add math descriptions

This commit is contained in:
Atsushi
2020-01-21 10:58:02 +09:00
parent 9438894c71
commit cd65de2714

View File

@@ -2,45 +2,112 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Quintic polynomials planner"
],
"metadata": {
"collapsed": false
}
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Quintic polynomials for one dimensional robot motion\n",
"\n",
"We assume a dimensional robot motion $x(t)$ at time $t$ is formulated as a quintic polynomials based on time as follows:\n",
"We assume a one-dimensional robot motion $x(t)$ at time $t$ is formulated as a quintic polynomials based on time as follows:\n",
"\n",
"$x(t) = a_0+a_1t+a_2t^2+a_3t^3+a_4t^4$\n",
"$x(t) = a_0+a_1t+a_2t^2+a_3t^3+a_4t^4+a_5t^5$ --(1)\n",
"\n",
"a_0, a_1. a_2, a_3 are parameters of the quintic polynomial.\n",
"$a_0, a_1. a_2, a_3, a_4, a_5$ are parameters of the quintic polynomial.\n",
"\n",
"It is assumed that terminal states (start and end) are known as boundary conditions.\n",
"\n",
"Start position, velocity, and acceleration are $x_s, v_s, a_s$ respectively.\n",
"\n",
"End position, velocity, and acceleration are $x_e, v_e, a_e$ respectively.\n",
"\n",
"So, when time is 0.\n",
"\n",
"$x(0) = a_0 = x_s$ -- (2)\n",
"\n",
"Then, differentiating the equation (1) with t, \n",
"\n",
"$x'(t) = a_1+2a_2t+3a_3t^2+4a_4t^3+5a_5t^4$ -- (3)\n",
"\n",
"So, when time is 0,\n",
"\n",
"$x(0) = a_0 = x_s$\n",
"$x'(0) = a_1 = v_s$ -- (4)\n",
"\n",
"$x_s$ is a start x position.\n",
"Then, differentiating the equation (3) with t again, \n",
"\n",
"Then, differentiating this equation with t, \n",
"\n",
"$x'(t) = a_1+2a_2t+3a_3t^2+4a_4t^3$\n",
"$x''(t) = 2a_2+6a_3t+12a_4t^2$ -- (5)\n",
"\n",
"So, when time is 0,\n",
"\n",
"$x'(0) = a_1 = v_s$\n",
"$x''(0) = 2a_2 = a_s$ -- (6)\n",
"\n",
"$v_s$ is a initial speed for x axis.\n",
"so, we can calculate $a_0$, $a_1$, $a_2$ with eq. (2), (4), (6) and boundary conditions.\n",
"\n",
"=== TBD ==== \n"
],
"metadata": {
"collapsed": false
}
"$a_3, a_4, a_5$ are still unknown in eq(1).\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We assume that the end time for a maneuver is $T$, we can get these equations from eq (1), (3), (5):\n",
"\n",
"$x(T)=a_0+a_1T+a_2T^2+a_3T^3+a_4T^4+a_5T^5=x_e$ -- (7)\n",
"\n",
"$x'(T)=a_1+2a_2T+3a_3T^2+4a_4T^3+5a_5T^4=v_e$ -- (8)\n",
"\n",
"$x''(T)=2a_2+6a_3T+12a_4T^2+20a_5T^3=a_e$ -- (9)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From eq (7), (8), (9), we can calculate $a_3, a_4, a_5$ to solve the linear equations.\n",
"\n",
"$Ax=b$\n",
"\n",
"$\\begin{bmatrix} T^3 & T^4 & T^5 \\\\ 3T^2 & 4T^3 & 5T^4 \\\\ 6T & 12T^2 & 20T^3 \\end{bmatrix}\n",
"\\begin{bmatrix} a_3\\\\ a_4\\\\ a_5\\end{bmatrix}=\\begin{bmatrix} x_e-x_s-v_sT-0.5a_sT^2\\\\ v_e-v_s-a_sT\\\\ a_e-a_s\\end{bmatrix}$\n",
"\n",
"We can get all unknown parameters now"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Quintic polynomials for two dimensional robot motion (x-y)\n",
"\n",
"If you use two quintic polynomials along x axis and y axis, you can plan for two dimensional robot motion in x-y plane.\n",
"\n",
"$x(t) = a_0+a_1t+a_2t^2+a_3t^3+a_4t^4+a_5t^5$ --(10)\n",
"\n",
"$y(t) = b_0+b_1t+b_2t^2+b_3t^3+b_4t^4+b_5t^5$ --(11)\n",
"\n",
"It is assumed that terminal states (start and end) are known as boundary conditions.\n",
"\n",
"Start position, orientation, velocity, and acceleration are $x_s, y_s, \\theta_s, v_s, a_s$ respectively.\n",
"\n",
"End position, orientation, velocity, and acceleration are $x_e, y_e. \\theta_e, v_e, a_e$ respectively.\n",
"\n",
"Each velocity and acceleration boundary condition can be calculated with each orientation.\n",
"\n",
"$v_{xs}=v_scos(\\theta_s), v_{ys}=v_ssin(\\theta_s)$\n",
"\n",
"$v_{xe}=v_ecos(\\theta_e), v_{ye}=v_esin(\\theta_e)$\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -52,25 +119,25 @@
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
"pygments_lexer": "ipython3",
"version": "3.7.5"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"source": [],
"metadata": {
"collapsed": false
}
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
"nbformat_minor": 1
}