Merge pull request #288 from AtsushiSakai/issue_264

inverted pendulum mpc control is added
This commit is contained in:
Atsushi Sakai
2020-02-07 20:54:29 +09:00
committed by GitHub
2 changed files with 186 additions and 0 deletions

View File

@@ -0,0 +1,171 @@
"""
Inverted Pendulum MPC control
author: Atsushi Sakai
"""
import matplotlib.pyplot as plt
import numpy as np
import math
import time
import cvxpy
# Model parameters
l_bar = 2.0 # length of bar
M = 1.0 # [kg]
m = 0.3 # [kg]
g = 9.8 # [m/s^2]
Q = np.diag([0.0, 1.0, 1.0, 0.0])
R = np.diag([0.01])
nx = 4 # number of state
nu = 1 # number of input
T = 30 # Horizon length
delta_t = 0.1 # time tick
animation = True
def main():
x0 = np.array([
[0.0],
[0.0],
[0.3],
[0.0]
])
x = np.copy(x0)
for i in range(50):
# calc control input
optimized_x, optimized_delta_x, optimized_theta, optimized_delta_theta, optimized_input = mpc_control(x)
# get input
u = optimized_input[0]
# simulate inverted pendulum cart
x = simulation(x, u)
if animation:
plt.clf()
px = float(x[0])
theta = float(x[2])
plot_cart(px, theta)
plt.xlim([-5.0, 2.0])
plt.pause(0.001)
def simulation(x, u):
A, B = get_model_matrix()
x = np.dot(A, x) + np.dot(B, u)
return x
def mpc_control(x0):
x = cvxpy.Variable((nx, T + 1))
u = cvxpy.Variable((nu, T))
A, B = get_model_matrix()
cost = 0.0
constr = []
for t in range(T):
cost += cvxpy.quad_form(x[:, t + 1], Q)
cost += cvxpy.quad_form(u[:, t], R)
constr += [x[:, t + 1] == A * x[:, t] + B * u[:, t]]
constr += [x[:, 0] == x0[:, 0]]
prob = cvxpy.Problem(cvxpy.Minimize(cost), constr)
start = time.time()
prob.solve(verbose=False)
elapsed_time = time.time() - start
print("calc time:{0} [sec]".format(elapsed_time))
if prob.status == cvxpy.OPTIMAL:
ox = get_nparray_from_matrix(x.value[0, :])
dx = get_nparray_from_matrix(x.value[1, :])
theta = get_nparray_from_matrix(x.value[2, :])
dtheta = get_nparray_from_matrix(x.value[3, :])
ou = get_nparray_from_matrix(u.value[0, :])
return ox, dx, theta, dtheta, ou
def get_nparray_from_matrix(x):
"""
get build-in list from matrix
"""
return np.array(x).flatten()
def get_model_matrix():
A = np.array([
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, m * g / M, 0.0],
[0.0, 0.0, 0.0, 1.0],
[0.0, 0.0, g * (M + m) / (l_bar * M), 0.0]
])
A = np.eye(nx) + delta_t * A
B = np.array([
[0.0],
[1.0 / M],
[0.0],
[1.0 / (l_bar * M)]
])
B = delta_t * B
return A, B
def flatten(a):
return np.array(a).flatten()
def plot_cart(xt, theta):
cart_w = 1.0
cart_h = 0.5
radius = 0.1
cx = np.array([-cart_w / 2.0, cart_w / 2.0, cart_w /
2.0, -cart_w / 2.0, -cart_w / 2.0])
cy = np.array([0.0, 0.0, cart_h, cart_h, 0.0])
cy += radius * 2.0
cx = cx + xt
bx = np.array([0.0, l_bar * math.sin(-theta)])
bx += xt
by = np.array([cart_h, l_bar * math.cos(-theta) + cart_h])
by += radius * 2.0
angles = np.arange(0.0, math.pi * 2.0, math.radians(3.0))
ox = np.array([radius * math.cos(a) for a in angles])
oy = np.array([radius * math.sin(a) for a in angles])
rwx = np.copy(ox) + cart_w / 4.0 + xt
rwy = np.copy(oy) + radius
lwx = np.copy(ox) - cart_w / 4.0 + xt
lwy = np.copy(oy) + radius
wx = np.copy(ox) + bx[-1]
wy = np.copy(oy) + by[-1]
plt.plot(flatten(cx), flatten(cy), "-b")
plt.plot(flatten(bx), flatten(by), "-k")
plt.plot(flatten(rwx), flatten(rwy), "-k")
plt.plot(flatten(lwx), flatten(lwy), "-k")
plt.plot(flatten(wx), flatten(wy), "-k")
plt.title("x:" + str(round(xt, 2)) + ",theta:" +
str(round(math.degrees(theta), 2)))
plt.axis("equal")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,15 @@
from unittest import TestCase
import sys
if 'cvxpy' in sys.modules: # pragma: no cover
sys.path.append("./InvertedPendulumCart/inverted_pendulum_mpc_control/")
import inverted_pendulum_mpc_control as m
print(__file__)
class Test(TestCase):
def test1(self):
m.show_animation = False
m.main()