mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 21:48:06 -05:00
keep DRY
This commit is contained in:
@@ -17,6 +17,17 @@ import matplotlib.pyplot as plt
|
||||
import copy
|
||||
import math
|
||||
import cubic_spline_planner
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) +
|
||||
"/../QuinticPolynomialsPlanner/")
|
||||
|
||||
try:
|
||||
from quintic_polynomials_planner import QuinticPolynomial
|
||||
except ImportError:
|
||||
raise
|
||||
|
||||
|
||||
SIM_LOOP = 500
|
||||
|
||||
@@ -44,50 +55,6 @@ KLON = 1.0
|
||||
show_animation = True
|
||||
|
||||
|
||||
class quintic_polynomial:
|
||||
|
||||
def __init__(self, xs, vxs, axs, xe, vxe, axe, T):
|
||||
|
||||
# calc coefficient of quintic polynomial
|
||||
self.a0 = xs
|
||||
self.a1 = vxs
|
||||
self.a2 = axs / 2.0
|
||||
|
||||
A = np.array([[T**3, T**4, T**5],
|
||||
[3 * T ** 2, 4 * T ** 3, 5 * T ** 4],
|
||||
[6 * T, 12 * T ** 2, 20 * T ** 3]])
|
||||
b = np.array([xe - self.a0 - self.a1 * T - self.a2 * T**2,
|
||||
vxe - self.a1 - 2 * self.a2 * T,
|
||||
axe - 2 * self.a2])
|
||||
x = np.linalg.solve(A, b)
|
||||
|
||||
self.a3 = x[0]
|
||||
self.a4 = x[1]
|
||||
self.a5 = x[2]
|
||||
|
||||
def calc_point(self, t):
|
||||
xt = self.a0 + self.a1 * t + self.a2 * t**2 + \
|
||||
self.a3 * t**3 + self.a4 * t**4 + self.a5 * t**5
|
||||
|
||||
return xt
|
||||
|
||||
def calc_first_derivative(self, t):
|
||||
xt = self.a1 + 2 * self.a2 * t + \
|
||||
3 * self.a3 * t**2 + 4 * self.a4 * t**3 + 5 * self.a5 * t**4
|
||||
|
||||
return xt
|
||||
|
||||
def calc_second_derivative(self, t):
|
||||
xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t**2 + 20 * self.a5 * t**3
|
||||
|
||||
return xt
|
||||
|
||||
def calc_third_derivative(self, t):
|
||||
xt = 6 * self.a3 + 24 * self.a4 * t + 60 * self.a5 * t**2
|
||||
|
||||
return xt
|
||||
|
||||
|
||||
class quartic_polynomial:
|
||||
|
||||
def __init__(self, xs, vxs, axs, vxe, axe, T):
|
||||
@@ -164,7 +131,8 @@ def calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0):
|
||||
for Ti in np.arange(MINT, MAXT, DT):
|
||||
fp = Frenet_path()
|
||||
|
||||
lat_qp = quintic_polynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)
|
||||
# lat_qp = quintic_polynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)
|
||||
lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti)
|
||||
|
||||
fp.t = [t for t in np.arange(0.0, Ti, DT)]
|
||||
fp.d = [lat_qp.calc_point(t) for t in fp.t]
|
||||
|
||||
Reference in New Issue
Block a user