10 Commits

Author SHA1 Message Date
Bob
703015dc51 use function literals to make surface functions more fun 2022-02-22 21:00:03 -05:00
Bob
f0e339966f tweak corner rounding and size on mt3 2022-02-22 20:58:22 -05:00
Bob
263bd8ebbf Merge pull request #115 from lvisintini/asa-profile
Add new ASA profile (by Akko)
2022-02-22 16:44:52 -05:00
Bob
1c3960aaff Merge pull request #151 from rsheldiii/v2/backside-frontside
add backside() and fontside() helpers
2022-02-22 16:42:05 -05:00
Bob
4bce68dfbb add backside() and fontside() helpers 2022-02-22 13:11:13 -05:00
Bob
dbe5bca1a9 Merge pull request #150 from rsheldiii/v2/resin
Resin settings, some tines support tweaks
2022-02-22 00:39:26 -05:00
Bob
0c9d05e270 Merge pull request #149 from rsheldiii/hipro-and-mt3
Hipro and MT3 profiles
2022-02-22 00:12:26 -05:00
Bob
2429384b51 resin settings, some tines support tweaks 2022-02-21 16:02:37 -05:00
Luis Visintini
2d03e5dd4b Updates made after review by @limitium 2021-11-06 14:02:02 +00:00
Luis Visintini
665698771f Add new ASA profile (by Akko) 2021-08-30 13:59:43 +01:00
13 changed files with 386 additions and 465 deletions

View File

@@ -1,6 +1,5 @@
TODO:
* Make flat stem support default
* support repositioning to print on the back surface of the keycap
* implement regular polygon for skin extrusions
* switch to skin-shaped extrusions by default
* kailh choc has a non-square key unit; should I get that working for layouts etc?

View File

@@ -205,11 +205,7 @@ $warning_color = [1,0,0, 0.15];
$minkowski_facets = 30;
$shape_facets =30;
// 3d surface settings
// unused for now
$3d_surface_size = 100;
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
$3d_surface_step = 10;
// "flat" / "dished" / "disable"
$inner_shape_type = "flat";
@@ -220,6 +216,48 @@ $side_sculpting_factor = 4.5;
$corner_sculpting_factor = 1;
// When doing more side sculpting corners, how much extra radius should be added
$more_side_sculpting_factor = 0.4;
// 3d surface functions (still in beta)
// 3d surface settings
// unused for now
$3d_surface_size = 20;
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total.
// 5 = 20 divisions per x/y
$3d_surface_step = 1;
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
sinusoidal_surface_distribution = function(dim,size) sin(dim) * size;
linear_surface_distribution = function(dim,size) sin(dim) * size;
$surface_distribution_function = linear_surface_distribution;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
// $surface_function = function(x,y) 1;
cylindrical_surface = function(x,y) (sin(acos(x/$3d_surface_size)));
spherical_surface = function(x,y) (1 - (x/$3d_surface_size)^2)^0.5 * (1 - (y/$3d_surface_size)^2)^0.5;
// looks a lot like mt3
quartic_surface = function(x,y) (1 - (x/$3d_surface_size)^4)^0.5 * (1 - (y/$3d_surface_size)^4)^0.5;
ripple_surface = function(x,y) cos((x^2+y^2)^0.5 * 50)/4 + 0.75;
rosenbrocks_banana_surface = function(x,y) (pow(1-(x/$3d_surface_size))^2 + 100 * pow((y/$3d_surface_size)-(x/$3d_surface_size)^2)^2)/200 + 0.1;
spike_surface = function(x,y) 1/(((x/$3d_surface_size)^2+(y/$3d_surface_size)^2)^0.5) + .01;
random_surface = function(x,y) sin(rands(0,90,1,x+y)[0]);
bumps_surface = function(x,y) sin(20*x)*cos(20*y)/3+1;
$surface_function = bumps_surface; // bumps_surface;
// ripples
/*
// Rosenbrock's banana
/* $
// y=x revolved around the y axis
/* $surface_function = */
/* $surface_function = */
// key width functions
module u(u=1) {
@@ -570,7 +608,9 @@ module mt3_row(row=3, column=0, deep_dish=false) {
$dish_skew_y = 0;
$top_skew = 0;
$height_slices = 10;
$corner_radius = 1;
$corner_sculpting_factor = 2;
$corner_radius = 0.0125;
$more_side_sculpting_factor = 0.75;
@@ -818,7 +858,49 @@ module dss_row(n=3, column=0) {
$top_tilt = 8;
children();
}
}module asa_row(row=3, column = 0) {
$key_shape_type = "sculpted_square";
$bottom_key_height = 18.06;
$bottom_key_width = 18.05; // Default (R3)
$total_depth = 10.35; // Default (R3)
$top_tilt = 1.5; // Default (R3)
$width_difference = 5.05;
$height_difference = 5.56;
$dish_type = "spherical";
$dish_depth = 1.2;
$dish_skew_x = 0;
$dish_skew_y = 0;
$top_skew = 1.75;
$stem_inset = 1.2;
$height_slices = 10;
$corner_radius = 1;
// this is _incredibly_ intensive
//$rounded_key = true;
if (row == 1){
$bottom_key_width = 17.95;
$width_difference = 4.95;
$total_depth = 10.65;
$top_tilt = 7;
children();
} else if (row == 2) {
$bottom_key_width = 18.17;
$width_difference = 5.17;
$total_depth = 9.65;
$top_tilt = 3.25;
children();
} else if (row == 4){
$bottom_key_width = 18.02;
$width_difference = 5.02;
$total_depth = 11.9;
$top_tilt = 0.43;
children();
} else {
children();
}
}
// man, wouldn't it be so cool if functions were first order
module key_profile(key_profile_type, row, column=0) {
if (key_profile_type == "dcs") {
@@ -831,6 +913,8 @@ module key_profile(key_profile_type, row, column=0) {
dss_row(row, column) children();
} else if (key_profile_type == "sa") {
sa_row(row, column) children();
} else if (key_profile_type == "asa") {
asa_row(row, column) children();
} else if (key_profile_type == "g20") {
g20_row(row, column) children();
} else if (key_profile_type == "hipro") {
@@ -899,29 +983,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -1186,13 +1247,68 @@ module upside_down() {
}
module sideways() {
$stem_support_type = "disable";
$key_shape_type = "flat_sided_square";
$dish_overdraw_width = abs(extra_keytop_length_for_flat_sides());
extra_y_rotation = atan2($width_difference/2,$total_depth);
extra_y_rotation = atan2($width_difference/2,$total_depth); // TODO assumes centered top
translate([0,0,cos(extra_y_rotation) * total_key_width()/2])
rotate([0,90 + extra_y_rotation ,0]) children();
}
/* this is hard to explain. we want the angle of the back of the keycap.
* first we draw a line at the back of the keycap perpendicular to the ground.
* then we extend the line created by the slope of the keytop to that line
* the angle of the latter line off the ground is $top_tilt, and
* you can create a right triangle with the adjacent edge being $bottom_key_height/2
* raised up $total_depth. this gets you x, the component of the extended
* keytop slope line, and y, a component of the first perpendicular line.
* by a very similar triangle you get r and s, where x is the hypotenuse of that
* right triangle and the right angle is again against the first perpendicular line
* s is the opposite line in the right triangle required to find q, the angle
* of the back. if you subtract r from $total_depth plus y you can now use these
* two values in atan to find the angle of interest.
*/
module backside() {
$stem_support_type = "disable";
// $key_shape_type = "flat_sided_square";
a = $bottom_key_height;
b = $total_depth;
c = top_total_key_height();
x = (a / 2 - $top_skew) / cos(-$top_tilt) - c / 2;
y = sin(-$top_tilt) * (x + c/2);
r = sin(-$top_tilt) * x;
s = cos(-$top_tilt) * x;
q = atan2(s, (y + b - r));
translate([0,0,cos(q) * total_key_height()/2])
rotate([-90 - q, 0,0]) children();
}
// this is just backside with a few signs switched
module frontside() {
$stem_support_type = "disable";
// $key_shape_type = "flat_sided_square";
a = $bottom_key_height;
b = $total_depth;
c = top_total_key_height();
x = (a / 2 + $top_skew) / cos($top_tilt) - c / 2;
y = sin($top_tilt) * (x + c/2);
r = sin($top_tilt) * x;
s = cos($top_tilt) * x;
q = atan2(s, (y + b - r));
translate([0,0,cos(q) * total_key_height()/2])
rotate([90 + q, 0,0]) children();
}
// emulating the % modifier.
// since we use custom colors, just using the % modifier doesn't work
module debug() {
@@ -1216,7 +1332,14 @@ module auto_place() {
translate_u(x,-y) children(child_index);
}
}
module arrows(profile, rows = [4,4,4,3]) {
// suggested settings for resin prints
module resin() {
$stem_slop = 0;
$stem_inner_slop = 0;
$stem_support_type = "disable";
children();
}module arrows(profile, rows = [4,4,4,3]) {
positions = [[0, 0], [1, 0], [2, 0], [1, 1]];
legends = ["←", "↓", "→", "↑"];
@@ -1300,29 +1423,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -1379,29 +1479,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -2314,29 +2391,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -3138,29 +3192,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -3328,29 +3359,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -3358,7 +3366,7 @@ function unit_length(length) = $unit * (length - 1) + 18.16;
// extra length to the vertical tine of the inside cherry cross
// splits the stem into halves - allows easier fitment
extra_vertical = 0.6;
extra_vertical = 100;
module inside_cherry_cross(slop) {
// inside cross
@@ -3439,29 +3447,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -3514,29 +3499,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -3544,7 +3506,7 @@ function unit_length(length) = $unit * (length - 1) + 18.16;
// extra length to the vertical tine of the inside cherry cross
// splits the stem into halves - allows easier fitment
extra_vertical = 0.6;
extra_vertical = 100;
module inside_cherry_cross(slop) {
// inside cross
@@ -3635,29 +3597,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -3710,29 +3649,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -3740,7 +3656,7 @@ function unit_length(length) = $unit * (length - 1) + 18.16;
// extra length to the vertical tine of the inside cherry cross
// splits the stem into halves - allows easier fitment
extra_vertical = 0.6;
extra_vertical = 100;
module inside_cherry_cross(slop) {
// inside cross
@@ -3849,29 +3765,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -3994,29 +3887,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -4069,29 +3939,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -4099,7 +3946,7 @@ function unit_length(length) = $unit * (length - 1) + 18.16;
// extra length to the vertical tine of the inside cherry cross
// splits the stem into halves - allows easier fitment
extra_vertical = 0.6;
extra_vertical = 100;
module inside_cherry_cross(slop) {
// inside cross
@@ -4237,29 +4084,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -4312,29 +4136,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -4342,7 +4143,7 @@ function unit_length(length) = $unit * (length - 1) + 18.16;
// extra length to the vertical tine of the inside cherry cross
// splits the stem into halves - allows easier fitment
extra_vertical = 0.6;
extra_vertical = 100;
module inside_cherry_cross(slop) {
// inside cross
@@ -4411,7 +4212,7 @@ module tines_support(stem_type, stem_support_height, slop) {
}
// 2 vertical tines holding either side of the cruciform
for (x = [1.15, -1.15]) {
for (x = [2, -2]) {
translate([x,0,$stem_support_height / 2]) {
cube([
0.5,
@@ -4774,36 +4575,13 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
function unit_length(length) = $unit * (length - 1) + 18.16;
module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
function p(x, y) = [ x, y, max(0,surface_function(x, y)) ];
function p(x, y) = [ x, y, max(0,$surface_function(x, y)) ];
function p0(x, y) = [ x, y, bottom ];
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
@@ -4835,13 +4613,13 @@ module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST
polyhedron(points, faces, convexity = 8);
}
module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
module polar_3d_surface(size, step, bottom=-SMALLEST_POSSIBLE){
function to_polar(q, size) = q * (90 / size);
function p(x, y) = [
surface_distribution_function(to_polar(x, size), size),
surface_distribution_function(to_polar(y, size), size),
max(0,surface_function(surface_distribution_function(to_polar(x, size), size), surface_distribution_function(to_polar(y, size), size)))
$surface_distribution_function(to_polar(x, size), size),
$surface_distribution_function(to_polar(y, size), size),
max(0,$surface_function($surface_distribution_function(to_polar(x, size), size), $surface_distribution_function(to_polar(y, size), size)))
];
function p0(x, y) = [ x, y, bottom ];
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
@@ -4875,8 +4653,8 @@ module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SM
}
// defaults, overridden in functions.scad
function surface_distribution_function(dim, size) = sin(dim) * size;
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// $surface_distribution_function = function(dim, size) sin(dim) * size;
// $surface_function = function(x,y) (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
module 3d_surface_dish(width, height, depth, inverted) {
echo(inverted ? "inverted" : "not inverted");
@@ -4884,9 +4662,11 @@ module 3d_surface_dish(width, height, depth, inverted) {
// it doesn't have to be dead reckoning for anything but sculpted sides
// we know the angle of the sides from the width difference, height difference,
// skew and tilt of the top. it's a pain to calculate though
scale_factor = 1.1;
scale_factor = 1.11;
// the edges on this behave differently than with the previous dish implementations
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,180]) polar_3d_surface(bottom=-10);
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth])
rotate([inverted ? 0:180,0,180])
polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-10);
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
}
@@ -4904,7 +4684,7 @@ module dish(width, height, depth, inverted) {
sideways_cylindrical_dish(width, height, depth, inverted);
} else if ($dish_type == "old spherical") {
old_spherical_dish(width, height, depth, inverted);
} else if ($dish_type == "3d_surface") {
} else if ($dish_type == "3d surface") {
3d_surface_dish(width, height, depth, inverted);
} else if ($dish_type == "flat") {
flat_dish(width, height, depth, inverted);
@@ -4966,29 +4746,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length
@@ -6624,11 +6381,7 @@ $warning_color = [1,0,0, 0.15];
$minkowski_facets = 30;
$shape_facets =30;
// 3d surface settings
// unused for now
$3d_surface_size = 100;
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
$3d_surface_step = 10;
// "flat" / "dished" / "disable"
$inner_shape_type = "flat";
@@ -6638,7 +6391,49 @@ $side_sculpting_factor = 4.5;
// When sculpting corners, how much extra radius should be added
$corner_sculpting_factor = 1;
// When doing more side sculpting corners, how much extra radius should be added
$more_side_sculpting_factor = 0.4; key();
$more_side_sculpting_factor = 0.4;
// 3d surface functions (still in beta)
// 3d surface settings
// unused for now
$3d_surface_size = 20;
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total.
// 5 = 20 divisions per x/y
$3d_surface_step = 1;
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
sinusoidal_surface_distribution = function(dim,size) sin(dim) * size;
linear_surface_distribution = function(dim,size) sin(dim) * size;
$surface_distribution_function = linear_surface_distribution;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
// $surface_function = function(x,y) 1;
cylindrical_surface = function(x,y) (sin(acos(x/$3d_surface_size)));
spherical_surface = function(x,y) (1 - (x/$3d_surface_size)^2)^0.5 * (1 - (y/$3d_surface_size)^2)^0.5;
// looks a lot like mt3
quartic_surface = function(x,y) (1 - (x/$3d_surface_size)^4)^0.5 * (1 - (y/$3d_surface_size)^4)^0.5;
ripple_surface = function(x,y) cos((x^2+y^2)^0.5 * 50)/4 + 0.75;
rosenbrocks_banana_surface = function(x,y) (pow(1-(x/$3d_surface_size))^2 + 100 * pow((y/$3d_surface_size)-(x/$3d_surface_size)^2)^2)/200 + 0.1;
spike_surface = function(x,y) 1/(((x/$3d_surface_size)^2+(y/$3d_surface_size)^2)^0.5) + .01;
random_surface = function(x,y) sin(rands(0,90,1,x+y)[0]);
bumps_surface = function(x,y) sin(20*x)*cos(20*y)/3+1;
$surface_function = bumps_surface; // bumps_surface;
// ripples
/*
// Rosenbrock's banana
/* $
// y=x revolved around the y axis
/* $surface_function = */
/* $surface_function = */ key();
}
if (!$using_customizer) {

View File

@@ -22,7 +22,7 @@ module dish(width, height, depth, inverted) {
sideways_cylindrical_dish(width, height, depth, inverted);
} else if ($dish_type == "old spherical") {
old_spherical_dish(width, height, depth, inverted);
} else if ($dish_type == "3d_surface") {
} else if ($dish_type == "3d surface") {
3d_surface_dish(width, height, depth, inverted);
} else if ($dish_type == "flat") {
flat_dish(width, height, depth, inverted);

View File

@@ -6,9 +6,11 @@ module 3d_surface_dish(width, height, depth, inverted) {
// it doesn't have to be dead reckoning for anything but sculpted sides
// we know the angle of the sides from the width difference, height difference,
// skew and tilt of the top. it's a pain to calculate though
scale_factor = 1.1;
scale_factor = 1.11;
// the edges on this behave differently than with the previous dish implementations
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,180]) polar_3d_surface(bottom=-10);
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth])
rotate([inverted ? 0:180,0,180])
polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-10);
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
}

View File

@@ -43,29 +43,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
// I derived this through a bunch of trig reductions I don't really understand.
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
// 3d surface functions (still in beta)
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
function surface_distribution_function(dim, size) = sin(dim) * size;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
function surface_function(x,y) = 1;
// cylindrical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
// spherical
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// ripples
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
// Rosenbrock's banana
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
// y=x revolved around the y axis
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
// adds uniform rounding radius for round-anything polyRound
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
// computes millimeter length from unit length

View File

@@ -13,6 +13,7 @@ include <key_profiles/grid.scad>
include <key_profiles/regular_polygon.scad>
include <key_profiles/cherry.scad>
include <key_profiles/dss.scad>
include <key_profiles/asa.scad>
// man, wouldn't it be so cool if functions were first order
module key_profile(key_profile_type, row, column=0) {
@@ -26,6 +27,8 @@ module key_profile(key_profile_type, row, column=0) {
dss_row(row, column) children();
} else if (key_profile_type == "sa") {
sa_row(row, column) children();
} else if (key_profile_type == "asa") {
asa_row(row, column) children();
} else if (key_profile_type == "g20") {
g20_row(row, column) children();
} else if (key_profile_type == "hipro") {

42
src/key_profiles/asa.scad Normal file
View File

@@ -0,0 +1,42 @@
module asa_row(row=3, column = 0) {
$key_shape_type = "sculpted_square";
$bottom_key_height = 18.06;
$bottom_key_width = 18.05; // Default (R3)
$total_depth = 10.35; // Default (R3)
$top_tilt = 1.5; // Default (R3)
$width_difference = 5.05;
$height_difference = 5.56;
$dish_type = "spherical";
$dish_depth = 1.2;
$dish_skew_x = 0;
$dish_skew_y = 0;
$top_skew = 1.75;
$stem_inset = 1.2;
$height_slices = 10;
$corner_radius = 1;
// this is _incredibly_ intensive
//$rounded_key = true;
if (row == 1){
$bottom_key_width = 17.95;
$width_difference = 4.95;
$total_depth = 10.65;
$top_tilt = 7;
children();
} else if (row == 2) {
$bottom_key_width = 18.17;
$width_difference = 5.17;
$total_depth = 9.65;
$top_tilt = 3.25;
children();
} else if (row == 4){
$bottom_key_width = 18.02;
$width_difference = 5.02;
$total_depth = 11.9;
$top_tilt = 0.43;
children();
} else {
children();
}
}

View File

@@ -13,7 +13,9 @@ module mt3_row(row=3, column=0, deep_dish=false) {
$dish_skew_y = 0;
$top_skew = 0;
$height_slices = 10;
$corner_radius = 1;
$corner_sculpting_factor = 2;
$corner_radius = 0.0125;
$more_side_sculpting_factor = 0.75;

View File

@@ -193,13 +193,68 @@ module upside_down() {
}
module sideways() {
$stem_support_type = "disable";
$key_shape_type = "flat_sided_square";
$dish_overdraw_width = abs(extra_keytop_length_for_flat_sides());
extra_y_rotation = atan2($width_difference/2,$total_depth);
extra_y_rotation = atan2($width_difference/2,$total_depth); // TODO assumes centered top
translate([0,0,cos(extra_y_rotation) * total_key_width()/2])
rotate([0,90 + extra_y_rotation ,0]) children();
}
/* this is hard to explain. we want the angle of the back of the keycap.
* first we draw a line at the back of the keycap perpendicular to the ground.
* then we extend the line created by the slope of the keytop to that line
* the angle of the latter line off the ground is $top_tilt, and
* you can create a right triangle with the adjacent edge being $bottom_key_height/2
* raised up $total_depth. this gets you x, the component of the extended
* keytop slope line, and y, a component of the first perpendicular line.
* by a very similar triangle you get r and s, where x is the hypotenuse of that
* right triangle and the right angle is again against the first perpendicular line
* s is the opposite line in the right triangle required to find q, the angle
* of the back. if you subtract r from $total_depth plus y you can now use these
* two values in atan to find the angle of interest.
*/
module backside() {
$stem_support_type = "disable";
// $key_shape_type = "flat_sided_square";
a = $bottom_key_height;
b = $total_depth;
c = top_total_key_height();
x = (a / 2 - $top_skew) / cos(-$top_tilt) - c / 2;
y = sin(-$top_tilt) * (x + c/2);
r = sin(-$top_tilt) * x;
s = cos(-$top_tilt) * x;
q = atan2(s, (y + b - r));
translate([0,0,cos(q) * total_key_height()/2])
rotate([-90 - q, 0,0]) children();
}
// this is just backside with a few signs switched
module frontside() {
$stem_support_type = "disable";
// $key_shape_type = "flat_sided_square";
a = $bottom_key_height;
b = $total_depth;
c = top_total_key_height();
x = (a / 2 + $top_skew) / cos($top_tilt) - c / 2;
y = sin($top_tilt) * (x + c/2);
r = sin($top_tilt) * x;
s = cos($top_tilt) * x;
q = atan2(s, (y + b - r));
translate([0,0,cos(q) * total_key_height()/2])
rotate([90 + q, 0,0]) children();
}
// emulating the % modifier.
// since we use custom colors, just using the % modifier doesn't work
module debug() {
@@ -223,3 +278,11 @@ module auto_place() {
translate_u(x,-y) children(child_index);
}
}
// suggested settings for resin prints
module resin() {
$stem_slop = 0;
$stem_inner_slop = 0;
$stem_support_type = "disable";
children();
}

View File

@@ -3,7 +3,7 @@
include <../functions.scad>
module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
function p(x, y) = [ x, y, max(0,surface_function(x, y)) ];
function p(x, y) = [ x, y, max(0,$surface_function(x, y)) ];
function p0(x, y) = [ x, y, bottom ];
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
@@ -35,13 +35,13 @@ module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST
polyhedron(points, faces, convexity = 8);
}
module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
module polar_3d_surface(size, step, bottom=-SMALLEST_POSSIBLE){
function to_polar(q, size) = q * (90 / size);
function p(x, y) = [
surface_distribution_function(to_polar(x, size), size),
surface_distribution_function(to_polar(y, size), size),
max(0,surface_function(surface_distribution_function(to_polar(x, size), size), surface_distribution_function(to_polar(y, size), size)))
$surface_distribution_function(to_polar(x, size), size),
$surface_distribution_function(to_polar(y, size), size),
max(0,$surface_function($surface_distribution_function(to_polar(x, size), size), $surface_distribution_function(to_polar(y, size), size)))
];
function p0(x, y) = [ x, y, bottom ];
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
@@ -75,5 +75,5 @@ module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SM
}
// defaults, overridden in functions.scad
function surface_distribution_function(dim, size) = sin(dim) * size;
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
// $surface_distribution_function = function(dim, size) sin(dim) * size;
// $surface_function = function(x,y) (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));

View File

@@ -190,11 +190,7 @@ $warning_color = [1,0,0, 0.15];
$minkowski_facets = 30;
$shape_facets =30;
// 3d surface settings
// unused for now
$3d_surface_size = 100;
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
$3d_surface_step = 10;
// "flat" / "dished" / "disable"
$inner_shape_type = "flat";
@@ -204,4 +200,46 @@ $side_sculpting_factor = 4.5;
// When sculpting corners, how much extra radius should be added
$corner_sculpting_factor = 1;
// When doing more side sculpting corners, how much extra radius should be added
$more_side_sculpting_factor = 0.4;
$more_side_sculpting_factor = 0.4;
// 3d surface functions (still in beta)
// 3d surface settings
// unused for now
$3d_surface_size = 20;
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total.
// 5 = 20 divisions per x/y
$3d_surface_step = 1;
// monotonically increasing function that distributes the points of the surface mesh
// only for polar_3d_surface right now
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
sinusoidal_surface_distribution = function(dim,size) sin(dim) * size;
linear_surface_distribution = function(dim,size) sin(dim) * size;
$surface_distribution_function = linear_surface_distribution;
// the function that actually determines what the surface is.
// feel free to override, the last one wins
// debug
// $surface_function = function(x,y) 1;
cylindrical_surface = function(x,y) (sin(acos(x/$3d_surface_size)));
spherical_surface = function(x,y) (1 - (x/$3d_surface_size)^2)^0.5 * (1 - (y/$3d_surface_size)^2)^0.5;
// looks a lot like mt3
quartic_surface = function(x,y) (1 - (x/$3d_surface_size)^4)^0.5 * (1 - (y/$3d_surface_size)^4)^0.5;
ripple_surface = function(x,y) cos((x^2+y^2)^0.5 * 50)/4 + 0.75;
rosenbrocks_banana_surface = function(x,y) (pow(1-(x/$3d_surface_size))^2 + 100 * pow((y/$3d_surface_size)-(x/$3d_surface_size)^2)^2)/200 + 0.1;
spike_surface = function(x,y) 1/(((x/$3d_surface_size)^2+(y/$3d_surface_size)^2)^0.5) + .01;
random_surface = function(x,y) sin(rands(0,90,1,x+y)[0]);
bumps_surface = function(x,y) sin(20*x)*cos(20*y)/3+1;
$surface_function = bumps_surface; // bumps_surface;
// ripples
/*
// Rosenbrock's banana
/* $
// y=x revolved around the y axis
/* $surface_function = */
/* $surface_function = */

View File

@@ -36,7 +36,7 @@ module tines_support(stem_type, stem_support_height, slop) {
}
// 2 vertical tines holding either side of the cruciform
for (x = [1.15, -1.15]) {
for (x = [2, -2]) {
translate([x,0,$stem_support_height / 2]) {
cube([
0.5,

View File

@@ -2,7 +2,7 @@ include <../functions.scad>
// extra length to the vertical tine of the inside cherry cross
// splits the stem into halves - allows easier fitment
extra_vertical = 0.6;
extra_vertical = 100;
module inside_cherry_cross(slop) {
// inside cross