Currently, a
static row ID is used to force the studio state to be a singleton. It is
_possible_ to support multiple saved states. Might be a solve for app
workspaces.

## Related Issues / Discussions

n/a

## QA Instructions

Try it out. It's pretty straightforward. Error states are the main
things to test - for example, network blips. The new server-side
persistence driver is the only real functional change - everything else
is just kinda shuffling things around to support it.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-07-25 12:08:47 -04:00
Kent Keirsey
1cb4ef05a4 add newline 2025-07-25 11:08:54 -04:00
Kent Keirsey
7da141101c Merge branch 'main' into psyche/feat/app/client-state-persistence 2025-07-25 11:07:17 -04:00
psychedelicious
2571e199c5 tidy(ui): remove unused props 2025-07-25 11:06:18 -04:00
psychedelicious
79e93f905e fix(ui): add separate wrapper components for notes and current image nodes that do not need invocation node context 2025-07-25 11:06:18 -04:00
psychedelicious
f562e4f835 fix(ui): ensure all node context provider wraps all calls to useInvocationNodeContext 2025-07-25 11:06:18 -04:00
psychedelicious
47e220aaf3 perf(ui): imperatively get nodes and edges in autolayout hook 2025-07-25 11:06:18 -04:00
psychedelicious
9365154bfe chore: bump version to v6.2.0 2025-07-25 11:06:18 -04:00
psychedelicious
afc6911c96 chore: bump version to v6.3.0a1 2025-07-25 19:07:08 +10:00
psychedelicious
afa1ee7ffd tidy(ui): enable devmode redux checks 2025-07-25 19:04:21 +10:00
psychedelicious
5a102f6b53 chore(ui): lint 2025-07-25 19:04:21 +10:00
psychedelicious
af345a33f3 fix(ui): infinite loop when setting tile controlnet model 2025-07-25 19:04:21 +10:00
psychedelicious
038b110a82 fix(ui): do not store whole model configs in state 2025-07-25 19:04:21 +10:00
psychedelicious
f3cd49d46e refactor(ui): just manually validate async stuff 2025-07-25 19:04:21 +10:00
psychedelicious
ca7d7c9d93 refactor(ui): work around zod async validation issue 2025-07-25 19:04:21 +10:00
psychedelicious
1addeb4b59 fix(ui): check initial retrieval and set as last persisted 2025-07-25 19:04:21 +10:00
psychedelicious
6ea4884b0c chore(ui): bump zod to latest
Checking if it fixes an issue w/ async validators
2025-07-25 19:04:21 +10:00
psychedelicious
aed9b1013e refactor(ui): use zod for all redux state 2025-07-25 19:04:21 +10:00
psychedelicious
6962536b4a refactor(ui): use zod for all redux state (wip)
needed for confidence w/ state rehydration logic
2025-07-25 19:04:21 +10:00
psychedelicious
7e59d040aa feat(ui): iterate on storage api 2025-07-25 19:04:20 +10:00
psychedelicious
e7c67da2c2 refactor(ui): restructure persistence driver creation to support custom drivers 2025-07-25 19:04:20 +10:00
psychedelicious
c44571bc36 revert(ui): temp changes to main.tsx for testing 2025-07-25 19:04:20 +10:00
psychedelicious
ca257650d4 revert(ui): temp disable eslint rule 2025-07-25 19:04:20 +10:00
psychedelicious
6a9962d2bb git: update gitignore 2025-07-25 19:04:20 +10:00
psychedelicious
9492569a2c wip 2025-07-25 19:04:20 +10:00
psychedelicious
61e711620d chore: ruff 2025-07-25 19:04:20 +10:00
psychedelicious
3cf82505bb tests(app): service mocks 2025-07-25 19:04:20 +10:00
psychedelicious
53bcbc58f5 chore(ui): lint 2025-07-25 19:04:20 +10:00
psychedelicious
42f3990f7a refactor(ui): iterate on persistence 2025-07-25 19:04:20 +10:00
psychedelicious
456205da17 refactor(ui): iterate on persistence 2025-07-25 19:04:20 +10:00
psychedelicious
ca0684700e refactor(ui): alternate approach to slice configs 2025-07-25 19:04:19 +10:00
psychedelicious
6a702821ef chore(ui): typegen 2025-07-25 19:04:19 +10:00
psychedelicious
682d271f6f feat(api): make client state key query not body 2025-07-25 19:04:19 +10:00
psychedelicious
e872c253b1 refactor(ui): cleaner slice definitions 2025-07-25 19:04:19 +10:00
psychedelicious
28633c9983 feat: server-side client state persistence 2025-07-25 19:04:19 +10:00
psychedelicious
70ac58e64a tidy(ui): remove unused props 2025-07-25 18:51:21 +10:00
psychedelicious
e653837236 fix(ui): add separate wrapper components for notes and current image nodes that do not need invocation node context 2025-07-25 18:51:21 +10:00
psychedelicious
2bbfcc2f13 fix(ui): ensure all node context provider wraps all calls to useInvocationNodeContext 2025-07-25 18:51:21 +10:00
psychedelicious
d6e0e439c5 perf(ui): imperatively get nodes and edges in autolayout hook 2025-07-25 18:50:59 +10:00
psychedelicious
26aab60f81 chore: bump version to v6.2.0 2025-07-25 18:41:00 +10:00
Riccardo Giovanetti
7bea2fa11f translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2016 of 2044 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (2015 of 2043 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-25 17:15:01 +10:00
psychedelicious
169d58ea4c feat(ui): restore clear queue button
It is accessible in two places:
- The queue actions hamburger menu.
- On the queue tab.

If the clear queue app feature is disabled, it is not shown in either of
those places.
2025-07-23 23:38:53 +10:00
psychedelicious
b53d2250f7 feat(ui): reduce snap tolerance to make it easier to break the snap 2025-07-23 23:05:40 +10:00
psychedelicious
242eea8295 fix(ui): incorrect zoom direction w/ small scroll amounts 2025-07-23 23:05:40 +10:00
psychedelicious
4dabe09e0d tests(ui): remove test for no-longer-valid behaviour 2025-07-23 23:03:02 +10:00
psychedelicious
07fa0d3b77 fix(ui): do not attempt toggle when target panel isn't registered 2025-07-23 23:03:02 +10:00
psychedelicious
e97f82292f tests(ui): add tests for disposable handling 2025-07-23 23:03:02 +10:00
psychedelicious
005bab9035 fix(ui): tab disposables not being added correctly 2025-07-23 23:03:02 +10:00
psychedelicious
409173919c tests(ui): add tests for toggleViewer functionality 2025-07-23 23:03:02 +10:00
psychedelicious
7915180047 feat(ui): restore viewer toggle hotkey 2025-07-23 23:03:02 +10:00
Riccardo Giovanetti
4349b8387d translationBot(ui): update translation (Italian)
Currently translated at 97.9% (2000 of 2042 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-23 12:26:48 +10:00
Kent Keirsey
f95b686bdc reposition export button 2025-07-23 11:55:11 +10:00
Mary Hipp
72afb9c3fd fix iterations for all API models 2025-07-22 13:27:35 -04:00
Mary Hipp
f004fc31f1 update whats new 2025-07-22 12:24:10 -04:00
psychedelicious
2aa163b3a2 feat(ui): add default inpaint mask layer on canvas reset 2025-07-22 10:26:57 +10:00
psychedelicious
f40900c173 chore: bump version to v6.1.0 2025-07-22 08:24:31 +10:00
psychedelicious
2c1f2b2873 tidy(ui): move star hotkey into own hook & use reactive state for focus 2025-07-22 08:11:57 +10:00
Kent Keirsey
8418e34480 lint 2025-07-22 08:11:57 +10:00
Kent Keirsey
b548ac0ccf Add Star/Unstar Hotkey and fix hotkey translations 2025-07-22 08:11:57 +10:00
Linos
2af2b8b6c4 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2003 of 2003 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Hosted Weblate
058dc06748 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Riccardo Giovanetti
8acb1c0088 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1978 of 2003 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1978 of 2003 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1968 of 1994 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Hosted Weblate
683732a37c translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Riku
b990eacca0 translationBot(ui): update translation (German)
Currently translated at 62.1% (1251 of 2012 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
RyoKoba
5f7e920deb translationBot(ui): update translation (Japanese)
Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 92.0% (1851 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 92.0% (1851 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 92.0% (1851 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 87.4% (1744 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 87.4% (1744 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

Co-authored-by: RyoKoba <kobayashi_ryo@cyberagent.co.jp>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Riccardo Giovanetti
55dfdc0a9c translationBot(ui): update translation (Italian)
Currently translated at 97.9% (1953 of 1994 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1986 of 2011 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1970 of 1995 strings)

translationBot(ui): update translation (Italian)

Currently translated at 97.8% (1910 of 1952 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Linos
10d6d19e17 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2012 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (2012 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.7% (2006 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.7% (2006 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.5% (2002 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.5% (2002 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 97.8% (1968 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 97.8% (1968 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 97.8% (1968 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 97.8% (1968 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 96.4% (1940 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 96.4% (1940 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1921 of 1921 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1917 of 1917 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
skunkworxdark
15542b954d Fix nodes ui: Make nodes dot background to be the same as the snap to grid size and position
Fix nodes ui:  Make nodes dot background to be the same as the snap to grid size and position
Update to Flow.tsx

Changes the size and offset of the dots background to be the same size as the snap to grid, and also fix the background dot pattern alignment.

Currently, the snapGrid is 25x25, and the default background dot gap is 20x20, these do not align.  This is fixed by making the gap property of the background the same as the snapGrid.

Additionally, there is a bug in the rectFlow background code that incorrectly sets the offset to be the centre of the dot pattern with the default offset of 0.  To work around this issue, setting the background offset property to the snapGrid size will realign the dot pattern correctly. 

I have logged a bug for the rectFlow background issue in its repo. 
https://github.com/xyflow/xyflow/issues/5405
2025-07-22 07:46:52 +10:00
skunkworxdark
6430d830c1 Update nodes auto layout spacing for snap to grid size
Update workflowSettingsSlice.ts

Change the default settings for auto layout nodeSpacing and layerSpacing  to 30 instead of 32.    This will make the x position of auto layed nodes land on the snap to grid positions. 

Because the node width (320) + 30 = 350 which is divisible by the snap to grid size of 25.
2025-07-22 07:40:58 +10:00
Kent Keirsey
c3f6389291 fix ruff and remove unused API route 2025-07-22 07:33:48 +10:00
Kent Keirsey
070eef3eff remove whitespace 2025-07-22 07:33:48 +10:00
Kent Keirsey
b14d841d57 Extract util and fix model image logic 2025-07-22 07:33:48 +10:00
Kent Keirsey
dd35ab026a update logic and remove bad test 2025-07-22 07:33:48 +10:00
Cursor Agent
7fc06db8ad Add LoRA model metadata extraction from JSON and PNG files
Co-authored-by: kent <kent@invoke.ai>
2025-07-22 07:33:48 +10:00
psychedelicious
9d1f09c0f3 fix(ui): return wrapped history in redux-remember unserialize
We intermittently get an error like this:
```
TypeError: Cannot read properties of undefined (reading 'length')
```

This error is caused by a `redux-undo`-enhanced slice being rehydrated
without the extra stuff it adds to the slice to make it undoable (e.g.
an array of `past` states, the `present` state, array of `future`
states, and some other metadata).

`redux-undo` may need to check the length of the past/future arrays as
part of its internal functionality. These keys don't exist so we get the
error. I'm not sure _why_ they don't exist - my understanding of
`redux-undo` is that it should be checking and wrapping the state w/ the
history stuff automatically. Seems to be related to `redux-remember` -
may be a race condition.

The solution is to ensure we wrap rehydrated state for undoable slices
as we rehydrate them. I discovered the solution while troubleshooting
#8314 when the changes therein somehow triggered the issue to start
occuring every time instead of rarely.
2025-07-22 07:00:57 +10:00
skunkworxdark
cacfb183a6 Add auto layout controls to node editor (#8239)
* Add auto layout controls using elkjs to node editor

Introduces auto layout functionality for the node editor using elkjs, including a new UI popover for layout options (placement strategy, layering, spacing, direction). Adds related state and actions to workflowSettingsSlice, updates translations, and ensures elkjs is included in optimized dependencies.

* feat(nodes): Improve workflow auto-layout controls and accuracy

- The auto-layout settings panel is updated to use `Select` dropdowns and `NumberInput`
- The layout algorithm now uses the actual rendered dimensions of nodes from the DOM, falling back to estimates only when necessary. This results in a much more accurate and predictable layout.
- The ELKjs library integration is refactored to fix some warnings

* Update useAutoLayout.ts

prettier

* feat(nodes): Improve workflow auto-layout controls and accuracy

- The auto-layout settings panel is updated to use `Select` dropdowns and `NumberInput`
- The layout algorithm now uses the actual rendered dimensions of nodes from the DOM, falling back to estimates only when necessary. This results in a much more accurate and predictable layout.
- The ELKjs library integration is refactored to fix some warnings

* Update useAutoLayout.ts

prettier

* build(ui): import elkjs directly

* updated to use  dagrejs for autolayout

updated to use dagrejs - it has less layout options but is already included

but this is still WIP as some nodes don't report the height correctly. I am still investigating this...

* Update useAutoLayout.ts

update to fix layout issues

* minor updates

- pretty useAutoLayout.ts
- add missing type import in ViewportControls.tsx
- update pnpm-lock.yaml with elkjs removed

* Update ViewportControls.tsx

pnpm fix

* Fix Frontend check + single node selection fix

Fix Frontend check -  remove unused export from workflowSettingsSlice.ts
Update so that if you have a single node selected, it will auto layout all nodes, as this is a common thing to have a single node selected and means that you don't have to unselect it.

* feat(ui): misc improvements for autolayout

- Split popover into own component
- Add util functions to get node w/h
- Use magic wand icon for button
- Fix sizing of input components
- Use CompositeNumberInput instead of base chakra number input
- Add zod schemas for string values and use them in the component to
ensure state integrity

* chore(ui): lint

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-07-21 14:44:29 +10:00
psychedelicious
564f4f7a60 feat(ui): better icon for invert mask button 2025-07-21 13:47:02 +10:00
Kent Keirsey
113a118fcf fix potential for null data 2025-07-21 13:47:02 +10:00
Kent Keirsey
1f930cdaf2 fix 2025-07-21 13:47:02 +10:00
Kent Keirsey
c490e0ce08 feat(ui):invert mask 2025-07-21 13:47:02 +10:00
Kent Keirsey
7640ee307c feat(ui):Adjust-bbox-to-masks 2025-07-21 13:26:49 +10:00
psychedelicious
1f5f70f898 feat(ui): clean up picker compact view default state handling
- Name it `pickerCompactViewStates` bc its not exclusive to model
picker, it is used for all pickers
- Rename redux action to model an event
- Move selector to right file
- Use selector to derive state for individual picker
2025-07-21 13:18:09 +10:00
Mary Hipp
1430858112 cleanup 2025-07-21 13:18:09 +10:00
Mary Hipp
48c27ec117 persist model picker compact/expanded state 2025-07-21 13:18:09 +10:00
psychedelicious
af7737e804 fix(ui): context menu on staging area images
There was a subtle issue where the progress image wasn't ever cleared,
preventing the context menu from working on staging area preview images.

The staging area preview images were displaying the last progress image
_on top of_ the result image. Because the image elements were so small,
you wouldn't notice that you were looking at a low-res progress image.
Right clicking a progress image gets you no menu.

If you refresh the page or switch tabs, this would fix itself, because
those actions clear out the progress images. The result image would then
be the topmost element, and the context menu works.

Fixing this without introducing a flash of empty space as the progress
image was hidden required a bit of refactoring. We have to wait for the
result image element to load before clearing out the progress.

Result - progress images appear to "resolve" to result images in the
staging area without any blips or jank, and the context menu works after
that happens.
2025-07-21 13:15:34 +10:00
psychedelicious
3eca0d2ba0 fix(ui): staging area left/right hotkeys 2025-07-18 08:08:15 -04:00
psychedelicious
307259f096 fix(ui): ensure staging area always has the right state and session association 2025-07-18 08:08:15 -04:00
psychedelicious
bed01941a5 fix(ui): ensure we clean up when session id changes 2025-07-18 08:08:15 -04:00
psychedelicious
89fa43a3b6 docs(ui): update StagingAreaApi docstrings 2025-07-18 08:08:15 -04:00
psychedelicious
d8fcb08abf repo: update ignores 2025-07-18 08:08:15 -04:00
psychedelicious
c61bcd9f50 tests(ui): add test suite for StagingAreaApi 2025-07-18 08:08:15 -04:00
psychedelicious
3fb0fcbbfb tidy(ui): move staging area components to correct dir 2025-07-18 08:08:15 -04:00
psychedelicious
db9af5083f tidy(ui): move launchpad components to ui dir 2025-07-18 08:08:15 -04:00
psychedelicious
720f1bb65c chore(ui): rename context2.tsx -> context.tsx 2025-07-18 08:08:15 -04:00
psychedelicious
7dfb318ba2 chore(ui): lint 2025-07-18 08:08:15 -04:00
psychedelicious
9b024da2b4 refactor(ui): move staging area logic out side react
Was running into difficultlies reasoning about the logic and couldn't
write tests because it was all in react.

Moved logic outside react, updated context, make it testable.
2025-07-18 08:08:15 -04:00
psychedelicious
15ca3b727a wip 2025-07-18 08:08:15 -04:00
psychedelicious
74ca604ae0 fix(ui): unstyled error boundary 2025-07-18 08:08:15 -04:00
psychedelicious
6934b05c85 fix(ui): use invocation context provider in inspector panel 2025-07-18 08:08:15 -04:00
psychedelicious
1a47a5317c chore(ui): update dockview to latest
Remove extraneous fix now that the disableDnd issue is resolved upstream
2025-07-18 08:08:15 -04:00
psychedelicious
bc3ef21c64 chore(ui): bump version to v6.1.0rc2 2025-07-18 08:08:15 -04:00
psychedelicious
e329f5ad43 fix(ui): negative style prompt not recorded in metadata 2025-07-18 06:41:21 +10:00
psychedelicious
e6ad91bf89 chore(ui): update prettier config 2025-07-17 22:04:57 +10:00
psychedelicious
2f586416a5 chore(ui): remove unused pkgs 2025-07-17 22:04:57 +10:00
psychedelicious
33b56f421c chore(ui): lint 2025-07-17 22:04:57 +10:00
psychedelicious
e58ee4c492 chore(ui): upgrade zod 2025-07-17 22:04:57 +10:00
psychedelicious
49691aa07e chore(ui): upgrade rollup vis 2025-07-17 22:04:57 +10:00
psychedelicious
56570f235f chore(ui): actually upgrade storybook 2025-07-17 22:04:57 +10:00
psychedelicious
a2d95cf5b6 chore(ui): upgrade minor bump packages 2025-07-17 22:04:57 +10:00
psychedelicious
704dbfd04a chore(ui): upgrade storybook 2025-07-17 22:04:57 +10:00
psychedelicious
5d9e078043 chore(ui): finish eslint v9 migration 2025-07-17 22:04:57 +10:00
psychedelicious
875cde13ae chore(ui): migrate to eslint v9 (wip) 2025-07-17 22:04:57 +10:00
psychedelicious
77655aed86 chore(ui): update eslint config 2025-07-17 22:04:57 +10:00
psychedelicious
0628b92d63 chore: bump version to v6.1.0rc1 2025-07-17 19:30:38 +10:00
psychedelicious
9e526d00c2 chore(ui): lint 2025-07-17 15:36:24 +10:00
psychedelicious
1a24396be8 feat(ui): styling when nodes have error 2025-07-17 15:36:24 +10:00
psychedelicious
d97e73a565 chore(ui): lint 2025-07-17 15:36:24 +10:00
psychedelicious
55b14c8aaf perf(ui): optimize redux selectors for workflow editor
- Build selectors for each node in a react context so components can
re-use the same selectors
- Cache the selectors in the context
2025-07-17 15:36:24 +10:00
Heathen711
1cdd4b5980 bugfix(docs) link syntax 2025-07-17 04:26:06 +00:00
psychedelicious
79f65e57eb fix(ui): remove unnecessary coalescing operator 2025-07-17 14:21:02 +10:00
Kent Keirsey
b4c8950278 address comments 2025-07-17 14:21:02 +10:00
Kent Keirsey
400b2e9a55 unlint. 2025-07-17 14:21:02 +10:00
Kent Keirsey
3a687c583a lint 2025-07-17 14:21:02 +10:00
Kent Keirsey
833950078d commit tile size controls 2025-07-17 14:21:02 +10:00
Kent Keirsey
e698dcb148 unlint. 2025-07-17 14:21:02 +10:00
Kent Keirsey
218386e077 lint 2025-07-17 14:21:02 +10:00
Kent Keirsey
4426be9e64 commit tile size controls 2025-07-17 14:21:02 +10:00
Heathen711
89ceecc870 bugfix(docker) Ensure the correct extra install. 2025-07-17 04:19:22 +00:00
psychedelicious
86f4cf7857 feat(ui): related embedding styling/tidy 2025-07-17 14:12:29 +10:00
Kent Keirsey
49ae66d94a Added related model support 2025-07-17 14:12:29 +10:00
Cursor Agent
c10865c7ef Reorder embedding options in PromptTriggerSelect component
Co-authored-by: kent <kent@invoke.ai>
2025-07-17 14:12:29 +10:00
Heathen711
687cccdb99 cleanup(docker) 2025-07-17 04:00:42 +00:00
psychedelicious
f3478a189a fix(ui): able to drag empty space in tab bar and detach panels 2025-07-17 13:58:32 +10:00
Heathen711
c84f8465b8 bugfix(pyproject) Convert from dependency groups to extras and update docks to use UV's built in torch support 2025-07-17 03:58:26 +00:00
psychedelicious
43db29176a chore(ui): lint 2025-07-17 13:52:24 +10:00
psychedelicious
f38922929c docs(ui): comments in modelsLoaded 2025-07-17 13:52:24 +10:00
psychedelicious
7d02c58f86 fix(ui): move <ParamTileControlNetModel /> to <UpscaleTabAdvancedSettingsAccordion /> 2025-07-17 13:52:24 +10:00
Kent Keirsey
6edce8be87 Add scaling in 2025-07-17 13:52:24 +10:00
Kent Keirsey
31f63e38bd lint 2025-07-17 13:52:24 +10:00
Kent Keirsey
78a68ac3a7 Updated 2025-07-17 13:52:24 +10:00
Kent Keirsey
8cd3bcd1c0 Updates 2025-07-17 13:52:24 +10:00
Cursor Agent
264cc5ef46 Add tile ControlNet model selection to upscale settings
Co-authored-by: kent <kent@invoke.ai>
2025-07-17 13:52:24 +10:00
Heathen711
4b5c481b7a Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-17 01:03:03 +00:00
JPPhoto
8bfbea5ed3 Updated __init__.py 2025-07-17 06:33:56 +10:00
JPPhoto
f06a66da07 Updated schema.ts 2025-07-17 06:33:56 +10:00
Jonathan
337cae9b22 Update __init__.py
Added FluxConditioningField, FluxConditioningCollectionOutput, and FluxConditioningCollectionOutput,
2025-07-17 06:33:56 +10:00
Jonathan
bf926bb7d5 Update primitives.py
Added FluxConditioningCollectionOutput
2025-07-17 06:33:56 +10:00
psychedelicious
18ad9a6af3 feat(ui): canvas/viewer panel tabs show progress 2025-07-17 06:20:05 +10:00
psychedelicious
b6ed31c222 feat(ui): clicking invoke switches to viewer tab instead of canvas when save all images to gallery is enabled 2025-07-17 06:20:05 +10:00
psychedelicious
200beb5af5 feat(ui): make save all images to gallery option also bypass canvas 2025-07-17 06:20:05 +10:00
psychedelicious
f82a948bdd refactor(ui): canvas autoswitch logic
Simplify the canvas auto-switch logic to not rely on the preview images
loading. This fixes an issue where offscreen preview images didn't get
auto-switched to. Images are now loaded directly.
2025-07-17 06:20:05 +10:00
psychedelicious
dd03e3ddcd refactor(ui): simplify canvas session logic 2025-07-17 06:20:05 +10:00
psychedelicious
7561b73e8f fix(ui): uppercase file extensions blocked for image upload
Closes #8284
2025-07-17 00:48:36 +10:00
psychedelicious
caa97608c7 fix(ui): aspect ratios out of order 2025-07-16 23:27:37 +10:00
Mary Hipp
72a6d1edc1 simplify descriptoin styling 2025-07-16 09:19:33 -04:00
Mary Hipp
b8bf89c2f1 add fallback image and make sure description text is legible for model picker noncompact 2025-07-16 09:19:33 -04:00
psychedelicious
a1ade2b8c0 feat(ui): export apis & actions from package 2025-07-16 08:21:03 -04:00
Eugene Brodsky
4bdcae1f8f fix(docker): switch to pnpm10.x 2025-07-15 13:03:15 -04:00
Jonathan
4b22c84407 Update dev-environment.md
Document the latest changes required to build Invoke 6.0.
2025-07-15 15:21:01 +10:00
Eugene Brodsky
c9daf1db30 (fix) remove timeout from image prompt expansion (#8281) 2025-07-14 11:19:20 -04:00
psychedelicious
06d3cfbe97 gh: update bug report template
- Add require drop down for install method
- Make browser version optional
- Link to latest release
- Update verbiage for sys info section
2025-07-14 12:18:52 +10:00
psychedelicious
71e4901313 fix(ui): ignore disalbed ref images in readiness checks 2025-07-14 10:51:51 +10:00
Heathen711
2caa1b166d Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-13 00:55:39 +00:00
psychedelicious
82fb897b62 chore(ui): lint 2025-07-12 14:56:57 +10:00
psychedelicious
192b00d969 chore: bump version to v6.0.2 2025-07-12 14:56:57 +10:00
psychedelicious
7bb25ef1b4 fix(ui): gallery dnd 2025-07-12 14:56:57 +10:00
psychedelicious
62f52c74a8 fix(ui): linked negative style prompt not passed in
Closes #8256
2025-07-12 10:22:17 +10:00
psychedelicious
97439c1daa fix(ui): native context menu shown on right click on short fat images
Closes #8254
2025-07-12 10:22:17 +10:00
psychedelicious
b23bff1b53 fix(ui): center staging area images 2025-07-12 10:22:17 +10:00
psychedelicious
d9a1efbabf fix(ui): staging area images may be slightly too large 2025-07-12 10:22:17 +10:00
psychedelicious
d4e903ee2d chore: bump version to v6.0.1 2025-07-12 10:22:17 +10:00
Kevin Turner
bb3e5d16d8 feat(Model Manager): refuse to download a file when there's insufficient space 2025-07-12 10:14:25 +10:00
psychedelicious
e62d3f01a8 feat(app): better error message for failed model probe
- Old: No valid config found
- New: Unable to determine model type
2025-07-11 23:35:43 +10:00
psychedelicious
757ecdbf82 build(ui): downgrade idb-keyval
We have increased error rates after updating this package. Let's try
downgrading to see if that fixes the issue.
2025-07-11 15:00:10 +10:00
psychedelicious
694c85b041 fix(ui): language file filenames
Need to replace the underscores w/ dashes - this was missed in #8246.
2025-07-11 14:21:41 +10:00
psychedelicious
988d7ba24c chore: bump version to v6.0.1rc1 2025-07-11 09:05:24 +10:00
psychedelicious
ac981879ef fix(ui): runtime errors related to calling reduce on array iterator
Fix an issue in certain browsers/builds causing a runtime error.

A zod enum has a .options property, which is an array of all the options
for the enum. This is handy for when you need to derive something from a
zod schema.

In this case, we represented the possible focus regions in the zod enum,
then derived a mapping of region names to set of target HTML elements.
Why isn't important, but suffice to say, we were using the .options
property for this.

But actually, we were using .options.values(), then calling .reduce() on
that. An array's .values() method returns an _array iterator_. Array
iterators do not have .reduce() methods!

Except, apparently in some environments they do - it depends on the JS
engine and whether or not polyfills for iterator helpers were included
in the build.

Turns out my dev environment - and most user browsers - do provide
.reduce(), so we didn't catch this error. It took a large deployment and
error monitoring to catch it.

I've refactored the code to totally avoid deriving data from zod in this
way.
2025-07-11 08:25:47 +10:00
psychedelicious
fc71849c24 feat(app): expose a cursor, not a connection in db util 2025-07-11 08:20:06 +10:00
psychedelicious
a19aa3b032 feat(app): db abstraction to prevent threading conflicts
- Add a context manager to the SqliteDatabase class which abstracts away
creating a transaction, committing it on success and rolling back on
error.
- Use it everywhere. The context manager should be exited before
returning results. No business logic changes should be present.
2025-07-11 08:20:06 +10:00
psychedelicious
ef4d5d7377 feat(ui): virtualized list for staging area
Make the staging area a virtualized list so it doesn't choke when there
are a large number (i.e. more than a few hundred) of queue items.
2025-07-11 07:50:57 +10:00
Heathen711
1b6ebede7b Revert "cleanup(github actions)"
This reverts commit 017d38eee2.
2025-07-10 21:10:56 +00:00
Heathen711
017d38eee2 cleanup(github actions) 2025-07-10 21:04:48 +00:00
Heathen711
78eb6b0338 cleanup(docker) 2025-07-10 21:03:57 +00:00
Heathen711
3e8e0f6ddf Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-10 20:14:27 +00:00
Mary Hipp Rogers
6b0dfd8427 dont reset canvas if studio is loaded with canvas destination (#8252)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2025-07-10 09:36:41 -04:00
psychedelicious
471c010217 fix(ui): invalid language crashes app
- Apparently locales must use hyphens instead of underscores. This must
have been a fairly recent change that we didn't catch. It caused i18n to
throw for Brasilian Portuguese and both Simplified and Traditional
Mandarin. Change the locales to use the right strings.
- Move the theme + locale provider inside of the error boundary. This
allows errors with locals to be caught by the error boundary instead of
hard-crashing the app. The error screen is unstyled if this happens but
at least it has the reset button.
- Add a migration for the system slice to fix existing users' language
selections. For example, if the user had an incorrect language setting
of `zh_CN`, it will be changed to the correct `zh-CN`.
2025-07-10 14:27:36 +10:00
psychedelicious
b1193022f7 fix(ui): sometimes images added to gallery show as placeholder only
The range-based fetching logic had a subtle bug - it didn't keep track
of what the _current_ visible range is - only the ranges that the user
last scrolled to.

When an image was added to the gallery, the logic saw that the images
had changed, but thought it had already loaded everything it needed to,
so it didn't load the new image.

The updated logic tracks the current visible range separately from the
accumulated scroll ranges to address this issue.
2025-07-10 14:27:36 +10:00
psychedelicious
2152ca092c fix(ui): workaround for dockview bug that lets you drag tabs in certain ways 2025-07-10 14:27:36 +10:00
psychedelicious
ccc62ba56d perf(ui): revised range-based fetching strategy
When the user scrolls in the gallery, we are alerted of the new range of
visible images. Then we fetch those specific images.

Previously, each change of range triggered a throttled function to fetch
that range. The throttle timeout was 100ms.

Now, each change of range appends that range to a list of ranges and
triggers the throttled fetch. The timeout is increased to 500ms, but to
compensate, each fetch handles all ranges that had been accumulated
since the last fetch.

The result is far fewer network requests, but each of them gets more
images.
2025-07-10 14:27:36 +10:00
psychedelicious
9cf82de8c5 fix(ui): check for absolute value of scroll velocity to handle scrolling up 2025-07-10 14:27:36 +10:00
psychedelicious
aced349152 perf(ui): increase viewport in gallery
This allows us to prefetch more images and reduce how often placeholders
are shown as we fetch more images in the gallery.
2025-07-10 14:27:36 +10:00
Heathen711
8213f62d3b bugfix(docker) render group controls the devices, but it needs to match the host's render group ID 2025-07-09 20:20:59 +00:00
psychedelicious
0d67ee6548 tests(ui): fix logging mock 2025-07-09 23:15:25 +10:00
psychedelicious
03c21d1607 fix(ui): gallery not updating when saving staging area image 2025-07-09 23:15:25 +10:00
psychedelicious
752e8db1f5 tidy(ui): demote logging in nav api to trace 2025-07-09 23:15:25 +10:00
psychedelicious
85fc861dd9 chore(ui): lint 2025-07-09 23:15:25 +10:00
psychedelicious
458cbfd874 fix(ui): selected model not highlighted 2025-07-09 23:15:25 +10:00
psychedelicious
04331c070a fix(ui): set denoise w/h when running flux fill 2025-07-09 23:15:25 +10:00
psychedelicious
632ddf0cb4 tests(ui): update tests for navigation api 2025-07-09 23:15:25 +10:00
psychedelicious
2b193ff416 fix(ui): delete stored state on error & save new state 2025-07-09 23:15:25 +10:00
psychedelicious
96ee394f9e refactor(ui): use dockview's own ser/de for persistence 2025-07-09 23:15:25 +10:00
psychedelicious
0badc80c0c fix(ui): ignore disabled ref images in readiness checks 2025-07-09 23:15:25 +10:00
psychedelicious
78e6cbf96e fix(ui): default tab is generate 2025-07-09 23:15:25 +10:00
psychedelicious
0b969a661b fix(ui): remove dep on focus from useDeleteImage 2025-07-09 23:15:25 +10:00
psychedelicious
6fe47ec9f8 feat(ui): improve ref image model autoswitch logic 2025-07-09 23:15:25 +10:00
Kent Keirsey
3850dd61f8 update comment 2025-07-09 23:15:25 +10:00
Kent Keirsey
75520eaf0f Match Chatgpt4o and kontext names exactly 2025-07-09 23:15:25 +10:00
Kent Keirsey
10e88c58c1 fix and lint 2025-07-09 23:15:25 +10:00
Kent Keirsey
30ed4dbd92 lint 2025-07-09 23:15:25 +10:00
Kent Keirsey
ed9c090f33 fixes 2025-07-09 23:15:25 +10:00
Kent Keirsey
d29f65ed22 lint fixes 2025-07-09 23:15:25 +10:00
Kent Keirsey
2062ec8ac0 Update invokeai/frontend/web/src/app/store/middleware/listenerMiddleware/listeners/modelSelected.ts
Co-authored-by: Mary Hipp Rogers <maryhipp@gmail.com>
2025-07-09 23:15:25 +10:00
Cursor Agent
49e818338a Changes from background composer bc-abfadb27-a265-41a7-b0db-829879f4701e 2025-07-09 23:15:25 +10:00
Cursor Agent
1caab2b9c4 Implement automatic reference image model switching on base model change
Co-authored-by: kent <kent@invoke.ai>
2025-07-09 23:15:25 +10:00
psychedelicious
50079ea349 fix(ui): big red cancel button has diff behaviour than staging discard 2025-07-09 23:15:25 +10:00
psychedelicious
fffa1b24c4 fix(ui): isStaging selector could return wrong query cache 2025-07-09 23:15:25 +10:00
psychedelicious
a6d6170387 fix(ui): discarding 1 item when 2 items left in staging area discards both 2025-07-09 23:15:25 +10:00
psychedelicious
e5fceb0448 fix(ui): whole app scrolls while selecting staging area image 2025-07-09 23:15:25 +10:00
psychedelicious
059baf5b29 chore(ui): lint 2025-07-09 23:15:25 +10:00
psychedelicious
1be8a9a310 fix(ui): add metadata i18nKey to handler; fixes metadata toasts 2025-07-09 23:15:25 +10:00
psychedelicious
7adc33e04d refactor(ui): metadata recall buttons & hotkeys (WIP) 2025-07-09 23:15:25 +10:00
psychedelicious
7f2dd22d47 refactor(ui): metadata recall buttons & hotkeys (WIP) 2025-07-09 23:15:25 +10:00
psychedelicious
bb50f4b8a2 fix(ui): prevent panels from growing on init
This works but I think a better solution is to use dockview's provided
serialization API to store and restore layouts.
2025-07-09 23:15:25 +10:00
psychedelicious
a48958e0d4 chore(ui): lint 2025-07-09 23:15:25 +10:00
psychedelicious
e3a1e9af53 feat(ui): staging area updates
- Smaller staged image previews.
- Move autoswitch buttons to staging area toolbar, remove from settings
popover and the little three-dots menu. Use persisted autoswitch
setting, which is renamed from `defaultAutoSwitch` to
`stagingAreaAutoSwitch`.
- Fix issue with misaligned border radii in staging area preview images.
Required small changes to DndImage and its usage elsewhere.
- Fix issue where staging area toolbar could show up without any
previews in the list.
- Migrate canvas settings slice to use zod schema and inferred types for
its state.
2025-07-09 23:15:25 +10:00
psychedelicious
c6fe11c42f fix(ui): disable gallery hotkeys when in staging area 2025-07-09 23:15:25 +10:00
psychedelicious
4eb1bd67df fix(ui): hide staging area when there are no items 2025-07-09 23:15:25 +10:00
psychedelicious
c376f914d2 chore: bump version v6.0.0 2025-07-09 23:15:25 +10:00
Heathen711
233740a40e Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-09 03:27:42 +00:00
Kent Keirsey
b5d1c47ef7 final link fix 2025-07-09 10:17:38 +10:00
Kent Keirsey
004a52ca65 fix to direct links 2025-07-09 10:17:38 +10:00
Kent Keirsey
b1d5a51ddf add-quantized-kontext-dev 2025-07-09 10:17:38 +10:00
Kent Keirsey
2b2498eaa1 fix prettier quirk 2025-07-08 14:54:29 -04:00
Kent Keirsey
10dda4440e Fix label 2025-07-08 14:54:29 -04:00
Cursor Agent
98f78abefa Add default auto-switch mode setting for canvas sessions
Co-authored-by: kent <kent@invoke.ai>
2025-07-08 14:54:29 -04:00
Mary Hipp Rogers
cc93fa270f update whats new for v6 (#8234)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 18:24:33 +00:00
Mary Hipp Rogers
014b27680f fix flux kontext error (#8235)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 13:42:48 -04:00
Mary Hipp Rogers
c3d8f875de if on generate tab, recall dimensions instead of bbox (#8233)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 13:09:21 -04:00
Mary Hipp Rogers
79f9dc6e4a fix(ui): dont show option to add new layer from if on generate tab (#8231)
* dont show option to add new layer from if on generate tab

* only disable width/height recall is staging AND canvas tab

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 11:46:54 -04:00
psychedelicious
6e1c0c1105 chore: bump version to v6.0.0rc5 2025-07-08 11:26:47 -04:00
Mary Hipp Rogers
0362524040 remove hard-coded flux kontext dev guidance (#8230)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 10:26:20 -04:00
psychedelicious
dc6656459b docs(ui): updated comments for navigation api 2025-07-08 07:30:36 -04:00
psychedelicious
3ea1b97f6f fix(ui): protect against getting stuck on tab loading screen 2025-07-08 07:30:36 -04:00
psychedelicious
a7c7405ccc feat(ui): style model picker selected item 2025-07-08 07:28:07 -04:00
psychedelicious
c391f1117a fix(ui): traverse groups when finding selected model in picker 2025-07-08 07:28:07 -04:00
psychedelicious
b1e2cb8401 fix(ui): queue tab list of queue items
Reverted incomplete change to how queue items are listed. In the future
I think we should redo it to work like the gallery. For now, it is back
the way it was in v5.
2025-07-08 07:22:51 -04:00
Emmanuel Ferdman
db6af134b7 fix: resolve FastAPI deprecation warning for example fields
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-07-08 20:54:08 +10:00
Emmanuel Ferdman
7e6cffb00c fix: resolve FastAPI deprecation warning for example fields
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-07-08 20:54:08 +10:00
psychedelicious
5b187bcb00 fix(ui): pull bbox into ref image component 2025-07-08 14:54:43 +10:00
psychedelicious
0843d609a3 feat(ui): add list of warnings in tooltip on ref image 2025-07-08 14:54:43 +10:00
Kent Keirsey
95bd9cef18 Lint 2025-07-08 14:54:43 +10:00
Kent Keirsey
931d6521f6 Adds bbox to ref image button 2025-07-08 14:54:43 +10:00
psychedelicious
e37665ff59 tests(ui): add wiggle room to timeout tests 2025-07-08 12:55:33 +10:00
psychedelicious
56857fbbe6 tests(ui): add tests for panel storage 2025-07-08 12:55:33 +10:00
psychedelicious
43cfb8a574 tests(ui): get tests passing
Still need tests for panel storage.
2025-07-08 12:55:33 +10:00
psychedelicious
05b1682d15 fix(ui): handle collapsed panels when rehydrating their state 2025-07-08 12:55:33 +10:00
psychedelicious
69a08ee7f2 feat(ui): panel state persistence (WIP) 2025-07-08 12:55:33 +10:00
psychedelicious
18212c7d8a feat(ui): clean up navigation API surface and add comments 2025-07-08 12:55:33 +10:00
psychedelicious
7de26f8e69 feat(ui): clean up auto layout context for panels 2025-07-08 12:55:33 +10:00
Kent Keirsey
0652b12a6f Address comments 2025-07-08 12:31:11 +10:00
Kent Keirsey
43a361a00f prettier 2025-07-08 12:31:11 +10:00
Kent Keirsey
cf68ad9cbc update links to playlist instead of video 2025-07-08 12:31:11 +10:00
Kent Keirsey
ec02a39325 fixes 2025-07-08 12:31:11 +10:00
Kent Keirsey
e52d7a05c2 Update support links. 2025-07-08 12:31:11 +10:00
Cursor Agent
c9d4e2b761 Refactor support videos modal to simplify video and playlist handling
Co-authored-by: kent <kent@invoke.ai>
2025-07-08 12:31:11 +10:00
Kent Keirsey
ac26aa9508 fix 2025-07-08 12:31:11 +10:00
Cursor Agent
9ff6ada15b Add support for video playlists in support videos modal
Co-authored-by: kent <kent@invoke.ai>
2025-07-08 12:31:11 +10:00
psychedelicious
e81a115169 chore(ui): lint 2025-07-08 12:23:57 +10:00
Kent Keirsey
52827807de remove ref image from upscale 2025-07-08 12:23:57 +10:00
Kent Keirsey
b631de4cb5 consistency 2025-07-08 12:20:08 +10:00
Kent Keirsey
099ebdbc37 fix 2025-07-08 12:20:08 +10:00
psychedelicious
4de6549be9 refactor(ui): track discarded items instead of using delete method 2025-07-08 12:12:55 +10:00
psychedelicious
368be34949 chore(ui): lint 2025-07-08 12:12:55 +10:00
psychedelicious
5baa4bd916 refactor(ui): use cancelation for staging area (mostly) 2025-07-08 12:12:55 +10:00
psychedelicious
4229377532 fix(app): ensure cancel events are emitted for current item when bulk canceling
There was a bug where bulk cancel operations would cancel the current
queue item in the DB but not emit the status changed events correctly.
2025-07-08 12:12:55 +10:00
psychedelicious
2610772ffd feat(ui): tighten up launchpad content to fit better 2025-07-08 08:57:44 +10:00
psychedelicious
193de6a8f2 feat(ui): add launchpad container component 2025-07-08 08:57:44 +10:00
psychedelicious
7ea343c787 tidy(ui): remove "staging" from the new settings verbiage 2025-07-08 07:10:55 +10:00
Kent Keirsey
12179dabba fix prettier 2025-07-08 07:10:55 +10:00
Cursor Agent
ef135f9923 Add option to save all staging images to gallery in canvas mode
Co-authored-by: kent <kent@invoke.ai>
2025-07-08 07:10:55 +10:00
Mary Hipp
e6c67cc00f update toast for prompt expansion failed 2025-07-08 06:42:00 +10:00
psychedelicious
179b988148 fix(ui): prompt concat derived state recall 2025-07-08 06:37:43 +10:00
psychedelicious
d913a3c85b fix(ui): reset selected ref image when replacing all
Fixes an unhandled error in a selector that can throw.
2025-07-08 06:37:43 +10:00
psychedelicious
e79525c40c docs(ui): update comments 2025-07-08 06:11:32 +10:00
psychedelicious
f409f913ac fix(ui): navigation api usage 2025-07-08 06:11:32 +10:00
Mary Hipp
7a79f61d4c add claude nodes to blacklist for publishing 2025-07-08 05:50:40 +10:00
psychedelicious
ea182c234b chore: bump version to v6.0.0rc4 2025-07-07 22:15:28 +10:00
psychedelicious
f2eee4a82d chore(ui): lint 2025-07-07 22:05:49 +10:00
psychedelicious
e129525306 fix(app): handle None in queue count queries 2025-07-07 22:05:49 +10:00
psychedelicious
ecedfce758 feat(ui): support a min expanded size for collapsible panels 2025-07-07 22:05:49 +10:00
psychedelicious
702cb2cb1e fix(ui): flux kontext special handlign for ref image models 2025-07-07 22:05:49 +10:00
psychedelicious
2e8db3cce3 fix(ui): ensure noise is correctly sized 2025-07-07 22:05:49 +10:00
psychedelicious
7845623fa5 fix(ui): session context indexing bug 2025-07-07 22:05:49 +10:00
psychedelicious
e6a25ca7a2 feat(ui): render progress as indeterminate when percentage is 0
When percentage is zero, the progress bar looks the same as it does when
no generation is in progress. Render it as indeterminate (pulsing) when
percentage is zero to indicate that somethign is happenign.
2025-07-07 22:05:49 +10:00
psychedelicious
71e12bcebe fix(ui): when no negative prompt is provided, recall it as null 2025-07-07 22:05:49 +10:00
psychedelicious
863c7eb9e2 fix(ui): metadata display for primitive values 2025-07-07 22:05:49 +10:00
psychedelicious
9945c20d02 refactor(ui): simplifiy graph builders (WIP) 2025-07-07 22:05:49 +10:00
psychedelicious
e3c1334b1f refactor(ui): simplifiy graph builders (WIP) 2025-07-07 22:05:49 +10:00
psychedelicious
c143f63ef0 refactor(ui): simplifiy graph builders (WIP) 2025-07-07 22:05:49 +10:00
psychedelicious
067026a0d0 feat(ui): add autocomplete for Graph.addEdgeToMetadata 2025-07-07 22:05:49 +10:00
psychedelicious
66991334fc refactor(ui): simplify graph builder handling of VAE encode and seed 2025-07-07 22:05:49 +10:00
psychedelicious
b771c3b164 refactor(ui): update graphs to use the right w/h/aspect 2025-07-07 22:05:49 +10:00
psychedelicious
4925694dc1 feat(ui): generate tab has separate w/h/aspect 2025-07-07 22:05:49 +10:00
psychedelicious
0a737ced44 feat(ui): add dimensions to params slice 2025-07-07 22:05:49 +10:00
psychedelicious
8d83caaae0 feat(ui): extract aspect ratios from canvas reducers 2025-07-07 22:05:49 +10:00
psychedelicious
16c8017f1a feat(ui): more resilient gallery scrollIntoView 2025-07-07 22:05:49 +10:00
psychedelicious
61a35f1396 fix(ui): skip optimistic updates for gallery when using search term 2025-07-07 22:05:49 +10:00
psychedelicious
6bd004d868 fix(ui): clear ref images when recalling all
Closes #8202
2025-07-07 22:05:49 +10:00
psychedelicious
b6a6d406c7 chore(ui): typegen 2025-07-07 10:25:24 +10:00
psychedelicious
8e287c32ee chore(ui): lint 2025-07-07 10:25:24 +10:00
psychedelicious
2d8b5e26c2 build(ui): bump vite to latest 2025-07-07 10:25:24 +10:00
psychedelicious
50914b74ee chore(build): update pnpm to v10 2025-07-07 10:25:24 +10:00
psychedelicious
0fc1c33536 chore(ui): knip 2025-07-07 10:25:24 +10:00
psychedelicious
3b08c35f72 chore(ui): update knip config 2025-07-07 10:25:24 +10:00
psychedelicious
607b2561fd chore(ui): bump knip to latest 2025-07-07 10:25:24 +10:00
psychedelicious
d68f922efb fix(ui): restore upscale-tab-specific settings components 2025-07-07 10:25:24 +10:00
psychedelicious
2bbd74d418 feat(ui): restore canvas busy spinner 2025-07-07 10:25:24 +10:00
Heathen711
8c5fcfd0fd cleanup(docker) remove no cache argument 2025-07-05 15:25:26 +00:00
Heathen711
6d7b231196 Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-05 15:22:35 +00:00
Heathen711
31ca314b02 Missed files 2025-07-05 15:21:46 +00:00
Heathen711
0db304f1ee bugfix(uv) Lock torchvision and ensure the docker uses the same rocm version 2025-07-05 03:35:11 +00:00
psychedelicious
3a5392a9ee chore: bump version to v6.0.0rc3 2025-07-04 20:46:08 +10:00
psychedelicious
6f80efe71d fix(ui): bump expandprompt timeout to 15s 2025-07-04 20:46:08 +10:00
psychedelicious
7fac833813 fix(ui): ref image model types again 2025-07-04 20:35:29 +10:00
psychedelicious
b67eb4134d fix(ui): select next image when deleting 2025-07-04 20:35:29 +10:00
psychedelicious
522eeda2e2 fix(ui): ref image model types 2025-07-04 20:35:29 +10:00
psychedelicious
76233241f0 fix(ui): include ref image metadata for flux kontext 2025-07-04 20:35:29 +10:00
psychedelicious
54be9989c5 feat(ui): add 'replace' and 'merge' strategies for upsertMetadata 2025-07-04 20:35:29 +10:00
psychedelicious
0d3af08d27 fix(ui): prompt parsing in useImageActions 2025-07-04 20:35:29 +10:00
psychedelicious
767ac91f2c fix(nodes): revert unnecessary version bump 2025-07-04 20:35:29 +10:00
psychedelicious
68571ece8f tidy(app): remove unused methods 2025-07-04 20:35:29 +10:00
psychedelicious
01100a2b9a fix(ui): check for ref image config compatibility for flux kontext dev 2025-07-04 20:35:29 +10:00
psychedelicious
ce2e6d8ab6 fix(ui): kontext gen mode error tkey 2025-07-04 20:35:29 +10:00
psychedelicious
4887424ca3 chore: ruff 2025-07-04 20:35:29 +10:00
Kent Keirsey
28f6a20e71 format import block 2025-07-04 20:35:29 +10:00
Kent Keirsey
c4142e75b2 fix import 2025-07-04 20:35:29 +10:00
Kent Keirsey
fefe563127 fix resizing and versioning 2025-07-04 20:35:29 +10:00
Mary Hipp
1c72f1ff9f include flux kontext non-api models in ref image dropdown options 2025-07-04 20:35:29 +10:00
Mary Hipp
605cc7369d update flux kontext implementation to include flux kontext dev non-api models 2025-07-04 20:35:29 +10:00
Kent Keirsey
e7ce08cffa ruff format 2025-07-04 19:24:44 +10:00
Kent Keirsey
983cb5ebd2 ruff ruff 2025-07-04 19:24:44 +10:00
Kent Keirsey
52dbdb7118 ruff 2025-07-04 19:24:44 +10:00
Kent Keirsey
71e6f00e10 test fixes
fix

test

fix 2

fix 3

fix 4

yet another

attempt new fix

pray

more pray

lol
2025-07-04 19:24:44 +10:00
psychedelicious
e73150c3e6 feat(ui): improved automatic tab/panel switching on user actions 2025-07-04 19:18:03 +10:00
psychedelicious
f2426c3ab2 fix(ui): type for dnd action 2025-07-04 19:18:03 +10:00
psychedelicious
9d9c4c0f1a tidy(ui): remove unused old metadata impl 2025-07-04 17:53:47 +10:00
psychedelicious
acb930f6b9 fix(ui): flux redux saves metadata 2025-07-04 17:53:47 +10:00
psychedelicious
585b54dc7d feat(ui): ref image recall w/ old canvas metadata backup 2025-07-04 17:53:47 +10:00
psychedelicious
f65affc0ec fix(ui): do not attempt to recall ref images from canvas metadata 2025-07-04 17:53:47 +10:00
psychedelicious
22d574c92a feat(ui): canvas metadata recall 2025-07-04 17:53:47 +10:00
psychedelicious
f23be119fc refactor(ui): migrating to new metadata handlers 2025-07-04 17:53:47 +10:00
psychedelicious
2d06949e80 feat(ui): display cached metadata if it exists instead of always waiting for debounce 2025-07-04 17:53:47 +10:00
psychedelicious
67804313e1 fix(ui): add ref images to metadata 2025-07-04 17:53:47 +10:00
psychedelicious
dc23be117a refactor(ui): simplified metadata parsing (WIP) 2025-07-04 17:53:47 +10:00
psychedelicious
350de058fc refactor(ui): simplified metadata parsing (WIP) 2025-07-04 17:53:47 +10:00
psychedelicious
fd5cd707a3 refactor(ui): simplified metadata parsing (WIP) 2025-07-04 17:53:47 +10:00
psychedelicious
98ecefdce0 refactor(ui): simplified metadata parsing (WIP) 2025-07-04 17:53:47 +10:00
psychedelicious
42688a0993 refactor(ui): metadata parsing 2025-07-04 17:53:47 +10:00
psychedelicious
d94aa4abf7 feat(ui): enforce loader when switching tabs 2025-07-04 16:49:57 +10:00
psychedelicious
69a56aafed feat(ui): do not require root ref to focus on prompt 2025-07-04 16:49:57 +10:00
psychedelicious
56873f6936 feat(ui): queue and models tab are wrapped in dockview panels 2025-07-04 16:49:57 +10:00
psychedelicious
6bc6a680cf tests(ui): NavigationApi 2025-07-04 16:49:57 +10:00
psychedelicious
9a49682f60 feat(ui): utils to get tab/panel keys to prevent typos 2025-07-04 16:49:57 +10:00
psychedelicious
ff84b0a495 refactor(ui): navigation api 2025-07-04 16:49:57 +10:00
psychedelicious
bcced8a5e8 refactor(ui): navigation api 2025-07-04 16:49:57 +10:00
psychedelicious
4a18e9eaea refactor(ui): panel api (WIP) 2025-07-04 16:49:57 +10:00
psychedelicious
dde5bf61be feat(ui): use exact brand colors in loader 2025-07-04 16:49:57 +10:00
psychedelicious
987e401709 perf(ui): lora components 2025-07-04 14:55:52 +10:00
psychedelicious
5c5ac570e3 fix(ui): hardcode literals for run graph errors
When we build, the class names are minified. This hardcodes the values
to literals.
2025-07-04 14:52:08 +10:00
psychedelicious
309903fe0f feat(ui): refetch gallery image names on reconnect
Maybe fixes JP's issue (again)
2025-07-04 14:49:32 +10:00
psychedelicious
f16ea43e9a feat(ui): enable RTK Query's refetchOnReconnect 2025-07-04 14:49:32 +10:00
Heathen711
a3cb3e03f4 bugfix(ci) Clean up more space for typegen check 2025-07-03 21:22:11 +00:00
Heathen711
641a6cfdb7 bugfix(docker) Remove the need for UV index as that is now baked into the uv.lock 2025-07-03 21:15:03 +00:00
Jeremy Gooch
d794aedb43 fix(ui): sets cfg_rescael_multiplier to 0 if there is no default. Also fixes issue with truthiness check causing 0 value to be missed. See https://github.com/invoke-ai/InvokeAI/issues/7584 2025-07-04 06:20:14 +10:00
Heathen711
f27471cea7 bugfix(docker): Use uv.lock for docker, and update to newer index urls. 2025-07-03 20:08:28 +00:00
Heathen711
47508b8d6c bugfix(docker) combined the dockerfiles and reduced image size 2025-07-03 06:01:51 +00:00
psychedelicious
9930440f33 chore: bump version to v6.0.0rc2 2025-07-03 12:35:04 +10:00
psychedelicious
f0a6c4aa1f fix(ui): after canceling a filter, layer loses its content 2025-07-03 12:30:01 +10:00
psychedelicious
f36d22f13c fix(ui): control layers ignored in txt2img 2025-07-03 12:27:05 +10:00
Cursor Agent
e0d7fab524 Fix: Toggle right panel instead of left panel in navigation
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:15:22 +10:00
Cursor Agent
f20c230f4a Add drag-and-drop comparison image target to ImageViewerPanel
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:10:51 +10:00
Cursor Agent
05c9bc730e Fix canvas export layer bounds calculation in PSD export hook
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:07:22 +10:00
Cursor Agent
f17ac06591 Fix PSD export to use layer content bounds and crop canvas
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:07:22 +10:00
Kent Keirsey
b35f93d919 Change implementation to check $ispending 2025-07-03 12:04:27 +10:00
Cursor Agent
289d8076d8 Reset canvas session when queue item is canceled in current session
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:04:27 +10:00
Heathen711
28e0242907 Fix tagging & remove force reinstall 2025-07-03 01:56:46 +00:00
skunkworxdark
604763d20f Update flux.py
Replace T5Tokenizer with T5TokenizerFast
2025-07-03 08:04:08 +10:00
Mary Hipp
7b452f098d lint 2025-07-02 16:27:44 -04:00
Mary Hipp
b41c18d35f disable dropzone if prompt expansion is disabled 2025-07-02 16:27:44 -04:00
Mary Hipp
8328081333 properly build batch for flux kontext api batches 2025-07-02 14:27:57 -04:00
Mary Hipp Rogers
07517cf2c2 remove pulsing animation (#8181)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-02 16:12:52 +00:00
Kent Keirsey
6b98ad9095 Only display one icon on disabled state 2025-07-02 10:54:46 -04:00
Kent Keirsey
0de3967e7e remove stray file 2025-07-02 10:54:46 -04:00
Kent Keirsey
1335377fb1 Fixes 2025-07-02 10:54:46 -04:00
Cursor Agent
adbcc191d9 Add reference image enable/disable functionality
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 10:54:46 -04:00
Kent Keirsey
11fc7af1c8 fix 2025-07-02 10:47:01 -04:00
Cursor Agent
6f12fd22b9 Optimize image API invalidation tags and simplify cache invalidation logic
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 10:47:01 -04:00
Cursor Agent
324b6e2af4 Update LoRA select placeholder text for better clarity
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 10:36:45 -04:00
Mary Hipp Rogers
038010a1ca feat(ui): prompt expansion (#8140)
* initializing prompt expansion and putting response in prompt box working for all methods

* properly disable UI and show loading state on prompt box when there is a pending prompt expansion item

* misc wrapup: disable apploying prompt templates, dont block textarea resize handle

* update progress to differentiate between prompt expansion and non

* cleanup

* lint

* more cleanup

* add image to background of loading state

* add allowPromptExpansion for front-end gating

* updated readiness text for needing to accept or discard

* fix tsc

* lint

* lint

* refactor(ui): prompt expansion logic

* tidy(ui): remove unnecessary changes

* revert(ui): unused arg on useImageUploadButton

* feat(ui): simplify prompt expansion state

* set pending for dragndrop and context menu

* add readiness logic for generate tab

* missing translation

* update error handling for prompt expansion

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-07-02 10:26:48 -04:00
Cursor Agent
2dd1bc54c9 Set brush tool automatically when sending image to canvas
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 10:09:22 -04:00
Kent Keirsey
8b69842678 lint 2025-07-02 09:46:32 -04:00
Kent Keirsey
9821f7c4fc Remove Canvas Session 2025-07-02 09:46:32 -04:00
Cursor Agent
2290ff4ad6 Fix: Focus viewer panel when switching to workflow view mode
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 09:42:21 -04:00
psychedelicious
8d82ad6d0b fix(api): return HTTP errors from session queue handlers 2025-07-02 08:42:06 -04:00
Mary Hipp
8ed9f652e8 lint 2025-07-02 08:25:42 -04:00
Mary Hipp
ee8ed344bd add modelRelationships and aboutModal to disable-able features 2025-07-02 08:25:42 -04:00
Mary Hipp
6d16cfdbe2 missing import 2025-07-02 08:23:13 -04:00
Mary Hipp
3ef2872dda handle flux-kontext models 2025-07-02 08:23:13 -04:00
Cursor Agent
b52ba149b4 Update regional guidance empty state translation key
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 08:09:42 -04:00
Kent Keirsey
c6126c6875 Remove all references to New Sessions entirely. 2025-07-01 17:20:35 -04:00
psychedelicious
3f78ac9295 fix(ui): really do not load disabled tabs
Ensure disabled tabs are never mounted:
- Add didLoad flag to configSlice, default false
- Always merge in config - even it is is empty
- On first merge, set didLoad to true
- Until didLoad is true, mark _all_ tabs as disabled

This gets around an issue where tabs are all enabled for a brief moment
before the config is loaded.

A bit hacky but it works.
2025-07-01 10:52:28 -04:00
psychedelicious
79fea1ac40 chore: bump version to v6.0.0rc1 2025-07-02 00:14:13 +10:00
psychedelicious
6eade5781d feat(ui): remove mini metadata viewer 2025-07-01 23:37:31 +10:00
psychedelicious
3d8f865fb0 fix(ui): initial panel sizing 2025-07-01 23:37:31 +10:00
psychedelicious
dc9cd22d9d feat(ui): better naming for panel apis 2025-07-01 23:37:31 +10:00
psychedelicious
fe115ff8f9 fix(ui): models & queue tab styling 2025-07-01 23:37:31 +10:00
psychedelicious
1d35aad213 feat(ui): move more things over to pane lreg 2025-07-01 23:37:31 +10:00
psychedelicious
195d6ce893 refactor(ui): implement global panel registry, replace context-based panel API 2025-07-01 23:37:31 +10:00
psychedelicious
f13ced7ed4 fix(ui): rebase conflicts 2025-07-01 23:37:31 +10:00
psychedelicious
735fc276e5 tidy(ui): clean up focus/layout container 2025-07-01 23:37:31 +10:00
psychedelicious
cd3caf8c30 fix(ui): delete image hotkey 2025-07-01 23:37:31 +10:00
psychedelicious
e9012280ab fix(ui): upscaling tab boards/gallery collapse 2025-07-01 23:37:31 +10:00
psychedelicious
fa72a97794 refactor(ui): even more better focus handling 2025-07-01 23:37:31 +10:00
psychedelicious
e817631ba3 refactor(ui): focus handling for new layout system (WIP) 2025-07-01 23:37:31 +10:00
psychedelicious
d0619c033f feat(ui): add edit button to current image buttons 2025-07-01 16:29:20 +10:00
psychedelicious
6f4850f34f tidy(ui): launchpad tab with icon cleanup 2025-07-01 15:37:06 +10:00
Kent Keirsey
072cd9dee7 Styling Fixes 2025-07-01 15:37:06 +10:00
Cursor Agent
19b6dc1c1f Add custom Launchpad tab with dynamic icon based on active tab
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 15:37:06 +10:00
Cursor Agent
7566d0d6c6 Enhance workflow mode toggle with panel navigation and focus
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 15:27:21 +10:00
psychedelicious
f123888b46 feat(ui): tidy workflows tab launchapd 2025-07-01 15:24:08 +10:00
psychedelicious
aeab7d0cab feat(ui): tidy upscaling tab launchapd 2025-07-01 15:24:08 +10:00
Kent Keirsey
3f1b2c39ab Model Guide link update 2025-07-01 15:24:08 +10:00
Kent Keirsey
72e3a4b4be Fixes & Updates 2025-07-01 15:24:08 +10:00
Kent Keirsey
58e0f80138 Lint 2025-07-01 15:24:08 +10:00
Kent Keirsey
8b8e29d22d Fixes & Styling updates 2025-07-01 15:24:08 +10:00
Kent Keirsey
90201be670 lint 2025-07-01 15:24:08 +10:00
Kent Keirsey
46a5619100 Update all text to translations 2025-07-01 15:24:08 +10:00
Kent Keirsey
d608a7469e Upscale Workflow Launchpad updates & translation updates 2025-07-01 15:24:08 +10:00
Cursor Agent
a7d413d372 Refactor Upscaling and Workflows Launchpad Panels with enhanced UI
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 15:24:08 +10:00
Cursor Agent
f5c9e68dbf Fix division by zero in multi-diffusion pipeline with creativity values
Co-authored-by: kent <kent@invoke.ai>

Revert unnecessary validation changes in multi-diffusion

Fix in python instead of graphbuilder

tidy(ui): remove extraneous comment
2025-07-01 15:00:02 +10:00
psychedelicious
1ded459f03 refactor(ui): clean up related models impl for picker 2025-07-01 14:52:26 +10:00
Kent Keirsey
d9024dc230 linting fixes 2025-07-01 14:52:26 +10:00
Kent Keirsey
40528692c3 Update icon 2025-07-01 14:52:26 +10:00
Kent Keirsey
f35b05be43 simplifies Modelpicker wrapper 2025-07-01 14:52:26 +10:00
Kent Keirsey
29e87fc615 lints 2025-07-01 14:52:26 +10:00
Kent Keirsey
ca26b2718e Small Changes 2025-07-01 14:52:26 +10:00
Cursor Agent
5fa6c0b413 Enhance model picker with related models and improved filtering
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 14:52:26 +10:00
psychedelicious
c37c8c50cd tidy(ui): clean up psd export 2025-07-01 14:12:14 +10:00
Kent Keirsey
f0a4de245d Moved size constants to a reasonable spot... 2025-07-01 14:12:14 +10:00
Kent Keirsey
5db62f8643 Fix Type refs 2025-07-01 14:12:14 +10:00
Kent Keirsey
e1c478f94c Size Updates 2025-07-01 14:12:14 +10:00
Kent Keirsey
11fe3b6332 Comments 2025-07-01 14:12:14 +10:00
Kent Keirsey
e4aae1a591 prettier 2025-07-01 14:12:14 +10:00
Kent Keirsey
4d83d1c56d Linting 2025-07-01 14:12:14 +10:00
Kent Keirsey
34def323e8 Restyle & locate 2025-07-01 14:12:14 +10:00
Kent Keirsey
854956316b Fix export layers 2025-07-01 14:12:14 +10:00
Cursor Agent
91afe7884a Add PSD export functionality for canvas layers
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 14:12:14 +10:00
psychedelicious
8417ee8a7b chore(ui): lint 2025-06-30 23:42:53 +10:00
psychedelicious
a035645ed3 refactor(ui): graph building respects selected tab 2025-06-30 23:42:53 +10:00
psychedelicious
e00ccba7d3 perf(ui): select only loading state for enqueueBatch mutation 2025-06-30 23:42:53 +10:00
psychedelicious
fb883d63aa refactor(ui): dedicated enqueue funcs for each tab 2025-06-30 23:42:53 +10:00
psychedelicious
b113c57fc4 refactor(ui): use redux-provided hooks for accessing store 2025-06-30 23:42:53 +10:00
psychedelicious
7636007349 fix(ui): useAppStore uses correct types 2025-06-30 23:42:53 +10:00
psychedelicious
fda86ae981 fix(app): incorrect node mappings when preparing collect nodes
The previous logic had a subtle python bug related the scope and nested
generators.

Python generators are lazily evaluated - the expressions are stored and
only evaluated when needed (e.g. calling next() or list() on them)

The old logic used a variable `s`, which was continually overwritten as
the generator expressions were created. As a result, the final mappings
all use the _final_ value for `s`.

Following the consequences of this down the line, we find that collect
nodes can end up with multiple edges from exactly one of their ancestor
nodes, instead of one edge from each ancestor. Notably, it's only the
source _node_id_ that is affected - the source _fields_ have the correct
values.

So the invalid edges will point to a real node and a real field, but the
field exists on a different node.

---

This can result in a number of cryptic problems - include an error about
incompatible field types:

```
InvalidEdgeError: Field types are incompatible
(31758fd5-14a8-4de7-a840-b73ec1a1b94f.value ->
3459c793-41a2-4d82-9204-7df2d6d099ba.item)
```

Here are the conditions that lead to this error:
- The collect node has at least two incoming connections.
- The two incoming connections come from nodes of different types.
- The nodes both output a value of the same type, but the name of the
output field differs between them.

---

This commit uses non-generator logic to build up the mappings, avoiding
the issue entirely. As a bonus, it is much easier to read.
2025-06-30 23:39:28 +10:00
psychedelicious
c02be4bdf4 refactor(app): lean on pydantic to get field types in edge validation logic
Previously we used python's own type introspection utilties to determine
input and output field types. We can use pydantic to get the field types
in a clearer, more direct way.

This improvement also exposed an awkward behaviour in this utility,
where it would return None when a field doesn't exist. I've added a
comment in the code describing the issue, but changing it would require
some significant changes and I don't want to risk breaking anything.
2025-06-30 23:39:28 +10:00
psychedelicious
ed7772d993 tests(app): add more tests for complex iterate/collect graph topologies 2025-06-30 23:39:28 +10:00
psychedelicious
baae998b5b tests(app): add failing test for collector edge case
squash

squash
2025-06-30 23:39:28 +10:00
DustyShoe
4077ffe595 Fixed a typo 2025-06-30 15:44:23 +10:00
psychedelicious
c1937b1379 chore: ruff 2025-06-30 12:56:51 +10:00
psychedelicious
5c66dfed8e fix(app): remove errant comment from prev impl 2025-06-30 12:56:51 +10:00
psychedelicious
126dcc96c0 feat(ui): clean up logging and comments in runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
cb9c7b4a28 feat(ui): simplify runGraph logic for error handling 2025-06-30 12:56:51 +10:00
psychedelicious
e8c4f49a14 feat(ui): add .wrap() method to WrappedError 2025-06-30 12:56:51 +10:00
psychedelicious
30fffae637 feat(ui): runGraph settlement callbacks can simply return or throw 2025-06-30 12:56:51 +10:00
psychedelicious
4558a292b6 tests(ui): update runGraph tests for separate options 2025-06-30 12:56:51 +10:00
psychedelicious
825d17441c feat(ui): separate options arg for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
9b16504af9 docs(ui): improved runGraph docstring 2025-06-30 12:56:51 +10:00
psychedelicious
46c92fadff feat(ui): use system logger for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
c0467b82ac tests(ui): update runGraph tests for new error state 2025-06-30 12:56:51 +10:00
psychedelicious
6dafa67286 feat(ui): improved logging for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
eb406aa07e feat(ui): mark runGraph error properties public readonly 2025-06-30 12:56:51 +10:00
psychedelicious
d9422ffebd tests(ui): add testes for enriched cancel/timeout errors 2025-06-30 12:56:51 +10:00
psychedelicious
d5c033be4d feat(ui): enrich cancel/timeout errors when queue item cancel fails 2025-06-30 12:56:51 +10:00
psychedelicious
4662cd6f15 fix(ui): await cancelation of queue item before returning 2025-06-30 12:56:51 +10:00
psychedelicious
a740a22613 feat(ui): runGraph uses settle for all promise handling, better comments 2025-06-30 12:56:51 +10:00
psychedelicious
bf4016b4bc feat(ui): add getNodes method to Graph 2025-06-30 12:56:51 +10:00
psychedelicious
6fa7c8c2ee feat(ui): better exception naming and docstrings in runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
ea40f582da tweak(ui): naming, code style 2025-06-30 12:56:51 +10:00
psychedelicious
01caf56251 feat(ui): clearer naming in WrappedError 2025-06-30 12:56:51 +10:00
psychedelicious
42d577e65a tests(ui): check for error instance instead of message 2025-06-30 12:56:51 +10:00
psychedelicious
38d80c9ce5 fix(ui): clear cleanupFunctions when finished calling them 2025-06-30 12:56:51 +10:00
psychedelicious
6acaa8abbf refactor(ui): use deferred promise as workaround to antipattern of async promise executor 2025-06-30 12:56:51 +10:00
psychedelicious
4b84e34599 refactor(ui): better race condition handling in runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
bbd21b1eb2 feat(ui): rename isSettled -> isFinished 2025-06-30 12:56:51 +10:00
psychedelicious
4fa83a6228 feat(ui): better error handling for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
051876dcff feat(ui): ensure promise always marked as settled, better comments 2025-06-30 12:56:51 +10:00
psychedelicious
8dc6d0b5ae feat(ui): use runGraph in canvas 2025-06-30 12:56:51 +10:00
psychedelicious
40e9624954 tests(ui): edge cases in runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
ae27c83dc4 feat(ui): log when cancelation fails 2025-06-30 12:56:51 +10:00
psychedelicious
161059551b fix(ui): handle errors during cleanup 2025-06-30 12:56:51 +10:00
psychedelicious
c196f8a5d5 tests(ui): add tests for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
2c6d22664e feat(ui): use DI to make runGraph testable 2025-06-30 12:56:51 +10:00
psychedelicious
b9ce5389ef fix(ui): clean up signal 2025-06-30 12:56:51 +10:00
psychedelicious
d1cbf56695 feat(ui): iterate on runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
e379ac12c3 feat(ui): abstraction to make a graph await-able 2025-06-30 12:56:51 +10:00
psychedelicious
aa10373292 feat(ui): loosen typings for Result 2025-06-30 12:56:51 +10:00
psychedelicious
780f3692a0 chore(ui): typegen 2025-06-30 12:56:51 +10:00
psychedelicious
3604dcfdd1 feat(api): return list of enqueued item ids when enqueuing 2025-06-30 12:56:51 +10:00
Jonathan
2b1cffde5e typegen 2025-06-30 11:28:02 +10:00
Jonathan
83d642ed15 Update flux_denoise.py
Fixed version to 4.0.0
2025-06-30 11:28:02 +10:00
Jonathan
455c73235e Update flux_denoise.py
Updated version, removed WithBoard and WithMetadata
2025-06-30 11:28:02 +10:00
psychedelicious
8efef8da41 feat(ui): workflows styling tweaks 2025-06-30 11:17:29 +10:00
psychedelicious
060a9e57b9 fix(ui): prevent NaN from getting into konva internals 2025-06-30 10:43:11 +10:00
skunkworxdark
099d75ca1e use "\u2581" instead of the character itself for clarity 2025-06-30 10:40:31 +10:00
skunkworxdark
bbb5d68146 Update flux_text_encoder.py
Added tokenizer logging to flux
2025-06-30 10:40:31 +10:00
Heathen711
96523ca01f fix(docker) Add cloned dockerbuild 2025-06-29 22:07:11 +00:00
Heathen711
c10a6fdab1 fix(docker) rocm 2.4.6 based image 2025-06-29 22:02:40 +00:00
psychedelicious
9066dc1839 tidy(nodes): remove extraneous comments & add useful ones 2025-06-27 18:27:46 +10:00
psychedelicious
075345bffd feat(app): add flux kontext dev to starter modelss 2025-06-27 18:27:46 +10:00
psychedelicious
74d1239c87 chore(ui): typegen 2025-06-27 18:27:46 +10:00
Kent Keirsey
51e1c56636 ruff 2025-06-27 18:27:46 +10:00
Kent Keirsey
ca1df60e54 Explain the Magic 2025-06-27 18:27:46 +10:00
Cursor Agent
7549c1250d Add FLUX Kontext conditioning support for reference images
Co-authored-by: kent <kent@invoke.ai>

Fix Kontext sequence length handling in Flux denoise invocation

Co-authored-by: kent <kent@invoke.ai>

Fix Kontext step callback to handle combined token sequences

Co-authored-by: kent <kent@invoke.ai>

fix ruff

Fix Flux Kontext
2025-06-27 18:27:46 +10:00
psychedelicious
df8751b5a1 fix(ui): remove extraneous rect in stagingareamodule 2025-06-27 15:45:53 +10:00
psychedelicious
651b80b997 fix(ui): remove extraneous syncPlaceholderSize method and calls 2025-06-27 15:45:53 +10:00
psychedelicious
5d236ae4e7 fix(ui): canvas staging waiting for image placeholder sizing and layout 2025-06-27 15:45:53 +10:00
psychedelicious
e5dc606f5e fix(ui): get accurate theme tokens 2025-06-27 15:45:53 +10:00
Kent Keirsey
dc6b8e13bd prettier 2025-06-27 15:45:53 +10:00
Cursor Agent
c1b34e1f11 Standardize UI spacing and constants across canvas and image components
Co-authored-by: kent <kent@invoke.ai>
2025-06-27 15:45:53 +10:00
Cursor Agent
89f1684072 Improve placeholder styling with badge and refined text positioning
Co-authored-by: kent <kent@invoke.ai>
2025-06-27 15:45:53 +10:00
Kent Keirsey
14fbee17a3 Rule of 3rds Composition Guide (#8130)
* Add Rule of 4 composition guide to canvas settings and rendering

Co-authored-by: kent <kent@invoke.ai>

* Rename Rule of 4 Guide to Rule of Thirds in canvas composition guide

Co-authored-by: kent <kent@invoke.ai>

* Updates to comp guide and naming

* Fix reference

* Update translation keys and organize settings.

* revert to previous canvas manager for conflict

* Re-add composition guide.

* Fix lint

* prettier

* feat(ui): improve markup in canvas settings popover

* feat(ui): use brand colors for canvas rule of thirds guide

---------

Co-authored-by: Cursor Agent <cursoragent@cursor.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-06-27 15:05:34 +10:00
psychedelicious
5dbc32e06e feat(ui): minor restyle of style preset list 2025-06-27 14:40:35 +10:00
psychedelicious
23baf61e51 fix(ui): remove extraneous slice migration for style presets 2025-06-27 14:40:35 +10:00
Kent Keirsey
5e55f6074b prettier 2025-06-27 14:40:35 +10:00
Kent Keirsey
f7c555e501 Change to Toggle Tooltip 2025-06-27 14:40:35 +10:00
Cursor Agent
6aa605e811 Add toggle for showing/hiding style preset prompt previews
Co-authored-by: kent <kent@invoke.ai>
2025-06-27 14:40:35 +10:00
psychedelicious
f51014e108 feat(ui): make launchpad button its own component 2025-06-27 14:37:30 +10:00
psychedelicious
9862ba9210 feat(ui): improved starter model buttons & tooltips 2025-06-27 14:37:30 +10:00
psychedelicious
920aea08cc tidy(ui): remove unused translation strings 2025-06-27 14:37:30 +10:00
psychedelicious
39e584297e feat(ui): fix missing translations 2025-06-27 14:37:30 +10:00
psychedelicious
62a14bb935 feat(ui): use enriched starter model metadata 2025-06-27 14:37:30 +10:00
psychedelicious
d7ae2cdf75 chore(ui): typegen 2025-06-27 14:37:30 +10:00
psychedelicious
6172c859ac feat(api): enrich starer model bundle metadata 2025-06-27 14:37:30 +10:00
psychedelicious
b26fb1f617 feat(ui): simplify markup for install models launchpad form 2025-06-27 14:37:30 +10:00
psychedelicious
05167dfd7a feat(ui): use existing design language for install model bundle buttons 2025-06-27 14:37:30 +10:00
psychedelicious
c090ea7387 feat(ui): use existing design language for install model launchpad buttons 2025-06-27 14:37:30 +10:00
psychedelicious
7ba6c67049 feat(ui): named install models tabs 2025-06-27 14:37:30 +10:00
psychedelicious
3de186061d chore(ui): lint 2025-06-27 14:37:30 +10:00
Kent Keirsey
a716381733 Model Launchpad prettier 2025-06-27 14:37:30 +10:00
Kent Keirsey
fb5df06835 Updating toinclude translations and import fixes 2025-06-27 14:37:30 +10:00
Kent Keirsey
33c597c224 fix lint 2025-06-27 14:37:30 +10:00
Kent Keirsey
19d882d038 Address comments 2025-06-27 14:37:30 +10:00
Kent Keirsey
ee4bc49bd4 Prettier. 2025-06-27 14:37:30 +10:00
Kent Keirsey
188cf37f48 fix lint 2025-06-27 14:37:30 +10:00
Kent Keirsey
15a0a7134c fix circ dependency 2025-06-27 14:37:30 +10:00
Kent Keirsey
22cea0de8b Remove scrap 2025-06-27 14:37:30 +10:00
Kent Keirsey
cd21816d12 Model Launchpad 2025-06-27 14:37:30 +10:00
psychedelicious
605b912ba4 fix(ui): remove noop hook 2025-06-27 11:37:47 +10:00
psychedelicious
52e31112f9 chore(ui): lint 2025-06-27 11:37:47 +10:00
Kent Keirsey
a4c9346cd7 lint 2025-06-27 11:37:47 +10:00
Kent Keirsey
a1647e4c6e Address comments 2025-06-27 11:37:47 +10:00
Kent Keirsey
8c9ca088a7 update tooltip 2025-06-27 11:37:47 +10:00
Cursor Agent
7a7a2e147c Add toggle for non-raster layers with hotkey and UI button 2025-06-27 11:37:47 +10:00
psychedelicious
adf4cc750a fix(ui): Fix LoRA picker to default to current base model architecture (#8135)
Enhance LoRA picker to default filter by current base model architecture

## Summary
Fixes new LoRA picker to auto select the architecture filter for the
current model group

## Related Issues / Discussions
N/A

## QA Instructions

Open LoRA menu with any model group selected. The right models should be
filtered.

## Merge Plan
Merge when ready.

## Checklist

- [X] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-06-27 11:21:39 +10:00
psychedelicious
9f1ea9d1c7 fix(ui): use existing GroupStatusMap type 2025-06-27 11:19:24 +10:00
Cursor Agent
571d286506 Enhance LoRA picker to default to current base model architecture
Co-authored-by: kent <kent@invoke.ai>

Enhance LoRA picker to default filter by current base model architecture

Co-authored-by: kent <kent@invoke.ai>
2025-06-26 20:43:43 -04:00
Mary Hipp
1320a2c5f8 add option to override text for no options available 2025-06-26 18:09:57 -04:00
Mary Hipp
26a9b3131d convert LoRA picker to use new model picker component 2025-06-26 18:09:57 -04:00
psychedelicious
d48140b35d fix(ui): regional guidance ref image not selecting 2025-06-26 10:05:25 -04:00
psychedelicious
9757bb0325 refactor(ui): canvas flow (#8069) 2025-06-26 21:24:17 +10:00
psychedelicious
38ccd8e09c chore: bump version to v6.0.0a10 2025-06-26 21:06:24 +10:00
psychedelicious
7759b166a9 fix(ui): dnd on images
Need to use callback refs else chakra's image fallback breaks the ref
2025-06-26 20:53:50 +10:00
psychedelicious
9fc51c7a6e fix(ui): optimistic updates when sorting by oldest first 2025-06-26 20:24:52 +10:00
psychedelicious
62fa4f42f5 fix(ui): more viewer progress nonsense 2025-06-26 20:17:47 +10:00
psychedelicious
418ad0de38 fix(ui): rebase conflicts 2025-06-26 20:06:26 +10:00
psychedelicious
f4a411326e chore: bump version to v6.0.0a9 2025-06-26 20:00:41 +10:00
psychedelicious
6358f39ebb chore(ui): lint 2025-06-26 20:00:40 +10:00
psychedelicious
ea8da0bfbf chore: ruff 2025-06-26 20:00:40 +10:00
psychedelicious
5385282325 feat(ui): use consistent gallery scrollseek placeholder component 2025-06-26 20:00:40 +10:00
psychedelicious
0bf84ab803 feat(ui): gallery scrollbars autohide 2025-06-26 20:00:40 +10:00
psychedelicious
82f31f2258 feat(ui): tweak canvas entity group list button layout 2025-06-26 20:00:40 +10:00
psychedelicious
966dd8857d feat(ui): boards and gallery panel collapse 2025-06-26 20:00:40 +10:00
psychedelicious
1c778bd719 fix(ui): some progress image jank 2025-06-26 20:00:40 +10:00
psychedelicious
394a14cf61 fix(ui): progress in viewer bg color 2025-06-26 20:00:40 +10:00
psychedelicious
0e843823d1 fix(ui): ensure image selected on first load 2025-06-26 20:00:40 +10:00
psychedelicious
29462e62d2 fix(ui): handle selecting images/boards on invocation complete 2025-06-26 20:00:40 +10:00
psychedelicious
175c0147f8 fix(ui): auto image selection on invocation complete, board change 2025-06-26 20:00:40 +10:00
psychedelicious
df6e67c982 fix(ui): queue count badge showing up multiple times 2025-06-26 20:00:40 +10:00
psychedelicious
4612f0ac50 fix(ui): tab bar shrinkage 2025-06-26 20:00:39 +10:00
psychedelicious
386a932f2a feat(ui): clean up GalleryImage 2025-06-26 20:00:39 +10:00
psychedelicious
32438532b0 fix(ui): prevent duplicate initial galler yfetches 2025-06-26 20:00:39 +10:00
psychedelicious
ab5cb2c264 refactor: optimistic gallery updates 2025-06-26 20:00:39 +10:00
psychedelicious
504daa0ae5 Revert "build(ui): adopt sonda over rollup-plugin-visualizer to examine bundle"
This reverts commit e0cf2a8046.
2025-06-26 20:00:39 +10:00
psychedelicious
14f7c98e8a chore(ui): bump package version 2025-06-26 20:00:39 +10:00
psychedelicious
ab39305223 chore(ui): upgrade zod to v4 2025-06-26 20:00:39 +10:00
psychedelicious
7948bca864 build(ui): adopt sonda over rollup-plugin-visualizer to examine bundle
Requires a change to tsconfig module/moduleResolution settings. We were
on old legacy values anyways so good to update it.
2025-06-26 20:00:39 +10:00
psychedelicious
1a39d22b6c feat(ui): migrate from lodash-es to es-toolkit 2025-06-26 20:00:39 +10:00
psychedelicious
9424271d12 revert(ui): undo accidental downgrade of rtk 2025-06-26 20:00:39 +10:00
psychedelicious
b5acc204a8 feat(ui): migrate from lodash.isEqual to objectEquals 2025-06-26 20:00:39 +10:00
psychedelicious
7aefa8f36b fix(ui): invalidate image name list cache on mutation 2025-06-26 20:00:38 +10:00
psychedelicious
242da9e888 fix(ui): hide ref panel when last one is deleted 2025-06-26 20:00:38 +10:00
psychedelicious
1aedc26041 feat(ui): handle ref image deletion autoswitch 2025-06-26 20:00:38 +10:00
psychedelicious
2c7fa90892 chore: bump version to v6.0.0a8 2025-06-26 20:00:38 +10:00
psychedelicious
6c8cf99ad2 feat(ui): revised ref image panel 2025-06-26 20:00:38 +10:00
psychedelicious
a92ba2542c feat(ui): switch to canvas tab when using launchpad 2025-06-26 20:00:38 +10:00
psychedelicious
2367b9f945 chore: bump version to v6.0.0a7 2025-06-26 20:00:38 +10:00
psychedelicious
a928ed0204 chore(ui): dpdm 2025-06-26 20:00:38 +10:00
psychedelicious
e164451dfe chore: ruff 2025-06-26 20:00:38 +10:00
psychedelicious
d74d079356 fix(ui): restore gallery selection count tag 2025-06-26 20:00:38 +10:00
psychedelicious
0eb4360c01 fix(ui): debounce gallery min width value 2025-06-26 20:00:38 +10:00
psychedelicious
937c03f2ec chore(ui): disable debug logger 2025-06-26 20:00:38 +10:00
psychedelicious
f7b249252d fix(ui): issues with progress viewer 2025-06-26 20:00:37 +10:00
psychedelicious
b2b42be51c refactor: remove unused methods/routes, fix some gallery invalidation issues 2025-06-26 20:00:37 +10:00
psychedelicious
98368b0665 feat(ui): restore gallery hotkeys (except delete) 2025-06-26 20:00:37 +10:00
psychedelicious
b5eb3d9798 fix(ui): gallery updates on image completion 2025-06-26 20:00:37 +10:00
psychedelicious
1218f49e20 fix(ui): remove context from DOM props 2025-06-26 20:00:37 +10:00
psychedelicious
89c609fd61 feat(ui): calculate gridTemplateColumns in selector 2025-06-26 20:00:37 +10:00
psychedelicious
b204fb6a91 chore: ruff 2025-06-26 20:00:37 +10:00
psychedelicious
6e3e316416 chore: bump version to v6.0.0a6 2025-06-26 20:00:37 +10:00
psychedelicious
bf5fc9512d fix(ui): minor jank when siwtching images rapidly 2025-06-26 20:00:37 +10:00
psychedelicious
7080889ed4 feat(ui): scrollbar styles 2025-06-26 20:00:37 +10:00
psychedelicious
adea983bfc refactor: gallery scroll (improved impl) 2025-06-26 20:00:37 +10:00
psychedelicious
f68d8ed36a refactor: gallery scroll (improved impl) 2025-06-26 20:00:37 +10:00
psychedelicious
d45197e0af refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
434d8a2b12 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
f55c593705 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
8327d86774 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
c8254710e6 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
0a8f647260 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
32a5e9652a refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
87909a06a8 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
2c8ce6f2f4 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
bee4cf41b4 refactor: gallery scroll 2025-06-26 20:00:36 +10:00
psychedelicious
049a8d8144 fix(ui): fix metadata toggle stuck disabled 2025-06-26 20:00:36 +10:00
psychedelicious
ac81ec41c3 chore: bump version to v6.0.0a5 2025-06-26 20:00:35 +10:00
psychedelicious
a294e8e0fd chore(ui): lint 2025-06-26 20:00:35 +10:00
psychedelicious
4665f0df40 refactor(ui): use image names for selection instead of dtos
Update the frontend to incorporate the previous changes to how image
selection and general image identification is handled in the frontend.
2025-06-26 20:00:35 +10:00
psychedelicious
70382294f5 chore(ui): typegen 2025-06-26 20:00:35 +10:00
psychedelicious
4028cadfaf feat(api): return more data when doing image/board mutations
When we delete images, boards, or do any other board mutation, we need
to invalidate numerous query caches and related internal frontend state.
This gets complicated very quickly.

We can drastically reduce the complexity by having the backend return
some more information when we make these mutations.

For example, when deleting a list of images by name, we can return a
list of deleted image name and affected boards. The frontend can use
this information to determine which queries to invalidate with far less
tedium.

This will also enable the more efficient storage of images (e.g. in the
gallery selection). Previously, we had to store the entire image DTO
object, else we wouldn't be able to figure out which queries to
invalidate. But now that the backend tells us exactly what images/boards
have changed, we can just store image names in frontend state. This
amounts to a substantial improvement in DX and reduction in frontend
complexity.
2025-06-26 20:00:35 +10:00
psychedelicious
d23cdfd0ad feat(ui): viewer integrates progress (wip) 2025-06-26 20:00:35 +10:00
psychedelicious
f0ba693922 feat(ui): switch to viewer/canvas on invoke 2025-06-26 20:00:35 +10:00
psychedelicious
214005d795 feat(ui): generation progress tab improvements 2025-06-26 20:00:35 +10:00
psychedelicious
34aa131115 feat(ui): show last progress message & placeholder in generation progress panel 2025-06-26 20:00:35 +10:00
psychedelicious
5d8061bea9 fix(ui): staging area does not show placeholder on first render 2025-06-26 20:00:35 +10:00
psychedelicious
36ec1015d6 feat(ui): double-click staging area image to disable auto-switch 2025-06-26 20:00:35 +10:00
psychedelicious
7208373576 fix(ui): reset last started item id when doing autoswitch 2025-06-26 20:00:35 +10:00
psychedelicious
e10afe3026 feat(ui): re-implement multiple auto-switch modes 2025-06-26 20:00:34 +10:00
psychedelicious
399d6e7bce chore: bump version to v6.0.0a4 2025-06-26 20:00:34 +10:00
psychedelicious
8d0fe5522b feat(ui): no model error state for ref images 2025-06-26 20:00:34 +10:00
psychedelicious
81341deb46 feat(ui): mini metadata viewer 2025-06-26 20:00:34 +10:00
psychedelicious
a30933b09c feat(ui): clean up image view components & code 2025-06-26 20:00:34 +10:00
psychedelicious
3264188ffd fix(ui): launchpad layouts 2025-06-26 20:00:34 +10:00
psychedelicious
3984b341e1 fix(ui): don't use layers when generating on generate tab 2025-06-26 20:00:34 +10:00
psychedelicious
041023df53 feat(ui): tweak vertical tab bar layout 2025-06-26 20:00:34 +10:00
psychedelicious
b06f76cdb6 fix(ui): unable to resize prompt box bc negative prompt button is over
the handle
2025-06-26 20:00:34 +10:00
psychedelicious
852badc90b feat(ui): standardize auto layout structure 2025-06-26 20:00:34 +10:00
psychedelicious
01953cf057 feat(ui): tweak dockview tabs 2025-06-26 20:00:34 +10:00
psychedelicious
241844bdef refactor(ui): rip out image viewer as modal 2025-06-26 20:00:34 +10:00
psychedelicious
33a28ad4f9 chore: bump version to v6.0.0a3 2025-06-26 20:00:34 +10:00
psychedelicious
7c4550cbd5 chore(ui): lint 2025-06-26 20:00:33 +10:00
psychedelicious
553d1a6ac6 feat(ui): restore all panel hotkeys 2025-06-26 20:00:33 +10:00
psychedelicious
f4794e409b fix(ui): generate tab hotkey 2025-06-26 20:00:33 +10:00
psychedelicious
df87800d61 feat(ui): restore floating panel buttons 2025-06-26 20:00:33 +10:00
psychedelicious
16993cd216 feat(ui): get all tabs working w/ new layout 2025-06-26 20:00:33 +10:00
psychedelicious
7f222ffb9d fix(ui): unnecessary dependency on tab selection in
useCanvasDeleteLayerHotkey
2025-06-26 20:00:33 +10:00
psychedelicious
e0ed56ff8d fix(ui): inverted logic for resume queue button 2025-06-26 20:00:33 +10:00
psychedelicious
e7e1142c77 feat(ui): get layouts working 2025-06-26 20:00:33 +10:00
psychedelicious
fcaeba290e feat(ui): canvas launchpad 2025-06-26 20:00:33 +10:00
psychedelicious
6eecdca56c wip 2025-06-26 20:00:33 +10:00
psychedelicious
7f44da4902 fix(ui): wonky stage sizing on first visibility 2025-06-26 20:00:33 +10:00
psychedelicious
abaa33e22c wip 2025-06-26 20:00:32 +10:00
psychedelicious
d5c238e7c2 feat(ui): port UI slice to zod 2025-06-26 20:00:32 +10:00
psychedelicious
18775e8b67 fix(ui): only show weight for IP adapters 2025-06-26 20:00:32 +10:00
psychedelicious
903776bfbc feat(ui): represent IP adapter weight in ref image thumbnail 2025-06-26 20:00:32 +10:00
psychedelicious
a5baf0c102 fix(ui): overflow on ref image model 2025-06-26 20:00:32 +10:00
psychedelicious
a7e45731ec feat(ui): ref images feel more like buttons 2025-06-26 20:00:32 +10:00
psychedelicious
32aa3e6d48 feat(ui): switch tab on drag over tab button 2025-06-26 20:00:32 +10:00
psychedelicious
2f9ea91896 feat(ui): tweak splash screen layout 2025-06-26 20:00:32 +10:00
psychedelicious
5ac5115269 chore(ui): lint 2025-06-26 20:00:32 +10:00
psychedelicious
161624c722 feat(ui): rework simple session initial state 2025-06-26 20:00:32 +10:00
psychedelicious
c31cb0b106 fix(ui): invoke button tooltip on generate tab 2025-06-26 20:00:32 +10:00
psychedelicious
893f7a8744 fix(ui): progress image fixes 2025-06-26 20:00:32 +10:00
psychedelicious
2e0824a799 feat(ui): make autoswitch on/off
When the invocation cache is used, we might skip all progress images. This can prevent auto-switch-on-first-progress from working, as we don't get any of those events.

It's much easier to only support auto-switch on complete.
2025-06-26 20:00:31 +10:00
psychedelicious
ed05bf2df3 feat(ui): refine ref images UI 2025-06-26 20:00:31 +10:00
psychedelicious
0f1a69a0c3 feat(ui): toggleable negative prompt 2025-06-26 20:00:31 +10:00
psychedelicious
450a0bf142 fix(ui): remove old isSelected from refImageAdded call 2025-06-26 19:59:05 +10:00
psychedelicious
a28c15d545 chore: bump version to v6.0.0a2 2025-06-26 19:59:05 +10:00
psychedelicious
1b1e1983d9 fix(ui): update queue item preview images on init of queue items context 2025-06-26 19:59:05 +10:00
psychedelicious
d08e2fbd82 fix(ui): hack to close chakra tooltips on drag 2025-06-26 19:59:04 +10:00
psychedelicious
45b1ef6231 tweak(ui): ref image header 2025-06-26 19:59:04 +10:00
psychedelicious
3bb446c08f experiment(ui): add generate tab 2025-06-26 19:59:04 +10:00
psychedelicious
8d1ab0a2e5 refactor(ui): ref images (WIP) 2025-06-26 19:59:04 +10:00
psychedelicious
48e2e7e4a1 refactor(ui): ref images (WIP) 2025-06-26 19:59:04 +10:00
psychedelicious
5a2f5c105d refactor(ui): refImage.ipAdapter -> refImage.config 2025-06-26 19:57:15 +10:00
psychedelicious
aa93e95a94 feat(ui): split out ref images into own slice (WIP) 2025-06-26 19:55:21 +10:00
psychedelicious
a5e5cbd7c3 feat(ui): simple session initial state cards are buttons 2025-06-26 19:51:37 +10:00
psychedelicious
baa9141be3 chore(ui): dpdm 2025-06-26 19:51:37 +10:00
psychedelicious
c7ed351bab refactor(ui): async modal pattern; use for deleting images
This was needed for a canvas flow change which is currently paused, but the new API is much much nicer to use, so I am keeping it.
2025-06-26 19:51:37 +10:00
psychedelicious
8c17bde4ea fix(ui): use imageDTO in staging area 2025-06-26 19:51:37 +10:00
psychedelicious
ba082ccc2f fix(ui): wait until last queue item deleted before flagging canvas session finished 2025-06-26 19:51:37 +10:00
psychedelicious
01784fb3bf feat(ui): store output image DTO in session context instead of just the name 2025-06-26 19:51:37 +10:00
psychedelicious
a71a0e143c feat(ui): add AppGetState type 2025-06-26 19:51:37 +10:00
psychedelicious
94afc13813 feat(ui): close viewer on escape 2025-06-26 19:51:37 +10:00
psychedelicious
d640a9001b fix(ui): switch only on first progress image 2025-06-26 19:51:37 +10:00
psychedelicious
711fe91b24 feat(ui): add on first progress autoswitch mode 2025-06-26 19:51:37 +10:00
psychedelicious
2f26657c17 feat(ui): move canvas-specific staging subscriptions to CanvasStagingAreaModule 2025-06-26 19:51:37 +10:00
psychedelicious
6754fde935 chore(ui): lint 2025-06-26 19:51:37 +10:00
psychedelicious
ac206f4767 feat(ui): make main panel styling and title consistent 2025-06-26 19:51:37 +10:00
psychedelicious
c316f07fb2 feat(ui): add startover button to canvas toolbar 2025-06-26 19:51:36 +10:00
psychedelicious
e81dde0933 feat(ui): fiddle w/ staging area header 2025-06-26 19:51:36 +10:00
psychedelicious
9f392c8c3c feat(ui): remove technical progress message from full preview 2025-06-26 19:51:36 +10:00
psychedelicious
2531366386 feat(ui): simple session initial state 2025-06-26 19:51:36 +10:00
psychedelicious
9df69496e4 feat(ui): remove vary and edit as control buttons 2025-06-26 19:51:36 +10:00
psychedelicious
2ddcde13ff refactor(ui): migrate from canceling queue items to deleteing, make queue hook APIs consistent 2025-06-26 19:51:36 +10:00
psychedelicious
cc5083599d fix(ui): mini preview bg color 2025-06-26 19:51:36 +10:00
psychedelicious
2431060a7e fix(ui): hide layers when not on canvas tab 2025-06-26 19:51:36 +10:00
psychedelicious
592c842632 build(ui): temporarily ignore all knip issues 2025-06-26 19:51:36 +10:00
psychedelicious
bc3550f238 feat(ui): finish generation when discarding last item 2025-06-26 19:51:36 +10:00
psychedelicious
23511d68db feat(ui): when discarding last item, select new last instead of first 2025-06-26 19:51:36 +10:00
psychedelicious
cd0668dd0b feat(ui): tweak staging image display 2025-06-26 19:51:35 +10:00
psychedelicious
bf5ed61b84 feat(ui): add staging area toolbar to simple session 2025-06-26 19:51:35 +10:00
psychedelicious
3038a797a6 fix(ui): ensure canvas tool modules are destroyed 2025-06-26 19:51:35 +10:00
psychedelicious
9bbc31b2d9 fix(ui): reset layers when changing session type 2025-06-26 19:51:35 +10:00
psychedelicious
526e6335a1 feat(ui): improved staging placeholders 2025-06-26 19:51:35 +10:00
psychedelicious
1412c079ad feat(ui): improved staging placeholders 2025-06-26 19:51:35 +10:00
psychedelicious
6570c0c3b9 feat(ui): more staging fixes 2025-06-26 19:51:35 +10:00
psychedelicious
3a08ea799a feat(ui): update canvas session state handling for new staging strat 2025-06-26 19:51:35 +10:00
psychedelicious
e3fc244126 chore(ui): lint (partial cleanup) 2025-06-26 19:51:35 +10:00
psychedelicious
56938ca0a1 feat(ui): rough out canvas staging area 2025-06-26 19:51:34 +10:00
psychedelicious
5d80642ea4 feat(app): support deleting queue items by id or destination 2025-06-26 19:50:37 +10:00
psychedelicious
da4b084a8b feat(ui): tweak canvas scroll to zoom feel 2025-06-26 19:50:37 +10:00
psychedelicious
86e1a37a00 docs(ui): add comment about auto-switch not being quite right yet 2025-06-26 19:50:37 +10:00
psychedelicious
ea34690709 feat: canvas flow rework (wip) 2025-06-26 19:50:37 +10:00
psychedelicious
c8df7cd2c0 feat(ui): prevent flicker of image action buttons 2025-06-26 19:50:37 +10:00
psychedelicious
628367b97b feat(ui): move socket events handling into ctx component 2025-06-26 19:50:37 +10:00
psychedelicious
002816653e feat(ui): modularize all staging area logic so it can be shared w/ canvas more easily 2025-06-26 19:50:37 +10:00
psychedelicious
b05de8634d perf(ui): queue actions menu is lazy 2025-06-26 19:50:36 +10:00
psychedelicious
5088e700ad fix(ui): cursor on staging area preview image 2025-06-26 19:50:36 +10:00
psychedelicious
d2155e98ef feat(ui): remove clear queue ui components 2025-06-26 19:50:36 +10:00
psychedelicious
7ec511da01 feat(app): do not prune queue on startup
With the new canvas design, this will result in loss of staging area images.
2025-06-26 19:50:36 +10:00
psychedelicious
985cd8272b tidy(ui): component organization 2025-06-26 19:50:36 +10:00
psychedelicious
cd136194ad fix(ui): prevent drag of progress images 2025-06-26 19:50:36 +10:00
psychedelicious
2e2ac71278 feat: canvas flow rework (wip) 2025-06-26 19:50:36 +10:00
psychedelicious
db4220fb20 feat: canvas flow rework (wip) 2025-06-26 19:50:36 +10:00
psychedelicious
84f70942e7 chore(ui): typegen 2025-06-26 19:50:36 +10:00
psychedelicious
0af20b03e5 feat(api): remove status from list all queue items query 2025-06-26 19:50:36 +10:00
psychedelicious
e16414b452 tidy(ui): app layout components 2025-06-26 19:50:36 +10:00
psychedelicious
5dbc2a74a2 feat: canvas flow rework (wip) 2025-06-26 19:50:36 +10:00
psychedelicious
ad736bc190 feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
0e9b71801a feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
e80f0b2b43 fix(ui): unstable selector results in lora drop down 2025-06-26 19:50:35 +10:00
psychedelicious
c9042e52d4 feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
8a78e37634 feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
5e93f58530 wip progress events 2025-06-26 19:50:35 +10:00
psychedelicious
a3851e0b08 refactor(ui): canvas flow (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
eb45a457e9 fix(ui): ref goes undefined in GalleryImage
This appears to be a bug in Chakra UI v2 - use of a fallback component makes the ref passed to an image end up undefined. Had to remove the skeleton loader fallback component.
2025-06-26 19:50:35 +10:00
psychedelicious
1446d3490b fix(ui): merge refs when forwardingin DndImage 2025-06-26 19:50:35 +10:00
psychedelicious
579318af70 fix(ui): remove unused sessionId field from type 2025-06-26 19:50:35 +10:00
psychedelicious
57bfae6774 fix(ui): ensure all args are passed to handler when creating new canvas from image 2025-06-26 19:50:35 +10:00
psychedelicious
2a92524546 feat(ui): bookmark new inpaint masks 2025-06-26 19:50:34 +10:00
psychedelicious
7a5fa25b48 feat(ui): support bookmarking an entity when adding it 2025-06-26 19:50:34 +10:00
psychedelicious
b3f3020793 fix(ui): ensure images are added to gallery in simple sessions 2025-06-26 19:50:34 +10:00
psychedelicious
650809e50d feat(ui): images always added to gallery in simple session 2025-06-26 19:50:34 +10:00
psychedelicious
7308428f32 wip 2025-06-26 19:50:34 +10:00
psychedelicious
4dc3f1bcee refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
faeb5f0c3b refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
d985dfe821 refactor(ui): canvas flow events (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
ce5ae83689 refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
c0428ee7ef refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
aa3b2106d4 refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
cf2d67ef3d refactor(ui): canvas flow (wip) 2025-06-26 19:50:33 +10:00
psychedelicious
c4d1e78f59 fix(ui): circular import issue 2025-06-26 19:50:33 +10:00
psychedelicious
02e4a3aa82 refactor(ui): params state zodification 2025-06-26 19:50:33 +10:00
psychedelicious
a0b0c30be9 refactor(ui): move params state to big file of canvas zod stuff 2025-06-26 19:50:33 +10:00
psychedelicious
5c4cbc7fa2 refactor(ui): zod-ify params slice state 2025-06-26 19:50:33 +10:00
psychedelicious
5f2f12f803 refactor(ui): org state in prep for new flow 2025-06-26 19:50:33 +10:00
psychedelicious
c9cd0a87be refactor(ui): image viewer & comparison convolutedness 2025-06-26 19:49:01 +10:00
psychedelicious
668c475271 feat(ui): default canvas tool is move 2025-06-26 19:49:01 +10:00
psychedelicious
341910739e chore(ui): bump @reduxjs/toolkit to latest 2025-06-26 19:49:01 +10:00
psychedelicious
53a3dc52bc feat(ui): viewer is a modal (wip) 2025-06-26 19:49:01 +10:00
Billy
23b0a4a7f4 Update uv lock 2025-06-26 19:47:06 +10:00
Billy
6afbf31750 Ruff formatting 2025-06-26 19:47:06 +10:00
Billy
3cd4306eec Update import path 2025-06-26 19:47:06 +10:00
Billy
827191d2fc Use definitions in config 2025-06-26 19:47:06 +10:00
Billy
aaa34f717d OMI files 2025-06-26 19:47:06 +10:00
Billy
fe83c2f81f Add OMI vendor files 2025-06-26 19:47:06 +10:00
Billy
17dead3309 Remove OMI from dependencies 2025-06-26 19:47:06 +10:00
Mary Hipp Rogers
979bd33dfb fix 1:1 ratio (#8127)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-06-25 19:39:21 -04:00
psychedelicious
5128f072a8 feat: add user_label to FieldIdentifier (#8126)
Co-authored-by: Mary Hipp Rogers <maryhipp@gmail.com>
2025-06-25 13:44:57 +00:00
Mary Hipp Rogers
2ad5b5cc2e Flux Kontext UI support (#8111)
* add support for flux-kontext models in nodes

* flux kontext in canvas

* add aspect ratio support

* lint

* restore aspect ratio logic

* more linting

* typegen

* fix typegen

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-06-25 09:39:57 -04:00
jazzhaiku
24d8a96071 Omi (#8120)
## Summary

Support for
[OMI](https://github.com/Open-Model-Initiative/OMI-Model-Standards/tree/main)
LoRAs that use Flux and SDXL as the base model. Automated tests for
config classification. Manually tested (visual inspection) for LoRA
loading and execution.



## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-06-24 14:53:57 +10:00
Billy
f1e4665aa2 Revert 2025-06-24 08:53:39 +10:00
Billy
1cbfea3a21 Update uv lock 2025-06-24 08:45:57 +10:00
Billy
981e8e217d Regenerate uv lock 2025-06-24 07:42:44 +10:00
Billy
e7ca30f406 Updated schema 2025-06-24 07:38:51 +10:00
Billy
2832ca300f Formatting 2025-06-24 07:26:42 +10:00
Billy
de5f413440 Filter bundle_emb for all LoRAs 2025-06-24 07:12:11 +10:00
Billy
fbc14c61ea Remove bundle_emb filter 2025-06-24 06:53:33 +10:00
Kent Keirsey
77e029a49f Ignore bundled embeddings in conversion 2025-06-23 10:05:55 -04:00
Kent Keirsey
61b049ad35 Fix to config 2025-06-23 09:52:47 -04:00
Billy
b88f4a24d0 Frontend types 2025-06-23 14:01:41 +10:00
Billy
8c632f0d32 Remove files 2025-06-23 13:54:21 +10:00
Billy
150a876c73 Formatting 2025-06-23 13:52:19 +10:00
Billy
62c3b01e4f Merge branch 'main' into OMI 2025-06-23 13:52:07 +10:00
Billy
e1157f343b Support for Flux and SDXL 2025-06-23 13:51:16 +10:00
Kent Keirsey
6a78739076 Change save button to Invoke Blue 2025-06-20 15:07:40 +10:00
psychedelicious
0794eb43e7 fix(nodes): ensure each invocation overrides _original_model_fields with own field data 2025-06-20 15:03:55 +10:00
Billy
4ee54eac1d Another attempt 2025-06-20 14:10:06 +10:00
Billy
5851c46c81 Hard code source 2025-06-19 11:05:43 +10:00
Billy
a296559e79 Ignore 2025-06-19 11:02:18 +10:00
Billy
1fd83f5e68 Import 2025-06-19 11:01:50 +10:00
Billy
637487c573 Convert FROM OMI to diffusers 2025-06-19 11:00:27 +10:00
Billy
4e98e7d0a2 Typo: dot should be comma 2025-06-19 10:47:24 +10:00
Billy
12f65d800d Formatting 2025-06-19 09:40:58 +10:00
Billy
45d09f8f51 Use OMI conversion utils 2025-06-19 09:40:49 +10:00
Billy
2876c72fa9 Schema update 2025-06-18 10:54:01 +10:00
Billy
9b4fdb493e Loader 2025-06-18 10:53:54 +10:00
Billy
47e21d6e04 Formatting 2025-06-17 13:56:38 +10:00
Billy
84ab4a1c30 Convert from OMI to default LoRA state dict 2025-06-17 13:56:22 +10:00
Billy
85c4304efd Add OMI LoRA config 2025-06-17 13:34:03 +10:00
Billy
8f152f162b Add OMI to model format taxonomy 2025-06-17 13:33:40 +10:00
Billy
63b49f045a Add stripped models for testing OMI 2025-06-17 13:33:23 +10:00
Mary Hipp
291e0736d6 fix names of unpublishable nodes 2025-06-16 12:40:54 -04:00
psychedelicious
4bfa6439d4 chore(ui): typgen 2025-06-16 19:33:19 +10:00
psychedelicious
a8d7969a1d fix(app): config docstrings 2025-06-16 19:33:19 +10:00
Heathen711
46bfa24af3 ruff format 2025-06-16 19:33:19 +10:00
Heathen711
a8cb8e128d run "make frontend-typegen" 2025-06-16 19:33:19 +10:00
Heathen711
8cef0f5bf5 Update supported cuda slot input. 2025-06-16 19:33:19 +10:00
psychedelicious
911baeb58b chore(ui): bump version to v5.15.0 2025-06-16 19:18:25 +10:00
Kevin Turner
312960645b fix: move AI Toolkit to the bottom of the detection list
to avoid disrupting already-working LoRA
2025-06-16 19:08:11 +10:00
Kevin Turner
50cf285efb fix: group aitoolkit lora layers 2025-06-16 19:08:11 +10:00
Kevin Turner
a214f4fff5 fix: group aitoolkit lora layers 2025-06-16 19:08:11 +10:00
Kevin Turner
2981591c36 test: add some aitoolkit lora tests 2025-06-16 19:08:11 +10:00
Kevin Turner
b08f90c99f WIP!: …they weren't in diffusers format… 2025-06-16 19:08:11 +10:00
Kevin Turner
ab8c739cd8 fix(LoRA): add ai-toolkit to lora loader 2025-06-16 19:08:11 +10:00
Kevin Turner
5c5108c28a feat(LoRA): support AI Toolkit LoRA for FLUX [WIP] 2025-06-16 19:08:11 +10:00
j-brooke
3df7cfd605 Updated fracturedjsonjs to version 4.1.0 and included settings adjustments for more pleasing comma placement. 2025-06-14 14:59:43 +10:00
psychedelicious
1ff3d44dba fix(app): guard against possible race conditions during enqueue
In #7724 we made a number of perf optimisations related to enqueuing. One of these optimisations included moving the enqueue logic - including expensive prep work and db writes - to a separate thread.

At the same time manual DB locking was abandoned in favor of WAL mode.

Finally, we set `check_same_thread=False` to allow multiple threads to access the connection at a given time.

I think this may be the cause of #7950:
- We start an enqueue in a thread (running in bg)
- We dequeue
- Dequeue pulls a partially-written queue item from DB and we get the errors in the linked issue

To be honest, I don't understand enough about SQLite to confidently say that this kind of race condition is actually possible. But:
- The error started popping up around the time we made this change.
- I have reviewed the logic from enqueue to dequeue very carefully _many_ times over the past month or so, and I am confident that the error is only possible if we are getting unexpectedly `NULL` values from the DB.
- The DB schema includes `NOT NULL` constraints for the column that is apparently returning `NULL`.
- Therefore, without some kind of race condition or schema issue, the error should not be possible.
- The `enqueue_batch` call is the only place I can find where we have the possibility of a race condition due to async logic. Everywhere else, all DB interaction for the queue is synchronous, as far as I can tell.

This change retains the perf benefits by running the heavy enqueue prep logic in a separate thread, but moves back to the main thread for the DB write. It also uses an explicit transaction for the write.

Will just have to wait and see if this fixes the issue.
2025-06-13 23:51:47 +10:00
Emmanuel Ferdman
c80ad90f72 Migrate to modern logger interface
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-06-13 13:07:09 +10:00
psychedelicious
3b4d1b8786 perf(app): gc before every queue item
This reduces peak memory usage at a negligible cost. Queue items typically take on the order of seconds, making the time cost of a GC essentially free.

Not a great idea on a hotter code path though.
2025-06-11 12:56:16 +10:00
psychedelicious
c66201c7e1 perf(app): skip TI logic when no TIs to apply 2025-06-11 12:56:16 +10:00
psychedelicious
35c7c59455 fix(app): reduce peak memory usage
We've long suspected there is a memory leak in Invoke, but that may not be true. What looks like a memory leak may in fact be the expected behaviour for our allocation patterns.

We observe ~20 to ~30 MB increase in memory usage per session executed. I did some prolonged tests, where I measured the process's RSS in bytes while doing 200 SDXL generations. I found that it eventually leveled off at around 100 generations, at which point memory usage had climbed by ~900MB from its starting point.

I used tracemalloc to diff the allocations of single session executions and found that we are allocating ~20MB or so per session in `ModelPatcher.apply_ti()`.

In `ModelPatcher.apply_ti()` we add tokens to the tokenizer when handling TIs. The added tokens should be scoped to only the current invocation, but there is no simple way to remove the tokens afterwards.

As a workaround for this, we clone the tokenizer, add the TI tokens to the clone, and use the clone to when running compel. Afterwards, this cloned tokenizer is discarded.

The tokenizer uses ~20MB of memory, and it has referrers/referents to other compel stuff. This is what is causing the observed increases in memory per session!

We'd expect these objects to be GC'd but python doesn't do it immediately. After creating the cond tensors, we quickly move on to denoising. So there isn't any time for the GC to happen to free up its existing memory arenas/blocks to reuse them. Instead, python needs to request more memory from the OS.

We can improve the situation by immediately calling `del` on the tokenizer clone and related objects. In fact, we already had some code in the compel nodes to `del` some of these objects, but not all.

Adding the `del`s vastly improves things. We hit peak RSS in half the sessions (~50 or less) and it's now ~100MB more than starting value. There is still a gradual increase in memory usage until we level off.
2025-06-11 12:56:16 +10:00
psychedelicious
85f98ab3eb fix(app): error on upload + resize for unusual image modes 2025-06-11 11:18:08 +10:00
Mary Hipp
dac75685be disable publish and cancel buttons once it begins 2025-06-10 19:50:09 -04:00
psychedelicious
d7b5a8b298 fix: opencv dependency conflict (#8095)
* build: prevent `opencv-python` from being installed

Fixes this error: `AttributeError: module 'cv2.ximgproc' has no attribute 'thinning'`

`opencv-contrib-python` supersedes `opencv-python`, providing the same API + additional features. The two packages should not be installed at the same time to avoid conflicts and/or errors.

The `invisible-watermark` package requires `opencv-python`, but we require the contrib variant.

This change updates `pyproject.toml` to prevent `opencv-python` from ever being installed using a `uv` features called dependency overrides.

* feat(ui): data viewer supports disabling wrap

* feat(api): list _all_ pkgs in app deps endpoint

* chore(ui): typegen

* feat(ui): update about modal to display new full deps list

* chore: uv lock
2025-06-10 08:33:41 -04:00
Kent Keirsey
d3ecaa740f Add Precise Reference to Starter Models 2025-06-09 22:02:11 +10:00
dunkeroni
b5a6765a3d also search image creation date 2025-06-09 21:54:26 +10:00
psychedelicious
3704573ef8 chore: bump version to v5.14.0 2025-06-06 22:36:32 +10:00
Hiroto N
01fbf2ce4d translationBot(ui): update translation (Japanese)
Currently translated at 76.5% (1467 of 1917 strings)

Co-authored-by: Hiroto N <hironow365@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-06-06 20:56:13 +10:00
Riccardo Giovanetti
96e7003449 translationBot(ui): update translation (Italian)
Currently translated at 98.9% (1896 of 1917 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-06-06 20:56:13 +10:00
RyoKoba
80197b8856 translationBot(ui): update translation (Japanese)
Currently translated at 76.1% (1460 of 1917 strings)

Co-authored-by: RyoKoba <kobayashi_ryo@cyberagent.co.jp>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-06-06 20:52:36 +10:00
Hosted Weblate
0187bc671e translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-06-06 20:52:36 +10:00
psychedelicious
31584daabe feat(ui): display canvas spinner during compositing operations 2025-06-06 20:50:02 +10:00
psychedelicious
a6cb522fed feat(ui): add bboxUpdated callback to transformer, use it to fit layer to stage when creating new canvas from an image
When a layer is initialized, we do not yet know its bbox, so we cannot fit the stage view to the layer. We have to wait for the bbox calculation to finish. Previously, we had no way to wait unti lthat bbox calculation was complete to take an action.

For example, this means we could not fit the layers to the stage immediately after creating a new layer, bc we don't know the dimensions of the layer yet.

This callback lets us do that. When creating a new canvas from an image, we now...
- Register a bbox update callback to fit the layers to stage
- Layer is created
- Canvas initializes the layer's entity adapter module (layer's width and height are set to zero at this point)
- Canvas calculates the bbox
- Bbox is updated (width and height are now correct)
- Callback is ran, fitting layer to stage
2025-06-06 20:50:02 +10:00
psychedelicious
f70be1e415 feat(ui): animate stage fit operations (e.g. fit layers to stage) 2025-06-06 20:50:02 +10:00
psychedelicious
a2901f2b46 feat(ui): add method to stage to fit to union of bbox and layers
This ensures that _both_ bbox and layers are visible
2025-06-06 20:50:02 +10:00
psychedelicious
b61c66c3a9 feat(ui): add spinner indicator to canvas during rasterizing operations and while pending rect calculations 2025-06-06 20:50:02 +10:00
psychedelicious
c77f9ec202 feat(ui): add hook to get all entity adapters in array 2025-06-06 20:50:02 +10:00
psychedelicious
2c5c35647f fix(ui): new canvas from image places image in bbox correctly 2025-06-06 20:50:02 +10:00
dunkeroni
bf0fdbd10e Fix: inpaint model mask using wrong tensor name 2025-06-05 11:31:35 -04:00
psychedelicious
731d317a42 chore(ui): update whatsnew 2025-06-04 22:29:37 +10:00
psychedelicious
e81579f752 fix(mm): handle invoke syntax for HF repo ids when fetching HF model metadata
Closes #8074
2025-06-04 22:27:15 +10:00
Linos
9a10e98c0b translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1918 of 1918 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-06-04 17:03:06 +10:00
Riccardo Giovanetti
27fdc139b7 translationBot(ui): update translation (Italian)
Currently translated at 98.9% (1897 of 1918 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-06-04 17:03:06 +10:00
psychedelicious
0a00805afc chore: bump version to v5.13.0 2025-06-04 05:55:34 +10:00
psychedelicious
7b38143fbd chore: bump version to v5.13.0rc3 2025-05-30 21:44:21 +10:00
mickr777
4c5ad1b7d7 Ruff Fix 2025-05-30 19:03:43 +10:00
mickr777
d80cc962ad Delay Imports that require torch 2025-05-30 19:03:43 +10:00
RyoKoba
7ccabfa200 translationBot(ui): update translation (Japanese)
Currently translated at 68.0% (1304 of 1915 strings)

Co-authored-by: RyoKoba <kobayashi_ryo@cyberagent.co.jp>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-05-30 14:48:41 +10:00
Riccardo Giovanetti
936d59cc52 translationBot(ui): update translation (Italian)
Currently translated at 98.9% (1894 of 1915 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-05-30 14:48:41 +10:00
psychedelicious
fc16fb6099 chore: bump version to v5.13.0rc2 2025-05-30 14:16:33 +10:00
psychedelicious
c848cbc2e3 feat(app): move output annotation checking to run_app
Also change import order to ensure CLI args are handled correctly. Had to do this bc importing `InvocationRegistry` before parsing args resulted in the `--root` CLI arg being ignored.
2025-05-30 14:10:13 +10:00
psychedelicious
66fd0f0d8a feat(ui): warn on unregistered invocation output 2025-05-30 14:10:13 +10:00
psychedelicious
c266f39f06 chore(ui): typegen 2025-05-30 13:36:04 +10:00
psychedelicious
98a44fa4d7 fix(ui): conditional display of message 2025-05-30 13:36:04 +10:00
Mary Hipp
c1d230f961 add support to delete all uncategorized images 2025-05-30 13:36:04 +10:00
Kevin Turner
68108435ae feat(LoRA): allow LoRA layer patcher to continue past unknown layers 2025-05-30 13:29:02 +10:00
psychedelicious
e121bf1f62 feat(ui): persist sizes of all 4 prompt boxes 2025-05-30 12:36:06 +10:00
psychedelicious
4835c344b3 feat(ui): implement generalized textarea size tracking system 2025-05-30 12:36:06 +10:00
Mary Hipp
a589dec122 store positive prompt textarea height in redux so it persists across refresh 2025-05-30 12:36:06 +10:00
dunkeroni
bc67d5c841 add invert logic to grayscale mask composite 2025-05-30 11:19:37 +10:00
Mary Hipp
f3d5691c04 use onClickGoToModelManager for empty model picker 2025-05-29 11:13:55 -04:00
psychedelicious
b98abc2457 chore(ui): typegen 2025-05-29 13:49:07 +10:00
psychedelicious
7e527ccfb7 feat(api): add validationg for max resize_to on upload endpoint 2025-05-29 13:49:07 +10:00
psychedelicious
0f0c911845 chore: uv lock 2025-05-29 13:49:07 +10:00
psychedelicious
e4818b967b tidy(api): remove benchmark logging 2025-05-29 13:49:07 +10:00
psychedelicious
ce3eede26f feat(nodes): revised heuristic_resize
better handling for smaller image sizes
2025-05-29 13:49:07 +10:00
psychedelicious
d98725c5e9 feat(nodes): use guo-hall thinning 2025-05-29 13:49:07 +10:00
psychedelicious
31a96d2945 feat(ui): use resize on uplaod functionality when creating new canvas from image 2025-05-29 13:49:07 +10:00
psychedelicious
845a321a43 feat(ui): support resize_to when uploading images 2025-05-29 13:49:07 +10:00
psychedelicious
87a44a28ef chore(ui): typegen 2025-05-29 13:49:07 +10:00
psychedelicious
d5b9c3ee5a feat(api): support resizing image on upload 2025-05-29 13:49:07 +10:00
psychedelicious
91db136cd1 feat(nodes): much faster heuristic resize utility
Add `heuristic_resize_fast`, which does the same thing as `heuristic_resize`, except it's about 20x faster.

This is achieved by using opencv for the binary edge handling isntead of python, and checking only 100k pixels to determine what kind of image we are working with.

Besides being much faster, it results in cleaner lines for resized binary canny edge maps, and has results in fewer misidentified segmentation maps.

Tested against normal images, binary canny edge maps, grayscale HED edge maps, segmentation maps, and normal images.

Tested resizing up and down for each.

Besides the new utility function, I needed to swap the `opencv-python` dep for `opencv-contrib-python`, which includes `cv2.ximgproc.thinning`. This function accounts for a good chunk of the perf improvement.
2025-05-29 13:49:07 +10:00
Jonathan
f351ad4b66 Update communityNodes.md
Added some of JPPhoto's nodes.
2025-05-28 07:26:44 +10:00
psychedelicious
fb6fb9abbd gh: update CODEOWNERS
Added myself to everything so we do not get into situations where we need to rely on vic or lincoln to approve
2025-05-27 22:37:44 +10:00
psychedelicious
675c990486 docs: add comments to classifiers stuff 2025-05-27 22:02:48 +10:00
psychedelicious
6ee5cde4bb ci: do not install project when checking classifiers 2025-05-27 22:02:48 +10:00
psychedelicious
c8077f9430 ci: check classifiers in python-checks workflow 2025-05-27 22:02:48 +10:00
psychedelicious
6aabe9959e chore: fix license classifier 2025-05-27 22:02:48 +10:00
psychedelicious
0b58d172d2 build: update build script to check classifiers 2025-05-27 22:02:48 +10:00
psychedelicious
d7c6e293d7 scripts: add script to check pypi classifiers 2025-05-27 22:02:48 +10:00
psychedelicious
c600bc867d chore: bump version to v5.13.0rc1 2025-05-27 13:30:34 +10:00
Riccardo Giovanetti
f4140dd772 translationBot(ui): update translation (Italian)
Currently translated at 98.9% (1890 of 1911 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.9% (1890 of 1911 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-05-27 13:18:06 +10:00
psychedelicious
a2d8261d40 feat(ui): canvas scroll scale snap 2025-05-27 13:10:57 +10:00
psychedelicious
bce88a8873 perf(ui): lazy mount scale slider popover 2025-05-27 13:10:57 +10:00
psychedelicious
b37e1a3ad6 feat(ui): do not round scale
Makes it a lot smoother, don't think it breaks anything...
2025-05-27 13:10:57 +10:00
psychedelicious
35a088e0a6 perf(ui): optimize <CanvasToolbarScale /> 2025-05-27 13:10:57 +10:00
psychedelicious
b936cab039 feat(ui): add computed for stage scale 2025-05-27 13:10:57 +10:00
psychedelicious
34e4093408 fix(ui): revert snapping logic, doesn't work w/ certain input devices 2025-05-27 13:10:57 +10:00
Kent Keirsey
d7f93c3cc0 uv update 2025-05-26 22:54:15 -04:00
Kent Keirsey
d4c4926caa Update Compel to 2.1.1 and apply Sentences Split logic 2025-05-26 22:54:15 -04:00
psychedelicious
558c7db055 chore(ui): knipignore InpaintMaskAddButtons 2025-05-27 07:28:47 +10:00
psychedelicious
2ece59b51b feat(ui): remove unnecessary type casts 2025-05-27 07:28:47 +10:00
psychedelicious
7dbe39957c feat(ui): bbox rect is always defined, no need for fallback logic 2025-05-27 07:28:47 +10:00
psychedelicious
6fa46d35a5 feat(ui): inpaint mask settings layout 2025-05-27 07:28:47 +10:00
psychedelicious
b2a2b38ea8 feat(ui): split inpaint mask setting selectors to avoid manual memoization 2025-05-27 07:28:47 +10:00
dunkeroni
12934da390 Use Optional instead of Nullable for mask settings 2025-05-27 07:28:47 +10:00
dunkeroni
231bc18188 remove buttons, change denoise limit format 2025-05-27 07:28:47 +10:00
dunkeroni
530cd180c5 chore:ruff 2025-05-27 07:28:47 +10:00
dunkeroni
2a92e7b920 Flux/CogView/SD3 compatible with gradient masks 2025-05-27 07:28:47 +10:00
dunkeroni
019e057e29 chore: typegen 2025-05-27 07:28:47 +10:00
dunkeroni
9aa26f883e chore: ruff 2025-05-27 07:28:47 +10:00
dunkeroni
3f727e24b1 change default noise level to 0.15 2025-05-27 07:28:47 +10:00
dunkeroni
9e90bf1b20 fix gradient mask broken with flux gen 2025-05-27 07:28:47 +10:00
dunkeroni
db3964797f clean up comments 2025-05-27 07:28:47 +10:00
dunkeroni
881efbda1b fix: inpaint breaks when scaled processing 2025-05-27 07:28:47 +10:00
dunkeroni
e9ce2ed5f2 inpaint mask sliders compatible with outpainting 2025-05-27 07:28:47 +10:00
dunkeroni
53ac9eafbf reuse inpaint image noise seed for caching 2025-05-27 07:28:47 +10:00
dunkeroni
9e095006a5 remove some AI detritus 2025-05-27 07:28:47 +10:00
dunkeroni
21b24c3ba6 change denoise limit default to 1.0 2025-05-27 07:28:47 +10:00
dunkeroni
139ecc10ce ruff 2025-05-27 07:28:47 +10:00
dunkeroni
78ea143b46 composite masks based on denoise level 2025-05-27 07:28:47 +10:00
dunkeroni
174249ec15 grtadient mask node works on greyscale now 2025-05-27 07:28:47 +10:00
dunkeroni
2510ad7431 consolidate code 2025-05-27 07:28:47 +10:00
dunkeroni
ba5e855a60 Correctly composite grey values on white for masks 2025-05-27 07:28:47 +10:00
dunkeroni
23627cf18d compositing in frontend 2025-05-27 07:28:47 +10:00
dunkeroni
5e20c9a1ca mask noise slider option 2025-05-27 07:28:47 +10:00
Kent Keirsey
933cf5f276 update prettier 2025-05-25 23:53:16 -04:00
Kent Keirsey
41316de659 Update order 2025-05-25 23:53:16 -04:00
Kent Keirsey
041ccfd68e Enable 'pull into bounding box' from empty Control Layer 2025-05-25 23:53:16 -04:00
dunkeroni
ad24c203a4 preserve SDXL training values for bounding box 2025-05-25 08:15:37 -04:00
Kent Keirsey
3fd28ce600 Update scaling math to land on 100% consistently. 2025-05-25 07:59:27 -04:00
Mary Hipp
32df3bdf6e typegen 2025-05-22 14:09:10 -04:00
Mary Hipp
ba69e89e8c typegen 2025-05-22 14:09:10 -04:00
Mary Hipp
a8e0c48ddc add new method types to metadata 2025-05-22 14:09:10 -04:00
Jonathan
66f6571086 Update manual installation for v5.12.0 2025-05-22 09:00:58 -04:00
psychedelicious
8a3848e7b6 chore(ui): update whats new copy 2025-05-22 14:25:02 +10:00
psychedelicious
3f8486b480 chore: bump version to v5.12.0 2025-05-22 14:25:02 +10:00
Hosted Weblate
b80be4f639 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-05-22 14:11:52 +10:00
Linos
adb3a849b9 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1910 of 1910 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-05-22 14:11:52 +10:00
Riccardo Giovanetti
798499fda6 translationBot(ui): update translation (Italian)
Currently translated at 98.9% (1889 of 1910 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.9% (1889 of 1910 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-05-22 14:11:52 +10:00
psychedelicious
02fc5a165c chore(ui): typegen 2025-05-22 13:50:15 +10:00
psychedelicious
b1b8edecfb fix(ui): minor ts issue 2025-05-22 13:50:15 +10:00
Mary Hipp
3cd8d48809 lint 2025-05-22 13:50:15 +10:00
Mary Hipp
f4672ad8c1 more cleanup 2025-05-22 13:50:15 +10:00
Mary Hipp
5a86490845 cleanup and refactor into hooks 2025-05-22 13:50:15 +10:00
Mary Hipp
27dc843046 Imagen4 working in UI 2025-05-22 13:50:15 +10:00
Mary Hipp
2f35d74902 backend updates 2025-05-22 13:50:15 +10:00
Kevin Turner
8bd52ed744 fix: improve gguf performance with torch.compile
pytorch 2.7 does not implement `set.__contains__`, so make this a list instead.

See https://github.com/pytorch/pytorch/issues/145761
2025-05-22 13:42:09 +10:00
psychedelicious
f3e2a3c384 gh: update CODEOWNERS
- Remove brandon
- Consolidate two entries for `invokeai/backend`
2025-05-22 13:37:24 +10:00
psychedelicious
ecc6e8a532 fix(nodes): transformers bug with SAM
Upstream bug in `transformers` breaks use of `AutoModelForMaskGeneration` class to load SAM models

Simple fix - directly load the model with `SamModel` class instead.

See upstream issue https://github.com/huggingface/transformers/issues/38228
2025-05-22 11:32:37 +10:00
Mary Hipp
9170576a38 make logic more straight forward 2025-05-21 10:52:04 -04:00
Mary Hipp
f26baa0341 use hook instead 2025-05-21 10:52:04 -04:00
psychedelicious
99dad953a4 chore: bump version to v5.12.0rc2 2025-05-20 14:50:03 +10:00
jazzhaiku
c39bcdffd3 Re-enable classification API as fallback (#8007)
## Summary

- Fallback to new classification API if legacy probe fails
- Method to read model metadata
- Created `StrippedModelOnDisk` class for testing
- Test to verify only a single config `matches` with a model

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-05-20 11:25:38 +10:00
Billy
32f2223237 Warning comment 2025-05-20 11:19:59 +10:00
Billy
6176941853 Warning comment 2025-05-20 11:19:59 +10:00
Billy
af41dc83f7 Make ruff happy 2025-05-20 11:19:59 +10:00
Billy
a17e771eba Re-enable classification API as fallback 2025-05-20 11:19:59 +10:00
psychedelicious
19ecdb196e chore: ruff 2025-05-20 10:47:02 +10:00
psychedelicious
15880e6ea7 fix(ui): invocation parsing for optional enum fields
For example:
```py
my_field: Literal["foo", "bar"] | None = InputField(default=None)
```

Previously, this would cause a field parsing error and prevent the app from loading.

Two fixes:
- This type annotation and resultant schema are now parsed correctly
- Error handling added to template building logic to prevent the hang at startup when an error does occur
2025-05-20 10:47:02 +10:00
psychedelicious
53ffa98662 chore(ui): typegen 2025-05-20 10:47:02 +10:00
psychedelicious
021a334240 fix(nodes): fix spots where default of None was provided for non-optional fields 2025-05-20 10:47:02 +10:00
psychedelicious
cfed293d48 fix(nodes): do not make invocation field defaults None when they are not provided 2025-05-20 10:47:02 +10:00
Mary Hipp
d36bc185c8 only use client side uploads if more than one image to retain metadata for single uploads 2025-05-20 08:03:00 +10:00
psychedelicious
7878203b03 chore(ui): update whats new copy 2025-05-19 23:28:40 +10:00
psychedelicious
3352220d39 chore: bump version to v5.12.0rc1 2025-05-19 23:28:40 +10:00
Riccardo Giovanetti
bcfb1e7e52 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1887 of 1910 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-05-19 23:23:07 +10:00
psychedelicious
e84b3c142c chore(ui): typegen 2025-05-19 13:50:04 +10:00
Kent Keirsey
22f637b647 ruff ruff 2025-05-19 13:50:04 +10:00
Kent Keirsey
5d192ab6e5 Fix SD precise in patcher. 2025-05-19 13:50:04 +10:00
Kent Keirsey
9273d1629e UX Copy Clean-up 2025-05-19 13:50:04 +10:00
Kent Keirsey
27a12f080b missing translation values 2025-05-19 13:50:04 +10:00
Kent Keirsey
3bfb497764 ruff fixes 2025-05-19 13:50:04 +10:00
Kent Keirsey
b849c7d382 ruff fix 2025-05-19 13:50:04 +10:00
Kent Keirsey
8d4120583d update schema pt 2 2025-05-19 13:50:04 +10:00
Kent Keirsey
402cdc7eda update schema 2025-05-19 13:50:04 +10:00
Kent Keirsey
b02ea1a898 Expanded styles & updated UI 2025-05-19 13:50:04 +10:00
Kent Keirsey
d709040f4b Matt3o base changes 2025-05-19 13:50:04 +10:00
psychedelicious
8a7a498da3 chore: update uv lock 2025-05-19 12:29:51 +10:00
psychedelicious
699736486b chore: bump torch to 2.7.0
- Update `pyproject.toml`
- Update `pins.json` so launcher installs latest CUDA 12.8 & ROCm 6.3
2025-05-19 12:29:51 +10:00
psychedelicious
37e790ae19 fix(app): address pydantic deprecation warning for accessing BaseModel.model_fields 2025-05-19 12:22:59 +10:00
David Burnett
6c0bd7d150 fix import ordering, remove code I reverted that the resync added back 2025-05-19 11:16:23 +10:00
David Burnett
99e154d773 fix picky ruff issue 2025-05-19 11:16:23 +10:00
David Burnett
e4e43ae126 fix missing bracket 2025-05-19 11:16:23 +10:00
David Burnett
a07fac6180 raise exected exception when attempting to change dtype 2025-05-19 11:16:23 +10:00
David Burnett
93d4b00082 Add to overload for GGMLTensor, so calling to on the model moves the quantized data as well 2025-05-19 11:16:23 +10:00
David Burnett
8abcc99ced add check for state_dict, required to load TI's 2025-05-19 11:16:23 +10:00
David Burnett
73ab4b8895 fix offload device 2025-05-19 11:16:23 +10:00
David Burnett
86719f2065 revert to overload due to failing tests, use Torch futures instead 2025-05-19 11:16:23 +10:00
David Burnett
5271fc1cac fix picky ruff issue 2025-05-19 11:16:23 +10:00
David Burnett
96ff7d9093 fix missing bracket 2025-05-19 11:16:23 +10:00
David Burnett
6f73d9e9c6 raise exected exception when attempting to change dtype 2025-05-19 11:16:23 +10:00
David Burnett
29b406a84b Add to overload for GGMLTensor, so calling to on the model moves the quantized data as well 2025-05-19 11:16:23 +10:00
psychedelicious
2b1e4b88d3 tests: add new service to mocks 2025-05-19 10:29:07 +10:00
psychedelicious
0f0085a776 chore(ui): typegen 2025-05-19 10:29:07 +10:00
psychedelicious
ea28ed8261 chore: ruff 2025-05-19 10:29:07 +10:00
Lucian Hardy
c0e6327d3a chore(ui): Refactor RelatedModels.tsx
Major cleanup of RelatedModels.tsx for improved readability, structure, and maintainability.
Dried out repetitive logic
Consolidated model type sorting into reusable helpers
Added disallowed model type relationships to prevent broken connections (e.g. VAE ↔ LoRA)
- Aware this introduces a new constraint—open to feedback (see PR comment)
Some naming and types may still need refinement; happy to revisit
2025-05-19 10:29:07 +10:00
Lucian Hardy
459491e402 chore(backend): Removed unused model_relationship methods
removed unused AnyModelConfig related methods,
removed unused get_related_model_key_count method.
2025-05-19 10:29:07 +10:00
Lucian Hardy
a4cddfa47d feat(ui): model relationship management
Adds full support for managing model-to-model relationships in the UI and backend.

Introduces RelatedModels subpanel for linking and unlinking models in model management.
 - Adds REST API routes for adding, removing, and retrieving model relationships.
 - New database migration: creates model_relationships table for bidirectional links.
 - New service layer (model_relationships) for relationship management.
 - Updated frontend: Related models float to top of LoRA/Main grouped model comboboxes for quick access.
     - Added 'Show Only Related' toggle badge to MainModelPicker filter bar

**Amended commit to remove changes to ParamMainModelSelect.tsx and MainModelPicker.tsx to avoid conflict with upstream deletion/ rewrite**
2025-05-19 10:29:07 +10:00
jazzhaiku
9a822bcfe8 Jazzhaiku/stats (#8006)
## Summary

- Modify stats reset to be on a per session basis, rather than a "full
reset", to allow for parallel session execution
- Add "aider" to gitignore

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-05-16 07:51:23 +10:00
psychedelicious
5f12b9185f feat(mm): add cache_snapshot to model cache clear callback 2025-05-15 16:06:47 +10:00
psychedelicious
d958d2e5a0 feat(mm): iterate on cache callbacks API 2025-05-15 14:37:22 +10:00
psychedelicious
823ca214e6 feat(mm): iterate on cache callbacks API 2025-05-15 13:28:51 +10:00
psychedelicious
a33da450fd feat(mm): support cache callbacks 2025-05-15 11:23:58 +10:00
Billy
8b5f4d190c Restore Schema 2025-05-15 10:38:01 +10:00
Billy
f1f3b7965a Schema 2025-05-15 10:26:45 +10:00
Billy
987be3507c Merge branch 'main' into jazzhaiku/stats 2025-05-15 10:22:56 +10:00
Billy
1f4090fe0e Reset invocation stats on per session basis 2025-05-15 10:19:05 +10:00
Billy
029e2d2c46 Add aider to gitignore 2025-05-15 10:18:42 +10:00
Riku
7722f479e8 translationBot(ui): update translation (German)
Currently translated at 64.9% (1236 of 1902 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Linos
3ad4072183 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1904 of 1904 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1902 of 1902 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Hosted Weblate
6dfb9a1906 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
RyoKoba
ad2924350d translationBot(ui): update translation (Japanese)
Currently translated at 67.1% (1279 of 1904 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 64.9% (1231 of 1895 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 60.2% (1141 of 1895 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 56.7% (1075 of 1895 strings)

Co-authored-by: RyoKoba <kobayashi_ryo@cyberagent.co.jp>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Linos
3bf51ee0c2 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1896 of 1896 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1895 of 1895 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1886 of 1886 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Hosted Weblate
fce5051dcc translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
Riccardo Giovanetti
446d8818b9 translationBot(ui): update translation (Italian)
Currently translated at 98.8% (1883 of 1904 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1882 of 1903 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1881 of 1902 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1878 of 1899 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1874 of 1895 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1873 of 1895 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1864 of 1886 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-05-14 10:32:24 +10:00
psychedelicious
1566e29c19 feat(nodes): tidy some type annotations in baseinvocation 2025-05-14 06:55:15 +10:00
psychedelicious
6a2e35f2c4 feat(nodes): store original field annotation & FieldInfo in invocations 2025-05-14 06:55:15 +10:00
psychedelicious
b6d58774f4 feat(nodes): improved error messages for invalid defaults 2025-05-14 06:55:15 +10:00
psychedelicious
758f94d3c6 chore(ui): typegen 2025-05-14 06:55:15 +10:00
psychedelicious
9df0871754 fix(nodes): do not provide invalid defaults for batch nodes 2025-05-14 06:55:15 +10:00
psychedelicious
3011150a3a feat(nodes): validate default values for all fields
This prevents issues where the node is defined with an invalid default value, which would guarantee an error during a ser/de roundtrip.

- Upstream issue requesting this functionality be built-in to pydantic: https://github.com/pydantic/pydantic/issues/8722
- Upstream PR that implements the functionality: https://github.com/pydantic/pydantic-core/pull/1593
2025-05-14 06:55:15 +10:00
psychedelicious
05aa1fce71 chore(ui): typegen 2025-05-14 06:55:15 +10:00
psychedelicious
df81f3274a feat(nodes): improved pydantic type annotation massaging
When we do our field type overrides to allow invocations to be instantiated without all required fields, we were not modifying the annotation of the field but did set the default value of the field to `None`.

This results in an error when doing a ser/de round trip. Here's what we end up doing:

```py
from pydantic import BaseModel, Field

class MyModel(BaseModel):
    foo: str = Field(default=None)
```

And here is a simple round-trip, which should not error but which does:

```py
MyModel(**MyModel().model_dump())
# ValidationError: 1 validation error for MyModel
# foo
#   Input should be a valid string [type=string_type, input_value=None, input_type=NoneType]
#     For further information visit https://errors.pydantic.dev/2.11/v/string_type
```

To fix this, we now check every incoming field and update its annotation to match its default value. In other words, when we override the default field value to `None`, we make its type annotation `<original type> | None`.

This prevents the error during deserialization.

This slightly alters the schema for all invocations and outputs - the values of all fields without default values are now typed as `<original type> | None`, reflecting the overrides.

This means the autogenerated types for fields have also changed for fields without defaults:

```ts
// Old
image?: components["schemas"]["ImageField"];

// New
image?: components["schemas"]["ImageField"] | null;
```

This does not break anything on the frontend.
2025-05-14 06:55:15 +10:00
psychedelicious
143487a492 chore: bump version to v5.11.0 2025-05-13 14:04:45 +10:00
psychedelicious
203fa04295 feat(nodes): support bottleneck flag for nodes 2025-05-13 11:56:40 +10:00
Mary Hipp Rogers
954fce3c67 feat(ui): custom error toast support (#8001)
* support for custom error toast components, starting with usage limit

* add support for all usage limits

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2025-05-08 15:53:10 -04:00
Mary Hipp
821889148a easier way to override Whats New 2025-05-07 15:40:21 -04:00
Mary Hipp
4c248d8c2c refetch queue list on mount 2025-05-07 15:37:55 -04:00
Mary Hipp
deb75805d4 use the max for iterations passed in 2025-05-06 18:26:40 -04:00
Mary Hipp Rogers
93110654da Change feature to disable apiModels to chatGPT4oModels only (#7996)
* display credit column in queue list if shouldShowCredits is true

* change apiModels feature to chatGPT4oModels feature

* empty

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2025-05-06 14:37:03 -04:00
psychedelicious
ff0c48d532 chore(ui): prettier 2025-05-06 09:07:52 -04:00
psychedelicious
de18073814 feat(ui): support imagen3/chatgpt-4o models in canvas 2025-05-06 09:07:52 -04:00
psychedelicious
0708af9545 feat(ui): support imagen3/chatgpt-4o models in workflow editor 2025-05-06 09:07:52 -04:00
psychedelicious
1e85184c62 feat(nodes): add imagen3/chatgpt-4o field types 2025-05-06 09:07:52 -04:00
psychedelicious
11d3b8d944 feat(ui): add usage info to model picker 2025-05-06 09:07:52 -04:00
psychedelicious
bffd4afb96 chore(ui): typegen 2025-05-06 09:07:52 -04:00
psychedelicious
518a896521 feat(mm): add usage_info to model config 2025-05-06 09:07:52 -04:00
psychedelicious
2647ff141a feat(ui): add basic metadata to imagen3/chatgpt-4o graphs 2025-05-06 09:07:52 -04:00
Mary Hipp Rogers
ba0bac2aa5 add credits to queue item status changed (#7993)
* display credit column in queue list if shouldShowCredits is true

* add credits when queue item status changes

* chore(ui): typegen

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-05-06 08:54:44 -04:00
psychedelicious
862e2a3e49 chore(ui): typegen 2025-05-05 16:09:13 -04:00
Mary Hipp
d22fd32b05 typegen 2025-05-05 16:09:13 -04:00
Mary Hipp
391e5b7f8c update schema 2025-05-05 16:09:13 -04:00
Mary Hipp
c9d2a5f59a display credit column in queue list if shouldShowCredits is true 2025-05-05 16:09:13 -04:00
Kent Keirsey
1f63b60021 Implementing support for Non-Standard LoRA Format (#7985)
* integrate loRA

* idk anymore tbh

* enable fused matrix for quantized models

* integrate loRA

* idk anymore tbh

* enable fused matrix for quantized models

* ruff fix

---------

Co-authored-by: Sam <bhaskarmdutt@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-05-05 09:40:38 -04:00
psychedelicious
a499b9f54e chore: bump version to v5.11.0rc2 2025-05-05 23:32:27 +10:00
psychedelicious
104505ea02 chore(ui): lint 2025-05-05 23:25:29 +10:00
psychedelicious
ee4002607c feat(ui): add UI to reset hf token 2025-05-05 23:25:29 +10:00
psychedelicious
fd20582cdd chore(ui): typegen 2025-05-05 23:25:29 +10:00
psychedelicious
43b0d07517 feat(api): add route to reset hf token 2025-05-05 23:25:29 +10:00
blessedcoolant
f83592a052 fix: deprecation warning in get_iso_timestemp 2025-05-05 11:45:30 +10:00
Mary Hipp
b3ee906749 add prompt validation to imagen3 graph 2025-05-01 13:02:13 -04:00
psychedelicious
5d69e9068a feat(ui): add ability to globally disable hotkeys
This will both hide the hotkey from the hotkey modal and override any other enabled status it has.
2025-05-01 10:50:34 -04:00
psychedelicious
a79136b058 fix(ui): always add selectModelsTab hotkey data to prevent unhandled exception while registering the hotkey handler 2025-05-01 10:50:34 -04:00
psychedelicious
944af4d4a9 feat(ui): show unsupported gen mode toasts as warnings intead of errors 2025-05-01 23:25:01 +10:00
psychedelicious
5e001be73a tidy(ui): remove excessive nav to mm buttons 2025-05-01 23:22:19 +10:00
psychedelicious
576a644b3a tidy(ui): modelpicker component 2025-05-01 23:22:19 +10:00
psychedelicious
703557c8a6 feat(ui): cleanup 2025-05-01 23:22:19 +10:00
psychedelicious
d59a53b3f9 feat(ui): simplify picker types 2025-05-01 23:22:19 +10:00
psychedelicious
7b8f78c2d9 fix(ui): focus bug w/ popvoer 2025-05-01 23:22:19 +10:00
psychedelicious
31ab9be79a feat(ui): iterate on picker 2025-05-01 23:22:19 +10:00
psychedelicious
5011fab85d fix(ui): restore FLUX Dev info popover to main model picker 2025-05-01 10:59:51 +10:00
psychedelicious
92bdb9fdcc chore(ui): remove unused exports 2025-05-01 10:59:51 +10:00
Mary Hipp
548e766c0b feat(ui): ability to disable generating with API models 2025-05-01 10:59:51 +10:00
Mary Hipp
ff897f74a1 send the list of reference images reversed to chatGPT so it matches displayed order 2025-04-30 15:56:38 -04:00
psychedelicious
3d29c996ed feat(ui): support img2img for chatgpt 4o w/ ref images 2025-04-30 13:39:05 +10:00
psychedelicious
42d57d1225 fix(ui): ref image layout 2025-04-30 13:39:05 +10:00
psychedelicious
193fa9395a fix(ui): match ref image model to main model when creating global ref image 2025-04-30 13:39:05 +10:00
psychedelicious
56cd839d5b feat(ui): support for ref images for chatgpt on canvas 2025-04-30 13:39:05 +10:00
ubansi
7b446ee40d docs: fix Contribute node import error
When I followed the Contribute Node documentation, I encountered an import error.
This commit fixes the error, which will help reduce debugging time for all future contributors.
2025-04-29 21:03:00 -04:00
Mary Hipp Rogers
17027c4070 Maryhipp/chatgpt UI (#7969)
* add GPTimage1 as allowed base model

* fix for non-disabled inpaint layers

* lots of boilerplate for adding gpt-image base model and disabling things along with imagen

* handle gpt-image dimensions

* build graph for gpt-image

* lint

* feat(ui): make chatgpt model naming consistent

* feat(ui): graph builder naming

* feat(ui): disable img2img for imagen3

* feat(ui): more naming

* feat(ui): support presigned url prefetch

* feat(ui): disable neg prompt for chatgpt

* docs(ui): update docstring

* feat(ui): fix graph building issues for chatgpt

* fix(ui): node ids for chatgpt/imagen

* chore(ui): typegen

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-04-29 09:38:03 -04:00
psychedelicious
13d44f47ce chore(ui): prettier 2025-04-29 09:12:49 +10:00
psychedelicious
550fbdeb1c fix(ui): more types fixes 2025-04-29 09:12:49 +10:00
psychedelicious
a01cd7c497 fix(ui): add chatgpt-4o to zod schemas that need to match autogenerated types 2025-04-29 09:12:49 +10:00
Mary Hipp
c54afd600c typegen 2025-04-29 09:12:49 +10:00
Mary Hipp
4f911a0ea8 typegen 2025-04-29 09:12:49 +10:00
Mary Hipp
fb91f48722 change base model for chatGPT 4o 2025-04-29 09:12:49 +10:00
psychedelicious
69db60a614 fix(ui): toast typo 2025-04-29 06:56:36 +10:00
Mary Hipp
c6d7f951aa typegen 2025-04-28 15:39:11 -04:00
Mary Hipp
04c005284c add gpt-image to possible base model types 2025-04-28 15:39:11 -04:00
psychedelicious
2d7f9697bf chore(ui): lint 2025-04-28 13:31:26 -04:00
psychedelicious
ae530492a2 chore(ui): typegen 2025-04-28 13:31:26 -04:00
psychedelicious
87ed1e3b6d feat(ui): do not allow imagen3 nodes in published workflows 2025-04-28 13:31:26 -04:00
psychedelicious
cc54466db9 fix(nodes): default value for UIConfigBase.tags 2025-04-28 13:31:26 -04:00
psychedelicious
cbdafe7e38 feat(nodes): allow node clobbering 2025-04-28 13:31:26 -04:00
psychedelicious
112cb76174 fix: random seed for edit mode imagen 2025-04-28 13:31:26 -04:00
psychedelicious
e56d41ab99 feat: rip out enhance prompt as toggleable option, imagen always randomizes seed 2025-04-28 13:31:26 -04:00
psychedelicious
273dfd86ab fix(ui): upscale builder 2025-04-28 13:31:26 -04:00
psychedelicious
871271fde5 feat(ui): rough out imagen3 support for canvas 2025-04-28 13:31:26 -04:00
psychedelicious
14944872c4 feat(mm): add model taxonomy for API models & Imagen3 as base model type 2025-04-28 13:31:26 -04:00
psychedelicious
07bcf3c446 feat(ui): port bbox select to native select 2025-04-28 13:31:26 -04:00
psychedelicious
8ed5585285 feat(nodes): move output metadata to BaseInvocationOutput 2025-04-28 09:19:43 -04:00
psychedelicious
5ce226a467 chore(ui): typegen 2025-04-28 09:19:43 -04:00
Mary Hipp
c64f20a72b remove output_metdata from schema 2025-04-28 09:19:43 -04:00
Mary Hipp
0c9c10a03a update schema 2025-04-28 09:19:43 -04:00
Mary Hipp
4a0df6b865 add optional output_metadata to baseinvocation 2025-04-28 09:19:43 -04:00
psychedelicious
ba165572bf chore: bump version to v5.11.0rc1 2025-04-28 10:10:50 +10:00
psychedelicious
c3d6a10603 fix(ui): handle minor breaking typing change from serialize-error 2025-04-28 09:53:08 +10:00
psychedelicious
4efc86299d fix(ui): type error in SettingsUpsellMenuItem 2025-04-28 09:53:08 +10:00
psychedelicious
e8c7cf63fd fix(ui): type error in canvas worker 2025-04-28 09:53:08 +10:00
psychedelicious
698b034190 chore(ui): bump deps 2025-04-28 09:53:08 +10:00
psychedelicious
3988128c40 feat(ui): add _all_ image outputs to gallery (including collections) 2025-04-28 09:49:04 +10:00
psychedelicious
c768f47365 fix(ui): dnd autoscroll in scrollable containers 2025-04-28 09:46:38 +10:00
psychedelicious
19a63abc54 fix(ui): hide file size on model picker when it is zero 2025-04-23 17:45:09 +10:00
psychedelicious
75ec36bf9a chore(ui): lint 2025-04-23 17:45:09 +10:00
psychedelicious
d802f8e7fb feat(ui): disable search when no options 2025-04-23 17:45:09 +10:00
psychedelicious
6873e0308d feat(ui): custom fallback for model picker when no models installed 2025-04-23 17:45:09 +10:00
psychedelicious
66eb73088e feat(ui): rename user-provided extra ctx for picker from ctx to extra to be less confusing 2025-04-23 17:45:09 +10:00
psychedelicious
ed81a13eb4 docs(ui): add some comments for picker 2025-04-23 17:45:09 +10:00
psychedelicious
fbc1aae52d feat(ui): more flexible fallbacks for model picker 2025-04-23 17:45:09 +10:00
psychedelicious
ba42c3e63f feat(ui): tooltip for compact/full model picker view 2025-04-23 17:45:09 +10:00
psychedelicious
b24e820aa0 fix(ui): flash of "select a model" when changing model 2025-04-23 17:45:09 +10:00
psychedelicious
e8f6b3b77a feat(ui): split out mainmodelpicker component 2025-04-23 17:45:09 +10:00
psychedelicious
8f13518c97 feat(ui): add clear search button to model combobox 2025-04-23 17:45:09 +10:00
psychedelicious
6afbc12074 feat(ui): when no model bases selected, show all models 2025-04-23 17:45:09 +10:00
psychedelicious
6b0a56ceb9 chore(ui): lint 2025-04-23 17:45:09 +10:00
psychedelicious
ca92497e52 feat(ui): remove description from model pciker for now 2025-04-23 17:45:09 +10:00
psychedelicious
97d45ceaf2 feat(ui): model picker filter buttons 2025-04-23 17:45:09 +10:00
psychedelicious
aeb3841a6f feat(ui): wip model picker 2025-04-23 17:45:09 +10:00
psychedelicious
c14d33d3c1 tweak(ui): remove bg on ModelImage fallback 2025-04-23 17:45:09 +10:00
psychedelicious
676e59e072 chore(ui): bump react-resizable-panels to latest
This resolves a bug where SVG elements were ignored when checking when cursor is over a resize handle
2025-04-23 17:45:09 +10:00
psychedelicious
e7dcb6a03f feat(ui): wip model picker 2025-04-23 17:45:09 +10:00
psychedelicious
fb95b7cc2b feat(ui): wip model picker 2025-04-23 17:45:09 +10:00
psychedelicious
015dc3ac0d feat(ui): wip model picker 2025-04-23 17:45:09 +10:00
psychedelicious
9d8a71b362 feat(ui): genericizing picker 2025-04-23 17:45:09 +10:00
psychedelicious
2eb212f393 feat(ui): onSelectId -> onSelectById 2025-04-23 17:45:09 +10:00
psychedelicious
34b268c15c feat(ui): use context for stable picker state 2025-04-23 17:45:09 +10:00
psychedelicious
9a203a64dc feat(ui): render picker in portal 2025-04-23 17:45:09 +10:00
psychedelicious
d80004e056 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
de32ed23a7 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
5aed2b315d feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
48db6cfc4f feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
aa7c5c281a feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
87aeb7f889 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
3b3d6e413a feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
b6432f2de3 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
9d0a28ccae feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
c3bf0a3277 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
b516610c1e feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
677e717cd7 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
c52584e057 feat(ui): simplify ScrollableContent 2025-04-23 17:45:09 +10:00
psychedelicious
b6767441db feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
8745dbe67d feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
a565d9473e feat(ui): add useStateImperative 2025-04-23 17:45:09 +10:00
psychedelicious
4dbf07c3e0 feat(ui): iterate on model combobox (wip) 2025-04-23 17:45:09 +10:00
psychedelicious
f6eb4d9a6b feat(ui): toast on select for demo purposes 2025-04-23 17:45:09 +10:00
psychedelicious
5037967b82 feat(ui): just make the damn thing myself 2025-04-23 17:45:09 +10:00
psychedelicious
4930ba48ce feat(ui): just make the damn thing myself 2025-04-23 17:45:09 +10:00
psychedelicious
40d2092256 feat(ui): reworked model selection ui (WIP) 2025-04-23 17:45:09 +10:00
psychedelicious
d2e9237740 feat(ui): reworked model selection ui (WIP) 2025-04-23 17:45:09 +10:00
psychedelicious
b191b706c1 feat(ui): reworked model selection ui (WIP) 2025-04-23 17:45:09 +10:00
psychedelicious
4d0f760ec8 chore(ui): bump cmdk to latest 2025-04-23 17:45:09 +10:00
psychedelicious
65cda5365a feat(ui): remove go to mm button from node fields 2025-04-23 17:45:09 +10:00
psychedelicious
1f2d1d086f feat(ui): add <NavigateToModelManagerButton /> to model comboboxes everywhere 2025-04-23 17:45:09 +10:00
psychedelicious
418f3c3f19 feat(ui): abstract out workflow editor model combobox, ensure consistent ui for all model fields 2025-04-23 17:45:09 +10:00
psychedelicious
72173e284c fix(ui): useModelCombobox should use null for no value instead of undefined
This fixes an issue where the refiner combobox doesn't clear itself visually when clicking the little X icon to clear the selection.
2025-04-23 17:45:09 +10:00
psychedelicious
9cc13556aa feat(ui): accept callback to override navigate to model manager functionality
If provided, `<NavigateToModelManagerButton />` will render, even if `disabledTabs` includes "models". If provided, `<NavigateToModelManagerButton />` will run the callback instead of switching tabs within the studio.

The button's tooltip is now just "Manage Models" and its icon is the same as the model manager tab's icon ([CUBE!](https://www.youtube.com/watch?v=4aGDCE6Nrz0)).
2025-04-23 17:45:09 +10:00
psychedelicious
298444f2bc chore: bump version to v5.10.1 2025-04-19 00:05:02 +10:00
psychedelicious
deb1984289 fix(mm): disable new model probe API
There is a subtle change in behaviour with the new model probe API.

Previously, checks for model types was done in a specific order. For example, we did all main model checks before LoRA checks.

With the new API, the order of checks has changed. Check ordering is as follows:
- New API checks are run first, then legacy API checks.
- New API checks categorized by their speed. When we run new API checks, we sort them from fastest to slowest, and run them in that order. This is a performance optimization.

Currently, LoRA and LLaVA models are the only model types with the new API. Checks for them are thus run first.

LoRA checks involve checking the state dict for presence of keys with specific prefixes. We expect these keys to only exist in LoRAs.

It turns out that main models may have some of these keys.

For example, this model has keys that match the LoRA prefix `lora_te_`: https://civitai.com/models/134442/helloyoung25d

Under the old probe, we'd do the main model checks first and correctly identify this as a main model. But with the new setup, we do the LoRA check first, and those pass. So we import this model as a LoRA.

Thankfully, the old probe still exists. For now, the new probe is fully disabled. It was only called in one spot.

I've also added the example affected model as a test case for the model probe. Right now, this causes the test to fail, and I've marked the test as xfail. CI will pass.

Once we enable the new API again, the xfail will pass, and CI will fail, and we'll be reminded to update the test.
2025-04-18 22:44:10 +10:00
psychedelicious
814406d98a feat(mm): siglip model loading supports partial loading
In the previous commit, the LLaVA model was updated to support partial loading.

In this commit, the SigLIP model is updated in the same way.

This model is used for FLUX Redux. It's <4GB and only ever run in isolation, so it won't benefit from partial loading for the vast majority of users. Regardless, I think it is best if we make _all_ models work with partial loading.

PS: I also fixed the initial load dtype issue, described in the prev commit. It's probably a non-issue for this model, but we may as well fix it.
2025-04-18 10:12:03 +10:00
psychedelicious
c054501103 feat(mm): llava model loading supports partial loading; fix OOM crash on initial load
The model manager has two types of model cache entries:
- `CachedModelOnlyFullLoad`: The model may only ever be loaded and unloaded as a single object.
- `CachedModelWithPartialLoad`: The model may be partially loaded and unloaded.

Partial loaded is enabled by overwriting certain torch layer classes, adding the ability to autocast the layer to a device on-the-fly. See `CustomLinear` for an example.

So, to take advantage of partial loading and be cached as a `CachedModelWithPartialLoad`, the model must inherit from `torch.nn.Module`.

The LLaVA classes provided by `transformers` do inherit from `torch.nn.Module`, but we wrap those classes in a separate class called `LlavaOnevisionModel`. The wrapper encapsulate both the LLaVA model and its "processor" - a lightweight class that prepares model inputs like text and images.

While it is more elegant to encapsulate both model and processor classes in a single entity, this prevents the model cache from enabling partial loading for the chunky vLLM model.

Fixing this involved a few changes.
- Update the `LlavaOnevisionModelLoader` class to operate on the vLLM model directly, instead the `LlavaOnevisionModel` wrapper class.
- Instantiate the processor directly in the node. The processor is lightweight and does its business on the CPU. We don't need to worry about caching in the model manager.
- Remove caching support code from the `LlavaOnevisionModel` wrapper class. It's not needed, because we do not cache this class. The class now only handles running the models provided to it.
- Rename `LlavaOnevisionModel` to `LlavaOnevisionPipeline` to better represent its purpose.

These changes have a bonus effect of fixing an OOM crash when initially loading the models. This was most apparent when loading LLaVA 7B, which is pretty chunky.

The initial load is onto CPU RAM. In the old version of the loaders, we ignored the loader's target dtype for the initial load. Instead, we loaded the model at `transformers`'s "default" dtype of fp32.

LLaVA 7B is fp16 and weighs ~17GB. Loading as fp32 means we need double that amount (~34GB) of CPU RAM. Many users only have 32GB RAM, so this causes a _CPU_ OOM - which is a hard crash of the whole process.

With the updated loaders, the initial load logic now uses the target dtype for the initial load. LLaVA now needs the expected ~17GB RAM for its initial load.

PS: If we didn't make the accompanying partial loading changes, we still could have solved this OOM. We'd just need to pass the initial load dtype to the wrapper class and have it load on that dtype. But we may as well fix both issues.

PPS: There are other models whose model classes are wrappers around a torch module class, and thus cannot be partially loaded. However, these models are typically fairly small and/or are run only on their own, so they don't benefit as much from partial loading. It's the really big models (like LLaVA 7B) that benefit most from the partial loading.
2025-04-18 10:12:03 +10:00
psychedelicious
c1d819c7e5 feat(nodes): add get_absolute_path method to context.models API
Given a model config or path (presumably to a model), returns the absolute path to the model.

Check the next few commits for use-case.
2025-04-18 10:12:03 +10:00
psychedelicious
2a8e91f94d feat(ui): wrap JSON in dataviewer 2025-04-17 22:55:04 +10:00
psychedelicious
64f3e56039 chore: bump version to v5.10.0 2025-04-17 15:08:26 +10:00
Hosted Weblate
819afab230 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-04-17 11:28:02 +10:00
Linos
9fff064c55 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1887 of 1887 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1887 of 1887 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-04-17 11:28:02 +10:00
Riccardo Giovanetti
1aa8d94378 translationBot(ui): update translation (Italian)
Currently translated at 98.0% (1851 of 1887 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-04-17 11:28:02 +10:00
RyoKoba
d78bdde2c3 translationBot(ui): update translation (Japanese)
Currently translated at 56.6% (1069 of 1887 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 50.8% (960 of 1887 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 48.4% (912 of 1882 strings)

Co-authored-by: RyoKoba <kobayashi_ryo@cyberagent.co.jp>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-04-17 11:28:02 +10:00
psychedelicious
7b663b3432 fix(ui): scrolling in builder
I am at loss as the to cause of this bug. The styles that I needed to change to fix it haven't been changed in a couple months. But these do seem to fix it.

Closes #7910
2025-04-17 11:24:54 +10:00
psychedelicious
9c4159915a feat(ui): add guardrails to prevent entity types being missed in useIsEntityTypeEnabled 2025-04-17 11:21:16 +10:00
psychedelicious
dbb5830027 fix(ui): useIsEntityTypeEnabled should use useMemo not useCallback
Typo/bug introduced in #7770
2025-04-17 11:21:16 +10:00
psychedelicious
4fc4dbb656 fix(ui): ensure query subs are reset in case of error 2025-04-17 11:13:41 +10:00
psychedelicious
d4f6d09cc9 fix(ui): never subscribe to dynamic prompts queries
If the request errors, we would never get to unsubscribe. The request would forever be marked as having a subscriber and never be cleared from memory.
2025-04-17 10:36:09 +10:00
psychedelicious
44e44602d3 feat(ui): remove keepUnusedDataFor for dynamic prompts
This query can have potentially large responses. Keeping them around for 24 hours essentially a hardcoded memory leak. Use the default for RTKQ of 60 seconds.
2025-04-17 10:36:09 +10:00
psychedelicious
36066c5f26 fix(ui): ensure dynamic prompts updates on any change to any dependent state
When users generate on the canvas or upscaling tabs, we parse prompts through dynamic prompts before invoking. Whenever the prompt or other settings change, we run dynamic prompts.

Previously, we used a redux listener to react to changes to dynamic prompts' dependent state, keeping the processed dynamic prompts synced. For example, when the user changed the prompt field, we re-processed the dynamic prompts.

This requires that all redux actions that change the dependent state be added to the listener matcher. It's easy to forget actions, though, which can result in the dynamic prompts state being stale.

For example, when resetting canvas state, we dispatch an action that resets the whole params slice, but this wasn't in the matcher. As a result, when resetting canvas, the dynamic prompts aren't updated. If the user then clicks Invoke (with an empty prompt), the last dynamic prompts state will be used.

For example:
- Generate w/ prompt "frog", get frog
- Click new canvas session
- Generate without any prompt, still get frog

To resolve this, the logic that keeps the dynamic prompts synced is moved from the listener to a hook. The way the logic is triggered is improved - it's now triggered in a useEffect, which is run when the dependent state changes. This way, it doesn't matter _how_ the dependent state changes - the changes will always be "seen", and the dynamic prompts will update.
2025-04-17 10:36:09 +10:00
psychedelicious
361c6eed4b docs: update manual install docs w/ correct pytorch indicies for v5.10.0 and later 2025-04-17 10:32:41 +10:00
psychedelicious
bb154fd40f docs: update dev env docs with correct pytorch pypi index 2025-04-17 10:32:41 +10:00
psychedelicious
cbee6e6faf fix(app): remove accidentally committed tensor cache size
I had set this to zero for testing udring the python 2.6.0 upgrade and neglected to remove it.
2025-04-17 10:12:47 +10:00
psychedelicious
6a822a52b8 chore(ui): update whats new copy 2025-04-16 07:17:52 +10:00
psychedelicious
d10dc28fc2 chore: bump version to v5.10.0rc1 2025-04-16 07:17:52 +10:00
psychedelicious
20eea18c41 chore(ui): typegen 2025-04-16 06:28:22 +10:00
skunkworxdark
566282bff0 Update metadata_linked.py
added metadata_to_string_collection, metadata_to_integer_collection, metadata_to_float_collection, metadata_to_bool_collection
2025-04-16 06:28:22 +10:00
psychedelicious
e7e874f7c3 fix(ui): increase padding when fitting layers to stage 2025-04-15 07:47:39 +10:00
Eugene Brodsky
95445c1163 chore: update pre-commit syntax; add check for uv.lock needing an update 2025-04-15 07:41:32 +10:00
psychedelicious
557e0cb3e6 chore(ui): knip 2025-04-15 07:13:25 +10:00
psychedelicious
a12bf07fb3 feat(ui): add node publish denylist 2025-04-15 07:13:25 +10:00
psychedelicious
a5bc21cf50 feat(nodes): extract LaMa model url to constant 2025-04-15 07:13:25 +10:00
psychedelicious
03ca23bec2 chore: update lockfile 2025-04-15 07:06:23 +10:00
psychedelicious
e15194a45d Revert "ci: change pyproject.toml to trigger uv lock check (it should fail)"
This reverts commit b802933190.
2025-04-15 07:06:23 +10:00
psychedelicious
e71ea309e7 ci: change pyproject.toml to trigger uv lock check (it should fail) 2025-04-15 07:06:23 +10:00
psychedelicious
2513756c25 ci: fix name of uv lock checks job 2025-04-15 07:06:23 +10:00
psychedelicious
875670f713 ci: add comment to uv-lock-checks.yml 2025-04-15 07:06:23 +10:00
psychedelicious
153b148362 ci: add check for uv lockfile consistency with pyproject.toml 2025-04-15 07:06:23 +10:00
psychedelicious
7b84f8c5e8 fix(ui): do not disable image context canvas actions based on selected base model
These actions should be accessible at any time.
2025-04-10 10:50:13 +10:00
psychedelicious
0280c9b4b9 fix(ui): generation_mode metadata not set correctly 2025-04-10 10:50:13 +10:00
psychedelicious
ae8d1f26d6 fix(app): import CogView4Transformer2DModel from the module that exports it 2025-04-10 10:50:13 +10:00
psychedelicious
170ea4fb75 fix(app): add CogView4ConditioningInfo to ObjectSerializerDisk's safe_globals
needed for torch w/ weights_only=True
2025-04-10 10:50:13 +10:00
psychedelicious
e5b0f8b985 feat(app): remove cogview4 inpaint workflow
This doesn't make sense to have as a default workflow given the trickiness of producing alpha masks.
2025-04-10 10:50:13 +10:00
psychedelicious
3f656072cf feat(app): update cogview4 t2i workflow w/ form 2025-04-10 10:50:13 +10:00
psychedelicious
1d4aa93f5e chore(ui): typegen 2025-04-10 10:50:13 +10:00
psychedelicious
b182060201 chore(ui): lint 2025-04-10 10:50:13 +10:00
psychedelicious
2b2f64b232 refactor(ui): simplify useIsEntityTypeEnabled 2025-04-10 10:50:13 +10:00
psychedelicious
df32974378 fix(ui): add checks for cogview4's dimension restrictions 2025-04-10 10:50:13 +10:00
psychedelicious
ad582c8cc5 feat(nodes): rename CogView4 nodes to match naming format 2025-04-10 10:50:13 +10:00
psychedelicious
47273135ca feat(ui): add cogview4 and inpainting tags to library 2025-04-10 10:50:13 +10:00
psychedelicious
c99e65bdab feat(app): add cogview4 default workflows 2025-04-10 10:50:13 +10:00
Mary Hipp
92b726d731 update available params for cogview4 2025-04-10 10:50:13 +10:00
Mary Hipp
8837932bad create hook for managing entity type enabledness for given base model and update usage 2025-04-10 10:50:13 +10:00
Mary Hipp
9846229e52 build graph for cogview4 2025-04-10 10:50:13 +10:00
maryhipp
305c5761d0 add generation modes for cogview linear 2025-04-10 10:50:13 +10:00
Ryan Dick
3ba399779f Fix lint error. 2025-04-10 10:50:13 +10:00
Ryan Dick
46316e43f0 typegen 2025-04-10 10:50:13 +10:00
Ryan Dick
d86cd66994 Add CogView4 VAE approximation for progress images. 2025-04-10 10:50:13 +10:00
Ryan Dick
13850271ab Add inpainting to CogView4DenoiseInvocation. 2025-04-10 10:50:13 +10:00
Ryan Dick
7e894ffe83 Consolidate InpaintExtension implementations for SD3 and FLUX. 2025-04-10 10:50:13 +10:00
Ryan Dick
0939030324 Support cfg_scale list in CogView4Denoise. 2025-04-10 10:50:13 +10:00
Ryan Dick
30f19dc37a Update CogView4Denoise to support image-to-image. 2025-04-10 10:50:13 +10:00
Ryan Dick
ace5e748f4 Simplify CogView4 timesteps schedule generation in preparation for timestep schedule slipping. 2025-04-10 10:50:13 +10:00
Ryan Dick
4fae8ad163 Add CogView4ImageToLatentsInvocation. 2025-04-10 10:50:13 +10:00
Ryan Dick
5e75bc570a Fix bug in CogView4 noise schedule handling that was resulting in low-quality images. 2025-04-10 10:50:13 +10:00
Ryan Dick
3166b5d2ea Switch to sequential CFG for CogView4 (for now, until I sort out the padding). 2025-04-10 10:50:13 +10:00
Ryan Dick
321c2d358c Add CogView4 model loader. And various other fixes to get a CogView4 workflow running (though quality is still below expectations). 2025-04-10 10:50:13 +10:00
Ryan Dick
0338983895 Update CogView4 starter model entry with approximate bundle size. 2025-04-10 10:50:13 +10:00
Ryan Dick
f4e00ab261 Add CogView4 to frontend. 2025-04-10 10:50:13 +10:00
Ryan Dick
e1133bc53f Fix typo in BaseModelTypo.CogView4. 2025-04-10 10:50:13 +10:00
Ryan Dick
e1ccbd5c29 typegen 2025-04-10 10:50:13 +10:00
Ryan Dick
cf76a0b575 Add CogView4ModelLoaderInvocation. (Not wired up with frontend yet.) 2025-04-10 10:50:13 +10:00
Ryan Dick
67bfd63c73 Require the cogview4 height/width are multiples of 32. This requirement is documented here: https://huggingface.co/THUDM/CogView4-6B. I haven't tracked down the underlying source of this requirement. 2025-04-10 10:50:13 +10:00
Ryan Dick
cdad8a4fd1 Add CogView4LatentsToImageInvocation. 2025-04-10 10:50:13 +10:00
Ryan Dick
5d9797945b Completed first pass of CogView4Denoise. 2025-04-10 10:50:13 +10:00
Ryan Dick
78159c3200 Simplify CogView4 timestep schedule initialization. 2025-04-10 10:50:13 +10:00
Ryan Dick
1320c4fa13 WIP - CogView4DenoiseInvocation. 2025-04-10 10:50:13 +10:00
Ryan Dick
883297c809 Bump diffusers to dev version with CogView4 support. 2025-04-10 10:50:13 +10:00
Ryan Dick
bac05a7885 Add CogView4TextEncoderInvocation 2025-04-10 10:50:13 +10:00
Ryan Dick
e2c4ea8e89 Add CogView4 model probing. 2025-04-10 10:50:13 +10:00
psychedelicious
851e23d6b4 feat(ui): move size to be next to model name 2025-04-10 09:53:03 +10:00
psychedelicious
7c8c9694ce feat(ui): use filesize package to format model file size 2025-04-10 09:53:03 +10:00
Kevin Turner
52a8ad1c18 chore: rename model.size to model.file_size
to disambiguate from RAM size or pixel size
2025-04-10 09:53:03 +10:00
Kevin Turner
e537020c11 chore: cursed whitespace fight 2025-04-10 09:53:03 +10:00
Kevin Turner
c50d1d6127 test: add size field to model metadata 2025-04-10 09:53:03 +10:00
Kevin Turner
53292b3592 fix: localization for file size units 2025-04-10 09:53:03 +10:00
Kevin Turner
bcfc61b2d7 feat: show model size in model list 2025-04-10 09:53:03 +10:00
Kevin Turner
9d869fc9ce chore: typegen 2025-04-10 09:53:03 +10:00
Kevin Turner
f09aacf992 fix: ModelProbe.probe needs to return a size field 2025-04-10 09:53:03 +10:00
Kevin Turner
98260a8efc test: add size field to test model configs 2025-04-10 09:53:03 +10:00
Kevin Turner
9590e8ff39 feat: expose model storage size 2025-04-10 09:53:03 +10:00
psychedelicious
a23d90187b feat(ui): allow send-image-to-canvas to work when canvas is uninitialized
Add `useCanvasIsBusySafe()` hook. This is like `useCanvasIsBusy()`, but when the canvas is not initialized, it gracefully falls back to false instead of raising.

Because app tabs are lazy-loaded, the canvas is not initialized until the user visits that tab. If the page loads up on the workflows tab, the canvas will be uninitialized until the user clicks on it.

This graceful fallback behaviour allows actions like sending an image to canvas to work even when the canvas is not yet initialized. These actions are exposed in the image context menu, and previously were hidden when the canvas was not initialized. We can now show these actions and use them even when the canvas is uninitialized.

- Add `useCanvasIsBusySafe()` hook
- Use the new hook in the image context menu for send to canvas actions
- Do not use `<CanvasManagerProviderGate />` in the image context menu (this was hiding the actions when canvas was uninitialized)
2025-04-10 06:44:44 +10:00
psychedelicious
f655a85154 fix(ui): canvas dnd drop indicator color 2025-04-10 06:42:01 +10:00
psychedelicious
f45b494805 tidy(ui): remove extraneous calls to HTMLElement.remove()
these will be auto-gc'd when there are no more references
2025-04-09 14:00:20 +10:00
psychedelicious
d1776e0b63 feat(ui): safer use of drawImage
When calling `ctx.drawImage()`, if the image to be drawn has a width of height of 0, the call will raise.

In this change, I have carefully reviewed the call hierarchy for all of our own code that calls this method and ensured that each call has error handling.

Well, with one exception - I'm not sure how to handle errors in `invokeai/frontend/web/src/common/hooks/useClientSideUpload.ts`. But this should never be an issue in that hook - it's a Canvas problem.
2025-04-09 14:00:20 +10:00
psychedelicious
646887e3c9 feat(ui): save canvas/bbox to gallery saves basic metadata
- Positive prompt
- Negative prompt
- Seed
- Model (if set)

The rest is a bit complicated to derive as it comes from the graph building process.
2025-04-09 08:52:38 +10:00
Riccardo Giovanetti
e7e25a0c37 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1849 of 1873 strings)

translationBot(ui): update translation (Italian)

Currently translated at 97.8% (1833 of 1873 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-04-08 11:01:37 +10:00
Linos
589b849e64 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1873 of 1873 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1871 of 1871 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.2% (1857 of 1871 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1840 of 1840 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-04-08 11:01:37 +10:00
psychedelicious
aedbc9f778 chore: prep for v5.10.0a1 2025-04-08 10:59:08 +10:00
psychedelicious
a0cf9e2e80 tweak(ui): ip adapter settings layout 2025-04-08 10:33:45 +10:00
psychedelicious
5c8f1c5666 fix(ui): use flux redux influence on regional guidance 2025-04-08 10:33:45 +10:00
psychedelicious
fd37117221 chore(ui): lint 2025-04-08 10:33:45 +10:00
psychedelicious
5956f96e57 feat(ui): add flux redux image influence to canvas 2025-04-08 10:33:45 +10:00
psychedelicious
49622c37ed fix(nodes): logic bug in flux redux node 2025-04-08 10:33:45 +10:00
psychedelicious
50387c8f64 chore(ui): typegen 2025-04-08 10:33:45 +10:00
skunkworxdark
e1538af219 Update flux_redux.py
Add down sampling and weight to redux node
2025-04-08 10:33:45 +10:00
psychedelicious
e5a0010a72 fix(ui): normalize alpha value to 0-1 when picking color on canvas 2025-04-08 08:20:49 +10:00
psychedelicious
b75d1b2473 refactor(ui): move update node logic from listener to hook 2025-04-08 08:18:17 +10:00
psychedelicious
b91bb9ba9f fix(ui): remove debug logger middleware 2025-04-08 08:18:17 +10:00
psychedelicious
a7c818bcae fix(ui): rebase import issue 2025-04-08 08:18:17 +10:00
psychedelicious
a54b255718 chore(ui): lint 2025-04-08 08:18:17 +10:00
psychedelicious
3e04baa684 feat(ui): improved undo/redo history grouping for selections and postiino changes 2025-04-08 08:18:17 +10:00
psychedelicious
d23db705dd feat(ui): improved undo/redo history grouping 2025-04-08 08:18:17 +10:00
psychedelicious
96a481530d refactor(ui): merge the workflow and nodes slices
This allows undo/redo history to apply to node editor and workflow details/form.
2025-04-08 08:18:17 +10:00
psychedelicious
a0b515979a Revert "correctly set is_published when loading a workflow"
This reverts commit e4b07894fd55b3a24fc006882585b6d55fe329c3.
2025-04-08 07:05:12 +10:00
Mary Hipp
2da8ac216b add mutation for unpublishing 2025-04-08 07:05:12 +10:00
Mary Hipp
1558fe9a37 correctly set is_published when loading a workflow 2025-04-08 07:05:12 +10:00
Mary Hipp
ded080ae04 show cancel icon and not retry icon on validation run queue items 2025-04-08 07:05:12 +10:00
psychedelicious
982603e051 fix(ui): use getDefaultForm when resetting form 2025-04-08 06:54:43 +10:00
psychedelicious
a23b5c3408 refactor(ui): make workflow published status server-side state
Whether a workflow is published or not shouldn't be something stored on the client. It's properly server-side state.

This change removes the `is_published` flag from redux and updates all references to the flag to use the getWorkflow query.

It also updates the socket event listener that handles session complete events. When a validation run completes, we invalidate the tags for the getWorkflow query. We need to do a bit of juggling to avoid a race condition (documented in the code). Works well though.
2025-04-08 06:54:43 +10:00
psychedelicious
c9f93b3746 refactor(ui): workflow unsaved changes tracking
Previously, we maintained an `isTouched` flag in redux state to indicate if a workflow had unsaved changes. We manually updated this whenever we changed something on the workflow.

This was tedious and error-prone. It also didn't handle undo/redo, so if you made a change to a node and undid it, we'd still think the workflow had unsaved changes.

Moving forward, we use a simpler and more robust strategy by hashing the server's version of the workflow and comparing it to the client's version of the workflow.

The hashing uses `stable-hash`, which is both fast and, well, stable. Most importantly, the ordering of keys in hashed objects does not change the resultant hash.

- Remove `isTouched` state entirely.
- Extract the logic that builds the "preview" workflow object from redux state into its own hook. This "preview" workflow is what we send to the server when saving a workflow. This "preview" workflow is effectively the client version of the workflow.
- Add `useDoesWorkflowHaveUnsavedChanges()` hook, which compares the hash of the client workflow and server workflow (if it exists).
- Add `useIsWorkflowUntouched()` hook, which compares the hash of the client workflow and the initial workflow that you get when you click new workflow.
- Remove `reactflow` workaround in the nodes slice undo/redo filter. When we set the nodes state while loading a workflow, `reactflow` emits a nodes size/placement change event. This triggered up our `isTouched` flag logic and marked the workflow as unsaved right from the get-go. With the new strategy to track touched status, this workaround can be removed.
- Update all logic that tracked the old `isTouched` flag to use the new hooks.
2025-04-08 06:54:43 +10:00
psychedelicious
e381024cc0 fix(ui): remove debug logger middleware from store setup
Accidentally left in from prev change
2025-04-08 06:54:43 +10:00
psychedelicious
bb65884040 refactor(ui): workflow form root element is a constant
Previously, the workflow form's root element id was random. Every time we reset the workflow editor, the root id changed. This makes it difficult to check if the workflow editor is untouched (in its default state).

Now that root element's id is simply "root". I can't imagine any way that this would break anything.
2025-04-08 06:54:43 +10:00
psychedelicious
920339dbeb refactor(ui): split out the modal isolator component 2025-04-08 06:54:43 +10:00
psychedelicious
0f618bdbcb refactor(ui): split out the hook isolator component 2025-04-08 06:54:43 +10:00
psychedelicious
8294e2cdea feat(mm): support size calculation for onnx models 2025-04-07 11:37:55 +10:00
psychedelicious
7da43be4b7 docs: fix incorrect filename 2025-04-07 10:57:32 +10:00
psychedelicious
8561e9e540 docs: remove legacy scripts documentation 2025-04-07 10:57:32 +10:00
psychedelicious
b0d5e7e3d8 feat(app): restore "Using torch device" message on startup 2025-04-07 10:56:26 +10:00
Eugene Brodsky
ab2d203d5e fix(build): re-add sentencepiece which is apparently needed by gguf, but is not defined as its dependency 2025-04-04 16:26:20 -04:00
Eugene Brodsky
eae5c54091 fix(docker): another pip install is needed in docker build after copying sources 2025-04-04 16:26:20 -04:00
Mary Hipp
ee2b486e8b fix badge for validation run 2025-04-04 11:38:40 -04:00
psychedelicious
a2c7050832 docs: update README.md 2025-04-04 18:42:13 +11:00
psychedelicious
cd090eb76f build: fix path in build script 2025-04-04 18:42:13 +11:00
psychedelicious
3348755e6e ci: fix name of build hweel workflow 2025-04-04 18:42:13 +11:00
psychedelicious
d6dbdaacd1 chore: bump version to v5.10.0dev4 2025-04-04 18:42:13 +11:00
psychedelicious
1c6fa1ad18 ci: update workflows to use revised build scripts 2025-04-04 18:42:13 +11:00
psychedelicious
39bed90eda build: remove installer & convert installer build script to only build the wheel 2025-04-04 18:42:13 +11:00
psychedelicious
c0e48193a7 chore: bump version to v5.10.0dev3 2025-04-04 18:42:13 +11:00
psychedelicious
41677394c0 chore: update uv.lock 2025-04-04 18:42:13 +11:00
psychedelicious
405cfd46e7 build: remove pin on spandrel dependency 2025-04-04 18:42:13 +11:00
psychedelicious
9cc9a5c8b0 build: add comment about torchsde to pyproject 2025-04-04 18:42:13 +11:00
psychedelicious
ddc0461882 build: remove pin on gguf dependency
This allows it to pull in sentencepiece on its own. In 0.10.0, it didn't have this package listed as a dependency, but in recent releases it does. So we are able to remove sentencepiece as an explicit dep.
2025-04-04 18:42:13 +11:00
psychedelicious
0f09091a26 build: remove unused clip_anytorch dependency 2025-04-04 18:42:13 +11:00
psychedelicious
dedb77b6f2 build: remove unused pytorch-lightning dependency 2025-04-04 18:42:13 +11:00
psychedelicious
89f8dbee6c build: remove unused pyreadline3 dependency 2025-04-04 18:42:13 +11:00
psychedelicious
8b0dc8ce84 build: remove unused pyperclip dependency 2025-04-04 18:42:13 +11:00
psychedelicious
018121e407 build: remove unused pympler dependency 2025-04-04 18:42:13 +11:00
psychedelicious
095025b637 build: remove unused scikit-image dependency 2025-04-04 18:42:13 +11:00
psychedelicious
ed8487659e build: remove unused npyscreen dependency 2025-04-04 18:42:13 +11:00
psychedelicious
3745d2be0c build: remove unused torchmetrics dependency 2025-04-04 18:42:13 +11:00
psychedelicious
b5206e204f build: remove unused datasets dependency 2025-04-04 18:42:13 +11:00
psychedelicious
b237ccbdd8 build: remove unused click dependency 2025-04-04 18:42:13 +11:00
psychedelicious
224ebc72ae build: remove unused omegaconf dependency 2025-04-04 18:42:13 +11:00
psychedelicious
05c3d47be9 build: remove unused facexlib dependency 2025-04-04 18:42:13 +11:00
psychedelicious
a4d709c169 build: remove unused timm dependency 2025-04-04 18:42:13 +11:00
psychedelicious
5a8e95c700 chore(ui): typegen 2025-04-04 18:42:13 +11:00
psychedelicious
e630f364df chore: update uv.lock 2025-04-04 18:42:13 +11:00
psychedelicious
9c287038e4 build: remove unused matplotlib dep 2025-04-04 18:42:13 +11:00
psychedelicious
8d32ede082 tidy(nodes): remove matplotlib dependency
It was only used for a single color conversion function. Replaced with cv2 code, tested functionality to confirm it works the same.
2025-04-04 18:42:13 +11:00
psychedelicious
bab0b6d069 build: move humanize to test deps 2025-04-04 18:42:13 +11:00
psychedelicious
8e013ef3be build: remove unused albumentations dependency
This is not used
2025-04-04 18:42:13 +11:00
psychedelicious
8188484a40 tidy: delete unused file 2025-04-04 18:42:13 +11:00
psychedelicious
5d8fe9fb56 build: remove controlnet_aux dependency, remove pin for timm 2025-04-04 18:42:13 +11:00
psychedelicious
8d3743c6f2 tidy(nodes): rename controlnet_image_processors.py -> controlnet.py 2025-04-04 18:42:13 +11:00
psychedelicious
986b7426d2 tidy(nodes): remove unused old dw openpose detector class 2025-04-04 18:42:13 +11:00
psychedelicious
8d8150b47e tidy(nodes): remove deprecated controlnet "processor" nodes 2025-04-04 18:42:13 +11:00
psychedelicious
ae3944b4e0 build: upgrade python to 3.12 in pins 2025-04-04 18:42:13 +11:00
psychedelicious
6f0c5c9c05 build: update uv.lock 2025-04-04 18:42:13 +11:00
psychedelicious
89c999ca58 fix(backend): remove mps_fixes
The fixes in this module monkeypatched `torch` to resolve some issues with FP16 on macOS. These issues have long since been resolved.

Included in the now-removed fixes is `CustomSlicedAttentionProcessor`, which is intended to reduce memory requirements for MPS. This overrides `diffusers`' own `SlicedAttentionProcessor`.

Unfortunately, `attention_type: sliced` produces hot garbage with the fixes and black images without the fixes. So this class appears to now be a moot point.

Regardless, SDPA is supported on MPS and very efficient, so sliced attention is largely obsolete.
2025-04-04 18:42:13 +11:00
psychedelicious
89cefc6a88 chore: bump version to v5.10.0dev2
Doing a dev build so I can test the launcher.
2025-04-04 18:42:13 +11:00
psychedelicious
79e384e71c build: downgrade python to 3.11 in pins 2025-04-04 18:42:13 +11:00
psychedelicious
3ebe96765a build: restore prev setuptools config to fix wheel build 2025-04-04 18:42:13 +11:00
psychedelicious
97e158f13a ci: use py3.12 to build installer 2025-04-04 18:42:13 +11:00
psychedelicious
2b1a36ef4a experiment: add pins.json to repo
The launcher will query this file to get the pins needed for installation
2025-04-04 18:42:13 +11:00
psychedelicious
6824b4b036 chore: bump version to v5.10.0dev1
Doing a dev build so I can test the launcher.
2025-04-04 18:42:13 +11:00
psychedelicious
e8a09a5ed8 chore: update uv.lock for latest pydantic
Ran `uv lock --upgrade-package pydantic`
2025-04-04 18:42:13 +11:00
psychedelicious
c4df7d3cb9 fix(ui): handle updated schema structure during invocation parsing
In https://github.com/pydantic/pydantic/pull/10029, pydantic made an improvement to its generated JSON schemas (OpenAPI schemas). The previous and new generated schemas both meet the schema spec.

When we parse the OpenAPI schema to generate node templates, we use some typeguard to narrow schema components from generic OpenAPI schema objects to a node field schema objects. The narrower node field schema objects contain extra data.

For example, they contain a `field_kind` attribute that indicates it the field is an input field or output field. These extra attributes are not part of the OpenAPI spec (but the spec allows does allow for this extra data).

This typeguard relied on a pydantic implementation detail. This was changed in the linked pydantic PR, which released with v2.9.0. With the change, our typeguard rejects input field schema objects, causing parsing to fail with errors/warnings like `Unhandled input property` in the JS console.

In the UI, this causes many fields - mostly model fields - to not show up in the workflow editor.

The fix for this is very simple - instead of relying on an implementation detail for the typeguard, we can check if the incoming schema object has any of our invoke-specific extra attributes. Specifically, we now look for the presence of the `field_kind` attribute on the incoming schema object. If it is present, we know we are dealing with an invocation input field and can parse it appropriately.
2025-04-04 18:42:13 +11:00
psychedelicious
b9e76afbf5 chore: typegen 2025-04-04 18:42:13 +11:00
psychedelicious
dfd8b8f220 chore: remove pydantic pin 2025-04-04 18:42:13 +11:00
psychedelicious
a089e1bf5c chore(ui): typegen 2025-04-04 18:42:13 +11:00
psychedelicious
875f3fe779 tests: update tests/test_object_serializer_disk.py 2025-04-04 18:42:13 +11:00
psychedelicious
5fa2cf59e2 fix(app): add trusted classes to torch safe globals to prevent errors when loading them
In `ObjectSerializerDisk`, we use `torch.load` to load serialized objects from disk. With torch 2.6.0, torch defaults to `weights_only=True`. As a result, torch will raise when attempting to deserialize anything with an unrecognized class.

For example, our `ConditioningFieldData` class is untrusted. When we load conditioning from disk, we will get a runtime error.

Torch provides a method to add trusted classes to an allowlist. This change adds an arg to `ObjectSerializerDisk` to add a list of safe globals to the allowlist and uses it for both `ObjectSerializerDisk` instances.

Note: My first attempt inferred the class from the generic type arg that `ObjectSerializerDisk` accepts, and added that to the allowlist. Unfortunately, this doesn't work.

For example, `ConditioningFieldData` has a `conditionings` attribute that may be one some other untrusted classes representing model-specific conditioning data. So, even if we allowlist `ConditioningFieldData`, loading will fail when torch deserializes the `conditionings` attribute.
2025-04-04 18:42:13 +11:00
Eugene Brodsky
4d58c222f3 resolve conflict between timm version needed by LLaVA and controlnet-aux 2025-04-04 18:42:13 +11:00
Eugene Brodsky
c27142bb02 reintroduce GPU_DRIVER build arg in CI container build, as it has apparently been removed 2025-04-04 18:42:13 +11:00
Eugene Brodsky
e3c441fda4 remove obsoleted depenencies that were used by the CLI 2025-04-04 18:42:13 +11:00
Eugene Brodsky
6bb102f860 modify docs for python 3.12 2025-04-04 18:42:13 +11:00
Eugene Brodsky
5c45ef1a8c update nodes schema / typegen 2025-04-04 18:42:13 +11:00
Eugene Brodsky
7a218a8040 update uv.lock 2025-04-04 18:42:13 +11:00
Eugene Brodsky
929d86768f refactor Dockerfile; get rid of multi-stage build; upgrade to python 3.12 2025-04-04 18:42:13 +11:00
Eugene Brodsky
3676160496 use uv.lock to pin dependencies 2025-04-04 18:42:13 +11:00
Eugene Brodsky
8e6ebb537b upgrade pytorch and unpin some of the strict dependency pins to facilitate upgrading co-dependencies.
we will use uv.lock to ensure reproducibility
2025-04-04 18:42:13 +11:00
1374 changed files with 78789 additions and 35380 deletions

View File

@@ -1,9 +1,11 @@
*
!invokeai
!pyproject.toml
!uv.lock
!docker/docker-entrypoint.sh
!LICENSE
**/dist
**/node_modules
**/__pycache__
**/*.egg-info
**/*.egg-info

29
.github/CODEOWNERS vendored
View File

@@ -1,32 +1,31 @@
# continuous integration
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr @jazzhaiku
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr @jazzhaiku @psychedelicious
# documentation
/docs/ @lstein @blessedcoolant @hipsterusername @psychedelicious
/mkdocs.yml @lstein @blessedcoolant @hipsterusername @psychedelicious
# nodes
/invokeai/app/ @blessedcoolant @psychedelicious @brandonrising @hipsterusername @jazzhaiku
/invokeai/app/ @blessedcoolant @psychedelicious @hipsterusername @jazzhaiku
# installation and configuration
/pyproject.toml @lstein @blessedcoolant @hipsterusername
/docker/ @lstein @blessedcoolant @hipsterusername @ebr
/scripts/ @ebr @lstein @hipsterusername
/installer/ @lstein @ebr @hipsterusername
/invokeai/assets @lstein @ebr @hipsterusername
/invokeai/configs @lstein @hipsterusername
/invokeai/version @lstein @blessedcoolant @hipsterusername
/pyproject.toml @lstein @blessedcoolant @psychedelicious @hipsterusername
/docker/ @lstein @blessedcoolant @psychedelicious @hipsterusername @ebr
/scripts/ @ebr @lstein @psychedelicious @hipsterusername
/installer/ @lstein @ebr @psychedelicious @hipsterusername
/invokeai/assets @lstein @ebr @psychedelicious @hipsterusername
/invokeai/configs @lstein @psychedelicious @hipsterusername
/invokeai/version @lstein @blessedcoolant @psychedelicious @hipsterusername
# web ui
/invokeai/frontend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
# generation, model management, postprocessing
/invokeai/backend @lstein @blessedcoolant @brandonrising @hipsterusername @jazzhaiku
/invokeai/backend @lstein @blessedcoolant @hipsterusername @jazzhaiku @psychedelicious @maryhipp
# front ends
/invokeai/frontend/CLI @lstein @hipsterusername
/invokeai/frontend/install @lstein @ebr @hipsterusername
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/CLI @lstein @psychedelicious @hipsterusername
/invokeai/frontend/install @lstein @ebr @psychedelicious @hipsterusername
/invokeai/frontend/merge @lstein @blessedcoolant @psychedelicious @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @psychedelicious @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername

View File

@@ -21,6 +21,20 @@ body:
- label: I have searched the existing issues
required: true
- type: dropdown
id: install_method
attributes:
label: Install method
description: How did you install Invoke?
multiple: false
options:
- "Invoke's Launcher"
- 'Stability Matrix'
- 'Pinokio'
- 'Manual'
validations:
required: true
- type: markdown
attributes:
value: __Describe your environment__
@@ -76,8 +90,8 @@ body:
attributes:
label: Version number
description: |
The version of Invoke you have installed. If it is not the latest version, please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. 3.6.1
The version of Invoke you have installed. If it is not the [latest version](https://github.com/invoke-ai/InvokeAI/releases/latest), please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. v6.0.2
validations:
required: true
@@ -85,17 +99,17 @@ body:
id: browser-version
attributes:
label: Browser
description: Your web browser and version.
description: Your web browser and version, if you do not use the Launcher's provided GUI.
placeholder: ex. Firefox 123.0b3
validations:
required: true
required: false
- type: textarea
id: python-deps
attributes:
label: Python dependencies
label: System Information
description: |
If the problem occurred during image generation, click the gear icon at the bottom left corner, click "About", click the copy button and then paste here.
Click the gear icon at the bottom left corner, then click "About". Click the copy button and then paste here.
validations:
required: false

View File

@@ -3,15 +3,15 @@ description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 18
- name: setup node 20
uses: actions/setup-node@v4
with:
node-version: '18'
node-version: '20'
- name: setup pnpm
uses: pnpm/action-setup@v4
with:
version: 8.15.6
version: 10
run_install: false
- name: get pnpm store directory

View File

@@ -18,5 +18,6 @@
- [ ] _The PR has a short but descriptive title, suitable for a changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _❗Changes to a redux slice have a corresponding migration_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_

View File

@@ -45,6 +45,9 @@ jobs:
steps:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
# the /mnt dir has 70GBs of free space
# /dev/sda1 74G 28K 70G 1% /mnt
# According to some online posts the /mnt is not always there, so checking before setting docker to use it
run: |
echo "----- Free space before cleanup"
df -h
@@ -52,6 +55,11 @@ jobs:
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
if [ -d /mnt ]; then
sudo chmod -R 777 /mnt
echo '{"data-root": "/mnt/docker-root"}' | sudo tee /etc/docker/daemon.json
sudo systemctl restart docker
fi
echo "----- Free space after cleanup"
df -h
@@ -97,6 +105,8 @@ jobs:
context: .
file: docker/Dockerfile
platforms: ${{ env.PLATFORMS }}
build-args: |
GPU_DRIVER=${{ matrix.gpu-driver }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

View File

@@ -1,6 +1,6 @@
# Builds and uploads the installer and python build artifacts.
# Builds and uploads python build artifacts.
name: build installer
name: build wheel
on:
workflow_dispatch:
@@ -17,7 +17,7 @@ jobs:
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
python-version: '3.12'
cache: pip
cache-dependency-path: pyproject.toml
@@ -27,19 +27,12 @@ jobs:
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: create installer
id: create_installer
run: ./create_installer.sh
working-directory: installer
- name: build wheel
id: build_wheel
run: ./scripts/build_wheel.sh
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: installer
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}
path: ${{ steps.build_wheel.outputs.DIST_PATH }}

30
.github/workflows/lfs-checks.yml vendored Normal file
View File

@@ -0,0 +1,30 @@
# Checks that large files and LFS-tracked files are properly checked in with pointer format.
# Uses https://github.com/ppremk/lfs-warning to detect LFS issues.
name: 'lfs checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
jobs:
lfs-check:
runs-on: ubuntu-latest
timeout-minutes: 5
permissions:
# Required to label and comment on the PRs
pull-requests: write
steps:
- name: checkout
uses: actions/checkout@v4
- name: check lfs files
uses: ppremk/lfs-warning@v3.3

View File

@@ -67,6 +67,10 @@ jobs:
version: '0.6.10'
enable-cache: true
- name: check pypi classifiers
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: uv run --no-project scripts/check_classifiers.py ./pyproject.toml
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: uv tool run ruff@0.11.2 check --output-format=github .

View File

@@ -49,7 +49,7 @@ jobs:
always_run: true
build:
uses: ./.github/workflows/build-installer.yml
uses: ./.github/workflows/build-wheel.yml
publish-testpypi:
runs-on: ubuntu-latest

View File

@@ -39,6 +39,18 @@ jobs:
- name: checkout
uses: actions/checkout@v4
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: |
echo "----- Free space before cleanup"
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
echo "----- Free space after cleanup"
df -h
- name: check for changed files
if: ${{ inputs.always_run != true }}
id: changed-files

68
.github/workflows/uv-lock-checks.yml vendored Normal file
View File

@@ -0,0 +1,68 @@
# Check the `uv` lockfile for consistency with `pyproject.toml`.
#
# If this check fails, you should run `uv lock` to update the lockfile.
name: 'uv lock checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
uv-lock-checks:
env:
# uv requires a venv by default - but for this, we can simply use the system python
UV_SYSTEM_PYTHON: 1
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
uvlock-pyprojecttoml:
- 'pyproject.toml'
- 'uv.lock'
- name: setup uv
if: ${{ steps.changed-files.outputs.uvlock-pyprojecttoml_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
- name: check lockfile
if: ${{ steps.changed-files.outputs.uvlock-pyprojecttoml_any_changed == 'true' || inputs.always_run == true }}
run: uv lock --locked # this will exit with 1 if the lockfile is not consistent with pyproject.toml
shell: bash

4
.gitignore vendored
View File

@@ -180,6 +180,7 @@ cython_debug/
# Scratch folder
.scratch/
.vscode/
.zed/
# source installer files
installer/*zip
@@ -188,3 +189,6 @@ installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/
.aider*
.claude/

2
.nvmrc
View File

@@ -1 +1 @@
v22.12.0
v22.14.0

View File

@@ -4,21 +4,29 @@ repos:
hooks:
- id: black
name: black
stages: [commit]
stages: [pre-commit]
language: system
entry: black
types: [python]
- id: flake8
name: flake8
stages: [commit]
stages: [pre-commit]
language: system
entry: flake8
types: [python]
- id: isort
name: isort
stages: [commit]
stages: [pre-commit]
language: system
entry: isort
types: [python]
types: [python]
- id: uvlock
name: uv lock
stages: [pre-commit]
language: system
entry: uv lock
files: ^pyproject\.toml$
pass_filenames: false

View File

@@ -16,7 +16,7 @@ help:
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "wheel Build the wheel for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "openapi Generate the OpenAPI schema for the app, outputting to stdout"
@echo "docs Serve the mkdocs site with live reload"
@@ -64,13 +64,13 @@ frontend-dev:
frontend-typegen:
cd invokeai/frontend/web && python ../../../scripts/generate_openapi_schema.py | pnpm typegen
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh
# Tag the release
wheel:
cd scripts && ./build_wheel.sh
# Tag the release
tag-release:
cd installer && ./tag_release.sh
cd scripts && ./tag_release.sh
# Generate the OpenAPI Schema for the app
openapi:

View File

@@ -22,6 +22,10 @@
## GPU_DRIVER can be set to either `cuda` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=cuda #| rocm
## If you are using ROCM, you will need to ensure that the render group within the container and the host system use the same group ID.
## To obtain the group ID of the render group on the host system, run `getent group render` and grab the number.
# RENDER_GROUP_ID=
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
## It is usually not necessary to change this. Use `id -u` on the host system to find the UID.
# CONTAINER_UID=1000

View File

@@ -1,44 +1,65 @@
# syntax=docker/dockerfile:1.4
## Builder stage
#### Web UI ------------------------------------
FROM library/ubuntu:24.04 AS builder
FROM docker.io/node:22-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@10.x && corepack enable
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
## Backend ---------------------------------------
FROM library/ubuntu:24.04
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \
build-essential \
git
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
apt update && apt install -y --no-install-recommends \
ca-certificates \
git \
gosu \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.6.0 /uv /uvx /bin/
ENV VIRTUAL_ENV=/opt/venv
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ENV INVOKEAI_SRC=/opt/invokeai
ENV PYTHON_VERSION=3.11
ENV UV_PYTHON=3.11
ENV UV_COMPILE_BYTECODE=1
ENV UV_LINK_MODE=copy
ENV UV_PROJECT_ENVIRONMENT="$VIRTUAL_ENV"
ENV UV_INDEX="https://download.pytorch.org/whl/cu124"
ENV \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
VIRTUAL_ENV=/opt/venv \
INVOKEAI_SRC=/opt/invokeai \
PYTHON_VERSION=3.12 \
UV_PYTHON=3.12 \
UV_COMPILE_BYTECODE=1 \
UV_MANAGED_PYTHON=1 \
UV_LINK_MODE=copy \
UV_PROJECT_ENVIRONMENT=/opt/venv \
INVOKEAI_ROOT=/invokeai \
INVOKEAI_HOST=0.0.0.0 \
INVOKEAI_PORT=9090 \
PATH="/opt/venv/bin:$PATH" \
CONTAINER_UID=${CONTAINER_UID:-1000} \
CONTAINER_GID=${CONTAINER_GID:-1000}
ARG GPU_DRIVER=cuda
# unused but available
ARG BUILDPLATFORM
# Switch to the `ubuntu` user to work around dependency issues with uv-installed python
RUN mkdir -p ${VIRTUAL_ENV} && \
mkdir -p ${INVOKEAI_SRC} && \
chmod -R a+w /opt && \
mkdir ~ubuntu/.cache && chown ubuntu: ~ubuntu/.cache
USER ubuntu
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.6.9 /uv /uvx /bin/
# Install python
RUN --mount=type=cache,target=/home/ubuntu/.cache/uv,uid=1000,gid=1000 \
uv python install ${PYTHON_VERSION}
# Install python & allow non-root user to use it by traversing the /root dir without read permissions
RUN --mount=type=cache,target=/root/.cache/uv \
uv python install ${PYTHON_VERSION} && \
# chmod --recursive a+rX /root/.local/share/uv/python
chmod 711 /root
WORKDIR ${INVOKEAI_SRC}
@@ -47,100 +68,18 @@ WORKDIR ${INVOKEAI_SRC}
#
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/home/ubuntu/.cache/uv,uid=1000,gid=1000 \
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
# this is just to get the package manager to recognize that the project exists, without making changes to the docker layer
--mount=type=bind,source=invokeai/version,target=invokeai/version \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
UV_INDEX="https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
UV_INDEX="https://download.pytorch.org/whl/rocm6.1"; \
fi && \
uv sync --no-install-project
# Now that the bulk of the dependencies have been installed, copy in the project files that change more frequently.
COPY invokeai invokeai
COPY pyproject.toml .
RUN --mount=type=cache,target=/home/ubuntu/.cache/uv,uid=1000,gid=1000 \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
UV_INDEX="https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
UV_INDEX="https://download.pytorch.org/whl/rocm6.1"; \
fi && \
uv sync
#### Build the Web UI ------------------------------------
FROM docker.io/node:22-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
RUN corepack enable
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
#### Runtime stage ---------------------------------------
FROM library/ubuntu:24.04 AS runtime
ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV PYTHONDONTWRITEBYTECODE=1
RUN apt update && apt install -y --no-install-recommends \
git \
curl \
vim \
tmux \
ncdu \
iotop \
bzip2 \
gosu \
magic-wormhole \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev &&\
apt-get clean && apt-get autoclean
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv
ENV UV_PROJECT_ENVIRONMENT="$VIRTUAL_ENV"
ENV PYTHON_VERSION=3.11
ENV INVOKEAI_ROOT=/invokeai
ENV INVOKEAI_HOST=0.0.0.0
ENV INVOKEAI_PORT=9090
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
# Install `uv` for package management
# and install python for the ubuntu user (expected to exist on ubuntu >=24.x)
# this is too tiny to optimize with multi-stage builds, but maybe we'll come back to it
COPY --from=ghcr.io/astral-sh/uv:0.6.0 /uv /uvx /bin/
USER ubuntu
RUN uv python install ${PYTHON_VERSION}
USER root
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
ulimit -n 30000 && \
uv sync --extra $GPU_DRIVER --frozen
# Link amdgpu.ids for ROCm builds
# contributed by https://github.com/Rubonnek
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
WORKDIR ${INVOKEAI_SRC}
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids" && groupadd render
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
@@ -151,3 +90,18 @@ RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${IN
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web"]
# --link requires buldkit w/ dockerfile syntax 1.4, does not work with podman
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# add sources last to minimize image changes on code changes
COPY invokeai ${INVOKEAI_SRC}/invokeai
# this should not increase image size because we've already installed dependencies
# in a previous layer
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
ulimit -n 30000 && \
uv pip install -e .[$GPU_DRIVER]

136
docker/Dockerfile-rocm-full Normal file
View File

@@ -0,0 +1,136 @@
# syntax=docker/dockerfile:1.4
#### Web UI ------------------------------------
FROM docker.io/node:22-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
RUN corepack enable
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
## Backend ---------------------------------------
FROM library/ubuntu:24.04
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
apt update && apt install -y --no-install-recommends \
ca-certificates \
git \
gosu \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev \
wget
ENV \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
VIRTUAL_ENV=/opt/venv \
INVOKEAI_SRC=/opt/invokeai \
PYTHON_VERSION=3.12 \
UV_PYTHON=3.12 \
UV_COMPILE_BYTECODE=1 \
UV_MANAGED_PYTHON=1 \
UV_LINK_MODE=copy \
UV_PROJECT_ENVIRONMENT=/opt/venv \
INVOKEAI_ROOT=/invokeai \
INVOKEAI_HOST=0.0.0.0 \
INVOKEAI_PORT=9090 \
PATH="/opt/venv/bin:$PATH" \
CONTAINER_UID=${CONTAINER_UID:-1000} \
CONTAINER_GID=${CONTAINER_GID:-1000}
ARG GPU_DRIVER=cuda
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.6.9 /uv /uvx /bin/
# Install python & allow non-root user to use it by traversing the /root dir without read permissions
RUN --mount=type=cache,target=/root/.cache/uv \
uv python install ${PYTHON_VERSION} && \
# chmod --recursive a+rX /root/.local/share/uv/python
chmod 711 /root
WORKDIR ${INVOKEAI_SRC}
# Install project's dependencies as a separate layer so they aren't rebuilt every commit.
# bind-mount instead of copy to defer adding sources to the image until next layer.
#
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
# this is just to get the package manager to recognize that the project exists, without making changes to the docker layer
--mount=type=bind,source=invokeai/version,target=invokeai/version \
ulimit -n 30000 && \
uv sync --extra $GPU_DRIVER --frozen
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
if [ "$GPU_DRIVER" = "rocm" ]; then \
wget -O /tmp/amdgpu-install.deb \
https://repo.radeon.com/amdgpu-install/6.3.4/ubuntu/noble/amdgpu-install_6.3.60304-1_all.deb && \
apt install -y /tmp/amdgpu-install.deb && \
apt update && \
amdgpu-install --usecase=rocm -y && \
apt-get autoclean && \
apt clean && \
rm -rf /tmp/* /var/tmp/* && \
usermod -a -G render ubuntu && \
usermod -a -G video ubuntu && \
echo "\\n/opt/rocm/lib\\n/opt/rocm/lib64" >> /etc/ld.so.conf.d/rocm.conf && \
ldconfig && \
update-alternatives --auto rocm; \
fi
## Heathen711: Leaving this for review input, will remove before merge
# RUN --mount=type=cache,target=/var/cache/apt \
# --mount=type=cache,target=/var/lib/apt \
# if [ "$GPU_DRIVER" = "rocm" ]; then \
# groupadd render && \
# usermod -a -G render ubuntu && \
# usermod -a -G video ubuntu; \
# fi
## Link amdgpu.ids for ROCm builds
## contributed by https://github.com/Rubonnek
# RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
# ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web"]
# --link requires buldkit w/ dockerfile syntax 1.4, does not work with podman
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# add sources last to minimize image changes on code changes
COPY invokeai ${INVOKEAI_SRC}/invokeai
# this should not increase image size because we've already installed dependencies
# in a previous layer
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
ulimit -n 30000 && \
uv pip install -e .[$GPU_DRIVER]

View File

@@ -47,8 +47,9 @@ services:
invokeai-rocm:
<<: *invokeai
devices:
- /dev/kfd:/dev/kfd
- /dev/dri:/dev/dri
environment:
- AMD_VISIBLE_DEVICES=all
- RENDER_GROUP_ID=${RENDER_GROUP_ID}
runtime: amd
profiles:
- rocm

View File

@@ -21,6 +21,17 @@ _=$(id ${USER} 2>&1) || useradd -u ${USER_ID} ${USER}
# ensure the UID is correct
usermod -u ${USER_ID} ${USER} 1>/dev/null
## ROCM specific configuration
# render group within the container must match the host render group
# otherwise the container will not be able to access the host GPU.
if [[ -v "RENDER_GROUP_ID" ]] && [[ ! -z "${RENDER_GROUP_ID}" ]]; then
# ensure the render group exists
groupmod -g ${RENDER_GROUP_ID} render
usermod -a -G render ${USER}
usermod -a -G video ${USER}
fi
### Set the $PUBLIC_KEY env var to enable SSH access.
# We do not install openssh-server in the image by default to avoid bloat.
# but it is useful to have the full SSH server e.g. on Runpod.

View File

@@ -13,7 +13,7 @@ run() {
# parse .env file for build args
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
profile="$(awk -F '=' '/GPU_DRIVER=/ {print $2}' .env)"
# default to 'cuda' profile
[[ -z "$profile" ]] && profile="cuda"
@@ -30,7 +30,7 @@ run() {
printf "%s\n" "starting service $service_name"
docker compose --profile "$profile" up -d "$service_name"
docker compose logs -f
docker compose --profile "$profile" logs -f
}
run

View File

@@ -60,16 +60,11 @@ Next, these jobs run and must pass. They are the same jobs that are run for ever
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
- **`typegen-checks`**: ensures the frontend and backend types are synced
#### `build-installer` Job
#### `build-wheel` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `./scripts/build_wheel.sh` and uploads `dist.zip`, which contains the wheel and unarchived build.
- **`dist`**: the python distribution, to be published on PyPI
- **`InvokeAI-installer-${VERSION}.zip`**: the legacy install scripts
You don't need to download either of these files.
> The legacy install scripts are no longer used, but we haven't updated the workflow to skip building them.
You don't need to download or test these artifacts.
#### Sanity Check & Smoke Test
@@ -79,7 +74,7 @@ It's possible to test the python package before it gets published to PyPI. We've
But, if you want to be extra-super careful, here's how to test it:
- Download the `dist.zip` build artifact from the `build-installer` job
- Download the `dist.zip` build artifact from the `build-wheel` job
- Unzip it and find the wheel file
- Create a fresh Invoke install by following the [manual install guide](https://invoke-ai.github.io/InvokeAI/installation/manual/) - but instead of installing from PyPI, install from the wheel
- Test the app

View File

@@ -39,7 +39,7 @@ nodes imported in the `__init__.py` file are loaded. See the README in the nodes
folder for more examples:
```py
from .cool_node import CoolInvocation
from .cool_node import ResizeInvocation
```
## Creating A New Invocation
@@ -69,7 +69,10 @@ The first set of things we need to do when creating a new Invocation are -
So let us do that.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.invocation_api import (
BaseInvocation,
invocation,
)
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@@ -103,8 +106,12 @@ create your own custom field types later in this guide. For now, let's go ahead
and use it.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
from invokeai.app.invocations.primitives import ImageField
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
invocation,
)
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@@ -128,8 +135,12 @@ image: ImageField = InputField(description="The input image")
Great. Now let us create our other inputs for `width` and `height`
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
from invokeai.app.invocations.primitives import ImageField
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
invocation,
)
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@@ -163,8 +174,13 @@ that are provided by it by InvokeAI.
Let us create this function first.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@@ -191,8 +207,14 @@ all the necessary info related to image outputs. So let us use that.
We will cover how to create your own output types later in this guide.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
from invokeai.app.invocations.image import ImageOutput
@invocation('resize')
@@ -217,9 +239,15 @@ Perfect. Now that we have our Invocation setup, let us do what we want to do.
So let's do that.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.image import ImageOutput, ResourceOrigin, ImageCategory
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
from invokeai.app.invocations.image import ImageOutput
@invocation("resize")
class ResizeInvocation(BaseInvocation):

View File

@@ -265,7 +265,7 @@ If the key is unrecognized, this call raises an
#### exists(key) -> AnyModelConfig
Returns True if a model with the given key exists in the databsae.
Returns True if a model with the given key exists in the database.
#### search_by_path(path) -> AnyModelConfig
@@ -718,7 +718,7 @@ When downloading remote models is implemented, additional
configuration information, such as list of trigger terms, will be
retrieved from the HuggingFace and Civitai model repositories.
The probed values can be overriden by providing a dictionary in the
The probed values can be overridden by providing a dictionary in the
optional `config` argument passed to `import_model()`. You may provide
overriding values for any of the model's configuration
attributes. Here is an example of setting the
@@ -841,7 +841,7 @@ variable.
#### installer.start(invoker)
The `start` method is called by the API intialization routines when
The `start` method is called by the API initialization routines when
the API starts up. Its effect is to call `sync_to_config()` to
synchronize the model record store database with what's currently on
disk.

View File

@@ -16,7 +16,7 @@ We thank [all contributors](https://github.com/invoke-ai/InvokeAI/graphs/contrib
- @psychedelicious (Spencer Mabrito) - Web Team Leader
- @joshistoast (Josh Corbett) - Web Development
- @cheerio (Mary Rogers) - Lead Engineer & Web App Development
- @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
- @ebr (Eugene Brodsky) - Cloud/DevOps/Software engineer; your friendly neighbourhood cluster-autoscaler
- @sunija - Standalone version
- @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
- @ryanjdick (Ryan Dick) - Machine Learning & Training

View File

@@ -41,7 +41,7 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
With the modifications made, the install command should look something like this:
```sh
uv pip install -e ".[dev,test,docs,xformers]" --python 3.11 --python-preference only-managed --index=https://download.pytorch.org/whl/cu124 --reinstall
uv pip install -e ".[dev,test,docs,xformers]" --python 3.12 --python-preference only-managed --index=https://download.pytorch.org/whl/cu128 --reinstall
```
6. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
@@ -50,11 +50,11 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
If you only want to edit the docs, you can stop here and skip to the **Documentation** section below.
7. Install the frontend dev toolchain:
7. Install the frontend dev toolchain, paying attention to versions:
- [`nodejs`](https://nodejs.org/) (v20+)
- [`nodejs`](https://nodejs.org/) (tested on LTS, v22)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
- [`pnpm`](https://pnpm.io/installation) (tested on v10)
8. Do a production build of the frontend:

View File

@@ -1,121 +0,0 @@
# Legacy Scripts
!!! warning "Legacy Scripts"
We recommend using the Invoke Launcher to install and update Invoke. It's a desktop application for Windows, macOS and Linux. It takes care of a lot of nitty gritty details for you.
Follow the [quick start guide](./quick_start.md) to get started.
!!! tip "Use the installer to update"
Using the installer for updates will not erase any of your data (images, models, boards, etc). It only updates the core libraries used to run Invoke.
Simply use the same path you installed to originally to update your existing installation.
Both release and pre-release versions can be installed using the installer. It also supports install through a wheel if needed.
Be sure to review the [installation requirements] and ensure your system has everything it needs to install Invoke.
## Getting the Latest Installer
Download the `InvokeAI-installer-vX.Y.Z.zip` file from the [latest release] page. It is at the bottom of the page, under **Assets**.
After unzipping the installer, you should have a `InvokeAI-Installer` folder with some files inside, including `install.bat` and `install.sh`.
## Running the Installer
!!! tip
Windows users should first double-click the `WinLongPathsEnabled.reg` file to prevent a failed installation due to long file paths.
Double-click the install script:
=== "Windows"
```sh
install.bat
```
=== "Linux/macOS"
```sh
install.sh
```
!!! info "Running the Installer from the commandline"
You can also run the install script from cmd/powershell (Windows) or terminal (Linux/macOS).
!!! warning "Untrusted Publisher (Windows)"
You may get a popup saying the file comes from an `Untrusted Publisher`. Click `More Info` and `Run Anyway` to get past this.
The installation process is simple, with a few prompts:
- Select the version to install. Unless you have a specific reason to install a specific version, select the default (the latest version).
- Select location for the install. Be sure you have enough space in this folder for the base application, as described in the [installation requirements].
- Select a GPU device.
!!! info "Slow Installation"
The installer needs to download several GB of data and install it all. It may appear to get stuck at 99.9% when installing `pytorch` or during a step labeled "Installing collected packages".
If it is stuck for over 10 minutes, something has probably gone wrong and you should close the window and restart.
## Running the Application
Find the install location you selected earlier. Double-click the launcher script to run the app:
=== "Windows"
```sh
invoke.bat
```
=== "Linux/macOS"
```sh
invoke.sh
```
Choose the first option to run the UI. After a series of startup messages, you'll see something like this:
```sh
Uvicorn running on http://127.0.0.1:9090 (Press CTRL+C to quit)
```
Copy the URL into your browser and you should see the UI.
## Improved Outpainting with PatchMatch
PatchMatch is an extra add-on that can improve outpainting. Windows users are in luck - it works out of the box.
On macOS and Linux, a few extra steps are needed to set it up. See the [PatchMatch installation guide](./patchmatch.md).
## First-time Setup
You will need to [install some models] before you can generate.
Check the [configuration docs] for details on configuring the application.
## Updating
Updating is exactly the same as installing - download the latest installer, choose the latest version, enter your existing installation path, and the app will update. None of your data (images, models, boards, etc) will be erased.
!!! info "Dependency Resolution Issues"
We've found that pip's dependency resolution can cause issues when upgrading packages. One very common problem was pip "downgrading" torch from CUDA to CPU, but things broke in other novel ways.
The installer doesn't have this kind of problem, so we use it for updating as well.
## Installation Issues
If you have installation issues, please review the [FAQ]. You can also [create an issue] or ask for help on [discord].
[installation requirements]: ./requirements.md
[FAQ]: ../faq.md
[install some models]: ./models.md
[configuration docs]: ../configuration.md
[latest release]: https://github.com/invoke-ai/InvokeAI/releases/latest
[create an issue]: https://github.com/invoke-ai/InvokeAI/issues
[discord]: https://discord.gg/ZmtBAhwWhy

View File

@@ -43,10 +43,10 @@ The following commands vary depending on the version of Invoke being installed a
3. Create a virtual environment in that directory:
```sh
uv venv --relocatable --prompt invoke --python 3.11 --python-preference only-managed .venv
uv venv --relocatable --prompt invoke --python 3.12 --python-preference only-managed .venv
```
This command creates a portable virtual environment at `.venv` complete with a portable python 3.11. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
This command creates a portable virtual environment at `.venv` complete with a portable python 3.12. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
4. Activate the virtual environment:
@@ -69,32 +69,46 @@ The following commands vary depending on the version of Invoke being installed a
- If you have an Nvidia 20xx series GPU or older, use `invokeai[xformers]`.
- If you have an Nvidia 30xx series GPU or newer, or do not have an Nvidia GPU, use `invokeai`.
7. Determine the `PyPI` index URL to use for installation, if any. This is necessary to get the right version of torch installed.
7. Determine the torch backend to use for installation, if any. This is necessary to get the right version of torch installed. This is acheived by using [UV's built in torch support.](https://docs.astral.sh/uv/guides/integration/pytorch/#automatic-backend-selection)
=== "Invoke v5 or later"
=== "Invoke v5.12 and later"
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm6.1`.
- If you are on Windows or Linux with an Nvidia GPU, use `--torch-backend=cu128`.
- If you are on Linux with no GPU, use `--torch-backend=cpu`.
- If you are on Linux with an AMD GPU, use `--torch-backend=rocm6.3`.
- **In all other cases, do not use a torch backend.**
=== "Invoke v5.10.0 to v5.11.0"
- If you are on Windows or Linux with an Nvidia GPU, use `--torch-backend=cu126`.
- If you are on Linux with no GPU, use `--torch-backend=cpu`.
- If you are on Linux with an AMD GPU, use `--torch-backend=rocm6.2.4`.
- **In all other cases, do not use an index.**
=== "Invoke v5.0.0 to v5.9.1"
- If you are on Windows with an Nvidia GPU, use `--torch-backend=cu124`.
- If you are on Linux with no GPU, use `--torch-backend=cpu`.
- If you are on Linux with an AMD GPU, use `--torch-backend=rocm6.1`.
- **In all other cases, do not use an index.**
=== "Invoke v4"
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm5.2`.
- If you are on Windows with an Nvidia GPU, use `--torch-backend=cu124`.
- If you are on Linux with no GPU, use `--torch-backend=cpu`.
- If you are on Linux with an AMD GPU, use `--torch-backend=rocm5.2`.
- **In all other cases, do not use an index.**
8. Install the `invokeai` package. Substitute the package specifier and version.
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.11 --python-preference only-managed --force-reinstall
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --force-reinstall
```
If you determined you needed to use a `PyPI` index URL in the previous step, you'll need to add `--index=<INDEX_URL>` like this:
If you determined you needed to use a torch backend in the previous step, you'll need to set the backend like this:
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.11 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --torch-backend=<VERSION> --force-reinstall
```
9. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:

View File

@@ -33,30 +33,45 @@ Hardware requirements vary significantly depending on model and image output siz
More detail on system requirements can be found [here](./requirements.md).
## Step 2: Download
## Step 2: Download and Set Up the Launcher
Download the most launcher for your operating system:
The Launcher manages your Invoke install. Follow these instructions to download and set up the Launcher.
- [Download for Windows](https://download.invoke.ai/Invoke%20Community%20Edition.exe)
- [Download for macOS](https://download.invoke.ai/Invoke%20Community%20Edition.dmg)
- [Download for Linux](https://download.invoke.ai/Invoke%20Community%20Edition.AppImage)
!!! info "Instructions for each OS"
## Step 3: Install or Update
=== "Windows"
Run the launcher you just downloaded, click **Install** and follow the instructions to get set up.
- [Download for Windows](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition.Setup.latest.exe)
- Run the `EXE` to install the Launcher and start it.
- A desktop shortcut will be created; use this to run the Launcher in the future.
- You can delete the `EXE` file you downloaded.
=== "macOS"
- [Download for macOS](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition-latest-arm64.dmg)
- Open the `DMG` and drag the app into `Applications`.
- Run the Launcher using its entry in `Applications`.
- You can delete the `DMG` file you downloaded.
=== "Linux"
- [Download for Linux](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition-latest.AppImage)
- You may need to edit the `AppImage` file properties and make it executable.
- Optionally move the file to a location that does not require admin privileges and add a desktop shortcut for it.
- Run the Launcher by double-clicking the `AppImage` or the shortcut you made.
## Step 3: Install Invoke
Run the Launcher you just set up if you haven't already. Click **Install** and follow the instructions to install (or update) Invoke.
If you have an existing Invoke installation, you can select it and let the launcher manage the install. You'll be able to update or launch the installation.
!!! warning "Problem running the launcher on macOS"
!!! tip "Updating"
macOS may not allow you to run the launcher. We are working to resolve this by signing the launcher executable. Until that is done, you can either use the [legacy scripts](./legacy_scripts.md) to install, or manually flag the launcher as safe:
The Launcher will check for updates for itself _and_ Invoke.
- Open the **Invoke-Installer-mac-arm64.dmg** file.
- Drag the launcher to **Applications**.
- Open a terminal.
- Run `xattr -d 'com.apple.quarantine' /Applications/Invoke\ Community\ Edition.app`.
You should now be able to run the launcher.
- When the Launcher detects an update is available for itself, you'll get a small popup window. Click through this and the Launcher will update itself.
- When the Launcher detects an update for Invoke, you'll see a small green alert in the Launcher. Click that and follow the instructions to update Invoke.
## Step 4: Launch
@@ -117,7 +132,6 @@ If you still have problems, ask for help on the Invoke [discord](https://discord
- You can install the Invoke application as a python package. See our [manual install](./manual.md) docs.
- You can run Invoke with docker. See our [docker install](./docker.md) docs.
- You can still use our legacy scripts to install and run Invoke. See the [legacy scripts](./legacy_scripts.md) docs.
## Need Help?

View File

@@ -41,7 +41,7 @@ The requirements below are rough guidelines for best performance. GPUs with less
You don't need to do this if you are installing with the [Invoke Launcher](./quick_start.md).
Invoke requires python 3.10 or 3.11. If you don't already have one of these versions installed, we suggest installing 3.11, as it will be supported for longer.
Invoke requires python 3.10 through 3.12. If you don't already have one of these versions installed, we suggest installing 3.12, as it will be supported for longer.
Check that your system has an up-to-date Python installed by running `python3 --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
@@ -49,19 +49,19 @@ Check that your system has an up-to-date Python installed by running `python3 --
=== "Windows"
- Install python 3.11 with [an official installer].
- Install python with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
=== "macOS"
- Install python 3.11 with [an official installer].
- Install python with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
=== "Linux"
- Installing python varies depending on your system. On Ubuntu, you can use the [deadsnakes PPA](https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa).
- Installing python varies depending on your system. We recommend [using `uv` to manage your python installation](https://docs.astral.sh/uv/concepts/python-versions/#installing-a-python-version).
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
## Drivers

View File

@@ -41,7 +41,7 @@ Nodes have a "Use Cache" option in their footer. This allows for performance imp
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
### Noise
### Create Latent Noise
An initial noise tensor is necessary for the latent diffusion process. As a result, the Denoising node requires a noise node input.

View File

@@ -13,6 +13,7 @@ If you'd prefer, you can also just download the whole node folder from the linke
To use a community workflow, download the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
- Community Nodes
+ [Anamorphic Tools](#anamorphic-tools)
+ [Adapters-Linked](#adapters-linked-nodes)
+ [Autostereogram](#autostereogram-nodes)
+ [Average Images](#average-images)
@@ -20,9 +21,12 @@ To use a community workflow, download the `.json` node graph file and load it in
+ [Close Color Mask](#close-color-mask)
+ [Clothing Mask](#clothing-mask)
+ [Contrast Limited Adaptive Histogram Equalization](#contrast-limited-adaptive-histogram-equalization)
+ [Curves](#curves)
+ [Depth Map from Wavefront OBJ](#depth-map-from-wavefront-obj)
+ [Enhance Detail](#enhance-detail)
+ [Film Grain](#film-grain)
+ [Flip Pose](#flip-pose)
+ [Flux Ideal Size](#flux-ideal-size)
+ [Generative Grammar-Based Prompt Nodes](#generative-grammar-based-prompt-nodes)
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker)
+ [Grid to Gif](#grid-to-gif)
@@ -61,6 +65,13 @@ To use a community workflow, download the `.json` node graph file and load it in
- [Help](#help)
--------------------------------
### Anamorphic Tools
**Description:** A set of nodes to perform anamorphic modifications to images, like lens blur, streaks, spherical distortion, and vignetting.
**Node Link:** https://github.com/JPPhoto/anamorphic-tools
--------------------------------
### Adapters Linked Nodes
@@ -132,6 +143,13 @@ Node Link: https://github.com/VeyDlin/clahe-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clahe-node/master/.readme/node.png" width="500" />
--------------------------------
### Curves
**Description:** Adjust an image's curve based on a user-defined string.
**Node Link:** https://github.com/JPPhoto/curves-node
--------------------------------
### Depth Map from Wavefront OBJ
@@ -162,6 +180,20 @@ To be imported, an .obj must use triangulated meshes, so make sure to enable tha
**Node Link:** https://github.com/JPPhoto/film-grain-node
--------------------------------
### Flip Pose
**Description:** This node will flip an openpose image horizontally, recoloring it to make sure that it isn't facing the wrong direction. Note that it does not work with openpose hands.
**Node Link:** https://github.com/JPPhoto/flip-pose-node
--------------------------------
### Flux Ideal Size
**Description:** This node returns an ideal size to use for the first stage of a Flux image generation pipeline. Generating at the right size helps limit duplication and odd subject placement.
**Node Link:** https://github.com/JPPhoto/flux-ideal-size
--------------------------------
### Generative Grammar-Based Prompt Nodes

Binary file not shown.

View File

@@ -1,128 +0,0 @@
@echo off
setlocal EnableExtensions EnableDelayedExpansion
@rem This script requires the user to install Python 3.10 or higher. All other
@rem requirements are downloaded as needed.
@rem change to the script's directory
PUSHD "%~dp0"
set "no_cache_dir=--no-cache-dir"
if "%1" == "use-cache" (
set "no_cache_dir="
)
@rem Config
@rem The version in the next line is replaced by an up to date release number
@rem when create_installer.sh is run. Change the release number there.
set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/help/FAQ/
set PYTHON_URL=https://www.python.org/downloads/windows/
set MINIMUM_PYTHON_VERSION=3.10.0
set PYTHON_URL=https://www.python.org/downloads/release/python-3109/
set err_msg=An error has occurred and the script could not continue.
@rem --------------------------- Intro -------------------------------
echo This script will install InvokeAI and its dependencies.
echo.
echo BEFORE YOU START PLEASE MAKE SURE TO DO THE FOLLOWING
echo 1. Install python 3.10 or 3.11. Python version 3.9 is no longer supported.
echo 2. Double-click on the file WinLongPathsEnabled.reg in order to
echo enable long path support on your system.
echo 3. Install the Visual C++ core libraries.
echo Please download and install the libraries from:
echo https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170
echo.
echo See %INSTRUCTIONS% for more details.
echo.
echo FOR THE BEST USER EXPERIENCE WE SUGGEST MAXIMIZING THIS WINDOW NOW.
pause
@rem ---------------------------- check Python version ---------------
echo ***** Checking and Updating Python *****
call python --version >.tmp1 2>.tmp2
if %errorlevel% == 1 (
set err_msg=Please install Python 3.10-11. See %INSTRUCTIONS% for details.
goto err_exit
)
for /f "tokens=2" %%i in (.tmp1) do set python_version=%%i
if "%python_version%" == "" (
set err_msg=No python was detected on your system. Please install Python version %MINIMUM_PYTHON_VERSION% or higher. We recommend Python 3.10.12 from %PYTHON_URL%
goto err_exit
)
call :compareVersions %MINIMUM_PYTHON_VERSION% %python_version%
if %errorlevel% == 1 (
set err_msg=Your version of Python is too low. You need at least %MINIMUM_PYTHON_VERSION% but you have %python_version%. We recommend Python 3.10.12 from %PYTHON_URL%
goto err_exit
)
@rem Cleanup
del /q .tmp1 .tmp2
@rem -------------- Install and Configure ---------------
call python .\lib\main.py
pause
exit /b
@rem ------------------------ Subroutines ---------------
@rem routine to do comparison of semantic version numbers
@rem found at https://stackoverflow.com/questions/15807762/compare-version-numbers-in-batch-file
:compareVersions
::
:: Compares two version numbers and returns the result in the ERRORLEVEL
::
:: Returns 1 if version1 > version2
:: 0 if version1 = version2
:: -1 if version1 < version2
::
:: The nodes must be delimited by . or , or -
::
:: Nodes are normally strictly numeric, without a 0 prefix. A letter suffix
:: is treated as a separate node
::
setlocal enableDelayedExpansion
set "v1=%~1"
set "v2=%~2"
call :divideLetters v1
call :divideLetters v2
:loop
call :parseNode "%v1%" n1 v1
call :parseNode "%v2%" n2 v2
if %n1% gtr %n2% exit /b 1
if %n1% lss %n2% exit /b -1
if not defined v1 if not defined v2 exit /b 0
if not defined v1 exit /b -1
if not defined v2 exit /b 1
goto :loop
:parseNode version nodeVar remainderVar
for /f "tokens=1* delims=.,-" %%A in ("%~1") do (
set "%~2=%%A"
set "%~3=%%B"
)
exit /b
:divideLetters versionVar
for %%C in (a b c d e f g h i j k l m n o p q r s t u v w x y z) do set "%~1=!%~1:%%C=.%%C!"
exit /b
:err_exit
echo %err_msg%
echo The installer will exit now.
pause
exit /b
pause
:Trim
SetLocal EnableDelayedExpansion
set Params=%*
for /f "tokens=1*" %%a in ("!Params!") do EndLocal & set %1=%%b
exit /b

View File

@@ -1,40 +0,0 @@
#!/bin/bash
# make sure we are not already in a venv
# (don't need to check status)
deactivate >/dev/null 2>&1
scriptdir=$(dirname "$0")
cd $scriptdir
function version { echo "$@" | awk -F. '{ printf("%d%03d%03d%03d\n", $1,$2,$3,$4); }'; }
MINIMUM_PYTHON_VERSION=3.10.0
MAXIMUM_PYTHON_VERSION=3.11.100
PYTHON=""
for candidate in python3.11 python3.10 python3 python ; do
if ppath=`which $candidate 2>/dev/null`; then
# when using `pyenv`, the executable for an inactive Python version will exist but will not be operational
# we check that this found executable can actually run
if [ $($candidate --version &>/dev/null; echo ${PIPESTATUS}) -gt 0 ]; then continue; fi
python_version=$($ppath -V | awk '{ print $2 }')
if [ $(version $python_version) -ge $(version "$MINIMUM_PYTHON_VERSION") ]; then
if [ $(version $python_version) -le $(version "$MAXIMUM_PYTHON_VERSION") ]; then
PYTHON=$ppath
break
fi
fi
fi
done
if [ -z "$PYTHON" ]; then
echo "A suitable Python interpreter could not be found"
echo "Please install Python $MINIMUM_PYTHON_VERSION or higher (maximum $MAXIMUM_PYTHON_VERSION) before running this script. See instructions at $INSTRUCTIONS for help."
read -p "Press any key to exit"
exit -1
fi
echo "For the best user experience we suggest enlarging or maximizing this window now."
exec $PYTHON ./lib/main.py ${@}
read -p "Press any key to exit"

View File

@@ -1,438 +0,0 @@
# Copyright (c) 2023 Eugene Brodsky (https://github.com/ebr)
"""
InvokeAI installer script
"""
import locale
import os
import platform
import re
import shutil
import subprocess
import sys
import venv
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional, Tuple
SUPPORTED_PYTHON = ">=3.10.0,<=3.11.100"
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
BOOTSTRAP_VENV_PREFIX = "invokeai-installer-tmp"
DOCS_URL = "https://invoke-ai.github.io/InvokeAI/"
DISCORD_URL = "https://discord.gg/ZmtBAhwWhy"
OS = platform.uname().system
ARCH = platform.uname().machine
VERSION = "latest"
def get_version_from_wheel_filename(wheel_filename: str) -> str:
match = re.search(r"-(\d+\.\d+\.\d+)", wheel_filename)
if match:
version = match.group(1)
return version
else:
raise ValueError(f"Could not extract version from wheel filename: {wheel_filename}")
class Installer:
"""
Deploys an InvokeAI installation into a given path
"""
reqs: list[str] = INSTALLER_REQS
def __init__(self) -> None:
if os.getenv("VIRTUAL_ENV") is not None:
print("A virtual environment is already activated. Please 'deactivate' before installation.")
sys.exit(-1)
self.bootstrap()
self.available_releases = get_github_releases()
def mktemp_venv(self) -> TemporaryDirectory[str]:
"""
Creates a temporary virtual environment for the installer itself
:return: path to the created virtual environment directory
:rtype: TemporaryDirectory
"""
# Cleaning up temporary directories on Windows results in a race condition
# and a stack trace.
# `ignore_cleanup_errors` was only added in Python 3.10
if OS == "Windows" and int(platform.python_version_tuple()[1]) >= 10:
venv_dir = TemporaryDirectory(prefix=BOOTSTRAP_VENV_PREFIX, ignore_cleanup_errors=True)
else:
venv_dir = TemporaryDirectory(prefix=BOOTSTRAP_VENV_PREFIX)
venv.create(venv_dir.name, with_pip=True)
self.venv_dir = venv_dir
set_sys_path(Path(venv_dir.name))
return venv_dir
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory[str] | None:
"""
Bootstrap the installer venv with packages required at install time
"""
print("Initializing the installer. This may take a minute - please wait...")
venv_dir = self.mktemp_venv()
pip = get_pip_from_venv(Path(venv_dir.name))
cmd = [pip, "install", "--require-virtualenv", "--use-pep517"]
cmd.extend(self.reqs)
try:
# upgrade pip to the latest version to avoid a confusing message
res = upgrade_pip(Path(venv_dir.name))
if verbose:
print(res)
# run the install prerequisites installation
res = subprocess.check_output(cmd).decode()
if verbose:
print(res)
return venv_dir
except subprocess.CalledProcessError as e:
print(e)
def app_venv(self, venv_parent: Path) -> Path:
"""
Create a virtualenv for the InvokeAI installation
"""
venv_dir = venv_parent / ".venv"
# Prefer to copy python executables
# so that updates to system python don't break InvokeAI
try:
venv.create(venv_dir, with_pip=True)
# If installing over an existing environment previously created with symlinks,
# the executables will fail to copy. Keep symlinks in that case
except shutil.SameFileError:
venv.create(venv_dir, with_pip=True, symlinks=True)
return venv_dir
def install(
self,
root: str = "~/invokeai",
yes_to_all: bool = False,
find_links: Optional[str] = None,
wheel: Optional[Path] = None,
) -> None:
"""Install the InvokeAI application into the given runtime path
Args:
root: Destination path for the installation
yes_to_all: Accept defaults to all questions
find_links: A local directory to search for requirement wheels before going to remote indexes
wheel: A wheel file to install
"""
import messages
if wheel:
messages.installing_from_wheel(wheel.name)
version = get_version_from_wheel_filename(wheel.name)
else:
messages.welcome(self.available_releases)
version = messages.choose_version(self.available_releases)
auto_dest = Path(os.environ.get("INVOKEAI_ROOT", root)).expanduser().resolve()
destination = auto_dest if yes_to_all else messages.dest_path(root)
if destination is None:
print("Could not find or create the destination directory. Installation cancelled.")
sys.exit(0)
# create the venv for the app
self.venv = self.app_venv(venv_parent=destination)
self.instance = InvokeAiInstance(runtime=destination, venv=self.venv, version=version)
# install dependencies and the InvokeAI application
(extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None)
self.instance.install(extra_index_url, optional_modules, find_links, wheel)
# install the launch/update scripts into the runtime directory
self.instance.install_user_scripts()
message = f"""
*** Installation Successful ***
To start the application, run:
{destination}/invoke.{"bat" if sys.platform == "win32" else "sh"}
For more information, troubleshooting and support, visit our docs at:
{DOCS_URL}
Join the community on Discord:
{DISCORD_URL}
"""
print(message)
class InvokeAiInstance:
"""
Manages an installed instance of InvokeAI, comprising a virtual environment and a runtime directory.
The virtual environment *may* reside within the runtime directory.
A single runtime directory *may* be shared by multiple virtual environments, though this isn't currently tested or supported.
"""
def __init__(self, runtime: Path, venv: Path, version: str = "stable") -> None:
self.runtime = runtime
self.venv = venv
self.pip = get_pip_from_venv(venv)
self.version = version
set_sys_path(venv)
os.environ["INVOKEAI_ROOT"] = str(self.runtime.expanduser().resolve())
os.environ["VIRTUAL_ENV"] = str(self.venv.expanduser().resolve())
upgrade_pip(venv)
def get(self) -> tuple[Path, Path]:
"""
Get the location of the virtualenv directory for this installation
:return: Paths of the runtime and the venv directory
:rtype: tuple[Path, Path]
"""
return (self.runtime, self.venv)
def install(
self,
extra_index_url: Optional[str] = None,
optional_modules: Optional[str] = None,
find_links: Optional[str] = None,
wheel: Optional[Path] = None,
):
"""Install the package from PyPi or a wheel, if provided.
Args:
extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
optional_modules: optional modules to install using "[module1,module2]" format.
find_links: path to a directory containing wheels to be searched prior to going to the internet
wheel: a wheel file to install
"""
import messages
# not currently used, but may be useful for "install most recent version" option
if self.version == "prerelease":
version = None
pre_flag = "--pre"
elif self.version == "stable":
version = None
pre_flag = None
else:
version = self.version
pre_flag = None
src = "invokeai"
if optional_modules:
src += optional_modules
if version:
src += f"=={version}"
messages.simple_banner("Installing the InvokeAI Application :art:")
from plumbum import FG, ProcessExecutionError, local
pip = local[self.pip]
# Uninstall xformers if it is present; the correct version of it will be reinstalled if needed
_ = pip["uninstall", "-yqq", "xformers"] & FG
pipeline = pip[
"install",
"--require-virtualenv",
"--force-reinstall",
"--use-pep517",
str(src) if not wheel else str(wheel),
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
pre_flag if not wheel else None, # Ignore the flag if we are installing a wheel
]
try:
_ = pipeline & FG
except ProcessExecutionError as e:
print(f"Error: {e}")
print(
"Could not install InvokeAI. Please try downloading the latest version of the installer and install again."
)
sys.exit(1)
def install_user_scripts(self):
"""
Copy the launch and update scripts to the runtime dir
"""
ext = "bat" if OS == "Windows" else "sh"
scripts = ["invoke"]
for script in scripts:
src = Path(__file__).parent / ".." / "templates" / f"{script}.{ext}.in"
dest = self.runtime / f"{script}.{ext}"
shutil.copy(src, dest)
os.chmod(dest, 0o0755)
### Utility functions ###
def get_pip_from_venv(venv_path: Path) -> str:
"""
Given a path to a virtual environment, get the absolute path to the `pip` executable
in a cross-platform fashion. Does not validate that the pip executable
actually exists in the virtualenv.
:param venv_path: Path to the virtual environment
:type venv_path: Path
:return: Absolute path to the pip executable
:rtype: str
"""
pip = "Scripts\\pip.exe" if OS == "Windows" else "bin/pip"
return str(venv_path.expanduser().resolve() / pip)
def upgrade_pip(venv_path: Path) -> str | None:
"""
Upgrade the pip executable in the given virtual environment
"""
python = "Scripts\\python.exe" if OS == "Windows" else "bin/python"
python = str(venv_path.expanduser().resolve() / python)
try:
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode(
encoding=locale.getpreferredencoding()
)
except subprocess.CalledProcessError as e:
print(e)
result = None
return result
def set_sys_path(venv_path: Path) -> None:
"""
Given a path to a virtual environment, set the sys.path, in a cross-platform fashion,
such that packages from the given venv may be imported in the current process.
Ensure that the packages from system environment are not visible (emulate
the virtual env 'activate' script) - this doesn't work on Windows yet.
:param venv_path: Path to the virtual environment
:type venv_path: Path
"""
# filter out any paths in sys.path that may be system- or user-wide
# but leave the temporary bootstrap virtualenv as it contains packages we
# temporarily need at install time
sys.path = list(filter(lambda p: not p.endswith("-packages") or p.find(BOOTSTRAP_VENV_PREFIX) != -1, sys.path))
# determine site-packages/lib directory location for the venv
lib = "Lib" if OS == "Windows" else f"lib/python{sys.version_info.major}.{sys.version_info.minor}"
# add the site-packages location to the venv
sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve()))
def get_github_releases() -> tuple[list[str], list[str]] | None:
"""
Query Github for published (pre-)release versions.
Return a tuple where the first element is a list of stable releases and the second element is a list of pre-releases.
Return None if the query fails for any reason.
"""
import requests
## get latest releases using github api
url = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
releases: list[str] = []
pre_releases: list[str] = []
try:
res = requests.get(url)
res.raise_for_status()
tag_info = res.json()
for tag in tag_info:
if not tag["prerelease"]:
releases.append(tag["tag_name"].lstrip("v"))
else:
pre_releases.append(tag["tag_name"].lstrip("v"))
except requests.HTTPError as e:
print(f"Error: {e}")
print("Could not fetch version information from GitHub. Please check your network connection and try again.")
return
except Exception as e:
print(f"Error: {e}")
print("An unexpected error occurred while trying to fetch version information from GitHub. Please try again.")
return
releases.sort(reverse=True)
pre_releases.sort(reverse=True)
return releases, pre_releases
def get_torch_source() -> Tuple[str | None, str | None]:
"""
Determine the extra index URL for pip to use for torch installation.
This depends on the OS and the graphics accelerator in use.
This is only applicable to Windows and Linux, since PyTorch does not
offer accelerated builds for macOS.
Prefer CUDA-enabled wheels if the user wasn't sure of their GPU, as it will fallback to CPU if possible.
A NoneType return means just go to PyPi.
:return: tuple consisting of (extra index url or None, optional modules to load or None)
:rtype: list
"""
from messages import GpuType, select_gpu
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect"
device = select_gpu()
# The correct extra index URLs for torch are inconsistent, see https://pytorch.org/get-started/locally/#start-locally
url = None
optional_modules: str | None = None
if OS == "Linux":
if device == GpuType.ROCM:
url = "https://download.pytorch.org/whl/rocm6.1"
elif device == GpuType.CPU:
url = "https://download.pytorch.org/whl/cpu"
elif device == GpuType.CUDA:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[onnx-cuda]"
elif device == GpuType.CUDA_WITH_XFORMERS:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[xformers,onnx-cuda]"
elif OS == "Windows":
if device == GpuType.CUDA:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[onnx-cuda]"
elif device == GpuType.CUDA_WITH_XFORMERS:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[xformers,onnx-cuda]"
elif device.value == "cpu":
# CPU uses the default PyPi index, no optional modules
pass
elif OS == "Darwin":
# macOS uses the default PyPi index, no optional modules
pass
# Fall back to defaults
return (url, optional_modules)

View File

@@ -1,57 +0,0 @@
"""
InvokeAI Installer
"""
import argparse
import os
from pathlib import Path
from installer import Installer
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--root",
dest="root",
type=str,
help="Destination path for installation",
default=os.environ.get("INVOKEAI_ROOT") or "~/invokeai",
)
parser.add_argument(
"-y",
"--yes",
"--yes-to-all",
dest="yes_to_all",
action="store_true",
help="Assume default answers to all questions",
default=False,
)
parser.add_argument(
"--find-links",
dest="find_links",
help="Specifies a directory of local wheel files to be searched prior to searching the online repositories.",
type=Path,
default=None,
)
parser.add_argument(
"--wheel",
dest="wheel",
help="Specifies a wheel for the InvokeAI package. Used for troubleshooting or testing prereleases.",
type=Path,
default=None,
)
args = parser.parse_args()
inst = Installer()
try:
inst.install(**args.__dict__)
except KeyboardInterrupt:
print("\n")
print("Ctrl-C pressed. Aborting.")
print("Come back soon!")

View File

@@ -1,342 +0,0 @@
# Copyright (c) 2023 Eugene Brodsky (https://github.com/ebr)
"""
Installer user interaction
"""
import os
import platform
from enum import Enum
from pathlib import Path
from typing import Optional
from prompt_toolkit import prompt
from prompt_toolkit.completion import FuzzyWordCompleter, PathCompleter
from prompt_toolkit.validation import Validator
from rich import box, print
from rich.console import Console, Group, group
from rich.panel import Panel
from rich.prompt import Confirm
from rich.style import Style
from rich.syntax import Syntax
from rich.text import Text
OS = platform.uname().system
ARCH = platform.uname().machine
if OS == "Windows":
# Windows terminals look better without a background colour
console = Console(style=Style(color="grey74"))
else:
console = Console(style=Style(color="grey74", bgcolor="grey19"))
def welcome(available_releases: tuple[list[str], list[str]] | None = None) -> None:
@group()
def text():
if (platform_specific := _platform_specific_help()) is not None:
yield platform_specific
yield ""
yield Text.from_markup(
"Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.",
justify="center",
)
if available_releases is not None:
latest_stable = available_releases[0][0]
last_pre = available_releases[1][0]
yield ""
yield Text.from_markup(
f"[red3]🠶[/] Latest stable release (recommended): [b bright_white]{latest_stable}", justify="center"
)
yield Text.from_markup(
f"[red3]🠶[/] Last published pre-release version: [b bright_white]{last_pre}", justify="center"
)
console.rule()
print(
Panel(
title="[bold wheat1]Welcome to the InvokeAI Installer",
renderable=text(),
box=box.DOUBLE,
expand=True,
padding=(1, 2),
style=Style(bgcolor="grey23", color="orange1"),
subtitle=f"[bold grey39]{OS}-{ARCH}",
)
)
console.line()
def installing_from_wheel(wheel_filename: str) -> None:
"""Display a message about installing from a wheel"""
@group()
def text():
yield Text.from_markup(f"You are installing from a wheel file: [bold]{wheel_filename}\n")
yield Text.from_markup(
"[bold orange3]If you are not sure why you are doing this, you should cancel and install InvokeAI normally."
)
console.print(
Panel(
title="Installing from Wheel",
renderable=text(),
box=box.DOUBLE,
expand=True,
padding=(1, 2),
)
)
should_proceed = Confirm.ask("Do you want to proceed?")
if not should_proceed:
console.print("Installation cancelled.")
exit()
def choose_version(available_releases: tuple[list[str], list[str]] | None = None) -> str:
"""
Prompt the user to choose an Invoke version to install
"""
# short circuit if we couldn't get a version list
# still try to install the latest stable version
if available_releases is None:
return "stable"
console.print(":grey_question: [orange3]Please choose an Invoke version to install.")
choices = available_releases[0] + available_releases[1]
response = prompt(
message=f" <Enter> to install the recommended release ({choices[0]}). <Tab> or type to pick a version: ",
complete_while_typing=True,
completer=FuzzyWordCompleter(choices),
)
console.print(f" Version {choices[0] if response == '' else response} will be installed.")
console.line()
return "stable" if response == "" else response
def confirm_install(dest: Path) -> bool:
if dest.exists():
print(f":stop_sign: Directory {dest} already exists!")
print(" Is this location correct?")
default = False
else:
print(f":file_folder: InvokeAI will be installed in {dest}")
default = True
dest_confirmed = Confirm.ask(" Please confirm:", default=default)
console.line()
return dest_confirmed
def dest_path(dest: Optional[str | Path] = None) -> Path | None:
"""
Prompt the user for the destination path and create the path
:param dest: a filesystem path, defaults to None
:type dest: str, optional
:return: absolute path to the created installation directory
:rtype: Path
"""
if dest is not None:
dest = Path(dest).expanduser().resolve()
else:
dest = Path.cwd().expanduser().resolve()
prev_dest = init_path = dest
dest_confirmed = False
while not dest_confirmed:
browse_start = (dest or Path.cwd()).expanduser().resolve()
path_completer = PathCompleter(
only_directories=True,
expanduser=True,
get_paths=lambda: [str(browse_start)], # noqa: B023
# get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
)
console.line()
console.print(f":grey_question: [orange3]Please select the install destination:[/] \\[{browse_start}]: ")
selected = prompt(
">>> ",
complete_in_thread=True,
completer=path_completer,
default=str(browse_start) + os.sep,
vi_mode=True,
complete_while_typing=True,
# Test that this is not needed on Windows
# complete_style=CompleteStyle.READLINE_LIKE,
)
prev_dest = dest
dest = Path(selected)
console.line()
dest_confirmed = confirm_install(dest.expanduser().resolve())
if not dest_confirmed:
dest = prev_dest
dest = dest.expanduser().resolve()
try:
dest.mkdir(exist_ok=True, parents=True)
return dest
except PermissionError:
console.print(
f"Failed to create directory {dest} due to insufficient permissions",
style=Style(color="red"),
highlight=True,
)
except OSError:
console.print_exception()
if Confirm.ask("Would you like to try again?"):
dest_path(init_path)
else:
console.rule("Goodbye!")
class GpuType(Enum):
CUDA_WITH_XFORMERS = "xformers"
CUDA = "cuda"
ROCM = "rocm"
CPU = "cpu"
def select_gpu() -> GpuType:
"""
Prompt the user to select the GPU driver
"""
if ARCH == "arm64" and OS != "Darwin":
print(f"Only CPU acceleration is available on {ARCH} architecture. Proceeding with that.")
return GpuType.CPU
nvidia = (
"an [gold1 b]NVIDIA[/] RTX 3060 or newer GPU using CUDA",
GpuType.CUDA,
)
vintage_nvidia = (
"an [gold1 b]NVIDIA[/] RTX 20xx or older GPU using CUDA+xFormers",
GpuType.CUDA_WITH_XFORMERS,
)
amd = (
"an [gold1 b]AMD[/] GPU using ROCm",
GpuType.ROCM,
)
cpu = (
"Do not install any GPU support, use CPU for generation (slow)",
GpuType.CPU,
)
options = []
if OS == "Windows":
options = [nvidia, vintage_nvidia, cpu]
if OS == "Linux":
options = [nvidia, vintage_nvidia, amd, cpu]
elif OS == "Darwin":
options = [cpu]
if len(options) == 1:
return options[0][1]
options = {str(i): opt for i, opt in enumerate(options, 1)}
console.rule(":space_invader: GPU (Graphics Card) selection :space_invader:")
console.print(
Panel(
Group(
"\n".join(
[
f"Detected the [gold1]{OS}-{ARCH}[/] platform",
"",
"See [deep_sky_blue1]https://invoke-ai.github.io/InvokeAI/installation/requirements/[/] to ensure your system meets the minimum requirements.",
"",
"[red3]🠶[/] [b]Your GPU drivers must be correctly installed before using InvokeAI![/] [red3]🠴[/]",
]
),
"",
"Please select the type of GPU installed in your computer.",
Panel(
"\n".join([f"[dark_goldenrod b i]{i}[/] [dark_red]🢒[/]{opt[0]}" for (i, opt) in options.items()]),
box=box.MINIMAL,
),
),
box=box.MINIMAL,
padding=(1, 1),
)
)
choice = prompt(
"Please make your selection: ",
validator=Validator.from_callable(
lambda n: n in options.keys(), error_message="Please select one the above options"
),
)
return options[choice][1]
def simple_banner(message: str) -> None:
"""
A simple banner with a message, defined here for styling consistency
:param message: The message to display
:type message: str
"""
console.rule(message)
# TODO this does not yet work correctly
def windows_long_paths_registry() -> None:
"""
Display a message about applying the Windows long paths registry fix
"""
with open(str(Path(__file__).parent / "WinLongPathsEnabled.reg"), "r", encoding="utf-16le") as code:
syntax = Syntax(code.read(), line_numbers=True, lexer="regedit")
console.print(
Panel(
Group(
"\n".join(
[
"We will now apply a registry fix to enable long paths on Windows. InvokeAI needs this to function correctly. We are asking your permission to modify the Windows Registry on your behalf.",
"",
"This is the change that will be applied:",
str(syntax),
]
)
),
title="Windows Long Paths registry fix",
box=box.HORIZONTALS,
padding=(1, 1),
)
)
def _platform_specific_help() -> Text | None:
if OS == "Darwin":
text = Text.from_markup(
"""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/]."""
)
elif OS == "Windows":
text = Text.from_markup(
"""[b wheat1]Windows Users![/]\n\nBefore you start, please do the following:
1. Double-click on the file [b wheat1]WinLongPathsEnabled.reg[/] in order to
enable long path support on your system.
2. Make sure you have the [b wheat1]Visual C++ core libraries[/] installed. If not, install from
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]"""
)
else:
return
return text

View File

@@ -1,52 +0,0 @@
InvokeAI
Project homepage: https://github.com/invoke-ai/InvokeAI
Preparations:
You will need to install Python 3.10 or higher for this installer
to work. Instructions are given here:
https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
Before you start the installer, please open up your system's command
line window (Terminal or Command) and type the commands:
python --version
If all is well, it will print "Python 3.X.X", where the version number
is at least 3.10.*, and not higher than 3.11.*.
If this works, check the version of the Python package manager, pip:
pip --version
You should get a message that indicates that the pip package
installer was derived from Python 3.10 or 3.11. For example:
"pip 22.0.1 from /usr/bin/pip (python 3.10)"
Long Paths on Windows:
If you are on Windows, you will need to enable Windows Long Paths to
run InvokeAI successfully. If you're not sure what this is, you
almost certainly need to do this.
Simply double-click the "WinLongPathsEnabled.reg" file located in
this directory, and approve the Windows warnings. Note that you will
need to have admin privileges in order to do this.
Launching the installer:
Windows: double-click the 'install.bat' file (while keeping it inside
the InvokeAI-Installer folder).
Linux and Mac: Please open the terminal application and run
'./install.sh' (while keeping it inside the InvokeAI-Installer
folder).
The installer will create a directory of your choice and install the
InvokeAI application within it. This directory contains everything you need to run
invokeai. Once InvokeAI is up and running, you may delete the
InvokeAI-Installer folder at your convenience.
For more information, please see
https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/

View File

@@ -1,54 +0,0 @@
@echo off
PUSHD "%~dp0"
setlocal
call .venv\Scripts\activate.bat
set INVOKEAI_ROOT=.
:start
echo Desired action:
echo 1. Generate images with the browser-based interface
echo 2. Open the developer console
echo 3. Command-line help
echo Q - Quit
echo.
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest
echo.
set /P choice="Please enter 1-4, Q: [1] "
if not defined choice set choice=1
IF /I "%choice%" == "1" (
echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invokeai-web.exe %*
) ELSE IF /I "%choice%" == "2" (
echo Developer Console
echo Python command is:
where python
echo Python version is:
python --version
echo *************************
echo You are now in the system shell, with the local InvokeAI Python virtual environment activated,
echo so that you can troubleshoot this InvokeAI installation as necessary.
echo *************************
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) ELSE IF /I "%choice%" == "3" (
echo Displaying command line help...
python .venv\Scripts\invokeai-web.exe --help %*
pause
exit /b
) ELSE IF /I "%choice%" == "q" (
echo Goodbye!
goto ending
) ELSE (
echo Invalid selection
pause
exit /b
)
goto start
endlocal
pause
:ending
exit /b

View File

@@ -1,87 +0,0 @@
#!/bin/bash
# MIT License
# Coauthored by Lincoln Stein, Eugene Brodsky and Joshua Kimsey
# Copyright 2023, The InvokeAI Development Team
####
# This launch script assumes that:
# 1. it is located in the runtime directory,
# 2. the .venv is also located in the runtime directory and is named exactly that
#
# If both of the above are not true, this script will likely not work as intended.
# Activate the virtual environment and run `invoke.py` directly.
####
set -eu
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname $(readlink -f "$0"))
cd "$scriptdir"
. .venv/bin/activate
export INVOKEAI_ROOT="$scriptdir"
# Stash the CLI args - when we prompt for user input, `$@` is overwritten
PARAMS=$@
# This setting allows torch to fall back to CPU for operations that are not supported by MPS on macOS.
if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
# Primary function for the case statement to determine user input
do_choice() {
case $1 in
1)
clear
printf "Generate images with a browser-based interface\n"
invokeai-web $PARAMS
;;
2)
clear
printf "Open the developer console\n"
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
;;
3)
clear
printf "Command-line help\n"
invokeai-web --help
;;
*)
clear
printf "Exiting...\n"
exit
;;
esac
clear
}
# Command-line interface for launching Invoke functions
do_line_input() {
clear
printf "What would you like to do?\n"
printf "1: Generate images using the browser-based interface\n"
printf "2: Open the developer console\n"
printf "3: Command-line help\n"
printf "Q: Quit\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest\n\n"
read -p "Please enter 1-4, Q: [1] " yn
choice=${yn:='1'}
do_choice $choice
clear
}
# Main IF statement for launching Invoke, and for checking if the user is in the developer console
if [ "$0" != "bash" ]; then
while true; do
do_line_input
done
else # in developer console
python --version
printf "Press ^D to exit\n"
export PS1="(InvokeAI) \u@\h \w> "
fi

View File

@@ -10,6 +10,7 @@ from invokeai.app.services.board_images.board_images_default import BoardImagesS
from invokeai.app.services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from invokeai.app.services.boards.boards_default import BoardService
from invokeai.app.services.bulk_download.bulk_download_default import BulkDownloadService
from invokeai.app.services.client_state_persistence.client_state_persistence_sqlite import ClientStatePersistenceSqlite
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.download.download_default import DownloadQueueService
from invokeai.app.services.events.events_fastapievents import FastAPIEventService
@@ -23,6 +24,10 @@ from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_default import ModelImageFileStorageDisk
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService
from invokeai.app.services.model_records.model_records_sql import ModelRecordServiceSQL
from invokeai.app.services.model_relationship_records.model_relationship_records_sqlite import (
SqliteModelRelationshipRecordStorage,
)
from invokeai.app.services.model_relationships.model_relationships_default import ModelRelationshipsService
from invokeai.app.services.names.names_default import SimpleNameService
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
@@ -37,7 +42,14 @@ from invokeai.app.services.style_preset_records.style_preset_records_sqlite impo
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.app.services.workflow_thumbnails.workflow_thumbnails_disk import WorkflowThumbnailFileStorageDisk
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
CogView4ConditioningInfo,
ConditioningFieldData,
FLUXConditioningInfo,
SD3ConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
@@ -101,10 +113,25 @@ class ApiDependencies:
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
tensors = ObjectSerializerForwardCache(
ObjectSerializerDisk[torch.Tensor](output_folder / "tensors", ephemeral=True)
ObjectSerializerDisk[torch.Tensor](
output_folder / "tensors",
safe_globals=[torch.Tensor],
ephemeral=True,
),
)
conditioning = ObjectSerializerForwardCache(
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
ObjectSerializerDisk[ConditioningFieldData](
output_folder / "conditioning",
safe_globals=[
ConditioningFieldData,
BasicConditioningInfo,
SDXLConditioningInfo,
FLUXConditioningInfo,
SD3ConditioningInfo,
CogView4ConditioningInfo,
],
ephemeral=True,
),
)
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
@@ -114,6 +141,8 @@ class ApiDependencies:
download_queue=download_queue_service,
events=events,
)
model_relationships = ModelRelationshipsService()
model_relationship_records = SqliteModelRelationshipRecordStorage(db=db)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
session_processor = DefaultSessionProcessor(session_runner=DefaultSessionRunner())
@@ -123,6 +152,7 @@ class ApiDependencies:
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
workflow_thumbnails = WorkflowThumbnailFileStorageDisk(workflow_thumbnails_folder)
client_state_persistence = ClientStatePersistenceSqlite(db=db)
services = InvocationServices(
board_image_records=board_image_records,
@@ -139,6 +169,8 @@ class ApiDependencies:
logger=logger,
model_images=model_images_service,
model_manager=model_manager,
model_relationships=model_relationships,
model_relationship_records=model_relationship_records,
download_queue=download_queue_service,
names=names,
performance_statistics=performance_statistics,
@@ -151,6 +183,7 @@ class ApiDependencies:
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
workflow_thumbnails=workflow_thumbnails,
client_state_persistence=client_state_persistence,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -1,8 +1,7 @@
import typing
from enum import Enum
from importlib.metadata import PackageNotFoundError, version
from importlib.metadata import distributions
from pathlib import Path
from platform import python_version
from typing import Optional
import torch
@@ -44,24 +43,6 @@ class AppVersion(BaseModel):
highlights: Optional[list[str]] = Field(default=None, description="Highlights of release")
class AppDependencyVersions(BaseModel):
"""App depencency Versions Response"""
accelerate: str = Field(description="accelerate version")
compel: str = Field(description="compel version")
cuda: Optional[str] = Field(description="CUDA version")
diffusers: str = Field(description="diffusers version")
numpy: str = Field(description="Numpy version")
opencv: str = Field(description="OpenCV version")
onnx: str = Field(description="ONNX version")
pillow: str = Field(description="Pillow (PIL) version")
python: str = Field(description="Python version")
torch: str = Field(description="PyTorch version")
torchvision: str = Field(description="PyTorch Vision version")
transformers: str = Field(description="transformers version")
xformers: Optional[str] = Field(description="xformers version")
class AppConfig(BaseModel):
"""App Config Response"""
@@ -76,27 +57,19 @@ async def get_version() -> AppVersion:
return AppVersion(version=__version__)
@app_router.get("/app_deps", operation_id="get_app_deps", status_code=200, response_model=AppDependencyVersions)
async def get_app_deps() -> AppDependencyVersions:
@app_router.get("/app_deps", operation_id="get_app_deps", status_code=200, response_model=dict[str, str])
async def get_app_deps() -> dict[str, str]:
deps: dict[str, str] = {dist.metadata["Name"]: dist.version for dist in distributions()}
try:
xformers = version("xformers")
except PackageNotFoundError:
xformers = None
return AppDependencyVersions(
accelerate=version("accelerate"),
compel=version("compel"),
cuda=torch.version.cuda,
diffusers=version("diffusers"),
numpy=version("numpy"),
opencv=version("opencv-python"),
onnx=version("onnx"),
pillow=version("pillow"),
python=python_version(),
torch=torch.version.__version__,
torchvision=version("torchvision"),
transformers=version("transformers"),
xformers=xformers,
)
cuda = torch.version.cuda or "N/A"
except Exception:
cuda = "N/A"
deps["CUDA"] = cuda
sorted_deps = dict(sorted(deps.items(), key=lambda item: item[0].lower()))
return sorted_deps
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)

View File

@@ -1,21 +1,12 @@
from fastapi import Body, HTTPException
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.images.images_common import AddImagesToBoardResult, RemoveImagesFromBoardResult
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
class AddImagesToBoardResult(BaseModel):
board_id: str = Field(description="The id of the board the images were added to")
added_image_names: list[str] = Field(description="The image names that were added to the board")
class RemoveImagesFromBoardResult(BaseModel):
removed_image_names: list[str] = Field(description="The image names that were removed from their board")
@board_images_router.post(
"/",
operation_id="add_image_to_board",
@@ -23,17 +14,26 @@ class RemoveImagesFromBoardResult(BaseModel):
201: {"description": "The image was added to a board successfully"},
},
status_code=201,
response_model=AddImagesToBoardResult,
)
async def add_image_to_board(
board_id: str = Body(description="The id of the board to add to"),
image_name: str = Body(description="The name of the image to add"),
):
) -> AddImagesToBoardResult:
"""Creates a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.add_image_to_board(
board_id=board_id, image_name=image_name
added_images: set[str] = set()
affected_boards: set[str] = set()
old_board_id = ApiDependencies.invoker.services.images.get_dto(image_name).board_id or "none"
ApiDependencies.invoker.services.board_images.add_image_to_board(board_id=board_id, image_name=image_name)
added_images.add(image_name)
affected_boards.add(board_id)
affected_boards.add(old_board_id)
return AddImagesToBoardResult(
added_images=list(added_images),
affected_boards=list(affected_boards),
)
return result
except Exception:
raise HTTPException(status_code=500, detail="Failed to add image to board")
@@ -45,14 +45,25 @@ async def add_image_to_board(
201: {"description": "The image was removed from the board successfully"},
},
status_code=201,
response_model=RemoveImagesFromBoardResult,
)
async def remove_image_from_board(
image_name: str = Body(description="The name of the image to remove", embed=True),
):
) -> RemoveImagesFromBoardResult:
"""Removes an image from its board, if it had one"""
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
return result
removed_images: set[str] = set()
affected_boards: set[str] = set()
old_board_id = ApiDependencies.invoker.services.images.get_dto(image_name).board_id or "none"
ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
removed_images.add(image_name)
affected_boards.add("none")
affected_boards.add(old_board_id)
return RemoveImagesFromBoardResult(
removed_images=list(removed_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to remove image from board")
@@ -72,16 +83,25 @@ async def add_images_to_board(
) -> AddImagesToBoardResult:
"""Adds a list of images to a board"""
try:
added_image_names: list[str] = []
added_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
old_board_id = ApiDependencies.invoker.services.images.get_dto(image_name).board_id or "none"
ApiDependencies.invoker.services.board_images.add_image_to_board(
board_id=board_id, image_name=image_name
board_id=board_id,
image_name=image_name,
)
added_image_names.append(image_name)
added_images.add(image_name)
affected_boards.add(board_id)
affected_boards.add(old_board_id)
except Exception:
pass
return AddImagesToBoardResult(board_id=board_id, added_image_names=added_image_names)
return AddImagesToBoardResult(
added_images=list(added_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to add images to board")
@@ -100,13 +120,20 @@ async def remove_images_from_board(
) -> RemoveImagesFromBoardResult:
"""Removes a list of images from their board, if they had one"""
try:
removed_image_names: list[str] = []
removed_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
old_board_id = ApiDependencies.invoker.services.images.get_dto(image_name).board_id or "none"
ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
removed_image_names.append(image_name)
removed_images.add(image_name)
affected_boards.add("none")
affected_boards.add(old_board_id)
except Exception:
pass
return RemoveImagesFromBoardResult(removed_image_names=removed_image_names)
return RemoveImagesFromBoardResult(
removed_images=list(removed_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to remove images from board")

View File

@@ -0,0 +1,39 @@
from fastapi import Body, HTTPException
from fastapi.routing import APIRouter
from invokeai.app.services.videos_common import AddVideosToBoardResult, RemoveVideosFromBoardResult
board_videos_router = APIRouter(prefix="/v1/board_videos", tags=["boards"])
@board_videos_router.post(
"/batch",
operation_id="add_videos_to_board",
responses={
201: {"description": "Videos were added to board successfully"},
},
status_code=201,
response_model=AddVideosToBoardResult,
)
async def add_videos_to_board(
board_id: str = Body(description="The id of the board to add to"),
video_ids: list[str] = Body(description="The ids of the videos to add", embed=True),
) -> AddVideosToBoardResult:
"""Adds a list of videos to a board"""
raise HTTPException(status_code=501, detail="Not implemented")
@board_videos_router.post(
"/batch/delete",
operation_id="remove_videos_from_board",
responses={
201: {"description": "Videos were removed from board successfully"},
},
status_code=201,
response_model=RemoveVideosFromBoardResult,
)
async def remove_videos_from_board(
video_ids: list[str] = Body(description="The ids of the videos to remove", embed=True),
) -> RemoveVideosFromBoardResult:
"""Removes a list of videos from their board, if they had one"""
raise HTTPException(status_code=501, detail="Not implemented")

View File

@@ -146,7 +146,7 @@ async def list_boards(
response_model=list[str],
)
async def list_all_board_image_names(
board_id: str = Path(description="The id of the board"),
board_id: str = Path(description="The id of the board or 'none' for uncategorized images"),
categories: list[ImageCategory] | None = Query(default=None, description="The categories of image to include."),
is_intermediate: bool | None = Query(default=None, description="Whether to list intermediate images."),
) -> list[str]:

View File

@@ -0,0 +1,58 @@
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.backend.util.logging import logging
client_state_router = APIRouter(prefix="/v1/client_state", tags=["client_state"])
@client_state_router.get(
"/{queue_id}/get_by_key",
operation_id="get_client_state_by_key",
response_model=str | None,
)
async def get_client_state_by_key(
queue_id: str = Path(description="The queue id to perform this operation on"),
key: str = Query(..., description="Key to get"),
) -> str | None:
"""Gets the client state"""
try:
return ApiDependencies.invoker.services.client_state_persistence.get_by_key(queue_id, key)
except Exception as e:
logging.error(f"Error getting client state: {e}")
raise HTTPException(status_code=500, detail="Error setting client state")
@client_state_router.post(
"/{queue_id}/set_by_key",
operation_id="set_client_state",
response_model=str,
)
async def set_client_state(
queue_id: str = Path(description="The queue id to perform this operation on"),
key: str = Query(..., description="Key to set"),
value: str = Body(..., description="Stringified value to set"),
) -> str:
"""Sets the client state"""
try:
return ApiDependencies.invoker.services.client_state_persistence.set_by_key(queue_id, key, value)
except Exception as e:
logging.error(f"Error setting client state: {e}")
raise HTTPException(status_code=500, detail="Error setting client state")
@client_state_router.post(
"/{queue_id}/delete",
operation_id="delete_client_state",
responses={204: {"description": "Client state deleted"}},
)
async def delete_client_state(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> None:
"""Deletes the client state"""
try:
ApiDependencies.invoker.services.client_state_persistence.delete(queue_id)
except Exception as e:
logging.error(f"Error deleting client state: {e}")
raise HTTPException(status_code=500, detail="Error deleting client state")

View File

@@ -1,24 +1,34 @@
import io
import json
import traceback
from typing import Optional
from typing import ClassVar, Optional
from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, model_validator
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.extract_metadata_from_image import extract_metadata_from_image
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageNamesResult,
ImageRecordChanges,
ResourceOrigin,
)
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.images.images_common import (
DeleteImagesResult,
ImageDTO,
ImageUrlsDTO,
StarredImagesResult,
UnstarredImagesResult,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.util.controlnet_utils import heuristic_resize_fast
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@@ -27,6 +37,19 @@ images_router = APIRouter(prefix="/v1/images", tags=["images"])
IMAGE_MAX_AGE = 31536000
class ResizeToDimensions(BaseModel):
width: int = Field(..., gt=0)
height: int = Field(..., gt=0)
MAX_SIZE: ClassVar[int] = 4096 * 4096
@model_validator(mode="after")
def validate_total_output_size(self):
if self.width * self.height > self.MAX_SIZE:
raise ValueError(f"Max total output size for resizing is {self.MAX_SIZE} pixels")
return self
@images_router.post(
"/upload",
operation_id="upload_image",
@@ -46,6 +69,11 @@ async def upload_image(
board_id: Optional[str] = Query(default=None, description="The board to add this image to, if any"),
session_id: Optional[str] = Query(default=None, description="The session ID associated with this upload, if any"),
crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
resize_to: Optional[str] = Body(
default=None,
description=f"Dimensions to resize the image to, must be stringified tuple of 2 integers. Max total pixel count: {ResizeToDimensions.MAX_SIZE}",
examples=['"[1024,1024]"'],
),
metadata: Optional[str] = Body(
default=None,
description="The metadata to associate with the image, must be a stringified JSON dict",
@@ -59,13 +87,33 @@ async def upload_image(
contents = await file.read()
try:
pil_image = Image.open(io.BytesIO(contents))
if crop_visible:
bbox = pil_image.getbbox()
pil_image = pil_image.crop(bbox)
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
if crop_visible:
try:
bbox = pil_image.getbbox()
pil_image = pil_image.crop(bbox)
except Exception:
raise HTTPException(status_code=500, detail="Failed to crop image")
if resize_to:
try:
dims = json.loads(resize_to)
resize_dims = ResizeToDimensions(**dims)
except Exception:
raise HTTPException(status_code=400, detail="Invalid resize_to format or size")
try:
# heuristic_resize_fast expects an RGB or RGBA image
pil_rgba = pil_image.convert("RGBA")
np_image = pil_to_np(pil_rgba)
np_image = heuristic_resize_fast(np_image, (resize_dims.width, resize_dims.height))
pil_image = np_to_pil(np_image)
except Exception:
raise HTTPException(status_code=500, detail="Failed to resize image")
extracted_metadata = extract_metadata_from_image(
pil_image=pil_image,
invokeai_metadata_override=metadata,
@@ -112,18 +160,30 @@ async def create_image_upload_entry(
raise HTTPException(status_code=501, detail="Not implemented")
@images_router.delete("/i/{image_name}", operation_id="delete_image")
@images_router.delete("/i/{image_name}", operation_id="delete_image", response_model=DeleteImagesResult)
async def delete_image(
image_name: str = Path(description="The name of the image to delete"),
) -> None:
) -> DeleteImagesResult:
"""Deletes an image"""
deleted_images: set[str] = set()
affected_boards: set[str] = set()
try:
image_dto = ApiDependencies.invoker.services.images.get_dto(image_name)
board_id = image_dto.board_id or "none"
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.add(image_name)
affected_boards.add(board_id)
except Exception:
# TODO: Does this need any exception handling at all?
pass
return DeleteImagesResult(
deleted_images=list(deleted_images),
affected_boards=list(affected_boards),
)
@images_router.delete("/intermediates", operation_id="clear_intermediates")
async def clear_intermediates() -> int:
@@ -335,23 +395,52 @@ async def list_image_dtos(
return image_dtos
class DeleteImagesFromListResult(BaseModel):
deleted_images: list[str]
@images_router.post("/delete", operation_id="delete_images_from_list", response_model=DeleteImagesFromListResult)
@images_router.post("/delete", operation_id="delete_images_from_list", response_model=DeleteImagesResult)
async def delete_images_from_list(
image_names: list[str] = Body(description="The list of names of images to delete", embed=True),
) -> DeleteImagesFromListResult:
) -> DeleteImagesResult:
try:
deleted_images: list[str] = []
deleted_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
image_dto = ApiDependencies.invoker.services.images.get_dto(image_name)
board_id = image_dto.board_id or "none"
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.add(image_name)
affected_boards.add(board_id)
except Exception:
pass
return DeleteImagesResult(
deleted_images=list(deleted_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to delete images")
@images_router.delete("/uncategorized", operation_id="delete_uncategorized_images", response_model=DeleteImagesResult)
async def delete_uncategorized_images() -> DeleteImagesResult:
"""Deletes all images that are uncategorized"""
image_names = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id="none", categories=None, is_intermediate=None
)
try:
deleted_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.append(image_name)
deleted_images.add(image_name)
affected_boards.add("none")
except Exception:
pass
return DeleteImagesFromListResult(deleted_images=deleted_images)
return DeleteImagesResult(
deleted_images=list(deleted_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to delete images")
@@ -360,36 +449,50 @@ class ImagesUpdatedFromListResult(BaseModel):
updated_image_names: list[str] = Field(description="The image names that were updated")
@images_router.post("/star", operation_id="star_images_in_list", response_model=ImagesUpdatedFromListResult)
@images_router.post("/star", operation_id="star_images_in_list", response_model=StarredImagesResult)
async def star_images_in_list(
image_names: list[str] = Body(description="The list of names of images to star", embed=True),
) -> ImagesUpdatedFromListResult:
) -> StarredImagesResult:
try:
updated_image_names: list[str] = []
starred_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.update(image_name, changes=ImageRecordChanges(starred=True))
updated_image_names.append(image_name)
updated_image_dto = ApiDependencies.invoker.services.images.update(
image_name, changes=ImageRecordChanges(starred=True)
)
starred_images.add(image_name)
affected_boards.add(updated_image_dto.board_id or "none")
except Exception:
pass
return ImagesUpdatedFromListResult(updated_image_names=updated_image_names)
return StarredImagesResult(
starred_images=list(starred_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to star images")
@images_router.post("/unstar", operation_id="unstar_images_in_list", response_model=ImagesUpdatedFromListResult)
@images_router.post("/unstar", operation_id="unstar_images_in_list", response_model=UnstarredImagesResult)
async def unstar_images_in_list(
image_names: list[str] = Body(description="The list of names of images to unstar", embed=True),
) -> ImagesUpdatedFromListResult:
) -> UnstarredImagesResult:
try:
updated_image_names: list[str] = []
unstarred_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.update(image_name, changes=ImageRecordChanges(starred=False))
updated_image_names.append(image_name)
updated_image_dto = ApiDependencies.invoker.services.images.update(
image_name, changes=ImageRecordChanges(starred=False)
)
unstarred_images.add(image_name)
affected_boards.add(updated_image_dto.board_id or "none")
except Exception:
pass
return ImagesUpdatedFromListResult(updated_image_names=updated_image_names)
return UnstarredImagesResult(
unstarred_images=list(unstarred_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to unstar images")
@@ -460,3 +563,61 @@ async def get_bulk_download_item(
return response
except Exception:
raise HTTPException(status_code=404)
@images_router.get("/names", operation_id="get_image_names")
async def get_image_names(
image_origin: Optional[ResourceOrigin] = Query(default=None, description="The origin of images to list."),
categories: Optional[list[ImageCategory]] = Query(default=None, description="The categories of image to include."),
is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate images."),
board_id: Optional[str] = Query(
default=None,
description="The board id to filter by. Use 'none' to find images without a board.",
),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
starred_first: bool = Query(default=True, description="Whether to sort by starred images first"),
search_term: Optional[str] = Query(default=None, description="The term to search for"),
) -> ImageNamesResult:
"""Gets ordered list of image names with metadata for optimistic updates"""
try:
result = ApiDependencies.invoker.services.images.get_image_names(
starred_first=starred_first,
order_dir=order_dir,
image_origin=image_origin,
categories=categories,
is_intermediate=is_intermediate,
board_id=board_id,
search_term=search_term,
)
return result
except Exception:
raise HTTPException(status_code=500, detail="Failed to get image names")
@images_router.post(
"/images_by_names",
operation_id="get_images_by_names",
responses={200: {"model": list[ImageDTO]}},
)
async def get_images_by_names(
image_names: list[str] = Body(embed=True, description="Object containing list of image names to fetch DTOs for"),
) -> list[ImageDTO]:
"""Gets image DTOs for the specified image names. Maintains order of input names."""
try:
image_service = ApiDependencies.invoker.services.images
# Fetch DTOs preserving the order of requested names
image_dtos: list[ImageDTO] = []
for name in image_names:
try:
dto = image_service.get_dto(name)
image_dtos.append(dto)
except Exception:
# Skip missing images - they may have been deleted between name fetch and DTO fetch
continue
return image_dtos
except Exception:
raise HTTPException(status_code=500, detail="Failed to get image DTOs")

View File

@@ -41,6 +41,7 @@ from invokeai.backend.model_manager.starter_models import (
STARTER_BUNDLES,
STARTER_MODELS,
StarterModel,
StarterModelBundle,
StarterModelWithoutDependencies,
)
@@ -85,6 +86,7 @@ example_model_config = {
"config_path": "string",
"key": "string",
"hash": "string",
"file_size": 1,
"description": "string",
"source": "string",
"converted_at": 0,
@@ -290,7 +292,7 @@ async def get_hugging_face_models(
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
changes: Annotated[ModelRecordChanges, Body(description="Model config", example=example_model_input)],
changes: Annotated[ModelRecordChanges, Body(description="Model config", examples=[example_model_input])],
) -> AnyModelConfig:
"""Update a model's config."""
logger = ApiDependencies.invoker.services.logger
@@ -448,7 +450,7 @@ async def install_model(
access_token: Optional[str] = Query(description="access token for the remote resource", default=None),
config: ModelRecordChanges = Body(
description="Object containing fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
example={"name": "string", "description": "string"},
examples=[{"name": "string", "description": "string"}],
),
) -> ModelInstallJob:
"""Install a model using a string identifier.
@@ -798,7 +800,7 @@ async def convert_model(
class StarterModelResponse(BaseModel):
starter_models: list[StarterModel]
starter_bundles: dict[str, list[StarterModel]]
starter_bundles: dict[str, StarterModelBundle]
def get_is_installed(
@@ -832,7 +834,7 @@ async def get_starter_models() -> StarterModelResponse:
model.dependencies = missing_deps
for bundle in starter_bundles.values():
for model in bundle:
for model in bundle.models:
model.is_installed = get_is_installed(model, installed_models)
# Remove already-installed dependencies
missing_deps: list[StarterModelWithoutDependencies] = []
@@ -892,6 +894,12 @@ class HFTokenHelper:
huggingface_hub.login(token=token, add_to_git_credential=False)
return cls.get_status()
@classmethod
def reset_token(cls) -> HFTokenStatus:
with SuppressOutput(), contextlib.suppress(Exception):
huggingface_hub.logout()
return cls.get_status()
@model_manager_router.get("/hf_login", operation_id="get_hf_login_status", response_model=HFTokenStatus)
async def get_hf_login_status() -> HFTokenStatus:
@@ -914,3 +922,8 @@ async def do_hf_login(
ApiDependencies.invoker.services.logger.warning("Unable to verify HF token")
return token_status
@model_manager_router.delete("/hf_login", operation_id="reset_hf_token", response_model=HFTokenStatus)
async def reset_hf_token() -> HFTokenStatus:
return HFTokenHelper.reset_token()

View File

@@ -0,0 +1,215 @@
"""FastAPI route for model relationship records."""
from typing import List
from fastapi import APIRouter, Body, HTTPException, Path, status
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
model_relationships_router = APIRouter(prefix="/v1/model_relationships", tags=["model_relationships"])
# === Schemas ===
class ModelRelationshipCreateRequest(BaseModel):
model_key_1: str = Field(
...,
description="The key of the first model in the relationship",
examples=[
"aa3b247f-90c9-4416-bfcd-aeaa57a5339e",
"ac32b914-10ab-496e-a24a-3068724b9c35",
"d944abfd-c7c3-42e2-a4ff-da640b29b8b4",
"b1c2d3e4-f5a6-7890-abcd-ef1234567890",
"12345678-90ab-cdef-1234-567890abcdef",
"fedcba98-7654-3210-fedc-ba9876543210",
],
)
model_key_2: str = Field(
...,
description="The key of the second model in the relationship",
examples=[
"3bb7c0eb-b6c8-469c-ad8c-4d69c06075e4",
"f0c3da4e-d9ff-42b5-a45c-23be75c887c9",
"38170dd8-f1e5-431e-866c-2c81f1277fcc",
"c57fea2d-7646-424c-b9ad-c0ba60fc68be",
"10f7807b-ab54-46a9-ab03-600e88c630a1",
"f6c1d267-cf87-4ee0-bee0-37e791eacab7",
],
)
class ModelRelationshipBatchRequest(BaseModel):
model_keys: List[str] = Field(
...,
description="List of model keys to fetch related models for",
examples=[
[
"aa3b247f-90c9-4416-bfcd-aeaa57a5339e",
"ac32b914-10ab-496e-a24a-3068724b9c35",
],
[
"b1c2d3e4-f5a6-7890-abcd-ef1234567890",
"12345678-90ab-cdef-1234-567890abcdef",
"fedcba98-7654-3210-fedc-ba9876543210",
],
[
"3bb7c0eb-b6c8-469c-ad8c-4d69c06075e4",
],
],
)
# === Routes ===
@model_relationships_router.get(
"/i/{model_key}",
operation_id="get_related_models",
response_model=list[str],
responses={
200: {
"description": "A list of related model keys was retrieved successfully",
"content": {
"application/json": {
"example": [
"15e9eb28-8cfe-47c9-b610-37907a79fc3c",
"71272e82-0e5f-46d5-bca9-9a61f4bd8a82",
"a5d7cd49-1b98-4534-a475-aeee4ccf5fa2",
]
}
},
},
404: {"description": "The specified model could not be found"},
422: {"description": "Validation error"},
},
)
async def get_related_models(
model_key: str = Path(..., description="The key of the model to get relationships for"),
) -> list[str]:
"""
Get a list of model keys related to a given model.
"""
try:
return ApiDependencies.invoker.services.model_relationships.get_related_model_keys(model_key)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@model_relationships_router.post(
"/",
status_code=status.HTTP_204_NO_CONTENT,
responses={
204: {"description": "The relationship was successfully created"},
400: {"description": "Invalid model keys or self-referential relationship"},
409: {"description": "The relationship already exists"},
422: {"description": "Validation error"},
500: {"description": "Internal server error"},
},
summary="Add Model Relationship",
description="Creates a **bidirectional** relationship between two models, allowing each to reference the other as related.",
)
async def add_model_relationship(
req: ModelRelationshipCreateRequest = Body(..., description="The model keys to relate"),
) -> None:
"""
Add a relationship between two models.
Relationships are bidirectional and will be accessible from both models.
- Raises 400 if keys are invalid or identical.
- Raises 409 if the relationship already exists.
"""
try:
if req.model_key_1 == req.model_key_2:
raise HTTPException(status_code=400, detail="Cannot relate a model to itself.")
ApiDependencies.invoker.services.model_relationships.add_model_relationship(
req.model_key_1,
req.model_key_2,
)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@model_relationships_router.delete(
"/",
status_code=status.HTTP_204_NO_CONTENT,
responses={
204: {"description": "The relationship was successfully removed"},
400: {"description": "Invalid model keys or self-referential relationship"},
404: {"description": "The relationship does not exist"},
422: {"description": "Validation error"},
500: {"description": "Internal server error"},
},
summary="Remove Model Relationship",
description="Removes a **bidirectional** relationship between two models. The relationship must already exist.",
)
async def remove_model_relationship(
req: ModelRelationshipCreateRequest = Body(..., description="The model keys to disconnect"),
) -> None:
"""
Removes a bidirectional relationship between two model keys.
- Raises 400 if attempting to unlink a model from itself.
- Raises 404 if the relationship was not found.
"""
try:
if req.model_key_1 == req.model_key_2:
raise HTTPException(status_code=400, detail="Cannot unlink a model from itself.")
ApiDependencies.invoker.services.model_relationships.remove_model_relationship(
req.model_key_1,
req.model_key_2,
)
except ValueError as e:
raise HTTPException(status_code=404, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@model_relationships_router.post(
"/batch",
operation_id="get_related_models_batch",
response_model=List[str],
responses={
200: {
"description": "Related model keys retrieved successfully",
"content": {
"application/json": {
"example": [
"ca562b14-995e-4a42-90c1-9528f1a5921d",
"cc0c2b8a-c62e-41d6-878e-cc74dde5ca8f",
"18ca7649-6a9e-47d5-bc17-41ab1e8cec81",
"7c12d1b2-0ef9-4bec-ba55-797b2d8f2ee1",
"c382eaa3-0e28-4ab0-9446-408667699aeb",
"71272e82-0e5f-46d5-bca9-9a61f4bd8a82",
"a5d7cd49-1b98-4534-a475-aeee4ccf5fa2",
]
}
},
},
422: {"description": "Validation error"},
500: {"description": "Internal server error"},
},
summary="Get Related Model Keys (Batch)",
description="Retrieves all **unique related model keys** for a list of given models. This is useful for contextual suggestions or filtering.",
)
async def get_related_models_batch(
req: ModelRelationshipBatchRequest = Body(..., description="Model keys to check for related connections"),
) -> list[str]:
"""
Accepts multiple model keys and returns a flat list of all unique related keys.
Useful when working with multiple selections in the UI or cross-model comparisons.
"""
try:
all_related: set[str] = set()
for key in req.model_keys:
related = ApiDependencies.invoker.services.model_relationships.get_related_model_keys(key)
all_related.update(related)
return list(all_related)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))

View File

@@ -1,29 +1,31 @@
from typing import Optional
from fastapi import Body, Path, Query
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
Batch,
BatchStatus,
CancelAllExceptCurrentResult,
CancelByBatchIDsResult,
CancelByDestinationResult,
ClearResult,
DeleteAllExceptCurrentResult,
DeleteByDestinationResult,
EnqueueBatchResult,
FieldIdentifier,
ItemIdsResult,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
SessionQueueItem,
SessionQueueItemDTO,
SessionQueueItemNotFoundError,
SessionQueueStatus,
)
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])
@@ -58,31 +60,83 @@ async def enqueue_batch(
),
) -> EnqueueBatchResult:
"""Processes a batch and enqueues the output graphs for execution."""
return await ApiDependencies.invoker.services.session_queue.enqueue_batch(
queue_id=queue_id, batch=batch, prepend=prepend
)
try:
return await ApiDependencies.invoker.services.session_queue.enqueue_batch(
queue_id=queue_id, batch=batch, prepend=prepend
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while enqueuing batch: {e}")
@session_queue_router.get(
"/{queue_id}/list",
operation_id="list_queue_items",
"/{queue_id}/list_all",
operation_id="list_all_queue_items",
responses={
200: {"model": CursorPaginatedResults[SessionQueueItemDTO]},
200: {"model": list[SessionQueueItem]},
},
)
async def list_queue_items(
async def list_all_queue_items(
queue_id: str = Path(description="The queue id to perform this operation on"),
limit: int = Query(default=50, description="The number of items to fetch"),
status: Optional[QUEUE_ITEM_STATUS] = Query(default=None, description="The status of items to fetch"),
cursor: Optional[int] = Query(default=None, description="The pagination cursor"),
priority: int = Query(default=0, description="The pagination cursor priority"),
) -> CursorPaginatedResults[SessionQueueItemDTO]:
"""Gets all queue items (without graphs)"""
destination: Optional[str] = Query(default=None, description="The destination of queue items to fetch"),
) -> list[SessionQueueItem]:
"""Gets all queue items"""
try:
return ApiDependencies.invoker.services.session_queue.list_all_queue_items(
queue_id=queue_id,
destination=destination,
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all queue items: {e}")
return ApiDependencies.invoker.services.session_queue.list_queue_items(
queue_id=queue_id, limit=limit, status=status, cursor=cursor, priority=priority
)
@session_queue_router.get(
"/{queue_id}/item_ids",
operation_id="get_queue_item_ids",
responses={
200: {"model": ItemIdsResult},
},
)
async def get_queue_item_ids(
queue_id: str = Path(description="The queue id to perform this operation on"),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
) -> ItemIdsResult:
"""Gets all queue item ids that match the given parameters"""
try:
return ApiDependencies.invoker.services.session_queue.get_queue_item_ids(queue_id=queue_id, order_dir=order_dir)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all queue item ids: {e}")
@session_queue_router.post(
"/{queue_id}/items_by_ids",
operation_id="get_queue_items_by_item_ids",
responses={200: {"model": list[SessionQueueItem]}},
)
async def get_queue_items_by_item_ids(
queue_id: str = Path(description="The queue id to perform this operation on"),
item_ids: list[int] = Body(
embed=True, description="Object containing list of queue item ids to fetch queue items for"
),
) -> list[SessionQueueItem]:
"""Gets queue items for the specified queue item ids. Maintains order of item ids."""
try:
session_queue_service = ApiDependencies.invoker.services.session_queue
# Fetch queue items preserving the order of requested item ids
queue_items: list[SessionQueueItem] = []
for item_id in item_ids:
try:
queue_item = session_queue_service.get_queue_item(item_id=item_id)
if queue_item.queue_id != queue_id: # Auth protection for items from other queues
continue
queue_items.append(queue_item)
except Exception:
# Skip missing queue items - they may have been deleted between item id fetch and queue item fetch
continue
return queue_items
except Exception:
raise HTTPException(status_code=500, detail="Failed to get queue items")
@session_queue_router.put(
@@ -94,7 +148,10 @@ async def resume(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> SessionProcessorStatus:
"""Resumes session processor"""
return ApiDependencies.invoker.services.session_processor.resume()
try:
return ApiDependencies.invoker.services.session_processor.resume()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while resuming queue: {e}")
@session_queue_router.put(
@@ -106,7 +163,10 @@ async def Pause(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> SessionProcessorStatus:
"""Pauses session processor"""
return ApiDependencies.invoker.services.session_processor.pause()
try:
return ApiDependencies.invoker.services.session_processor.pause()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while pausing queue: {e}")
@session_queue_router.put(
@@ -118,7 +178,25 @@ async def cancel_all_except_current(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> CancelAllExceptCurrentResult:
"""Immediately cancels all queue items except in-processing items"""
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
try:
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling all except current: {e}")
@session_queue_router.put(
"/{queue_id}/delete_all_except_current",
operation_id="delete_all_except_current",
responses={200: {"model": DeleteAllExceptCurrentResult}},
)
async def delete_all_except_current(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> DeleteAllExceptCurrentResult:
"""Immediately deletes all queue items except in-processing items"""
try:
return ApiDependencies.invoker.services.session_queue.delete_all_except_current(queue_id=queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting all except current: {e}")
@session_queue_router.put(
@@ -131,7 +209,12 @@ async def cancel_by_batch_ids(
batch_ids: list[str] = Body(description="The list of batch_ids to cancel all queue items for", embed=True),
) -> CancelByBatchIDsResult:
"""Immediately cancels all queue items from the given batch ids"""
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(queue_id=queue_id, batch_ids=batch_ids)
try:
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(
queue_id=queue_id, batch_ids=batch_ids
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling by batch id: {e}")
@session_queue_router.put(
@@ -144,9 +227,12 @@ async def cancel_by_destination(
destination: str = Query(description="The destination to cancel all queue items for"),
) -> CancelByDestinationResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.cancel_by_destination(
queue_id=queue_id, destination=destination
)
try:
return ApiDependencies.invoker.services.session_queue.cancel_by_destination(
queue_id=queue_id, destination=destination
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling by destination: {e}")
@session_queue_router.put(
@@ -159,7 +245,10 @@ async def retry_items_by_id(
item_ids: list[int] = Body(description="The queue item ids to retry"),
) -> RetryItemsResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.retry_items_by_id(queue_id=queue_id, item_ids=item_ids)
try:
return ApiDependencies.invoker.services.session_queue.retry_items_by_id(queue_id=queue_id, item_ids=item_ids)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while retrying queue items: {e}")
@session_queue_router.put(
@@ -173,11 +262,14 @@ async def clear(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> ClearResult:
"""Clears the queue entirely, immediately canceling the currently-executing session"""
queue_item = ApiDependencies.invoker.services.session_queue.get_current(queue_id)
if queue_item is not None:
ApiDependencies.invoker.services.session_queue.cancel_queue_item(queue_item.item_id)
clear_result = ApiDependencies.invoker.services.session_queue.clear(queue_id)
return clear_result
try:
queue_item = ApiDependencies.invoker.services.session_queue.get_current(queue_id)
if queue_item is not None:
ApiDependencies.invoker.services.session_queue.cancel_queue_item(queue_item.item_id)
clear_result = ApiDependencies.invoker.services.session_queue.clear(queue_id)
return clear_result
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while clearing queue: {e}")
@session_queue_router.put(
@@ -191,7 +283,10 @@ async def prune(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> PruneResult:
"""Prunes all completed or errored queue items"""
return ApiDependencies.invoker.services.session_queue.prune(queue_id)
try:
return ApiDependencies.invoker.services.session_queue.prune(queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while pruning queue: {e}")
@session_queue_router.get(
@@ -205,7 +300,10 @@ async def get_current_queue_item(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> Optional[SessionQueueItem]:
"""Gets the currently execution queue item"""
return ApiDependencies.invoker.services.session_queue.get_current(queue_id)
try:
return ApiDependencies.invoker.services.session_queue.get_current(queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while getting current queue item: {e}")
@session_queue_router.get(
@@ -219,7 +317,10 @@ async def get_next_queue_item(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> Optional[SessionQueueItem]:
"""Gets the next queue item, without executing it"""
return ApiDependencies.invoker.services.session_queue.get_next(queue_id)
try:
return ApiDependencies.invoker.services.session_queue.get_next(queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while getting next queue item: {e}")
@session_queue_router.get(
@@ -233,9 +334,12 @@ async def get_queue_status(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> SessionQueueAndProcessorStatus:
"""Gets the status of the session queue"""
queue = ApiDependencies.invoker.services.session_queue.get_queue_status(queue_id)
processor = ApiDependencies.invoker.services.session_processor.get_status()
return SessionQueueAndProcessorStatus(queue=queue, processor=processor)
try:
queue = ApiDependencies.invoker.services.session_queue.get_queue_status(queue_id)
processor = ApiDependencies.invoker.services.session_processor.get_status()
return SessionQueueAndProcessorStatus(queue=queue, processor=processor)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while getting queue status: {e}")
@session_queue_router.get(
@@ -250,7 +354,10 @@ async def get_batch_status(
batch_id: str = Path(description="The batch to get the status of"),
) -> BatchStatus:
"""Gets the status of the session queue"""
return ApiDependencies.invoker.services.session_queue.get_batch_status(queue_id=queue_id, batch_id=batch_id)
try:
return ApiDependencies.invoker.services.session_queue.get_batch_status(queue_id=queue_id, batch_id=batch_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while getting batch status: {e}")
@session_queue_router.get(
@@ -266,7 +373,30 @@ async def get_queue_item(
item_id: int = Path(description="The queue item to get"),
) -> SessionQueueItem:
"""Gets a queue item"""
return ApiDependencies.invoker.services.session_queue.get_queue_item(item_id)
try:
queue_item = ApiDependencies.invoker.services.session_queue.get_queue_item(item_id=item_id)
if queue_item.queue_id != queue_id:
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
return queue_item
except SessionQueueItemNotFoundError:
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while fetching queue item: {e}")
@session_queue_router.delete(
"/{queue_id}/i/{item_id}",
operation_id="delete_queue_item",
)
async def delete_queue_item(
queue_id: str = Path(description="The queue id to perform this operation on"),
item_id: int = Path(description="The queue item to delete"),
) -> None:
"""Deletes a queue item"""
try:
ApiDependencies.invoker.services.session_queue.delete_queue_item(item_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting queue item: {e}")
@session_queue_router.put(
@@ -281,8 +411,12 @@ async def cancel_queue_item(
item_id: int = Path(description="The queue item to cancel"),
) -> SessionQueueItem:
"""Deletes a queue item"""
return ApiDependencies.invoker.services.session_queue.cancel_queue_item(item_id)
try:
return ApiDependencies.invoker.services.session_queue.cancel_queue_item(item_id)
except SessionQueueItemNotFoundError:
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling queue item: {e}")
@session_queue_router.get(
@@ -295,6 +429,27 @@ async def counts_by_destination(
destination: str = Query(description="The destination to query"),
) -> SessionQueueCountsByDestination:
"""Gets the counts of queue items by destination"""
return ApiDependencies.invoker.services.session_queue.get_counts_by_destination(
queue_id=queue_id, destination=destination
)
try:
return ApiDependencies.invoker.services.session_queue.get_counts_by_destination(
queue_id=queue_id, destination=destination
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while fetching counts by destination: {e}")
@session_queue_router.delete(
"/{queue_id}/d/{destination}",
operation_id="delete_by_destination",
responses={200: {"model": DeleteByDestinationResult}},
)
async def delete_by_destination(
queue_id: str = Path(description="The queue id to query"),
destination: str = Path(description="The destination to query"),
) -> DeleteByDestinationResult:
"""Deletes all items with the given destination"""
try:
return ApiDependencies.invoker.services.session_queue.delete_by_destination(
queue_id=queue_id, destination=destination
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting by destination: {e}")

View File

@@ -0,0 +1,119 @@
from typing import Optional
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.services.videos_common import (
DeleteVideosResult,
StarredVideosResult,
UnstarredVideosResult,
VideoDTO,
VideoIdsResult,
VideoRecordChanges,
)
videos_router = APIRouter(prefix="/v1/videos", tags=["videos"])
@videos_router.patch(
"/i/{video_id}",
operation_id="update_video",
response_model=VideoDTO,
)
async def update_video(
video_id: str = Path(description="The id of the video to update"),
video_changes: VideoRecordChanges = Body(description="The changes to apply to the video"),
) -> VideoDTO:
"""Updates a video"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.get(
"/i/{video_id}",
operation_id="get_video_dto",
response_model=VideoDTO,
)
async def get_video_dto(
video_id: str = Path(description="The id of the video to get"),
) -> VideoDTO:
"""Gets a video's DTO"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.post("/delete", operation_id="delete_videos_from_list", response_model=DeleteVideosResult)
async def delete_videos_from_list(
video_ids: list[str] = Body(description="The list of ids of videos to delete", embed=True),
) -> DeleteVideosResult:
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.post("/star", operation_id="star_videos_in_list", response_model=StarredVideosResult)
async def star_videos_in_list(
video_ids: list[str] = Body(description="The list of ids of videos to star", embed=True),
) -> StarredVideosResult:
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.post("/unstar", operation_id="unstar_videos_in_list", response_model=UnstarredVideosResult)
async def unstar_videos_in_list(
video_ids: list[str] = Body(description="The list of ids of videos to unstar", embed=True),
) -> UnstarredVideosResult:
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.delete("/uncategorized", operation_id="delete_uncategorized_videos", response_model=DeleteVideosResult)
async def delete_uncategorized_videos() -> DeleteVideosResult:
"""Deletes all videos that are uncategorized"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.get("/", operation_id="list_video_dtos", response_model=OffsetPaginatedResults[VideoDTO])
async def list_video_dtos(
is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate videos."),
board_id: Optional[str] = Query(
default=None,
description="The board id to filter by. Use 'none' to find videos without a board.",
),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of videos per page"),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
starred_first: bool = Query(default=True, description="Whether to sort by starred videos first"),
search_term: Optional[str] = Query(default=None, description="The term to search for"),
) -> OffsetPaginatedResults[VideoDTO]:
"""Lists video DTOs"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.get("/ids", operation_id="get_video_ids")
async def get_video_ids(
is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate videos."),
board_id: Optional[str] = Query(
default=None,
description="The board id to filter by. Use 'none' to find videos without a board.",
),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
starred_first: bool = Query(default=True, description="Whether to sort by starred videos first"),
search_term: Optional[str] = Query(default=None, description="The term to search for"),
) -> VideoIdsResult:
"""Gets ordered list of video ids with metadata for optimistic updates"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.post(
"/videos_by_ids",
operation_id="get_videos_by_ids",
responses={200: {"model": list[VideoDTO]}},
)
async def get_videos_by_ids(
video_ids: list[str] = Body(embed=True, description="Object containing list of video ids to fetch DTOs for"),
) -> list[VideoDTO]:
"""Gets video DTOs for the specified video ids. Maintains order of input ids."""
raise HTTPException(status_code=501, detail="Not implemented")

View File

@@ -18,13 +18,17 @@ from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.app.api.routers import (
app_info,
board_images,
board_videos,
boards,
client_state,
download_queue,
images,
model_manager,
model_relationships,
session_queue,
style_presets,
utilities,
videos,
workflows,
)
from invokeai.app.api.sockets import SocketIO
@@ -123,12 +127,16 @@ app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(model_manager.model_manager_router, prefix="/api")
app.include_router(download_queue.download_queue_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(videos.videos_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(board_videos.board_videos_router, prefix="/api")
app.include_router(model_relationships.model_relationships_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
app.include_router(style_presets.style_presets_router, prefix="/api")
app.include_router(client_state.client_state_router, prefix="/api")
app.openapi = get_openapi_func(app)
@@ -153,10 +161,16 @@ def overridden_redoc() -> HTMLResponse:
web_root_path = Path(list(web_dir.__path__)[0])
if app_config.unsafe_disable_picklescan:
logger.warning(
"The unsafe_disable_picklescan option is enabled. This disables malware scanning while installing and"
"loading models, which may allow malicious code to be executed. Use at your own risk."
)
try:
app.mount("/", NoCacheStaticFiles(directory=Path(web_root_path, "dist"), html=True), name="ui")
except RuntimeError:
logger.warn(f"No UI found at {web_root_path}/dist, skipping UI mount")
logger.warning(f"No UI found at {web_root_path}/dist, skipping UI mount")
app.mount(
"/static", NoCacheStaticFiles(directory=Path(web_root_path, "static/")), name="static"
) # docs favicon is in here

View File

@@ -5,6 +5,8 @@ from __future__ import annotations
import inspect
import re
import sys
import types
import typing
import warnings
from abc import ABC, abstractmethod
from enum import Enum
@@ -20,12 +22,14 @@ from typing import (
Literal,
Optional,
Type,
TypedDict,
TypeVar,
Union,
cast,
)
import semver
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter, create_model
from pydantic import BaseModel, ConfigDict, Field, JsonValue, TypeAdapter, create_model
from pydantic.fields import FieldInfo
from pydantic_core import PydanticUndefined
@@ -72,13 +76,24 @@ class Classification(str, Enum, metaclass=MetaEnum):
Special = "special"
class Bottleneck(str, Enum, metaclass=MetaEnum):
"""
The bottleneck of an invocation.
- `Network`: The invocation's execution is network-bound.
- `GPU`: The invocation's execution is GPU-bound.
"""
Network = "network"
GPU = "gpu"
class UIConfigBase(BaseModel):
"""
Provides additional node configuration to the UI.
This is used internally by the @invocation decorator logic. Do not use this directly.
"""
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
tags: Optional[list[str]] = Field(default=None, description="The node's tags")
title: Optional[str] = Field(default=None, description="The node's display name")
category: Optional[str] = Field(default=None, description="The node's category")
version: str = Field(
@@ -93,6 +108,11 @@ class UIConfigBase(BaseModel):
)
class OriginalModelField(TypedDict):
annotation: Any
field_info: FieldInfo
class BaseInvocationOutput(BaseModel):
"""
Base class for all invocation outputs.
@@ -100,6 +120,12 @@ class BaseInvocationOutput(BaseModel):
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
"""
output_meta: Optional[dict[str, JsonValue]] = Field(
default=None,
description="Optional dictionary of metadata for the invocation output, unrelated to the invocation's actual output value. This is not exposed as an output field.",
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
)
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocationOutput]) -> None:
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
@@ -115,6 +141,9 @@ class BaseInvocationOutput(BaseModel):
"""Gets the invocation output's type, as provided by the `@invocation_output` decorator."""
return cls.model_fields["type"].default
_original_model_fields: ClassVar[dict[str, OriginalModelField]] = {}
"""The original model fields, before any modifications were made by the @invocation_output decorator."""
model_config = ConfigDict(
protected_namespaces=(),
validate_assignment=True,
@@ -148,7 +177,7 @@ class BaseInvocation(ABC, BaseModel):
return cls.model_fields["type"].default
@classmethod
def get_output_annotation(cls) -> BaseInvocationOutput:
def get_output_annotation(cls) -> Type[BaseInvocationOutput]:
"""Gets the invocation's output annotation (i.e. the return annotation of its `invoke()` method)."""
return signature(cls.invoke).return_annotation
@@ -180,7 +209,7 @@ class BaseInvocation(ABC, BaseModel):
Internal invoke method, calls `invoke()` after some prep.
Handles optional fields that are required to call `invoke()` and invocation cache.
"""
for field_name, field in self.model_fields.items():
for field_name, field in type(self).model_fields.items():
if not field.json_schema_extra or callable(field.json_schema_extra):
# something has gone terribly awry, we should always have this and it should be a dict
continue
@@ -195,9 +224,9 @@ class BaseInvocation(ABC, BaseModel):
setattr(self, field_name, orig_default)
if orig_required and orig_default is PydanticUndefined and getattr(self, field_name) is None:
if input_ == Input.Connection:
raise RequiredConnectionException(self.model_fields["type"].default, field_name)
raise RequiredConnectionException(type(self).model_fields["type"].default, field_name)
elif input_ == Input.Any:
raise MissingInputException(self.model_fields["type"].default, field_name)
raise MissingInputException(type(self).model_fields["type"].default, field_name)
# skip node cache codepath if it's disabled
if services.configuration.node_cache_size == 0:
@@ -235,6 +264,8 @@ class BaseInvocation(ABC, BaseModel):
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
)
bottleneck: ClassVar[Bottleneck]
UIConfig: ClassVar[UIConfigBase]
model_config = ConfigDict(
@@ -245,6 +276,9 @@ class BaseInvocation(ABC, BaseModel):
coerce_numbers_to_str=True,
)
_original_model_fields: ClassVar[dict[str, OriginalModelField]] = {}
"""The original model fields, before any modifications were made by the @invocation decorator."""
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
@@ -256,6 +290,26 @@ class InvocationRegistry:
@classmethod
def register_invocation(cls, invocation: type[BaseInvocation]) -> None:
"""Registers an invocation."""
invocation_type = invocation.get_type()
node_pack = invocation.UIConfig.node_pack
# Log a warning when an existing invocation is being clobbered by the one we are registering
clobbered_invocation = InvocationRegistry.get_invocation_for_type(invocation_type)
if clobbered_invocation is not None:
# This should always be true - we just checked if the invocation type was in the set
clobbered_node_pack = clobbered_invocation.UIConfig.node_pack
if clobbered_node_pack == "invokeai":
# The invocation being clobbered is a core invocation
logger.warning(f'Overriding core node "{invocation_type}" with node from "{node_pack}"')
else:
# The invocation being clobbered is a custom invocation
logger.warning(
f'Overriding node "{invocation_type}" from "{node_pack}" with node from "{clobbered_node_pack}"'
)
cls._invocation_classes.remove(clobbered_invocation)
cls._invocation_classes.add(invocation)
cls.invalidate_invocation_typeadapter()
@@ -314,6 +368,15 @@ class InvocationRegistry:
@classmethod
def register_output(cls, output: "type[TBaseInvocationOutput]") -> None:
"""Registers an invocation output."""
output_type = output.get_type()
# Log a warning when an existing invocation is being clobbered by the one we are registering
clobbered_output = InvocationRegistry.get_output_for_type(output_type)
if clobbered_output is not None:
# TODO(psyche): We do not record the node pack of the output, so we cannot log it here
logger.warning(f'Overriding invocation output "{output_type}"')
cls._output_classes.remove(clobbered_output)
cls._output_classes.add(output)
cls.invalidate_output_typeadapter()
@@ -322,6 +385,11 @@ class InvocationRegistry:
"""Gets all invocation outputs."""
return cls._output_classes
@classmethod
def get_outputs_map(cls) -> dict[str, type[BaseInvocationOutput]]:
"""Gets a map of all output types to their output classes."""
return {i.get_type(): i for i in cls.get_output_classes()}
@classmethod
@lru_cache(maxsize=1)
def get_output_typeadapter(cls) -> TypeAdapter[Any]:
@@ -347,6 +415,11 @@ class InvocationRegistry:
"""Gets all invocation output types."""
return (i.get_type() for i in cls.get_output_classes())
@classmethod
def get_output_for_type(cls, output_type: str) -> type[BaseInvocationOutput] | None:
"""Gets the output class for a given output type."""
return cls.get_outputs_map().get(output_type)
RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
"id",
@@ -354,11 +427,12 @@ RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
"use_cache",
"type",
"workflow",
"bottleneck",
}
RESERVED_INPUT_FIELD_NAMES = {"metadata", "board"}
RESERVED_OUTPUT_FIELD_NAMES = {"type"}
RESERVED_OUTPUT_FIELD_NAMES = {"type", "output_meta"}
class _Model(BaseModel):
@@ -425,11 +499,53 @@ def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None
ui_type = field.json_schema_extra.get("ui_type", None)
if isinstance(ui_type, str) and ui_type.startswith("DEPRECATED_"):
logger.warn(f'"UIType.{ui_type.split("_")[-1]}" is deprecated, ignoring')
logger.warning(f'"UIType.{ui_type.split("_")[-1]}" is deprecated, ignoring')
field.json_schema_extra.pop("ui_type")
return None
class NoDefaultSentinel:
pass
def validate_field_default(
cls_name: str, field_name: str, invocation_type: str, annotation: Any, field_info: FieldInfo
) -> None:
"""Validates the default value of a field against its pydantic field definition."""
assert isinstance(field_info.json_schema_extra, dict), "json_schema_extra is not a dict"
# By the time we are doing this, we've already done some pydantic magic by overriding the original default value.
# We store the original default value in the json_schema_extra dict, so we can validate it here.
orig_default = field_info.json_schema_extra.get("orig_default", NoDefaultSentinel)
if orig_default is NoDefaultSentinel:
return
# To validate the default value, we can create a temporary pydantic model with the field we are validating as its
# only field. Then validate the default value against this temporary model.
TempDefaultValidator = cast(BaseModel, create_model(cls_name, **{field_name: (annotation, field_info)}))
try:
TempDefaultValidator.model_validate({field_name: orig_default})
except Exception as e:
raise InvalidFieldError(
f'Default value for field "{field_name}" on invocation "{invocation_type}" is invalid, {e}'
) from e
def is_optional(annotation: Any) -> bool:
"""
Checks if the given annotation is optional (i.e. Optional[X], Union[X, None] or X | None).
"""
origin = typing.get_origin(annotation)
# PEP 604 unions (int|None) have origin types.UnionType
is_union = origin is typing.Union or origin is types.UnionType
if not is_union:
return False
return any(arg is type(None) for arg in typing.get_args(annotation))
def invocation(
invocation_type: str,
title: Optional[str] = None,
@@ -438,6 +554,7 @@ def invocation(
version: Optional[str] = None,
use_cache: Optional[bool] = True,
classification: Classification = Classification.Stable,
bottleneck: Bottleneck = Bottleneck.GPU,
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
"""
Registers an invocation.
@@ -449,6 +566,7 @@ def invocation(
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
:param Classification classification: The classification of the invocation. Defaults to FeatureClassification.Stable. Use Beta or Prototype if the invocation is unstable.
:param Bottleneck bottleneck: The bottleneck of the invocation. Defaults to Bottleneck.GPU. Use Network if the invocation is network-bound.
"""
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
@@ -460,27 +578,28 @@ def invocation(
# The node pack is the module name - will be "invokeai" for built-in nodes
node_pack = cls.__module__.split(".")[0]
# Handle the case where an existing node is being clobbered by the one we are registering
if invocation_type in InvocationRegistry.get_invocation_types():
clobbered_invocation = InvocationRegistry.get_invocation_for_type(invocation_type)
# This should always be true - we just checked if the invocation type was in the set
assert clobbered_invocation is not None
clobbered_node_pack = clobbered_invocation.UIConfig.node_pack
if clobbered_node_pack == "invokeai":
# The node being clobbered is a core node
raise ValueError(
f'Cannot load node "{invocation_type}" from node pack "{node_pack}" - a core node with the same type already exists'
)
else:
# The node being clobbered is a custom node
raise ValueError(
f'Cannot load node "{invocation_type}" from node pack "{node_pack}" - a node with the same type already exists in node pack "{clobbered_node_pack}"'
)
validate_fields(cls.model_fields, invocation_type)
fields: dict[str, tuple[Any, FieldInfo]] = {}
original_model_fields: dict[str, OriginalModelField] = {}
for field_name, field_info in cls.model_fields.items():
annotation = field_info.annotation
assert annotation is not None, f"{field_name} on invocation {invocation_type} has no type annotation."
assert isinstance(field_info.json_schema_extra, dict), (
f"{field_name} on invocation {invocation_type} has a non-dict json_schema_extra, did you forget to use InputField?"
)
original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
validate_field_default(cls.__name__, field_name, invocation_type, annotation, field_info)
if field_info.default is None and not is_optional(annotation):
annotation = annotation | None
fields[field_name] = (annotation, field_info)
# Add OpenAPI schema extras
uiconfig: dict[str, Any] = {}
uiconfig["title"] = title
@@ -496,7 +615,7 @@ def invocation(
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
uiconfig["version"] = version
else:
logger.warn(f'No version specified for node "{invocation_type}", using "1.0.0"')
logger.warning(f'No version specified for node "{invocation_type}", using "1.0.0"')
uiconfig["version"] = "1.0.0"
cls.UIConfig = UIConfigBase(**uiconfig)
@@ -504,6 +623,8 @@ def invocation(
if use_cache is not None:
cls.model_fields["use_cache"].default = use_cache
cls.bottleneck = bottleneck
# Add the invocation type to the model.
# You'd be tempted to just add the type field and rebuild the model, like this:
@@ -513,11 +634,27 @@ def invocation(
# Unfortunately, because the `GraphInvocation` uses a forward ref in its `graph` field's annotation, this does
# not work. Instead, we have to create a new class with the type field and patch the original class with it.
invocation_type_annotation = Literal[invocation_type] # type: ignore
invocation_type_field = Field(
title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
invocation_type_annotation = Literal[invocation_type]
# Field() returns an instance of FieldInfo, but thanks to a pydantic implementation detail, it is _typed_ as Any.
# This cast makes the type annotation match the class's true type.
invocation_type_field_info = cast(
FieldInfo,
Field(title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}),
)
fields["type"] = (invocation_type_annotation, invocation_type_field_info)
# Invocation outputs must be registered using the @invocation_output decorator, but it is possible that the
# output is registered _after_ this invocation is registered. It depends on module import ordering.
#
# We can only confirm the output for an invocation is registered after all modules are imported. There's
# only really one good time to do that - during application startup, in `run_app.py`, after loading all
# custom nodes.
#
# We can still do some basic validation here - ensure the invoke method is defined and returns an instance
# of BaseInvocationOutput.
# Validate the `invoke()` method is implemented
if "invoke" in cls.__abstractmethods__:
raise ValueError(f'Invocation "{invocation_type}" must implement the "invoke" method')
@@ -539,17 +676,13 @@ def invocation(
)
docstring = cls.__doc__
cls = create_model(
cls.__qualname__,
__base__=cls,
__module__=cls.__module__,
type=(invocation_type_annotation, invocation_type_field),
)
cls.__doc__ = docstring
new_class = create_model(cls.__qualname__, __base__=cls, __module__=cls.__module__, **fields) # type: ignore
new_class.__doc__ = docstring
new_class._original_model_fields = original_model_fields
InvocationRegistry.register_invocation(cls)
InvocationRegistry.register_invocation(new_class)
return cls
return new_class
return wrapper
@@ -572,29 +705,41 @@ def invocation_output(
if re.compile(r"^\S+$").match(output_type) is None:
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
if output_type in InvocationRegistry.get_output_types():
raise ValueError(f'Invocation type "{output_type}" already exists')
validate_fields(cls.model_fields, output_type)
# Add the output type to the model.
fields: dict[str, tuple[Any, FieldInfo]] = {}
output_type_annotation = Literal[output_type] # type: ignore
output_type_field = Field(
title="type", default=output_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
for field_name, field_info in cls.model_fields.items():
annotation = field_info.annotation
assert annotation is not None, f"{field_name} on invocation output {output_type} has no type annotation."
assert isinstance(field_info.json_schema_extra, dict), (
f"{field_name} on invocation output {output_type} has a non-dict json_schema_extra, did you forget to use InputField?"
)
cls._original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
if field_info.default is not PydanticUndefined and is_optional(annotation):
annotation = annotation | None
fields[field_name] = (annotation, field_info)
# Add the output type to the model.
output_type_annotation = Literal[output_type]
# Field() returns an instance of FieldInfo, but thanks to a pydantic implementation detail, it is _typed_ as Any.
# This cast makes the type annotation match the class's true type.
output_type_field_info = cast(
FieldInfo,
Field(title="type", default=output_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}),
)
fields["type"] = (output_type_annotation, output_type_field_info)
docstring = cls.__doc__
cls = create_model(
cls.__qualname__,
__base__=cls,
__module__=cls.__module__,
type=(output_type_annotation, output_type_field),
)
cls.__doc__ = docstring
new_class = create_model(cls.__qualname__, __base__=cls, __module__=cls.__module__, **fields)
new_class.__doc__ = docstring
InvocationRegistry.register_output(cls)
InvocationRegistry.register_output(new_class)
return cls
return new_class
return wrapper

View File

@@ -64,7 +64,6 @@ class ImageBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(
default=[],
min_length=1,
description="The images to batch over",
)
@@ -120,7 +119,6 @@ class StringBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each string in the batch."""
strings: list[str] = InputField(
default=[],
min_length=1,
description="The strings to batch over",
)
@@ -176,7 +174,6 @@ class IntegerBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each integer in the batch."""
integers: list[int] = InputField(
default=[],
min_length=1,
description="The integers to batch over",
)
@@ -230,7 +227,6 @@ class FloatBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each float in the batch."""
floats: list[float] = InputField(
default=[],
min_length=1,
description="The floats to batch over",
)

View File

@@ -0,0 +1,363 @@
from typing import Callable, Optional
import torch
import torchvision.transforms as tv_transforms
from diffusers.models.transformers.transformer_cogview4 import CogView4Transformer2DModel
from torchvision.transforms.functional import resize as tv_resize
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
CogView4ConditioningField,
DenoiseMaskField,
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule_fractional
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.rectified_flow.rectified_flow_inpaint_extension import RectifiedFlowInpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import CogView4ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"cogview4_denoise",
title="Denoise - CogView4",
tags=["image", "cogview4"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run the denoising process with a CogView4 model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None, description=FieldDescriptions.latents, input=Input.Connection
)
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, description=FieldDescriptions.denoise_mask, input=Input.Connection
)
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
transformer: TransformerField = InputField(
description=FieldDescriptions.cogview4_model, input=Input.Connection, title="Transformer"
)
positive_conditioning: CogView4ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: CogView4ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
cfg_scale: float | list[float] = InputField(default=3.5, description=FieldDescriptions.cfg_scale, title="CFG Scale")
width: int = InputField(default=1024, multiple_of=32, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=32, description="Height of the generated image.")
steps: int = InputField(default=25, gt=0, description=FieldDescriptions.steps)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
- Loads the mask
- Resizes if necessary
- Casts to same device/dtype as latents
Args:
context (InvocationContext): The invocation context, for loading the inpaint mask.
latents (torch.Tensor): A latent image tensor. Used to determine the target shape, device, and dtype for the
inpaint mask.
Returns:
torch.Tensor | None: Inpaint mask. Values of 0.0 represent the regions to be fully denoised, and 1.0
represent the regions to be preserved.
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
# The input denoise_mask contains values in [0, 1], where 0.0 represents the regions to be fully denoised, and
# 1.0 represents the regions to be preserved.
# We invert the mask so that the regions to be preserved are 0.0 and the regions to be denoised are 1.0.
mask = 1.0 - mask
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
return mask
def _load_text_conditioning(
self,
context: InvocationContext,
conditioning_name: str,
dtype: torch.dtype,
device: torch.device,
) -> torch.Tensor:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
cogview4_conditioning = cond_data.conditionings[0]
assert isinstance(cogview4_conditioning, CogView4ConditioningInfo)
cogview4_conditioning = cogview4_conditioning.to(dtype=dtype, device=device)
return cogview4_conditioning.glm_embeds
def _get_noise(
self,
batch_size: int,
num_channels_latents: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
seed: int,
) -> torch.Tensor:
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
rand_device = "cpu"
rand_dtype = torch.float16
return torch.randn(
batch_size,
num_channels_latents,
int(height) // LATENT_SCALE_FACTOR,
int(width) // LATENT_SCALE_FACTOR,
device=rand_device,
dtype=rand_dtype,
generator=torch.Generator(device=rand_device).manual_seed(seed),
).to(device=device, dtype=dtype)
def _prepare_cfg_scale(self, num_timesteps: int) -> list[float]:
"""Prepare the CFG scale list.
Args:
num_timesteps (int): The number of timesteps in the scheduler. Could be different from num_steps depending
on the scheduler used (e.g. higher order schedulers).
Returns:
list[float]: _description_
"""
if isinstance(self.cfg_scale, float):
cfg_scale = [self.cfg_scale] * num_timesteps
elif isinstance(self.cfg_scale, list):
assert len(self.cfg_scale) == num_timesteps
cfg_scale = self.cfg_scale
else:
raise ValueError(f"Invalid CFG scale type: {type(self.cfg_scale)}")
return cfg_scale
def _convert_timesteps_to_sigmas(self, image_seq_len: int, timesteps: torch.Tensor) -> list[float]:
# The logic to prepare the timestep / sigma schedule is based on:
# https://github.com/huggingface/diffusers/blob/b38450d5d2e5b87d5ff7088ee5798c85587b9635/src/diffusers/pipelines/cogview4/pipeline_cogview4.py#L575-L595
# The default FlowMatchEulerDiscreteScheduler configs are based on:
# https://huggingface.co/THUDM/CogView4-6B/blob/fb6f57289c73ac6d139e8d81bd5a4602d1877847/scheduler/scheduler_config.json
# This implementation differs slightly from the original for the sake of simplicity (differs in terminal value
# handling, not quantizing timesteps to integers, etc.).
def calculate_timestep_shift(
image_seq_len: int, base_seq_len: int = 256, base_shift: float = 0.25, max_shift: float = 0.75
) -> float:
m = (image_seq_len / base_seq_len) ** 0.5
mu = m * max_shift + base_shift
return mu
def time_shift_linear(mu: float, sigma: float, t: torch.Tensor) -> torch.Tensor:
return mu / (mu + (1 / t - 1) ** sigma)
mu = calculate_timestep_shift(image_seq_len)
sigmas = time_shift_linear(mu, 1.0, timesteps)
return sigmas.tolist()
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
device = TorchDevice.choose_torch_device()
transformer_info = context.models.load(self.transformer.transformer)
assert isinstance(transformer_info.model, CogView4Transformer2DModel)
# Load/process the conditioning data.
# TODO(ryand): Make CFG optional.
do_classifier_free_guidance = True
pos_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.positive_conditioning.conditioning_name,
dtype=inference_dtype,
device=device,
)
neg_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.negative_conditioning.conditioning_name,
dtype=inference_dtype,
device=device,
)
# Prepare misc. conditioning variables.
# TODO(ryand): We could expose these as params (like with SDXL). But, we should experiment to see if they are
# useful first.
original_size = torch.tensor([(self.height, self.width)], dtype=pos_prompt_embeds.dtype, device=device)
target_size = torch.tensor([(self.height, self.width)], dtype=pos_prompt_embeds.dtype, device=device)
crops_coords_top_left = torch.tensor([(0, 0)], dtype=pos_prompt_embeds.dtype, device=device)
# Prepare the timestep / sigma schedule.
patch_size = transformer_info.model.config.patch_size # type: ignore
assert isinstance(patch_size, int)
image_seq_len = ((self.height // LATENT_SCALE_FACTOR) * (self.width // LATENT_SCALE_FACTOR)) // (patch_size**2)
# We add an extra step to the end to account for the final timestep of 0.0.
timesteps: list[float] = torch.linspace(1, 0, self.steps + 1).tolist()
# Clip the timesteps schedule based on denoising_start and denoising_end.
timesteps = clip_timestep_schedule_fractional(timesteps, self.denoising_start, self.denoising_end)
sigmas = self._convert_timesteps_to_sigmas(image_seq_len, torch.tensor(timesteps))
total_steps = len(timesteps) - 1
# Prepare the CFG scale list.
cfg_scale = self._prepare_cfg_scale(total_steps)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=device, dtype=inference_dtype)
# Generate initial latent noise.
num_channels_latents = transformer_info.model.config.in_channels # type: ignore
assert isinstance(num_channels_latents, int)
noise = self._get_noise(
batch_size=1,
num_channels_latents=num_channels_latents,
height=self.height,
width=self.width,
dtype=inference_dtype,
device=device,
seed=self.seed,
)
# Prepare input latent image.
if init_latents is not None:
# Noise the init_latents by the appropriate amount for the first timestep.
s_0 = sigmas[0]
latents = s_0 * noise + (1.0 - s_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
latents = noise
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
# denoising steps.
if len(timesteps) <= 1:
return latents
# Prepare inpaint extension.
inpaint_mask = self._prep_inpaint_mask(context, latents)
inpaint_extension: RectifiedFlowInpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = RectifiedFlowInpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
)
step_callback = self._build_step_callback(context)
step_callback(
PipelineIntermediateState(
step=0,
order=1,
total_steps=total_steps,
timestep=int(timesteps[0]),
latents=latents,
),
)
with transformer_info.model_on_device() as (_, transformer):
assert isinstance(transformer, CogView4Transformer2DModel)
# Denoising loop
for step_idx in tqdm(range(total_steps)):
t_curr = timesteps[step_idx]
sigma_curr = sigmas[step_idx]
sigma_prev = sigmas[step_idx + 1]
# Expand the timestep to match the latent model input.
# Multiply by 1000 to match the default FlowMatchEulerDiscreteScheduler num_train_timesteps.
timestep = torch.tensor([t_curr * 1000], device=device).expand(latents.shape[0])
# TODO(ryand): Support both sequential and batched CFG inference.
noise_pred_cond = transformer(
hidden_states=latents,
encoder_hidden_states=pos_prompt_embeds,
timestep=timestep,
original_size=original_size,
target_size=target_size,
crop_coords=crops_coords_top_left,
return_dict=False,
)[0]
# Apply CFG.
if do_classifier_free_guidance:
noise_pred_uncond = transformer(
hidden_states=latents,
encoder_hidden_states=neg_prompt_embeds,
timestep=timestep,
original_size=original_size,
target_size=target_size,
crop_coords=crops_coords_top_left,
return_dict=False,
)[0]
noise_pred = noise_pred_uncond + cfg_scale[step_idx] * (noise_pred_cond - noise_pred_uncond)
else:
noise_pred = noise_pred_cond
# Compute the previous noisy sample x_t -> x_t-1.
latents_dtype = latents.dtype
# TODO(ryand): Is casting to float32 necessary for precision/stability? I copied this from SD3.
latents = latents.to(dtype=torch.float32)
latents = latents + (sigma_prev - sigma_curr) * noise_pred
latents = latents.to(dtype=latents_dtype)
if inpaint_extension is not None:
latents = inpaint_extension.merge_intermediate_latents_with_init_latents(latents, sigma_prev)
step_callback(
PipelineIntermediateState(
step=step_idx + 1,
order=1,
total_steps=total_steps,
timestep=int(t_curr),
latents=latents,
),
)
return latents
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, BaseModelType.CogView4)
return step_callback

View File

@@ -0,0 +1,76 @@
import einops
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_cogview4
# TODO(ryand): This is effectively a copy of SD3ImageToLatentsInvocation and a subset of ImageToLatentsInvocation. We
# should refactor to avoid this duplication.
@invocation(
"cogview4_i2l",
title="Image to Latents - CogView4",
tags=["image", "latents", "vae", "i2l", "cogview4"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates latents from an image."""
image: ImageField = InputField(description="The image to encode.")
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
assert isinstance(vae_info.model, AutoencoderKL)
estimated_working_memory = estimate_vae_working_memory_cogview4(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
# TODO: Use seed to make sampling reproducible.
latents: torch.Tensor = image_tensor_dist.sample().to(dtype=vae.dtype)
latents = vae.config.scaling_factor * latents
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, AutoencoderKL)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)

View File

@@ -0,0 +1,79 @@
from contextlib import nullcontext
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_cogview4
# TODO(ryand): This is effectively a copy of SD3LatentsToImageInvocation and a subset of LatentsToImageInvocation. We
# should refactor to avoid this duplication.
@invocation(
"cogview4_l2i",
title="Latents to Image - CogView4",
tags=["latents", "image", "vae", "l2i", "cogview4"],
category="latents",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
estimated_working_memory = estimate_vae_working_memory_cogview4(
operation="decode", image_tensor=latents, vae=vae_info.model
)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
):
context.util.signal_progress("Running VAE")
assert isinstance(vae, (AutoencoderKL))
latents = latents.to(TorchDevice.choose_torch_device())
vae.disable_tiling()
tiling_context = nullcontext()
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode(), tiling_context:
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
img = vae.decode(latents, return_dict=False)[0]
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
TorchDevice.empty_cache()
image_dto = context.images.save(image=img_pil)
return ImageOutput.build(image_dto)

View File

@@ -0,0 +1,55 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import (
GlmEncoderField,
ModelIdentifierField,
TransformerField,
VAEField,
)
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import SubModelType
@invocation_output("cogview4_model_loader_output")
class CogView4ModelLoaderOutput(BaseInvocationOutput):
"""CogView4 base model loader output."""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
glm_encoder: GlmEncoderField = OutputField(description=FieldDescriptions.glm_encoder, title="GLM Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation(
"cogview4_model_loader",
title="Main Model - CogView4",
tags=["model", "cogview4"],
category="model",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4ModelLoaderInvocation(BaseInvocation):
"""Loads a CogView4 base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.cogview4_model,
ui_type=UIType.CogView4MainModel,
input=Input.Direct,
)
def invoke(self, context: InvocationContext) -> CogView4ModelLoaderOutput:
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
glm_tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
glm_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
return CogView4ModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
glm_encoder=GlmEncoderField(tokenizer=glm_tokenizer, text_encoder=glm_encoder),
vae=VAEField(vae=vae),
)

View File

@@ -0,0 +1,92 @@
import torch
from transformers import GlmModel, PreTrainedTokenizerFast
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, UIComponent
from invokeai.app.invocations.model import GlmEncoderField
from invokeai.app.invocations.primitives import CogView4ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
CogView4ConditioningInfo,
ConditioningFieldData,
)
from invokeai.backend.util.devices import TorchDevice
# The CogView4 GLM Text Encoder max sequence length set based on the default in diffusers.
COGVIEW4_GLM_MAX_SEQ_LEN = 1024
@invocation(
"cogview4_text_encoder",
title="Prompt - CogView4",
tags=["prompt", "conditioning", "cogview4"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4TextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a cogview4 image."""
prompt: str = InputField(description="Text prompt to encode.", ui_component=UIComponent.Textarea)
glm_encoder: GlmEncoderField = InputField(
title="GLM Encoder",
description=FieldDescriptions.glm_encoder,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CogView4ConditioningOutput:
glm_embeds = self._glm_encode(context, max_seq_len=COGVIEW4_GLM_MAX_SEQ_LEN)
conditioning_data = ConditioningFieldData(conditionings=[CogView4ConditioningInfo(glm_embeds=glm_embeds)])
conditioning_name = context.conditioning.save(conditioning_data)
return CogView4ConditioningOutput.build(conditioning_name)
def _glm_encode(self, context: InvocationContext, max_seq_len: int) -> torch.Tensor:
prompt = [self.prompt]
# TODO(ryand): Add model inputs to the invocation rather than hard-coding.
with (
context.models.load(self.glm_encoder.text_encoder).model_on_device() as (_, glm_text_encoder),
context.models.load(self.glm_encoder.tokenizer).model_on_device() as (_, glm_tokenizer),
):
context.util.signal_progress("Running GLM text encoder")
assert isinstance(glm_text_encoder, GlmModel)
assert isinstance(glm_tokenizer, PreTrainedTokenizerFast)
text_inputs = glm_tokenizer(
prompt,
padding="longest",
max_length=max_seq_len,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = glm_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
assert isinstance(text_input_ids, torch.Tensor)
assert isinstance(untruncated_ids, torch.Tensor)
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = glm_tokenizer.batch_decode(untruncated_ids[:, max_seq_len - 1 : -1])
context.logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_seq_len} tokens: {removed_text}"
)
current_length = text_input_ids.shape[1]
pad_length = (16 - (current_length % 16)) % 16
if pad_length > 0:
pad_ids = torch.full(
(text_input_ids.shape[0], pad_length),
fill_value=glm_tokenizer.pad_token_id,
dtype=text_input_ids.dtype,
device=text_input_ids.device,
)
text_input_ids = torch.cat([pad_ids, text_input_ids], dim=1)
prompt_embeds = glm_text_encoder(
text_input_ids.to(TorchDevice.choose_torch_device()), output_hidden_states=True
).hidden_states[-2]
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds

View File

@@ -1,7 +1,7 @@
from typing import Iterator, List, Optional, Tuple, Union, cast
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel import Compel, ReturnedEmbeddingsType, SplitLongTextMode
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
@@ -104,6 +104,7 @@ class CompelInvocation(BaseInvocation):
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False,
device=TorchDevice.choose_torch_device(),
split_long_text_mode=SplitLongTextMode.SENTENCES,
)
conjunction = Compel.parse_prompt_string(self.prompt)
@@ -113,6 +114,13 @@ class CompelInvocation(BaseInvocation):
c, _options = compel.build_conditioning_tensor_for_conjunction(conjunction)
del compel
del patched_tokenizer
del tokenizer
del ti_manager
del text_encoder
del text_encoder_info
c = c.detach().to("cpu")
conditioning_data = ConditioningFieldData(conditionings=[BasicConditioningInfo(embeds=c)])
@@ -205,6 +213,7 @@ class SDXLPromptInvocationBase:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled,
device=TorchDevice.choose_torch_device(),
split_long_text_mode=SplitLongTextMode.SENTENCES,
)
conjunction = Compel.parse_prompt_string(prompt)
@@ -220,7 +229,10 @@ class SDXLPromptInvocationBase:
else:
c_pooled = None
del compel
del patched_tokenizer
del tokenizer
del ti_manager
del text_encoder
del text_encoder_info

View File

@@ -274,12 +274,12 @@ class InvokeAdjustImageHuePlusInvocation(BaseInvocation, WithMetadata, WithBoard
title="Enhance Image",
tags=["enhance", "image"],
category="image",
version="1.2.0",
version="1.2.1",
)
class InvokeImageEnhanceInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Applies processing from PIL's ImageEnhance module. Originally created by @dwringer"""
image: ImageField = InputField(default=None, description="The image for which to apply processing")
image: ImageField = InputField(description="The image for which to apply processing")
invert: bool = InputField(default=False, description="Whether to invert the image colors")
color: float = InputField(ge=0, default=1.0, description="Color enhancement factor")
contrast: float = InputField(ge=0, default=1.0, description="Contrast enhancement factor")

View File

@@ -0,0 +1,132 @@
# Invocations for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
from typing import List, Union
from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
OutputField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import (
CONTROLNET_MODE_VALUES,
CONTROLNET_RESIZE_VALUES,
heuristic_resize_fast,
)
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# Outputs
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet - SD1.5, SDXL", tags=["controlnet"], category="controlnet", version="1.1.3")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
image=self.image,
control_model=self.control_model,
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
resize_mode=self.resize_mode,
),
)
@invocation(
"heuristic_resize",
title="Heuristic Resize",
tags=["image, controlnet"],
category="image",
version="1.1.1",
classification=Classification.Prototype,
)
class HeuristicResizeInvocation(BaseInvocation):
"""Resize an image using a heuristic method. Preserves edge maps."""
image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, ge=1, description="The width to resize to (px)")
height: int = InputField(default=512, ge=1, description="The height to resize to (px)")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
np_img = pil_to_np(image)
np_resized = heuristic_resize_fast(np_img, (self.width, self.height))
resized = np_to_pil(np_resized)
image_dto = context.images.save(image=resized)
return ImageOutput.build(image_dto)

View File

@@ -1,716 +0,0 @@
# Invocations for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float
from pathlib import Path
from typing import Dict, List, Literal, Union
import cv2
import numpy as np
from controlnet_aux import (
ContentShuffleDetector,
LeresDetector,
MediapipeFaceDetector,
MidasDetector,
MLSDdetector,
NormalBaeDetector,
PidiNetDetector,
SamDetector,
ZoeDetector,
)
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# Outputs
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet - SD1.5, SDXL", tags=["controlnet"], category="controlnet", version="1.1.3")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
image=self.image,
control_model=self.control_model,
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
resize_mode=self.resize_mode,
),
)
# This invocation exists for other invocations to subclass it - do not register with @invocation!
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Base class for invocations that preprocess images for ControlNet"""
image: ImageField = InputField(description="The image to process")
def run_processor(self, image: Image.Image) -> Image.Image:
# superclass just passes through image without processing
return image
def load_image(self, context: InvocationContext) -> Image.Image:
# allows override for any special formatting specific to the preprocessor
return context.images.get_pil(self.image.image_name, "RGB")
def invoke(self, context: InvocationContext) -> ImageOutput:
self._context = context
raw_image = self.load_image(context)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
# currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
image_dto = context.images.save(image=processed_image)
"""Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(image_name=image_dto.image_name)
return ImageOutput(
image=processed_image_field,
# width=processed_image.width,
width=image_dto.width,
# height=processed_image.height,
height=image_dto.height,
# mode=processed_image.mode,
)
@invocation(
"canny_image_processor",
title="Canny Processor",
tags=["controlnet", "canny"],
category="controlnet",
version="1.3.3",
classification=Classification.Deprecated,
)
class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
low_threshold: int = InputField(
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
)
high_threshold: int = InputField(
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
)
def load_image(self, context: InvocationContext) -> Image.Image:
# Keep alpha channel for Canny processing to detect edges of transparent areas
return context.images.get_pil(self.image.image_name, "RGBA")
def run_processor(self, image: Image.Image) -> Image.Image:
processed_image = get_canny_edges(
image,
self.low_threshold,
self.high_threshold,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
@invocation(
"hed_image_processor",
title="HED (softedge) Processor",
tags=["controlnet", "hed", "softedge"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class HedImageProcessorInvocation(ImageProcessorInvocation):
"""Applies HED edge detection to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
# safe not supported in controlnet_aux v0.0.3
# safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image: Image.Image) -> Image.Image:
hed_processor = HEDProcessor()
processed_image = hed_processor.run(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
# safe not supported in controlnet_aux v0.0.3
# safe=self.safe,
scribble=self.scribble,
)
return processed_image
@invocation(
"lineart_image_processor",
title="Lineart Processor",
tags=["controlnet", "lineart"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class LineartImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
def run_processor(self, image: Image.Image) -> Image.Image:
lineart_processor = LineartProcessor()
processed_image = lineart_processor.run(
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse
)
return processed_image
@invocation(
"lineart_anime_image_processor",
title="Lineart Anime Processor",
tags=["controlnet", "lineart", "anime"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art anime processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
processor = LineartAnimeProcessor()
processed_image = processor.run(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
@invocation(
"midas_depth_image_processor",
title="Midas Depth Processor",
tags=["controlnet", "midas"],
category="controlnet",
version="1.2.4",
classification=Classification.Deprecated,
)
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image"""
a_mult: float = InputField(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
bg_th: float = InputField(default=0.1, ge=0, description="Midas parameter `bg_th`")
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
def run_processor(self, image: Image.Image) -> Image.Image:
# TODO: replace from_pretrained() calls with context.models.download_and_cache() (or similar)
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(
image,
a=np.pi * self.a_mult,
bg_th=self.bg_th,
image_resolution=self.image_resolution,
detect_resolution=self.detect_resolution,
# dept_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal=self.depth_and_normal,
)
return processed_image
@invocation(
"normalbae_image_processor",
title="Normal BAE Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies NormalBae processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
)
return processed_image
@invocation(
"mlsd_image_processor",
title="MLSD Processor",
tags=["controlnet", "mlsd"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
"""Applies MLSD processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
def run_processor(self, image: Image.Image) -> Image.Image:
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
thr_v=self.thr_v,
thr_d=self.thr_d,
)
return processed_image
@invocation(
"pidi_image_processor",
title="PIDI Processor",
tags=["controlnet", "pidi"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class PidiImageProcessorInvocation(ImageProcessorInvocation):
"""Applies PIDI processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image: Image.Image) -> Image.Image:
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble,
)
return processed_image
@invocation(
"content_shuffle_image_processor",
title="Content Shuffle Processor",
tags=["controlnet", "contentshuffle"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
"""Applies content shuffle processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
h: int = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image: Image.Image) -> Image.Image:
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
h=self.h,
w=self.w,
f=self.f,
)
return processed_image
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
@invocation(
"zoe_depth_image_processor",
title="Zoe (Depth) Processor",
tags=["controlnet", "zoe", "depth"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
def run_processor(self, image: Image.Image) -> Image.Image:
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
@invocation(
"mediapipe_face_processor",
title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"],
category="controlnet",
version="1.2.4",
classification=Classification.Deprecated,
)
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image"""
max_faces: int = InputField(default=1, ge=1, description="Maximum number of faces to detect")
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(
image,
max_faces=self.max_faces,
min_confidence=self.min_confidence,
image_resolution=self.image_resolution,
detect_resolution=self.detect_resolution,
)
return processed_image
@invocation(
"leres_image_processor",
title="Leres (Depth) Processor",
tags=["controlnet", "leres", "depth"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class LeresImageProcessorInvocation(ImageProcessorInvocation):
"""Applies leres processing to image"""
thr_a: float = InputField(default=0, description="Leres parameter `thr_a`")
thr_b: float = InputField(default=0, description="Leres parameter `thr_b`")
boost: bool = InputField(default=False, description="Whether to use boost mode")
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(
image,
thr_a=self.thr_a,
thr_b=self.thr_b,
boost=self.boost,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
@invocation(
"tile_image_processor",
title="Tile Resample Processor",
tags=["controlnet", "tile"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
"""Tile resampler processor"""
# res: int = InputField(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
down_sampling_rate: float = InputField(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
def tile_resample(
self,
np_img: np.ndarray,
res=512, # never used?
down_sampling_rate=1.0,
):
np_img = HWC3(np_img)
if down_sampling_rate < 1.1:
return np_img
H, W, C = np_img.shape
H = int(float(H) / float(down_sampling_rate))
W = int(float(W) / float(down_sampling_rate))
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
return np_img
def run_processor(self, image: Image.Image) -> Image.Image:
np_img = np.array(image, dtype=np.uint8)
processed_np_image = self.tile_resample(
np_img,
# res=self.tile_size,
down_sampling_rate=self.down_sampling_rate,
)
processed_image = Image.fromarray(processed_np_image)
return processed_image
@invocation(
"segment_anything_processor",
title="Segment Anything Processor",
tags=["controlnet", "segmentanything"],
category="controlnet",
version="1.2.4",
classification=Classification.Deprecated,
)
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
"ybelkada/segment-anything", subfolder="checkpoints"
)
np_img = np.array(image, dtype=np.uint8)
processed_image = segment_anything_processor(
np_img, image_resolution=self.image_resolution, detect_resolution=self.detect_resolution
)
return processed_image
class SamDetectorReproducibleColors(SamDetector):
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
# base class show_anns() method randomizes colors,
# which seems to also lead to non-reproducible image generation
# so using ADE20k color palette instead
def show_anns(self, anns: List[Dict]):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
h, w = anns[0]["segmentation"].shape
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
palette = ade_palette()
for i, ann in enumerate(sorted_anns):
m = ann["segmentation"]
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
# doing modulo just in case number of annotated regions exceeds number of colors in palette
ann_color = palette[i % len(palette)]
img[:, :] = ann_color
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
return np.array(final_img, dtype=np.uint8)
@invocation(
"color_map_image_processor",
title="Color Map Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a color map from the provided image"""
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
def run_processor(self, image: Image.Image) -> Image.Image:
np_image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2]
width_tile_size = min(self.color_map_tile_size, width)
height_tile_size = min(self.color_map_tile_size, height)
color_map = cv2.resize(
np_image,
(width // width_tile_size, height // height_tile_size),
interpolation=cv2.INTER_CUBIC,
)
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
color_map = Image.fromarray(color_map)
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
@invocation(
"depth_anything_image_processor",
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.3",
classification=Classification.Deprecated,
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small_v2", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
# Resizing to user target specified size
new_height = int(image.size[1] * (self.resolution / image.size[0]))
depth_map = depth_map.resize((self.resolution, new_height))
return depth_map
@invocation(
"dw_openpose_image_processor",
title="DW Openpose Image Processor",
tags=["controlnet", "dwpose", "openpose"],
category="controlnet",
version="1.1.1",
classification=Classification.Deprecated,
)
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Generates an openpose pose from an image using DWPose"""
draw_body: bool = InputField(default=True)
draw_face: bool = InputField(default=False)
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
onnx_det = self._context.models.download_and_cache_model(DWPOSE_MODELS["yolox_l.onnx"])
onnx_pose = self._context.models.download_and_cache_model(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
dw_openpose = DWOpenposeDetector(onnx_det=onnx_det, onnx_pose=onnx_pose)
processed_image = dw_openpose(
image,
draw_face=self.draw_face,
draw_hands=self.draw_hands,
draw_body=self.draw_body,
resolution=self.image_resolution,
)
return processed_image
@invocation(
"heuristic_resize",
title="Heuristic Resize",
tags=["image, controlnet"],
category="image",
version="1.0.1",
classification=Classification.Prototype,
)
class HeuristicResizeInvocation(BaseInvocation):
"""Resize an image using a heuristic method. Preserves edge maps."""
image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, ge=1, description="The width to resize to (px)")
height: int = InputField(default=512, ge=1, description="The height to resize to (px)")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
np_img = pil_to_np(image)
np_resized = heuristic_resize(np_img, (self.width, self.height))
resized = np_to_pil(np_resized)
image_dto = context.images.save(image=resized)
return ImageOutput.build(image_dto)

View File

@@ -1,12 +1,14 @@
from typing import Literal, Optional
import cv2
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image, ImageFilter
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
@@ -42,15 +44,13 @@ class GradientMaskOutput(BaseInvocationOutput):
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.2.0",
version="1.3.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
"""Creates mask for denoising."""
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
)
mask: ImageField = InputField(description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(default=16, ge=0, description="How far to expand the edges of the mask", ui_order=2)
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
minimum_denoise: float = InputField(
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
@@ -81,45 +81,110 @@ class CreateGradientMaskInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
# Resize the mask_image. Makes the filter 64x faster and doesn't hurt quality in latent scale anyway
mask_image = mask_image.resize(
(
mask_image.width // LATENT_SCALE_FACTOR,
mask_image.height // LATENT_SCALE_FACTOR,
),
resample=Image.Resampling.BILINEAR,
)
mask_np_orig = np.array(mask_image, dtype=np.float32)
self.edge_radius = self.edge_radius // LATENT_SCALE_FACTOR # scale the edge radius to match the mask size
if self.edge_radius > 0:
mask_np = 255 - mask_np_orig # invert so 0 is unmasked (higher values = higher denoise strength)
dilated_mask = mask_np.copy()
# Create kernel based on coherence mode
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
# Create a circular distance kernel that fades from center outward
kernel_size = self.edge_radius * 2 + 1
center = self.edge_radius
kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
for i in range(kernel_size):
for j in range(kernel_size):
dist = np.sqrt((i - center) ** 2 + (j - center) ** 2)
if dist <= self.edge_radius:
kernel[i, j] = 1.0 - (dist / self.edge_radius)
else: # Gaussian Blur or Staged
# Create a Gaussian kernel
kernel_size = self.edge_radius * 2 + 1
kernel = cv2.getGaussianKernel(
kernel_size, self.edge_radius / 2.5
) # 2.5 is a magic number (standard deviation capturing)
kernel = kernel * kernel.T # Make 2D gaussian kernel
kernel = kernel / np.max(kernel) # Normalize center to 1.0
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# Ensure values outside radius are 0
center = self.edge_radius
for i in range(kernel_size):
for j in range(kernel_size):
dist = np.sqrt((i - center) ** 2 + (j - center) ** 2)
if dist > self.edge_radius:
kernel[i, j] = 0
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
blur_tensor[blur_tensor < 0] = 0.0
# 2D max filter
mask_tensor = torch.tensor(mask_np)
kernel_tensor = torch.tensor(kernel)
dilated_mask = 255 - self.max_filter2D_torch(mask_tensor, kernel_tensor).cpu()
dilated_mask = dilated_mask.numpy()
threshold = 1 - self.minimum_denoise
threshold = (1 - self.minimum_denoise) * 255
if self.coherence_mode == "Staged":
# wherever the blur_tensor is less than fully masked, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
# wherever expanded mask is darker than the original mask but original was above threshhold, set it to the threshold
# makes any expansion areas drop to threshhold. Raising minimum across the image happen outside of this if
threshold_mask = (dilated_mask < mask_np_orig) & (mask_np_orig > threshold)
dilated_mask = np.where(threshold_mask, threshold, mask_np_orig)
# wherever expanded mask is less than 255 but greater than threshold, drop it to threshold (minimum denoise)
threshold_mask = (dilated_mask > threshold) & (dilated_mask < 255)
dilated_mask = np.where(threshold_mask, threshold, dilated_mask)
else:
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
dilated_mask = mask_np_orig.copy()
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
# convert to tensor
dilated_mask = np.clip(dilated_mask, 0, 255).astype(np.uint8)
mask_tensor = torch.tensor(dilated_mask, device=torch.device("cpu"))
# compute a [0, 1] mask from the blur_tensor
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
# binary mask for compositing
expanded_mask = np.where((dilated_mask < 255), 0, 255)
expanded_mask_image = Image.fromarray(expanded_mask.astype(np.uint8), mode="L")
expanded_mask_image = expanded_mask_image.resize(
(
mask_image.width * LATENT_SCALE_FACTOR,
mask_image.height * LATENT_SCALE_FACTOR,
),
resample=Image.Resampling.NEAREST,
)
expanded_image_dto = context.images.save(expanded_mask_image)
# restore the original mask size
dilated_mask = Image.fromarray(dilated_mask.astype(np.uint8))
dilated_mask = dilated_mask.resize(
(
mask_image.width * LATENT_SCALE_FACTOR,
mask_image.height * LATENT_SCALE_FACTOR,
),
resample=Image.Resampling.NEAREST,
)
# stack the mask as a tensor, repeating 4 times on dimmension 1
dilated_mask_tensor = image_resized_to_grid_as_tensor(dilated_mask, normalize=False)
mask_name = context.tensors.save(tensor=dilated_mask_tensor.unsqueeze(0))
masked_latents_name = None
if self.unet is not None and self.vae is not None and self.image is not None:
# all three fields must be present at the same time
main_model_config = context.models.get_config(self.unet.unet.key)
assert isinstance(main_model_config, MainConfigBase)
if main_model_config.variant is ModelVariantType.Inpaint:
mask = blur_tensor
mask = dilated_mask_tensor
vae_info: LoadedModel = context.models.load(self.vae.vae)
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
@@ -137,3 +202,29 @@ class CreateGradientMaskInvocation(BaseInvocation):
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
)
def max_filter2D_torch(self, image: torch.Tensor, kernel: torch.Tensor) -> torch.Tensor:
"""
This morphological operation is much faster in torch than numpy or opencv
For reasonable kernel sizes, the overhead of copying the data to the GPU is not worth it.
"""
h, w = kernel.shape
pad_h, pad_w = h // 2, w // 2
padded = torch.nn.functional.pad(image, (pad_w, pad_w, pad_h, pad_h), mode="constant", value=0)
result = torch.zeros_like(image)
# This looks like it's inside out, but it does the same thing and is more efficient
for i in range(h):
for j in range(w):
weight = kernel[i, j]
if weight <= 0:
continue
# Extract the region from padded tensor
region = padded[i : i + image.shape[0], j : j + image.shape[1]]
# Apply weight and update max
result = torch.maximum(result, region * weight)
return result

View File

@@ -22,7 +22,7 @@ from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.controlnet import ControlField
from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
@@ -608,6 +608,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
mask=mask,
method=single_ip_adapter.method,
)
)

View File

@@ -4,7 +4,7 @@ from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector2
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
@invocation(
@@ -25,20 +25,20 @@ class DWOpenposeDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
onnx_det_path = context.models.download_and_cache_model(DWOpenposeDetector2.get_model_url_det())
onnx_pose_path = context.models.download_and_cache_model(DWOpenposeDetector2.get_model_url_pose())
onnx_det_path = context.models.download_and_cache_model(DWOpenposeDetector.get_model_url_det())
onnx_pose_path = context.models.download_and_cache_model(DWOpenposeDetector.get_model_url_pose())
loaded_session_det = context.models.load_local_model(
onnx_det_path, DWOpenposeDetector2.create_onnx_inference_session
onnx_det_path, DWOpenposeDetector.create_onnx_inference_session
)
loaded_session_pose = context.models.load_local_model(
onnx_pose_path, DWOpenposeDetector2.create_onnx_inference_session
onnx_pose_path, DWOpenposeDetector.create_onnx_inference_session
)
with loaded_session_det as session_det, loaded_session_pose as session_pose:
assert isinstance(session_det, ort.InferenceSession)
assert isinstance(session_pose, ort.InferenceSession)
detector = DWOpenposeDetector2(session_det=session_det, session_pose=session_pose)
detector = DWOpenposeDetector(session_det=session_det, session_pose=session_pose)
detected_image = detector.run(
image,
draw_face=self.draw_face,

View File

@@ -1,11 +1,12 @@
from enum import Enum
from typing import Any, Callable, Optional, Tuple
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, model_validator
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
from pydantic.fields import _Unset
from pydantic_core import PydanticUndefined
from invokeai.app.util.metaenum import MetaEnum
from invokeai.backend.image_util.segment_anything.shared import BoundingBox
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
@@ -40,6 +41,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Model Field Types
MainModel = "MainModelField"
CogView4MainModel = "CogView4MainModelField"
FluxMainModel = "FluxMainModelField"
SD3MainModel = "SD3MainModelField"
SDXLMainModel = "SDXLMainModelField"
@@ -60,11 +62,19 @@ class UIType(str, Enum, metaclass=MetaEnum):
SigLipModel = "SigLipModelField"
FluxReduxModel = "FluxReduxModelField"
LlavaOnevisionModel = "LLaVAModelField"
Imagen3Model = "Imagen3ModelField"
Imagen4Model = "Imagen4ModelField"
ChatGPT4oModel = "ChatGPT4oModelField"
Gemini2_5Model = "Gemini2_5ModelField"
FluxKontextModel = "FluxKontextModelField"
Veo3Model = "Veo3ModelField"
RunwayModel = "RunwayModelField"
# endregion
# region Misc Field Types
Scheduler = "SchedulerField"
Any = "AnyField"
Video = "VideoField"
# endregion
# region Internal Field Types
@@ -137,6 +147,7 @@ class FieldDescriptions:
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
t5_encoder = "T5 tokenizer and text encoder"
glm_encoder = "GLM (THUDM) tokenizer and text encoder"
clip_embed_model = "CLIP Embed loader"
clip_g_model = "CLIP-G Embed loader"
unet = "UNet (scheduler, LoRAs)"
@@ -151,6 +162,7 @@ class FieldDescriptions:
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sd3_model = "SD3 model (MMDiTX) to load"
cogview4_model = "CogView4 model (Transformer) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
@@ -208,6 +220,7 @@ class FieldDescriptions:
flux_redux_conditioning = "FLUX Redux conditioning tensor"
vllm_model = "The VLLM model to use"
flux_fill_conditioning = "FLUX Fill conditioning tensor"
flux_kontext_conditioning = "FLUX Kontext conditioning (reference image)"
class ImageField(BaseModel):
@@ -216,6 +229,12 @@ class ImageField(BaseModel):
image_name: str = Field(description="The name of the image")
class VideoField(BaseModel):
"""A video primitive field"""
video_id: str = Field(description="The id of the video")
class BoardField(BaseModel):
"""A board primitive field"""
@@ -284,12 +303,24 @@ class FluxFillConditioningField(BaseModel):
mask: TensorField = Field(description="The FLUX Fill inpaint mask.")
class FluxKontextConditioningField(BaseModel):
"""A conditioning field for FLUX Kontext (reference image)."""
image: ImageField = Field(description="The Kontext reference image.")
class SD3ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class CogView4ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
@@ -301,14 +332,9 @@ class ConditioningField(BaseModel):
)
class BoundingBoxField(BaseModel):
class BoundingBoxField(BoundingBox):
"""A bounding box primitive value."""
x_min: int = Field(ge=0, description="The minimum x-coordinate of the bounding box (inclusive).")
x_max: int = Field(ge=0, description="The maximum x-coordinate of the bounding box (exclusive).")
y_min: int = Field(ge=0, description="The minimum y-coordinate of the bounding box (inclusive).")
y_max: int = Field(ge=0, description="The maximum y-coordinate of the bounding box (exclusive).")
score: Optional[float] = Field(
default=None,
ge=0.0,
@@ -317,21 +343,6 @@ class BoundingBoxField(BaseModel):
"when the bounding box was produced by a detector and has an associated confidence score.",
)
@model_validator(mode="after")
def check_coords(self):
if self.x_min > self.x_max:
raise ValueError(f"x_min ({self.x_min}) is greater than x_max ({self.x_max}).")
if self.y_min > self.y_max:
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
return self
def tuple(self) -> Tuple[int, int, int, int]:
"""
Returns the bounding box as a tuple suitable for use with PIL's `Image.crop()` method.
This method returns a tuple of the form (left, upper, right, lower) == (x_min, y_min, x_max, y_max).
"""
return (self.x_min, self.y_min, self.x_max, self.y_max)
class MetadataField(RootModel[dict[str, Any]]):
"""
@@ -389,8 +400,8 @@ class InputFieldJSONSchemaExtra(BaseModel):
"""
input: Input
orig_required: bool
field_kind: FieldKind
orig_required: bool = True
default: Optional[Any] = None
orig_default: Optional[Any] = None
ui_hidden: bool = False
@@ -425,7 +436,7 @@ class WithWorkflow:
workflow = None
def __init_subclass__(cls) -> None:
logger.warn(
logger.warning(
f"{cls.__module__.split('.')[0]}.{cls.__name__}: WithWorkflow is deprecated. Use `context.workflow` to access the workflow."
)
super().__init_subclass__()
@@ -487,7 +498,7 @@ def InputField(
input: Input = Input.Any,
ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False,
ui_hidden: Optional[bool] = None,
ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None,
) -> Any:
@@ -523,15 +534,20 @@ def InputField(
json_schema_extra_ = InputFieldJSONSchemaExtra(
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
ui_choice_labels=ui_choice_labels,
field_kind=FieldKind.Input,
orig_required=True,
)
if ui_type is not None:
json_schema_extra_.ui_type = ui_type
if ui_component is not None:
json_schema_extra_.ui_component = ui_component
if ui_hidden is not None:
json_schema_extra_.ui_hidden = ui_hidden
if ui_order is not None:
json_schema_extra_.ui_order = ui_order
if ui_choice_labels is not None:
json_schema_extra_.ui_choice_labels = ui_choice_labels
"""
There is a conflict between the typing of invocation definitions and the typing of an invocation's
`invoke()` function.
@@ -561,7 +577,7 @@ def InputField(
if default_factory is not _Unset and default_factory is not None:
default = default_factory()
logger.warn('"default_factory" is not supported, calling it now to set "default"')
logger.warning('"default_factory" is not supported, calling it now to set "default"')
# These are the args we may wish pass to the pydantic `Field()` function
field_args = {
@@ -603,7 +619,7 @@ def InputField(
return Field(
**provided_args,
json_schema_extra=json_schema_extra_.model_dump(exclude_none=True),
json_schema_extra=json_schema_extra_.model_dump(exclude_unset=True),
)

View File

@@ -16,13 +16,12 @@ from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
FluxFillConditioningField,
FluxKontextConditioningField,
FluxReduxConditioningField,
ImageField,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
@@ -33,8 +32,8 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.kontext_extension import KontextExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
@@ -53,6 +52,7 @@ from invokeai.backend.model_manager.taxonomy import ModelFormat, ModelVariantTyp
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.rectified_flow.rectified_flow_inpaint_extension import RectifiedFlowInpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -63,9 +63,9 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.3.0",
version="4.1.0",
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
class FluxDenoiseInvocation(BaseInvocation):
"""Run denoising process with a FLUX transformer model."""
# If latents is provided, this means we are doing image-to-image.
@@ -145,11 +145,20 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.vae,
input=Input.Connection,
)
# This node accepts a images for features like FLUX Fill, ControlNet, and Kontext, but needs to operate on them in
# latent space. We'll run the VAE to encode them in this node instead of requiring the user to run the VAE in
# upstream nodes.
ip_adapter: IPAdapterField | list[IPAdapterField] | None = InputField(
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection
)
kontext_conditioning: FluxKontextConditioningField | list[FluxKontextConditioningField] | None = InputField(
default=None,
description="FLUX Kontext conditioning (reference image).",
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
@@ -295,10 +304,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
assert packed_h * packed_w == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
inpaint_extension: RectifiedFlowInpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
inpaint_extension = RectifiedFlowInpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
@@ -319,6 +328,21 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
cfg_scale_end_step=self.cfg_scale_end_step,
)
kontext_extension = None
if self.kontext_conditioning:
if not self.controlnet_vae:
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
kontext_extension = KontextExtension(
context=context,
kontext_conditioning=self.kontext_conditioning
if isinstance(self.kontext_conditioning, list)
else [self.kontext_conditioning],
vae_field=self.controlnet_vae,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
with ExitStack() as exit_stack:
# Prepare ControlNet extensions.
# Note: We do this before loading the transformer model to minimize peak memory (see implementation).
@@ -376,6 +400,14 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
)
# Prepare Kontext conditioning if provided
img_cond_seq = None
img_cond_seq_ids = None
if kontext_extension is not None:
# Ensure batch sizes match
kontext_extension.ensure_batch_size(x.shape[0])
img_cond_seq, img_cond_seq_ids = kontext_extension.kontext_latents, kontext_extension.kontext_ids
x = denoise(
model=transformer,
img=x,
@@ -391,6 +423,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
img_cond=img_cond,
img_cond_seq=img_cond_seq,
img_cond_seq_ids=img_cond_seq_ids,
)
x = unpack(x.float(), self.height, self.width)
@@ -865,7 +899,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
# The denoise function now handles Kontext conditioning correctly,
# so we don't need to slice the latents here
latents = state.latents.float()
state.latents = unpack(latents, self.height, self.width).squeeze()
context.util.flux_step_callback(state)
return step_callback

View File

@@ -0,0 +1,40 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxKontextConditioningField,
InputField,
OutputField,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("flux_kontext_output")
class FluxKontextOutput(BaseInvocationOutput):
"""The conditioning output of a FLUX Kontext invocation."""
kontext_cond: FluxKontextConditioningField = OutputField(
description=FieldDescriptions.flux_kontext_conditioning, title="Kontext Conditioning"
)
@invocation(
"flux_kontext",
title="Kontext Conditioning - FLUX",
tags=["conditioning", "kontext", "flux"],
category="conditioning",
version="1.0.0",
)
class FluxKontextInvocation(BaseInvocation):
"""Prepares a reference image for FLUX Kontext conditioning."""
image: ImageField = InputField(description="The Kontext reference image.")
def invoke(self, context: InvocationContext) -> FluxKontextOutput:
"""Packages the provided image into a Kontext conditioning field."""
return FluxKontextOutput(kontext_cond=FluxKontextConditioningField(image=self.image))

View File

@@ -1,7 +1,9 @@
from typing import Optional
import math
from typing import Literal, Optional
import torch
from PIL import Image
from transformers import SiglipImageProcessor, SiglipVisionModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -39,12 +41,15 @@ class FluxReduxOutput(BaseInvocationOutput):
)
DOWNSAMPLING_FUNCTIONS = Literal["nearest", "bilinear", "bicubic", "area", "nearest-exact"]
@invocation(
"flux_redux",
title="FLUX Redux",
tags=["ip_adapter", "control"],
category="ip_adapter",
version="2.0.0",
version="2.1.0",
classification=Classification.Beta,
)
class FluxReduxInvocation(BaseInvocation):
@@ -61,23 +66,64 @@ class FluxReduxInvocation(BaseInvocation):
title="FLUX Redux Model",
ui_type=UIType.FluxReduxModel,
)
downsampling_factor: int = InputField(
ge=1,
le=9,
default=1,
description="Redux Downsampling Factor (1-9)",
)
downsampling_function: DOWNSAMPLING_FUNCTIONS = InputField(
default="area",
description="Redux Downsampling Function",
)
weight: float = InputField(
ge=0,
le=1,
default=1.0,
description="Redux weight (0.0-1.0)",
)
def invoke(self, context: InvocationContext) -> FluxReduxOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
encoded_x = self._siglip_encode(context, image)
redux_conditioning = self._flux_redux_encode(context, encoded_x)
if self.downsampling_factor > 1 or self.weight != 1.0:
redux_conditioning = self._downsample_weight(context, redux_conditioning)
tensor_name = context.tensors.save(redux_conditioning)
return FluxReduxOutput(
redux_cond=FluxReduxConditioningField(conditioning=TensorField(tensor_name=tensor_name), mask=self.mask)
)
@torch.no_grad()
def _downsample_weight(self, context: InvocationContext, redux_conditioning: torch.Tensor) -> torch.Tensor:
# Downsampling derived from https://github.com/kaibioinfo/ComfyUI_AdvancedRefluxControl
(b, t, h) = redux_conditioning.shape
m = int(math.sqrt(t))
if self.downsampling_factor > 1:
redux_conditioning = redux_conditioning.view(b, m, m, h)
redux_conditioning = torch.nn.functional.interpolate(
redux_conditioning.transpose(1, -1),
size=(m // self.downsampling_factor, m // self.downsampling_factor),
mode=self.downsampling_function,
)
redux_conditioning = redux_conditioning.transpose(1, -1).reshape(b, -1, h)
if self.weight != 1.0:
redux_conditioning = redux_conditioning * self.weight * self.weight
return redux_conditioning
@torch.no_grad()
def _siglip_encode(self, context: InvocationContext, image: Image.Image) -> torch.Tensor:
siglip_model_config = self._get_siglip_model(context)
with context.models.load(siglip_model_config.key).model_on_device() as (_, siglip_pipeline):
assert isinstance(siglip_pipeline, SigLipPipeline)
with context.models.load(siglip_model_config.key).model_on_device() as (_, model):
assert isinstance(model, SiglipVisionModel)
model_abs_path = context.models.get_absolute_path(siglip_model_config)
processor = SiglipImageProcessor.from_pretrained(model_abs_path, local_files_only=True)
assert isinstance(processor, SiglipImageProcessor)
siglip_pipeline = SigLipPipeline(processor, model)
return siglip_pipeline.encode_image(
x=image, device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)

View File

@@ -1,5 +1,5 @@
from contextlib import ExitStack
from typing import Iterator, Literal, Optional, Tuple
from typing import Iterator, Literal, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer, T5TokenizerFast
@@ -111,6 +111,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
if context.config.get().log_tokenization:
self._log_t5_tokenization(context, t5_tokenizer)
context.util.signal_progress("Running T5 encoder")
prompt_embeds = t5_encoder(prompt)
@@ -151,6 +154,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
if context.config.get().log_tokenization:
self._log_clip_tokenization(context, clip_tokenizer)
context.util.signal_progress("Running CLIP encoder")
pooled_prompt_embeds = clip_encoder(prompt)
@@ -170,3 +176,88 @@ class FluxTextEncoderInvocation(BaseInvocation):
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info
def _log_t5_tokenization(
self,
context: InvocationContext,
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
) -> None:
"""Logs the tokenization of a prompt for a T5-based model like FLUX."""
# Tokenize the prompt using the same parameters as the model's text encoder.
# T5 tokenizers add an EOS token (</s>) and then pad to max_length.
tokenized_output = tokenizer(
self.prompt,
padding="max_length",
max_length=self.t5_max_seq_len,
truncation=True,
add_special_tokens=True, # This is important for T5 to add the EOS token.
return_tensors="pt",
)
input_ids = tokenized_output.input_ids[0]
tokens = tokenizer.convert_ids_to_tokens(input_ids)
# The T5 tokenizer uses a space-like character ' ' (U+2581) to denote spaces.
# We'll replace it with a regular space for readability.
tokens = [t.replace("\u2581", " ") for t in tokens]
tokenized_str = ""
used_tokens = 0
for token in tokens:
if token == tokenizer.eos_token:
tokenized_str += f"\x1b[0;31m{token}\x1b[0m" # Red for EOS
used_tokens += 1
elif token == tokenizer.pad_token:
# tokenized_str += f"\x1b[0;34m{token}\x1b[0m" # Blue for PAD
continue
else:
color = (used_tokens % 6) + 1 # Cycle through 6 colors
tokenized_str += f"\x1b[0;3{color}m{token}\x1b[0m"
used_tokens += 1
context.logger.info(f">> [T5 TOKENLOG] Tokens ({used_tokens}/{self.t5_max_seq_len}):")
context.logger.info(f"{tokenized_str}\x1b[0m")
def _log_clip_tokenization(
self,
context: InvocationContext,
tokenizer: CLIPTokenizer,
) -> None:
"""Logs the tokenization of a prompt for a CLIP-based model."""
max_length = tokenizer.model_max_length
tokenized_output = tokenizer(
self.prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
input_ids = tokenized_output.input_ids[0]
attention_mask = tokenized_output.attention_mask[0]
tokens = tokenizer.convert_ids_to_tokens(input_ids)
# The CLIP tokenizer uses '</w>' to denote spaces.
# We'll replace it with a regular space for readability.
tokens = [t.replace("</w>", " ") for t in tokens]
tokenized_str = ""
used_tokens = 0
for i, token in enumerate(tokens):
if attention_mask[i] == 0:
# Do not log padding tokens.
continue
if token == tokenizer.bos_token:
tokenized_str += f"\x1b[0;32m{token}\x1b[0m" # Green for BOS
elif token == tokenizer.eos_token:
tokenized_str += f"\x1b[0;31m{token}\x1b[0m" # Red for EOS
else:
color = (used_tokens % 6) + 1 # Cycle through 6 colors
tokenized_str += f"\x1b[0;3{color}m{token}\x1b[0m"
used_tokens += 1
context.logger.info(f">> [CLIP TOKENLOG] Tokens ({used_tokens}/{max_length}):")
context.logger.info(f"{tokenized_str}\x1b[0m")

View File

@@ -3,7 +3,6 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -18,6 +17,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_flux
@invocation(
@@ -39,17 +39,11 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
assert isinstance(vae_info.model, AutoEncoder)
estimated_working_memory = estimate_vae_working_memory_flux(
operation="decode", image_tensor=latents, vae=vae_info.model
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype

View File

@@ -15,6 +15,7 @@ from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_flux
@invocation(
@@ -41,8 +42,12 @@ class FluxVaeEncodeInvocation(BaseInvocation):
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
# should be used for VAE encode sampling.
assert isinstance(vae_info.model, AutoEncoder)
estimated_working_memory = estimate_vae_working_memory_flux(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
with vae_info as vae:
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)

View File

@@ -21,14 +21,14 @@ class IdealSizeOutput(BaseInvocationOutput):
"ideal_size",
title="Ideal Size - SD1.5, SDXL",
tags=["latents", "math", "ideal_size"],
version="1.0.5",
version="1.0.6",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Final image width")
height: int = InputField(default=576, description="Final image height")
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
unet: UNetField = InputField(description=FieldDescriptions.unet)
multiplier: float = InputField(
default=1.0,
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in "

View File

@@ -975,13 +975,13 @@ class SaveImageInvocation(BaseInvocation, WithMetadata, WithBoard):
title="Canvas Paste Back",
tags=["image", "combine"],
category="image",
version="1.0.0",
version="1.0.1",
)
class CanvasPasteBackInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Combines two images by using the mask provided. Intended for use on the Unified Canvas."""
source_image: ImageField = InputField(description="The source image")
target_image: ImageField = InputField(default=None, description="The target image")
target_image: ImageField = InputField(description="The target image")
mask: ImageField = InputField(
description="The mask to use when pasting",
)
@@ -1218,12 +1218,15 @@ class ApplyMaskToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
title="Add Image Noise",
tags=["image", "noise"],
category="image",
version="1.0.1",
version="1.1.0",
)
class ImageNoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Add noise to an image"""
image: ImageField = InputField(description="The image to add noise to")
mask: Optional[ImageField] = InputField(
default=None, description="Optional mask determining where to apply noise (black=noise, white=no noise)"
)
seed: int = InputField(
default=0,
ge=0,
@@ -1267,12 +1270,27 @@ class ImageNoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
noise = Image.fromarray(noise.astype(numpy.uint8), mode="RGB").resize(
(image.width, image.height), Image.Resampling.NEAREST
)
# Create a noisy version of the input image
noisy_image = Image.blend(image.convert("RGB"), noise, self.amount).convert("RGBA")
# Paste back the alpha channel
noisy_image.putalpha(alpha)
# Apply mask if provided
if self.mask is not None:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
image_dto = context.images.save(image=noisy_image)
if mask_image.size != image.size:
mask_image = mask_image.resize(image.size, Image.Resampling.LANCZOS)
result_image = image.copy()
mask_image = ImageOps.invert(mask_image)
result_image.paste(noisy_image, (0, 0), mask=mask_image)
else:
result_image = noisy_image
# Paste back the alpha channel from the original image
result_image.putalpha(alpha)
image_dto = context.images.save(image=result_image)
return ImageOutput.build(image_dto)
@@ -1329,3 +1347,96 @@ class PasteImageIntoBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoar
image_dto = context.images.save(image=target_image)
return ImageOutput.build(image_dto)
@invocation(
"flux_kontext_image_prep",
title="FLUX Kontext Image Prep",
tags=["image", "concatenate", "flux", "kontext"],
category="image",
version="1.0.0",
)
class FluxKontextConcatenateImagesInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Prepares an image or images for use with FLUX Kontext. The first/single image is resized to the nearest
preferred Kontext resolution. All other images are concatenated horizontally, maintaining their aspect ratio."""
images: list[ImageField] = InputField(
description="The images to concatenate",
min_length=1,
max_length=10,
)
use_preferred_resolution: bool = InputField(
default=True, description="Use FLUX preferred resolutions for the first image"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
from invokeai.backend.flux.util import PREFERED_KONTEXT_RESOLUTIONS
# Step 1: Load all images
pil_images = []
for image_field in self.images:
image = context.images.get_pil(image_field.image_name, mode="RGBA")
pil_images.append(image)
# Step 2: Determine target resolution for the first image
first_image = pil_images[0]
width, height = first_image.size
if self.use_preferred_resolution:
aspect_ratio = width / height
# Find the closest preferred resolution for the first image
_, target_width, target_height = min(
((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS), key=lambda x: x[0]
)
# Apply BFL's scaling formula
scaled_height = 2 * int(target_height / 16)
final_height = 8 * scaled_height # This will be consistent for all images
scaled_width = 2 * int(target_width / 16)
first_width = 8 * scaled_width
else:
# Use original dimensions of first image, ensuring divisibility by 16
final_height = 16 * (height // 16)
first_width = 16 * (width // 16)
# Ensure minimum dimensions
if final_height < 16:
final_height = 16
if first_width < 16:
first_width = 16
# Step 3: Process and resize all images with consistent height
processed_images = []
total_width = 0
for i, image in enumerate(pil_images):
if i == 0:
# First image uses the calculated dimensions
final_width = first_width
else:
# Subsequent images maintain aspect ratio with the same height
img_aspect_ratio = image.width / image.height
# Calculate width that maintains aspect ratio at the target height
calculated_width = int(final_height * img_aspect_ratio)
# Ensure width is divisible by 16 for proper VAE encoding
final_width = 16 * (calculated_width // 16)
# Ensure minimum width
if final_width < 16:
final_width = 16
# Resize image to calculated dimensions
resized_image = image.resize((final_width, final_height), Image.Resampling.LANCZOS)
processed_images.append(resized_image)
total_width += final_width
# Step 4: Concatenate images horizontally
concatenated_image = Image.new("RGB", (total_width, final_height))
x_offset = 0
for img in processed_images:
concatenated_image.paste(img, (x_offset, 0))
x_offset += img.width
# Save the concatenated image
image_dto = context.images.save(image=concatenated_image)
return ImageOutput.build(image_dto)

View File

@@ -27,6 +27,7 @@ from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd15_sdxl
@invocation(
@@ -52,11 +53,24 @@ class ImageToLatentsInvocation(BaseInvocation):
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
@staticmethod
@classmethod
def vae_encode(
vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0
cls,
vae_info: LoadedModel,
upcast: bool,
tiled: bool,
image_tensor: torch.Tensor,
tile_size: int = 0,
) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
estimated_working_memory = estimate_vae_working_memory_sd15_sdxl(
operation="encode",
image_tensor=image_tensor,
vae=vae_info.model,
tile_size=tile_size if tiled else None,
fp32=upcast,
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
orig_dtype = vae.dtype
if upcast:
@@ -113,6 +127,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
@@ -120,7 +135,11 @@ class ImageToLatentsInvocation(BaseInvocation):
context.util.signal_progress("Running VAE encoder")
latents = self.vae_encode(
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
vae_info=vae_info,
upcast=self.fp32,
tiled=self.tiled or context.config.get().force_tiled_decode,
image_tensor=image_tensor,
tile_size=self.tile_size,
)
latents = latents.to("cpu")

View File

@@ -127,13 +127,16 @@ class InfillPatchMatchInvocation(InfillImageProcessorInvocation):
return infilled
LAMA_MODEL_URL = "https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt"
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model"""
def infill(self, image: Image.Image):
with self._context.models.load_remote_model(
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
source=LAMA_MODEL_URL,
loader=LaMA.load_jit_model,
) as model:
lama = LaMA(model)

View File

@@ -31,6 +31,7 @@ class IPAdapterField(BaseModel):
image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the IP-Adapter.")
target_blocks: List[str] = Field(default=[], description="The IP Adapter blocks to apply")
method: str = Field(default="full", description="Weight apply method")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
@@ -94,7 +95,7 @@ class IPAdapterInvocation(BaseInvocation):
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
)
method: Literal["full", "style", "composition"] = InputField(
method: Literal["full", "style", "composition", "style_strong", "style_precise"] = InputField(
default="full", description="The method to apply the IP-Adapter"
)
begin_step_percent: float = InputField(
@@ -147,6 +148,38 @@ class IPAdapterInvocation(BaseInvocation):
target_blocks = ["down_blocks.2.attentions.1"]
else:
raise ValueError(f"Unsupported IP-Adapter base type: '{ip_adapter_info.base}'.")
elif self.method == "style_precise":
if ip_adapter_info.base == "sd-1":
target_blocks = ["up_blocks.1", "down_blocks.2", "mid_block"]
elif ip_adapter_info.base == "sdxl":
target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"]
else:
raise ValueError(f"Unsupported IP-Adapter base type: '{ip_adapter_info.base}'.")
elif self.method == "style_strong":
if ip_adapter_info.base == "sd-1":
target_blocks = ["up_blocks.0", "up_blocks.1", "up_blocks.2", "down_blocks.0", "down_blocks.1"]
elif ip_adapter_info.base == "sdxl":
target_blocks = [
"up_blocks.0.attentions.1",
"up_blocks.1.attentions.1",
"up_blocks.2.attentions.1",
"up_blocks.0.attentions.2",
"up_blocks.1.attentions.2",
"up_blocks.2.attentions.2",
"up_blocks.0.attentions.0",
"up_blocks.1.attentions.0",
"up_blocks.2.attentions.0",
"down_blocks.0.attentions.0",
"down_blocks.0.attentions.1",
"down_blocks.0.attentions.2",
"down_blocks.1.attentions.0",
"down_blocks.1.attentions.1",
"down_blocks.1.attentions.2",
"down_blocks.2.attentions.0",
"down_blocks.2.attentions.2",
]
else:
raise ValueError(f"Unsupported IP-Adapter base type: '{ip_adapter_info.base}'.")
elif self.method == "full":
target_blocks = ["block"]
else:
@@ -162,6 +195,7 @@ class IPAdapterInvocation(BaseInvocation):
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
mask=self.mask,
method=self.method,
),
)

View File

@@ -27,6 +27,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd15_sdxl
@invocation(
@@ -53,39 +54,6 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
def _estimate_working_memory(
self, latents: torch.Tensor, use_tiling: bool, vae: AutoencoderKL | AutoencoderTiny
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if self.fp32 else 2
scaling_constant = 2200 # Determined experimentally.
if use_tiling:
tile_size = self.tile_size
if tile_size == 0:
tile_size = vae.tile_sample_min_size
assert isinstance(tile_size, int)
out_h = tile_size
out_w = tile_size
working_memory = out_h * out_w * element_size * scaling_constant
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
# and number of tiles. We could make this more precise in the future, but this should be good enough for
# most use cases.
working_memory = working_memory * 1.25
else:
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
working_memory = out_h * out_w * element_size * scaling_constant
if self.fp32:
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
@@ -94,8 +62,13 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
estimated_working_memory = self._estimate_working_memory(latents, use_tiling, vae_info.model)
estimated_working_memory = estimate_vae_working_memory_sd15_sdxl(
operation="decode",
image_tensor=latents,
vae=vae_info.model,
tile_size=self.tile_size if use_tiling else None,
fp32=self.fp32,
)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),

View File

@@ -3,13 +3,14 @@ from typing import Any
import torch
from PIL.Image import Image
from pydantic import field_validator
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration, LlavaOnevisionProcessor
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, UIComponent, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.llava_onevision_model import LlavaOnevisionModel
from invokeai.backend.llava_onevision_pipeline import LlavaOnevisionPipeline
from invokeai.backend.util.devices import TorchDevice
@@ -54,10 +55,17 @@ class LlavaOnevisionVllmInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> StringOutput:
images = self._get_images(context)
model_config = context.models.get_config(self.vllm_model)
with context.models.load(self.vllm_model) as vllm_model:
assert isinstance(vllm_model, LlavaOnevisionModel)
output = vllm_model.run(
with context.models.load(self.vllm_model).model_on_device() as (_, model):
assert isinstance(model, LlavaOnevisionForConditionalGeneration)
model_abs_path = context.models.get_absolute_path(model_config)
processor = AutoProcessor.from_pretrained(model_abs_path, local_files_only=True)
assert isinstance(processor, LlavaOnevisionProcessor)
model = LlavaOnevisionPipeline(model, processor)
output = model.run(
prompt=self.prompt,
images=images,
device=TorchDevice.choose_torch_device(),

View File

@@ -42,7 +42,9 @@ class IPAdapterMetadataField(BaseModel):
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model.")
clip_vision_model: Literal["ViT-L", "ViT-H", "ViT-G"] = Field(description="The CLIP Vision model")
method: Literal["full", "style", "composition"] = Field(description="Method to apply IP Weights with")
method: Literal["full", "style", "composition", "style_strong", "style_precise"] = Field(
description="Method to apply IP Weights with"
)
weight: Union[float, list[float]] = Field(description="The weight given to the IP-Adapter")
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")
@@ -152,6 +154,10 @@ GENERATION_MODES = Literal[
"sd3_img2img",
"sd3_inpaint",
"sd3_outpaint",
"cogview4_txt2img",
"cogview4_img2img",
"cogview4_inpaint",
"cogview4_outpaint",
]

View File

@@ -14,7 +14,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField, ControlNetInvocation
from invokeai.app.invocations.controlnet import ControlField, ControlNetInvocation
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
@@ -39,7 +39,17 @@ from invokeai.app.invocations.model import (
VAEField,
VAEOutput,
)
from invokeai.app.invocations.primitives import BooleanOutput, FloatOutput, IntegerOutput, LatentsOutput, StringOutput
from invokeai.app.invocations.primitives import (
BooleanCollectionOutput,
BooleanOutput,
FloatCollectionOutput,
FloatOutput,
IntegerCollectionOutput,
IntegerOutput,
LatentsOutput,
StringCollectionOutput,
StringOutput,
)
from invokeai.app.invocations.scheduler import SchedulerOutput
from invokeai.app.invocations.t2i_adapter import T2IAdapterField, T2IAdapterInvocation
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -1162,3 +1172,133 @@ class MetadataToT2IAdaptersInvocation(BaseInvocation, WithMetadata):
adapters = append_list(T2IAdapterField, i.t2i_adapter, adapters)
return MDT2IAdapterListOutput(t2i_adapter_list=adapters)
@invocation(
"metadata_to_string_collection",
title="Metadata To String Collection",
tags=["metadata"],
category="metadata",
version="1.0.0",
classification=Classification.Beta,
)
class MetadataToStringCollectionInvocation(BaseInvocation, WithMetadata):
"""Extracts a string collection value of a label from metadata"""
label: CORE_LABELS_STRING = InputField(
default=CUSTOM_LABEL,
description=FieldDescriptions.metadata_item_label,
input=Input.Direct,
)
custom_label: Optional[str] = InputField(
default=None,
description=FieldDescriptions.metadata_item_label,
input=Input.Direct,
)
default_value: list[str] = InputField(
description="The default string collection to use if not found in the metadata"
)
_validate_custom_label = model_validator(mode="after")(validate_custom_label)
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
data: Dict[str, Any] = {} if self.metadata is None else self.metadata.root
output = data.get(str(self.custom_label if self.label == CUSTOM_LABEL else self.label), self.default_value)
return StringCollectionOutput(collection=output)
@invocation(
"metadata_to_integer_collection",
title="Metadata To Integer Collection",
tags=["metadata"],
category="metadata",
version="1.0.0",
classification=Classification.Beta,
)
class MetadataToIntegerCollectionInvocation(BaseInvocation, WithMetadata):
"""Extracts an integer value Collection of a label from metadata"""
label: CORE_LABELS_INTEGER = InputField(
default=CUSTOM_LABEL,
description=FieldDescriptions.metadata_item_label,
input=Input.Direct,
)
custom_label: Optional[str] = InputField(
default=None,
description=FieldDescriptions.metadata_item_label,
input=Input.Direct,
)
default_value: list[int] = InputField(description="The default integer to use if not found in the metadata")
_validate_custom_label = model_validator(mode="after")(validate_custom_label)
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
data: Dict[str, Any] = {} if self.metadata is None else self.metadata.root
output = data.get(str(self.custom_label if self.label == CUSTOM_LABEL else self.label), self.default_value)
return IntegerCollectionOutput(collection=output)
@invocation(
"metadata_to_float_collection",
title="Metadata To Float Collection",
tags=["metadata"],
category="metadata",
version="1.0.0",
classification=Classification.Beta,
)
class MetadataToFloatCollectionInvocation(BaseInvocation, WithMetadata):
"""Extracts a Float value Collection of a label from metadata"""
label: CORE_LABELS_FLOAT = InputField(
default=CUSTOM_LABEL,
description=FieldDescriptions.metadata_item_label,
input=Input.Direct,
)
custom_label: Optional[str] = InputField(
default=None,
description=FieldDescriptions.metadata_item_label,
input=Input.Direct,
)
default_value: list[float] = InputField(description="The default float to use if not found in the metadata")
_validate_custom_label = model_validator(mode="after")(validate_custom_label)
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
data: Dict[str, Any] = {} if self.metadata is None else self.metadata.root
output = data.get(str(self.custom_label if self.label == CUSTOM_LABEL else self.label), self.default_value)
return FloatCollectionOutput(collection=output)
@invocation(
"metadata_to_bool_collection",
title="Metadata To Bool Collection",
tags=["metadata"],
category="metadata",
version="1.0.0",
classification=Classification.Beta,
)
class MetadataToBoolCollectionInvocation(BaseInvocation, WithMetadata):
"""Extracts a Boolean value Collection of a label from metadata"""
label: CORE_LABELS_BOOL = InputField(
default=CUSTOM_LABEL,
description=FieldDescriptions.metadata_item_label,
input=Input.Direct,
)
custom_label: Optional[str] = InputField(
default=None,
description=FieldDescriptions.metadata_item_label,
input=Input.Direct,
)
default_value: list[bool] = InputField(description="The default bool to use if not found in the metadata")
_validate_custom_label = model_validator(mode="after")(validate_custom_label)
def invoke(self, context: InvocationContext) -> BooleanCollectionOutput:
data: Dict[str, Any] = {} if self.metadata is None else self.metadata.root
output = data.get(str(self.custom_label if self.label == CUSTOM_LABEL else self.label), self.default_value)
return BooleanCollectionOutput(collection=output)

View File

@@ -68,6 +68,11 @@ class T5EncoderField(BaseModel):
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class GlmEncoderField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
class VAEField(BaseModel):
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')

View File

@@ -13,6 +13,7 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
BoundingBoxField,
CogView4ConditioningField,
ColorField,
ConditioningField,
DenoiseMaskField,
@@ -26,6 +27,7 @@ from invokeai.app.invocations.fields import (
SD3ConditioningField,
TensorField,
UIComponent,
VideoField,
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -286,6 +288,30 @@ class ImageCollectionInvocation(BaseInvocation):
return ImageCollectionOutput(collection=self.collection)
# endregion
# region Video
@invocation_output("video_output")
class VideoOutput(BaseInvocationOutput):
"""Base class for nodes that output a video"""
video: VideoField = OutputField(description="The output video")
width: int = OutputField(description="The width of the video in pixels")
height: int = OutputField(description="The height of the video in pixels")
duration_seconds: float = OutputField(description="The duration of the video in seconds")
@classmethod
def build(cls, video_id: str, width: int, height: int, duration_seconds: float) -> "VideoOutput":
return cls(
video=VideoField(video_id=video_id),
width=width,
height=height,
duration_seconds=duration_seconds,
)
# endregion
# region DenoiseMask
@@ -429,6 +455,15 @@ class FluxConditioningOutput(BaseInvocationOutput):
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
@invocation_output("flux_conditioning_collection_output")
class FluxConditioningCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of conditioning tensors"""
collection: list[FluxConditioningField] = OutputField(
description="The output conditioning tensors",
)
@invocation_output("sd3_conditioning_output")
class SD3ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single SD3 conditioning tensor"""
@@ -440,6 +475,17 @@ class SD3ConditioningOutput(BaseInvocationOutput):
return cls(conditioning=SD3ConditioningField(conditioning_name=conditioning_name))
@invocation_output("cogview4_conditioning_output")
class CogView4ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a CogView text conditioning tensor."""
conditioning: CogView4ConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "CogView4ConditioningOutput":
return cls(conditioning=CogView4ConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""

View File

@@ -24,7 +24,7 @@ from invokeai.app.invocations.sd3_text_encoder import SD3_T5_MAX_SEQ_LEN
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule_fractional
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.sd3.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.rectified_flow.rectified_flow_inpaint_extension import RectifiedFlowInpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -263,10 +263,10 @@ class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Prepare inpaint extension.
inpaint_mask = self._prep_inpaint_mask(context, latents)
inpaint_extension: InpaintExtension | None = None
inpaint_extension: RectifiedFlowInpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
inpaint_extension = RectifiedFlowInpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,

View File

@@ -17,6 +17,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd3
@invocation(
@@ -34,7 +35,11 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae_info.model, AutoencoderKL)
estimated_working_memory = estimate_vae_working_memory_sd3(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
@@ -58,6 +63,8 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, AutoencoderKL)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")

View File

@@ -6,7 +6,6 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -20,6 +19,7 @@ from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd3
@invocation(
@@ -41,22 +41,15 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
estimated_working_memory = estimate_vae_working_memory_sd3(
operation="decode", image_tensor=latents, vae=vae_info.model
)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),

View File

@@ -1,72 +1,75 @@
from enum import Enum
from itertools import zip_longest
from pathlib import Path
from typing import Literal
import numpy as np
import torch
from PIL import Image
from pydantic import BaseModel, Field
from transformers import AutoModelForMaskGeneration, AutoProcessor
from pydantic import BaseModel, Field, model_validator
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
from transformers.models.sam2 import Sam2Model
from transformers.models.sam2.processing_sam2 import Sam2Processor
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField, TensorField
from invokeai.app.invocations.primitives import MaskOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.segment_anything.mask_refinement import mask_to_polygon, polygon_to_mask
from invokeai.backend.image_util.segment_anything.segment_anything_2_pipeline import SegmentAnything2Pipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.image_util.segment_anything.shared import SAMInput, SAMPoint
SegmentAnythingModelKey = Literal["segment-anything-base", "segment-anything-large", "segment-anything-huge"]
SegmentAnythingModelKey = Literal[
"segment-anything-base",
"segment-anything-large",
"segment-anything-huge",
"segment-anything-2-tiny",
"segment-anything-2-small",
"segment-anything-2-base",
"segment-anything-2-large",
]
SEGMENT_ANYTHING_MODEL_IDS: dict[SegmentAnythingModelKey, str] = {
"segment-anything-base": "facebook/sam-vit-base",
"segment-anything-large": "facebook/sam-vit-large",
"segment-anything-huge": "facebook/sam-vit-huge",
"segment-anything-2-tiny": "facebook/sam2.1-hiera-tiny",
"segment-anything-2-small": "facebook/sam2.1-hiera-small",
"segment-anything-2-base": "facebook/sam2.1-hiera-base-plus",
"segment-anything-2-large": "facebook/sam2.1-hiera-large",
}
class SAMPointLabel(Enum):
negative = -1
neutral = 0
positive = 1
class SAMPoint(BaseModel):
x: int = Field(..., description="The x-coordinate of the point")
y: int = Field(..., description="The y-coordinate of the point")
label: SAMPointLabel = Field(..., description="The label of the point")
class SAMPointsField(BaseModel):
points: list[SAMPoint] = Field(..., description="The points of the object")
points: list[SAMPoint] = Field(..., description="The points of the object", min_length=1)
def to_list(self) -> list[list[int]]:
def to_list(self) -> list[list[float]]:
return [[point.x, point.y, point.label.value] for point in self.points]
@invocation(
"segment_anything",
title="Segment Anything",
tags=["prompt", "segmentation"],
tags=["prompt", "segmentation", "sam", "sam2"],
category="segmentation",
version="1.2.0",
version="1.3.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
"""Runs a Segment Anything Model (SAM or SAM2)."""
# Reference:
# - https://arxiv.org/pdf/2304.02643
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use.")
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use (SAM or SAM2).")
image: ImageField = InputField(description="The image to segment.")
bounding_boxes: list[BoundingBoxField] | None = InputField(
default=None, description="The bounding boxes to prompt the SAM model with."
default=None, description="The bounding boxes to prompt the model with."
)
point_lists: list[SAMPointsField] | None = InputField(
default=None,
description="The list of point lists to prompt the SAM model with. Each list of points represents a single object.",
description="The list of point lists to prompt the model with. Each list of points represents a single object.",
)
apply_polygon_refinement: bool = InputField(
description="Whether to apply polygon refinement to the masks. This will smooth the edges of the masks slightly and ensure that each mask consists of a single closed polygon (before merging).",
@@ -77,14 +80,18 @@ class SegmentAnythingInvocation(BaseInvocation):
default="all",
)
@model_validator(mode="after")
def validate_points_and_boxes_len(self):
if self.point_lists is not None and self.bounding_boxes is not None:
if len(self.point_lists) != len(self.bounding_boxes):
raise ValueError("If both point_lists and bounding_boxes are provided, they must have the same length.")
return self
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
if (not self.bounding_boxes or len(self.bounding_boxes) == 0) and (
not self.point_lists or len(self.point_lists) == 0
):
@@ -104,34 +111,45 @@ class SegmentAnythingInvocation(BaseInvocation):
@staticmethod
def _load_sam_model(model_path: Path):
sam_model = AutoModelForMaskGeneration.from_pretrained(
sam_model = SamModel.from_pretrained(
model_path,
local_files_only=True,
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
assert isinstance(sam_model, SamModel)
sam_processor = AutoProcessor.from_pretrained(model_path, local_files_only=True)
assert isinstance(sam_processor, SamProcessor)
sam_processor = SamProcessor.from_pretrained(model_path, local_files_only=True)
return SegmentAnythingPipeline(sam_model=sam_model, sam_processor=sam_processor)
def _segment(self, context: InvocationContext, image: Image.Image) -> list[torch.Tensor]:
"""Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes."""
# Convert the bounding boxes to the SAM input format.
sam_bounding_boxes = (
[[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes] if self.bounding_boxes else None
)
sam_points = [p.to_list() for p in self.point_lists] if self.point_lists else None
@staticmethod
def _load_sam_2_model(model_path: Path):
sam2_model = Sam2Model.from_pretrained(model_path, local_files_only=True)
sam2_processor = Sam2Processor.from_pretrained(model_path, local_files_only=True)
return SegmentAnything2Pipeline(sam2_model=sam2_model, sam2_processor=sam2_processor)
with (
context.models.load_remote_model(
source=SEGMENT_ANYTHING_MODEL_IDS[self.model], loader=SegmentAnythingInvocation._load_sam_model
) as sam_pipeline,
):
assert isinstance(sam_pipeline, SegmentAnythingPipeline)
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes, point_lists=sam_points)
def _segment(self, context: InvocationContext, image: Image.Image) -> list[torch.Tensor]:
"""Use Segment Anything (SAM or SAM2) to generate masks given an image + a set of bounding boxes."""
source = SEGMENT_ANYTHING_MODEL_IDS[self.model]
inputs: list[SAMInput] = []
for bbox_field, point_field in zip_longest(self.bounding_boxes or [], self.point_lists or [], fillvalue=None):
inputs.append(
SAMInput(
bounding_box=bbox_field,
points=point_field.points if point_field else None,
)
)
if "sam2" in source:
loader = SegmentAnythingInvocation._load_sam_2_model
with context.models.load_remote_model(source=source, loader=loader) as pipeline:
assert isinstance(pipeline, SegmentAnything2Pipeline)
masks = pipeline.segment(image=image, inputs=inputs)
else:
loader = SegmentAnythingInvocation._load_sam_model
with context.models.load_remote_model(source=source, loader=loader) as pipeline:
assert isinstance(pipeline, SegmentAnythingPipeline)
masks = pipeline.segment(image=image, inputs=inputs)
masks = self._process_masks(masks)
if self.apply_polygon_refinement:

View File

@@ -9,7 +9,7 @@ from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.controlnet import ControlField
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
from invokeai.app.invocations.fields import (
ConditioningField,

View File

@@ -1,12 +1,3 @@
import uvicorn
from invokeai.app.invocations.load_custom_nodes import load_custom_nodes
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.torch_cuda_allocator import configure_torch_cuda_allocator
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.cli.arg_parser import InvokeAIArgs
def get_app():
"""Import the app and event loop. We wrap this in a function to more explicitly control when it happens, because
importing from api_app does a bunch of stuff - it's more like calling a function than importing a module.
@@ -18,9 +9,18 @@ def get_app():
def run_app() -> None:
"""The main entrypoint for the app."""
# Parse the CLI arguments.
from invokeai.frontend.cli.arg_parser import InvokeAIArgs
# Parse the CLI arguments before doing anything else, which ensures CLI args correctly override settings from other
# sources like `invokeai.yaml` or env vars.
InvokeAIArgs.parse_args()
import uvicorn
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.torch_cuda_allocator import configure_torch_cuda_allocator
from invokeai.backend.util.logging import InvokeAILogger
# Load config.
app_config = get_config()
@@ -31,6 +31,14 @@ def run_app() -> None:
if app_config.pytorch_cuda_alloc_conf:
configure_torch_cuda_allocator(app_config.pytorch_cuda_alloc_conf, logger)
# This import must happen after configure_torch_cuda_allocator() is called, because the module imports torch.
from invokeai.app.invocations.baseinvocation import InvocationRegistry
from invokeai.app.invocations.load_custom_nodes import load_custom_nodes
from invokeai.backend.util.devices import TorchDevice
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
# Import from startup_utils here to avoid importing torch before configure_torch_cuda_allocator() is called.
from invokeai.app.util.startup_utils import (
apply_monkeypatches,
@@ -60,6 +68,15 @@ def run_app() -> None:
# core nodes have been imported so that we can catch when a custom node clobbers a core node.
load_custom_nodes(custom_nodes_path=app_config.custom_nodes_path, logger=logger)
# Check all invocations and ensure their outputs are registered.
for invocation in InvocationRegistry.get_invocation_classes():
invocation_type = invocation.get_type()
output_annotation = invocation.get_output_annotation()
if output_annotation not in InvocationRegistry.get_output_classes():
logger.warning(
f'Invocation "{invocation_type}" has unregistered output class "{output_annotation.__name__}"'
)
if app_config.dev_reload:
# load_custom_nodes seems to bypass jurrigged's import sniffer, so be sure to call it *after* they're already
# imported.

View File

@@ -49,3 +49,11 @@ class BoardImageRecordStorageBase(ABC):
) -> int:
"""Gets the number of images for a board."""
pass
@abstractmethod
def get_asset_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of assets for a board."""
pass

View File

@@ -3,6 +3,8 @@ from typing import Optional, cast
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.image_records.image_records_common import (
ASSETS_CATEGORIES,
IMAGE_CATEGORIES,
ImageCategory,
ImageRecord,
deserialize_image_record,
@@ -14,15 +16,14 @@ from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
INSERT INTO board_images (board_id, image_name)
@@ -31,17 +32,12 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
""",
(board_id, image_name, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
def remove_image_from_board(
self,
image_name: str,
) -> None:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
DELETE FROM board_images
@@ -49,10 +45,6 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
""",
(image_name,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
def get_images_for_board(
self,
@@ -60,27 +52,26 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[ImageRecord]:
# TODO: this isn't paginated yet?
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, cursor.fetchone()[0])
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, cursor.fetchone()[0])
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
@@ -90,47 +81,55 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
params: list[str | bool] = []
with self._db.transaction() as cursor:
params: list[str | bool] = []
# Base query is a join between images and board_images
stmt = """
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
AND board_images.board_id = ?
"""
params.append(board_id)
# Base query is a join between images and board_images
stmt = """
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
# Add the category filter
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
stmt += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Handle board_id filter
if board_id == "none":
stmt += """--sql
AND board_images.board_id IS NULL
"""
else:
stmt += """--sql
AND board_images.board_id = ?
"""
params.append(board_id)
# Unpack the included categories into the query params
for c in category_strings:
params.append(c)
# Add the category filter
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
stmt += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Add the is_intermediate filter
if is_intermediate is not None:
stmt += """--sql
AND images.is_intermediate = ?
"""
params.append(is_intermediate)
# Unpack the included categories into the query params
for c in category_strings:
params.append(c)
# Put a ring on it
stmt += ";"
# Add the is_intermediate filter
if is_intermediate is not None:
stmt += """--sql
AND images.is_intermediate = ?
"""
params.append(is_intermediate)
# Execute the query
cursor = self._conn.cursor()
cursor.execute(stmt, params)
# Put a ring on it
stmt += ";"
result = cast(list[sqlite3.Row], cursor.fetchall())
cursor.execute(stmt, params)
result = cast(list[sqlite3.Row], cursor.fetchall())
image_names = [r[0] for r in result]
return image_names
@@ -138,31 +137,54 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
self,
image_name: str,
) -> Optional[str]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = cursor.fetchone()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
def get_image_count_for_board(self, board_id: str) -> int:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE
AND board_images.board_id = ?;
""",
(board_id,),
)
count = cast(int, cursor.fetchone()[0])
with self._db.transaction() as cursor:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(IMAGE_CATEGORIES)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE AND images.image_category IN ( {placeholders} )
AND board_images.board_id = ?;
""",
(*category_strings, board_id),
)
count = cast(int, cursor.fetchone()[0])
return count
def get_asset_count_for_board(self, board_id: str) -> int:
with self._db.transaction() as cursor:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(ASSETS_CATEGORIES)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE AND images.image_category IN ( {placeholders} )
AND board_images.board_id = ?;
""",
(*category_strings, board_id),
)
count = cast(int, cursor.fetchone()[0])
return count

View File

@@ -20,61 +20,57 @@ from invokeai.app.util.misc import uuid_string
class SqliteBoardRecordStorage(BoardRecordStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def delete(self, board_id: str) -> None:
try:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
self._conn.commit()
except Exception as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
except Exception as e:
raise BoardRecordDeleteException from e
def save(
self,
board_name: str,
) -> BoardRecord:
try:
board_id = uuid_string()
cursor = self._conn.cursor()
cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
""",
(board_id, board_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
with self._db.transaction() as cursor:
try:
board_id = uuid_string()
cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
""",
(board_id, board_name),
)
except sqlite3.Error as e:
raise BoardRecordSaveException from e
return self.get(board_id)
def get(
self,
board_id: str,
) -> BoardRecord:
try:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
except sqlite3.Error as e:
raise BoardRecordNotFoundException from e
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
except sqlite3.Error as e:
raise BoardRecordNotFoundException from e
if result is None:
raise BoardRecordNotFoundException
return BoardRecord(**dict(result))
@@ -84,45 +80,43 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
try:
cursor = self._conn.cursor()
# Change the name of a board
if changes.board_name is not None:
cursor.execute(
"""--sql
UPDATE boards
SET board_name = ?
WHERE board_id = ?;
""",
(changes.board_name, board_id),
)
with self._db.transaction() as cursor:
try:
# Change the name of a board
if changes.board_name is not None:
cursor.execute(
"""--sql
UPDATE boards
SET board_name = ?
WHERE board_id = ?;
""",
(changes.board_name, board_id),
)
# Change the cover image of a board
if changes.cover_image_name is not None:
cursor.execute(
"""--sql
UPDATE boards
SET cover_image_name = ?
WHERE board_id = ?;
""",
(changes.cover_image_name, board_id),
)
# Change the cover image of a board
if changes.cover_image_name is not None:
cursor.execute(
"""--sql
UPDATE boards
SET cover_image_name = ?
WHERE board_id = ?;
""",
(changes.cover_image_name, board_id),
)
# Change the archived status of a board
if changes.archived is not None:
cursor.execute(
"""--sql
UPDATE boards
SET archived = ?
WHERE board_id = ?;
""",
(changes.archived, board_id),
)
# Change the archived status of a board
if changes.archived is not None:
cursor.execute(
"""--sql
UPDATE boards
SET archived = ?
WHERE board_id = ?;
""",
(changes.archived, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
except sqlite3.Error as e:
raise BoardRecordSaveException from e
return self.get(board_id)
def get_many(
@@ -133,78 +127,77 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
limit: int = 10,
include_archived: bool = False,
) -> OffsetPaginatedResults[BoardRecord]:
cursor = self._conn.cursor()
# Build base query
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
LIMIT ? OFFSET ?;
"""
# Determine archived filter condition
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
# Execute query to fetch boards
cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
SELECT COUNT(*)
with self._db.transaction() as cursor:
# Build base query
base_query = """
SELECT *
FROM boards
WHERE archived = 0;
{archived_filter}
ORDER BY {order_by} {direction}
LIMIT ? OFFSET ?;
"""
# Execute count query
cursor.execute(count_query)
# Determine archived filter condition
archived_filter = "" if include_archived else "WHERE archived = 0"
count = cast(int, cursor.fetchone()[0])
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
# Execute query to fetch boards
cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
SELECT COUNT(*)
FROM boards
WHERE archived = 0;
"""
# Execute count query
cursor.execute(count_query)
count = cast(int, cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
def get_all(
self, order_by: BoardRecordOrderBy, direction: SQLiteDirection, include_archived: bool = False
) -> list[BoardRecord]:
cursor = self._conn.cursor()
if order_by == BoardRecordOrderBy.Name:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY LOWER(board_name) {direction}
"""
else:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
"""
with self._db.transaction() as cursor:
if order_by == BoardRecordOrderBy.Name:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY LOWER(board_name) {direction}
"""
else:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
"""
archived_filter = "" if include_archived else "WHERE archived = 0"
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
cursor.execute(final_query)
cursor.execute(final_query)
result = cast(list[sqlite3.Row], cursor.fetchall())
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
return boards

View File

@@ -12,12 +12,20 @@ class BoardDTO(BoardRecord):
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
asset_count: int = Field(description="The number of assets in the board.")
"""The number of assets in the board."""
video_count: int = Field(description="The number of videos in the board.")
"""The number of videos in the board."""
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
def board_record_to_dto(
board_record: BoardRecord, cover_image_name: Optional[str], image_count: int, asset_count: int, video_count: int
) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.model_dump(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
asset_count=asset_count,
video_count=video_count,
)

View File

@@ -17,7 +17,7 @@ class BoardService(BoardServiceABC):
board_name: str,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.save(board_name)
return board_record_to_dto(board_record, None, 0)
return board_record_to_dto(board_record, None, 0, 0, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self.__invoker.services.board_records.get(board_id)
@@ -27,7 +27,9 @@ class BoardService(BoardServiceABC):
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
asset_count = self.__invoker.services.board_image_records.get_asset_count_for_board(board_id)
video_count = 0 # noop for OSS
return board_record_to_dto(board_record, cover_image_name, image_count, asset_count, video_count)
def update(
self,
@@ -42,7 +44,9 @@ class BoardService(BoardServiceABC):
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
asset_count = self.__invoker.services.board_image_records.get_asset_count_for_board(board_id)
video_count = 0 # noop for OSS
return board_record_to_dto(board_record, cover_image_name, image_count, asset_count, video_count)
def delete(self, board_id: str) -> None:
self.__invoker.services.board_records.delete(board_id)
@@ -67,7 +71,9 @@ class BoardService(BoardServiceABC):
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
asset_count = self.__invoker.services.board_image_records.get_asset_count_for_board(r.board_id)
video_count = 0 # noop for OSS
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count, asset_count, video_count))
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
@@ -84,6 +90,8 @@ class BoardService(BoardServiceABC):
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
asset_count = self.__invoker.services.board_image_records.get_asset_count_for_board(r.board_id)
video_count = 0 # noop for OSS
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count, asset_count, video_count))
return board_dtos

View File

@@ -150,4 +150,15 @@ class BulkDownloadService(BulkDownloadBase):
def _is_valid_path(self, path: Union[str, Path]) -> bool:
"""Validates the path given for a bulk download."""
path = path if isinstance(path, Path) else Path(path)
return path.exists()
# Resolve the path to handle any path traversal attempts (e.g., ../)
resolved_path = path.resolve()
# The path may not traverse out of the bulk downloads folder or its subfolders
does_not_traverse = resolved_path.parent == self._bulk_downloads_folder.resolve()
# The path must exist and be a .zip file
does_exist = resolved_path.exists()
is_zip_file = resolved_path.suffix == ".zip"
return does_exist and is_zip_file and does_not_traverse

View File

@@ -0,0 +1,42 @@
from abc import ABC, abstractmethod
class ClientStatePersistenceABC(ABC):
"""
Base class for client persistence implementations.
This class defines the interface for persisting client data.
"""
@abstractmethod
def set_by_key(self, queue_id: str, key: str, value: str) -> str:
"""
Set a key-value pair for the client.
Args:
key (str): The key to set.
value (str): The value to set for the key.
Returns:
str: The value that was set.
"""
pass
@abstractmethod
def get_by_key(self, queue_id: str, key: str) -> str | None:
"""
Get the value for a specific key of the client.
Args:
key (str): The key to retrieve the value for.
Returns:
str | None: The value associated with the key, or None if the key does not exist.
"""
pass
@abstractmethod
def delete(self, queue_id: str) -> None:
"""
Delete all client state.
"""
pass

View File

@@ -0,0 +1,65 @@
import json
from invokeai.app.services.client_state_persistence.client_state_persistence_base import ClientStatePersistenceABC
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class ClientStatePersistenceSqlite(ClientStatePersistenceABC):
"""
Base class for client persistence implementations.
This class defines the interface for persisting client data.
"""
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._db = db
self._default_row_id = 1
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def _get(self) -> dict[str, str] | None:
with self._db.transaction() as cursor:
cursor.execute(
f"""
SELECT data FROM client_state
WHERE id = {self._default_row_id}
"""
)
row = cursor.fetchone()
if row is None:
return None
return json.loads(row[0])
def set_by_key(self, queue_id: str, key: str, value: str) -> str:
state = self._get() or {}
state.update({key: value})
with self._db.transaction() as cursor:
cursor.execute(
f"""
INSERT INTO client_state (id, data)
VALUES ({self._default_row_id}, ?)
ON CONFLICT(id) DO UPDATE
SET data = excluded.data;
""",
(json.dumps(state),),
)
return value
def get_by_key(self, queue_id: str, key: str) -> str | None:
state = self._get()
if state is None:
return None
return state.get(key, None)
def delete(self, queue_id: str) -> None:
with self._db.transaction() as cursor:
cursor.execute(
f"""
DELETE FROM client_state
WHERE id = {self._default_row_id}
"""
)

Some files were not shown because too many files have changed in this diff Show More