Merge pull request #107 from daniel-s-ingram/master

Robotic arm navigating obstacles with A*
This commit is contained in:
Atsushi Sakai
2018-10-02 20:58:28 +09:00
committed by GitHub

View File

@@ -0,0 +1,244 @@
"""
Obstacle navigation using A* on a toroidal grid
Author: Daniel Ingram (daniel-s-ingram)
"""
from math import pi
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import from_levels_and_colors
plt.ion()
#Simulation parameters
M = 100
obstacles = [[1.75, 0.75, 0.6], [0.55, 1.5, 0.5], [0, -1, 0.25]]
def main():
arm = NLinkArm([1, 1], [0, 0])
grid = get_occupancy_grid(arm, obstacles)
plt.imshow(grid)
plt.show()
#(50,50) (58,56)
route = astar_torus(grid, (10, 50), (58, 56))
for node in route:
theta1 = 2*pi*node[0]/M-pi
theta2 = 2*pi*node[1]/M-pi
arm.update_joints([theta1, theta2])
arm.plot(obstacles=obstacles)
def detect_collision(line_seg, circle):
"""
Determines whether a line segment (arm link) is in contact
with a circle (obstacle).
Credit to: http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html
Args:
line_seg: List of coordinates of line segment endpoints e.g. [[1, 1], [2, 2]]
circle: List of circle coordinates and radius e.g. [0, 0, 0.5] is a circle centered
at the origin with radius 0.5
Returns:
True if the line segment is in contact with the circle
False otherwise
"""
a_vec = np.array([line_seg[0][0], line_seg[0][1]])
b_vec = np.array([line_seg[1][0], line_seg[1][1]])
c_vec = np.array([circle[0], circle[1]])
radius = circle[2]
line_vec = b_vec - a_vec
line_mag = np.linalg.norm(line_vec)
circle_vec = c_vec - a_vec
proj = circle_vec.dot(line_vec/line_mag)
if proj <= 0:
closest_point = a_vec
elif proj >= line_mag:
closest_point = b_vec
else:
closest_point = a_vec + line_vec*proj/line_mag
if np.linalg.norm(closest_point-c_vec) > radius:
return False
else:
return True
def get_occupancy_grid(arm, obstacles):
"""
Discretizes joint space into M values from -pi to +pi
and determines whether a given coordinate in joint space
would result in a collision between a robot arm and obstacles
in its environment.
Args:
arm: An instance of NLinkArm
obstacles: A list of obstacles, with each obstacle defined as a list
of xy coordinates and a radius.
Returns:
Occupancy grid in joint space
"""
grid = [[0 for _ in range(M)] for _ in range(M)]
theta_list = [2*i*pi/M for i in range(-M//2, M//2+1)]
for i in range(M):
for j in range(M):
arm.update_joints([theta_list[i], theta_list[j]])
points = arm.points
collision_detected = False
for k in range(len(points)-1):
for obstacle in obstacles:
line_seg = [points[k], points[k+1]]
collision_detected = detect_collision(line_seg, obstacle)
if collision_detected:
break
if collision_detected:
break
grid[i][j] = int(collision_detected)
return np.array(grid)
def astar_torus(grid, start_node, goal_node):
"""
Finds a path between an initial and goal joint configuration using
the A* Algorithm on a tororiadal grid.
Args:
grid: An occupancy grid (ndarray)
start_node: Initial joint configuation (tuple)
goal_node: Goal joint configuration (tuple)
Returns:
Obstacle-free route in joint space from start_node to goal_node
"""
colors = ['white', 'black', 'red', 'pink', 'yellow', 'green', 'orange']
levels = [0, 1, 2, 3, 4, 5, 6, 7]
cmap, norm = from_levels_and_colors(levels, colors)
grid[start_node] = 4
grid[goal_node] = 5
parent_map = [[() for _ in range(M)] for _ in range(M)]
X, Y = np.meshgrid([i for i in range(M)], [i for i in range(M)])
heuristic_map = np.abs(X - goal_node[1]) + np.abs(Y - goal_node[0])
for i in range(heuristic_map.shape[0]):
for j in range(heuristic_map.shape[1]):
heuristic_map[i,j] = min(heuristic_map[i,j],
i + 1 + heuristic_map[M-1,j],
M - i + heuristic_map[0,j],
j + 1 + heuristic_map[i,M-1],
M - j + heuristic_map[i,0]
)
explored_heuristic_map = np.full((M, M), np.inf)
distance_map = np.full((M, M), np.inf)
explored_heuristic_map[start_node] = heuristic_map[start_node]
distance_map[start_node] = 0
while True:
grid[start_node] = 4
grid[goal_node] = 5
current_node = np.unravel_index(np.argmin(explored_heuristic_map, axis=None), explored_heuristic_map.shape)
min_distance = np.min(explored_heuristic_map)
if (current_node == goal_node) or np.isinf(min_distance):
break
grid[current_node] = 2
explored_heuristic_map[current_node] = np.inf
i, j = current_node[0], current_node[1]
neighbors = []
if i-1 >= 0:
neighbors.append((i-1, j))
else:
neighbors.append((M-1, j))
if i+1 < M:
neighbors.append((i+1, j))
else:
neighbors.append((0, j))
if j-1 >= 0:
neighbors.append((i, j-1))
else:
neighbors.append((i, M-1))
if j+1 < M:
neighbors.append((i, j+1))
else:
neighbors.append((i, 0))
for neighbor in neighbors:
if grid[neighbor] == 0 or grid[neighbor] == 5:
distance_map[neighbor] = distance_map[current_node] + 1
explored_heuristic_map[neighbor] = heuristic_map[neighbor]
parent_map[neighbor[0]][neighbor[1]] = current_node
grid[neighbor] = 3
'''
plt.cla()
plt.imshow(grid, cmap=cmap, norm=norm, interpolation=None)
plt.show()
plt.pause(1e-5)
'''
if np.isinf(explored_heuristic_map[goal_node]):
route = []
print("No route found.")
else:
route = [goal_node]
while parent_map[route[0][0]][route[0][1]] is not ():
route.insert(0, parent_map[route[0][0]][route[0][1]])
print("The route found covers %d grid cells." % len(route))
for i in range(1, len(route)):
grid[route[i]] = 6
plt.cla()
plt.imshow(grid, cmap=cmap, norm=norm, interpolation=None)
plt.show()
plt.pause(1e-2)
return route
class NLinkArm(object):
"""
Class for controlling and plotting a planar arm with an arbitrary number of links.
"""
def __init__(self, link_lengths, joint_angles):
self.n_links = len(link_lengths)
if self.n_links is not len(joint_angles):
raise ValueError()
self.link_lengths = np.array(link_lengths)
self.joint_angles = np.array(joint_angles)
self.points = [[0, 0] for _ in range(self.n_links+1)]
self.lim = sum(link_lengths)
self.update_points()
def update_joints(self, joint_angles):
self.joint_angles = joint_angles
self.update_points()
def update_points(self):
for i in range(1, self.n_links+1):
self.points[i][0] = self.points[i-1][0] + self.link_lengths[i-1]*np.cos(np.sum(self.joint_angles[:i]))
self.points[i][1] = self.points[i-1][1] + self.link_lengths[i-1]*np.sin(np.sum(self.joint_angles[:i]))
self.end_effector = np.array(self.points[self.n_links]).T
def plot(self, obstacles=[]):
plt.cla()
for obstacle in obstacles:
circle = plt.Circle((obstacle[0], obstacle[1]), radius=0.5*obstacle[2], fc='k')
plt.gca().add_patch(circle)
for i in range(self.n_links+1):
if i is not self.n_links:
plt.plot([self.points[i][0], self.points[i+1][0]], [self.points[i][1], self.points[i+1][1]], 'r-')
plt.plot(self.points[i][0], self.points[i][1], 'k.')
plt.xlim([-self.lim, self.lim])
plt.ylim([-self.lim, self.lim])
plt.draw()
plt.pause(1e-5)
if __name__ == '__main__':
main()