Compare commits

...

5 Commits

Author SHA1 Message Date
Peter Park
17d04124c1 update links to vllm perf validation doc 2024-10-30 15:52:12 -04:00
Daniel Su
4b8fdf1ae3 External CI: various fixes (#3963) 2024-10-30 15:52:12 -04:00
Joseph Macaranas
c88f3996dc External CI: Add aqlprofile to Tensile test dependencies (#3961) 2024-10-30 15:52:12 -04:00
Peter Park
5b53802c54 add suggestions to vllm perf validation doc 2024-10-30 14:08:35 -04:00
Peter Park
bdeef73263 add vllm performance validation doc 2024-10-30 12:51:40 -04:00
13 changed files with 447 additions and 20 deletions

View File

@@ -189,9 +189,9 @@ jobs:
-DMIGRAPHX_ENABLE_C_API_TEST=ON
..
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: Build and run MIGraphX tests
inputs:
targetType: inline
workingDirectory: build
script: make -j$(nproc) check
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: AMDMIGraphX
testExecutable: make
testParameters: -j$(nproc) check
testPublishResults: false

View File

@@ -107,6 +107,7 @@ jobs:
runRocminfo: false
- task: Bash@3
displayName: Build kfdtest
continueOnError: true
inputs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/libhsakmt/tests/kfdtest
@@ -122,6 +123,7 @@ jobs:
testDir: $(Build.SourcesDirectory)/libhsakmt/tests/kfdtest/scripts
- task: Bash@3
displayName: Build rdmatest app
continueOnError: true
inputs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/libhsakmt/tests/rdma/simple/app
@@ -130,6 +132,7 @@ jobs:
cmake --build .
- task: Bash@3
displayName: Build rdmatest driver
continueOnError: true
inputs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/libhsakmt/tests/rdma/simple/drv
@@ -139,6 +142,7 @@ jobs:
RDMA_HEADER_DIR=/usr/src/amdgpu-*/include make all
- task: Bash@3
displayName: Install rdmatest driver
continueOnError: true
inputs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/libhsakmt/tests/rdma/simple/drv
@@ -154,6 +158,7 @@ jobs:
testPublishResults: false
- task: Bash@3
displayName: Build rocrtst
continueOnError: true
inputs:
targetType: 'inline'
workingDirectory: $(Build.SourcesDirectory)/rocrtst/suites/test_common

View File

@@ -13,6 +13,7 @@ parameters:
- libyaml-cpp-dev
- libpci-dev
- libpci3
- libgst-dev
- libgtest-dev
- git
- name: rocmDependencies

View File

@@ -105,6 +105,12 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
parameters:
${{ if eq(parameters.checkoutRef, '') }}:
dependencySource: staging
${{ elseif ne(parameters.checkoutRef, '') }}:
dependencySource: tag-builds
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
dependencyList: ${{ parameters.rocmDependencies }}

View File

@@ -40,6 +40,7 @@ parameters:
- name: rocmDependencies
type: object
default:
- aomp
- clr
- llvm-project
- rccl

View File

@@ -36,6 +36,7 @@ Bluefield
Bootloader
CCD
CDNA
CHTML
CIFAR
CLI
CLion
@@ -70,6 +71,7 @@ Concretized
Conda
ConnectX
CuPy
Dashboarding
DDR
DF
DGEMM
@@ -227,6 +229,7 @@ Mellanox's
Meta's
Miniconda
MirroredStrategy
Mixtral
Multicore
Multithreaded
MyEnvironment
@@ -294,6 +297,7 @@ PowerShell
PyPi
PyTorch
Qcycles
Qwen
RAII
RAS
RCCL
@@ -563,6 +567,7 @@ hipfort
hipify
hipsolver
hipsparse
hlist
hotspotting
hpc
hpp
@@ -586,6 +591,7 @@ intra
invariants
invocating
ipo
jax
kdb
kfd
latencies
@@ -606,6 +612,7 @@ migraphx
miopen
miopengemm
mivisionx
mjx
mkdir
mlirmiopen
mtypes

View File

@@ -81,6 +81,7 @@ article_pages = [
"file": "how-to/llm-fine-tuning-optimization/profiling-and-debugging",
"os": ["linux"],
},
{"file": "how-to/performance-validation/mi300x/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/system-optimization/index", "os": ["linux"]},
{"file": "how-to/system-optimization/mi300x", "os": ["linux"]},
{"file": "how-to/system-optimization/mi200", "os": ["linux"]},

View File

@@ -16,7 +16,7 @@ This section discusses how to implement `vLLM <https://docs.vllm.ai/en/latest>`_
vLLM inference
==============
vLLM is renowned for its paged attention algorithm that can reduce memory consumption and increase throughput thanks to
vLLM is renowned for its PagedAttention algorithm that can reduce memory consumption and increase throughput thanks to
its paging scheme. Instead of allocating GPU high-bandwidth memory (HBM) for the maximum output token lengths of the
models, the paged attention of vLLM allocates GPU HBM dynamically for its actual decoding lengths. This paged attention
is also effective when multiple requests share the same key and value contents for a large value of beam search or
@@ -139,9 +139,7 @@ Refer to :ref:`mi300x-vllm-optimization` for performance optimization tips.
ROCm provides a prebuilt optimized Docker image for validating the performance of LLM inference with vLLM
on the MI300X accelerator. The Docker image includes ROCm, vLLM, PyTorch, and tuning files in the CSV
format. For more information, see the guide to
`LLM inference performance validation with vLLM on the AMD Instinct™ MI300X accelerator <https://github.com/ROCm/MAD/blob/develop/benchmark/vllm/README.md>`_
on the ROCm GitHub repository.
format. For more information, see :doc:`/how-to/performance-validation/mi300x/vllm-benchmark`.
.. _fine-tuning-llms-tgi:

View File

@@ -0,0 +1,407 @@
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
***********************************************************
LLM inference performance validation on AMD Instinct MI300X
***********************************************************
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
* `vLLM 0.6.4 <https://docs.vllm.ai/en/latest>`_
* `PyTorch 2.5.0 <https://github.com/pytorch/pytorch>`_
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
.. hlist::
:columns: 6
* Llama 3.1 8B
* Llama 3.1 70B
* Llama 3.1 405B
* Llama 2 7B
* Llama 2 70B
* Mixtral 8x7B
* Mixtral 8x22B
* Mixtral 7B
* Qwen2 7B
* Qwen2 72B
* JAIS 13B
* JAIS 30B
.. _vllm-benchmark-vllm:
.. note::
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
Once setup is complete, you can choose between two options to reproduce the
benchmark results:
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
.. _vllm-benchmark-mad:
MAD-integrated benchmarking
===========================
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
Available models
----------------
.. hlist::
:columns: 3
* ``pyt_vllm_llama-3.1-8b``
* ``pyt_vllm_llama-3.1-70b``
* ``pyt_vllm_llama-3.1-405b``
* ``pyt_vllm_llama-2-7b``
* ``pyt_vllm_llama-2-70b``
* ``pyt_vllm_mixtral-8x7b``
* ``pyt_vllm_mixtral-8x22b``
* ``pyt_vllm_mistral-7b``
* ``pyt_vllm_qwen2-7b``
* ``pyt_vllm_qwen2-72b``
* ``pyt_vllm_jais-13b``
* ``pyt_vllm_jais-30b``
* ``pyt_vllm_llama-3.1-8b_fp8``
* ``pyt_vllm_llama-3.1-70b_fp8``
* ``pyt_vllm_llama-3.1-405b_fp8``
* ``pyt_vllm_mixtral-8x7b_fp8``
* ``pyt_vllm_mixtral-8x22b_fp8``
.. _vllm-benchmark-standalone:
Standalone benchmarking
=======================
You can run the vLLM benchmark tool independently by starting the
:ref:`Docker container <vllm-benchmark-get-started>` as shown in the following
snippet.
.. code-block::
docker pull rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.4 rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
.. code-block::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
Command
-------
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
.. code-block:: shell
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
.. note::
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. note::
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block:: shell
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. _vllm-benchmark-standalone-options:
Options
-------
.. list-table::
:header-rows: 1
:align: center
* - Name
- Options
- Description
* - ``$test_option``
- latency
- Measure decoding token latency
* -
- throughput
- Measure token generation throughput
* -
- all
- Measure both throughput and latency
* - ``$model_repo``
- ``meta-llama/Meta-Llama-3.1-8B-Instruct``
- Llama 3.1 8B
* - (``float16``)
- ``meta-llama/Meta-Llama-3.1-70B-Instruct``
- Llama 3.1 70B
* -
- ``meta-llama/Meta-Llama-3.1-405B-Instruct``
- Llama 3.1 405B
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- Llama 2 7B
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- Llama 2 70B
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- Mixtral 8x7B
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- Mixtral 8x22B
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- Mixtral 7B
* -
- ``Qwen/Qwen2-7B-Instruct``
- Qwen2 7B
* -
- ``Qwen/Qwen2-72B-Instruct``
- Qwen2 72B
* -
- ``core42/jais-13b-chat``
- JAIS 13B
* -
- ``core42/jais-30b-chat-v3``
- JAIS 30B
* - ``$model_repo``
- ``amd/Meta-Llama-3.1-8B-Instruct-FP8-KV``
- Llama 3.1 8B
* - (``float8``)
- ``amd/Meta-Llama-3.1-70B-Instruct-FP8-KV``
- Llama 3.1 70B
* -
- ``amd/Meta-Llama-3.1-405B-Instruct-FP8-KV``
- Llama 3.1 405B
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- Mixtral 8x7B
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- Mixtral 8x22B
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 8B model on one GPU with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Meta-Llama-3.1-8B-Instruct -g 1 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Meta-Llama-3.1-8B-Instruct-FP8-KV -g 1 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Meta-Llama-3.1-8B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Meta-Llama-3.1-8B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
Further reading
===============
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/tuning-guides/mi300x/workload`.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see :doc:`/how-to/system-optimization/mi300x`.
- To learn how to run LLM models from Hugging Face or your own model, see
:doc:`Using ROCm for AI </how-to/rocm-for-ai/index>`.
- To learn how to optimize inference on LLMs, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/llm-fine-tuning-optimization/index>`.
- For a list of other ready-made Docker images for ROCm, see the
:doc:`Docker image support matrix <rocm-install-on-linux:reference/docker-image-support-matrix>`.
- To compare with the previous version of the ROCm vLLM Docker image for performance validation, refer to
`LLM inference performance validation on AMD Instinct MI300X (ROCm 6.2.0) <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_.

View File

@@ -8,6 +8,8 @@ accelerators. They include detailed instructions on system settings and
application tuning suggestions to help you fully leverage the capabilities of
these accelerators, thereby achieving optimal performance.
* :doc:`/how-to/performance-validation/mi300x/vllm-benchmark`
* :doc:`/how-to/tuning-guides/mi300x/system`
* :doc:`/how-to/tuning-guides/mi300x/workload`

View File

@@ -152,9 +152,7 @@ address any new bottlenecks that may emerge.
ROCm provides a prebuilt optimized Docker image that has everything required to implement
the tips in this section. It includes ROCm, vLLM, PyTorch, and tuning files in the CSV
format. For more information, see the guide to
`LLM inference performance validation with vLLM on the AMD Instinct™ MI300X accelerator <https://github.com/ROCm/MAD/blob/develop/benchmark/vllm/README.md>`_
on the ROCm GitHub repository.
format. For more information, see :doc:`/how-to/performance-validation/mi300x/vllm-benchmark`.
.. _mi300x-profiling-tools:
@@ -378,11 +376,10 @@ Refer to `vLLM documentation <https://docs.vllm.ai/en/latest/models/performance.
for additional performance tips. :ref:`fine-tuning-llms-vllm` describes vLLM
usage with ROCm.
ROCm provides a prebuilt optimized Docker image for validating the performance of LLM inference with vLLM
on the MI300X accelerator. The Docker image includes ROCm, vLLM, PyTorch, and tuning files in the CSV
format. For more information, see the guide to
`LLM inference performance validation with vLLM on the AMD Instinct™ MI300X accelerator <https://github.com/ROCm/MAD/blob/develop/benchmark/vllm/README.md>`_
on the ROCm GitHub repository.
ROCm provides a prebuilt optimized Docker image for validating the performance
of LLM inference with vLLM on the MI300X accelerator. The Docker image includes
ROCm, vLLM, PyTorch, and tuning files in the CSV format. For more information,
see :doc:`/how-to/performance-validation/mi300x/vllm-benchmark`.
Maximize throughput
-------------------

View File

@@ -45,7 +45,7 @@ ROCm documentation is organized into the following categories:
* [Using ROCm for HPC](./how-to/rocm-for-hpc/index.rst)
* [Fine-tuning LLMs and inference optimization](./how-to/llm-fine-tuning-optimization/index.rst)
* [System optimization](./how-to/system-optimization/index.rst)
* [AMD Instinct MI300X tuning guides](./how-to/tuning-guides/mi300x/index.rst)
* [AMD Instinct MI300X performance validation and tuning](./how-to/tuning-guides/mi300x/index.rst)
* [GPU cluster networking](https://rocm.docs.amd.com/projects/gpu-cluster-networking/en/latest/index.html)
* [System debugging](./how-to/system-debugging.md)
* [Using MPI](./how-to/gpu-enabled-mpi.rst)

View File

@@ -70,9 +70,11 @@ subtrees:
- file: how-to/system-optimization/w6000-v620.md
title: AMD RDNA 2
- file: how-to/tuning-guides/mi300x/index.rst
title: AMD MI300X tuning guides
title: AMD MI300X performance validation and tuning
subtrees:
- entries:
- file: how-to/performance-validation/mi300x/vllm-benchmark.rst
title: Performance validation
- file: how-to/tuning-guides/mi300x/system.rst
title: System tuning
- file: how-to/tuning-guides/mi300x/workload.rst