|
|
|
|
@@ -52,7 +52,7 @@ $outset_legends = false;
|
|
|
|
|
// Height in units of key. should remain 1 for most uses
|
|
|
|
|
$key_height = 1.0;
|
|
|
|
|
// Keytop thickness, aka how many millimeters between the inside and outside of the top surface of the key
|
|
|
|
|
$keytop_thickness = 2;
|
|
|
|
|
$keytop_thickness = 1;
|
|
|
|
|
// Wall thickness, aka the thickness of the sides of the keycap. note this is the total thickness, aka 3 = 1.5mm walls
|
|
|
|
|
$wall_thickness = 3;
|
|
|
|
|
// Radius of corners of keycap
|
|
|
|
|
@@ -199,19 +199,16 @@ $tertiary_color = [1, .6941, .2];
|
|
|
|
|
$quaternary_color = [.4078, .3569, .749];
|
|
|
|
|
$warning_color = [1,0,0, 0.15];
|
|
|
|
|
|
|
|
|
|
// 3d surface variables
|
|
|
|
|
// see functions.scad for the surface function
|
|
|
|
|
$3d_surface_size = 10;
|
|
|
|
|
$3d_surface_step = 1;
|
|
|
|
|
// normally the bottom of the keytop looks like the top - curved, at least
|
|
|
|
|
// underneath the support structure. This ensures there's a minimum thickness for the
|
|
|
|
|
// underside of the keycap, but it's a fair bit of geometry
|
|
|
|
|
$flat_keytop_bottom = true;
|
|
|
|
|
|
|
|
|
|
// how many facets circles will have when used in these features
|
|
|
|
|
$minkowski_facets = 30;
|
|
|
|
|
$shape_facets =30;
|
|
|
|
|
|
|
|
|
|
// 3d surface settings
|
|
|
|
|
// unused for now
|
|
|
|
|
$3d_surface_size = 100;
|
|
|
|
|
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
|
|
|
|
|
$3d_surface_step = 10;
|
|
|
|
|
|
|
|
|
|
// key width functions
|
|
|
|
|
|
|
|
|
|
module u(u=1) {
|
|
|
|
|
@@ -591,6 +588,54 @@ module grid_row(row=3, column = 0) {
|
|
|
|
|
children();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// based off GMK keycap set
|
|
|
|
|
|
|
|
|
|
module cherry_row(row=3, column=0) {
|
|
|
|
|
$bottom_key_width = 18.16;
|
|
|
|
|
$bottom_key_height = 18.16;
|
|
|
|
|
$width_difference = $bottom_key_width - 11.85;
|
|
|
|
|
$height_difference = $bottom_key_height - 14.64;
|
|
|
|
|
$dish_type = "cylindrical";
|
|
|
|
|
$dish_depth = 0.65;
|
|
|
|
|
$dish_skew_x = 0;
|
|
|
|
|
$dish_skew_y = 0;
|
|
|
|
|
$top_skew = 2;
|
|
|
|
|
|
|
|
|
|
$top_tilt_y = side_tilt(column);
|
|
|
|
|
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
|
|
|
|
|
|
|
|
|
// NOTE: cherry keycaps have this stem inset, but I'm reticent to turn it on
|
|
|
|
|
// since it'll be surprising to folks. the height has been adjusted accordingly
|
|
|
|
|
// $stem_inset = 0.6;
|
|
|
|
|
extra_stem_inset_height = max(0.6 - $stem_inset, 0);
|
|
|
|
|
|
|
|
|
|
// <= is a hack so you can do these in a for loop. function row = 0
|
|
|
|
|
if (row <= 1) {
|
|
|
|
|
$total_depth = 9.8 - extra_stem_inset_height + extra_height;
|
|
|
|
|
$top_tilt = 0;
|
|
|
|
|
|
|
|
|
|
children();
|
|
|
|
|
} else if (row == 2) {
|
|
|
|
|
$total_depth = 7.45 - extra_stem_inset_height + extra_height;
|
|
|
|
|
$top_tilt = 2.5;
|
|
|
|
|
|
|
|
|
|
children();
|
|
|
|
|
} else if (row == 3) {
|
|
|
|
|
$total_depth = 6.55 - extra_stem_inset_height + extra_height;
|
|
|
|
|
$top_tilt = 5;
|
|
|
|
|
children();
|
|
|
|
|
} else if (row == 3) {
|
|
|
|
|
$total_depth = 6.7 + 0.65 - extra_stem_inset_height + extra_height;
|
|
|
|
|
$top_tilt = 11.5;
|
|
|
|
|
children();
|
|
|
|
|
} else if (row >= 4) {
|
|
|
|
|
$total_depth = 6.7 + 0.65 - extra_stem_inset_height + extra_height;
|
|
|
|
|
$top_tilt = 11.5;
|
|
|
|
|
children();
|
|
|
|
|
} else {
|
|
|
|
|
children();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// man, wouldn't it be so cool if functions were first order
|
|
|
|
|
module key_profile(key_profile_type, row, column=0) {
|
|
|
|
|
@@ -608,6 +653,8 @@ module key_profile(key_profile_type, row, column=0) {
|
|
|
|
|
hipro_row(row, column) children();
|
|
|
|
|
} else if (key_profile_type == "grid") {
|
|
|
|
|
grid_row(row, column) children();
|
|
|
|
|
} else if (key_profile_type == "cherry") {
|
|
|
|
|
cherry_row(row, column) children();
|
|
|
|
|
} else if (key_profile_type == "disable") {
|
|
|
|
|
children();
|
|
|
|
|
} else {
|
|
|
|
|
@@ -925,6 +972,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
$fs=.1;
|
|
|
|
|
unit = 19.05;
|
|
|
|
|
|
|
|
|
|
@@ -1200,6 +1266,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
function sign_x(i,n) =
|
|
|
|
|
i < n/4 || i > n*3/4 ? 1 :
|
|
|
|
|
i > n/4 && i < n*3/4 ? -1 :
|
|
|
|
|
@@ -1367,6 +1452,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
|
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
|
|
|
// splits the stem into halves - allows easier fitment
|
|
|
|
|
extra_vertical = 0.6;
|
|
|
|
|
@@ -1390,7 +1494,7 @@ module inside_cherry_cross(slop) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module cherry_stem(depth, slop) {
|
|
|
|
|
module cherry_stem(depth, slop, throw) {
|
|
|
|
|
difference(){
|
|
|
|
|
// outside shape
|
|
|
|
|
linear_extrude(height = depth) {
|
|
|
|
|
@@ -1444,6 +1548,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
|
|
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
|
|
|
@@ -1487,6 +1610,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
|
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
|
|
|
// splits the stem into halves - allows easier fitment
|
|
|
|
|
extra_vertical = 0.6;
|
|
|
|
|
@@ -1510,7 +1652,7 @@ module inside_cherry_cross(slop) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module cherry_stem(depth, slop) {
|
|
|
|
|
module cherry_stem(depth, slop, throw) {
|
|
|
|
|
difference(){
|
|
|
|
|
// outside shape
|
|
|
|
|
linear_extrude(height = depth) {
|
|
|
|
|
@@ -1523,7 +1665,7 @@ module cherry_stem(depth, slop) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module rounded_cherry_stem(depth, slop) {
|
|
|
|
|
module rounded_cherry_stem(depth, slop, throw) {
|
|
|
|
|
difference(){
|
|
|
|
|
cylinder(d=$rounded_cherry_stem_d, h=depth);
|
|
|
|
|
|
|
|
|
|
@@ -1574,6 +1716,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
|
|
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
|
|
|
@@ -1617,6 +1778,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
|
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
|
|
|
// splits the stem into halves - allows easier fitment
|
|
|
|
|
extra_vertical = 0.6;
|
|
|
|
|
@@ -1640,7 +1820,7 @@ module inside_cherry_cross(slop) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module cherry_stem(depth, slop) {
|
|
|
|
|
module cherry_stem(depth, slop, throw) {
|
|
|
|
|
difference(){
|
|
|
|
|
// outside shape
|
|
|
|
|
linear_extrude(height = depth) {
|
|
|
|
|
@@ -1653,7 +1833,7 @@ module cherry_stem(depth, slop) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module box_cherry_stem(depth, slop) {
|
|
|
|
|
module box_cherry_stem(depth, slop, throw) {
|
|
|
|
|
difference(){
|
|
|
|
|
// outside shape
|
|
|
|
|
linear_extrude(height = depth) {
|
|
|
|
|
@@ -1666,12 +1846,12 @@ module box_cherry_stem(depth, slop) {
|
|
|
|
|
inside_cherry_cross(slop);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
module alps_stem(depth, has_brim, slop){
|
|
|
|
|
module alps_stem(depth, slop, throw){
|
|
|
|
|
linear_extrude(height=depth) {
|
|
|
|
|
square($alps_stem, center = true);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
module filled_stem() {
|
|
|
|
|
module filled_stem(_depth, _slop, _throw) {
|
|
|
|
|
// I broke the crap out of this stem type due to the changes I made around how stems are differenced
|
|
|
|
|
// now that we just take the dish out of stems in order to support stuff like
|
|
|
|
|
// bare stem keycaps (and buckling spring eventually) we can't just make a
|
|
|
|
|
@@ -1723,6 +1903,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
|
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
|
|
|
// splits the stem into halves - allows easier fitment
|
|
|
|
|
extra_vertical = 0.6;
|
|
|
|
|
@@ -1738,7 +1937,7 @@ module inside_cherry_stabilizer_cross(slop) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module cherry_stabilizer_stem(depth, slop) {
|
|
|
|
|
module cherry_stabilizer_stem(depth, slop, throw) {
|
|
|
|
|
difference(){
|
|
|
|
|
// outside shape
|
|
|
|
|
linear_extrude(height = depth) {
|
|
|
|
|
@@ -1750,22 +1949,36 @@ module cherry_stabilizer_stem(depth, slop) {
|
|
|
|
|
inside_cherry_stabilizer_cross(slop);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
thickness = .84;
|
|
|
|
|
inner_stem_size = [6,4];
|
|
|
|
|
outer_stem_size = inner_stem_size + [thickness, thickness];
|
|
|
|
|
|
|
|
|
|
module custom_stem(depth, slop, throw){
|
|
|
|
|
linear_extrude(height=depth) {
|
|
|
|
|
difference() {
|
|
|
|
|
square(outer_stem_size + [slop,slop], center = true);
|
|
|
|
|
square(inner_stem_size + [slop,slop], center = true);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//whole stem, alps or cherry, trimmed to fit
|
|
|
|
|
module stem(stem_type, depth, slop){
|
|
|
|
|
module stem(stem_type, depth, slop, throw){
|
|
|
|
|
if (stem_type == "alps") {
|
|
|
|
|
alps_stem(depth, slop);
|
|
|
|
|
alps_stem(depth, slop, throw);
|
|
|
|
|
} else if (stem_type == "cherry" || stem_type == "costar_stabilizer") {
|
|
|
|
|
cherry_stem(depth, slop);
|
|
|
|
|
cherry_stem(depth, slop, throw);
|
|
|
|
|
} else if (stem_type == "rounded_cherry") {
|
|
|
|
|
rounded_cherry_stem(depth, slop);
|
|
|
|
|
rounded_cherry_stem(depth, slop, throw);
|
|
|
|
|
} else if (stem_type == "box_cherry") {
|
|
|
|
|
box_cherry_stem(depth, slop);
|
|
|
|
|
box_cherry_stem(depth, slop, throw);
|
|
|
|
|
} else if (stem_type == "filled") {
|
|
|
|
|
filled_stem();
|
|
|
|
|
} else if (stem_type == "cherry_stabilizer") {
|
|
|
|
|
cherry_stabilizer_stem(depth, slop);
|
|
|
|
|
cherry_stabilizer_stem(depth, slop, throw);
|
|
|
|
|
} else if (stem_type == "custom") {
|
|
|
|
|
custom_stem(depth, slop, throw);
|
|
|
|
|
} else if (stem_type == "disable") {
|
|
|
|
|
children();
|
|
|
|
|
} else {
|
|
|
|
|
@@ -1815,6 +2028,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
|
|
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
|
|
|
@@ -1858,6 +2090,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
|
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
|
|
|
// splits the stem into halves - allows easier fitment
|
|
|
|
|
extra_vertical = 0.6;
|
|
|
|
|
@@ -1881,7 +2132,7 @@ module inside_cherry_cross(slop) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module cherry_stem(depth, slop) {
|
|
|
|
|
module cherry_stem(depth, slop, throw) {
|
|
|
|
|
difference(){
|
|
|
|
|
// outside shape
|
|
|
|
|
linear_extrude(height = depth) {
|
|
|
|
|
@@ -1980,6 +2231,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
|
|
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
|
|
|
@@ -2023,6 +2293,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
|
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
|
|
|
// splits the stem into halves - allows easier fitment
|
|
|
|
|
extra_vertical = 0.6;
|
|
|
|
|
@@ -2046,7 +2335,7 @@ module inside_cherry_cross(slop) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module cherry_stem(depth, slop) {
|
|
|
|
|
module cherry_stem(depth, slop, throw) {
|
|
|
|
|
difference(){
|
|
|
|
|
// outside shape
|
|
|
|
|
linear_extrude(height = depth) {
|
|
|
|
|
@@ -2347,6 +2636,158 @@ module spherical_dish(width, height, depth, inverted){
|
|
|
|
|
module flat_dish(width, height, depth, inverted){
|
|
|
|
|
cube([width + 100,height + 100, depth], center=true);
|
|
|
|
|
}
|
|
|
|
|
// thanks Paul https://github.com/openscad/list-comprehension-demos/
|
|
|
|
|
|
|
|
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
|
|
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
|
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
|
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
|
|
|
|
|
|
// cherry stem dimensions
|
|
|
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
|
|
|
|
|
|
// cherry stabilizer stem dimensions
|
|
|
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
|
|
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
|
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
|
|
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
|
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
|
|
|
// horizontal tine
|
|
|
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
|
|
|
// vertical tine
|
|
|
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
// actual mm key width and height
|
|
|
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
|
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
|
|
|
|
|
|
// actual mm key width and height at the top
|
|
|
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
|
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
|
|
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
|
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
|
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
|
|
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
|
|
|
// necessary for calculating flat sided keycaps
|
|
|
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
|
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
|
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
|
|
|
|
|
module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
|
|
|
|
|
function p(x, y) = [ x, y, max(0,surface_function(x, y)) ];
|
|
|
|
|
function p0(x, y) = [ x, y, bottom ];
|
|
|
|
|
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
|
|
|
|
|
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
|
|
|
|
|
function fan(a, i) =
|
|
|
|
|
a == 0 ? [ [ 0, 0, bottom ], [ i, -size, bottom ], [ i + step, -size, bottom ] ]
|
|
|
|
|
: a == 1 ? [ [ 0, 0, bottom ], [ i + step, size, bottom ], [ i, size, bottom ] ]
|
|
|
|
|
: a == 2 ? [ [ 0, 0, bottom ], [ -size, i + step, bottom ], [ -size, i, bottom ] ]
|
|
|
|
|
: [ [ 0, 0, bottom ], [ size, i, bottom ], [ size, i + step, bottom ] ];
|
|
|
|
|
function sidex(x, y) = [ p0(x, y), p(x, y), p(x + step, y), p0(x + step, y) ];
|
|
|
|
|
function sidey(x, y) = [ p0(x, y), p(x, y), p(x, y + step), p0(x, y + step) ];
|
|
|
|
|
|
|
|
|
|
points = flatten(concat(
|
|
|
|
|
// top surface
|
|
|
|
|
[ for (x = [ -size : step : size - step ], y = [ -size : step : size - step ]) face(x, y) ],
|
|
|
|
|
// bottom surface as triangle fan
|
|
|
|
|
[ for (a = [ 0 : 3 ], i = [ -size : step : size - step ]) fan(a, i) ],
|
|
|
|
|
// sides
|
|
|
|
|
[ for (x = [ -size : step : size - step ], y = [ -size, size ]) rev(y < 0, sidex(x, y)) ],
|
|
|
|
|
[ for (y = [ -size : step : size - step ], x = [ -size, size ]) rev(x > 0, sidey(x, y)) ]
|
|
|
|
|
));
|
|
|
|
|
|
|
|
|
|
tcount = 2 * pow(2 * size / step, 2) + 8 * size / step;
|
|
|
|
|
scount = 8 * size / step;
|
|
|
|
|
|
|
|
|
|
tfaces = [ for (a = [ 0 : 3 : 3 * (tcount - 1) ] ) [ a, a + 1, a + 2 ] ];
|
|
|
|
|
sfaces = [ for (a = [ 3 * tcount : 4 : 3 * tcount + 4 * scount ] ) [ a, a + 1, a + 2, a + 3 ] ];
|
|
|
|
|
faces = concat(tfaces, sfaces);
|
|
|
|
|
|
|
|
|
|
polyhedron(points, faces, convexity = 8);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
|
|
|
|
|
function to_polar(q, size) = q * (90 / size);
|
|
|
|
|
|
|
|
|
|
function p(x, y) = [
|
|
|
|
|
surface_distribution_function(to_polar(x, size), size),
|
|
|
|
|
surface_distribution_function(to_polar(y, size), size),
|
|
|
|
|
max(0,surface_function(surface_distribution_function(to_polar(x, size), size), surface_distribution_function(to_polar(y, size), size)))
|
|
|
|
|
];
|
|
|
|
|
function p0(x, y) = [ x, y, bottom ];
|
|
|
|
|
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
|
|
|
|
|
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
|
|
|
|
|
function fan(a, i) =
|
|
|
|
|
a == 0 ? [ [ 0, 0, bottom ], [ i, -size, bottom ], [ i + step, -size, bottom ] ]
|
|
|
|
|
: a == 1 ? [ [ 0, 0, bottom ], [ i + step, size, bottom ], [ i, size, bottom ] ]
|
|
|
|
|
: a == 2 ? [ [ 0, 0, bottom ], [ -size, i + step, bottom ], [ -size, i, bottom ] ]
|
|
|
|
|
: [ [ 0, 0, bottom ], [ size, i, bottom ], [ size, i + step, bottom ] ];
|
|
|
|
|
function sidex(x, y) = [ p0(x, y), p(x, y), p(x + step, y), p0(x + step, y) ];
|
|
|
|
|
function sidey(x, y) = [ p0(x, y), p(x, y), p(x, y + step), p0(x, y + step) ];
|
|
|
|
|
|
|
|
|
|
points = flatten(concat(
|
|
|
|
|
// top surface
|
|
|
|
|
[ for (x = [ -size : step : size - step ], y = [ -size : step : size - step ]) face(x, y) ],
|
|
|
|
|
// bottom surface as triangle fan
|
|
|
|
|
[ for (a = [ 0 : 3 ], i = [ -size : step : size - step ]) fan(a, i) ],
|
|
|
|
|
// sides
|
|
|
|
|
[ for (x = [ -size : step : size - step ], y = [ -size, size ]) rev(y < 0, sidex(x, y)) ],
|
|
|
|
|
[ for (y = [ -size : step : size - step ], x = [ -size, size ]) rev(x > 0, sidey(x, y)) ]
|
|
|
|
|
));
|
|
|
|
|
|
|
|
|
|
tcount = 2 * pow(2 * size / step, 2) + 8 * size / step;
|
|
|
|
|
scount = 8 * size / step;
|
|
|
|
|
|
|
|
|
|
tfaces = [ for (a = [ 0 : 3 : 3 * (tcount - 1) ] ) [ a, a + 1, a + 2 ] ];
|
|
|
|
|
sfaces = [ for (a = [ 3 * tcount : 4 : 3 * tcount + 4 * scount ] ) [ a, a + 1, a + 2, a + 3 ] ];
|
|
|
|
|
faces = concat(tfaces, sfaces);
|
|
|
|
|
|
|
|
|
|
polyhedron(points, faces, convexity = 8);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// defaults, overridden in functions.scad
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
|
|
|
|
|
module 3d_surface_dish(width, height, depth, inverted) {
|
|
|
|
|
echo(inverted ? "inverted" : "not inverted");
|
|
|
|
|
// scale_factor is dead reckoning
|
|
|
|
|
// it doesn't have to be dead reckoning for anything but sculpted sides
|
|
|
|
|
// we know the angle of the sides from the width difference, height difference,
|
|
|
|
|
// skew and tilt of the top. it's a pain to calculate though
|
|
|
|
|
scale_factor = 1.1;
|
|
|
|
|
// the edges on this behave differently than with the previous dish implementations
|
|
|
|
|
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,90]) polar_3d_surface(bottom=-10);
|
|
|
|
|
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//geodesic looks much better, but runs very slow for anything above a 2u
|
|
|
|
|
geodesic=false;
|
|
|
|
|
@@ -2361,9 +2802,10 @@ module dish(width, height, depth, inverted) {
|
|
|
|
|
}
|
|
|
|
|
else if ($dish_type == "sideways cylindrical"){
|
|
|
|
|
sideways_cylindrical_dish(width, height, depth, inverted);
|
|
|
|
|
}
|
|
|
|
|
else if ($dish_type == "old spherical") {
|
|
|
|
|
} else if ($dish_type == "old spherical") {
|
|
|
|
|
old_spherical_dish(width, height, depth, inverted);
|
|
|
|
|
} else if ($dish_type == "3d_surface") {
|
|
|
|
|
3d_surface_dish(width, height, depth, inverted);
|
|
|
|
|
} else if ($dish_type == "flat") {
|
|
|
|
|
flat_dish(width, height, depth, inverted);
|
|
|
|
|
} else if ($dish_type == "disable") {
|
|
|
|
|
@@ -2414,6 +2856,25 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
|
|
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
|
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
|
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
|
|
|
|
|
|
// 3d surface functions (still in beta)
|
|
|
|
|
|
|
|
|
|
// monotonically increasing function that distributes the points of the surface mesh
|
|
|
|
|
// only for polar_3d_surface right now
|
|
|
|
|
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
|
|
|
|
function surface_distribution_function(dim, size) = sin(dim) * size;
|
|
|
|
|
|
|
|
|
|
// the function that actually determines what the surface is.
|
|
|
|
|
// feel free to override, the last one wins
|
|
|
|
|
|
|
|
|
|
// debug
|
|
|
|
|
function surface_function(x,y) = 1;
|
|
|
|
|
// cylindrical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
|
|
|
|
// spherical
|
|
|
|
|
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
|
|
|
|
// (statically) random!
|
|
|
|
|
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
|
|
|
|
// TODO this define doesn't do anything besides tell me I used flat() in this file
|
|
|
|
|
// is it better than not having it at all?
|
|
|
|
|
module flat(stem_type, loft, height) {
|
|
|
|
|
@@ -3731,7 +4192,7 @@ module support_for(positions, stem_type) {
|
|
|
|
|
|
|
|
|
|
module stems_for(positions, stem_type) {
|
|
|
|
|
keystem_positions(positions) {
|
|
|
|
|
color($tertiary_color) stem(stem_type, $total_depth, $stem_slop);
|
|
|
|
|
color($tertiary_color) stem(stem_type, $total_depth, $stem_slop, $stem_throw);
|
|
|
|
|
if ($stem_support_type != "disable") {
|
|
|
|
|
color($quaternary_color) stem_support($stem_support_type, stem_type, $stem_support_height, $stem_slop);
|
|
|
|
|
}
|
|
|
|
|
@@ -3901,7 +4362,7 @@ $outset_legends = false;
|
|
|
|
|
// Height in units of key. should remain 1 for most uses
|
|
|
|
|
$key_height = 1.0;
|
|
|
|
|
// Keytop thickness, aka how many millimeters between the inside and outside of the top surface of the key
|
|
|
|
|
$keytop_thickness = 2;
|
|
|
|
|
$keytop_thickness = 1;
|
|
|
|
|
// Wall thickness, aka the thickness of the sides of the keycap. note this is the total thickness, aka 3 = 1.5mm walls
|
|
|
|
|
$wall_thickness = 3;
|
|
|
|
|
// Radius of corners of keycap
|
|
|
|
|
@@ -4048,18 +4509,15 @@ $tertiary_color = [1, .6941, .2];
|
|
|
|
|
$quaternary_color = [.4078, .3569, .749];
|
|
|
|
|
$warning_color = [1,0,0, 0.15];
|
|
|
|
|
|
|
|
|
|
// 3d surface variables
|
|
|
|
|
// see functions.scad for the surface function
|
|
|
|
|
$3d_surface_size = 10;
|
|
|
|
|
$3d_surface_step = 1;
|
|
|
|
|
// normally the bottom of the keytop looks like the top - curved, at least
|
|
|
|
|
// underneath the support structure. This ensures there's a minimum thickness for the
|
|
|
|
|
// underside of the keycap, but it's a fair bit of geometry
|
|
|
|
|
$flat_keytop_bottom = true;
|
|
|
|
|
|
|
|
|
|
// how many facets circles will have when used in these features
|
|
|
|
|
$minkowski_facets = 30;
|
|
|
|
|
$shape_facets =30;
|
|
|
|
|
|
|
|
|
|
// 3d surface settings
|
|
|
|
|
// unused for now
|
|
|
|
|
$3d_surface_size = 100;
|
|
|
|
|
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
|
|
|
|
|
$3d_surface_step = 10;
|
|
|
|
|
key();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|