first release k means simulation

This commit is contained in:
Atsushi Sakai
2018-05-03 09:25:53 +09:00
parent d696c7192e
commit 5bb765ff2e

View File

@@ -1,6 +1,6 @@
"""
Object clustering with k-mean algorithm
Object clustering with k-means algorithm
author: Atsushi Sakai (@Atsushi_twi)
@@ -25,9 +25,23 @@ class Clusters:
self.cy = [0.0 for _ in range(nlabel)]
def init_clusters(rx, ry, nc):
def kmeans_clustering(rx, ry, nc):
clusters = Clusters(rx, ry, nc)
clusters = calc_centroid(clusters)
MAX_LOOP = 10
DCOST_TH = 0.1
pcost = 100.0
for loop in range(MAX_LOOP):
# print("Loop:", loop)
clusters, cost = update_clusters(clusters)
clusters = calc_centroid(clusters)
dcost = abs(cost - pcost)
if dcost < DCOST_TH:
break
pcost = cost
return clusters
@@ -62,44 +76,6 @@ def update_clusters(clusters):
return clusters, cost
def kmean_clustering(rx, ry, nc):
clusters = init_clusters(rx, ry, nc)
clusters = calc_centroid(clusters)
MAX_LOOP = 10
DCOST_TH = 1.0
pcost = 100.0
for loop in range(MAX_LOOP):
print("Loop:", loop)
clusters, cost = update_clusters(clusters)
clusters = calc_centroid(clusters)
dcost = abs(cost - pcost)
if dcost < DCOST_TH:
break
pcost = cost
return clusters
def calc_raw_data():
rx, ry = [], []
cx = [0.0, 5.0]
cy = [0.0, 5.0]
npoints = 30
rand_d = 3.0
for (icx, icy) in zip(cx, cy):
for _ in range(npoints):
rx.append(icx + rand_d * (random.random() - 0.5))
ry.append(icy + rand_d * (random.random() - 0.5))
return rx, ry
def calc_labeled_points(ic, clusters):
inds = np.array([i for i in range(clusters.ndata)
@@ -113,19 +89,87 @@ def calc_labeled_points(ic, clusters):
return x, y
def calc_raw_data(cx, cy, npoints, rand_d):
rx, ry = [], []
for (icx, icy) in zip(cx, cy):
for _ in range(npoints):
rx.append(icx + rand_d * (random.random() - 0.5))
ry.append(icy + rand_d * (random.random() - 0.5))
return rx, ry
def update_positions(cx, cy):
DX1 = 0.4
DY1 = 0.5
cx[0] += DX1
cy[0] += DY1
DX2 = -0.3
DY2 = -0.5
cx[1] += DX2
cy[1] += DY2
return cx, cy
def calc_association(cx, cy, clusters):
inds = []
for ic in range(len(cx)):
tcx = cx[ic]
tcy = cy[ic]
dx = [icx - tcx for icx in clusters.cx]
dy = [icy - tcy for icy in clusters.cy]
dlist = [math.sqrt(idx**2 + idy**2) for (idx, idy) in zip(dx, dy)]
min_id = dlist.index(min(dlist))
inds.append(min_id)
return inds
def main():
print(__file__ + " start!!")
rx, ry = calc_raw_data()
cx = [0.0, 8.0]
cy = [0.0, 8.0]
npoints = 10
rand_d = 3.0
ncluster = 2
clusters = kmean_clustering(rx, ry, ncluster)
sim_time = 15.0
dt = 1.0
time = 0.0
for ic in range(clusters.nlabel):
x, y = calc_labeled_points(ic, clusters)
plt.plot(x, y, "x")
plt.plot(clusters.cx, clusters.cy, "o")
plt.show()
while time <= sim_time:
print("Time:", time)
time += dt
# simulate objects
cx, cy = update_positions(cx, cy)
rx, ry = calc_raw_data(cx, cy, npoints, rand_d)
clusters = kmeans_clustering(rx, ry, ncluster)
# for animation
plt.cla()
inds = calc_association(cx, cy, clusters)
for ic in inds:
x, y = calc_labeled_points(ic, clusters)
plt.plot(x, y, "x")
plt.plot(cx, cy, "o")
plt.xlim(-2.0, 10.0)
plt.ylim(-2.0, 10.0)
plt.pause(dt)
print("Done")
if __name__ == '__main__':