mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 12:08:08 -05:00
code clean up again
This commit is contained in:
@@ -27,17 +27,19 @@ class RRT:
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.path_x = []
|
||||
self.path_y = []
|
||||
self.parent = None
|
||||
|
||||
def __init__(self, start, goal, obstacle_list,
|
||||
rand_area, expand_dis=1.0, goal_sample_rate=5, max_iter=500):
|
||||
def __init__(self, start, goal, obstacle_list, rand_area,
|
||||
expand_dis=3.0, path_resolution=1.0, goal_sample_rate=5, max_iter=500):
|
||||
"""
|
||||
Setting Parameter
|
||||
|
||||
start:Start Position [x,y]
|
||||
goal:Goal Position [x,y]
|
||||
obstacleList:obstacle Positions [[x,y,size],...]
|
||||
randArea:Ramdom Samping Area [min,max]
|
||||
randArea:Random Sampling Area [min,max]
|
||||
|
||||
"""
|
||||
self.start = self.Node(start[0], start[1])
|
||||
@@ -45,6 +47,7 @@ class RRT:
|
||||
self.min_rand = rand_area[0]
|
||||
self.max_rand = rand_area[1]
|
||||
self.expand_dis = expand_dis
|
||||
self.path_resolution = path_resolution
|
||||
self.goal_sample_rate = goal_sample_rate
|
||||
self.max_iter = max_iter
|
||||
self.obstacle_list = obstacle_list
|
||||
@@ -63,7 +66,7 @@ class RRT:
|
||||
nearest_ind = self.get_nearest_list_index(self.node_list, rnd_node)
|
||||
nearest_node = self.node_list[nearest_ind]
|
||||
|
||||
new_node = self.steer(nearest_node, rnd_node)
|
||||
new_node = self.steer(nearest_node, rnd_node, self.expand_dis)
|
||||
new_node.parent = nearest_node
|
||||
|
||||
if not self.check_collision(new_node, self.obstacle_list):
|
||||
@@ -82,16 +85,25 @@ class RRT:
|
||||
|
||||
return None # cannot find path
|
||||
|
||||
def steer(self, from_node, to_node):
|
||||
d, theta = self.calc_distance_and_angle(from_node, to_node)
|
||||
if d > self.expand_dis:
|
||||
x = from_node.x + self.expand_dis * math.cos(theta)
|
||||
y = from_node.y + self.expand_dis * math.sin(theta)
|
||||
else:
|
||||
x = to_node.x
|
||||
y = to_node.y
|
||||
def steer(self, from_node, to_node, extend_length=float("inf")):
|
||||
|
||||
new_node = self.Node(from_node.x, from_node.y)
|
||||
d, theta = self.calc_distance_and_angle(new_node, to_node)
|
||||
|
||||
new_node.path_x = [new_node.x]
|
||||
new_node.path_y = [new_node.y]
|
||||
|
||||
if extend_length > d:
|
||||
extend_length = d
|
||||
|
||||
n_expand = math.floor(extend_length / self.path_resolution)
|
||||
|
||||
for _ in range(n_expand):
|
||||
new_node.x += self.path_resolution * math.cos(theta)
|
||||
new_node.y += self.path_resolution * math.sin(theta)
|
||||
new_node.path_x.append(new_node.x)
|
||||
new_node.path_y.append(new_node.y)
|
||||
|
||||
new_node = self.Node(x, y)
|
||||
new_node.parent = from_node
|
||||
|
||||
return new_node
|
||||
@@ -149,10 +161,11 @@ class RRT:
|
||||
@staticmethod
|
||||
def check_collision(node, obstacleList):
|
||||
for (ox, oy, size) in obstacleList:
|
||||
dx = ox - node.x
|
||||
dy = oy - node.y
|
||||
d = dx * dx + dy * dy
|
||||
if d <= size ** 2:
|
||||
dx_list = [ox - x for x in node.path_x]
|
||||
dy_list = [oy - y for y in node.path_y]
|
||||
d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)]
|
||||
|
||||
if min(d_list) <= size ** 2:
|
||||
return False # collision
|
||||
|
||||
return True # safe
|
||||
|
||||
@@ -6,7 +6,6 @@ author: Atsushi Sakai(@Atsushi_twi)
|
||||
|
||||
"""
|
||||
|
||||
import copy
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
@@ -29,21 +28,20 @@ class RRTStar(RRT):
|
||||
Class for RRT Star planning
|
||||
"""
|
||||
|
||||
class Node:
|
||||
class Node(RRT.Node):
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
super().__init__(x, y)
|
||||
self.cost = 0.0
|
||||
self.parent = None
|
||||
|
||||
def __init__(self, start, goal, obstacle_list, rand_area,
|
||||
expand_dis=0.5,
|
||||
expand_dis=3.0,
|
||||
path_resolution=1.0,
|
||||
goal_sample_rate=20,
|
||||
max_iter=500,
|
||||
max_iter=300,
|
||||
connect_circle_dist=50.0
|
||||
):
|
||||
super().__init__(start, goal, obstacle_list,
|
||||
rand_area, expand_dis, goal_sample_rate, max_iter)
|
||||
rand_area, expand_dis, path_resolution, goal_sample_rate, max_iter)
|
||||
"""
|
||||
Setting Parameter
|
||||
|
||||
@@ -65,11 +63,12 @@ class RRTStar(RRT):
|
||||
|
||||
self.node_list = [self.start]
|
||||
for i in range(self.max_iter):
|
||||
rnd = self.get_random_point()
|
||||
print(i, len(self.node_list))
|
||||
rnd = self.get_random_node()
|
||||
nearest_ind = self.get_nearest_list_index(self.node_list, rnd)
|
||||
new_node = self.steer(rnd, self.node_list[nearest_ind])
|
||||
new_node = self.steer(self.node_list[nearest_ind], rnd, self.expand_dis)
|
||||
|
||||
if self.check_collision(new_node, self.obstacleList):
|
||||
if self.check_collision(new_node, self.obstacle_list):
|
||||
near_inds = self.find_near_nodes(new_node)
|
||||
new_node = self.choose_parent(new_node, near_inds)
|
||||
if new_node:
|
||||
@@ -79,7 +78,7 @@ class RRTStar(RRT):
|
||||
if animation and i % 5 == 0:
|
||||
self.draw_graph(rnd)
|
||||
|
||||
if not search_until_maxiter and new_node: # check reaching the goal
|
||||
if (not search_until_maxiter) and new_node: # check reaching the goal
|
||||
d, _ = self.calc_distance_and_angle(new_node, self.end)
|
||||
if d <= self.expand_dis:
|
||||
return self.generate_final_course(len(self.node_list) - 1)
|
||||
@@ -92,6 +91,25 @@ class RRTStar(RRT):
|
||||
|
||||
return None
|
||||
|
||||
def connect_nodes(self, from_node, to_node):
|
||||
new_node = self.Node(from_node.x, from_node.y)
|
||||
d, theta = self.calc_distance_and_angle(new_node, to_node)
|
||||
|
||||
new_node.path_x = [new_node.x]
|
||||
new_node.path_y = [new_node.y]
|
||||
|
||||
n_expand = math.floor(d / self.path_resolution)
|
||||
|
||||
for _ in range(n_expand):
|
||||
new_node.x += self.path_resolution * math.cos(theta)
|
||||
new_node.y += self.path_resolution * math.sin(theta)
|
||||
new_node.path_x.append(new_node.x)
|
||||
new_node.path_y.append(new_node.y)
|
||||
|
||||
new_node.parent = from_node
|
||||
|
||||
return new_node
|
||||
|
||||
def choose_parent(self, new_node, near_inds):
|
||||
if not near_inds:
|
||||
return None
|
||||
@@ -99,9 +117,10 @@ class RRTStar(RRT):
|
||||
# search nearest cost in near_inds
|
||||
costs = []
|
||||
for i in near_inds:
|
||||
d, theta = self.calc_distance_and_angle(self.node_list[i], new_node)
|
||||
if self.check_collision_extend(self.node_list[i], theta, d):
|
||||
costs.append(self.node_list[i].cost + d)
|
||||
near_node = self.node_list[i]
|
||||
t_node = self.steer(near_node, new_node)
|
||||
if self.check_collision(t_node, self.obstacle_list):
|
||||
costs.append(self.calc_new_cost(near_node, new_node))
|
||||
else:
|
||||
costs.append(float("inf")) # the cost of collision node
|
||||
min_cost = min(costs)
|
||||
@@ -110,9 +129,10 @@ class RRTStar(RRT):
|
||||
print("There is no good path.(min_cost is inf)")
|
||||
return None
|
||||
|
||||
new_node.cost = min_cost
|
||||
min_ind = near_inds[costs.index(min_cost)]
|
||||
new_node.parent = self.node_list[min_ind]
|
||||
new_node = self.steer(new_node.parent, new_node)
|
||||
new_node.cost = min_cost
|
||||
|
||||
return new_node
|
||||
|
||||
@@ -141,34 +161,27 @@ class RRTStar(RRT):
|
||||
def rewire(self, new_node, near_inds):
|
||||
for i in near_inds:
|
||||
near_node = self.node_list[i]
|
||||
d, theta = self.calc_distance_and_angle(near_node, new_node)
|
||||
new_cost = new_node.cost + d
|
||||
edge_node = self.steer(new_node, near_node)
|
||||
edge_node.cost = self.calc_new_cost(near_node, new_node)
|
||||
|
||||
if near_node.cost > new_cost:
|
||||
if self.check_collision_extend(near_node, theta, d):
|
||||
near_node.parent = new_node
|
||||
near_node.cost = new_cost
|
||||
self.propagate_cost_to_leaves(new_node)
|
||||
no_collision = self.check_collision(edge_node, self.obstacle_list)
|
||||
improved_cost = near_node.cost > edge_node.cost
|
||||
|
||||
if no_collision and improved_cost:
|
||||
near_node.parent = new_node
|
||||
near_node.cost = edge_node.cost
|
||||
self.propagate_cost_to_leaves(new_node)
|
||||
|
||||
def calc_new_cost(self, from_node, to_node):
|
||||
d, _ = self.calc_distance_and_angle(from_node, to_node)
|
||||
return from_node.cost + d
|
||||
|
||||
def propagate_cost_to_leaves(self, parent_node):
|
||||
for node in self.node_list:
|
||||
if node.parent == parent_node:
|
||||
d, _ = self.calc_distance_and_angle(parent_node, node)
|
||||
node.cost = parent_node.cost + d
|
||||
node.cost = self.calc_new_cost(parent_node, node)
|
||||
self.propagate_cost_to_leaves(node)
|
||||
|
||||
def check_collision_extend(self, near_node, theta, d):
|
||||
|
||||
tmp_node = copy.deepcopy(near_node)
|
||||
|
||||
for i in range(int(d / self.expand_dis)):
|
||||
tmp_node.x += self.expand_dis * math.cos(theta)
|
||||
tmp_node.y += self.expand_dis * math.sin(theta)
|
||||
if not self.check_collision(tmp_node, self.obstacleList):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def main():
|
||||
print("Start " + __file__)
|
||||
@@ -184,11 +197,11 @@ def main():
|
||||
] # [x,y,size(radius)]
|
||||
|
||||
# Set Initial parameters
|
||||
rrt = RRTStar(start=[0, 0],
|
||||
goal=[10, 10],
|
||||
rand_area=[-2, 15],
|
||||
obstacle_list=obstacle_list)
|
||||
path = rrt.planning(animation=show_animation, search_until_maxiter=False)
|
||||
rrt_star = RRTStar(start=[0, 0],
|
||||
goal=[10, 10],
|
||||
rand_area=[-2, 15],
|
||||
obstacle_list=obstacle_list)
|
||||
path = rrt_star.planning(animation=show_animation)
|
||||
|
||||
if path is None:
|
||||
print("Cannot find path")
|
||||
@@ -197,7 +210,7 @@ def main():
|
||||
|
||||
# Draw final path
|
||||
if show_animation:
|
||||
rrt.draw_graph()
|
||||
rrt_star.draw_graph()
|
||||
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
|
||||
plt.grid(True)
|
||||
plt.pause(0.01) # Need for Mac
|
||||
|
||||
@@ -7,7 +7,7 @@ sys.path.append(os.path.dirname(os.path.abspath(__file__)) +
|
||||
|
||||
try:
|
||||
import rrt_star as m
|
||||
except:
|
||||
except ImportError:
|
||||
raise
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user