mirror of
https://github.com/rsheldiii/KeyV2.git
synced 2026-01-14 14:27:55 -05:00
Compare commits
10 Commits
saved-for-
...
custom-ste
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fd68c281c3 | ||
|
|
24e280fe3c | ||
|
|
69175f08e4 | ||
|
|
f4f595c651 | ||
|
|
fa49ee0c70 | ||
|
|
9e3f5f4bcd | ||
|
|
c7602e2ce9 | ||
|
|
f98c0d4a4f | ||
|
|
18892c02b0 | ||
|
|
9cb3e12b9b |
@@ -60,7 +60,7 @@ You can chain as many modifier functions as you like!
|
||||
|
||||
## Modifier functions
|
||||
|
||||
There is a bevy of supporting functions to customize your keycaps. You can add a brim to more easily print the stem with `brimmed_stem_support`, make 2x2 keycaps with `2u() 2uh()`, add legends, rotate stems, and more. All these functions manipulate the settings available to you in [`settings.scad`](https://github.com/rsheldiii/KeyV2/blob/master/src/settings.scad), though [some of them](https://github.com/rsheldiii/KeyV2/blob/master/src/key_transformations.scad#L128) are quite complex.
|
||||
There is a bevy of supporting functions to customize your keycaps. You can add a brim to more easily print the stem with `brimmed_stem_support`, make 2x2 keycaps with `2u() 2uh()`, add legends, rotate stems, and more. All these functions manipulate the settings available to you in [`settings.scad`](https://github.com/rsheldiii/KeyV2/blob/master/src/settings.scad), though [some of them](https://github.com/rsheldiii/KeyV2/blob/851ececdb297c77bfbcd0a7cb4cdbc5e21970396/src/key_transformations.scad#L128) are quite complex.
|
||||
|
||||
These modifier functions can be found in [`key_profiles/`](https://github.com/rsheldiii/KeyV2/blob/master/src/key_profiles) for different keycap profiles, [`key_types.scad`](https://github.com/rsheldiii/KeyV2/blob/master/src/key_types.scad) for predefined settings for common keys (spacebar, left shift, etc), [`key_sizes.scad`](https://github.com/rsheldiii/KeyV2/blob/master/src/key_sizes.scad) for common unit sizes, and [`key_transformations.scad`](https://github.com/rsheldiii/KeyV2/blob/master/src/key_transformations.scad) for everything else. I encourage you to do some sleuthing but for a list of (most) helper functions with explanations, [Check out the wiki!](https://github.com/rsheldiii/KeyV2/wiki/KeyV2-Helper-Documentation)
|
||||
|
||||
|
||||
769
customizer.scad
769
customizer.scad
File diff suppressed because it is too large
Load Diff
@@ -9,7 +9,10 @@ include <./includes.scad>
|
||||
|
||||
|
||||
// example key
|
||||
dcs_row(5) legend("⇪", size=9) key();
|
||||
/* $stem_throw = 1; */
|
||||
$stem_type = "custom";
|
||||
$outset_legends = true;
|
||||
dcs_row(5) front_legend("j") key();
|
||||
|
||||
// example row
|
||||
/* for (x = [0:1:4]) {
|
||||
@@ -17,4 +20,4 @@ dcs_row(5) legend("⇪", size=9) key();
|
||||
} */
|
||||
|
||||
// example layout
|
||||
/* preonic_default("dcs"); */
|
||||
/* preonic_default("dcs"); */
|
||||
|
||||
@@ -5,6 +5,7 @@ include <dishes/old_spherical.scad>
|
||||
include <dishes/sideways_cylindrical.scad>
|
||||
include <dishes/spherical.scad>
|
||||
include <dishes/flat.scad>
|
||||
include <dishes/3d_surface.scad>
|
||||
|
||||
//geodesic looks much better, but runs very slow for anything above a 2u
|
||||
geodesic=false;
|
||||
@@ -19,9 +20,10 @@ module dish(width, height, depth, inverted) {
|
||||
}
|
||||
else if ($dish_type == "sideways cylindrical"){
|
||||
sideways_cylindrical_dish(width, height, depth, inverted);
|
||||
}
|
||||
else if ($dish_type == "old spherical") {
|
||||
} else if ($dish_type == "old spherical") {
|
||||
old_spherical_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "3d_surface") {
|
||||
3d_surface_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "flat") {
|
||||
flat_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "disable") {
|
||||
|
||||
14
src/dishes/3d_surface.scad
Normal file
14
src/dishes/3d_surface.scad
Normal file
@@ -0,0 +1,14 @@
|
||||
include <../libraries/3d_surface.scad>
|
||||
|
||||
module 3d_surface_dish(width, height, depth, inverted) {
|
||||
echo(inverted ? "inverted" : "not inverted");
|
||||
// scale_factor is dead reckoning
|
||||
// it doesn't have to be dead reckoning for anything but sculpted sides
|
||||
// we know the angle of the sides from the width difference, height difference,
|
||||
// skew and tilt of the top. it's a pain to calculate though
|
||||
scale_factor = 1.1;
|
||||
// the edges on this behave differently than with the previous dish implementations
|
||||
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,90]) polar_3d_surface(bottom=-10);
|
||||
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
|
||||
|
||||
}
|
||||
@@ -40,3 +40,22 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// of the keycap a flat plane. 1 = front, -1 = back
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// (statically) random!
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
|
||||
@@ -37,7 +37,7 @@ module rounded_shape() {
|
||||
// half minkowski in the z direction
|
||||
color($primary_color) shape_hull($minkowski_radius * 2, $minkowski_radius/2, $inverted_dish ? 2 : 0);
|
||||
/* cube($minkowski_radius); */
|
||||
sphere(r=$minkowski_radius, $fn=48);
|
||||
sphere(r=$minkowski_radius, $fn=$minkowski_facets);
|
||||
}
|
||||
}
|
||||
/* %envelope(); */
|
||||
@@ -299,7 +299,7 @@ module support_for(positions, stem_type) {
|
||||
|
||||
module stems_for(positions, stem_type) {
|
||||
keystem_positions(positions) {
|
||||
color($tertiary_color) stem(stem_type, $total_depth, $stem_slop);
|
||||
color($tertiary_color) stem(stem_type, $total_depth, $stem_slop, $stem_throw);
|
||||
if ($stem_support_type != "disable") {
|
||||
color($quaternary_color) stem_support($stem_support_type, stem_type, $stem_support_height, $stem_slop);
|
||||
}
|
||||
|
||||
@@ -9,6 +9,7 @@ include <key_profiles/sa.scad>
|
||||
include <key_profiles/g20.scad>
|
||||
include <key_profiles/hipro.scad>
|
||||
include <key_profiles/grid.scad>
|
||||
include <key_profiles/cherry.scad>
|
||||
|
||||
// man, wouldn't it be so cool if functions were first order
|
||||
module key_profile(key_profile_type, row, column=0) {
|
||||
@@ -26,6 +27,8 @@ module key_profile(key_profile_type, row, column=0) {
|
||||
hipro_row(row, column) children();
|
||||
} else if (key_profile_type == "grid") {
|
||||
grid_row(row, column) children();
|
||||
} else if (key_profile_type == "cherry") {
|
||||
cherry_row(row, column) children();
|
||||
} else if (key_profile_type == "disable") {
|
||||
children();
|
||||
} else {
|
||||
|
||||
48
src/key_profiles/cherry.scad
Normal file
48
src/key_profiles/cherry.scad
Normal file
@@ -0,0 +1,48 @@
|
||||
// based off GMK keycap set
|
||||
|
||||
module cherry_row(row=3, column=0) {
|
||||
$bottom_key_width = 18.16;
|
||||
$bottom_key_height = 18.16;
|
||||
$width_difference = $bottom_key_width - 11.85;
|
||||
$height_difference = $bottom_key_height - 14.64;
|
||||
$dish_type = "cylindrical";
|
||||
$dish_depth = 0.65;
|
||||
$dish_skew_x = 0;
|
||||
$dish_skew_y = 0;
|
||||
$top_skew = 2;
|
||||
|
||||
$top_tilt_y = side_tilt(column);
|
||||
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
||||
|
||||
// NOTE: cherry keycaps have this stem inset, but I'm reticent to turn it on
|
||||
// since it'll be surprising to folks. the height has been adjusted accordingly
|
||||
// $stem_inset = 0.6;
|
||||
extra_stem_inset_height = max(0.6 - $stem_inset, 0);
|
||||
|
||||
// <= is a hack so you can do these in a for loop. function row = 0
|
||||
if (row <= 1) {
|
||||
$total_depth = 9.8 - extra_stem_inset_height + extra_height;
|
||||
$top_tilt = 0;
|
||||
|
||||
children();
|
||||
} else if (row == 2) {
|
||||
$total_depth = 7.45 - extra_stem_inset_height + extra_height;
|
||||
$top_tilt = 2.5;
|
||||
|
||||
children();
|
||||
} else if (row == 3) {
|
||||
$total_depth = 6.55 - extra_stem_inset_height + extra_height;
|
||||
$top_tilt = 5;
|
||||
children();
|
||||
} else if (row == 3) {
|
||||
$total_depth = 6.7 + 0.65 - extra_stem_inset_height + extra_height;
|
||||
$top_tilt = 11.5;
|
||||
children();
|
||||
} else if (row >= 4) {
|
||||
$total_depth = 6.7 + 0.65 - extra_stem_inset_height + extra_height;
|
||||
$top_tilt = 11.5;
|
||||
children();
|
||||
} else {
|
||||
children();
|
||||
}
|
||||
}
|
||||
79
src/libraries/3d_surface.scad
Normal file
79
src/libraries/3d_surface.scad
Normal file
@@ -0,0 +1,79 @@
|
||||
// thanks Paul https://github.com/openscad/list-comprehension-demos/
|
||||
|
||||
include <../functions.scad>
|
||||
|
||||
module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
|
||||
function p(x, y) = [ x, y, max(0,surface_function(x, y)) ];
|
||||
function p0(x, y) = [ x, y, bottom ];
|
||||
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
|
||||
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
|
||||
function fan(a, i) =
|
||||
a == 0 ? [ [ 0, 0, bottom ], [ i, -size, bottom ], [ i + step, -size, bottom ] ]
|
||||
: a == 1 ? [ [ 0, 0, bottom ], [ i + step, size, bottom ], [ i, size, bottom ] ]
|
||||
: a == 2 ? [ [ 0, 0, bottom ], [ -size, i + step, bottom ], [ -size, i, bottom ] ]
|
||||
: [ [ 0, 0, bottom ], [ size, i, bottom ], [ size, i + step, bottom ] ];
|
||||
function sidex(x, y) = [ p0(x, y), p(x, y), p(x + step, y), p0(x + step, y) ];
|
||||
function sidey(x, y) = [ p0(x, y), p(x, y), p(x, y + step), p0(x, y + step) ];
|
||||
|
||||
points = flatten(concat(
|
||||
// top surface
|
||||
[ for (x = [ -size : step : size - step ], y = [ -size : step : size - step ]) face(x, y) ],
|
||||
// bottom surface as triangle fan
|
||||
[ for (a = [ 0 : 3 ], i = [ -size : step : size - step ]) fan(a, i) ],
|
||||
// sides
|
||||
[ for (x = [ -size : step : size - step ], y = [ -size, size ]) rev(y < 0, sidex(x, y)) ],
|
||||
[ for (y = [ -size : step : size - step ], x = [ -size, size ]) rev(x > 0, sidey(x, y)) ]
|
||||
));
|
||||
|
||||
tcount = 2 * pow(2 * size / step, 2) + 8 * size / step;
|
||||
scount = 8 * size / step;
|
||||
|
||||
tfaces = [ for (a = [ 0 : 3 : 3 * (tcount - 1) ] ) [ a, a + 1, a + 2 ] ];
|
||||
sfaces = [ for (a = [ 3 * tcount : 4 : 3 * tcount + 4 * scount ] ) [ a, a + 1, a + 2, a + 3 ] ];
|
||||
faces = concat(tfaces, sfaces);
|
||||
|
||||
polyhedron(points, faces, convexity = 8);
|
||||
}
|
||||
|
||||
module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
|
||||
function to_polar(q, size) = q * (90 / size);
|
||||
|
||||
function p(x, y) = [
|
||||
surface_distribution_function(to_polar(x, size), size),
|
||||
surface_distribution_function(to_polar(y, size), size),
|
||||
max(0,surface_function(surface_distribution_function(to_polar(x, size), size), surface_distribution_function(to_polar(y, size), size)))
|
||||
];
|
||||
function p0(x, y) = [ x, y, bottom ];
|
||||
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
|
||||
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
|
||||
function fan(a, i) =
|
||||
a == 0 ? [ [ 0, 0, bottom ], [ i, -size, bottom ], [ i + step, -size, bottom ] ]
|
||||
: a == 1 ? [ [ 0, 0, bottom ], [ i + step, size, bottom ], [ i, size, bottom ] ]
|
||||
: a == 2 ? [ [ 0, 0, bottom ], [ -size, i + step, bottom ], [ -size, i, bottom ] ]
|
||||
: [ [ 0, 0, bottom ], [ size, i, bottom ], [ size, i + step, bottom ] ];
|
||||
function sidex(x, y) = [ p0(x, y), p(x, y), p(x + step, y), p0(x + step, y) ];
|
||||
function sidey(x, y) = [ p0(x, y), p(x, y), p(x, y + step), p0(x, y + step) ];
|
||||
|
||||
points = flatten(concat(
|
||||
// top surface
|
||||
[ for (x = [ -size : step : size - step ], y = [ -size : step : size - step ]) face(x, y) ],
|
||||
// bottom surface as triangle fan
|
||||
[ for (a = [ 0 : 3 ], i = [ -size : step : size - step ]) fan(a, i) ],
|
||||
// sides
|
||||
[ for (x = [ -size : step : size - step ], y = [ -size, size ]) rev(y < 0, sidex(x, y)) ],
|
||||
[ for (y = [ -size : step : size - step ], x = [ -size, size ]) rev(x > 0, sidey(x, y)) ]
|
||||
));
|
||||
|
||||
tcount = 2 * pow(2 * size / step, 2) + 8 * size / step;
|
||||
scount = 8 * size / step;
|
||||
|
||||
tfaces = [ for (a = [ 0 : 3 : 3 * (tcount - 1) ] ) [ a, a + 1, a + 2 ] ];
|
||||
sfaces = [ for (a = [ 3 * tcount : 4 : 3 * tcount + 4 * scount ] ) [ a, a + 1, a + 2, a + 3 ] ];
|
||||
faces = concat(tfaces, sfaces);
|
||||
|
||||
polyhedron(points, faces, convexity = 8);
|
||||
}
|
||||
|
||||
// defaults, overridden in functions.scad
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
@@ -1,17 +1,35 @@
|
||||
function rounded_rectangle_profile(size=[1,1],r=1,fn=32) = [
|
||||
for (index = [0:fn-1])
|
||||
let(a = index/fn*360)
|
||||
r * [cos(a), sin(a)]
|
||||
+ sign_x(index, fn) * [size[0]/2-r,0]
|
||||
+ sign_y(index, fn) * [0,size[1]/2-r]
|
||||
];
|
||||
|
||||
function sign_x(i,n) =
|
||||
i < n/4 || i > n-n/4 ? 1 :
|
||||
i > n/4 && i < n-n/4 ? -1 :
|
||||
i < n/4 || i > n*3/4 ? 1 :
|
||||
i > n/4 && i < n*3/4 ? -1 :
|
||||
0;
|
||||
|
||||
function sign_y(i,n) =
|
||||
i > 0 && i < n/2 ? 1 :
|
||||
i > n/2 ? -1 :
|
||||
0;
|
||||
|
||||
|
||||
function rectangle_profile(size=[1,1],fn=32) = [
|
||||
for (index = [0:fn-1])
|
||||
let(a = index/fn*360)
|
||||
sign_x(index, fn) * [size[0]/2,0]
|
||||
+ sign_y(index, fn) * [0,size[1]/2]
|
||||
];
|
||||
|
||||
function rounded_rectangle_profile(size=[1,1],r=1,fn=32) = [
|
||||
let(max_fn = max(fn,8))
|
||||
for (index = [0:max_fn-1])
|
||||
let(a = index/max_fn*360)
|
||||
r * [cos(a), sin(a)]
|
||||
+ sign_x(index, max_fn) * [size[0]/2-r,0]
|
||||
+ sign_y(index, max_fn) * [0,size[1]/2-r]
|
||||
];
|
||||
|
||||
function double_rounded_rectangle_profile(size=[1,1], r=1, fn=32) = [
|
||||
let(max_fn = max(fn,8))
|
||||
for (index = [0:max_fn-1])
|
||||
let(a = index/max_fn*360)
|
||||
r * [cos(a), sin(a)]
|
||||
+ sign_x(index, max_fn) * [size[0]/2-r,0]
|
||||
+ sign_y(index, max_fn) * [0,size[1]/2-r]
|
||||
];
|
||||
|
||||
@@ -86,7 +86,7 @@ $extra_long_stem_support = false;
|
||||
|
||||
// Key shape type, determines the shape of the key. default is 'rounded square'
|
||||
$key_shape_type = "rounded_square";
|
||||
// ISO enter needs to be linear extruded NOT from the center. this tells the program how far up 'not from the center' is
|
||||
// ISO enter needs to be linear extruded NOT from the center when not using skin. this tells the program how far up 'not from the center' is
|
||||
$linear_extrude_height_adjustment = 0;
|
||||
// How many slices will be made, to approximate curves on corners. Leave at 1 if you are not curving corners
|
||||
// If you're doing fancy bowed keycap sides, this controls how many slices you take
|
||||
@@ -183,3 +183,13 @@ $secondary_color = [.4412, .7, .3784];
|
||||
$tertiary_color = [1, .6941, .2];
|
||||
$quaternary_color = [.4078, .3569, .749];
|
||||
$warning_color = [1,0,0, 0.15];
|
||||
|
||||
// how many facets circles will have when used in these features
|
||||
$minkowski_facets = 30;
|
||||
$shape_facets =30;
|
||||
|
||||
// 3d surface settings
|
||||
// unused for now
|
||||
$3d_surface_size = 100;
|
||||
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
|
||||
$3d_surface_step = 10;
|
||||
|
||||
@@ -32,9 +32,11 @@ module key_shape(size, delta, progress = 0) {
|
||||
|
||||
function skin_key_shape(size, delta, progress = 0, thickness_difference) =
|
||||
$key_shape_type == "rounded_square" ?
|
||||
skin_rounded_square(size, delta, progress) :
|
||||
skin_rounded_square(size, delta, progress, thickness_difference) :
|
||||
$key_shape_type == "sculpted_square" ?
|
||||
skin_sculpted_square_shape(size, delta, progress) :
|
||||
skin_sculpted_square_shape(size, delta, progress, thickness_difference) :
|
||||
$key_shape_type == "square" ?
|
||||
skin_square_shape(size, delta, progress, thickness_difference) :
|
||||
$key_shape_type == "iso_enter" ?
|
||||
skin_iso_enter_shape(size, delta, progress, thickness_difference) :
|
||||
echo("Warning: unsupported $key_shape_type for skin shape. disable skin_extrude_shape or pick a new shape");
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
include <../libraries/rounded_rectangle_profile.scad>
|
||||
|
||||
module rounded_square_shape(size, delta, progress, center = true) {
|
||||
offset(r=$corner_radius){
|
||||
offset(r=$corner_radius, $fa=360/$shape_facets){
|
||||
square_shape([size.x - $corner_radius*2, size.y - $corner_radius*2], delta, progress);
|
||||
}
|
||||
}
|
||||
|
||||
// for skin
|
||||
|
||||
function skin_rounded_square(size, delta, progress) =
|
||||
rounded_rectangle_profile(size - (delta * progress), fn=36, r=$corner_radius);
|
||||
function skin_rounded_square(size, delta, progress, thickness_difference) =
|
||||
rounded_rectangle_profile(size - (delta * progress), fn=$shape_facets, r=$corner_radius);
|
||||
|
||||
@@ -37,7 +37,7 @@ module sculpted_square_shape(size, delta, progress) {
|
||||
height - extra_height_this_slice
|
||||
];
|
||||
|
||||
offset(r = extra_corner_radius_this_slice) {
|
||||
offset(r = extra_corner_radius_this_slice, $fa=360/$shape_facets) {
|
||||
offset(r = -extra_corner_radius_this_slice) {
|
||||
side_rounded_square(square_size, r = $more_side_sculpting_factor * progress);
|
||||
}
|
||||
@@ -46,7 +46,7 @@ module sculpted_square_shape(size, delta, progress) {
|
||||
|
||||
// fudging the hell out of this, I don't remember what the negative-offset-positive-offset was doing in the module above
|
||||
// also no 'bowed' square shape for now
|
||||
function skin_sculpted_square_shape(size, delta, progress) =
|
||||
function skin_sculpted_square_shape(size, delta, progress, thickness_difference) =
|
||||
let(
|
||||
width = size[0],
|
||||
height = size[1],
|
||||
@@ -64,10 +64,10 @@ function skin_sculpted_square_shape(size, delta, progress) =
|
||||
extra_corner_radius_this_slice = ($corner_radius + extra_corner_size),
|
||||
|
||||
square_size = [
|
||||
width - extra_width_this_slice,
|
||||
height - extra_height_this_slice
|
||||
width - extra_width_this_slice - thickness_difference,
|
||||
height - extra_height_this_slice - thickness_difference
|
||||
]
|
||||
) rounded_rectangle_profile(square_size - [extra_corner_radius_this_slice, extra_corner_radius_this_slice]/4, fn=36, r=extra_corner_radius_this_slice/1.5 + $more_side_sculpting_factor * progress);
|
||||
) double_rounded_rectangle_profile(square_size - [extra_corner_radius_this_slice, extra_corner_radius_this_slice]/4, fn=$shape_facets, r=extra_corner_radius_this_slice/1.5 + $more_side_sculpting_factor * progress);
|
||||
|
||||
/* offset(r = extra_corner_radius_this_slice) {
|
||||
offset(r = -extra_corner_radius_this_slice) {
|
||||
@@ -85,10 +85,10 @@ module side_rounded_square(size, r) {
|
||||
sw = iw / resolution;
|
||||
union() {
|
||||
if (sr > 0) {
|
||||
translate([-iw/2, 0]) scale([sr, sh]) circle(d = resolution);
|
||||
translate([iw/2, 0]) scale([sr, sh]) circle(d = resolution);
|
||||
translate([0, -ih/2]) scale([sw, sr]) circle(d = resolution);
|
||||
translate([0, ih/2]) scale([sw, sr]) circle(d = resolution);
|
||||
translate([-iw/2, 0]) scale([sr, sh]) circle(d = resolution, $fa=360/$shape_facets);
|
||||
translate([iw/2, 0]) scale([sr, sh]) circle(d = resolution, $fa=360/$shape_facets);
|
||||
translate([0, -ih/2]) scale([sw, sr]) circle(d = resolution, $fa=360/$shape_facets);
|
||||
translate([0, ih/2]) scale([sw, sr]) circle(d = resolution, $fa=360/$shape_facets);
|
||||
}
|
||||
square([iw, ih], center=true);
|
||||
}
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
use <../functions.scad>
|
||||
include <../libraries/rounded_rectangle_profile.scad>
|
||||
|
||||
|
||||
// we do this weird key_shape_type check here because rounded_square uses
|
||||
// square_shape, and we want flat sides to work for that too.
|
||||
@@ -28,3 +30,17 @@ module flat_sided_square_shape(size, delta, progress) {
|
||||
[(-size.x + (delta.x - extra_keytop_length_for_flat_sides()) * progress)/2, (size.y - delta.y * progress)/2]
|
||||
]);
|
||||
}
|
||||
|
||||
function skin_square_shape(size, delta, progress, thickness_difference) =
|
||||
let(
|
||||
width = size[0],
|
||||
height = size[1],
|
||||
|
||||
width_difference = delta[0] * progress,
|
||||
height_difference = delta[1] * progress,
|
||||
|
||||
square_size = [
|
||||
width - width_difference - thickness_difference,
|
||||
height - height_difference - thickness_difference
|
||||
]
|
||||
) rectangle_profile(square_size, fn=36);
|
||||
|
||||
@@ -4,22 +4,25 @@ include <stems/box_cherry.scad>
|
||||
include <stems/alps.scad>
|
||||
include <stems/filled.scad>
|
||||
include <stems/cherry_stabilizer.scad>
|
||||
include <stems/custom.scad>
|
||||
|
||||
|
||||
//whole stem, alps or cherry, trimmed to fit
|
||||
module stem(stem_type, depth, slop){
|
||||
module stem(stem_type, depth, slop, throw){
|
||||
if (stem_type == "alps") {
|
||||
alps_stem(depth, slop);
|
||||
alps_stem(depth, slop, throw);
|
||||
} else if (stem_type == "cherry" || stem_type == "costar_stabilizer") {
|
||||
cherry_stem(depth, slop);
|
||||
cherry_stem(depth, slop, throw);
|
||||
} else if (stem_type == "rounded_cherry") {
|
||||
rounded_cherry_stem(depth, slop);
|
||||
rounded_cherry_stem(depth, slop, throw);
|
||||
} else if (stem_type == "box_cherry") {
|
||||
box_cherry_stem(depth, slop);
|
||||
box_cherry_stem(depth, slop, throw);
|
||||
} else if (stem_type == "filled") {
|
||||
filled_stem();
|
||||
} else if (stem_type == "cherry_stabilizer") {
|
||||
cherry_stabilizer_stem(depth, slop);
|
||||
cherry_stabilizer_stem(depth, slop, throw);
|
||||
} else if (stem_type == "custom") {
|
||||
custom_stem(depth, slop, throw);
|
||||
} else if (stem_type == "disable") {
|
||||
children();
|
||||
} else {
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
module alps_stem(depth, has_brim, slop){
|
||||
module alps_stem(depth, slop, throw){
|
||||
linear_extrude(height=depth) {
|
||||
square($alps_stem, center = true);
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
include <../functions.scad>
|
||||
include <cherry.scad>
|
||||
|
||||
module box_cherry_stem(depth, slop) {
|
||||
module box_cherry_stem(depth, slop, throw) {
|
||||
difference(){
|
||||
// outside shape
|
||||
linear_extrude(height = depth) {
|
||||
|
||||
@@ -23,7 +23,7 @@ module inside_cherry_cross(slop) {
|
||||
}
|
||||
}
|
||||
|
||||
module cherry_stem(depth, slop) {
|
||||
module cherry_stem(depth, slop, throw) {
|
||||
difference(){
|
||||
// outside shape
|
||||
linear_extrude(height = depth) {
|
||||
|
||||
@@ -15,7 +15,7 @@ module inside_cherry_stabilizer_cross(slop) {
|
||||
}
|
||||
}
|
||||
|
||||
module cherry_stabilizer_stem(depth, slop) {
|
||||
module cherry_stabilizer_stem(depth, slop, throw) {
|
||||
difference(){
|
||||
// outside shape
|
||||
linear_extrude(height = depth) {
|
||||
|
||||
12
src/stems/custom.scad
Normal file
12
src/stems/custom.scad
Normal file
@@ -0,0 +1,12 @@
|
||||
thickness = .84;
|
||||
inner_stem_size = [6,4];
|
||||
outer_stem_size = inner_stem_size + [thickness, thickness];
|
||||
|
||||
module custom_stem(depth, slop, throw){
|
||||
linear_extrude(height=depth) {
|
||||
difference() {
|
||||
square(outer_stem_size + [slop,slop], center = true);
|
||||
square(inner_stem_size + [slop,slop], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,4 +1,4 @@
|
||||
module filled_stem() {
|
||||
module filled_stem(_depth, _slop, _throw) {
|
||||
// I broke the crap out of this stem type due to the changes I made around how stems are differenced
|
||||
// now that we just take the dish out of stems in order to support stuff like
|
||||
// bare stem keycaps (and buckling spring eventually) we can't just make a
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
include <../functions.scad>
|
||||
include <cherry.scad>
|
||||
|
||||
module rounded_cherry_stem(depth, slop) {
|
||||
module rounded_cherry_stem(depth, slop, throw) {
|
||||
difference(){
|
||||
cylinder(d=$rounded_cherry_stem_d, h=depth);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user