try implement my reeds shepp path

This commit is contained in:
Atsushi Sakai
2018-02-04 09:29:09 -08:00
parent 841b55f37f
commit 08a69bf445

View File

@@ -6,12 +6,25 @@ author Atsushi Sakai(@Atsushi_twi)
"""
import reeds_shepp
import numpy as np
import math
import matplotlib.pyplot as plt
show_animation = True
class Path:
def __init__(self):
self.lengths = []
self.ctypes = []
self.L = 0.0
self.x = []
self.y = []
self.yaw = []
self.directions = []
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
"""
Plot arrow
@@ -26,6 +39,203 @@ def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
plt.plot(x, y)
def mod2pi(x):
v = np.mod(x, 2.0 * math.pi)
if v < -math.pi:
v += 2.0 * math.pi
else:
if v > math.pi:
v -= 2.0 * math.pi
return v
def SLS(x, y, phi):
# println(x,",", y,",", phi, ",", mod2pi(phi))
phi = mod2pi(phi)
if y > 0.0 and phi > 0.0 and phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
# println("1,",t,",",u,",",v)
return True, t, u, v
elif y < 0.0 and phi > 0.0 and phi < math.pi * 0.99:
xd = - y / math.tan(phi) + x
t = xd - math.tan(phi / 2.0)
u = phi
v = -math.sqrt((x - xd) ^ 2 + y ^ 2) - math.tan(phi / 2.0)
# println("2,",t,",",u,",",v)
return True, t, u, v
return False, 0.0, 0.0, 0.0
def set_path(paths, lengths, ctypes):
path = Path()
path.ctypes = ctypes
path.lengths = lengths
# check same path exist
for tpath in paths:
typeissame = (tpath.ctypes == path.ctypes)
if typeissame:
if sum(tpath.lengths - path.lengths) <= 0.01:
return paths # not insert path
path.L = sum([abs(i) for i in lengths])
# Base.Test.@test path.L >= 0.01
if path.L >= 0.01:
paths.append(path)
return paths
def SCS(x, y, phi, paths):
flag, t, u, v = SLS(x, y, phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "L", "S"])
flag, t, u, v = SLS(x, -y, -phi)
if flag:
paths = set_path(paths, [t, u, v], ["S", "R", "S"])
return paths
def generate_path(q0, q1, maxc):
dx = q1[0] - q0[0]
dy = q1[1] - q0[1]
dth = q1[2] - q0[2]
c = math.cos(q0[2])
s = math.sin(q0[2])
x = (c * dx + s * dy) * maxc
y = (-s * dx + c * dy) * maxc
paths = []
paths = SCS(x, y, dth, paths)
# paths = CSC(x, y, dth, paths)
# paths = CCC(x, y, dth, paths)
return paths
# def generate_local_course(L: : Float64,
# lengths: : Array{Float64},
# mode: : Array{String},
# maxc: : Float64,
# step_size: : Float64)
# npoint = trunc(Int64, L / step_size) + length(lengths) + 3
# # println(npoint, ",", L, ",", step_size, ",", L/step_size)
# px = fill(0.0, npoint)
# py = fill(0.0, npoint)
# pyaw = fill(0.0, npoint)
# directions = fill(0, npoint)
# ind = 2
# if lengths[1] > 0.0
# directions[1] = 1
# else
# directions[1] = -1
# end
# if lengths[1] > 0.0
# d = step_size
# else
# d = -step_size
# end
# pd = d
# ll = 0.0
# for (m, l, i) in zip(mode, lengths, 1: length(mode))
# if l > 0.0
# d = step_size
# else
# d = -step_size
# end
# # set prigin state
# ox, oy, oyaw = px[ind], py[ind], pyaw[ind]
# ind -= 1
# if i >= 2 & & (lengths[i - 1] * lengths[i]) > 0
# pd = - d - ll
# else
# pd = d - ll
# end
# while abs(pd) <= abs(l)
# ind += 1
# px, py, pyaw, directions = interpolate(
# ind, pd, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
# pd += d
# end
# ll = l - pd - d # calc remain length
# ind += 1
# px, py, pyaw, directions = interpolate(
# ind, l, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
# end
# # remove unused data
# while px[end] == 0.0
# pop!(px)
# pop!(py)
# pop!(pyaw)
# pop!(directions)
# end
# return px, py, pyaw, directions
def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size):
q0 = [sx, sy, syaw]
q1 = [gx, gy, gyaw]
paths = generate_path(q0, q1, maxc)
for path in paths:
# x, y, yaw, directions = generate_local_course(
# path.L, path.lengths, path.ctypes, maxc, step_size * maxc)
pass
# # convert global coordinate
# path.x = [cos(-q0[3]) * ix + sin(-q0[3]) * iy + q0[1] for (ix, iy) in zip(x, y)]
# path.y = [-sin(-q0[3]) * ix + cos(-q0[3]) * iy + q0[2] for (ix, iy) in zip(x, y)]
# path.yaw = common_func.pi_2_pi.([iyaw + q0[3] for iyaw in yaw])
# path.directions = directions
# path.lengths = [l/maxc for l in path.lengths]
# path.L = path.L/maxc
return paths
def reeds_shepp_path_planning2(sx, sy, syaw,
gx, gy, gyaw, maxc, step_size):
paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size)
minL = float("Inf")
best_path_index = -1
for i in range(len(paths)):
if paths[i].L <= minL:
minL = paths[i].L
best_path_index = i
bpath = paths[best_path_index]
xs = bpath.x
ys = bpath.y
yaw = bpath.yaw
ptype = bpath.ctypes
clen = bpath.lengths
return xs, ys, yaw, ptype, clen
def reeds_shepp_path_planning(start_x, start_y, start_yaw,
end_x, end_y, end_yaw, curvature):
step_size = 0.1
@@ -62,14 +272,18 @@ def main():
start_y = 1.0 # [m]
start_yaw = math.radians(0.0) # [rad]
end_x = -0.0 # [m]
end_y = -3.0 # [m]
end_yaw = math.radians(-45.0) # [rad]
end_x = 5.0 # [m]
end_y = 10.0 # [m]
end_yaw = math.radians(45.0) # [rad]
curvature = 1.0
step_size = 0.1
px, py, pyaw, mode, clen = reeds_shepp_path_planning(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature)
px, py, pyaw, mode, clen = reeds_shepp_path_planning2(
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature, step_size)
# px, py, pyaw, mode, clen = reeds_shepp_path_planning(
# start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature)
if show_animation:
plt.plot(px, py, label="final course " + str(mode))