Files
PythonRobotics/PathPlanning/TimeBasedPathPlanning/SpaceTimeAStar.py
Jonathan Schwartz 1308e76424 Add expanded node set to SpaceTime AStar (#1183)
* speed up spacetime astar

* forgot to include hash impl on Position

* add condition to test on node expansions

* remove heuristic from Node __hash__ impl

* update rst with note about optimization
2025-03-13 23:24:53 +09:00

242 lines
7.8 KiB
Python

"""
Space-time A* Algorithm
This script demonstrates the Space-time A* algorithm for path planning in a grid world with moving obstacles.
This algorithm is different from normal 2D A* in one key way - the cost (often notated as g(n)) is
the number of time steps it took to get to a given node, instead of the number of cells it has
traversed. This ensures the path is time-optimal, while respecting any dynamic obstacles in the environment.
Reference: https://www.davidsilver.uk/wp-content/uploads/2020/03/coop-path-AIWisdom.pdf
"""
import numpy as np
import matplotlib.pyplot as plt
from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import (
Grid,
ObstacleArrangement,
Position,
)
import heapq
from collections.abc import Generator
import random
from dataclasses import dataclass
from functools import total_ordering
import time
# Seed randomness for reproducibility
RANDOM_SEED = 50
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
@dataclass()
# Note: Total_ordering is used instead of adding `order=True` to the @dataclass decorator because
# this class needs to override the __lt__ and __eq__ methods to ignore parent_index. Parent
# index is just used to track the path found by the algorithm, and has no effect on the quality
# of a node.
@total_ordering
class Node:
position: Position
time: int
heuristic: int
parent_index: int
"""
This is what is used to drive node expansion. The node with the lowest value is expanded next.
This comparison prioritizes the node with the lowest cost-to-come (self.time) + cost-to-go (self.heuristic)
"""
def __lt__(self, other: object):
if not isinstance(other, Node):
return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}")
return (self.time + self.heuristic) < (other.time + other.heuristic)
"""
Note: cost and heuristic are not included in eq or hash, since they will always be the same
for a given (position, time) pair. Including either cost or heuristic would be redundant.
"""
def __eq__(self, other: object):
if not isinstance(other, Node):
return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}")
return self.position == other.position and self.time == other.time
def __hash__(self):
return hash((self.position, self.time))
class NodePath:
path: list[Node]
positions_at_time: dict[int, Position] = {}
def __init__(self, path: list[Node]):
self.path = path
for node in path:
self.positions_at_time[node.time] = node.position
"""
Get the position of the path at a given time
"""
def get_position(self, time: int) -> Position | None:
return self.positions_at_time.get(time)
"""
Time stamp of the last node in the path
"""
def goal_reached_time(self) -> int:
return self.path[-1].time
def __repr__(self):
repr_string = ""
for i, node in enumerate(self.path):
repr_string += f"{i}: {node}\n"
return repr_string
class SpaceTimeAStar:
grid: Grid
start: Position
goal: Position
# Used to evaluate solutions
expanded_node_count: int = -1
def __init__(self, grid: Grid, start: Position, goal: Position):
self.grid = grid
self.start = start
self.goal = goal
def plan(self, verbose: bool = False) -> NodePath:
open_set: list[Node] = []
heapq.heappush(
open_set, Node(self.start, 0, self.calculate_heuristic(self.start), -1)
)
expanded_list: list[Node] = []
expanded_set: set[Node] = set()
while open_set:
expanded_node: Node = heapq.heappop(open_set)
if verbose:
print("Expanded node:", expanded_node)
if expanded_node.time + 1 >= self.grid.time_limit:
if verbose:
print(f"\tSkipping node that is past time limit: {expanded_node}")
continue
if expanded_node.position == self.goal:
print(f"Found path to goal after {len(expanded_list)} expansions")
path = []
path_walker: Node = expanded_node
while True:
path.append(path_walker)
if path_walker.parent_index == -1:
break
path_walker = expanded_list[path_walker.parent_index]
# reverse path so it goes start -> goal
path.reverse()
self.expanded_node_count = len(expanded_set)
return NodePath(path)
expanded_idx = len(expanded_list)
expanded_list.append(expanded_node)
expanded_set.add(expanded_node)
for child in self.generate_successors(expanded_node, expanded_idx, verbose, expanded_set):
heapq.heappush(open_set, child)
raise Exception("No path found")
"""
Generate possible successors of the provided `parent_node`
"""
def generate_successors(
self, parent_node: Node, parent_node_idx: int, verbose: bool, expanded_set: set[Node]
) -> Generator[Node, None, None]:
diffs = [
Position(0, 0),
Position(1, 0),
Position(-1, 0),
Position(0, 1),
Position(0, -1),
]
for diff in diffs:
new_pos = parent_node.position + diff
new_node = Node(
new_pos,
parent_node.time + 1,
self.calculate_heuristic(new_pos),
parent_node_idx,
)
if new_node in expanded_set:
continue
if self.grid.valid_position(new_pos, parent_node.time + 1):
if verbose:
print("\tNew successor node: ", new_node)
yield new_node
def calculate_heuristic(self, position) -> int:
diff = self.goal - position
return abs(diff.x) + abs(diff.y)
show_animation = True
verbose = False
def main():
start = Position(1, 5)
goal = Position(19, 19)
grid_side_length = 21
start_time = time.time()
grid = Grid(
np.array([grid_side_length, grid_side_length]),
num_obstacles=40,
obstacle_avoid_points=[start, goal],
obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1,
)
planner = SpaceTimeAStar(grid, start, goal)
path = planner.plan(verbose)
runtime = time.time() - start_time
print(f"Planning took: {runtime:.5f} seconds")
if verbose:
print(f"Path: {path}")
if not show_animation:
return
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(
autoscale_on=False,
xlim=(0, grid.grid_size[0] - 1),
ylim=(0, grid.grid_size[1] - 1),
)
ax.set_aspect("equal")
ax.grid()
ax.set_xticks(np.arange(0, grid_side_length, 1))
ax.set_yticks(np.arange(0, grid_side_length, 1))
(start_and_goal,) = ax.plot([], [], "mD", ms=15, label="Start and Goal")
start_and_goal.set_data([start.x, goal.x], [start.y, goal.y])
(obs_points,) = ax.plot([], [], "ro", ms=15, label="Obstacles")
(path_points,) = ax.plot([], [], "bo", ms=10, label="Path Found")
ax.legend(bbox_to_anchor=(1.05, 1))
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
"key_release_event", lambda event: [exit(0) if event.key == "escape" else None]
)
for i in range(0, path.goal_reached_time()):
obs_positions = grid.get_obstacle_positions_at_time(i)
obs_points.set_data(obs_positions[0], obs_positions[1])
path_position = path.get_position(i)
path_points.set_data([path_position.x], [path_position.y])
plt.pause(0.2)
plt.show()
if __name__ == "__main__":
main()