mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 13:18:18 -05:00
add histogram filter animation and test
This commit is contained in:
BIN
Localization/histogram_filter/animation.gif
Normal file
BIN
Localization/histogram_filter/animation.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 7.0 MiB |
@@ -33,7 +33,6 @@ MINY = -5.0
|
||||
MAXX = 15.0
|
||||
MAXY = 25.0
|
||||
|
||||
|
||||
# simulation paramters
|
||||
NOISE_RANGE = 2.0 # [m] 1σ range noise parameter
|
||||
NOISE_SPEED = 0.5 # [m/s] 1σ speed noise parameter
|
||||
|
||||
32
README.md
32
README.md
@@ -11,7 +11,8 @@ Python codes for robotics algorithm.
|
||||
* [Localization](#localization)
|
||||
* [Extended Kalman Filter localization](#extended-kalman-filter-localization)
|
||||
* [Unscented Kalman Filter localization](#unscented-kalman-filter-localization)
|
||||
* [Particle Filter localization](#particle-filter-localization)
|
||||
* [Particle filter localization](#particle-filter-localization)
|
||||
* [Histogram filter localization](#histogram-filter-localization)
|
||||
* [Mapping](#mapping)
|
||||
* [Gaussian grid map](#gaussian-grid-map)
|
||||
* [Ray casting grid map](#ray-casting-grid-map)
|
||||
@@ -97,6 +98,10 @@ the green point is positioning observation (ex. GPS), and the red line is estima
|
||||
|
||||
The red ellipse is estimated covariance ellipse with EKF.
|
||||
|
||||
Ref:
|
||||
|
||||
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
|
||||
|
||||
## Unscented Kalman Filter localization
|
||||
|
||||

|
||||
@@ -109,7 +114,8 @@ Ref:
|
||||
|
||||
- [Discriminatively Trained Unscented Kalman Filter for Mobile Robot Localization](https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization)
|
||||
|
||||
## Particle Filter localization
|
||||
|
||||
## Particle filter localization
|
||||
|
||||

|
||||
|
||||
@@ -123,6 +129,27 @@ It is assumed that the robot can measure a distance from landmarks (RFID).
|
||||
|
||||
This measurements are used for PF localization.
|
||||
|
||||
Ref:
|
||||
|
||||
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
|
||||
|
||||
|
||||
## Histogram filter localization
|
||||
|
||||

|
||||
|
||||
This is a 2D localization example with Histogram filter.
|
||||
|
||||
In this simulation, x,y are unknown, yaw is known.
|
||||
|
||||
The filter integrates speed input and range observations from RFID for localization.
|
||||
|
||||
Initial position is not needed.
|
||||
|
||||
Ref:
|
||||
|
||||
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
|
||||
|
||||
# Mapping
|
||||
|
||||
## Gaussian grid map
|
||||
@@ -575,3 +602,4 @@ Atsushi Sakai ([@Atsushi_twi](https://twitter.com/Atsushi_twi))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
12
tests/test_histogram_filter.py
Normal file
12
tests/test_histogram_filter.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from unittest import TestCase
|
||||
|
||||
from Localization.histogram_filter import histogram_filter as m
|
||||
|
||||
print(__file__)
|
||||
|
||||
|
||||
class Test(TestCase):
|
||||
|
||||
def test1(self):
|
||||
m.show_animation = False
|
||||
m.main()
|
||||
Reference in New Issue
Block a user