mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 02:28:03 -05:00
generating m samples in ellipsoid
This commit is contained in:
@@ -10,7 +10,7 @@ import random
|
||||
import numpy as np
|
||||
import copy
|
||||
import operator
|
||||
from math import cos, sin, atan2, pi
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
show_animation = True
|
||||
@@ -26,8 +26,8 @@ class Node():
|
||||
class BITStar():
|
||||
|
||||
def __init__(self, start, goal,
|
||||
obstacleList, randArea,
|
||||
expandDis=0.5, goalSampleRate=10, maxIter=200, eta):
|
||||
obstacleList, randArea, eta=2.0,
|
||||
expandDis=0.5, goalSampleRate=10, maxIter=200):
|
||||
self.start = Node(start[0], start[1])
|
||||
self.goal = Node(goal[0], goal[1])
|
||||
self.minrand = randArea[0]
|
||||
@@ -43,7 +43,7 @@ class BITStar():
|
||||
self.f_scores = dict()
|
||||
self.r = float('inf')
|
||||
self.eta = eta # tunable parameter
|
||||
self.unit_ball_measure = #TODO
|
||||
self.unit_ball_measure = 1
|
||||
self.old_vertices = []
|
||||
|
||||
def plan(self, animation=True):
|
||||
@@ -52,10 +52,10 @@ class BITStar():
|
||||
plan = None
|
||||
iterations = 0
|
||||
# max length we expect to find in our 'informed' sample space, starts as infinite
|
||||
cBest = float('inf')
|
||||
pathLen = float('inf')
|
||||
solutionSet = set()
|
||||
path = None
|
||||
cBest = float('inf')
|
||||
pathLen = float('inf')
|
||||
solutionSet = set()
|
||||
path = None
|
||||
|
||||
# Computing the sampling space
|
||||
cMin = math.sqrt(pow(self.start.x - self.goal.x, 2) +
|
||||
@@ -72,22 +72,22 @@ class BITStar():
|
||||
C = np.dot(np.dot(U, np.diag(
|
||||
[1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), Vh)
|
||||
|
||||
# while (iterations < self.maxIter):
|
||||
while (iterations < self.maxIter):
|
||||
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
|
||||
samples = self.informedSample(100, cBest, cMin, xCenter, C)
|
||||
# prune the tree
|
||||
|
||||
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
|
||||
print("Batch: ", iterations)
|
||||
samples = self.informedSample(100, cBest, cMin, xCenter, C)
|
||||
# prune the tree
|
||||
if animation:
|
||||
self.drawGraph(xCenter=xCenter, cBest=cBest,
|
||||
cMin=cMin, etheta=etheta, samples=samples)
|
||||
|
||||
if animation:
|
||||
self.drawGraph(xCenter=xCenter, cBest=cBest,
|
||||
cMin=cMin, etheta=etheta, rnd=samples)
|
||||
iterations += 1
|
||||
|
||||
return plan
|
||||
|
||||
# def expandVertex(self, vertex):
|
||||
|
||||
def expandVertex(self, vertex):
|
||||
|
||||
def prune(self, c):
|
||||
# def prune(self, c):
|
||||
|
||||
def radius(self, q):
|
||||
dim = len(start) #dimensions
|
||||
@@ -98,26 +98,26 @@ class BITStar():
|
||||
return min_radius * pow(numpy.log(q)/q, 1/dim)
|
||||
|
||||
# Return the closest sample
|
||||
def getNearestSample(self):
|
||||
# def getNearestSample(self):
|
||||
|
||||
# Sample free space confined in the radius of ball R
|
||||
def informedSample(self, m, cMax, cMin, xCenter, C):
|
||||
if cMax < float('inf'):
|
||||
samples = []
|
||||
for i in range(m):
|
||||
r = [cMax / 2.0,
|
||||
math.sqrt(cMax**2 - cMin**2) / 2.0,
|
||||
math.sqrt(cMax**2 - cMin**2) / 2.0]
|
||||
L = np.diag(r)
|
||||
xBall = self.sampleUnitBall()
|
||||
rnd = np.dot(np.dot(C, L), xBall) + xCenter
|
||||
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
|
||||
samples.append(rnd)
|
||||
else:
|
||||
for i in range(m):
|
||||
rnd = self.sampleFreeSpace()
|
||||
samples.append(rnd)
|
||||
|
||||
samples = []
|
||||
if cMax < float('inf'):
|
||||
for i in range(m):
|
||||
r = [cMax / 2.0,
|
||||
math.sqrt(cMax**2 - cMin**2) / 2.0,
|
||||
math.sqrt(cMax**2 - cMin**2) / 2.0]
|
||||
L = np.diag(r)
|
||||
xBall = self.sampleUnitBall()
|
||||
rnd = np.dot(np.dot(C, L), xBall) + xCenter
|
||||
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
|
||||
samples.append(rnd)
|
||||
else:
|
||||
for i in range(m):
|
||||
rnd = self.sampleFreeSpace()
|
||||
samples.append(rnd)
|
||||
return samples
|
||||
|
||||
# Sample point in a unit ball
|
||||
def sampleUnitBall(self):
|
||||
@@ -131,27 +131,27 @@ class BITStar():
|
||||
b * math.sin(2 * math.pi * a / b))
|
||||
return np.array([[sample[0]], [sample[1]], [0]])
|
||||
|
||||
def sampleFreeSpace(self):
|
||||
def sampleFreeSpace(self):
|
||||
if random.randint(0, 100) > self.goalSampleRate:
|
||||
rnd = [random.uniform(self.minrand, self.maxrand),
|
||||
random.uniform(self.minrand, self.maxrand)]
|
||||
else:
|
||||
else:
|
||||
rnd = [self.goal.x, self.goal.y]
|
||||
|
||||
return rnd
|
||||
|
||||
def bestVertexQueueValue(self):
|
||||
# def bestVertexQueueValue(self):
|
||||
|
||||
def bestEdgeQueueValue(self):
|
||||
# def bestEdgeQueueValue(self):
|
||||
|
||||
def bestInEdgeQueue(self):
|
||||
# def bestInEdgeQueue(self):
|
||||
|
||||
def bestInVertexQueue(self):
|
||||
# def bestInVertexQueue(self):
|
||||
|
||||
def updateGraph(self):
|
||||
|
||||
def drawGraph(self, xCenter=None, cBest=None, cMin=None, etheta=None, rnd=None):
|
||||
# def updateGraph(self):
|
||||
|
||||
def drawGraph(self, xCenter=None, cBest=None, cMin=None, etheta=None, samples=None):
|
||||
print("Plotting Graph")
|
||||
plt.clf()
|
||||
for rnd in samples:
|
||||
if rnd is not None:
|
||||
@@ -172,7 +172,7 @@ class BITStar():
|
||||
plt.plot(self.goal.x, self.goal.y, "xr")
|
||||
plt.axis([-2, 15, -2, 15])
|
||||
plt.grid(True)
|
||||
plt.pause(0.01)
|
||||
plt.pause(5)
|
||||
|
||||
def plot_ellipse(self, xCenter, cBest, cMin, etheta):
|
||||
|
||||
@@ -207,6 +207,7 @@ def main():
|
||||
bitStar = BITStar(start=[0, 0], goal=[5, 10],
|
||||
randArea=[-2, 15], obstacleList=obstacleList)
|
||||
path = bitStar.plan(animation=show_animation)
|
||||
print("Done")
|
||||
|
||||
if show_animation:
|
||||
bitStar.drawGraph()
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user