mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 16:47:55 -05:00
Merge pull request #107 from daniel-s-ingram/master
Robotic arm navigating obstacles with A*
This commit is contained in:
244
ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation.py
Normal file
244
ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation.py
Normal file
@@ -0,0 +1,244 @@
|
||||
"""
|
||||
Obstacle navigation using A* on a toroidal grid
|
||||
|
||||
Author: Daniel Ingram (daniel-s-ingram)
|
||||
"""
|
||||
from math import pi
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import from_levels_and_colors
|
||||
|
||||
plt.ion()
|
||||
|
||||
#Simulation parameters
|
||||
M = 100
|
||||
obstacles = [[1.75, 0.75, 0.6], [0.55, 1.5, 0.5], [0, -1, 0.25]]
|
||||
|
||||
def main():
|
||||
arm = NLinkArm([1, 1], [0, 0])
|
||||
grid = get_occupancy_grid(arm, obstacles)
|
||||
plt.imshow(grid)
|
||||
plt.show()
|
||||
#(50,50) (58,56)
|
||||
route = astar_torus(grid, (10, 50), (58, 56))
|
||||
for node in route:
|
||||
theta1 = 2*pi*node[0]/M-pi
|
||||
theta2 = 2*pi*node[1]/M-pi
|
||||
arm.update_joints([theta1, theta2])
|
||||
arm.plot(obstacles=obstacles)
|
||||
|
||||
def detect_collision(line_seg, circle):
|
||||
"""
|
||||
Determines whether a line segment (arm link) is in contact
|
||||
with a circle (obstacle).
|
||||
Credit to: http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html
|
||||
Args:
|
||||
line_seg: List of coordinates of line segment endpoints e.g. [[1, 1], [2, 2]]
|
||||
circle: List of circle coordinates and radius e.g. [0, 0, 0.5] is a circle centered
|
||||
at the origin with radius 0.5
|
||||
|
||||
Returns:
|
||||
True if the line segment is in contact with the circle
|
||||
False otherwise
|
||||
"""
|
||||
a_vec = np.array([line_seg[0][0], line_seg[0][1]])
|
||||
b_vec = np.array([line_seg[1][0], line_seg[1][1]])
|
||||
c_vec = np.array([circle[0], circle[1]])
|
||||
radius = circle[2]
|
||||
line_vec = b_vec - a_vec
|
||||
line_mag = np.linalg.norm(line_vec)
|
||||
circle_vec = c_vec - a_vec
|
||||
proj = circle_vec.dot(line_vec/line_mag)
|
||||
if proj <= 0:
|
||||
closest_point = a_vec
|
||||
elif proj >= line_mag:
|
||||
closest_point = b_vec
|
||||
else:
|
||||
closest_point = a_vec + line_vec*proj/line_mag
|
||||
if np.linalg.norm(closest_point-c_vec) > radius:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
def get_occupancy_grid(arm, obstacles):
|
||||
"""
|
||||
Discretizes joint space into M values from -pi to +pi
|
||||
and determines whether a given coordinate in joint space
|
||||
would result in a collision between a robot arm and obstacles
|
||||
in its environment.
|
||||
|
||||
Args:
|
||||
arm: An instance of NLinkArm
|
||||
obstacles: A list of obstacles, with each obstacle defined as a list
|
||||
of xy coordinates and a radius.
|
||||
|
||||
Returns:
|
||||
Occupancy grid in joint space
|
||||
"""
|
||||
grid = [[0 for _ in range(M)] for _ in range(M)]
|
||||
theta_list = [2*i*pi/M for i in range(-M//2, M//2+1)]
|
||||
for i in range(M):
|
||||
for j in range(M):
|
||||
arm.update_joints([theta_list[i], theta_list[j]])
|
||||
points = arm.points
|
||||
collision_detected = False
|
||||
for k in range(len(points)-1):
|
||||
for obstacle in obstacles:
|
||||
line_seg = [points[k], points[k+1]]
|
||||
collision_detected = detect_collision(line_seg, obstacle)
|
||||
if collision_detected:
|
||||
break
|
||||
if collision_detected:
|
||||
break
|
||||
grid[i][j] = int(collision_detected)
|
||||
return np.array(grid)
|
||||
|
||||
def astar_torus(grid, start_node, goal_node):
|
||||
"""
|
||||
Finds a path between an initial and goal joint configuration using
|
||||
the A* Algorithm on a tororiadal grid.
|
||||
|
||||
Args:
|
||||
grid: An occupancy grid (ndarray)
|
||||
start_node: Initial joint configuation (tuple)
|
||||
goal_node: Goal joint configuration (tuple)
|
||||
|
||||
Returns:
|
||||
Obstacle-free route in joint space from start_node to goal_node
|
||||
"""
|
||||
colors = ['white', 'black', 'red', 'pink', 'yellow', 'green', 'orange']
|
||||
levels = [0, 1, 2, 3, 4, 5, 6, 7]
|
||||
cmap, norm = from_levels_and_colors(levels, colors)
|
||||
|
||||
grid[start_node] = 4
|
||||
grid[goal_node] = 5
|
||||
|
||||
parent_map = [[() for _ in range(M)] for _ in range(M)]
|
||||
|
||||
X, Y = np.meshgrid([i for i in range(M)], [i for i in range(M)])
|
||||
heuristic_map = np.abs(X - goal_node[1]) + np.abs(Y - goal_node[0])
|
||||
for i in range(heuristic_map.shape[0]):
|
||||
for j in range(heuristic_map.shape[1]):
|
||||
heuristic_map[i,j] = min(heuristic_map[i,j],
|
||||
i + 1 + heuristic_map[M-1,j],
|
||||
M - i + heuristic_map[0,j],
|
||||
j + 1 + heuristic_map[i,M-1],
|
||||
M - j + heuristic_map[i,0]
|
||||
)
|
||||
|
||||
explored_heuristic_map = np.full((M, M), np.inf)
|
||||
distance_map = np.full((M, M), np.inf)
|
||||
explored_heuristic_map[start_node] = heuristic_map[start_node]
|
||||
distance_map[start_node] = 0
|
||||
while True:
|
||||
grid[start_node] = 4
|
||||
grid[goal_node] = 5
|
||||
|
||||
current_node = np.unravel_index(np.argmin(explored_heuristic_map, axis=None), explored_heuristic_map.shape)
|
||||
min_distance = np.min(explored_heuristic_map)
|
||||
if (current_node == goal_node) or np.isinf(min_distance):
|
||||
break
|
||||
|
||||
grid[current_node] = 2
|
||||
explored_heuristic_map[current_node] = np.inf
|
||||
|
||||
i, j = current_node[0], current_node[1]
|
||||
|
||||
neighbors = []
|
||||
if i-1 >= 0:
|
||||
neighbors.append((i-1, j))
|
||||
else:
|
||||
neighbors.append((M-1, j))
|
||||
|
||||
if i+1 < M:
|
||||
neighbors.append((i+1, j))
|
||||
else:
|
||||
neighbors.append((0, j))
|
||||
|
||||
if j-1 >= 0:
|
||||
neighbors.append((i, j-1))
|
||||
else:
|
||||
neighbors.append((i, M-1))
|
||||
|
||||
if j+1 < M:
|
||||
neighbors.append((i, j+1))
|
||||
else:
|
||||
neighbors.append((i, 0))
|
||||
|
||||
for neighbor in neighbors:
|
||||
if grid[neighbor] == 0 or grid[neighbor] == 5:
|
||||
distance_map[neighbor] = distance_map[current_node] + 1
|
||||
explored_heuristic_map[neighbor] = heuristic_map[neighbor]
|
||||
parent_map[neighbor[0]][neighbor[1]] = current_node
|
||||
grid[neighbor] = 3
|
||||
'''
|
||||
plt.cla()
|
||||
plt.imshow(grid, cmap=cmap, norm=norm, interpolation=None)
|
||||
plt.show()
|
||||
plt.pause(1e-5)
|
||||
'''
|
||||
|
||||
if np.isinf(explored_heuristic_map[goal_node]):
|
||||
route = []
|
||||
print("No route found.")
|
||||
else:
|
||||
route = [goal_node]
|
||||
while parent_map[route[0][0]][route[0][1]] is not ():
|
||||
route.insert(0, parent_map[route[0][0]][route[0][1]])
|
||||
|
||||
print("The route found covers %d grid cells." % len(route))
|
||||
for i in range(1, len(route)):
|
||||
grid[route[i]] = 6
|
||||
plt.cla()
|
||||
plt.imshow(grid, cmap=cmap, norm=norm, interpolation=None)
|
||||
plt.show()
|
||||
plt.pause(1e-2)
|
||||
|
||||
return route
|
||||
|
||||
class NLinkArm(object):
|
||||
"""
|
||||
Class for controlling and plotting a planar arm with an arbitrary number of links.
|
||||
"""
|
||||
def __init__(self, link_lengths, joint_angles):
|
||||
self.n_links = len(link_lengths)
|
||||
if self.n_links is not len(joint_angles):
|
||||
raise ValueError()
|
||||
|
||||
self.link_lengths = np.array(link_lengths)
|
||||
self.joint_angles = np.array(joint_angles)
|
||||
self.points = [[0, 0] for _ in range(self.n_links+1)]
|
||||
|
||||
self.lim = sum(link_lengths)
|
||||
self.update_points()
|
||||
|
||||
def update_joints(self, joint_angles):
|
||||
self.joint_angles = joint_angles
|
||||
self.update_points()
|
||||
|
||||
def update_points(self):
|
||||
for i in range(1, self.n_links+1):
|
||||
self.points[i][0] = self.points[i-1][0] + self.link_lengths[i-1]*np.cos(np.sum(self.joint_angles[:i]))
|
||||
self.points[i][1] = self.points[i-1][1] + self.link_lengths[i-1]*np.sin(np.sum(self.joint_angles[:i]))
|
||||
|
||||
self.end_effector = np.array(self.points[self.n_links]).T
|
||||
|
||||
def plot(self, obstacles=[]):
|
||||
plt.cla()
|
||||
|
||||
for obstacle in obstacles:
|
||||
circle = plt.Circle((obstacle[0], obstacle[1]), radius=0.5*obstacle[2], fc='k')
|
||||
plt.gca().add_patch(circle)
|
||||
|
||||
for i in range(self.n_links+1):
|
||||
if i is not self.n_links:
|
||||
plt.plot([self.points[i][0], self.points[i+1][0]], [self.points[i][1], self.points[i+1][1]], 'r-')
|
||||
plt.plot(self.points[i][0], self.points[i][1], 'k.')
|
||||
|
||||
plt.xlim([-self.lim, self.lim])
|
||||
plt.ylim([-self.lim, self.lim])
|
||||
plt.draw()
|
||||
plt.pause(1e-5)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user