Compare commits

...

45 Commits

Author SHA1 Message Date
Istvan Kiss
5bd50624bd Fix white paper links 2025-02-27 14:33:02 +01:00
Gulsum Gudukbay Akbulut
d7d3d02cd0 Corrected typo in README.md (#4387)
* Corrected typo

Corrected typo in line 119 prerequisities -> prerequisites

* Corrected typo in README.md

Corrected typo in line 119 prerequisities -> prerequisites
2025-02-26 19:24:27 -05:00
Joseph Macaranas
dd7164cada External CI: Add libdrm_amdgpu to roctracer dependencies (#4418) 2025-02-26 13:52:56 -05:00
Joseph Macaranas
bf3a437cd5 External CI: Resume building for gfx90a (#4416)
- Remove undefined gpuTarget references in docker step of some build jobs.
- Remove deprecated/renamed repo's pipeline yaml file.
2025-02-26 11:11:36 -05:00
Adel Johar
4be8096109 Merge pull request #4393 from ROCm/docs_fix_arch
Docs: Fix gpu-arch-spec.rst
2025-02-26 14:19:38 +01:00
Peter Park
934767322b Update PT and TF docker inventories in compatibility docs (#4415)
* update PyTorch docker inventories in compatibility doc

* update TF docker inventories in compatibility doc

* update text to rocm 6.3.3
2025-02-25 12:32:34 -05:00
Peter Park
1ea1c5c6e0 fix tab sync and nested tab Megatron-LM doc (#4409) 2025-02-21 17:19:48 -05:00
Peter Park
389fa7071b Update docs on Megatron-LM and PyTorch training Dockers (#4407)
* Update Megatron-LM and PyTorch Training Docker docs

Also restructure TOC

* Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update "start training" text

Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update conf.py

fix spacing

fix branding issue

add disable numa

reorg

remove extra text
2025-02-21 13:07:18 -05:00
Daniel Su
91e0cf5ecd Ex CI: change rocprof-compute default branch to develop (#4398)
* Ex CI: change rocprof-compute default branch to develop

* add pkg-config to rocmsmi
2025-02-20 16:04:20 -05:00
Daniel Su
1de89ef590 Ex CI: update to 6.3.3 (#4404) 2025-02-20 16:01:35 -05:00
dependabot[bot]
27cb8ea927 Build(deps): Bump rocm-docs-core from 1.15.0 to 1.17.0 in /docs/sphinx (#4402)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.15.0 to 1.17.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.15.0...v1.17.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-20 11:22:49 -07:00
pbhandar-amd
e44499357e Merge pull request #4400 from ROCm/amd/pbhandar/roc_633
Add changes for rocm 6.3.3 release.
2025-02-19 17:15:53 -05:00
pbhandar-amd
ce3bc46fcb Create rocm-6.3.3.xml 2025-02-19 17:10:47 -05:00
pbhandar-amd
7f66041b96 Update components.xml 2025-02-19 17:00:34 -05:00
pbhandar-amd
1d312ac9fd Update default.xml 2025-02-19 17:00:06 -05:00
pbhandar-amd
ebc39487a8 Update README.md 2025-02-19 16:59:26 -05:00
pbhandar-amd
acee9ea228 Merge pull request #4397 from ROCm/amd/pbhandar/internal_to_external_633_part_2
Internal to external sync for 6.3.3 release
2025-02-19 15:33:45 -05:00
Pratik Basyal
1b36ab4850 Final GA day prep for 633 (#313)
* ROCProfiler deprecation notice udpated

* Final GA day changes added

* github issue no. added

* ROCTx added

* rocprofv added to wordlist

* Minor fix
2025-02-19 15:19:44 -05:00
pbhandar-amd
be0d3a981b Merge pull request #312 from ROCm/amd/pbhandar/external_to_internal_633
External to internal sync for 6.3.3 release
2025-02-19 14:08:36 -05:00
Parag Bhandari
ba90b9e61b Removed merge conflict markers 2025-02-19 13:56:00 -05:00
Parag Bhandari
662a40a33f Merge branch 'develop' into internal-develop 2025-02-19 13:35:46 -05:00
pbhandar-amd
fd4ccb9372 Update versions.md 2025-02-19 12:56:36 -05:00
Adel Johar
0c6f660d59 Docs: Fix gpu-arch-spec.rst 2025-02-19 17:05:01 +01:00
Pratik Basyal
2170c18828 ROCTx marker known issue updated in 6.3.3. RN (#311)
* ROCTx markers known issue updated

* Leo's feedback incorporated
2025-02-18 16:45:22 -05:00
Joseph Macaranas
a89b135afb rocPyDecode External CI: Use sudo for cmake install step (#4388)
- Change owner after running install steps, for packaging and upload.
- Necessary to support changes in https://github.com/ROCm/rocPyDecode/pull/160
2025-02-18 11:18:10 -05:00
Daniel Su
a61c2aeaf9 Ex CI: add rocm-cmake to rpp build job (#4379)
* Ex CI: add rocm-cmake to rpp build job

* add ROCM_PLATFORM_VERSION flag
2025-02-14 17:36:16 -05:00
Istvan Kiss
3b9f57166d Update release notes (#310) 2025-02-14 13:56:58 -05:00
Daniel Su
062a1e069d Ex CI: adjust MIOpen's CK fetch script to no longer find parent commits (#4377) 2025-02-14 11:42:23 -05:00
Daniel Su
6cc343f180 Ex CI: set ROCM_PATH for MIOpen tests (#4371) 2025-02-13 16:03:56 -05:00
Pratik Basyal
b75e5f2769 Reference text updated for documentation update in 633 RN (#308)
* ROCProfiler deprecation notice udpated

* Reduntant text removed
2025-02-13 15:02:47 -05:00
Pratik Basyal
4fb9291d33 ROCProfiler deprecation notice udpated (#307) 2025-02-13 12:31:32 -05:00
Peter Park
618b44ed23 add vllm docker to release highlights (#306) 2025-02-13 12:01:08 -05:00
Adel Johar
c52aa329c8 Merge pull request #4350 from ROCm/docs_device_version
Docs: Add Device Major/Minor Versions to gpu-arch-spec.rst
2025-02-13 14:41:01 +01:00
Adel Johar
1499f74c22 Docs: Add Device Major/Minor Versions to gpu-arch-spec.rst 2025-02-13 14:24:00 +01:00
Daniel Su
a9aaabcc68 Ex CI: remove manual hipify-perl chmod from rccl (#4368) 2025-02-12 11:36:53 -05:00
Pratik Basyal
35f4362e68 Release notes updates for ROCm 6.3.3 release (#298)
* Initial changes for 6.3.3 release updated in RN

* conf file updated

* 6.3.3 compatibility matrix updated

* 6.3.3 version update

* HIP documentation updated added

* Deprecation notice added

* ROCm Offline Installer updates added to Release Highlight

* CSV loading error fixed

* ROCm System Profiler 0.1.2 updated added

* Reference to Offline Installer updated

* Resolved issues removed

* Azure Linux support for 6.3.2 added

* Minor update in ROCm Offline Installer highlight

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-02-12 09:24:58 -05:00
dependabot[bot]
24603ac37a Build(deps): Bump cryptography from 43.0.3 to 44.0.1 in /docs/sphinx (#4365)
Bumps [cryptography](https://github.com/pyca/cryptography) from 43.0.3 to 44.0.1.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/43.0.3...44.0.1)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-11 17:01:16 -07:00
Joseph Macaranas
a6b1c656b0 External CI: Fix ROCR common test suite build (#4364)
- Removing the creation of expected folders and symbolic links as workaround to get the test components compiling.
- Set the only OpenCL build flag affecting the build.
2025-02-11 14:44:26 -05:00
Joseph Macaranas
82cf58912c External CI: Fix failures for rocprofiler-systems and ROCR-Runtime (#4361)
- Add rocm_smi_lib dependency to rocprofiler-systems.
- Explicitly set OPENCL_INC_DIR in ROCR-Runtime test job.
2025-02-10 14:06:59 -05:00
Pratik Basyal
c469e34b27 Debian 12 support for single-node added (#300) (#4357) 2025-02-10 09:33:27 -05:00
Pratik Basyal
63b8d9da7b Debian 12 support for single-node added (#300) 2025-02-07 17:47:00 -05:00
Joseph Macaranas
b6d19bd91c External CI: rocWMMA ROCM_PLATFORM_VERSION value set (#4353)
- Set the value of this expected variable to fix build failures.
2025-02-06 17:06:29 -05:00
Peter Park
2751a17cf0 Update vLLM benchmarking guide (#4347)
* update vllm-benchmark

fix hlist overflow

update standalone benchmarking options

update list of models

fix typo and model name

unnecessary duplicate info

update formatting

update vllm benchmark guide

- remove Llama 2 FP8
- add Jais 13B
- update commands

update docker pull tag

update MAD available models

remove extra mad models not relevant to vllm

update PyTorch version

add changelog

add model names to .wordlist.txt

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* fix typo

* update link

* fix link text

* change changelog to previous versions

* fix typo

* remove "for"

---------

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>
2025-02-05 17:18:35 -05:00
Peter Park
9b0ae86b1b Fix ROCm Bandwidth Test license type
Fix ROCm Bandwidth Test license type
2025-02-05 16:40:31 -05:00
harkgill-amd
16f7cb4c04 Update issue workflow to trigger on edit (#4346) 2025-02-05 14:46:16 -05:00
77 changed files with 1880 additions and 1130 deletions

View File

@@ -84,6 +84,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -67,6 +67,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
@@ -101,7 +103,7 @@ jobs:
-DMIOPEN_BACKEND=HIP
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/miopen-deps
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DMIOPEN_ENABLE_AI_KERNEL_TUNING=OFF
-DMIOPEN_ENABLE_AI_IMMED_MODE_FALLBACK=OFF
-DCMAKE_BUILD_TYPE=Release
@@ -129,6 +131,8 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool: $(JOB_TEST_POOL)
workspace:
clean: all

View File

@@ -77,6 +77,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -123,16 +123,13 @@ jobs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/rocrtst/suites/test_common
script: |
sudo rm -rf $(Agent.BuildDirectory)/external/llvm-project
mkdir -p $(Agent.BuildDirectory)/external/llvm-project/clang/lib
sudo ln -s $(Agent.BuildDirectory)/rocm/llvm/lib/clang/20/include $(Agent.BuildDirectory)/external/llvm-project/clang/lib/Headers
mkdir build && cd build
cmake .. \
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm \
-DTARGET_DEVICES=$(JOB_GPU_TARGET) \
-DROCM_DIR=$(Agent.BuildDirectory)/rocm \
-DLLVM_DIR=$(Agent.BuildDirectory)/rocm/llvm/bin \
-DOPENCL_DIR=$(Agent.BuildDirectory)/rocm/llvm/bin
-DOPENCL_INC_DIR=$(Agent.BuildDirectory)/rocm/llvm/lib/clang/21/include
make
make rocrtst_kernels
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml

View File

@@ -67,6 +67,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -87,7 +87,6 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: $(JOB_GPU_TARGET)
- job: Tensile_testing
timeoutInMinutes: 90

View File

@@ -42,6 +42,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -48,6 +48,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -52,6 +52,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -63,6 +63,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -72,6 +72,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -43,6 +43,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -54,6 +54,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -45,6 +45,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -52,6 +52,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -42,6 +42,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -51,6 +51,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -1,140 +0,0 @@
# largely referenced from: https://github.com/ROCm/omnitrace/blob/main/.github/workflows/ubuntu-jammy.yml
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: aptPackages
type: object
default:
- autoconf
- autotools-dev
- bison
- build-essential
- bzip2
- clang
- cmake
- environment-modules
- g++-12
- libdrm-dev
- libfabric-dev
- libiberty-dev
- libpapi-dev
- libpfm4-dev
- libtool
- libopenmpi-dev
- m4
- openmpi-bin
- software-properties-common
- python3-pip
- texinfo
- zlib1g-dev
- name: pipModules
type: object
default:
- numpy
- perfetto
- dataclasses
- name: rocmDependencies
type: object
default:
- aomp
- clr
- llvm-project
- rccl
- rocm-core
- rocm_smi_lib
- rocminfo
- ROCR-Runtime
- rocprofiler
- rocprofiler-register
- roctracer
jobs:
- job: omnitrace
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
strategy:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: $(JOB_GPU_TARGET)
- task: Bash@3
displayName: ROCm symbolic link
inputs:
targetType: inline
script: |
sudo rm -rf /opt/rocm
sudo ln -s $(Agent.BuildDirectory)/rocm /opt/rocm
- task: Bash@3
displayName: Add ROCm binaries to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
- task: Bash@3
displayName: Add ROCm compilers to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
# build flags reference: https://rocm.docs.amd.com/projects/omnitrace/en/latest/install/install.html
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DOMNITRACE_BUILD_TESTING=ON
-DOMNITRACE_BUILD_DYNINST=ON
-DOMNITRACE_BUILD_LIBUNWIND=ON
-DDYNINST_BUILD_TBB=ON
-DDYNINST_BUILD_ELFUTILS=ON
-DDYNINST_BUILD_LIBIBERTY=ON
-DDYNINST_BUILD_BOOST=ON
-DOMNITRACE_USE_PAPI=ON
-DOMNITRACE_USE_MPI=ON
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
multithreadFlag: -- -j32
- task: Bash@3
displayName: Set up omnitrace env
inputs:
targetType: inline
script: source share/omnitrace/setup-env.sh
workingDirectory: build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: omnitrace
- task: Bash@3
displayName: Remove ROCm binaries from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- task: Bash@3
displayName: Remove ROCm compilers from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/llvm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
gpuTarget: $(JOB_GPU_TARGET)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
gpuTarget: $(JOB_GPU_TARGET)

View File

@@ -51,6 +51,7 @@ parameters:
jobs:
- job: rccl
timeoutInMinutes: 90
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -63,6 +64,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
@@ -78,7 +81,6 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: $(JOB_GPU_TARGET)
- script: chmod +x $(Agent.BuildDirectory)/rocm/bin/hipify-perl
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -88,7 +90,7 @@ jobs:
-DCMAKE_BUILD_TYPE=Release
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DBUILD_TESTS=ON
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/share/rocm/cmake/
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/share/rocm/cmake;$(Agent.BuildDirectory)/rocm/libexec/hipify
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml

View File

@@ -65,6 +65,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -73,6 +73,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- task: Bash@3
displayName: 'Register libjpeg-turbo packages'

View File

@@ -60,6 +60,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -75,6 +75,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -55,6 +55,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -47,6 +47,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -42,6 +42,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -48,6 +48,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
@@ -84,6 +86,7 @@ jobs:
echo "##vso[task.setvariable variable=PYBIND11_PATH;]$(python3 -c 'import pybind11; print(pybind11.get_cmake_dir())')"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
installEnabled: false
extraBuildFlags: >-
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(PYTHON_USER_SITE)/pybind11;$(PYTHON_DIST_PACKAGES)/pybind11;$(PYBIND11_PATH)
@@ -91,6 +94,14 @@ jobs:
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DCMAKE_INSTALL_PREFIX_PYTHON=$(Build.BinariesDirectory)
-GNinja
- task: Bash@3
displayName: 'rocPyDecode install'
inputs:
targetType: inline
script: |
sudo cmake --build . --target install
sudo chown -R $(whoami):$(id -gn) $(Build.BinariesDirectory)
workingDirectory: $(Build.SourcesDirectory)/build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
gpuTarget: $(JOB_GPU_TARGET)
@@ -105,7 +116,8 @@ jobs:
script: |
export ROCM_PATH=$(Agent.BuildDirectory)/rocm
export HIP_INCLUDE_DIRS=$(Agent.BuildDirectory)/rocm/include/hip
python3 setup.py bdist_wheel
sudo python3 setup.py bdist_wheel
sudo chown -R $(whoami):$(id -gn) $(find . -name "*.whl")
workingDirectory: $(Build.SourcesDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-prepare-package.yml
parameters:

View File

@@ -45,6 +45,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -58,6 +58,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -56,6 +56,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -47,6 +47,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
@@ -80,6 +82,7 @@ jobs:
-DROCWMMA_BUILD_SAMPLES=OFF
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
-DROCM_PLATFORM_VERSION=$(NEXT_RELEASE_VERSION)
-GNinja
# gfx1030 not supported in documentation
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml

View File

@@ -56,4 +56,3 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
environment: combined
gpuTarget: $(JOB_GPU_TARGET)

View File

@@ -75,6 +75,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -10,6 +10,7 @@ parameters:
default:
- cmake
- libdrm-dev
- pkg-config
- python3-pip
jobs:
@@ -39,7 +40,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: $(JOB_GPU_TARGET)
- job: rocm_smi_lib_testing
dependsOn: rocm_smi_lib

View File

@@ -56,6 +56,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- job: rocminfo_testing
dependsOn: rocminfo
@@ -102,5 +103,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
environment: test
gpuTarget: $(JOB_GPU_TARGET)

View File

@@ -59,6 +59,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -55,9 +55,10 @@ parameters:
- rocJPEG
- rocm-core
- rocminfo
- ROCR-Runtime
- rocm_smi_lib
- rocprofiler-register
- rocprofiler-sdk
- ROCR-Runtime
jobs:
- job: rocprofiler_systems
@@ -71,6 +72,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -69,7 +69,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: $(JOB_GPU_TARGET)
- job: rocr_debug_agent_testing
dependsOn: rocr_debug_agent

View File

@@ -11,6 +11,7 @@ parameters:
- cmake
- doxygen
- graphviz
- libdrm-amdgpu-dev
- ninja-build
- python3-pip
- name: pipModules
@@ -49,11 +50,14 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -85,6 +89,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: $(JOB_GPU_TARGET)
registerROCmPackages: true
- job: roctracer_testing
dependsOn: roctracer
@@ -104,6 +109,8 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
@@ -128,3 +135,4 @@ jobs:
pipModules: ${{ parameters.pipModules }}
environment: test
gpuTarget: $(JOB_GPU_TARGET)
registerROCmPackages: true

View File

@@ -29,6 +29,7 @@ parameters:
- clr
- half
- llvm-project
- rocm-cmake
- rocminfo
- ROCR-Runtime
- name: rocmTestDependencies
@@ -56,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
@@ -79,6 +82,7 @@ jobs:
-DHALF_INCLUDE_DIRS=$(Agent.BuildDirectory)/rocm/include
-DCMAKE_BUILD_TYPE=Release
-DGPU_TARGETS=$(JOB_GPU_TARGET)
-DROCM_PLATFORM_VERSION=$(NEXT_RELEASE_VERSION)
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:

View File

@@ -262,7 +262,7 @@ parameters:
hasGpuTarget: true
rocprofiler-compute:
pipelineId: $(ROCPROFILER_COMPUTE_PIPELINE_ID)
stagingBranch: amd-staging
stagingBranch: develop
mainlineBranch: amd-mainline
hasGpuTarget: true
rocprofiler-register:

View File

@@ -20,41 +20,37 @@ steps:
ARTIFACT_NAME="composablekernel.${{ parameters.gpuTarget }}"
EXIT_CODE=0
# The commits that MIOpen reference are all merge commits from CK/develop to CK/amd-develop
# These commits are present on CK/amd-develop but not on CK/develop
# Ex-CI only builds CK/develop, so we need to find a commit present on both CK/develop and CK/amd-develop
# Try to find an Azure build for the specific CK commit called out in MIOpen's requirements.txt
CK_COMMIT=$(grep 'ROCm/composable_kernel' requirements.txt | sed -E 's/.*@([a-f0-9]{40}).*/\1/')
echo "Fetching CK build ID for commit $CK_COMMIT"
CK_COMMIT_URL="$GH_API/composable_kernel/commits/${CK_COMMIT}"
PARENT_COMMIT=$(curl -s $CK_COMMIT_URL | jq '.parents[1].sha' | tr -d '"')
echo "Found parent commit: $PARENT_COMMIT"
PARENT_CHECKS_URL="$GH_API/composable_kernel/commits/${PARENT_COMMIT}/check-runs"
CK_BUILD_ID=$(curl -s $PARENT_CHECKS_URL | \
CK_CHECKS_URL="$GH_API/composable_kernel/commits/${CK_COMMIT}/check-runs"
CK_BUILD_ID=$(curl -s $CK_CHECKS_URL | \
jq '.check_runs[] | select(.name == "composable_kernel" and .app.slug == "azure-pipelines") | .details_url' | \
tr -d '"' | grep -oP 'buildId=\K\d+')
if [ -z "$CK_BUILD_ID" ]; then
# If none found, use latest successful CK build instead
if [[ -z "$CK_BUILD_ID" ]]; then
echo "Did not find specific CK build ID"
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&statusFilter=completed&resultFilter=succeeded&\$top=1&api-version=7.1"
CK_BUILD_ID=$(curl -s $LATEST_BUILD_URL | jq '.value[0].id')
echo "Found latest CK build ID: $CK_BUILD_ID"
EXIT_CODE=1
else
echo "Found specific CK build ID: $CK_BUILD_ID"
fi
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?artifactName=$ARTIFACT_NAME&api-version=7.1"
ARTIFACT_URL=$(curl -s $AZURE_URL | jq '.resource.downloadUrl' | tr -d '"')
if [ -z "$ARTIFACT_URL" ]; then
echo "Did not find specific CK build artifact"
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&status=completed&result=succeeded&\$top=1&api-version=7.1"
# If using the specific CK commit and it doesn't have any valid artifacts, use latest successful CK build instead
if { [[ -z "$ARTIFACT_URL" ]] || [[ "$ARTIFACT_URL" == "null" ]]; } && [[ $EXIT_CODE -eq 0 ]]; then
echo "Did not find valid specific CK build artifact"
LATEST_BUILD_URL="$AZ_API/build/builds?definitions=$(COMPOSABLE_KERNEL_PIPELINE_ID)&statusFilter=completed&resultFilter=succeeded&\$top=1&api-version=7.1"
CK_BUILD_ID=$(curl -s $LATEST_BUILD_URL | jq '.value[0].id')
echo "Found latest CK build ID: $CK_BUILD_ID"
AZURE_URL="$AZ_API/build/builds/$CK_BUILD_ID/artifacts?artifactName=$ARTIFACT_NAME&api-version=7.1"
ARTIFACT_URL=$(curl -s $AZURE_URL | jq '.resource.downloadUrl' | tr -d '"')
EXIT_CODE=2
elif [ $EXIT_CODE -eq 0 ]; then
echo "Found specific CK build ID: $CK_BUILD_ID"
fi
echo "Downloading CK artifact from $ARTIFACT_URL"
@@ -64,9 +60,13 @@ steps:
tar -zxvf $(System.ArtifactsDirectory)/$ARTIFACT_NAME/*.tar.gz -C $(Agent.BuildDirectory)/rocm
rm -r $(System.ArtifactsDirectory)/ck.zip $(System.ArtifactsDirectory)/$ARTIFACT_NAME
if [ $EXIT_CODE -ne 0 ]; then
if [[ $EXIT_CODE -ne 0 ]]; then
BUILD_COMMIT=$(curl -s $AZ_API/build/builds/$CK_BUILD_ID | jq '.sourceVersion' | tr -d '"')
echo "WARNING: couldn't find a CK build for commit $CK_COMMIT"
if [[ $EXIT_CODE -eq 1 ]]; then
echo "WARNING: couldn't find a CK build for commit $CK_COMMIT"
elif [[ $EXIT_CODE -eq 2 ]]; then
echo "WARNING: couldn't find a valid CK artifact for commit $CK_COMMIT"
fi
echo "Instead used latest CK build $CK_BUILD_ID for commit $BUILD_COMMIT"
fi
exit $EXIT_CODE

View File

@@ -28,13 +28,13 @@ variables:
- name: GFX942_TEST_POOL
value: gfx942_test_pool
- name: LATEST_RELEASE_VERSION
value: 6.3.2
value: 6.3.3
- name: REPO_RADEON_VERSION
value: 6.3.2
value: 6.3.3
- name: NEXT_RELEASE_VERSION
value: 6.4.0
- name: LATEST_RELEASE_TAG
value: rocm-6.3.2
value: rocm-6.3.3
- name: AMDMIGRAPHX_GFX942_TEST_PIPELINE_ID
value: 197
- name: AMDMIGRAPHX_PIPELINE_ID

View File

@@ -2,7 +2,7 @@ name: Issue retrieval
on:
issues:
types: [opened]
types: [opened, edited]
jobs:
auto-retrieve:

View File

@@ -74,6 +74,7 @@ Conda
ConnectX
CuPy
Dashboarding
DBRX
DDR
DF
DGEMM
@@ -92,6 +93,7 @@ DataFrame
DataLoader
DataParallel
Debian
DeepSeek
DeepSpeed
Dependabot
Deprecations
@@ -115,6 +117,7 @@ FX
Filesystem
FindDb
Flang
FluxBenchmark
Fortran
Fuyu
GALB
@@ -129,6 +132,8 @@ GDS
GEMM
GEMMs
GFortran
GFXIP
Gemma
GiB
GIM
GL
@@ -313,6 +318,7 @@ PipelineParallel
PnP
PowerEdge
PowerShell
Pretraining
Profiler's
PyPi
Pytest
@@ -334,6 +340,7 @@ RNNs
ROC
ROCProfiler
ROCT
ROCTx
ROCTracer
ROCclr
ROCdbgapi
@@ -711,6 +718,7 @@ preprocessing
preprocessor
prequantized
prerequisites
pretraining
profiler
profilers
protobuf
@@ -763,6 +771,7 @@ rocm
rocminfo
rocprim
rocprof
rocprofv
rocprofiler
rocr
rocrand

View File

@@ -50,7 +50,7 @@ The following example shows how to use the repo tool to download the ROCm source
```bash
mkdir -p ~/ROCm/
cd ~/ROCm/
export ROCM_VERSION=6.3.2
export ROCM_VERSION=6.3.3
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.3.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
```
@@ -77,8 +77,8 @@ The Build time will reduce significantly if we limit the GPU Architecture/s agai
mkdir -p ~/WORKSPACE/ # Or any folder name other than WORKSPACE
cd ~/WORKSPACE/
export ROCM_VERSION=6.3.2
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b develop -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
export ROCM_VERSION=6.3.3
~/bin/repo init -u http://github.com/ROCm/ROCm.git -b roc-6.3.x -m tools/rocm-build/rocm-${ROCM_VERSION}.xml
~/bin/repo sync
# --------------------------------------
@@ -116,7 +116,7 @@ bash install-prerequisites.sh
# For ubuntu22.04 system
cd ROCm/tools/rocm-build/docker/ubuntu22
cp * /tmp && cd /tmp
bash install-prerequisities.sh
bash install-prerequisites.sh
# For ubuntu24.04 system
cd ROCm/tools/rocm-build/docker/ubuntu24
cp * /tmp && cd /tmp

View File

@@ -10,7 +10,7 @@
<!-- markdownlint-disable reference-links-images -->
<!-- markdownlint-disable no-missing-space-atx -->
<!-- spellcheck-disable -->
# ROCm 6.3.2 release notes
# ROCm 6.3.3 release notes
The release notes provide a summary of notable changes since the previous ROCm release.
@@ -24,8 +24,6 @@ The release notes provide a summary of notable changes since the previous ROCm r
- [ROCm known issues](#rocm-known-issues)
- [ROCm resolved issues](#rocm-resolved-issues)
- [ROCm upcoming changes](#rocm-upcoming-changes)
```{note}
@@ -34,35 +32,43 @@ documentation to verify compatibility and system requirements.
```
## Release highlights
The following are notable improvements in ROCm 6.3.2. For changes to individual components, see
The following are notable new features and improvements in ROCm 6.3.3. For changes to individual components, see
[Detailed component changes](#detailed-component-changes).
### ROCm Offline Installer Creator updates
The ROCm Offline Installer Creator 6.3.3 adds a new Post-Install Options menu, which includes a new ``udev`` option for adding GPU resources access for all users. It also moves the user-specific GPU access option (for the ``video,render`` group) from the Driver Options menu to the Post-Install Options menu. See the [ROCm Offline Installer Creator](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/rocm-offline-installer.html#post-install-options-menu) documentation for more information.
### ROCm documentation updates
ROCm documentation continues to be updated to provide clearer and more comprehensive guidance for a wider variety of user needs and use cases.
* Documentation about ROCm compatibility with deep learning frameworks has been added. These topics outline ROCm-enabled features for each deep learning framework, key ROCm libraries that can influence the capabilities, validated Docker image tags, and features supported across the available ROCm and framework versions. For more information, see:
* [Tutorials for AI developers](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/) have been added. These tutorials are Jupyter notebook-based, easy-to-follow documents. They are ideal for AI developers who want to learn about specific topics, including inference, fine-tuning, and training.
* [PyTorch compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/pytorch-compatibility.html)
* The [LLM inference performance validation guide for AMD Instinct MI300X](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html)
now includes additional models for performance benchmarking. The accompanying ROCm vLLM Docker has been upgraded to ROCm 6.3.1.
* The HIP documentation has been updated with new resources for developers. To learn more about concurrency, parallelism, and stream management on devices and multiple GPUs, see [Asynchronous concurrent execution](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html)
* [TensorFlow compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/tensorflow-compatibility.html)
* [JAX compatibility](https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/jax-compatibility.html)
* The [HIP C++ language extensions](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_cpp_language_extensions.html) and [Kernel language C++ support](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/kernel_language_cpp_support.html) topics have been reorganized to make them easier to find and review. The topics have also been enhanced with new content.
* The following HIP documentation topics have been updated:
- [Virtual memory management](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/memory_management/virtual_memory.html)
- [Programming for HIP runtime compiler (RTC)](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_rtc.html)
- [HIP porting guide](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_guide.html)
- [Porting CUDA driver API](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_driver_api.html)
- [CUDA to HIP API function comparison](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/api_syntax.html)
## Operating system and hardware support changes
ROCm 6.3.2 adds support for Azure Linux 3.0 (kernel: 6.6). Azure Linux is supported only on AMD Instinct accelerators. For more information, see [Azure Linux installation](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html).
Operating system and hardware support remain unchanged in this release.
See the [Compatibility
matrix](https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html)
matrix](https://rocm.docs.amd.com/en/docs-6.3.3/compatibility/compatibility-matrix.html)
for more information about operating system and hardware compatibility.
## ROCm components
The following table lists the versions of ROCm components for ROCm 6.3.2, including any version
changes from 6.3.1 to 6.3.2. Click the component's updated version to go to a list of its changes.
The following table lists the versions of ROCm components for ROCm 6.3.3, including any version
changes from 6.3.2 to 6.3.3. Click the component's updated version to go to a list of its changes.
Click {fab}`github` to go to the component's source code on GitHub.
<div class="pst-scrollable-table-container">
@@ -84,47 +90,47 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="9">Libraries</th>
<th rowspan="9">Machine learning and computer vision</th>
<td><a href="https://rocm.docs.amd.com/projects/composable_kernel/en/docs-6.3.2/index.html">Composable Kernel</a></td>
<td><a href="https://rocm.docs.amd.com/projects/composable_kernel/en/docs-6.3.3/index.html">Composable Kernel</a></td>
<td>1.1.0</td>
<td><a href="https://github.com/ROCm/composable_kernel"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.3.2/index.html">MIGraphX</a></td>
<td><a href="https://rocm.docs.amd.com/projects/AMDMIGraphX/en/docs-6.3.3/index.html">MIGraphX</a></td>
<td>2.11.0</td>
<td><a href="https://github.com/ROCm/AMDMIGraphX"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/MIOpen/en/docs-6.3.2/index.html">MIOpen</a></td>
<td><a href="https://rocm.docs.amd.com/projects/MIOpen/en/docs-6.3.3/index.html">MIOpen</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/MIOpen"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/MIVisionX/en/docs-6.3.2/index.html">MIVisionX</a></td>
<td><a href="https://rocm.docs.amd.com/projects/MIVisionX/en/docs-6.3.3/index.html">MIVisionX</a></td>
<td>3.1.0</td>
<td><a href="https://github.com/ROCm/MIVisionX"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocAL/en/docs-6.3.2/index.html">rocAL</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocAL/en/docs-6.3.3/index.html">rocAL</a></td>
<td>2.1.0</td>
<td><a href="https://github.com/ROCm/rocAL"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocDecode/en/docs-6.3.2/index.html">rocDecode</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocDecode/en/docs-6.3.3/index.html">rocDecode</a></td>
<td>0.8.0</td>
<td><a href="https://github.com/ROCm/rocDecode"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocJPEG/en/docs-6.3.2/index.html">rocJPEG</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocJPEG/en/docs-6.3.3/index.html">rocJPEG</a></td>
<td>0.6.0</td>
<td><a href="https://github.com/ROCm/rocJPEG"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocPyDecode/en/docs-6.3.2/index.html">rocPyDecode</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocPyDecode/en/docs-6.3.3/index.html">rocPyDecode</a></td>
<td>0.2.0</td>
<td><a href="https://github.com/ROCm/rocPyDecode"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rpp/en/docs-6.3.2/index.html">RPP</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rpp/en/docs-6.3.3/index.html">RPP</a></td>
<td>1.9.1</td>
<td><a href="https://github.com/ROCm/rpp"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -133,7 +139,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="1"></th>
<th rowspan="1">Communication</th>
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.3.2/index.html">RCCL</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.3.3/index.html">RCCL</a></td>
<td>2.21.5</td>
<td><a href="https://github.com/ROCm/rccl"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -142,82 +148,82 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="16"></th>
<th rowspan="16">Math</th>
<td><a href="https://rocm.docs.amd.com/projects/hipBLAS/en/docs-6.3.2/index.html">hipBLAS</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipBLAS/en/docs-6.3.3/index.html">hipBLAS</a></td>
<td>2.3.0</td>
<td><a href="https://github.com/ROCm/hipBLAS"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-6.3.2/index.html">hipBLASLt</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-6.3.3/index.html">hipBLASLt</a></td>
<td>0.10.0</td>
<td><a href="https://github.com/ROCm/hipBLASLt"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-6.3.2/index.html">hipFFT</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipFFT/en/docs-6.3.3/index.html">hipFFT</a></td>
<td>1.0.17</td>
<td><a href="https://github.com/ROCm/hipFFT"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipfort/en/docs-6.3.2/index.html">hipfort</a></td>
<td>0.5.0&nbsp;&Rightarrow;&nbsp;<a href="#hipfort-0-5-1">0.5.1</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipfort/en/docs-6.3.3/index.html">hipfort</a></td>
<td>0.5.1</td>
<td><a href="https://github.com/ROCm/hipfort"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipRAND/en/docs-6.3.2/index.html">hipRAND</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipRAND/en/docs-6.3.3/index.html">hipRAND</a></td>
<td>2.11.1</td>
<td><a href="https://github.com/ROCm/hipRAND"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-6.3.2/index.html">hipSOLVER</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-6.3.3/index.html">hipSOLVER</a></td>
<td>2.3.0</td>
<td><a href="https://github.com/ROCm/hipSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-6.3.2/index.html">hipSPARSE</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-6.3.3/index.html">hipSPARSE</a></td>
<td>3.1.2</td>
<td><a href="https://github.com/ROCm/hipSPARSE"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-6.3.2/index.html">hipSPARSELt</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-6.3.3/index.html">hipSPARSELt</a></td>
<td>0.2.2</td>
<td><a href="https://github.com/ROCm/hipSPARSELt"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.3.2/index.html">rocALUTION</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.3.3/index.html">rocALUTION</a></td>
<td>3.2.1</td>
<td><a href="https://github.com/ROCm/rocALUTION"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocBLAS/en/docs-6.3.2/index.html">rocBLAS</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocBLAS/en/docs-6.3.3/index.html">rocBLAS</a></td>
<td>4.3.0</td>
<td><a href="https://github.com/ROCm/rocBLAS"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocFFT/en/docs-6.3.2/index.html">rocFFT</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocFFT/en/docs-6.3.3/index.html">rocFFT</a></td>
<td>1.0.31</td>
<td><a href="https://github.com/ROCm/rocFFT"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocRAND/en/docs-6.3.2/index.html">rocRAND</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocRAND/en/docs-6.3.3/index.html">rocRAND</a></td>
<td>3.2.0</td>
<td><a href="https://github.com/ROCm/rocRAND"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-6.3.2/index.html">rocSOLVER</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-6.3.3/index.html">rocSOLVER</a></td>
<td>3.27.0</td>
<td><a href="https://github.com/ROCm/rocSOLVER"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-6.3.2/index.html">rocSPARSE</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-6.3.3/index.html">rocSPARSE</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/rocSPARSE"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocWMMA/en/docs-6.3.2/index.html">rocWMMA</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocWMMA/en/docs-6.3.3/index.html">rocWMMA</a></td>
<td>1.6.0</td>
<td><a href="https://github.com/ROCm/rocWMMA"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/Tensile/en/docs-6.3.2/src/index.html">Tensile</a></td>
<td><a href="https://rocm.docs.amd.com/projects/Tensile/en/docs-6.3.3/src/index.html">Tensile</a></td>
<td>4.42.0</td>
<td><a href="https://github.com/ROCm/Tensile"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -226,22 +232,22 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="4"></th>
<th rowspan="4">Primitives</th>
<td><a href="https://rocm.docs.amd.com/projects/hipCUB/en/docs-6.3.2/index.html">hipCUB</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipCUB/en/docs-6.3.3/index.html">hipCUB</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/hipCUB"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/hipTensor/en/docs-6.3.2/index.html">hipTensor</a></td>
<td><a href="https://rocm.docs.amd.com/projects/hipTensor/en/docs-6.3.3/index.html">hipTensor</a></td>
<td>1.4.0</td>
<td><a href="https://github.com/ROCm/hipTensor"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocPRIM/en/docs-6.3.2/index.html">rocPRIM</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocPRIM/en/docs-6.3.3/index.html">rocPRIM</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/rocPRIM"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocThrust/en/docs-6.3.2/index.html">rocThrust</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocThrust/en/docs-6.3.3/index.html">rocThrust</a></td>
<td>3.3.0</td>
<td><a href="https://github.com/ROCm/rocThrust"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -250,27 +256,27 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="7">Tools</th>
<th rowspan="7">System management</th>
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.2/index.html">AMD SMI</a></td>
<td><a href="https://rocm.docs.amd.com/projects/amdsmi/en/docs-6.3.3/index.html">AMD SMI</a></td>
<td>24.7.1</td>
<td><a href="https://github.com/ROCm/amdsmi"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.2/index.html">ROCm Data Center Tool</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rdc/en/docs-6.3.3/index.html">ROCm Data Center Tool</a></td>
<td>0.3.0</td>
<td><a href="https://github.com/ROCm/rdc"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocminfo/en/docs-6.3.2/index.html">rocminfo</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocminfo/en/docs-6.3.3/index.html">rocminfo</a></td>
<td>1.0.0</td>
<td><a href="https://github.com/ROCm/rocminfo"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocm_smi_lib/en/docs-6.3.2/index.html">ROCm SMI</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocm_smi_lib/en/docs-6.3.3/index.html">ROCm SMI</a></td>
<td>7.4.0</td>
<td><a href="https://github.com/ROCm/rocm_smi_lib"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-6.3.2/index.html">ROCmValidationSuite</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-6.3.3/index.html">ROCmValidationSuite</a></td>
<td>1.1.0</td>
<td><a href="https://github.com/ROCm/ROCmValidationSuite"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -279,38 +285,38 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="6"></th>
<th rowspan="6">Performance</th>
<td><a href="https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/docs-6.3.2/index.html">ROCm Bandwidth
<td><a href="https://rocm.docs.amd.com/projects/rocm_bandwidth_test/en/docs-6.3.3/index.html">ROCm Bandwidth
Test</a></td>
<td>1.4.0</td>
<td><a href="https://github.com/ROCm/rocm_bandwidth_test/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-compute/en/docs-6.3.2/index.html">ROCm Compute Profiler</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-compute/en/docs-6.3.3/index.html">ROCm Compute Profiler</a></td>
<td>3.0.0</td>
<td><a href="https://github.com/ROCm/rocprofiler-compute"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.3.2/index.html">ROCm Systems Profiler</a></td>
<td>0.1.0&nbsp;&Rightarrow;&nbsp;<a href="#rocm-systems-profiler-0-1-1">0.1.1</td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-systems/en/docs-6.3.3/index.html">ROCm Systems Profiler</a></td>
<td>0.1.1&nbsp;&Rightarrow;&nbsp;<a href="#rocm-systems-profiler-0-1-2">0.1.2</td>
<td><a href="https://github.com/ROCm/rocprofiler-systems"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.3.2/index.html">ROCProfiler</a></td>
<td>2.0.0&nbsp;&Rightarrow;&nbsp;<a href="#rocprofiler-2-0-0">2.0.0</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.3.3/index.html">ROCProfiler</a></td>
<td>2.0.0</td>
<td><a href="https://github.com/ROCm/ROCProfiler/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.3.2/index.html">ROCprofiler-SDK</a></td>
<td>0.5.0&nbsp;&Rightarrow;&nbsp;<a href="#rocprofiler-sdk-0-5-0">0.5.0</a></td>
<td><a href="https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/docs-6.3.3/index.html">ROCprofiler-SDK</a></td>
<td>0.5.0</td>
<td><a href="https://github.com/ROCm/rocprofiler-sdk/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr >
<td><a href="https://rocm.docs.amd.com/projects/roctracer/en/docs-6.3.2/index.html">ROCTracer</a></td>
<td><a href="https://rocm.docs.amd.com/projects/roctracer/en/docs-6.3.3/index.html">ROCTracer</a></td>
<td>4.1.0</td>
<td><a href="https://github.com/ROCm/ROCTracer/"><i
class="fab fa-github fa-lg"></i></a></td>
@@ -320,32 +326,32 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tr>
<th rowspan="5"></th>
<th rowspan="5">Development</th>
<td><a href="https://rocm.docs.amd.com/projects/HIPIFY/en/docs-6.3.2/index.html">HIPIFY</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIPIFY/en/docs-6.3.3/index.html">HIPIFY</a></td>
<td>18.0.0</td>
<td><a href="https://github.com/ROCm/HIPIFY/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-6.3.2/index.html">ROCdbgapi</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-6.3.3/index.html">ROCdbgapi</a></td>
<td>0.77.0</td>
<td><a href="https://github.com/ROCm/ROCdbgapi/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCmCMakeBuildTools/en/docs-6.3.2/index.html">ROCm CMake</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCmCMakeBuildTools/en/docs-6.3.3/index.html">ROCm CMake</a></td>
<td>0.14.0</td>
<td><a href="https://github.com/ROCm/rocm-cmake/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCgdb/en/docs-6.3.2/index.html">ROCm Debugger (ROCgdb)</a>
<td><a href="https://rocm.docs.amd.com/projects/ROCgdb/en/docs-6.3.3/index.html">ROCm Debugger (ROCgdb)</a>
</td>
<td>15.2</td>
<td><a href="https://github.com/ROCm/ROCgdb/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/rocr_debug_agent/en/docs-6.3.2/index.html">ROCr Debug Agent</a>
<td><a href="https://rocm.docs.amd.com/projects/rocr_debug_agent/en/docs-6.3.3/index.html">ROCr Debug Agent</a>
</td>
<td>2.0.3</td>
<td><a href="https://github.com/ROCm/rocr_debug_agent/"><i
@@ -355,13 +361,13 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tbody class="rocm-components-compilers">
<tr>
<th rowspan="2" colspan="2">Compilers</th>
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.3.2/index.html">HIPCC</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.3.3/index.html">HIPCC</a></td>
<td>1.1.1</td>
<td><a href="https://github.com/ROCm/llvm-project/"><i
class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.2/index.html">llvm-project</a></td>
<td><a href="https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/index.html">llvm-project</a></td>
<td>18.0.0</td>
<td><a href="https://github.com/ROCm/llvm-project/"><i
class="fab fa-github fa-lg"></i></a></td>
@@ -370,12 +376,12 @@ Click {fab}`github` to go to the component's source code on GitHub.
<tbody class="rocm-components-runtimes">
<tr>
<th rowspan="2" colspan="2">Runtimes</th>
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.3.2/index.html">HIP</a></td>
<td>6.3.1&nbsp;&Rightarrow;&nbsp;<a href="#hip-6-3-2">6.3.2</a></td>
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.3.3/index.html">HIP</a></td>
<td>6.3.2</td>
<td><a href="https://github.com/ROCm/HIP/"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.3.2/index.html">ROCr Runtime</a></td>
<td><a href="https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.3.3/index.html">ROCr Runtime</a></td>
<td>1.14.0</td>
<td><a href="https://github.com/ROCm/ROCR-Runtime/"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
@@ -387,112 +393,34 @@ Click {fab}`github` to go to the component's source code on GitHub.
The following sections describe key changes to ROCm components.
### **HIP** (6.3.2)
#### Added
* Tracking of Heterogeneous System Architecture (HSA) handlers:
- Adds an atomic counter to track the outstanding HSA handlers.
- Waits on CPU for the callbacks if the number exceeds the defined value.
* Codes to capture Architected Queueing Language (AQL) packets for HIP graph memory copy node between host and device. HIP enqueues AQL packets during graph launch.
* Control to use system pool implementation in runtime commands handling. By default, it is disabled.
* A new path to avoid `WaitAny` calls in `AsyncEventsLoop`. The new path is selected by default.
* Runtime control on decrement counter only if the event is popped. There is a new way to restore dead signals cleanup for the old path.
* A new logic in runtime to track the age of events from the kernel mode driver.
#### Optimized
* HSA callback performance. The HIP runtime creates and submits commands in the queue and interacts with HSA through a callback function. HIP waits for the CPU status from HSA to optimize the handling of events, profiling, commands, and HSA signals for higher performance.
* Runtime optimization which combines all logic of `WaitAny` in a single processing loop and avoids extra memory allocations or reference counting. The runtime won't spin on the CPU if all events are busy.
* Multi-threaded dispatches for performance improvement.
* Command submissions and processing between CPU and GPU by introducing a way to limit the software batch size.
* Switch to `std::shared_mutex` in book/keep logic in streams from multiple threads simultaneously, for performance improvement in specific customer applications.
* `std::shared_mutex` is used in memory object mapping, for performance improvement.
### **ROCm Systems Profiler** (0.1.2)
#### Resolved issues
* Race condition in multi-threaded producer/consumer scenario with `hipMallocFromPoolAsync`.
* Segmentation fault with `hipStreamLegacy` while using the API `hipStreamWaitEvent`.
* Usage of `hipStreamLegacy` in HIP event record.
* A soft hang in graph execution process from HIP user object. The fix handles the release of graph execution object properly considering synchronization on the device/stream. The user application now behaves the same with `hipUserObject` on both the AMD ROCm and NVIDIA CUDA platforms.
### **hipfort** (0.5.1)
#### Added
* Support for building with LLVM Flang.
#### Resolved issues
* Fixed the exported `hipfort::hipsparse` CMake target.
### **ROCm Systems Profiler** (0.1.1)
#### Resolved issues
* Fixed an error when building from source on some SUSE and RHEL systems when using the `ROCPROFSYS_BUILD_DYNINST` option.
### **ROCProfiler** (2.0.0)
#### Changed
* Replaced `CU_UTILIZATION` metric with `SIMD_UTILIZATION` for better accuracy.
#### Resolved issues
* Fixed the `VALUBusy` and `SALUBusy` activity metrics for accuracy on MI300.
### **ROCprofiler-SDK** (0.5.0)
#### Added
* Support for system-wide collection of SQ counters across all HSA processes.
#### Changed
* `rocprofiler_sample_device_counting_service` API updated to return counter output immediately, when called in synchronous mode.
* Fixed an error that prevented GPU hardware activity from being presented in certain workloads.
## ROCm known issues
ROCm known issues are noted on {fab}`github` [GitHub](https://github.com/ROCm/ROCm/labels/Verified%20Issue). For known
issues related to individual components, review the [Detailed component changes](#detailed-component-changes).
## ROCm resolved issues
### Zero value is displayed in ROCTx aggregated statistics
The following are previously known issues resolved in this release. For resolved issues related to
individual components, review the [Detailed component changes](#detailed-component-changes).
### TransferBench packages not functional
Issue with TransferBench packages not being compiled properly has been fixed. For more information, See [GitHub issue #4081](https://github.com/ROCm/ROCm/issues/4081).
### ROCm Compute Profiler CTest failure in CI
When running the ROCm Compute Profiler (`rocprof-compute`) CTest in the Azure CI environment, the
`rocprof-compute` execution test failed. This issue was due to an outdated test file that was not renamed
(`omniperf` to `rocprof-compute`), and the `ROCM_PATH` environment variable not being set in
the Azure CI environment, resulting in the tool being unable to extract chip information as expected.
This issue has been fixed in the ROCm 6.3.2 release. See [GitHub issue #4085](https://github.com/ROCm/ROCm/issues/4085).
### MIVisionX memory access fault in Canny edge detection
An issue where Canny edge detection kernels accessed out-of-bounds memory locations while
computing gradient intensities on edge pixels has been fixed. This issue was isolated to
Canny-specific use cases on Instinct MI300 series accelerators. See [GitHub issue #4086](https://github.com/ROCm/ROCm/issues/4086).
### AMD VCN instability with rocDecode
A firmware crash on gfx942 devices when AMD Video Core Next (VCN) was used for rocDecode operations has been resolved.
The ROCTx markers are standalone markers within the ROCProfiler-SDK library. Each marker reports only a single timestamp, which is recorded as the `start_timestamp` and `end_timestamp`. As a result, the value for aggregated statistics presented in `TotalDurationNs`, `maxNs`, and `minNs`, is zero. The zero value indicates that the actual execution time is not associated with the markers, which is an expected behavior. See [GitHub issue #4396](https://github.com/ROCm/ROCm/issues/4396).
## ROCm upcoming changes
The following changes to the ROCm software stack are anticipated for future releases.
### ROCTracer and ROCProfiler (rocprof and rocprofv2) deprecation
Development and support for ROCTracer and ROCProfiler (`rocprof` and `rocprofv2`) will phase out in favor of ROCprofiler-SDK (`rocprofv3`) in upcoming ROCm releases. Going forward, only critical defect fixes will be addressed for older versions of profiling tools and libraries. Upgrade to the latest version of ROCprofiler-SDK (`rocprofv3`) library to ensure continued support and access to new features.
### AMDGPU wavefront size compiler macro deprecation
The `__AMDGCN_WAVEFRONT_SIZE__` macro will be deprecated in an upcoming
release. It is recommended to remove any use of this macro. For more information, see [AMDGPU
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.2/LLVM/clang/html/AMDGPUSupport.html).
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/LLVM/clang/html/AMDGPUSupport.html).
### HIPCC Perl scripts deprecation

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.3.2"
<default revision="refs/tags/rocm-6.3.3"
remote="rocm-org"
sync-c="true"
sync-j="4" />

View File

@@ -62,7 +62,7 @@ additional licenses. Please review individual repositories for more information.
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [MIT](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm CMake](https://github.com/ROCm/rocm-cmake/) | [MIT](https://github.com/ROCm/rocm-cmake/blob/develop/LICENSE) |
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |

View File

@@ -1,120 +1,120 @@
ROCm Version,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#mi300x-past-60]_,Debian 12 [#mi300x-past-60]_,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,
Thrust,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
ROCm Version,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,
Thrust,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,
Tested user space versions,"6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_
10 Debian 12 [#single-node-past-60]_ Debian 12 [#mi300x-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#mi300x-past-60]_ Debian 12 [#single-node-past-60]_
11 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_
12 .. _architecture-support-compatibility-matrix-past-60: .. _architecture-support-compatibility-matrix-past-60:
13 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
14 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
15 CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA
16 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
17 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
18 .. _gpu-support-compatibility-matrix-past-60: .. _gpu-support-compatibility-matrix-past-60:
19 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
20 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
21 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
22 gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
23 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908
24
25 FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60: .. _framework-support-compatibility-matrix-past-60:
26 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
27 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
28 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
29 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
30
31 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60: .. _thirdpartycomms-support-compatibility-matrix-past-60:
32 `UCC <https://github.com/ROCm/ucc>`_ >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
33 `UCX <https://github.com/ROCm/ucx>`_ >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
34
35 THIRD PARTY ALGORITHM .. _thirdpartyalgorithm-support-compatibility-matrix-past-60: .. _thirdpartyalgorithm-support-compatibility-matrix-past-60:
36 Thrust 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
37 CUB 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
38
39 KMD & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60: .. _kfd-userspace-support-compatibility-matrix-past-60:
40 Tested user space versions 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
41
42 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60: .. _mllibs-support-compatibility-matrix-past-60:
43 :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
44 :doc:`MIGraphX <amdmigraphx:index>` 2.11.0 2.11.0 2.11.0 2.11.0 2.10.0 2.10.0 2.10.0 2.10.0 2.9.0 2.9.0 2.9.0 2.8.0 2.8.0
45 :doc:`MIOpen <miopen:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.2.0 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
46 :doc:`MIVisionX <mivisionx:index>` 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0 3.0.0 3.0.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0
47 :doc:`rocAL <rocal:index>` 2.1.0 2.1.0 2.1.0 2.1.0 2.0.0 2.0.0 2.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
48 :doc:`rocDecode <rocdecode:index>` 0.8.0 0.8.0 0.8.0 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.5.0 0.5.0 N/A N/A
49 :doc:`rocJPEG <rocjpeg:index>` 0.6.0 0.6.0 0.6.0 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
50 :doc:`rocPyDecode <rocpydecode:index>` 0.2.0 0.2.0 0.2.0 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0 N/A N/A N/A N/A N/A
51 :doc:`RPP <rpp:index>` 1.9.1 1.9.1 1.9.1 1.9.1 1.8.0 1.8.0 1.8.0 1.8.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0
52
53 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60: .. _commlibs-support-compatibility-matrix-past-60:
54 :doc:`RCCL <rccl:index>` 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
55
56 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60: .. _mathlibs-support-compatibility-matrix-past-60:
57 `half <https://github.com/ROCm/half>`_ 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0
58 :doc:`hipBLAS <hipblas:index>` 2.3.0 2.3.0 2.3.0 2.3.0 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.0.0 2.0.0
59 :doc:`hipBLASLt <hipblaslt:index>` 0.10.0 0.10.0 0.10.0 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.7.0 0.7.0 0.7.0 0.6.0 0.6.0
60 :doc:`hipFFT <hipfft:index>` 1.0.17 1.0.17 1.0.17 1.0.17 1.0.16 1.0.15 1.0.15 1.0.14 1.0.14 1.0.14 1.0.14 1.0.13 1.0.13
61 :doc:`hipfort <hipfort:index>` 0.5.1 0.5.1 0.5.0 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0
62 :doc:`hipRAND <hiprand:index>` 2.11.1 2.11.1 2.11.1 2.11.0 2.11.1 2.11.0 2.11.0 2.11.0 2.10.16 2.10.16 2.10.16 2.10.16 2.10.16
63 :doc:`hipSOLVER <hipsolver:index>` 2.3.0 2.3.0 2.3.0 2.3.0 2.2.0 2.2.0 2.2.0 2.2.0 2.1.1 2.1.1 2.1.0 2.0.0 2.0.0
64 :doc:`hipSPARSE <hipsparse:index>` 3.1.2 3.1.2 3.1.2 3.1.2 3.1.1 3.1.1 3.1.1 3.1.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
65 :doc:`hipSPARSELt <hipsparselt:index>` 0.2.2 0.2.2 0.2.2 0.2.2 0.2.1 0.2.1 0.2.1 0.2.1 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0
66 :doc:`rocALUTION <rocalution:index>` 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.0 3.2.0 3.2.0 3.1.1 3.1.1 3.1.1 3.0.3 3.0.3
67 :doc:`rocBLAS <rocblas:index>` 4.3.0 4.3.0 4.3.0 4.3.0 4.2.4 4.2.1 4.2.1 4.2.0 4.1.2 4.1.0 4.1.0 4.0.0 4.0.0
68 :doc:`rocFFT <rocfft:index>` 1.0.31 1.0.31 1.0.31 1.0.31 1.0.30 1.0.29 1.0.29 1.0.28 1.0.27 1.0.27 1.0.26 1.0.25 1.0.23
69 :doc:`rocRAND <rocrand:index>` 3.2.0 3.2.0 3.2.0 3.2.0 3.1.1 3.1.0 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.0 2.10.17
70 :doc:`rocSOLVER <rocsolver:index>` 3.27.0 3.27.0 3.27.0 3.27.0 3.26.2 3.26.0 3.26.0 3.26.0 3.25.0 3.25.0 3.25.0 3.24.0 3.24.0
71 :doc:`rocSPARSE <rocsparse:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.2 3.1.2 3.1.2 3.0.2 3.0.2
72 :doc:`rocWMMA <rocwmma:index>` 1.6.0 1.6.0 1.6.0 1.6.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0
73 :doc:`Tensile <tensile:src/index>` 4.42.0 4.42.0 4.42.0 4.42.0 4.41.0 4.41.0 4.41.0 4.41.0 4.40.0 4.40.0 4.40.0 4.39.0 4.39.0
74
75 PRIMITIVES .. _primitivelibs-support-compatibility-matrix-past-60: .. _primitivelibs-support-compatibility-matrix-past-60:
76 :doc:`hipCUB <hipcub:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
77 :doc:`hipTensor <hiptensor:index>` 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0 1.3.0 1.3.0 1.2.0 1.2.0 1.2.0 1.1.0 1.1.0
78 :doc:`rocPRIM <rocprim:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.2.2 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
79 :doc:`rocThrust <rocthrust:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
80
81 SUPPORT LIBS
82 `hipother <https://github.com/ROCm/hipother>`_ 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
83 `rocm-core <https://github.com/ROCm/rocm-core>`_ 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
84 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
85
86 SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60: .. _tools-support-compatibility-matrix-past-60:
87 :doc:`AMD SMI <amdsmi:index>` 24.7.1 24.7.1 24.7.1 24.7.1 24.6.3 24.6.3 24.6.3 24.6.2 24.5.1 24.5.1 24.4.1 23.4.2 23.4.2
88 :doc:`ROCm Data Center Tool <rdc:index>` 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0
89 :doc:`rocminfo <rocminfo:index>` 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
90 :doc:`ROCm SMI <rocm_smi_lib:index>` 7.4.0 7.4.0 7.4.0 7.4.0 7.3.0 7.3.0 7.3.0 7.3.0 7.2.0 7.0.0 7.0.0 6.0.2 6.0.0
91 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.0.60204 1.0.60202 1.0.60201 1.0.60200 1.0.60102 1.0.60101 1.0.60100 1.0.60002 1.0.60000
92
93 PERFORMANCE TOOLS
94 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0
95 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 3.0.0 3.0.0 3.0.0 3.0.0 2.0.1 2.0.1 2.0.1 2.0.1 N/A N/A N/A N/A N/A
96 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 0.1.2 0.1.1 0.1.0 0.1.0 1.11.2 1.11.2 1.11.2 1.11.2 N/A N/A N/A N/A N/A
97 :doc:`ROCProfiler <rocprofiler:index>` 2.0.60303 2.0.60302 2.0.60301 2.0.60300 2.0.60204 2.0.60202 2.0.60201 2.0.60200 2.0.60102 2.0.60101 2.0.60100 2.0.60002 2.0.60000
98 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 0.5.0 0.5.0 0.5.0 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 N/A N/A N/A N/A N/A
99 :doc:`ROCTracer <roctracer:index>` 4.1.60303 4.1.60302 4.1.60301 4.1.60300 4.1.60204 4.1.60202 4.1.60201 4.1.60200 4.1.60102 4.1.60101 4.1.60100 4.1.60002 4.1.60000
100
101 DEVELOPMENT TOOLS
102 :doc:`HIPIFY <hipify:index>` 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
103 :doc:`ROCm CMake <rocmcmakebuildtools:index>` 0.14.0 0.14.0 0.14.0 0.14.0 0.13.0 0.13.0 0.13.0 0.13.0 0.12.0 0.12.0 0.12.0 0.11.0 0.11.0
104 :doc:`ROCdbgapi <rocdbgapi:index>` 0.77.0 0.77.0 0.77.0 0.77.0 0.76.0 0.76.0 0.76.0 0.76.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0
105 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` 15.2.0 15.2.0 15.2.0 15.2.0 14.2.0 14.2.0 14.2.0 14.2.0 14.1.0 14.1.0 14.1.0 13.2.0 13.2.0
106 `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.3.0 0.3.0 0.3.0 N/A N/A
107 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3
108
109 COMPILERS .. _compilers-support-compatibility-matrix-past-60: .. _compilers-support-compatibility-matrix-past-60:
110 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ N/A N/A N/A N/A N/A N/A N/A N/A 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0
111 :doc:`hipCC <hipcc:index>` 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
112 `Flang <https://github.com/ROCm/flang>`_ 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
113 :doc:`llvm-project <llvm-project:index>` 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
114 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
115
116 RUNTIMES .. _runtime-support-compatibility-matrix-past-60: .. _runtime-support-compatibility-matrix-past-60:
117 :doc:`AMD CLR <hip:understand/amd_clr>` 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
118 :doc:`HIP <hip:index>` 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
119 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
120 :doc:`ROCr Runtime <rocr-runtime:index>` 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -23,7 +23,7 @@ compatibility and system requirements.
.. container:: format-big-table
.. csv-table::
:header: "ROCm Version", "6.3.2", "6.3.1", "6.2.0"
:header: "ROCm Version", "6.3.3", "6.3.2", "6.2.0"
:stub-columns: 1
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04
@@ -32,8 +32,8 @@ compatibility and system requirements.
,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9"
,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5"
,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.9 [#mi300x]_
,Debian 12 [#mi300x]_,Debian 12 [#mi300x]_,
,Azure Linux 3.0 [#mi300x]_,,
,Debian 12 [#single-node]_,Debian 12 [#single-node]_,
,Azure Linux 3.0 [#mi300x]_,Azure Linux 3.0 [#mi300x]_,
,.. _architecture-support-compatibility-matrix:,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2
@@ -83,7 +83,7 @@ compatibility and system requirements.
:doc:`hipBLAS <hipblas:index>`,2.3.0,2.3.0,2.2.0
:doc:`hipBLASLt <hipblaslt:index>`,0.10.0,0.10.0,0.8.0
:doc:`hipFFT <hipfft:index>`,1.0.17,1.0.17,1.0.14
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.0,0.4.0
:doc:`hipfort <hipfort:index>`,0.5.1,0.5.1,0.4.0
:doc:`hipRAND <hiprand:index>`,2.11.1,2.11.1,2.11.0
:doc:`hipSOLVER <hipsolver:index>`,2.3.0,2.3.0,2.2.0
:doc:`hipSPARSE <hipsparse:index>`,3.1.2,3.1.2,3.1.1
@@ -104,8 +104,8 @@ compatibility and system requirements.
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.0.1
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42133,6.2.41133
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.2,6.3.1,6.2.0
`hipother <https://github.com/ROCm/hipother>`_,6.3.42134,6.3.42134,6.2.41133
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.3.3,6.3.2,6.2.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,20240607.1.4246
,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,
@@ -118,37 +118,39 @@ compatibility and system requirements.
PERFORMANCE TOOLS,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.0.0,3.0.0,2.0.1
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.1,0.1.0,1.11.2
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60302,2.0.60301,2.0.60200
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,0.1.2,0.1.1,1.11.2
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60303,2.0.60302,2.0.60200
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.5.0,0.5.0,0.4.0
:doc:`ROCTracer <roctracer:index>`,4.1.60302,4.1.60301,4.1.60200
:doc:`ROCTracer <roctracer:index>`,4.1.60303,4.1.60302,4.1.60200
,,,
DEVELOPMENT TOOLS,,,
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24232
:doc:`HIPIFY <hipify:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24232
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.13.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.0,0.77.0,0.76.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,14.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.3,2.0.3,2.0.3
,,,
COMPILERS,.. _compilers-support-compatibility-matrix:,..
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.24491,18.0.0.24232
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.24491,18.0.0.24232
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.24491,18.0.0.24232
`Flang <https://github.com/ROCm/flang>`_,18.0.0.25012,18.0.0.25012,18.0.0.24232
:doc:`llvm-project <llvm-project:index>`,18.0.0.25012,18.0.0.25012,18.0.0.24232
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,18.0.0.25012,18.0.0.25012,18.0.0.24232
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,..
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42133,6.2.41133
:doc:`HIP <hip:index>`,6.3.42134,6.3.42133,6.2.41133
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.3.42134,6.3.42134,6.2.41133
:doc:`HIP <hip:index>`,6.3.42134,6.3.42134,6.2.41133
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.14.0,1.14.0,1.13.0
.. rubric:: Footnotes
.. [#mi300x] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
.. [#mi300x] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#mi300_620] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#kfd_support] ROCm provides forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software for +/- 2 releases. These are the compatibility combinations that are currently supported.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
@@ -215,7 +217,8 @@ Expand for full historical view of:
.. rubric:: Footnotes
.. [#mi300x-past-60] Oracle Linux, Debian, and Azure Linux are supported only on AMD Instinct MI300X.
.. [#mi300x-past-60] Oracle Linux and Azure Linux are supported only on AMD Instinct MI300X.
.. [#single-node-past-60] Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_621-past-60] **For ROCm 6.2.1** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].

View File

@@ -56,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
associated inventories are validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_.
Click the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
@@ -77,26 +77,26 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-6c798857b2c9526b44ba535710b93a1737546acea79b53a93c646195c272f1d5"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-a09b21248133876fc8912a5ff4e6ee2c8d62b14120313e426b3dadda5702713d"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -107,11 +107,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-963187534467f0f9da77996762fc1d112a6faa5372277c348a505533e7876ec8"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9.18 <https://www.python.org/downloads/release/python-3918/>`_
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -122,11 +122,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-952f2621bd2bf3078bef19061e05b209105a82a7908e7e6cdf85014938a4d93a"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -137,7 +137,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-a2fe20e170feb9e05da3e5728bb98e40d08567e137be8e6ba797962ed2852608"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
@@ -152,7 +152,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-7f231937c897cca5f89e360be33c70a2017d60f62d1fbe81292be48c15fe345b"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
@@ -167,14 +167,14 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-616a47758004f91951e2da6c1fe291f903de65a7b2318d4b18359b48fe3032f4"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `2.19.0 <https://github.com/tensorflow/tensorboard/tree/2.19>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
@@ -182,7 +182,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-a2cfb365aea58b84595e241ffdb0d5ef3e6566e98c10b5499f4aa29983a74ea2"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04

View File

@@ -54,7 +54,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click
validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -68,47 +68,47 @@ the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.17.0-dev/images/sha256-804121ee4985718277ba7dcec53c57bdade130a1ef42f544b6c48090ad379c17"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.17-dev/images/sha256-fd2653f436880366cc874aa24264ca9dabd892d76ccb63fb807debba459bcaaf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.17.0-dev/images/sha256-776837ffa945913f6c466bfe477810a11453d21d5b6afb200be1c36e48fbc08e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.17-dev/images/sha256-8a5eb7443798935dd269575e2abae847b702e1dfb06766ab84f081a6314d8b95"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `TensorBoard 2.17.0 <https://github.com/tensorflow/tensorboard/tree/2.17.0>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.16.2-dev/images/sha256-c793e1483e30809c3c28fc5d7805bedc033c73da224f839fff370717cb100944"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.16-dev/images/sha256-8fc939b10cdd6d2b11407474880d4c8ab2b52ab6e2d1743c921fc2adbfd0422f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.16.0-dev/images/sha256-263e78414ae85d7bcd52a025a94131d0a279872a45ed632b9165336dfdcd4443"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.16-dev/images/sha256-a4cc6ab23d59fdf5459ceac1f0a603e6c16ae7f885d30e42c0c2b3ac60c2ad10"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.15.0-dev/images/sha256-479046a8477ca701a9494a813ab17e8ab4f6baa54641e65dc8d07629f1e6a880"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.15-dev/images/sha256-60887c488421184adcb60b9ed4f72a8bd7bdb64d238e50943ca7cbde38e4aa48"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.15.2 <https://github.com/tensorflow/tensorboard/tree/2.15.2>`_
Critical ROCm libraries for TensorFlow

View File

@@ -32,7 +32,7 @@ architecture.
* [AMD Instinct™ MI250 microarchitecture](./gpu-arch/mi250.md)
* [AMD Instinct MI200/CDNA2 ISA](https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf)
* [White paper](https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf)
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf)
* [Performance counters](./gpu-arch/mi300-mi200-performance-counters.rst)
:::
@@ -45,7 +45,7 @@ architecture.
* [AMD Instinct™ MI100 microarchitecture](./gpu-arch/mi100.md)
* [AMD Instinct MI100/CDNA1 ISA](https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf)
* [White paper](https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf)
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf)
:::
@@ -55,7 +55,6 @@ architecture.
* [AMD RDNA3 ISA](https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf)
* [AMD RDNA2 ISA](https://www.amd.com/system/files/TechDocs/rdna2-shader-instruction-set-architecture.pdf)
* [AMD RDNA ISA](https://www.amd.com/system/files/TechDocs/rdna-shader-instruction-set-architecture.pdf)
* [AMD RDNA Architecture White Paper](https://www.amd.com/system/files/documents/rdna-whitepaper.pdf)
:::

View File

@@ -30,15 +30,15 @@ if os.environ.get("READTHEDOCS", "") == "True":
project = "ROCm Documentation"
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
version = "6.3.2"
release = "6.3.2"
version = "6.3.3"
release = "6.3.3"
setting_all_article_info = True
all_article_info_os = ["linux", "windows"]
all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux"], "date": "2025-01-28"},
{"file": "about/release-notes", "os": ["linux"], "date": "2025-02-19"},
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/tensorflow-compatibility", "os": ["linux"]},
@@ -49,6 +49,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},

View File

@@ -10,49 +10,22 @@ LLM inference performance validation on AMD Instinct MI300X
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
* Tuning files (in CSV format)
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. hlist::
:columns: 6
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3.1 405B
* Llama 2 7B
* Llama 2 70B
* Mixtral 8x7B
* Mixtral 8x22B
* Mixtral 7B
* Qwen2 7B
* Qwen2 72B
* JAIS 13B
* JAIS 30B
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
.. _vllm-benchmark-vllm:
@@ -91,9 +64,9 @@ MI300X accelerator with the prebuilt vLLM Docker image.
.. code-block:: shell
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
Once setup is complete, you can choose between two options to reproduce the
Once the setup is complete, choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
@@ -130,45 +103,89 @@ Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
.. _vllm-benchmark-mad-models:
Available models
----------------
.. hlist::
:columns: 3
.. list-table::
:header-rows: 1
:widths: 2, 3
* ``pyt_vllm_llama-3.1-8b``
* - Model name
- Tag
* ``pyt_vllm_llama-3.1-70b``
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
- ``pyt_vllm_llama-3.1-8b``
* ``pyt_vllm_llama-3.1-405b``
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
- ``pyt_vllm_llama-3.1-70b``
* ``pyt_vllm_llama-2-7b``
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
- ``pyt_vllm_llama-3.1-405b``
* ``pyt_vllm_llama-2-70b``
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
* ``pyt_vllm_mixtral-8x7b``
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
- ``pyt_vllm_llama-2-7b``
* ``pyt_vllm_mixtral-8x22b``
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
- ``pyt_vllm_llama-2-70b``
* ``pyt_vllm_mistral-7b``
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x7b``
* ``pyt_vllm_qwen2-7b``
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x22b``
* ``pyt_vllm_qwen2-72b``
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
- ``pyt_vllm_mistral-7b``
* ``pyt_vllm_jais-13b``
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
- ``pyt_vllm_qwen2-7b``
* ``pyt_vllm_jais-30b``
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
- ``pyt_vllm_qwen2-72b``
* ``pyt_vllm_llama-3.1-8b_fp8``
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
- ``pyt_vllm_jais-13b``
* ``pyt_vllm_llama-3.1-70b_fp8``
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
- ``pyt_vllm_jais-30b``
* ``pyt_vllm_llama-3.1-405b_fp8``
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
- ``pyt_vllm_dbrx-instruct``
* ``pyt_vllm_mixtral-8x7b_fp8``
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
- ``pyt_vllm_gemma-2-27b``
* ``pyt_vllm_mixtral-8x22b_fp8``
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
- ``pyt_vllm_deepseek-moe-16b-chat``
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-70b_fp8``
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-405b_fp8``
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x7b_fp8``
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x22b_fp8``
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
- ``pyt_vllm_mistral-7b_fp8``
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
- ``pyt_vllm_dbrx_fp8``
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
- ``pyt_vllm_command-r-plus_fp8``
.. _vllm-benchmark-standalone:
@@ -176,13 +193,13 @@ Standalone benchmarking
=======================
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
as shown in the following snippet.
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
@@ -224,8 +241,8 @@ See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. _vllm-benchmark-standalone-options:
Options
-------
Options and available models
----------------------------
.. list-table::
:header-rows: 1
@@ -248,72 +265,100 @@ Options
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
- ``meta-llama/Llama-3.1-8B-Instruct``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
- ``meta-llama/Llama-3.1-70B-Instruct``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
- ``meta-llama/Llama-3.1-405B-Instruct``
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
* -
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- Llama 2 70B
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
* -
- ``Qwen/Qwen2-72B-Instruct``
- Qwen2 72B
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
* -
- ``core42/jais-13b-chat``
- JAIS 13B
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$model_repo``
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
- Llama 3.1 8B
* - (``float8``)
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
- Llama 3.1 70B
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
* -
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
- Llama 3.1 405B
- ``databricks/dbrx-instruct``
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
* -
- ``google/gemma-2-27b``
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
* -
- ``CohereForAI/c4ai-command-r-plus-08-2024``
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
* -
- ``deepseek-ai/deepseek-moe-16b-chat``
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
* - ``$model_repo``
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
* - (``float8``)
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- Mixtral 8x7B
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- Mixtral 8x22B
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mistral-7B-v0.1-FP8-KV``
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
* -
- ``amd/dbrx-instruct-FP8-KV``
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
* -
- ``amd/c4ai-command-r-plus-FP8-KV``
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
* - ``$num_gpu``
- 1 or 8
@@ -335,34 +380,34 @@ options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
@@ -394,7 +439,7 @@ Further reading
MI300X accelerators, see :doc:`../../system-optimization/mi300x`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Using ROCm for AI <../index>`.
:doc:`Running models from Hugging Face <hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
@@ -402,6 +447,32 @@ Further reading
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
- To compare with the previous version of the ROCm vLLM Docker image for performance validation, refer to
`LLM inference performance validation on AMD Instinct MI300X (ROCm 6.2.0) <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_.
Previous versions
=================
This table lists previous versions of the ROCm vLLM Docker image for inference
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.2.1
- 0.6.4
- 2.5.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
* - 6.2.0
- 0.4.3
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_

View File

@@ -0,0 +1,547 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
designed to enable efficient training of large-scale language models on AMD
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
enhanced scalability, performance, and resource utilization for AI workloads.
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
DeepSeek, enabling developers to train next-generation AI models more
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
AMD provides a ready-to-use Docker image for MI300X accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
.. _mi300x-amd-megatron-lm-training:
Environment setup
=================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:v25.3
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.3
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of Megatron-LM from the `release branch <https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3>`_.
.. _amd-megatron-lm-environment-setup:
Configuration scripts
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
script in the ``examples/llama`` directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/llama>`__.
Likewise, if you're working with Llama 3 or Llama 3.1, then use ``train_llama3.sh`` and update
the configuration script accordingly.
.. tab-item:: DeepSeek V2
:sync: deepseek
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/deepseek_v2>`__
and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
To avoid connectivity issues in multi-node deployments, ensure the correct network interface
is set in your training scripts.
1. Run the following command (outside the container) to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH=${DATA_PATH:-"/data/bookcorpus_text_sentence"} # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
.. tab-item:: DeepSeek V2
:sync: deepseek
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
.. tab-set::
.. tab-item:: Llama
:sync: llama
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
.. tab-item:: DeepSeek V2
:sync: deepseek
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
Multi-node training
^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
Start training on AMD Instinct accelerators
===========================================
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD Megatron-LM Docker image.
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
To run training on a single node, navigate to the Megatron-LM folder and use the
following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 bash examples/llama/train_llama3.sh
.. tab-item:: Multi-node training
:sync: multi-node
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
.. tab-item:: DeepSeek V2
:sync: deepseek
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
.. code-block:: shell
cd /workspace/Megatron-LM
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none bash examples/deepseek_v2/train_deepseekv2.sh
Key options
-----------
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the following sets of variables:
.. tab-set::
.. tab-item:: Llama
:sync: llama
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for BP16 (default) or ``1`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP``
Tensor parallel (``1``, ``2``, ``4``, ``8``).
``SEQ_LENGTH``
Input sequence length.
.. tab-item:: DeepSeek V2
:sync: deepseek
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``GBS``
Global batch size.
Benchmarking examples
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi-node training
:sync: multi-node
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
This table lists previous versions of the ROCm Megatron-LM Docker image for training
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- Megatron-LM version
- PyTorch version
- Resources
* - 6.1
- 24.12-dev
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/rocm-for-ai/train-a-model.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_

View File

@@ -0,0 +1,341 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.3``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 3.1 8B
* Llama 3.1 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.3
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.3
3. Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__ repository and navigate to the benchmark scripts directory.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch-train
Prepare training datasets and dependencies
------------------------------------------
The following benchmarking examples may require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
Start training on AMD Instinct accelerators
===========================================
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD PyTorch training Docker image.
Once your environment is set up, use the following commands and examples to start benchmarking.
Pretraining
-----------
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* - ``$datatype``
- FP8 or BF16
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- Llama-3.1-8B
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- Llama-3.1-70B
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- Flux
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Fine-tuning
-----------
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 2 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Benchmarking examples
---------------------
Here are some examples of how to use the command.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B

View File

@@ -19,6 +19,10 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
In this guide, you'll learn about:
- :doc:`Training a model <train-a-model>`
- Training a model
- :doc:`Scale model training <scale-model-training>`
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
- :doc:`Scaling model training <scale-model-training>`

View File

@@ -0,0 +1,130 @@
:orphan:
.. meta::
:description: Prerequisite system validation before using ROCm for AI.
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax
.. _train-a-model-system-validation:
**********************************************
Prerequisite system validation before training
**********************************************
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test for multi-node setups
-----------------------------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pretraining, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800

View File

@@ -1,503 +0,0 @@
.. meta::
:description: How to train a model using ROCm Megatron-LM
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
**************************************
Training a model with ROCm Megatron-LM
**************************************
.. _amd-megatron-lm:
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
following software to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.1 |
+--------------------------+--------------------------------+
| PyTorch | 2.4.0 |
+--------------------------+--------------------------------+
| PyTorch Lightning | 2.4.0 |
+--------------------------+--------------------------------+
| Megatron Core | 0.9.0 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.5.0 |
+--------------------------+--------------------------------+
| Flash Attention | v2.6 |
+--------------------------+--------------------------------+
| Transformers | 4.44.0 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 2
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
Prerequisite system validation steps
====================================
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test
-------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800
.. _mi300x-amd-megatron-lm-training:
Start training on MI300X accelerators
=====================================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image and required packages
-----------------------------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:24.12-dev
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/Megatron-LM
cd Megatron-LM
.. note::
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
Checking out this specific commit is recommended for a stable and reproducible environment.
.. code-block:: shell
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
Prepare training datasets
-------------------------
If you already have the preprocessed data, you can skip this section.
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
end-of-document token, remove sentence splitting, and use the tokenizer type.
.. code-block:: shell
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-gpt2 \
--vocab-file gpt2-vocab.json \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--append-eod
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
``my-gpt2_text_document.idx``.
.. image:: ../../../data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
:width: 800
.. _amd-megatron-lm-environment-setup:
Environment setup
-----------------
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
``train_llama3.sh`` and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
1. Run the following command to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
You can use either mock data or real data for training.
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: shell
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
.. code-block:: shell
--data-path $DATA_PATH
Ensure that the files are accessible inside the Docker container.
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
.. code-block:: shell
--mock-data
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
Run benchmark tests
-------------------
.. note::
If you're running **multi node training**, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama2.sh
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama3.sh
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the same set of variables:
+--------------------------+-----------------------+-----------------------+
| Name | Options | Description |
+==========================+=======================+=======================+
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
| | | log |
| | | |
| | | 1: enable training |
| | | log |
+--------------------------+-----------------------+-----------------------+
| ``MBS`` | | Micro batch size |
+--------------------------+-----------------------+-----------------------+
| ``BS`` | | Batch size |
+--------------------------+-----------------------+-----------------------+
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
+--------------------------+-----------------------+-----------------------+
| ``TE_FP8`` | 0 or 1 | Datatype. |
| | | If it is set to 1, |
| | | FP8. |
| | | |
| | | If it is set to 0. |
| | | BP16 |
+--------------------------+-----------------------+-----------------------+
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
| | | enable torch.compile. |
| | | |
| | | If it is set to 0. |
| | | Disable torch.compile |
| | | (default) |
+--------------------------+-----------------------+-----------------------+
| ``SEQ_LENGTH`` | | Input sequence length |
+--------------------------+-----------------------+-----------------------+
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
| | | enable gemm tuning. |
| | | |
| | | If it is set to 0, |
| | | disable gemm tuning |
+--------------------------+-----------------------+-----------------------+
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
| | | attention |
| | | |
| | | 1: enable flash |
| | | attention |
+--------------------------+-----------------------+-----------------------+
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
| | | profiling |
| | | |
| | | 1: enable torch |
| | | profiling |
+--------------------------+-----------------------+-----------------------+
| ``MODEL_SIZE`` | | The size of the mode: |
| | | 7B/70B, etc. |
+--------------------------+-----------------------+-----------------------+
| ``TOTAL_ITERS`` | | Total number of |
| | | iterations |
+--------------------------+-----------------------+-----------------------+
| ``transformer-impl`` | transformer_engine or | Enable transformer |
| | local | engine by default |
+--------------------------+-----------------------+-----------------------+
Benchmarking examples
^^^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Single node training
:sync: single
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi node training
:sync: multi
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800

View File

@@ -32,6 +32,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L1 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- MI325X
- CDNA3
@@ -47,6 +49,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI300X
- CDNA3
@@ -62,6 +66,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI300A
- CDNA3
@@ -77,6 +83,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI250X
- CDNA2
@@ -92,6 +100,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI250
- CDNA2
@@ -107,6 +117,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI210
- CDNA2
@@ -122,6 +134,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI100
- CDNA
@@ -137,6 +151,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256 VGPR and 256 AccVGPR
- 12.5
- 9
- 0
*
- MI60
- GCN5.1
@@ -152,6 +168,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI50 (32GB)
- GCN5.1
@@ -167,6 +185,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI50 (16GB)
- GCN5.1
@@ -182,6 +202,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI25
- GCN5.0
@@ -197,6 +219,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI8
- GCN3.0
@@ -212,6 +236,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 4 CUs
- 256
- 12.5
- 8
- 0
*
- MI6
- GCN4.0
@@ -227,6 +253,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 4 CUs
- 256
- 12.5
- 8
- 0
.. tab-item:: AMD Radeon PRO GPUs
@@ -238,6 +266,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- Model
- Architecture
- LLVM target name
- VRAM (GiB)
- Compute Units
- Wavefront Size
@@ -250,6 +279,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L0 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon PRO V710
- RDNA3
@@ -266,6 +297,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7900 Dual Slot
- RDNA3
@@ -282,6 +315,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7900
- RDNA3
@@ -298,6 +333,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7800
- RDNA3
@@ -314,6 +351,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7700
- RDNA3
@@ -330,6 +369,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W6800
- RDNA2
@@ -346,6 +387,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon PRO W6600
- RDNA2
@@ -362,6 +405,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon PRO V620
- RDNA2
@@ -378,6 +423,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon Pro W5500
- RDNA
@@ -394,6 +441,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 20
- 10
- 1
*
- Radeon Pro VII
- GCN5.1
@@ -410,6 +459,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
.. tab-item:: AMD Radeon GPUs
@@ -433,6 +484,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L0 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon RX 7900 XTX
- RDNA3
@@ -449,6 +502,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7900 XT
- RDNA3
@@ -465,6 +520,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7900 GRE
- RDNA3
@@ -481,6 +538,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7800 XT
- RDNA3
@@ -497,6 +556,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7700 XT
- RDNA3
@@ -513,6 +574,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7600
- RDNA3
@@ -529,6 +592,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 11
- 0
*
- Radeon RX 6950 XT
- RDNA2
@@ -545,6 +610,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6900 XT
- RDNA2
@@ -561,6 +628,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6800 XT
- RDNA2
@@ -577,6 +646,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6800
- RDNA2
@@ -593,6 +664,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6750 XT
- RDNA2
@@ -609,6 +682,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6700 XT
- RDNA2
@@ -625,6 +700,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6700
- RDNA2
@@ -641,6 +718,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6650 XT
- RDNA2
@@ -657,6 +736,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6600 XT
- RDNA2
@@ -673,6 +754,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6600
- RDNA2
@@ -689,6 +772,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon VII
- GCN5.1
@@ -705,12 +790,14 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
Glossary
========
For more information about the terms used, see the
:ref:`specific documents and guides <gpu-arch-documentation>`, or
:ref:`specific documents and guides <gpu-arch-documentation>`, or
:doc:`Understanding the HIP programming model<hip:understand/programming_model>`.
**LLVM target name**
@@ -800,6 +887,26 @@ Purpose Vector Registers, used specifically in matrix instructions.
Size of the Scalar General Purpose Register (SGPR) file. Holds data used in
scalar instructions.
**GFXIP**
GFXIP (Graphics IP) is a versioning system used by AMD to identify the GPU
architecture and its instruction set. It helps categorize different generations
of GPUs and their feature sets.
**GFXIP major version**
Defines the GPU's core instruction set and architecture, which determines
compatibility with software stacks such as HIP and OpenCL. For example, a GFXIP
11 major version corresponds to the RDNA 3 (Navi 3x) architecture, influencing
driver support and available compute features.
**GFXIP minor version**
Represents specific variations within a GFXIP major version and affects feature sets,
optimizations, and driver behavior in software stacks such as HIP and OpenCL. Different
GPU models within the same major version can have unique capabilities, impacting
performance and supported instructions.
**GCD**
Graphics Compute Die.

View File

@@ -10,6 +10,7 @@
| Version | Release date |
| ------- | ------------ |
| [6.3.3](https://rocm.docs.amd.com/en/docs-6.3.3/) | February 19, 2025 |
| [6.3.2](https://rocm.docs.amd.com/en/docs-6.3.2/) | January 28, 2025 |
| [6.3.1](https://rocm.docs.amd.com/en/docs-6.3.1/) | December 20, 2024 |
| [6.3.0](https://rocm.docs.amd.com/en/docs-6.3.0/) | December 3, 2024 |

View File

@@ -40,11 +40,13 @@ subtrees:
title: Training
subtrees:
- entries:
- file: how-to/rocm-for-ai/training/train-a-model.rst
title: Train a model
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
title: Train a model with Megatron-LM
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
title: Train a model with PyTorch
- file: how-to/rocm-for-ai/training/scale-model-training.rst
title: Scale model training
- file: how-to/rocm-for-ai/fine-tuning/index.rst
title: Fine-tuning LLMs
subtrees:
@@ -152,7 +154,7 @@ subtrees:
- entries:
- url: https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
title: AMD Instinct MI200/CDNA2 ISA
- url: https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
- url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
title: White paper
- file: conceptual/gpu-arch/mi100.md
title: MI100 microarchitecture
@@ -160,7 +162,7 @@ subtrees:
- entries:
- url: https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
title: AMD Instinct MI100/CDNA1 ISA
- url: https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
- url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
title: White paper
- file: conceptual/iommu.rst
title: Input-Output Memory Management Unit (IOMMU)

View File

@@ -1,3 +1,3 @@
rocm-docs-core==1.15.0
rocm-docs-core==1.17.0
sphinx-reredirects
sphinx-sitemap

View File

@@ -37,7 +37,7 @@ click==8.1.7
# sphinx-external-toc
comm==0.2.2
# via ipykernel
cryptography==43.0.3
cryptography==44.0.1
# via pyjwt
debugpy==1.8.12
# via ipykernel
@@ -187,7 +187,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.15.0
rocm-docs-core==1.17.0
# via -r requirements.in
rpds-py==0.22.3
# via

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.3.2"
<default revision="refs/tags/rocm-6.3.3"
remote="rocm-org"
sync-c="true"
sync-j="4" />

View File

@@ -0,0 +1,47 @@
# ROCm 6.3.3 release notes
The release notes provide a summary of notable changes since the previous ROCm release.
- [Release highlights](#release-highlights)
- [Operating system and hardware support changes](#operating-system-and-hardware-support-changes)
- [ROCm components versioning](#rocm-components)
- [Detailed component changes](#detailed-component-changes)
- [ROCm known issues](#rocm-known-issues)
- [ROCm upcoming changes](#rocm-upcoming-changes)
```{note}
If youre using Radeon™ PRO or Radeon GPUs in a workstation setting with a display connected, see the [Use ROCm on Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html)
documentation to verify compatibility and system requirements.
```
## Release highlights
The following are notable new features and improvements in ROCm 6.3.3. For changes to individual components, see
[Detailed component changes](#detailed-component-changes).
### ROCm Offline Installer Creator updates
The ROCm Offline Installer Creator 6.3.3 adds a new Post-Install Options menu, which includes a new ``udev`` option for adding GPU resources access for all users. It also moves the user-specific GPU access option (for the ``video,render`` group) from the Driver Options menu to the Post-Install Options menu. See the [ROCm Offline Installer Creator](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/rocm-offline-installer.html#post-install-options-menu) documentation for more information.
### ROCm documentation updates
ROCm documentation continues to be updated to provide clearer and more comprehensive guidance for a wider variety of user needs and use cases.
* [Tutorials for AI developers](https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/) have been added. These tutorials are Jupyter notebook-based, easy-to-follow documents. They are ideal for AI developers who want to learn about specific topics, including inference, fine-tuning, and training.
* The [LLM inference performance validation guide for AMD Instinct MI300X](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html)
now includes additional models for performance benchmarking. The accompanying ROCm vLLM Docker has been upgraded to ROCm 6.3.1.
* The HIP documentation has been updated with new resources for developers. To learn more about concurrency, parallelism, and stream management on devices and multiple GPUs, see [Asynchronous concurrent execution](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html)
* The following HIP documentation topics have been updated:
- [Virtual memory management](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/memory_management/virtual_memory.html)
- [Programming for HIP runtime compiler (RTC)](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_rtc.html)
- [HIP porting guide](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_guide.html)
- [Porting CUDA driver API](https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_porting_driver_api.html)
- [CUDA to HIP API function comparison](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/api_syntax.html)

View File

@@ -0,0 +1,8 @@
## ROCm known issues
ROCm known issues are noted on {fab}`github` [GitHub](https://github.com/ROCm/ROCm/labels/Verified%20Issue). For known
issues related to individual components, review the [Detailed component changes](#detailed-component-changes).
### Zero value is displayed in ROCTx aggregated statistics
The ROCTx markers are standalone markers within the ROCProfiler-SDK library. Each marker reports only a single timestamp, which is recorded as the `start_timestamp` and `end_timestamp`. As a result, the value for aggregated statistics presented in `TotalDurationNs`, `maxNs`, and `minNs`, is zero. The zero value indicates that the actual execution time is not associated with the markers, which is an expected behavior.

View File

@@ -0,0 +1,7 @@
## Operating system and hardware support changes
Operating system and hardware support remain unchanged in this release.
See the [Compatibility
matrix](https://rocm.docs.amd.com/en/docs-6.3.3/compatibility/compatibility-matrix.html)
for more information about operating system and hardware compatibility.

View File

@@ -0,0 +1,17 @@
## ROCm upcoming changes
The following changes to the ROCm software stack are anticipated for future releases.
### ROCTracer and ROCProfiler (rocprof and rocprofv2) deprecation
Development and support for ROCTracer and ROCProfiler (`rocprof` and `rocprofv2`) will phase out in favor of ROCprofiler-SDK (`rocprofv3`) in upcoming ROCm releases. Going forward, only critical defect fixes will be addressed for older versions of profiling tools and libraries. Upgrade to the latest version of ROCprofiler-SDK (`rocprofv3`) library to ensure continued support and access to new features.
### AMDGPU wavefront size compiler macro deprecation
The `__AMDGCN_WAVEFRONT_SIZE__` macro will be deprecated in an upcoming
release. It is recommended to remove any use of this macro. For more information, see [AMDGPU
support](https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.3.3/LLVM/clang/html/AMDGPUSupport.html).
### HIPCC Perl scripts deprecation
The HIPCC Perl scripts (`hipcc.pl` and `hipconfig.pl`) will be removed in an upcoming release.

View File

@@ -0,0 +1,77 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-6.3.3"
remote="rocm-org"
sync-c="true"
sync-j="4" />
<!--list of projects for ROCm-->
<project name="ROCm" revision="roc-6.3.x" />
<project name="ROCK-Kernel-Driver" />
<project name="ROCR-Runtime" />
<project name="amdsmi" />
<project name="rdc" />
<project name="rocm_bandwidth_test" />
<project name="rocm_smi_lib" />
<project name="rocm-core" />
<project name="rocm-examples" />
<project name="rocminfo" />
<project name="rocprofiler" />
<project name="rocprofiler-register" />
<project name="rocprofiler-sdk" />
<project name="rocprofiler-compute" />
<project name="rocprofiler-systems" />
<project name="roctracer" />
<!--HIP Projects-->
<project name="HIP" />
<project name="hip-tests" />
<project name="HIPIFY" />
<project name="clr" />
<project name="hipother" />
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
<project name="half" />
<project name="llvm-project" />
<!-- gdb projects -->
<project name="ROCdbgapi" />
<project name="ROCgdb" />
<project name="rocr_debug_agent" />
<!-- ROCm Libraries -->
<project groups="mathlibs" name="AMDMIGraphX" />
<project groups="mathlibs" name="MIOpen" />
<project groups="mathlibs" name="MIVisionX" />
<project groups="mathlibs" name="ROCmValidationSuite" />
<project groups="mathlibs" name="Tensile" />
<project groups="mathlibs" name="composable_kernel" />
<project groups="mathlibs" name="hipBLAS-common" />
<project groups="mathlibs" name="hipBLAS" />
<project groups="mathlibs" name="hipBLASLt" />
<project groups="mathlibs" name="hipCUB" />
<project groups="mathlibs" name="hipFFT" />
<project groups="mathlibs" name="hipRAND" />
<project groups="mathlibs" name="hipSOLVER" />
<project groups="mathlibs" name="hipSPARSE" />
<project groups="mathlibs" name="hipSPARSELt" />
<project groups="mathlibs" name="hipTensor" />
<project groups="mathlibs" name="hipfort" />
<project groups="mathlibs" name="rccl" />
<project groups="mathlibs" name="rocAL" />
<project groups="mathlibs" name="rocALUTION" />
<project groups="mathlibs" name="rocBLAS" />
<project groups="mathlibs" name="rocDecode" />
<project groups="mathlibs" name="rocJPEG" />
<project groups="mathlibs" name="rocPyDecode" />
<project groups="mathlibs" name="rocFFT" />
<project groups="mathlibs" name="rocPRIM" />
<project groups="mathlibs" name="rocRAND" />
<project groups="mathlibs" name="rocSOLVER" />
<project groups="mathlibs" name="rocSPARSE" />
<project groups="mathlibs" name="rocThrust" />
<project groups="mathlibs" name="rocWMMA" />
<project groups="mathlibs" name="rocm-cmake" />
<project groups="mathlibs" name="rpp" />
<project groups="mathlibs" name="TransferBench" />
<!-- Projects for OpenMP-Extras -->
<project name="aomp" path="openmp-extras/aomp" />
<project name="aomp-extras" path="openmp-extras/aomp-extras" />
<project name="flang" path="openmp-extras/flang" />
</manifest>