Compare commits

...

62 Commits

Author SHA1 Message Date
Adel Johar
e6d089c5fa Docs: remove system_debugging.md 2025-05-19 13:54:14 +02:00
Daniel Su
0d7846fbab Ex CI: enable rocPRIM sparse checkout (#4743) 2025-05-15 14:39:28 -04:00
Daniel Su
156917e15d Ex CI: set absolute cmakeSourceDir paths (#4741) 2025-05-14 11:03:57 -04:00
Daniel Su
d7a9280008 Ex CI: set cmakeSourceDir for all components that set cmakeBuildDir (#4738) 2025-05-13 17:15:54 -04:00
Daniel Su
c1825ba41c Ex CI: skip docker creation on gfx942 (#4735) 2025-05-13 17:05:02 -04:00
Peter Park
0a77e7b3a5 docs: Add system health check doc under ROCm for AI (#4736)
* add initial draft

* add to toc and install page

* update wording

* improve documentation structure

* resturcture and expand content

* add to training section

* add to conf.py article_pages

* Update docs/how-to/rocm-for-ai/includes/system-health-benchmarks.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/includes/system-health-benchmarks.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* update wordlist.txt

* Update docs/how-to/rocm-for-ai/includes/system-health-benchmarks.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* inference --> AI workloads

* udpate toc

* update article_pages in conf.py

* Update system validation notes in training docs

* fix links in prerequisite-system-validation

* wording

* add note

* consistency

* remove extra files

* fix links

* add links to training index page

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-05-13 15:54:48 -04:00
Daniel Su
a940f3f090 Ex CI: add sparse option to checkout template (#4701)
* Ex CI: add sparse option to checkout template

* replace Pipeline.Workspace with Agent.BuildDirectory for consistency
2025-05-13 14:46:48 -04:00
Daniel Su
95415d5e70 Ex CI: remove firstRenderDeviceAccess demand from all components (#4734) 2025-05-13 13:08:27 -04:00
Istvan Kiss
d1772b9ca3 Fix unsupported section structure on JAX (#4733) 2025-05-13 17:39:25 +02:00
Istvan Kiss
f65e1412df Fix compatibility list (#4731) 2025-05-13 16:26:36 +02:00
Istvan Kiss
ea1072b11d JAX compatibility page upate (#4727) 2025-05-08 19:31:13 +02:00
Peter Park
90a651d2b6 Merge pull request #4725 from peterjunpark/docs/quark-model-quantization
Add quark in model-quantization.rst
2025-05-08 10:34:39 -04:00
Daniel Su
16978a382b Ex CI: separate ROCgdb build and test jobs (#4715) 2025-05-08 09:57:58 -04:00
Daniel Su
dc23bb09c2 Ex CI: add AOMP to RVS (#4718) 2025-05-08 09:57:35 -04:00
Peter Park
bb7af3351a Fix incorrect throughput benchmark command in inference/vllm-benchmark.rst (#4723)
* update inference index to include pyt inference

* fix incorrect command in throughput benchmark

* wording
2025-05-08 09:24:51 -04:00
Pratik Basyal
8ef1bb0139 rocSHMEM component added to ROCm 6.4.0 documentation (#4719)
* rocSHMEM added to ROCm 640

* Space removed

* link fixed
2025-05-07 15:31:38 -04:00
Daniel Su
1610837a95 Ex CI: fix copyHIP incorrectly packaging symlinked files (#4687) 2025-05-06 14:56:41 -04:00
Daniel Su
b7ce573c66 Ex CI: disable rocm-examples rocfft_callback test (#4699) 2025-05-06 14:55:43 -04:00
Peter Park
186c281aba fix links in pytorch-inference-benchmark.rst (#4713) 2025-05-06 13:34:55 -04:00
Peter Park
d44ea40a0d Add MPT-30B + LLM Foundry doc (#4704)
* add mpt-30b doc

* add tunableop note

* update MPT doc

* add section

* update wordlist

* fix flash attention version

* update "applies to"

* address review feedback

* Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* update docker details to pytorch-training-v25.5

* update

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-05-02 12:13:20 -04:00
Pratik Basyal
a7c158a14f Link updated (#4706) 2025-05-01 11:41:02 -04:00
Peter Park
85778177a1 Update vLLM docker pull tag 20250415 in vllm-benchmark.rst (#4702) 2025-04-30 16:09:30 -04:00
Daniel Su
28060c104b Ex CI: MIOpen exclude failing GPU_Conv2dTuningAsm_FP32 test (#4693) 2025-04-29 10:13:40 -04:00
Istvan Kiss
84177354de Pytorch compatibility page update 2025-04-29 14:43:40 +02:00
Peter Park
7458fcb7ab Update JAX MaxText benchmark doc to v25.5 (#4695)
* fix shell cmd formatting

* add previous versions section

* update docker details and add llama 3.3

* update missed docker image tags to 25.5
2025-04-28 17:52:53 -04:00
Peter Park
16d6e59003 fix link to pytorch-training v25.4 doc (#4696) 2025-04-28 17:52:33 -04:00
Daniel Su
fd9f576b26 Ex CI: add roctracer to rocprof-sys dependencies (#4694) 2025-04-28 14:04:15 -04:00
Peter Park
a66bc1d85e fix link to previous version in vllm-benchmark.rst (#4689) 2025-04-24 17:54:04 -04:00
Peter Park
36b6ffaf7c Add QwQ 32B to vllm-benchmark.rst (#4685)
* Add Qwen2 MoE 2.7B to vllm-benchmark-models.yaml

* Add QwQ-32B-Preview to vllm-benchmark-models.yaml

* add links to performance results

words

* change "performance validation" to "performance testing"

* remove "-Preview" from QwQ-32B

* move qwen2 MoE after qwen2

* add TunableOp section

* fix formatting

* add link to TunableOp doc

* add tunableop note

* fix vllm-benchmark template

* remove cmdline option for --tunableop on

* update docker details

* remove "training"

* remove qwen2
2025-04-24 16:44:34 -04:00
Peter Park
40e4ba3ecc Update vLLM inference benchmark Docker guide (#4653)
* Remove JAIS 13B and 30B

* update Docker details - vLLM 0.8.3

* add previous version

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

* fix link to previous version
2025-04-24 15:59:13 -04:00
Peter Park
1f41ce26be Add note for chai-1 benchmark Docker in pytorch-inference-benchmark.rst (#4684) 2025-04-24 15:48:53 -04:00
Daniel Su
9293723381 Ex CI: add targets to rocJPEG artifact names (#4681) 2025-04-24 12:13:34 -04:00
Daniel Su
588752ade4 Ex CI: fix rocprofiler-register tests (#4676) 2025-04-24 09:52:27 -04:00
Peter Park
c3faa9670b Add PyTorch inference benchmark Docker guide (+ CLIP and Chai-1) (#4654)
* update vLLM links in deploy-your-model.rst

* add pytorch inference benchmark doc

* update toc and vLLM title

* remove previous versions

* update

* wording

* fix link and "applies to"

* add pytorch to wordlist

* add tunableop note to clip

* make tunableop note appear to all models

* Update docs/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* fix incorrect links

* wording

* fix wrong docker pull tag

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-04-23 17:35:52 -04:00
Pratik Basyal
7246a673ce Broken link fixed (#4673) 2025-04-23 13:34:39 -04:00
Pratik Basyal
3f1c07afd7 Known issue for installation failure in 6.4.0 added (#4666)
* Known issue for installation failure added

* Github issue No. added

* Typo fixed

* Feedback from Anush updated

* Minor change

* Feedback from Fai added

* Public Issue No. updated

* Minor change
2025-04-23 12:26:11 -04:00
Peter Park
b29b3592bd Update ML framework Docker compatibility docs for 6.4.0 (#4667)
* update pytorch-compatibility.rst

* update tensorflow compat

fix

* update jax and jax-community docker versions
2025-04-22 16:16:16 -04:00
Daniel Su
2b2732fe6f Ex CI: add missing packages to rocprof-comp, clean up test job steps (#4669) 2025-04-22 15:50:47 -04:00
Daniel Su
396b6375ba Ex CI: add script to download artifacts from a provided manifest file (#4662)
* add files

* Allow command line args for download script

* Move script into separate folder

* Add newline to end of script

---------

Co-authored-by: David Dixon <david.dixon@amd.com>
2025-04-22 10:48:41 -04:00
Daniel Su
37a56b4ab6 Ex CI: add double quotes to pip packages with min versions (#4661) 2025-04-21 12:03:38 -04:00
Pratik Basyal
fc162d11e0 6.1.5 column added to historical compatibility develop branch (#4648)
* 6.1.5 column added to historical compatibility
2025-04-17 11:55:32 -04:00
Daniel Su
34288b5af2 Ex CI: add template to create Docker images with docker commit (#4649) 2025-04-17 11:01:17 -04:00
Joseph Macaranas
460e4be71d External CI: rocprofiler-systems CMake flags to find rocjpeg headers (#4656)
- Also add chrpath dependency
2025-04-17 10:57:41 -04:00
Joseph Macaranas
25ca422954 External CI: MIOpen build fix from aggregate pipeline rebase (#4651)
Merge conflict resolution dumped the new parameters to the wrong line.
2025-04-17 10:07:33 -04:00
Daniel Su
27edda496d Ex CI: reenable comgr cache for affected mathlibs (#4642) 2025-04-16 15:03:14 -04:00
Peter Park
9ff3c2c885 Update PyTorch training Docker doc for 25.5 (#4638)
* update pytorch-training to 25.5

* remove llama 2

* Revert "remove llama 2"

This reverts commit dab672fa7bcbd8bff730382c14177df4301a537d.

* add previous version

* fix run cmd

* add link to docker hub

* fix linting issue

* add Llama 3.3 70B

* update
2025-04-15 18:16:22 -04:00
Daniel Su
0d28491d16 Ex CI: make Docker image URLs lowercase (#4634) 2025-04-15 16:01:09 -04:00
Peter Park
7f708c8d87 fix links to amdsmi and rocmsmi changelogs (#4592)
(cherry picked from commit bdcfea9dbd)
2025-04-15 15:12:00 -04:00
Daniel Su
2ab35b3732 Ex CI: change Docker containerRegistry to ContainerService3 (#4631) 2025-04-15 11:50:34 -04:00
Peter Park
d057d49af1 Fix vllm Dockerfile.rocm path (#4628) 2025-04-15 11:26:54 -04:00
Pratik Basyal
15ec4cf910 GitHub link to component in highlights changed to documentation reference in develop (#4626)
* GitHub link to component in highlights changed to documentation

* Removed entry from ROCm Compute Profiler

* Jeff's feedback added

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* List updated

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-04-15 10:14:58 -04:00
Daniel Su
ec36f39665 Ex CI: fix comparison in aggregatePipeline test condition (#4622) 2025-04-14 12:22:29 -04:00
Peter Park
310864e653 fix link to Dockerfile.rocm (#4573) 2025-04-14 10:10:03 -04:00
Pratik Basyal
330aa6f23d 640 known issue GitHub link update in develop (#4617)
* Date updated

* GitHub issue links added
2025-04-11 21:13:10 -04:00
Peter Park
eb090b8788 Fix word (#4600) 2025-04-11 18:07:08 -04:00
Pratik Basyal
af18a170bc Blog link update to 6.4.0 release notes #4596
Blog link update to 6.4.0 release notes
2025-04-11 17:48:42 -04:00
Peter Park
8b423430a4 Fix markdownlint errors (#4597)
* deal with markdownlint errors

* fix mdlint errors in ubuntu24/README.md
2025-04-11 17:32:52 -04:00
Daniel Su
21b22f89f5 Ex CI: update to ROCm 6.4.0 (#4598) 2025-04-11 17:32:27 -04:00
Joseph Macaranas
87b9fac022 External CI: Boilerplate code for aggregate build pipeline (#4496)
- Add knobs to toggle aggregate build options.
- Aggregate build pipeline will pull ROCm dependencies from earlier in the same pipeline.
- Changing build pool of some components for more compute power.
- Deleting deprecated component.
- Add Ninja to dependency compilation in MIOpen.
- Add retries to wget for MIOpen CK build case.

---------

Co-authored-by: Daniel Su <danielsu@amd.com>
2025-04-11 17:13:58 -04:00
Peter Park
656db2bc84 Update KMD versions in compat matrix (#4594)
* update KMD versions in compat matrix

* update historical compat matrix
2025-04-11 16:48:21 -04:00
Ameya Keshava Mallya
295e1e2998 Updating scripts for 6.4 2025-04-11 20:44:44 +00:00
Pratik Basyal
6770798faf Link update (#4591) 2025-04-11 16:08:58 -04:00
196 changed files with 6195 additions and 3356 deletions

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -27,12 +32,12 @@ parameters:
type: object
default:
- https://github.com/RadeonOpenCompute/rbuild/archive/master.tar.gz
- onnx>=1.14.1
- numpy>=1.21.6
- typing>=3.7.4
- pytest>=6.0.1
- packaging>=23.0
- protobuf>=3.20.2
- "onnx>=1.14.1"
- "numpy>=1.21.6"
- "typing>=3.7.4"
- "pytest>=6.0.1"
- "packaging>=23.0"
- "protobuf>=3.20.2"
- name: rocmDependencies
type: object
default:
@@ -115,6 +120,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -145,7 +151,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -42,7 +47,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -67,11 +72,13 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependenciesAMD }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
# compile clr
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: clr
cmakeBuildDir: 'clr/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/clr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/clr'
extraBuildFlags: >-
-DHIP_COMMON_DIR=$(Build.SourcesDirectory)/HIP
-DHIP_PLATFORM=amd
@@ -99,7 +106,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -125,13 +132,15 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependenciesNvidia }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- script: 'ls -1R $(Agent.BuildDirectory)/rocm'
displayName: 'Artifact listing'
# compile clr
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: clr
cmakeBuildDir: 'clr/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/clr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/clr'
extraBuildFlags: >-
-DHIP_COMMON_DIR=$(Build.SourcesDirectory)/HIP
-DHIP_PLATFORM=nvidia

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -68,6 +73,7 @@ jobs:
parameters:
componentName: upstream-llvm
cmakeBuildDir: $(Pipeline.Workspace)/llvm-project/llvm/build
cmakeSourceDir: $(Pipeline.Workspace)/llvm-project/llvm
installDir: $(Pipeline.Workspace)/llvm
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -77,7 +82,7 @@ jobs:
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool: ${{ variables.MEDIUM_BUILD_POOL }}
pool: ${{ variables.HIGH_BUILD_POOL }}
workspace:
clean: all
steps:
@@ -97,6 +102,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- task: Bash@3
displayName: Build and install other dependencies
inputs:
@@ -107,7 +113,7 @@ jobs:
mkdir -p $(Agent.BuildDirectory)/miopen-deps
export CXX=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
export CC=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
cmake -P install_deps.cmake --prefix $(Agent.BuildDirectory)/miopen-deps
cmake -P install_deps.cmake --prefix $(Agent.BuildDirectory)/miopen-deps --generator Ninja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -142,7 +148,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
@@ -207,7 +214,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: MIOpen
testParameters: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml --exclude-regex test_rnn_seq_api'
testParameters: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml --exclude-regex "test_rnn_seq_api|GPU_Conv2dTuningAsm_FP32"'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -103,6 +108,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -129,7 +135,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -42,7 +47,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -58,6 +63,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -78,7 +84,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -24,7 +29,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -40,6 +45,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-

View File

@@ -5,11 +5,17 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
# reference: https://github.com/ROCm/ROCgdb/blob/amd-staging/README-ROCM.md
- name: aptPackages
type: object
default:
- bison
- cmake
- dejagnu
- flex
- libbabeltrace-dev
@@ -34,19 +40,72 @@ parameters:
- name: jobMatrix
type: object
default:
buildTestJobs:
testJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
jobs:
- ${{ each job in parameters.jobMatrix.buildTestJobs }}:
- job: ROCgdb_build_test_${{ job.target }}
- job: ROCgdb
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: PKG_CONFIG_PATH
value: $(Agent.BuildDirectory)/rocm/share/pkgconfig
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-autotools.yml
parameters:
configureFlags: >-
--program-prefix=roc
--enable-64-bit-bfd
--enable-targets="x86_64-linux-gnu,amdgcn-amd-amdhsa"
--disable-ld
--disable-gas
--disable-gdbserver
--disable-sim
--enable-tui
--disable-gdbtk
--disable-shared
--disable-gprofng
--with-expat
--with-system-zlib
--without-guile
--with-babeltrace
--with-lzma
--with-python=python3
--with-rocm-dbgapi=$(Agent.BuildDirectory)/rocm
LDFLAGS="-Wl,--enable-new-dtags,-rpath=$(Agent.BuildDirectory)/rocm/lib"
makeCallPrefix: LD_RUN_PATH='${ORIGIN}/../lib'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ROCgdb_test_${{ job.target }}
dependsOn: ROCgdb
condition:
and(
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
@@ -69,6 +128,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-autotools.yml
parameters:
configureFlags: >-
@@ -92,8 +152,6 @@ jobs:
--with-rocm-dbgapi=$(Agent.BuildDirectory)/rocm
LDFLAGS="-Wl,--enable-new-dtags,-rpath=$(Agent.BuildDirectory)/rocm/lib"
makeCallPrefix: LD_RUN_PATH='${ORIGIN}/../lib'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- task: Bash@3
displayName: Setup test environment
inputs:
@@ -102,7 +160,6 @@ jobs:
# Assuming that /opt is no longer persistent across runs, test environments are fully ephemeral
sudo ln -s $(Agent.BuildDirectory)/rocm /opt/rocm
echo "##vso[task.prependpath]/opt/rocm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: check-gdb

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -22,6 +27,7 @@ parameters:
type: object
default:
- amdsmi
- aomp
- clr
- hipBLAS-common
- hipBLASLt
@@ -38,6 +44,7 @@ parameters:
type: object
default:
- amdsmi
- aomp
- clr
- hipBLAS-common
- hipBLASLt
@@ -96,12 +103,14 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/clang++
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_CXX_FLAGS=-I$(Agent.BuildDirectory)/rocm/llvm/include
-DCPACK_PACKAGING_INSTALL_PREFIX=$(Build.BinariesDirectory)
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
@@ -126,7 +135,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -46,7 +51,7 @@ jobs:
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -63,6 +68,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- task: Bash@3
displayName: Create wheel file
@@ -104,7 +110,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -67,6 +72,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -92,7 +98,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -58,7 +63,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -23,7 +28,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -39,6 +44,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: aomp-extras

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
# reference:
# https://github.com/ROCm/aomp/blob/aomp-dev/docs/SOURCEINSTALL_PREREQUISITE.md
- name: aptPackages
@@ -108,10 +113,12 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: extras
cmakeBuildDir: '$(Build.SourcesDirectory)/aomp-extras/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/aomp-extras'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DLLVM_DIR=$(Agent.BuildDirectory)/rocm/llvm
@@ -123,6 +130,7 @@ jobs:
parameters:
componentName: openmp
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm-project/openmp/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm-project/openmp'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm;$(Build.BinariesDirectory)"
@@ -149,6 +157,7 @@ jobs:
parameters:
componentName: offload
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm-project/offload/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm-project/offload'
installDir: '$(Build.BinariesDirectory)/llvm'
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm;$(Build.BinariesDirectory)"
@@ -176,7 +185,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -71,6 +76,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- script: |
mkdir -p $(CCACHE_DIR)
echo "##vso[task.prependpath]/usr/lib/ccache"
@@ -117,7 +123,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -26,9 +26,11 @@ jobs:
parameters:
componentName: HIP
pipelineId: $(HIP_PIPELINE_ID)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-prepare-package.yml
parameters:
sourceDir: $(Agent.BuildDirectory)/rocm
- task: Bash@3
displayName: Copy HIP artifacts
inputs:
targetType: inline
script: cp -a $(Agent.BuildDirectory)/rocm/* $(Build.BinariesDirectory)/
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -25,7 +30,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -41,6 +46,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -75,6 +80,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
# compile hip-tests
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
@@ -109,7 +115,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -29,7 +34,7 @@ jobs:
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -45,6 +50,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -89,6 +94,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -121,13 +127,12 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -22,7 +27,7 @@ parameters:
type: object
default:
- joblib
- packaging>=22.0
- "packaging>=22.0"
- --upgrade
- name: rocmDependencies
type: object
@@ -98,6 +103,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- task: Bash@3
displayName: Add ROCm binaries to PATH
inputs:
@@ -179,15 +185,14 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -67,6 +72,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -94,7 +100,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -79,6 +84,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -112,7 +118,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -70,6 +75,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -101,7 +107,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -82,11 +87,13 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
# build external gtest and lapack
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: external
cmakeBuildDir: 'deps/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/deps/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/deps'
installDir: '$(Pipeline.Workspace)/deps-install'
extraBuildFlags: >-
-DBUILD_BOOST=OFF
@@ -122,13 +129,12 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -77,6 +82,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -116,13 +122,12 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -91,6 +96,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
# Build and install gtest and lapack
# $(Pipeline.Workspace)/deps is a temporary folder for the build process
# $(Pipeline.Workspace)/s/deps is part of the hipSPARSELt repo
@@ -150,7 +156,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -66,6 +71,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -95,13 +101,12 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -76,6 +81,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -111,7 +117,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -45,6 +50,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
skipLlvmSymlink: true
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: rocm-llvm
@@ -77,7 +83,8 @@ jobs:
-DROCM_LLVM_BACKWARD_COMPAT_LINK=$(Build.BinariesDirectory)/llvm
-DROCM_LLVM_BACKWARD_COMPAT_LINK_TARGET=./lib/llvm
-GNinja
cmakeBuildDir: 'llvm/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/llvm/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/llvm'
installDir: '$(Build.BinariesDirectory)/llvm'
# use llvm-lit to run unit tests for llvm, clang, and lld
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
@@ -115,7 +122,8 @@ jobs:
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Build.SourcesDirectory)/llvm/build"
-DCMAKE_BUILD_TYPE=Release
cmakeBuildDir: 'amd/device-libs/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/device-libs/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/device-libs'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: comgr
@@ -123,7 +131,8 @@ jobs:
-DCMAKE_PREFIX_PATH="$(Build.SourcesDirectory)/llvm/build;$(Build.SourcesDirectory)/amd/device-libs/build"
-DCOMGR_DISABLE_SPIRV=1
-DCMAKE_BUILD_TYPE=Release
cmakeBuildDir: 'amd/comgr/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/comgr/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/comgr'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: comgr
@@ -136,7 +145,8 @@ jobs:
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DHIPCC_BACKWARD_COMPATIBILITY=OFF
cmakeBuildDir: 'amd/hipcc/build'
cmakeBuildDir: '$(Build.SourcesDirectory)/amd/hipcc/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/amd/hipcc'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -72,7 +77,7 @@ jobs:
- template: /.azuredevops/variables-global.yml
- name: HIP_ROCCLR_HOME
value: $(Build.BinariesDirectory)/rocm
pool: ${{ variables.MEDIUM_BUILD_POOL }}
pool: ${{ variables.HIGH_BUILD_POOL }}
workspace:
clean: all
steps:
@@ -90,6 +95,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -124,7 +130,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -89,6 +94,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
# Build grpc
- task: Bash@3
displayName: 'git clone grpc'
@@ -99,6 +105,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Build.SourcesDirectory)/grpc/build
cmakeSourceDir: $(Build.SourcesDirectory)/grpc
installDir: $(Build.SourcesDirectory)/bin
extraBuildFlags: >-
-DgRPC_INSTALL=ON
@@ -135,7 +142,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -120,6 +125,7 @@ jobs:
parameters:
componentName: PyBind11
cmakeBuildDir: '$(Build.SourcesDirectory)/pybind11/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/pybind11'
customInstallPath: false
installEnabled: false
extraBuildFlags: >-
@@ -136,6 +142,7 @@ jobs:
parameters:
componentName: RapidJSON
cmakeBuildDir: '$(Build.SourcesDirectory)/rapidjson/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/rapidjson'
customInstallPath: false
installEnabled: false
extraBuildFlags: >-
@@ -151,6 +158,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -182,7 +190,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
@@ -193,7 +202,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm/include/rocal
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -85,6 +90,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -117,7 +123,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -101,6 +106,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -145,13 +151,12 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -73,6 +78,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -92,7 +98,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
@@ -101,7 +108,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -79,6 +84,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -113,7 +119,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -75,6 +80,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -83,6 +89,8 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
# - template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
# parameters:
@@ -96,7 +104,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
@@ -105,7 +114,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:
@@ -115,6 +123,8 @@ jobs:
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
@@ -140,4 +150,3 @@ jobs:
environment: test
gpuTarget: ${{ job.target }}
registerROCmPackages: true
optSymLink: true

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -62,6 +67,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -87,7 +93,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,17 @@ parameters:
- name: checkoutRef
type: string
default: ''
- name: sparseCheckout
type: boolean
default: false
- name: sparseCheckoutDir
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -61,11 +72,14 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckout: ${{ parameters.sparseCheckout }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -93,7 +107,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -77,6 +82,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- task: Bash@3
displayName: 'Save Python Package Paths'
inputs:
@@ -152,7 +158,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
@@ -161,7 +168,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -70,6 +75,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -98,7 +104,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -88,6 +93,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: lapack
@@ -99,6 +105,7 @@ jobs:
-DLAPACKE=OFF
-GNinja
cmakeBuildDir: '$(Build.SourcesDirectory)/lapack/build'
cmakeSourceDir: '$(Build.SourcesDirectory)/lapack'
installDir: '$(Pipeline.Workspace)/deps-install'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
@@ -131,13 +138,12 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -29,6 +34,7 @@ parameters:
- rocminfo
- rocPRIM
- rocprofiler-register
- roctracer
- name: rocmTestDependencies
type: object
default:
@@ -80,6 +86,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -126,13 +133,12 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -71,6 +76,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -98,7 +104,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -65,7 +70,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
pool: ${{ variables.HIGH_BUILD_POOL }}
workspace:
clean: all
steps:
@@ -81,6 +86,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -113,13 +119,12 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -26,7 +31,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -17,7 +22,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -100,6 +105,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
# https://github.com/ROCm/HIP/issues/2203
@@ -136,7 +142,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
@@ -176,6 +183,7 @@ jobs:
parameters:
componentName: rocm-examples
testDir: $(Build.SourcesDirectory)/build
testParameters: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml --exclude-regex "rocfft_callback"'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -5,6 +5,12 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -49,7 +55,7 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
- name: ROCR_LIB_DIR
value: $(Agent.BuildDirectory)/rocm
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -66,6 +72,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -90,7 +97,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -28,7 +33,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -59,7 +64,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -38,7 +43,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -55,6 +60,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
skipLlvmSymlink: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
@@ -72,7 +78,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,10 +5,17 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
- cmake
- libdw-dev
- libtbb-dev
- locales
- ninja-build
- python3-pip
@@ -17,10 +24,10 @@ parameters:
default:
- astunparse==1.6.2
- colorlover
- dash>=1.12.0
- "dash>=1.12.0"
- matplotlib
- numpy>=1.17.5
- pandas>=1.4.3
- "numpy>=1.17.5"
- "pandas>=1.4.3"
- pymongo
- pyyaml
- tabulate
@@ -114,6 +121,7 @@ jobs:
dependencyList: ${{ parameters.rocmDependencies }}
dependencySource: ${{ job.dependencySource }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -140,7 +148,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
@@ -182,12 +191,9 @@ jobs:
displayName: Add ROCm binaries to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
- task: Bash@3
displayName: Add ROCm compilers to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
script: |
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -206,18 +212,6 @@ jobs:
componentName: rocprofiler-compute
testDir: $(Build.BinariesDirectory)/libexec/rocprofiler-compute
testExecutable: ROCM_PATH=$(Agent.BuildDirectory)/rocm ctest
- task: Bash@3
displayName: Remove ROCm binaries from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- task: Bash@3
displayName: Remove ROCm compilers from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/llvm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -17,7 +22,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -32,20 +37,14 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: rocprofiler-register
extraBuildFlags: >-
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: rocprofiler-register-tests
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Build.BinariesDirectory)
-DROCPROFILER_REGISTER_BUILD_TESTS=ON
-DROCPROFILER_REGISTER_BUILD_SAMPLES=ON
-GNinja
cmakeBuildDir: 'tests/build'
installEnabled: false
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocprofiler-register
testDir: 'tests/build'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -31,7 +36,7 @@ parameters:
- pandas
- perfetto
- pycobertura
- pytest>=6.2.5
- "pytest>=6.2.5"
- pyyaml
- name: rocmDependencies
type: object
@@ -89,6 +94,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- task: Bash@3
displayName: Add Python site-packages binaries to path
inputs:
@@ -125,7 +131,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -6,6 +6,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -16,6 +21,7 @@ parameters:
- bzip2
- clang
- cmake
- chrpath
- environment-modules
- ffmpeg
- g++-12
@@ -61,6 +67,7 @@ parameters:
- rocprofiler-register
- rocprofiler-sdk
- ROCR-Runtime
- roctracer
- name: jobMatrix
type: object
@@ -103,6 +110,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- task: Bash@3
displayName: Add ROCm binaries to PATH
inputs:
@@ -124,6 +132,7 @@ jobs:
-DDYNINST_BUILD_BOOST=ON
-DROCPROFSYS_USE_PAPI=ON
-DROCPROFSYS_USE_MPI=ON
-DCMAKE_CXX_FLAGS=-I$(Agent.BuildDirectory)/rocm/include/rocjpeg
-DGPU_TARGETS=${{ job.target }}
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
@@ -147,7 +156,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
timeoutInMinutes: 180
variables:
@@ -157,7 +167,6 @@ jobs:
value: $(Agent.BuildDirectory)/rocm
pool:
name: ${{ job.target }}_test_pool
demands: firstRenderDeviceAccess
workspace:
clean: all
steps:
@@ -197,6 +206,7 @@ jobs:
-DDYNINST_BUILD_BOOST=ON
-DROCPROFSYS_USE_PAPI=ON
-DROCPROFSYS_USE_MPI=ON
-DCMAKE_CXX_FLAGS=-I$(Agent.BuildDirectory)/rocm/include/rocjpeg
-DGPU_TARGETS=${{ job.target }}
-GNinja
- task: Bash@3

View File

@@ -5,6 +5,12 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -83,6 +89,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -115,7 +122,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -49,7 +54,7 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
clean: all
@@ -65,6 +70,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -86,7 +92,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -77,6 +82,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -107,7 +113,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -5,6 +5,11 @@ parameters:
- name: checkoutRef
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
@@ -84,6 +89,7 @@ jobs:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -113,7 +119,8 @@ jobs:
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName']))
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common

View File

@@ -38,6 +38,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Agent.BuildDirectory)/grpc/build
cmakeSourceDir: $(Agent.BuildDirectory)/grpc
extraBuildFlags: >-
-DgRPC_INSTALL=ON
-DgRPC_BUILD_TESTS=OFF

View File

@@ -38,6 +38,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeBuildDir: $(Agent.BuildDirectory)/googletest/build
cmakeSourceDir: $(Agent.BuildDirectory)/googletest
extraBuildFlags: >-
-DGTEST_FORCE_SHARED_CRT=ON
-DCMAKE_DEBUG_POSTFIX=d

View File

@@ -68,7 +68,7 @@ parameters:
default:
- cmake
- astunparse
- expecttest>=0.2.1
- "expecttest>=0.2.1"
- hypothesis
- numpy
- psutil
@@ -76,8 +76,8 @@ parameters:
- requests
- setuptools==75.8.0
- types-dataclasses
- typing-extensions>=4.8.0
- sympy>=1.13.0
- "typing-extensions>=4.8.0"
- "sympy>=1.13.0"
- filelock
- networkx
- jinja2
@@ -85,8 +85,8 @@ parameters:
- lintrunner
- ninja
- packaging
- optree>=0.13.0
- click>=8.0.3
- "optree>=0.13.0"
- "click>=8.0.3"
# list for vision
- auditwheel
- future

View File

@@ -0,0 +1,68 @@
#!/usr/bin/env python3
import json
import requests
import argparse
from pathlib import Path
def get_builds(entries, gpu_target, output):
already_downloaded = {}
for entry in entries:
already_downloaded = _get_builds(entry, gpu_target, already_downloaded, output)
def _get_builds(entry, gpu_target, already_downloaded, output):
print()
print(f"{entry['buildNumber']} - {entry['buildId']} - {entry['repoName']}")
if already_downloaded.get(entry['buildId']):
print('Skipping, already downloaded from build ' + entry['buildId'])
return already_downloaded
artifacts_url = f"https://dev.azure.com/ROCm-CI/ROCm-CI/_apis/build/builds/{entry['buildId']}/artifacts?api-version=7.1"
artifacts = requests.get(artifacts_url).json()
for artifact in artifacts['value']:
if 'gfx' in artifact['name'] and gpu_target not in artifact['name']:
continue
print('Artifact name: ' + artifact['name'])
print('File size: ~' +
str(round(int(artifact['resource']['properties']['artifactsize'])/1000000, 2)) + ' MB')
download_url = f"{artifact['resource']['downloadUrl']}"
download = requests.get(download_url)
zip_file = Path(output) / f"{artifact['name']}.zip"
with open(zip_file, 'wb') as f:
f.write(download.content)
already_downloaded[entry['buildId']] = True
return already_downloaded
def main():
parser = argparse.ArgumentParser(description="Command line tool for downloading external ci artifacts")
parser.add_argument('--target', type=str, dest="target", choices=["gfx90a", "gfx942"], help="Target gfx")
parser.add_argument('--manifest', type=str, dest="manifest", help='JSON manifest url or path to local manifest')
parser.add_argument('--output_dir', type=str, dest="output", help='Path to download directory')
args = parser.parse_args()
manifest = args.manifest
gpu_target = args.target
if not gpu_target:
print("Enter the GPU target (gfx942, gfx90a)")
gpu_target = input()
if not manifest:
print("Enter the manifest file (URL or local path)")
manifest = input()
if 'http' in manifest:
data = requests.get(manifest).json()
else:
with open(manifest, 'r') as f:
data = json.load(f)
entries = [e for e in data['current']]
entries.extend([e for e in data['dependencies']])
get_builds(entries, gpu_target, args.output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1 @@
requests

View File

@@ -12,6 +12,11 @@ parameters:
- name: fileFilter
type: string
default: ''
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
steps:
- task: Bash@3
@@ -27,17 +32,23 @@ steps:
- task: DownloadPipelineArtifact@2
displayName: Download ${{ parameters.componentName }}
inputs:
buildType: 'specific'
project: ROCm-CI
definition: ${{ parameters.pipelineId }}
specificBuildWithTriggering: true
itemPattern: '**/*${{ parameters.fileFilter }}*'
# aomp is a special case, since the trigger file is under ROCm/ROCm instead of the component repo
${{ if notIn(parameters.componentName, 'aomp') }}:
buildVersionToDownload: latestFromBranch # default is 'latest'
branchName: refs/heads/${{ parameters.branchName }}
allowPartiallySucceededBuilds: $(allowPartiallySucceededBuilds)
targetPath: '$(Pipeline.Workspace)/d'
${{ if eq(parameters.aggregatePipeline, false) }}:
buildType: 'specific'
project: ROCm-CI
definition: ${{ parameters.pipelineId }}
specificBuildWithTriggering: true
itemPattern: '**/*${{ parameters.fileFilter }}*'
# aomp is a special case, since the trigger file is under ROCm/ROCm instead of the component repo
${{ if notIn(parameters.componentName, 'aomp') }}:
buildVersionToDownload: latestFromBranch # default is 'latest'
branchName: refs/heads/${{ parameters.branchName }}
allowPartiallySucceededBuilds: $(allowPartiallySucceededBuilds)
targetPath: '$(Pipeline.Workspace)/d'
${{ else }}:
buildType: 'current'
itemPattern: '**/${{ parameters.componentName }}*${{ parameters.fileFilter }}*'
allowPartiallySucceededBuilds: $(allowPartiallySucceededBuilds)
targetPath: '$(Pipeline.Workspace)/d'
- task: ExtractFiles@1
displayName: Extract ${{ parameters.componentName }}
inputs:

View File

@@ -10,10 +10,10 @@ parameters:
default: ''
- name: cmakeBuildDir
type: string
default: 'build'
default: $(Agent.BuildDirectory)/s/build
- name: cmakeSourceDir
type: string
default: '..'
default: $(Agent.BuildDirectory)/s
- name: customBuildTarget
type: string
default: ''
@@ -46,7 +46,7 @@ steps:
${{ if eq(parameters.customInstallPath, true) }}:
cmakeArgs: -DCMAKE_INSTALL_PREFIX=${{ parameters.installDir }} ${{ parameters.extraBuildFlags }} ${{ parameters.cmakeSourceDir }}
${{ else }}:
cmakeArgs: ${{ parameters.extraBuildFlags }} ..
cmakeArgs: ${{ parameters.extraBuildFlags }} ${{ parameters.cmakeSourceDir }}
- ${{ if parameters.printDiskSpace }}:
- script: df -h
displayName: Disk space before build

View File

@@ -4,6 +4,12 @@ parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: sparseCheckout
type: boolean
default: false
- name: sparseCheckoutDir
type: string
default: ''
# submodule download behaviour
# change to 'recursive' for repos with submodules
- name: submoduleBehaviour
@@ -15,3 +21,13 @@ steps:
clean: true
submodules: ${{ parameters.submoduleBehaviour }}
retryCountOnTaskFailure: 3
fetchFilter: blob:none
${{ if eq(parameters.sparseCheckout, true) }}:
sparseCheckoutDirectories: ${{ parameters.sparseCheckoutDir }}
path: sparse
- ${{ if eq(parameters.sparseCheckout, true) }}:
- task: Bash@3
displayName: Symlink sparse checkout
inputs:
targetType: inline
script: ln -s $(Agent.BuildDirectory)/sparse/${{ parameters.sparseCheckoutDir }} $(Agent.BuildDirectory)/s

View File

@@ -31,6 +31,11 @@ parameters:
- name: setupHIPLibrarySymlinks
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: componentVarList
type: object
@@ -354,6 +359,7 @@ steps:
parameters:
componentName: ${{ split(dependency, ':')[0] }}
pipelineId: ${{ parameters.componentVarList[split(dependency, ':')[0]].pipelineId }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.componentVarList[split(dependency, ':')[0]].hasGpuTarget }}:
fileFilter: "${{ split(dependency, ':')[1] }}*${{ parameters.gpuTarget }}"
# dependencySource = staging
@@ -383,6 +389,7 @@ steps:
parameters:
componentName: ${{ dependency }}
pipelineId: ${{ parameters.componentVarList[dependency].pipelineId }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.componentVarList[dependency].hasGpuTarget }}:
fileFilter: ${{ parameters.gpuTarget }}
# dependencySource = staging
@@ -456,7 +463,7 @@ steps:
displayName: 'List downloaded ROCm files'
inputs:
targetType: inline
script: ls -1R $(Agent.BuildDirectory)/rocm
script: ls -la1R $(Agent.BuildDirectory)/rocm
- ${{ if eq(parameters.skipLibraryLinking, false) }}:
- task: Bash@3
displayName: 'Link ROCm shared libraries'

View File

@@ -0,0 +1,82 @@
# This template creates and uploads a Docker image from the current environment
# It uses `docker commit` to do so, which can provide more accurate images than the standard template
# It requires the following conditions:
# - Job must be run inside a Docker container
# - The container's external name must be the same as the container's internal hostname
# - Docker must be installed inside said container and given sufficient permissions
# Currently, it is only usable for test jobs run on our self-managed systems
# Jobs run on Azure VMs will not be able to use this template (most if not all build jobs)
parameters:
- name: gpuTarget
type: string
default: ''
- name: environment
type: string
default: build
values:
- build
- test
- combined
- amd
- nvidia
- name: extraPaths
type: string
default: ''
- name: extraEnvVars
type: object
default: []
- name: forceDockerCreation
type: boolean
default: false
steps:
- task: Bash@3
displayName: Commit container and initialize Dockerfile
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: |
docker commit $(hostname) az-ci-temp-image:latest
echo "FROM az-ci-temp-image:latest" > Dockerfile
echo "RUN sudo groupmod -g $(getent group render | awk -F: '{print $3}') render" >> Dockerfile
echo "RUN sudo groupmod -g $(getent group docker | awk -F: '{print $3}') docker" >> Dockerfile
echo "ENV PATH='$PATH:${{ parameters.extraPaths }}'" >> Dockerfile
echo "ENTRYPOINT [\"/bin/bash\"]" >> Dockerfile
- ${{ each extraEnvVar in parameters.extraEnvVars }}:
- task: Bash@3
displayName: Add extra environment variables
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: echo "ENV ${{ split(extraEnvVar, ':::')[0] }}='${{ split(extraEnvVar, ':::')[1] }}'" >> Dockerfile
- task: Bash@3
displayName: Print Dockerfile
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: cat Dockerfile
- task: Docker@2
displayName: Build and upload Docker image
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
containerRegistry: 'ContainerService3'
${{ if ne(parameters.gpuTarget, '') }}:
repository: '$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}'
${{ else }}:
repository: '$(Build.DefinitionName)-${{ parameters.environment }}'
Dockerfile: '$(Pipeline.Workspace)/Dockerfile'
buildContext: '$(Pipeline.Workspace)'
- task: Bash@3
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
displayName: "!! Docker Image URL !!"
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
${{ if ne(parameters.gpuTarget, '') }}:
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}:$(Build.BuildId)" | tr '[:upper:]' '[:lower:]'
${{ else }}:
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}:$(Build.BuildId)" | tr '[:upper:]' '[:lower:]'

View File

@@ -106,6 +106,7 @@ parameters:
type: object
default:
- gfx90a
- gfx942
steps:
# these steps should only be run if there was a failure or warning
@@ -334,7 +335,7 @@ steps:
- task: Docker@2
condition: or(and(failed(), ${{ not(containsValue(parameters.dockerSkipGfx, parameters.gpuTarget)) }}), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
containerRegistry: 'ContainerService'
containerRegistry: 'ContainerService3'
${{ if ne(parameters.gpuTarget, '') }}:
repository: '$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}'
${{ else }}:
@@ -348,6 +349,6 @@ steps:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
${{ if ne(parameters.gpuTarget, '') }}:
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}:$(Build.BuildId)"
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}:$(Build.BuildId)" | tr '[:upper:]' '[:lower:]'
${{ else }}:
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}:$(Build.BuildId)"
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}:$(Build.BuildId)" | tr '[:upper:]' '[:lower:]'

View File

@@ -54,7 +54,7 @@ steps:
fi
echo "Downloading CK artifact from $ARTIFACT_URL"
wget -nv $ARTIFACT_URL -O $(System.ArtifactsDirectory)/ck.zip
wget --tries=5 --waitretry=10 --retry-connrefused -nv $ARTIFACT_URL -O $(System.ArtifactsDirectory)/ck.zip
unzip $(System.ArtifactsDirectory)/ck.zip -d $(System.ArtifactsDirectory)
mkdir -p $(Agent.BuildDirectory)/rocm
tar -zxvf $(System.ArtifactsDirectory)/$ARTIFACT_NAME/*.tar.gz -C $(Agent.BuildDirectory)/rocm

View File

@@ -30,13 +30,13 @@ variables:
- name: GFX90A_TEST_POOL
value: gfx90a_test_pool
- name: LATEST_RELEASE_VERSION
value: 6.3.4
- name: REPO_RADEON_VERSION
value: 6.3.4
- name: NEXT_RELEASE_VERSION
value: 6.4.0
- name: REPO_RADEON_VERSION
value: 6.4
- name: NEXT_RELEASE_VERSION
value: 6.5.0
- name: LATEST_RELEASE_TAG
value: rocm-6.3.4
value: rocm-6.4.0
- name: DOCKER_SKIP_GFX
value: gfx90a
- name: AMDMIGRAPHX_GFX942_TEST_PIPELINE_ID

View File

@@ -34,6 +34,7 @@ Autocast
BARs
BLAS
BMC
BabelStream
Blit
Blockwise
Bluefield
@@ -76,6 +77,7 @@ Concretized
Conda
ConnectX
CuPy
da
Dashboarding
DBRX
DDR
@@ -137,6 +139,7 @@ GDR
GDS
GEMM
GEMMs
GFLOPS
GFortran
GFXIP
Gemma
@@ -225,6 +228,7 @@ LM
LSAN
LSan
LTS
LanguageCrossEntropy
LoRA
MEM
MERCHANTABILITY
@@ -242,6 +246,7 @@ MMIOH
MMU
MNIST
MPI
MPT
MSVC
MVAPICH
MVFFR
@@ -258,6 +263,7 @@ Meta's
Miniconda
MirroredStrategy
Mixtral
MosaicML
Multicore
Multithreaded
MyEnvironment
@@ -328,6 +334,7 @@ PipelineParallel
PnP
PowerEdge
PowerShell
Pretrained
Pretraining
Profiler's
PyPi
@@ -636,6 +643,7 @@ hipSPARSELt
hipTensor
hipamd
hipblas
hipcc
hipcub
hipfft
hipfort
@@ -751,6 +759,7 @@ profilers
protobuf
pseudorandom
py
pytorch
recommender
recommenders
quantile

View File

@@ -6,7 +6,7 @@ different versions of the ROCm software stack and its components.
## ROCm 6.4.0
See the [ROCm 6.4.0 release notes](https://rocm-stg.amd.com/en/latest/about/release-notes.html)
See the [ROCm 6.4.0 release notes](https://rocm.docs.amd.com/en/docs-6.4.0/about/release-notes.html)
for a complete overview of this release.
### **AMD SMI** (25.3.0)
@@ -125,8 +125,7 @@ Some workaround options are as follows:
- The `pasid` field in struct `amdsmi_process_info_t` will be deprecated in a future ROCm release.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/rocm-6.4.x/CHANGELOG.md) for details, examples,
and in-depth descriptions.
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **AMDMIGraphX** (2.12.0)
@@ -678,7 +677,6 @@ The following lists the backward incompatible changes planned for upcoming major
* Roofline support for Ubuntu 24.04.
* Experimental support `rocprofv3` (not enabled as default).
* Experimental feature: Spatial multiplexing.
#### Resolved issues
@@ -737,8 +735,7 @@ The following lists the backward incompatible changes planned for upcoming major
- Fixed `rsmi_dev_target_graphics_version_get`, `rocm-smi --showhw`, and `rocm-smi --showprod` not displaying graphics version correctly for Instinct MI200 series, MI100 series, and RDNA3-based GPUs.
```{note}
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rocm-6.4.x/CHANGELOG.md) for details, examples,
and in-depth descriptions.
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **ROCm Systems Profiler** (1.0.0)
@@ -746,6 +743,10 @@ and in-depth descriptions.
#### Added
- Support for VA-API and rocDecode tracing.
- Aggregation of MPI data collected across distributed nodes and ranks. The data is concatenated into a single proto file.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
#### Resolved issues
@@ -756,9 +757,9 @@ and in-depth descriptions.
- Fixed interruption in config file generation.
- Fixed segmentation fault while running rocprof-sys-instrument.
- Fixed an issue where running `rocprof-sys-causal` or using the `-I all` option with `rocprof-sys-sample` caused the system to become non-responsive.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
- Fixed an issue where sampling multi-GPU Python workloads caused the system to stop responding.
### **rocPRIM** (3.4.0)
@@ -3456,7 +3457,7 @@ See [issue #3499](https://github.com/ROCm/ROCm/issues/3499) on GitHub.
- Error when running Omniperf with an application with command line arguments. As a workaround, create an
intermediary script to call the application with the necessary arguments, then call the script with Omniperf. This
issue is fixed in a future release of Omniperf. See [#347](https://github.com/ROCm/omniperf/issues/347).
issue is fixed in a future release of Omniperf. See [#347](https://github.com/ROCm/rocprofiler-compute/issues/347).
- Omniperf might not work with AMD Instinct MI300 accelerators out of the box, resulting in the following error:
"*ERROR gfx942 is not enabled rocprofv1. Available profilers include: ['rocprofv2']*". As a workaround, add the
@@ -4333,7 +4334,7 @@ for a complete overview of this release.
* New multiple node and GPU support.
Unsmoothed and smoothed aggregations and Ruge-Stueben AMG now work with multiple nodes
and GPUs. For more information, refer to the
[API documentation](https://rocm.docs.amd.com/projects/rocALUTION/en/latest/usermanual/solvers.html#unsmoothed-aggregation-amg).
[API documentation](https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.1.0/usermanual/solvers.html#unsmoothed-aggregation-amg).
### **rocDecode** (0.5.0)

View File

@@ -64,7 +64,7 @@ ROCm 6.4.0 has been tested to allow you to choose a combination of AMD Kernel-mo
### Separation of user space and driver space components documentation
As of ROCm 6.4.0, the driver space components documentation has moved from [AMD ROCm documentation](https://rocmdocs.amd.com/) to its own documentation site, [AMD Instinct Data Center GPU Driver](instinct.docs.amd.com). The goal is to make the software for AMD Instinct GPUs more modular. This helps in having a clear understanding of the options for installation combinations of Instinct driver and multiple supported ROCm user space versions.
As of ROCm 6.4.0, the driver space components documentation has moved from [AMD ROCm documentation](https://rocmdocs.amd.com/) to its own documentation site, [AMD Instinct Data Center GPU Driver](https://instinct.docs.amd.com/latest/). The goal is to make the software for AMD Instinct GPUs more modular. This helps in having a clear understanding of the options for installation combinations of Instinct driver and multiple supported ROCm user space versions.
Information about the variant of the `amdgpu` driver built for Instinct GPUs is available on [AMD Instinct Data Center GPU Driver](https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/). See [ROCm/ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver) GitHub repository for source code, which is planned to be renamed to **instinct-driver** in a future ROCm release. For ROCm 6.4.0, the versioning scheme for the Instinct driver is parallel to the ROCm versioning; that is, 6.4.0. In future ROCm releases, the Instinct driver version is planned to be separate from the ROCm versioning.
@@ -80,23 +80,23 @@ for the complete list of PyTorch versions tested for compatibility with ROCm. Se
### VP9 support added to rocDecode and rocPyDecode
VP9 support is added to [rocDecode](https://github.com/ROCm/rocDecode) and [rocPyDecode](https://github.com/ROCm/rocPyDecode), allowing enhanced codec support with VP9 encoding.
VP9 support is added to [rocDecode](https://rocm.docs.amd.com/projects/rocDecode/en/latest/index.html) and [rocPyDecode](https://rocm.docs.amd.com/projects/rocPyDecode/en/latest/index.html), allowing enhanced codec support with VP9 encoding.
### Bitstream reader support added to rocDecode
The new bitstream reader feature has been added to [rocDecode](https://github.com/ROCm/rocDecode). It contains built-in stream file parsers, including an elementary stream file parser and an IVF container file parser. It enables decoding without the requirement for FFmpeg demuxer. The reader can parse AVC, HEVC, and AV1 elementary stream files, and AV1 IVF container files. See [Using the rocDecode bitstream reader APIs](https://rocm.docs.amd.com/projects/rocDecode/en/latest/how-to/using-rocDecode-bitstream.html) for more information.
The new bitstream reader feature has been added to [rocDecode](https://rocm.docs.amd.com/projects/rocDecode/en/latest/index.html). It contains built-in stream file parsers, including an elementary stream file parser and an IVF container file parser. It enables decoding without the requirement for FFmpeg demuxer. The reader can parse AVC, HEVC, and AV1 elementary stream files, and AV1 IVF container files. See [Using the rocDecode bitstream reader APIs](https://rocm.docs.amd.com/projects/rocDecode/en/latest/how-to/using-rocDecode-bitstream.html) for more information.
### DLPack support added to rocAL
[rocAL](https://github.com/ROCm/rocAL) now supports DLPack, allowing rocAL GPU tensor to be exchanged with PyTorch. This allows faster data processing by leveraging DLPack tensors. It also improves the GPU based workload performance. For more details, see [DLpack github reference documentation](https://dmlc.github.io/dlpack/latest/).
[rocAL](https://rocm.docs.amd.com/projects/rocAL/en/latest/index.html) now supports DLPack, allowing rocAL GPU tensor to be exchanged with PyTorch. This allows faster data processing by leveraging DLPack tensors. It also improves the GPU based workload performance. For more details, see [DLpack github reference documentation](https://dmlc.github.io/dlpack/latest/).
### ROCm Compute Profiler updates
* ROCm Compute Profiler now supports:
ROCm Compute Profiler now supports:
* ROCprofiler-SDK (`rocprofv3`)
* Experimental multi-nodes profiling support.
* Roofline plot for 64-bit floating point (FP64) and 32-bit floating point (FP32) data types.
* ROCprofiler-SDK (`rocprofv3`)
* Experimental multi-nodes profiling support.
* Roofline plot for 64-bit floating point (FP64) and 32-bit floating point (FP32) data types.
### ROCm Systems Profiler updates
@@ -164,9 +164,10 @@ ROCm documentation continues to be updated to provide clearer and more comprehen
- The new [HIP complex math API](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/complex_math_api.html) topic describes HIP complex number types and usage of these types with example code.
- The new [HIP error codes](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/error_codes.html) topic list notes all HIP runtime error codes and their descriptions. HIP API functions return these error codes to indicate various runtime conditions and errors.
- The [Introduction to the HIP programming model](https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html) topic has been updated, providing a more robust introduction to HIP.
- The [Math API](https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html) topic has been reorganized, and the ULP difference of maximum absolute error information has been added.
- The new [Low precision floating point types](https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html) topic includes information about FP8 (Quarter Precision) and FP16 (Half Precision).
- The [Math API](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/math_api.html) topic has been reorganized, and the ULP difference of maximum absolute error information has been added.
- The new [Low precision floating point types](https://rocm.docs.amd.com/projects/HIP/en/latest/reference/low_fp_types.html) topic includes information about FP8 (Quarter Precision) and FP16 (Half Precision).
* In addition to these Release Notes, see the blog [Breaking Barriers in AI, HPC, and Modular GPU Software](https://rocm.blogs.amd.com/ecosystems-and-partners/rocm-6.4-blog/README.html) for a wide-ranging discussion of the key advancements and highlights of ROCm 6.4.0.
## Operating system and hardware support changes
@@ -252,14 +253,19 @@ Click {fab}`github` to go to the component's source code on GitHub.
</tbody>
<tbody class="rocm-components-libs rocm-components-communication tbody-reverse-zebra">
<tr>
<th rowspan="1"></th>
<th rowspan="1">Communication</th>
<th rowspan="2"></th>
<th rowspan="2">Communication</th>
<td><a href="https://rocm.docs.amd.com/projects/rccl/en/docs-6.4.0/index.html">RCCL</a></td>
<td>2.21.5&nbsp;&Rightarrow;&nbsp;<a href="#rccl-2-22-3">2.22.3</a></td>
<td><a href="https://github.com/ROCm/rccl"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
<tr>
<td><a href="https://github.com/ROCm/rocSHMEM">rocSHMEM</a></td>
<td>2.0.0</td>
<td><a href="https://github.com/ROCm/rocSHMEM"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-libs rocm-components-math">
<tbody class="rocm-components-libs rocm-components-math tbody-reverse-zebra">
<tr>
<th rowspan="16"></th>
<th rowspan="16">Math</th>
@@ -343,7 +349,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<td><a href="https://github.com/ROCm/Tensile"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-libs rocm-components-primitives">
<tbody class="rocm-components-libs rocm-components-primitives tbody-reverse-zebra">
<tr>
<th rowspan="4"></th>
<th rowspan="4">Primitives</th>
@@ -367,7 +373,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<td><a href="https://github.com/ROCm/rocThrust"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-tools rocm-components-system">
<tbody class="rocm-components-tools rocm-components-system tbody-reverse-zebra">
<tr>
<th rowspan="7">Tools</th>
<th rowspan="7">System management</th>
@@ -396,7 +402,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
<td><a href="https://github.com/ROCm/ROCmValidationSuite"><i class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-tools rocm-components-perf tbody-reverse-zebra">
<tbody class="rocm-components-tools rocm-components-perf">
<tr>
<th rowspan="6"></th>
<th rowspan="6">Performance</th>
@@ -437,7 +443,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-tools rocm-components-dev tbody-reverse-zebra">
<tbody class="rocm-components-tools rocm-components-dev">
<tr>
<th rowspan="5"></th>
<th rowspan="5">Development</th>
@@ -473,7 +479,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-compilers">
<tbody class="rocm-components-compilers tbody-reverse-zebra">
<tr>
<th rowspan="2" colspan="2">Compilers</th>
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.4.0/index.html">HIPCC</a></td>
@@ -488,7 +494,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
class="fab fa-github fa-lg"></i></a></td>
</tr>
</tbody>
<tbody class="rocm-components-runtimes">
<tbody class="rocm-components-runtimes tbody-reverse-zebra">
<tr>
<th rowspan="2" colspan="2">Runtimes</th>
<td><a href="https://rocm.docs.amd.com/projects/HIP/en/docs-6.4.0/index.html">HIP</a></td>
@@ -628,8 +634,7 @@ Some workaround options are as follows:
- The `pasid` field in struct `amdsmi_process_info_t` will be deprecated in a future ROCm release.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/rocm-6.4.x/CHANGELOG.md) for details, examples,
and in-depth descriptions.
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **AMDMIGraphX** (2.12.0)
@@ -1181,7 +1186,6 @@ The following lists the backward incompatible changes planned for upcoming major
* Roofline support for Ubuntu 24.04.
* Experimental support `rocprofv3` (not enabled as default).
* Experimental feature: Spatial multiplexing.
#### Resolved issues
@@ -1240,8 +1244,7 @@ The following lists the backward incompatible changes planned for upcoming major
- Fixed `rsmi_dev_target_graphics_version_get`, `rocm-smi --showhw`, and `rocm-smi --showprod` not displaying graphics version correctly for Instinct MI200 series, MI100 series, and RDNA3-based GPUs.
```{note}
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rocm-6.4.x/CHANGELOG.md) for details, examples,
and in-depth descriptions.
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **ROCm Systems Profiler** (1.0.0)
@@ -1249,6 +1252,11 @@ and in-depth descriptions.
#### Added
- Support for VA-API and rocDecode tracing.
- Aggregation of MPI data collected across distributed nodes and ranks. The data is concatenated into a single proto file.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
#### Resolved issues
@@ -1259,9 +1267,9 @@ and in-depth descriptions.
- Fixed interruption in config file generation.
- Fixed segmentation fault while running rocprof-sys-instrument.
- Fixed an issue where running `rocprof-sys-causal` or using the `-I all` option with `rocprof-sys-sample` caused the system to become non-responsive.
#### Changed
- Backend refactored to use [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) rather than [ROCProfiler](https://github.com/ROCm/rocprofiler) and [ROCTracer](https://github.com/ROCm/ROCTracer).
- Fixed an issue where sampling multi-GPU Python workloads caused the system to stop responding.
### **rocPRIM** (3.4.0)
@@ -1577,34 +1585,35 @@ modprobe.blacklist=ast
```bash
modprobe.blacklist=mgag200
```
See [GitHub issue #4589](https://github.com/ROCm/ROCm/issues/4589).
### Failure when using a generic target with compression and vice versa
In ROCm 6.4.0, compilation for generic target with compression will fail. As a result, you won't be able to compile for a generic target and use compression simultaneously. As a workaround, it's recommended not to use compression when using generic targets and vice versa. This issue will be addressed in a future ROCm release.
In ROCm 6.4.0, compilation for generic target with compression will fail. As a result, you won't be able to compile for a generic target and use compression simultaneously. As a workaround, it's recommended not to use compression when using generic targets and vice versa. This issue will be addressed in a future ROCm release. See [GitHub issue #4602](https://github.com/ROCm/ROCm/issues/4602).
### GFX Freq information is unavailable in the rocm-smi when running in SRIOV mode enabled on MI210
In ROCm 6.4.0, you cannot see the GFX Freq information in the guest VM. In SRIOV mode, the AMD Platform Management Firmware (PMFW) does not share the graphics frequency information with the guest VMs and is only available to Host systems. This issue will be addressed in a future ROCm release.
In ROCm 6.4.0, you cannot see the GFX Freq information in the guest VM. In SRIOV mode, the AMD Platform Management Firmware (PMFW) does not share the graphics frequency information with the guest VMs and is only available to Host systems. This issue will be addressed in a future ROCm release. See [GitHub issue #4603](https://github.com/ROCm/ROCm/issues/4603).
### Failure to use --kokkos-trace option in ROCm Compute Profiler
In ROCm 6.4.0, its not recommended to use the `--kokkos-trace` option. `--kokkos-trace` has been partially implemented in the `rocprofv3` tool, resulting in a difference between the output of `--kokkos-trace` and the `counter_collection.csv` output file. The program will exit with a warning message if the `-kokkos-trace` option is detected in the ROCm Compute Profiler. The issue will be addressed in a future ROCm release.
In ROCm 6.4.0, its not recommended to use the `--kokkos-trace` option. `--kokkos-trace` has been partially implemented in the `rocprofv3` tool, resulting in a difference between the output of `--kokkos-trace` and the `counter_collection.csv` output file. The program will exit with a warning message if the `-kokkos-trace` option is detected in the ROCm Compute Profiler. The issue will be addressed in a future ROCm release. See [GitHub issue #4604](https://github.com/ROCm/ROCm/issues/4604).
### Compute partition modification is restricted with concurrent operations running in parallel
Modification to compute partition in GPU is prohibited by design while concurrent operations run in parallel. You must ensure no concurrent operations on the device are running when attempting to modify the compute partitions. Additional checks and error messaging to inform users of correct operation for partition modification are planned for future ROCm releases.
Modification to compute partition in GPU is prohibited by design while concurrent operations run in parallel. You must ensure no concurrent operations on the device are running when attempting to modify the compute partitions. Additional checks and error messaging to inform users of correct operation for partition modification are planned for future ROCm releases. See [GitHub issue #4605](https://github.com/ROCm/ROCm/issues/4605).
### MIOpen generates incorrect results for particular input with FP32 data type
In ROCm 6.4.0, MIOpen generates incorrect results on the `conv2dbackward` function for a particular input with 32-bit floating point (FP32) data types. The issue is only specific to FP32 data types with 2 * 2 kernel size and dilation 2 * 1. As a workaround, change the data type from FP32 to FP16. The issue will be addressed in a future ROCm release.
In ROCm 6.4.0, MIOpen generates incorrect results on the `conv2dbackward` function for a particular input with 32-bit floating point (FP32) data types. The issue is only specific to FP32 data types with 2 * 2 kernel size and dilation 2 * 1. As a workaround, change the data type from FP32 to FP16. The issue will be addressed in a future ROCm release. See [GitHub issue #4606](https://github.com/ROCm/ROCm/issues/4606).
### ROCm Debugger (ROCgdb) might not work correctly on the AMD Radeon PRO W6800 SR-IOV virtualization environment
The ROCm Debugger (ROCgdb) component needs access to some registers to fetch debugging information. These registers are blocked in the AMD Radeon PRO W6800 SR-IOV virtualization environment, resulting in the ROCm Debugger (ROCgdb) being non-functional. The issue is due to the limitation in the virtualization environment and isn't specific to ROCm. Further investigation is in progress.
The ROCm Debugger (ROCgdb) component needs access to some registers to fetch debugging information. These registers are blocked in the AMD Radeon PRO W6800 SR-IOV virtualization environment, resulting in the ROCm Debugger (ROCgdb) being non-functional. The issue is due to the limitation in the virtualization environment and isn't specific to ROCm. Further investigation is in progress. See [GitHub issue #4607](https://github.com/ROCm/ROCm/issues/4607).
### Limited support for Sparse API and Pallas functionality in JAX
In ROCm 6.4.0, due to limited support for Sparse API in JAX, some of the functionality of the Pallas extension is restricted. This results in issues porting existing workloads. The issue will be addressed in a future ROCm release.
In ROCm 6.4.0, due to limited support for Sparse API in JAX, some of the functionality of the Pallas extension is restricted. This results in issues porting existing workloads. The issue will be addressed in a future ROCm release. See [GitHub issue #4608](https://github.com/ROCm/ROCm/issues/4608).
### Inconsistent log probabilities when using the Mixtral 8x7B model in vLLM and SGLang framework
@@ -1612,7 +1621,7 @@ In ROCm 6.4.0, using a Mixtral 8X7B model with different tensor parallelism (TP)
The inconsistency primarily impacts the applications that rely on consistent log probabilities, such as those involving uncertainty estimation or probabilistic decision-making. This known limitation results from how TP distributes computations across multiple GPUs, resulting in slight variations in floating-point arithmetic. Currently, there is no direct resolution as this is a framework-level characteristic rather than a defect.
As a workaround, you can standardize the TP sizes across all the deployments to minimize the inconsistency in the log probabilities. For information on the resolution of this inconsistency in the future, see the [SGlang](https://github.com/sgl-project/sglang) and [vLLM](https://github.com/vllm-project/vllm) GitHub repositories.
As a workaround, you can standardize the TP sizes across all the deployments to minimize the inconsistency in the log probabilities. For information on the resolution of this inconsistency in the future, see the [SGlang](https://github.com/sgl-project/sglang) and [vLLM](https://github.com/vllm-project/vllm) GitHub repositories. See [GitHub issue #4609](https://github.com/ROCm/ROCm/issues/4609).
### No module named more_itertools warning on Azure Linux 3
@@ -1621,14 +1630,15 @@ During the driver installation process on Azure Linux 3, you might encounter the
```
sudo python3 -m pip install more_itertools
```
See [GitHub issue #4610](https://github.com/ROCm/ROCm/issues/4610).
### Rare occurrence of AMDGPU driver failing to load in a VM on Quanta system
In a rare occurrence (1 in 500 reboots), the guest kernel might display the call trace due to the AMDGPU driver failing to load in a repeated power cycle virtual machine (VM) on a Quanta system. This issue will limit you from using the AMD GPUs in the guest kernel. As a workaround, reboot the VM to avoid the failure.
In a rare occurrence (1 in 500 reboots), the guest kernel might display the call trace due to the AMDGPU driver failing to load in a repeated power cycle virtual machine (VM) on a Quanta system. This issue will limit you from using the AMD GPUs in the guest kernel. As a workaround, reboot the VM to avoid the failure. See [GitHub issue #4611](https://github.com/ROCm/ROCm/issues/4611).
### Clang compilation failure might occur due to incorrectly installed GNU C++ runtime
Clang compilation failure with the error `fatal error: 'cmath' file not found` might occur if the GNU C++ runtime is not installed correctly. The error indicates that the `libstdc++-dev` package, compatible with the latest installed GNU Compiler Collection (GCC) version, is missing. This issue is a result of Clang being unable to find the newest GNU C++ runtimes it recognizes and the associated header files. As a workaround, install the `libstdc++-dev` package compatible with the installed GCC version.
Clang compilation failure with the error `fatal error: 'cmath' file not found` might occur if the GNU C++ runtime is not installed correctly. The error indicates that the `libstdc++-dev` package, compatible with the latest installed GNU Compiler Collection (GCC) version, is missing. This issue is a result of Clang being unable to find the newest GNU C++ runtimes it recognizes and the associated header files. As a workaround, install the `libstdc++-dev` package compatible with the installed GCC version. See [GitHub issue #4612](https://github.com/ROCm/ROCm/issues/4612).
### ROCProfiler with rocprof might fail to initialize in some PyTorch applications
@@ -1644,18 +1654,27 @@ Alternatively, you can modify the `rocprof` script located at `/opt/rocm-6.x.x/b
```
ROCPROFV1_LD_PRELOAD=$MY_HSA_TOOLS_LIB
```
See [GitHub issue #4613](https://github.com/ROCm/ROCm/issues/4613).
### Applications using HIP runtime might stop the graph capture process
Applications using the HIP runtime might stop the graph capture process if the HIP runtime detects an invalid stale state from a previous capture on the same HIP stream. Resetting the stale set for every new capture in the HIP runtime can resolve the issue. The issue will be fixed in a future ROCm release.
Applications using the HIP runtime might stop the graph capture process if the HIP runtime detects an invalid stale state from a previous capture on the same HIP stream. Resetting the stale set for every new capture in the HIP runtime can resolve the issue. The issue will be fixed in a future ROCm release. See [GitHub issue #4614](https://github.com/ROCm/ROCm/issues/4614).
### Incorrect computation results in hipBLASLt for specific transpose configuration
When running the hipBLASLt library using the transpose configuration (TT) with FP32 and XF32 data types, you might receive incorrect computation results. As a workaround, select alternative solutions from the list returned by `hipblasLtMatmulAlgoGetHeuristic()`. Verify the result to identify the correct alternative solution. The issue will be fixed in a future ROCm release.
When running the hipBLASLt library using the transpose configuration (TT) with FP32 and XF32 data types, you might receive incorrect computation results. As a workaround, select alternative solutions from the list returned by `hipblasLtMatmulAlgoGetHeuristic()`. Verify the result to identify the correct alternative solution. The issue will be fixed in a future ROCm release. See [GitHub issue #4615](https://github.com/ROCm/ROCm/issues/4615).
### Incorrect result in RCCL when using LL protocol in graph mode with MSCCL++ enabled
In RCCL library, you might receive incorrect results in All-Reduce collective API, when using Link Layer (LL) protocol in graph mode while MSCCL++ is enabled. This issue occurs when the protocal state information are updated in the host-side code instead of in a kernel, which is not supported in graph mode. As a workaround, you can disable MSCCL++ by setting the environment variable `RCCL_MSCCLPP_ENABLE=0`. However, consider that this might negatively impact the performance. The issue will be fixed in a future ROCm release.
In RCCL library, you might receive incorrect results in All-Reduce collective API, when using Link Layer (LL) protocol in graph mode while MSCCL++ is enabled. This issue occurs when the protocal state information are updated in the host-side code instead of in a kernel, which is not supported in graph mode. As a workaround, you can disable MSCCL++ by setting the environment variable `RCCL_MSCCLPP_ENABLE=0`. However, consider that this might negatively impact the performance. The issue will be fixed in a future ROCm release. See [GitHub issue #4616](https://github.com/ROCm/ROCm/issues/4616).
### ROCm installation might fail in some Linux distribution kernels
ROCm 6.4.0 might encounter an installation issue on some Linux distribution kernels, including the [patch](https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9011e49d54dcc7653ebb8a1e05b5badb5ecfa9f9) that adds more restrictions for symbol lookups. This change breaks the standard symbol lookup methods in the kernel.
As a result, the AMD kernel driver Dynamic Kernel Mode Support (DKMS) package might fail to install when the symbols required to use the PeerDirect API with Mellanox NICs are not found. In the event of such a failure, the AMD DKMS package attempts to locate these symbols directly from the Mellanox installation. However, for non-standard Mellanox NIC installations, the AMD DKMS package might not be able to locate these symbols.
This issue will be fixed in a future ROCm release. As a workaround, you can run the script that allows the DKMS package to locate Mellanox symbols from the Mellanox installation without you requiring to update the new DKMS package. For downloading the script and getting more details on the issue and workaround, see [GitHub issue #4671](https://github.com/ROCm/ROCm/issues/4671).
## ROCm resolved issues

View File

@@ -81,6 +81,7 @@ additional licenses. Please review individual repositories for more information.
| [rocRAND](https://github.com/ROCm/rocRAND/) | [MIT](https://github.com/ROCm/rocRAND/blob/develop/LICENSE.txt) |
| [ROCr Debug Agent](https://github.com/ROCm/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocr_debug_agent/blob/amd-staging/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/amd-staging/LICENSE.txt) |
| [rocSHMEM](https://github.com/ROCm/rocSHMEM/) | [MIT](https://github.com/ROCm/rocSHMEM/blob/develop/LICENSE.md) |
| [rocSOLVER](https://github.com/ROCm/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCm/rocSOLVER/blob/develop/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCm/rocSPARSE/) | [MIT](https://github.com/ROCm/rocSPARSE/blob/develop/LICENSE.md) |
| [rocThrust](https://github.com/ROCm/rocThrust/) | [Apache 2.0](https://github.com/ROCm/rocThrust/blob/develop/LICENSE) |

View File

@@ -1,6 +1,6 @@
ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
@@ -26,8 +26,7 @@ ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.20,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
@@ -38,7 +37,7 @@ ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2
CUB,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
Tested user space versions,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
@@ -53,6 +52,7 @@ ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2
,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
@@ -81,7 +81,7 @@ ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2
,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
@@ -89,15 +89,15 @@ ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
:doc:`ROCTracer <roctracer:index>`,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,19.0.0.25104,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
1 ROCm Version 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
26 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` 2.6, 2.5, 2.4, 2.3 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
27 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.18.1, 2.17.1, 2.16.2 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
28 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.4.35 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
29 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.20 1.2 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
30
31 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60:
32 `UCC <https://github.com/ROCm/ucc>`_ >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
37 CUB 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
38
39 KMD & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60:
40 Tested user space versions KMD versions 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
41
42 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60:
43 :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
52
53 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60:
54 :doc:`RCCL <rccl:index>` 2.22.3 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
55 `rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ 2.0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
56
57 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60:
58 `half <https://github.com/ROCm/half>`_ 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0
81
82 SUPPORT LIBS
83 `hipother <https://github.com/ROCm/hipother>`_ 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
84 `rocm-core <https://github.com/ROCm/rocm-core>`_ 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.2 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
85 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
86
87 SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60:
89 :doc:`ROCm Data Center Tool <rdc:index>` 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0
90 :doc:`rocminfo <rocminfo:index>` 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
91 :doc:`ROCm SMI <rocm_smi_lib:index>` 7.5.0 7.4.0 7.4.0 7.4.0 7.4.0 7.3.0 7.3.0 7.3.0 7.3.0 7.2.0 7.2.0 7.0.0 7.0.0 6.0.2 6.0.0
92 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.0.60204 1.0.60202 1.0.60201 1.0.60200 1.0.60102 1.0.60105 1.0.60102 1.0.60101 1.0.60100 1.0.60002 1.0.60000
93
94 PERFORMANCE TOOLS
95 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0
96 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 3.1.0 3.0.0 3.0.0 3.0.0 3.0.0 2.0.1 2.0.1 2.0.1 2.0.1 N/A N/A N/A N/A N/A N/A
97 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 1.0.0 0.1.2 0.1.1 0.1.0 0.1.0 1.11.2 1.11.2 1.11.2 1.11.2 N/A N/A N/A N/A N/A N/A
98 :doc:`ROCProfiler <rocprofiler:index>` 2.0.60400 2.0.60303 2.0.60302 2.0.60301 2.0.60300 2.0.60204 2.0.60202 2.0.60201 2.0.60200 2.0.60102 2.0.60105 2.0.60102 2.0.60101 2.0.60100 2.0.60002 2.0.60000
99 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 0.6.0 0.5.0 0.5.0 0.5.0 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 N/A N/A N/A N/A N/A N/A
100 :doc:`ROCTracer <roctracer:index>` 4.1.60400 4.1.60303 4.1.60302 4.1.60301 4.1.60300 4.1.60204 4.1.60202 4.1.60201 4.1.60200 4.1.60102 4.1.60105 4.1.60102 4.1.60101 4.1.60100 4.1.60002 4.1.60000
101
102 DEVELOPMENT TOOLS
103 :doc:`HIPIFY <hipify:index>` 19.0.0.25104 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483

View File

@@ -62,7 +62,7 @@ compatibility and system requirements.
CUB,2.5.0,2.3.2,2.2.0
,,,
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
Tested user space versions,"6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.3.x, 6.2.x, 6.1.x, 6.0.x"
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
@@ -77,6 +77,7 @@ compatibility and system requirements.
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.22.3,2.21.5,2.20.5
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,N/A,N/A
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0

View File

@@ -14,17 +14,18 @@ JAX provides a NumPy-like API, which combines automatic differentiation and the
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
learning at scale.
JAX uses composable transformations of Python and NumPy through just-in-time (JIT) compilation,
automatic vectorization, and parallelization. To learn about JAX, including profiling and
optimizations, see the official `JAX documentation
JAX uses composable transformations of Python and NumPy through just-in-time
(JIT) compilation, automatic vectorization, and parallelization. To learn about
JAX, including profiling and optimizations, see the official `JAX documentation
<https://jax.readthedocs.io/en/latest/notebooks/quickstart.html>`_.
ROCm support for JAX is upstreamed and users can build the official source code with ROCm
support:
ROCm support for JAX is upstreamed, and users can build the official source code
with ROCm support:
- ROCm JAX release:
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>` with ROCm and JAX pre-installed.
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>`
with ROCm and JAX preinstalled.
- ROCm JAX repository: `ROCm/jax <https://github.com/ROCm/jax>`_
@@ -36,8 +37,8 @@ support:
- Official JAX repository: `jax-ml/jax <https://github.com/jax-ml/jax>`_
- See the `AMD GPU (Linux) installation section
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in the JAX
documentation.
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in
the JAX documentation.
.. note::
@@ -46,6 +47,44 @@ support:
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
follow upstream JAX releases and use the latest available ROCm version.
Use cases and recommendations
================================================================================
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys JAX-based
nanoGPT. Comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in JAX and JAX, also highlights
JAXs unique features.
* The `Optimize GPT Training: Enabling Mixed Precision Training in JAX using
ROCm on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-mixed-precision/README.html>`_
blog post provides a comprehensive guide on enhancing the training efficiency
of GPT models by implementing mixed precision techniques in JAX, specifically
tailored for AMD GPUs utilizing the ROCm platform.
* The `Supercharging JAX with Triton Kernels on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-triton/README.html>`_
blog demonstrates how to develop a custom fused dropout-activation kernel for
matrices using Triton, integrate it with JAX, and benchmark its performance
using ROCm.
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discuss techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
used on a multi-GPU setup.
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_.
.. _jax-docker-compat:
Docker image compatibility
@@ -57,8 +96,8 @@ Docker image compatibility
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for
`ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click the |docker-icon|
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
@@ -68,24 +107,26 @@ icon to view the image on Docker Hub.
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.3.1-jax0.4.31-py3.12/images/sha256-085a0cd5207110922f1fca684933a9359c66d42db6c5aba4760ed5214fdabde0"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.12/images/sha256-4069398229078f3311128b6d276c6af377c7e97d3363d020b0bf7154fae619ca"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.31 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.31>`_
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 24.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.3.1-jax0.4.31-py3.10/images/sha256-f88eddad8f47856d8640b694da4da347ffc1750d7363175ab7dc872e82b43324"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.10/images/sha256-a137f901f91ce6c13b424c40a6cf535248d4d20fd36d5daf5eee0570190a4a11"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.31 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.31>`_
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.14 <https://www.python.org/downloads/release/python-31014/>`_
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are tested for `ROCm 6.2.4 <https://repo.radeon.com/rocm/apt/6.2.4/>`_.
associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/apt/6.3.2/>`_.
.. list-table:: JAX community Docker image components
:header-rows: 1
@@ -94,35 +135,37 @@ associated inventories are tested for `ROCm 6.2.4 <https://repo.radeon.com/rocm/
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.12.7/images/sha256-a6032d89c07573b84c44e42c637bf9752b1b7cd2a222d39344e603d8f4c63beb?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.12.8/images/sha256-25dfaa0183e274bd0a3554a309af3249c6f16a1793226cb5373f418e39d3146a"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
- `3.12.8 <https://www.python.org/downloads/release/python-3128/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.11.10/images/sha256-d462f7e445545fba2f3b92234a21beaa52fe6c5f550faabcfdcd1bf53486d991?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.11.11/images/sha256-ff9baeca9067d13e6c279c911e5a9e5beed0817d24fafd424367cc3d5bd381d7"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.11.10 <https://www.python.org/downloads/release/python-31110/>`_
- `3.11.11 <https://www.python.org/downloads/release/python-31111/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.10.15/images/sha256-6f2d4d0f529378d9572f0e8cfdcbc101d1e1d335bd626bb3336fff87814e9d60?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.10.16/images/sha256-8bab484be1713655f74da51a191ed824bb9d03db1104fd63530a1ac3c37cf7b1"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.10.15 <https://www.python.org/downloads/release/python-31015/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
Critical ROCm libraries for JAX
Key ROCm libraries for JAX
================================================================================
The functionality of JAX with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
JAX functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers.
.. list-table::
:header-rows: 1
@@ -210,10 +253,10 @@ are available in ROCm :version:`rocm_version`.
distributed training, which involves parallel reductions or
operations like ``jax.numpy.cumsum`` can use rocThrust.
Supported and unsupported features
Supported features
===============================================================================
The following table maps GPU-accelerated JAX modules to their supported
The following table maps the public JAX API modules to their supported
ROCm and JAX versions.
.. list-table::
@@ -221,8 +264,8 @@ ROCm and JAX versions.
* - Module
- Description
- Since JAX
- Since ROCm
- As of JAX
- As of ROCm
* - ``jax.numpy``
- Implements the NumPy API, using the primitives in ``jax.lax``.
- 0.1.56
@@ -250,21 +293,11 @@ ROCm and JAX versions.
devices.
- 0.3.20
- 5.1.0
* - ``jax.dlpack``
- For exchanging tensor data between JAX and other libraries that support the
DLPack standard.
- 0.1.57
- 5.0.0
* - ``jax.distributed``
- Enables the scaling of computations across multiple devices on a single
machine or across multiple machines.
- 0.1.74
- 5.0.0
* - ``jax.dtypes``
- Provides utilities for working with and managing data types in JAX
arrays and computations.
- 0.1.66
- 5.0.0
* - ``jax.image``
- Contains image manipulation functions like resize, scale and translation.
- 0.1.57
@@ -278,27 +311,10 @@ ROCm and JAX versions.
array.
- 0.1.57
- 5.0.0
* - ``jax.profiler``
- Contains JAXs tracing and time profiling features.
- 0.1.57
- 5.0.0
* - ``jax.stages``
- Contains interfaces to stages of the compiled execution process.
- 0.3.4
- 5.0.0
* - ``jax.tree``
- Provides utilities for working with tree-like container data structures.
- 0.4.26
- 5.6.0
* - ``jax.tree_util``
- Provides utilities for working with nested data structures, or
``pytrees``.
- 0.1.65
- 5.0.0
* - ``jax.typing``
- Provides JAX-specific static type annotations.
- 0.3.18
- 5.1.0
* - ``jax.extend``
- Provides modules for access to JAX internal machinery module. The
``jax.extend`` module defines a library view of some of JAXs internal
@@ -334,8 +350,8 @@ A SciPy-like API for scientific computing.
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
- As of JAX
- As of ROCm
* - ``jax.scipy.cluster``
- 0.3.11
- 5.1.0
@@ -380,8 +396,8 @@ jax.scipy.stats module
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
- As of JAX
- As of ROCm
* - ``jax.scipy.stats.bernouli``
- 0.1.56
- 5.0.0
@@ -464,8 +480,8 @@ Modules for JAX extensions.
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
- As of JAX
- As of ROCm
* - ``jax.extend.ffi``
- 0.4.30
- 6.0.0
@@ -479,190 +495,25 @@ Modules for JAX extensions.
- 0.4.15
- 5.5.0
jax.experimental module
-------------------------------------------------------------------------------
Experimental modules and APIs.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.checkify``
- 0.1.75
- 5.0.0
* - ``jax.experimental.compilation_cache.compilation_cache``
- 0.1.68
- 5.0.0
* - ``jax.experimental.custom_partitioning``
- 0.4.0
- 5.3.0
* - ``jax.experimental.jet``
- 0.1.56
- 5.0.0
* - ``jax.experimental.key_reuse``
- 0.4.26
- 5.6.0
* - ``jax.experimental.mesh_utils``
- 0.1.76
- 5.0.0
* - ``jax.experimental.multihost_utils``
- 0.3.2
- 5.0.0
* - ``jax.experimental.pallas``
- 0.4.15
- 5.5.0
* - ``jax.experimental.pjit``
- 0.1.61
- 5.0.0
* - ``jax.experimental.serialize_executable``
- 0.4.0
- 5.3.0
* - ``jax.experimental.shard_map``
- 0.4.3
- 5.3.0
* - ``jax.experimental.sparse``
- 0.1.75
- 5.0.0
.. list-table::
:header-rows: 1
* - API
- Since JAX
- Since ROCm
* - ``jax.experimental.enable_x64``
- 0.1.60
- 5.0.0
* - ``jax.experimental.disable_x64``
- 0.1.60
- 5.0.0
jax.experimental.pallas module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Module for Pallas, a JAX extension for custom kernels.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.pallas.mosaic_gpu``
- 0.4.31
- 6.1.3
* - ``jax.experimental.pallas.tpu``
- 0.4.15
- 5.5.0
* - ``jax.experimental.pallas.triton``
- 0.4.32
- 6.1.3
jax.experimental.sparse module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Experimental support for sparse matrix operations.
.. list-table::
:header-rows: 1
* - Module
- Since JAX
- Since ROCm
* - ``jax.experimental.sparse.linalg``
- 0.3.15
- 5.2.0
* - ``jax.experimental.sparse.sparsify``
- 0.3.25
- ❌
.. list-table::
:header-rows: 1
* - ``sparse`` data structure API
- Since JAX
- Since ROCm
* - ``jax.experimental.sparse.BCOO``
- 0.1.72
- 5.0.0
* - ``jax.experimental.sparse.BCSR``
- 0.3.20
- 5.1.0
* - ``jax.experimental.sparse.CSR``
- 0.1.75
- 5.0.0
* - ``jax.experimental.sparse.NM``
- 0.4.27
- 5.6.0
* - ``jax.experimental.sparse.COO``
- 0.1.75
- 5.0.0
Unsupported JAX features
------------------------
===============================================================================
The following are GPU-accelerated JAX features not currently supported by
ROCm.
The following GPU-accelerated JAX features are not supported by ROCm for
the listed supported JAX versions.
.. list-table::
:header-rows: 1
* - Feature
- Description
- Since JAX
* - Mixed Precision with TF32
- Mixed precision with TF32 is used for matrix multiplications,
convolutions, and other linear algebra operations, particularly in
deep learning workloads like CNNs and transformers.
- 0.2.25
* - RNN support
- Currently only LSTM with double bias is supported with float32 input
and weight.
- 0.3.25
* - XLA int4 support
- 4-bit integer (int4) precision in the XLA compiler.
- 0.4.0
* - ``jax.experimental.sparsify``
- Converts a dense matrix to a sparse matrix representation.
- Experimental
Use cases and recommendations
================================================================================
* The `nanoGPT in JAX <https://rocm.blogs.amd.com/artificial-intelligence/nanoGPT-JAX/README.html>`_
blog explores the implementation and training of a Generative Pre-trained
Transformer (GPT) model in JAX, inspired by Andrej Karpathys PyTorch-based
nanoGPT. By comparing how essential GPT components—such as self-attention
mechanisms and optimizers—are realized in PyTorch and JAX, also highlight
JAXs unique features.
* The `Optimize GPT Training: Enabling Mixed Precision Training in JAX using
ROCm on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-mixed-precision/README.html>`_
blog post provides a comprehensive guide on enhancing the training efficiency
of GPT models by implementing mixed precision techniques in JAX, specifically
tailored for AMD GPUs utilizing the ROCm platform.
* The `Supercharging JAX with Triton Kernels on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/jax-triton/README.html>`_
blog demonstrates how to develop a custom fused dropout-activation kernel for
matrices using Triton, integrate it with JAX, and benchmark its performance
using ROCm.
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discuss techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
used on a multi-GPU setup.
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.blogs.amd.com/blog/tag/jax.html>`_.
* - MOSAIC (GPU)
- Mosaic is a library of kernel-building abstractions for JAX's Pallas system

View File

@@ -21,31 +21,68 @@ release cycles for PyTorch on ROCm:
- ROCm PyTorch release:
- Provides the latest version of ROCm but doesn't immediately support the latest stable PyTorch
version.
- Provides the latest version of ROCm but might not necessarily support the
latest stable PyTorch version.
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
pre-installed.
preinstalled.
- ROCm PyTorch repository: `<https://github.com/ROCm/pytorch>`_
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`
to get started.
- Official PyTorch release:
- Provides the latest stable version of PyTorch but doesn't immediately support the latest ROCm version.
- Provides the latest stable version of PyTorch but might not necessarily
support the latest ROCm version.
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`_
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`_
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_ to get started.
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_
to get started.
The upstream PyTorch includes an automatic HIPification solution that automatically generates HIP
source code from the CUDA backend. This approach allows PyTorch to support ROCm without requiring
manual code modifications.
PyTorch includes tooling that generates HIP source code from the CUDA backend.
This approach allows PyTorch to support ROCm without requiring manual code
modifications. For more information, see :doc:`HIPIFY <hipify:index>`.
Development of ROCm is aligned with the stable release of PyTorch while upstream PyTorch testing uses
the stable release of ROCm to maintain consistency.
ROCm development is aligned with the stable release of PyTorch, while upstream
PyTorch testing uses the stable release of ROCm to maintain consistency.
.. _pytorch-recommendations:
Use cases and recommendations
================================================================================
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/training/benchmark-docker/pytorch-training>`
guides how to leverage the ROCm platform for training AI models. It covers the
steps, tools, and best practices for optimizing training workflows on AMD GPUs
using PyTorch features.
* :doc:`Single-GPU fine-tuning and inference </how-to/rocm-for-ai/fine-tuning/single-gpu-fine-tuning-and-inference>`
describes and demonstrates how to use the ROCm platform for the fine-tuning
and inference of machine learning models, particularly large language models
(LLMs), on systems with a single GPU. This topic provides a detailed guide for
setting up, optimizing, and executing fine-tuning and inference workflows in
such environments.
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/rocm-for-ai/fine-tuning/multi-gpu-fine-tuning-and-inference>`
describes and demonstrates the fine-tuning and inference of machine learning
models on systems with multiple GPUs.
* The :doc:`Instinct MI300X workload optimization guide </how-to/rocm-for-ai/inference-optimization/workload>`
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. This guide helps users achieve optimal performance for
deep learning and other high-performance computing tasks on the MI300X
accelerator.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the
use of PyTorch on the ROCm platform and focuses on efficiently leveraging AMD
GPU hardware for training and inference tasks in AI applications.
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_.
.. _pytorch-docker-compat:
@@ -56,10 +93,10 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_.
Click the |docker-icon| icon to view the image on Docker Hub.
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
:header-rows: 1
@@ -79,9 +116,84 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-6c798857b2c9526b44ba535710b93a1737546acea79b53a93c646195c272f1d5"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-ab1d350b818b90123cfda31363019d11c0d41a8f12a19e3cb2cb40cf0261137d"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-130536fdfceb374626a7bcb8d00b9d796ddfc3115677d51229e5b852d96b5ef4"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-20a2e24b4738dc1f1a44a04f23827918b56c99f7e697e6fccb90e9c4fae8ca9b"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.11_pytorch_release_2.5.1/images/sha256-f09cb8ca39cc39222fb554060711f5c19130f7b4047aaf41fad4ba3ec470ca03"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.11.9 <https://www.python.org/downloads/release/python-3119/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-a91c100d1fe608dae3eb7f60a751630363d4027ac3d077d428e92945204c338e"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-66a89ce6485bb887af74bb9bd76bb613ab9834a6b1374649ea7ae379883454a4"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
@@ -94,116 +206,55 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-a09b21248133876fc8912a5ff4e6ee2c8d62b14120313e426b3dadda5702713d"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-c716cf167e6e49893f11de03606ed37044153aca089e74ca615065c06877f86b"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-963187534467f0f9da77996762fc1d112a6faa5372277c348a505533e7876ec8"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-0434cbc9b07b2c26e39480d7447f676f9057a1054dcff00e0050c25a6eddbd3c"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-952f2621bd2bf3078bef19061e05b209105a82a7908e7e6cdf85014938a4d93a"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-688b1c0073092615fb98778d78b16191e506097ee116a2d3d2628b264d5d367b"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-a2fe20e170feb9e05da3e5728bb98e40d08567e137be8e6ba797962ed2852608"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-7f231937c897cca5f89e360be33c70a2017d60f62d1fbe81292be48c15fe345b"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-616a47758004f91951e2da6c1fe291f903de65a7b2318d4b18359b48fe3032f4"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.19.0 <https://github.com/tensorflow/tensorboard/tree/2.19>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-a2cfb365aea58b84595e241ffdb0d5ef3e6566e98c10b5499f4aa29983a74ea2"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
Critical ROCm libraries for PyTorch
Key ROCm libraries for PyTorch
================================================================================
The functionality of PyTorch with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
PyTorch functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers.
.. list-table::
:header-rows: 1
@@ -223,24 +274,23 @@ are available in ROCm :version:`rocm_version`.
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations like matrix multiplication, matrix-vector products,
and tensor contractions. Utilized in both dense and batched linear
algebra operations.
- Supports operations such as matrix multiplication, matrix-vector
products, and tensor contractions. Utilized in both dense and batched
linear algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
- Accelerates operations such as ``torch.matmul``, ``torch.mm``, and the
matrix multiplications used in convolutional and linear layers.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
and ``torch.topk``. Operations on sparse tensors or tensors with
irregular shapes often involve scanning, sorting, and filtering, which
hipCUB handles efficiently.
- Supports operations such as ``torch.sum``, ``torch.cumsum``,
``torch.sort`` irregular shapes often involve scanning, sorting, and
filtering, which hipCUB handles efficiently.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
@@ -248,8 +298,8 @@ are available in ROCm :version:`rocm_version`.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
``torch.nn.Dropout``.
- The ``torch.rand``, ``torch.randn``, and stochastic layers like
``torch.nn.Dropout`` rely on hipRAND.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
@@ -320,7 +370,7 @@ are available in ROCm :version:`rocm_version`.
- :version-ref:`RPP rocm_version`
- Speeds up data augmentation, transformation, and other preprocessing steps.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
``torchvision`` data load workloads to speed up data processing.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
@@ -337,11 +387,11 @@ are available in ROCm :version:`rocm_version`.
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
more.
Supported and unsupported features
Supported features
================================================================================
The following section maps GPU-accelerated PyTorch features to their supported
ROCm and PyTorch versions.
This section maps GPU-accelerated PyTorch features to their supported ROCm and
PyTorch versions.
torch
--------------------------------------------------------------------------------
@@ -349,23 +399,24 @@ torch
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
PyTorch, providing data structures for multi-dimensional tensors and
implementing mathematical operations on them. It also includes utilities for
efficient serialization of tensors and arbitrary data types, along with various
other tools.
efficient serialization of tensors and arbitrary data types and other tools.
Tensor data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The data type of a tensor is specified using the ``dtype`` attribute or argument, and PyTorch supports a wide range of data types for different use cases.
The tensor data type is specified using the ``dtype`` attribute or argument.
PyTorch supports many data types for different use cases.
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_'s single data types:
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_
single data types:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - ``torch.float8_e4m3fn``
- 8-bit floating point, e4m3
- 2.3
@@ -457,11 +508,11 @@ The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors
.. note::
Unsigned types aside from ``uint8`` are currently only have limited support in
eager mode (they primarily exist to assist usage with ``torch.compile``).
Unsigned types except ``uint8`` have limited support in eager mode. They
primarily exist to assist usage with ``torch.compile``.
The :doc:`ROCm precision support page <rocm:reference/precision-support>`
collected the native HW support of different data types.
See :doc:`ROCm precision support <rocm:reference/precision-support>` for the
native hardware support of data types.
torch.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -476,8 +527,8 @@ leveraging ROCm and CUDA as the underlying frameworks.
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - Device management
- Utilities for managing and interacting with GPUs.
- 0.4.0
@@ -551,8 +602,8 @@ PyTorch interacts with the ROCm or CUDA environment.
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - ``cufft_plan_cache``
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
- 1.7.0
@@ -600,8 +651,8 @@ Supported ``torch`` options include:
* - Option
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - ``allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
Ampere or newer GPUs.
@@ -616,28 +667,28 @@ Supported ``torch`` options include:
Automatic mixed precision: torch.amp
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PyTorch that automates the process of using both 16-bit (half-precision,
float16) and 32-bit (single-precision, float32) floating-point types in model
training and inference.
PyTorch automates the process of using both 16-bit (half-precision, float16) and
32-bit (single-precision, float32) floating-point types in model training and
inference.
.. list-table::
:header-rows: 1
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - Autocasting
- Instances of autocast serve as context managers or decorators that allow
- Autocast instances serve as context managers or decorators that allow
regions of your script to run in mixed precision.
- 1.9
- 2.5
* - Gradient scaling
- To prevent underflow, “gradient scaling” multiplies the networks
loss(es) by a scale factor and invokes a backward pass on the scaled
loss(es). Gradients flowing backward through the network are then
scaled by the same factor. In other words, gradient values have a
larger magnitude, so they dont flush to zero.
loss by a scale factor and invokes a backward pass on the scaled
loss. The same factor then scales gradients flowing backward through
the network. In other words, gradient values have a larger magnitude so
that they dont flush to zero.
- 1.9
- 2.5
* - CUDA op-specific behavior
@@ -651,7 +702,7 @@ training and inference.
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The PyTorch distributed library includes a collective of parallelism modules, a
PyTorch distributed library includes a collective of parallelism modules, a
communications layer, and infrastructure for launching and debugging large
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
@@ -665,13 +716,13 @@ of computational resources and scalability for large-scale tasks.
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - TensorPipe
- A point-to-point communication library integrated into
PyTorch for distributed training. It is designed to handle tensor data
transfers efficiently between different processes or devices, including
those on separate machines.
PyTorch for distributed training. It handles tensor data transfers
efficiently between different processes or devices, including those on
separate machines.
- 1.8
- 5.4
* - Gloo
@@ -690,8 +741,8 @@ torch.compiler
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - ``torch.compiler`` (AOT Autograd)
- Autograd captures not only the user-level code, but also backpropagation,
which results in capturing the backwards pass “ahead-of-time”. This
@@ -714,8 +765,8 @@ The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
utilities for processing audio data in PyTorch, such as audio loading,
transformations, and feature extraction.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to move audio
data (waveform tensor) explicitly to GPU using ``.to('cuda')``.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to
explicitly move audio data (waveform tensor) to GPU using ``.to('cuda')``.
The following ``torchaudio`` features are GPU-accelerated.
@@ -724,10 +775,10 @@ The following ``torchaudio`` features are GPU-accelerated.
* - Feature
- Description
- Since torchaudio version
- Since ROCm
- As of torchaudio version
- As of ROCm
* - ``torchaudio.transforms.Spectrogram``
- Generates spectrogram of an input waveform using STFT.
- Generate a spectrogram of an input waveform using STFT.
- 0.6.0
- 4.5
* - ``torchaudio.transforms.MelSpectrogram``
@@ -747,7 +798,7 @@ torchvision
--------------------------------------------------------------------------------
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
provide datasets, model architectures, and common image transformations for
provides datasets, model architectures, and common image transformations for
computer vision.
The following ``torchvision`` features are GPU-accelerated.
@@ -757,8 +808,8 @@ The following ``torchvision`` features are GPU-accelerated.
* - Feature
- Description
- Since torchvision version
- Since ROCm
- As of torchvision version
- As of ROCm
* - ``torchvision.transforms.functional``
- Provides GPU-compatible transformations for image preprocessing like
resize, normalize, rotate and crop.
@@ -804,7 +855,7 @@ torchtune
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
authoring, fine-tuning and experimenting with LLMs.
* Usage: It works out-of-the-box, enabling developers to fine-tune ROCm PyTorch solutions.
* Usage: Enabling developers to fine-tune ROCm PyTorch solutions.
* Only official release exists.
@@ -815,7 +866,8 @@ The `torchserve <https://pytorch.org/serve/>`_ is a PyTorch domain library
for common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* torchtext does not implement its own kernels. ROCm support is enabled by
linking against ROCm libraries.
* Only official release exists.
@@ -826,14 +878,16 @@ The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchrec does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* torchrec does not implement its own kernels. ROCm support is enabled by
linking against ROCm libraries.
* Only official release exists.
Unsupported PyTorch features
----------------------------
================================================================================
The following are GPU-accelerated PyTorch features not currently supported by ROCm.
The following GPU-accelerated PyTorch features are not supported by ROCm for
the listed supported PyTorch versions.
.. list-table::
:widths: 30, 60, 10
@@ -841,7 +895,7 @@ The following are GPU-accelerated PyTorch features not currently supported by RO
* - Feature
- Description
- Since PyTorch
- As of PyTorch
* - APEX batch norm
- Use APEX batch norm instead of PyTorch batch norm.
- 1.6.0
@@ -897,31 +951,3 @@ The following are GPU-accelerated PyTorch features not currently supported by RO
utilized effectively through custom CUDA extensions or advanced
workflows.
- Not a core feature
Use cases and recommendations
================================================================================
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/training/train-a-model>` provides
guidance on how to leverage the ROCm platform for training AI models. It covers the steps, tools, and best practices
for optimizing training workflows on AMD GPUs using PyTorch features.
* :doc:`Single-GPU fine-tuning and inference </how-to/rocm-for-ai/fine-tuning/single-gpu-fine-tuning-and-inference>`
describes and demonstrates how to use the ROCm platform for the fine-tuning and inference of
machine learning models, particularly large language models (LLMs), on systems with a single AMD
Instinct MI300X accelerator. This page provides a detailed guide for setting up, optimizing, and
executing fine-tuning and inference workflows in such environments.
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/rocm-for-ai/fine-tuning/multi-gpu-fine-tuning-and-inference>`
describes and demonstrates the fine-tuning and inference of machine learning models on systems
with multi MI300X accelerators.
* The :doc:`Instinct MI300X workload optimization guide </how-to/rocm-for-ai/inference-optimization/workload>` provides detailed
guidance on optimizing workloads for the AMD Instinct MI300X accelerator using ROCm. This guide is aimed at helping
users achieve optimal performance for deep learning and other high-performance computing tasks on the MI300X
accelerator.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the use of PyTorch on the ROCm platform and
focuses on how to efficiently leverage AMD GPU hardware for training and inference tasks in AI applications.
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_.

View File

@@ -56,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_. Click
validated for `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -64,57 +64,91 @@ the |docker-icon| icon to view the image on Docker Hub.
* - Docker image
- TensorFlow
- Ubuntu
- Dev
- Python
- TensorBoard
* - .. raw:: html
- `rocm/tensorflow`__
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-dev/images/sha256-fa9cf5fa6c6079a7118727531ccd0056c6e3224a42c3d6e78a49e7781daafff4"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
- `rocm/tensorflow`__
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-runtime/images/sha256-14addca4b92a47c806b83ebaeed593fc6672cd99f0017ed8dad759fe72ed0309"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-dev/images/sha256-f5e151060df04ff5fb59f5604b49cd371931bbe75b06aec9fe7781397c4be0ce"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
- `rocm/tensorflow`__
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-runtime/images/sha256-5cd4c03fdb1036570c0d4929da60a65c4466998dc80f1dc8a5a0b173eae017fb"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-dev/images/sha256-b3add80e374a2db2d1088d746e740afa89d439aca02cacba959ad298f5cd2b3f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
- `rocm/tensorflow`__
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-runtime/images/sha256-3a244f026c32177eff7958ffbad390de85b438b2b48b455cc39f15d70fa1270d"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-dev/images/sha256-e0cecdfacb59169335049983cdab6da578c209bb9f4d08aad97e184ae59171a6"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
- `rocm/tensorflow`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-runtime/images/sha256-6f43de12f7eb202791b698ac51d28b72098de90034dbcd48486629b0125f7707"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
* - .. raw:: html
- `rocm/tensorflow`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
Critical ROCm libraries for TensorFlow
===============================================================================

View File

@@ -42,7 +42,7 @@ all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux"], "date": "2025-04-10"},
{"file": "about/release-notes", "os": ["linux"], "date": "2025-04-11"},
{"file": "release/changelog", "os": ["linux"],},
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
@@ -51,12 +51,15 @@ article_pages = [
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
@@ -66,10 +69,10 @@ article_pages = [
{"file": "how-to/rocm-for-ai/fine-tuning/multi-gpu-fine-tuning-and-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/hugging-face-models", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/pytorch-inference-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},

View File

@@ -0,0 +1,25 @@
pytorch_inference_benchmark:
unified_docker:
latest: &rocm-pytorch-docker-latest
pull_tag: rocm/pytorch:latest
docker_hub_url:
rocm_version:
pytorch_version:
hipblaslt_version:
model_groups:
- group: CLIP
tag: clip
models:
- model: CLIP
mad_tag: pyt_clip_inference
model_repo: laion/CLIP-ViT-B-32-laion2B-s34B-b79K
url: https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K
precision: float16
- group: Chai-1
tag: chai
models:
- model: Chai-1
mad_tag: pyt_chai1_inference
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/chaidiscovery/chai-1
precision: float16

View File

@@ -1,10 +1,10 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:instinct_main
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250311/images/sha256-de0a2649b735f45b7ecab8813eb7b19778ae1f40591ca1196b07bc29c42ed4a3
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.8.3_20250415
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845
rocm_version: 6.3.1
vllm_version: 0.7.3
vllm_version: 0.8.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
model_groups:
@@ -102,19 +102,12 @@ vllm_benchmark:
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- group: JAIS
tag: jais
models:
- model: JAIS 13B
mad_tag: pyt_vllm_jais-13b
model_repo: core42/jais-13b-chat
url: https://huggingface.co/core42/jais-13b-chat
precision: float16
- model: JAIS 30B
mad_tag: pyt_vllm_jais-30b
model_repo: core42/jais-30b-chat-v3
url: https://huggingface.co/core42/jais-30b-chat-v3
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: DBRX
tag: dbrx
models:

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

View File

@@ -1,15 +1,178 @@
.. meta::
:description: How to use model quantization techniques to speed up inference.
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, quantization, GPTQ, transformers, bitsandbytes
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, quantization, Quark, GPTQ, transformers, bitsandbytes
*****************************
Model quantization techniques
*****************************
Quantization reduces the model size compared to its native full-precision version, making it easier to fit large models
onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using GPTQ
onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using AMD Quark, GPTQ
and bitsandbytes on AMD Instinct hardware.
.. _quantize-llms-quark:
AMD Quark
=========
`AMD Quark <https://quark.docs.amd.com/latest/>`_ offers the leading efficient and scalable quantization solution tailored to AMD Instinct GPUs. It supports ``FP8`` and ``INT8`` quantization for activations, weights, and KV cache,
including ``FP8`` attention. For very large models, it employs a two-level ``INT4-FP8`` scheme—storing weights in ``INT4`` while computing with ``FP8``—for nearly 4× compression without sacrificing accuracy.
Quark scales efficiently across multiple GPUs, efficiently handling ultra-large models like Llama-3.1-405B. Quantized ``FP8`` models like Llama, Mixtral, and Grok-1 are available under the `AMD organization on Hugging Face <https://huggingface.co/collections/amd/quark-quantized-ocp-fp8-models-66db7936d18fcbaf95d4405c>`_, and can be deployed directly via `vLLM <https://github.com/vllm-project/vllm/tree/main/vllm>`_.
Installing Quark
-------------------
The latest release of Quark can be installed with pip
.. code-block:: shell
pip install amd-quark
For detailed installation instructions, refer to the `Quark documentation <https://quark.docs.amd.com/latest/install.html>`_.
Using Quark for quantization
-----------------------------
#. First, load the pre-trained model and its corresponding tokenizer using the Hugging Face ``transformers`` library.
.. code-block:: python
from transformers import AutoTokenizer, AutoModelForCausalLM
MODEL_ID = "meta-llama/Llama-2-70b-chat-hf"
MAX_SEQ_LEN = 512
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, model_max_length=MAX_SEQ_LEN)
tokenizer.pad_token = tokenizer.eos_token
#. Prepare the calibration DataLoader (static quantization requires calibration data).
.. code-block:: python
from datasets import load_dataset
from torch.utils.data import DataLoader
BATCH_SIZE = 1
NUM_CALIBRATION_DATA = 512
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
text_data = dataset["text"][:NUM_CALIBRATION_DATA]
tokenized_outputs = tokenizer(
text_data, return_tensors="pt", padding=True, truncation=True, max_length=MAX_SEQ_LEN
)
calib_dataloader = DataLoader(
tokenized_outputs['input_ids'], batch_size=BATCH_SIZE, drop_last=True
)
#. Define the quantization configuration. See the comments in the following code snippet for descriptions of each configuration option.
.. code-block:: python
from quark.torch.quantization import (Config, QuantizationConfig,
FP8E4M3PerTensorSpec)
# Define fp8/per-tensor/static spec.
FP8_PER_TENSOR_SPEC = FP8E4M3PerTensorSpec(observer_method="min_max",
is_dynamic=False).to_quantization_spec()
# Define global quantization config, input tensors and weight apply FP8_PER_TENSOR_SPEC.
global_quant_config = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC,
weight=FP8_PER_TENSOR_SPEC)
# Define quantization config for kv-cache layers, output tensors apply FP8_PER_TENSOR_SPEC.
KV_CACHE_SPEC = FP8_PER_TENSOR_SPEC
kv_cache_layer_names_for_llama = ["*k_proj", "*v_proj"]
kv_cache_quant_config = {name :
QuantizationConfig(input_tensors=global_quant_config.input_tensors,
weight=global_quant_config.weight,
output_tensors=KV_CACHE_SPEC)
for name in kv_cache_layer_names_for_llama}
layer_quant_config = kv_cache_quant_config.copy()
EXCLUDE_LAYERS = ["lm_head"]
quant_config = Config(
global_quant_config=global_quant_config,
layer_quant_config=layer_quant_config,
kv_cache_quant_config=kv_cache_quant_config,
exclude=EXCLUDE_LAYERS)
#. Quantize the model and export
.. code-block:: python
import torch
from quark.torch import ModelQuantizer, ModelExporter
from quark.torch.export import ExporterConfig, JsonExporterConfig
# Apply quantization.
quantizer = ModelQuantizer(quant_config)
quant_model = quantizer.quantize_model(model, calib_dataloader)
# Freeze quantized model to export.
freezed_model = quantizer.freeze(model)
# Define export config.
LLAMA_KV_CACHE_GROUP = ["*k_proj", "*v_proj"]
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
export_config.json_export_config.kv_cache_group = LLAMA_KV_CACHE_GROUP
EXPORT_DIR = MODEL_ID.split("/")[1] + "-w-fp8-a-fp8-kvcache-fp8-pertensor"
exporter = ModelExporter(config=export_config, export_dir=EXPORT_DIR)
with torch.no_grad():
exporter.export_safetensors_model(freezed_model,
quant_config=quant_config, tokenizer=tokenizer)
Evaluating the quantized model with vLLM
----------------------------------------
The exported Quark-quantized model can be loaded directly by vLLM for inference. You need to specify the model path and inform vLLM about the quantization method (``quantization='quark'``) and the KV cache data type (``kv_cache_dtype='fp8'``).
Use the ``LLM`` interface to load the model:
.. code-block:: python
from vllm import LLM, SamplingParamsinterface
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor",
kv_cache_dtype='fp8',quantization='quark')
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
You can also evaluate the quantized model's accuracy on standard benchmarks using the `lm-evaluation-harness <https://github.com/EleutherAI/lm-evaluation-harness>`_. Pass the necessary vLLM arguments to ``lm_eval`` via ``--model_args``.
.. code-block:: shell
lm_eval --model vllm \
--model_args pretrained=Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor,kv_cache_dtype='fp8',quantization='quark' \
--tasks gsm8k
This provides a standardized way to measure the performance impact of quantization.
.. _fine-tune-llms-gptq:
GPTQ
@@ -33,7 +196,7 @@ The AutoGPTQ library implements the GPTQ algorithm.
.. code-block:: shell
# This will install pre-built wheel for a specific ROCm version.
pip install auto-gptq --no-build-isolation --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm573/
Or, install AutoGPTQ from source for the appropriate ROCm version (for example, ROCm 6.1).
@@ -43,10 +206,10 @@ The AutoGPTQ library implements the GPTQ algorithm.
# Clone the source code.
git clone https://github.com/AutoGPTQ/AutoGPTQ.git
cd AutoGPTQ
# Speed up the compilation by specifying PYTORCH_ROCM_ARCH to target device.
PYTORCH_ROCM_ARCH=gfx942 ROCM_VERSION=6.1 pip install .
# Show the package after the installation
#. Run ``pip show auto-gptq`` to print information for the installed ``auto-gptq`` package. Its output should look like
@@ -112,7 +275,7 @@ Using GPTQ with Hugging Face Transformers
.. code-block:: python
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
base_model_name = " NousResearch/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
gptq_config = GPTQConfig(bits=4, dataset="c4", tokenizer=tokenizer)
@@ -212,10 +375,10 @@ To get started with bitsandbytes primitives, use the following code as reference
.. code-block:: python
import bitsandbytes as bnb
# Use Int8 Matrix Multiplication
bnb.matmul(..., threshold=6.0)
# Use bitsandbytes 8-bit Optimizers
adam = bnb.optim.Adam8bit(model.parameters(), lr=0.001, betas=(0.9, 0.995))
@@ -227,14 +390,14 @@ To load a Transformers model in 4-bit, set ``load_in_4bit=true`` in ``BitsAndByt
.. code-block:: python
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
base_model_name = "NousResearch/Llama-2-7b-hf"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
bnb_model_4bit = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
quantization_config=quantization_config)
# Check the memory footprint with get_memory_footprint method
print(bnb_model_4bit.get_memory_footprint())
@@ -243,9 +406,9 @@ To load a model in 8-bit for inference, use the ``load_in_8bit`` option.
.. code-block:: python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
base_model_name = "NousResearch/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
@@ -253,7 +416,7 @@ To load a model in 8-bit for inference, use the ``load_in_8bit`` option.
base_model_name,
device_map="auto",
quantization_config=quantization_config)
prompt = "What is a large language model?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)

View File

@@ -685,7 +685,7 @@ Two sample Llama scaling configuration files are in vLLM for ``llama2-70b`` and
``llama2-7b``.
If building the vLLM using
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile.rocm>`_
for ``llama2-70b`` scale config, find the file at
``/vllm-workspace/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json`` at
runtime.

View File

@@ -16,8 +16,7 @@ ROCm supports vLLM and Hugging Face TGI as major LLM-serving frameworks.
Serving using vLLM
==================
vLLM is a fast and easy-to-use library for LLM inference and serving. vLLM officially supports ROCm versions 5.7 and
6.0. AMD is actively working with the vLLM team to improve performance and support later ROCm versions.
vLLM is a fast and easy-to-use library for LLM inference and serving. AMD is actively working with the vLLM team to improve performance and support the latest ROCm versions.
See the `GitHub repository <https://github.com/vllm-project/vllm>`_ and `official vLLM documentation
<https://docs.vllm.ai/>`_ for more information.
@@ -31,9 +30,9 @@ vLLM installation
vLLM supports two ROCm-capable installation methods. Refer to the official documentation use the following links.
- `Build from source with Docker
<https://docs.vllm.ai/en/latest/getting_started/amd-installation.html#build-from-source-docker-rocm>`_ (recommended)
<https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html?device=rocm#build-image-from-source>`_ (recommended)
- `Build from source <https://docs.vllm.ai/en/latest/getting_started/amd-installation.html#build-from-source-rocm>`_
- `Build from source <https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html?device=rocm#build-wheel-from-source>`_
vLLM walkthrough
----------------

View File

@@ -20,6 +20,8 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
- :doc:`LLM inference frameworks <llm-inference-frameworks>`
- :doc:`Performance testing <vllm-benchmark>`
- :doc:`vLLM inference performance testing <vllm-benchmark>`
- :doc:`PyTorch inference performance testing <pytorch-inference-benchmark>`
- :doc:`Deploying your model <deploy-your-model>`

View File

@@ -36,7 +36,7 @@ Installing vLLM
git clone https://github.com/vllm-project/vllm.git
cd vllm
docker build -f Dockerfile.rocm -t vllm-rocm .
docker build -f docker/Dockerfile.rocm -t vllm-rocm .
.. tab-set::

View File

@@ -0,0 +1,172 @@
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm PyTorch Docker image.
:keywords: model, MAD, automation, dashboarding, validate, pytorch
*************************************
PyTorch inference performance testing
*************************************
.. _pytorch-inference-benchmark-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/pytorch-inference-benchmark-models.yaml
{% set unified_docker = data.pytorch_inference_benchmark.unified_docker.latest %}
{% set model_groups = data.pytorch_inference_benchmark.model_groups %}
The `ROCm PyTorch Docker <https://hub.docker.com/r/rocm/pytorch/tags>`_ image offers a prebuilt,
optimized environment for testing model inference performance on AMD Instinct™ MI300X series
accelerators. This guide demonstrates how to use the AMD Model Automation and Dashboarding (MAD)
tool with the ROCm PyTorch container to test inference performance on various models efficiently.
.. _pytorch-inference-benchmark-available-models:
Supported models
================
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-6 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1" style="display: none;">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
<div class="col-12 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endfor %}
{% endfor %}
</div>
</div>
</div>
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization before use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. container:: model-doc pyt_chai1_inference
Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue/images/sha256-b736a4239ab38a9d0e448af6d4adca83b117debed00bfbe33846f99c4540f79b>`_ from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch:rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue
.. note::
The Chai-1 benchmark uses a specifically selected Docker image using ROCm 6.2.3 and PyTorch 2.3.0 to address an accuracy issue.
.. container:: model-doc pyt_clip_inference
Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch:latest
.. _pytorch-benchmark-get-started:
Benchmarking
============
.. _pytorch-inference-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
To simplify performance testing, the ROCm Model Automation and Dashboarding
(`<https://github.com/ROCm/MAD>`__) project provides ready-to-use scripts and configuration.
To start, clone the MAD repository to a local directory and install the required packages on the
host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in ``perf.csv``.
.. note::
For improved performance, consider enabling TunableOp. By default,
``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable
it, edit the default run behavior in the ``tools/run_models.py``-- update the model's
run ``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
Although this might increase the initial training time, it can result in a performance gain.
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- To learn how to run LLM models from Hugging Face or your model, see
:doc:`Running models from Hugging Face <hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.

View File

@@ -3,9 +3,9 @@
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
********************************************************
LLM inference performance testing on AMD Instinct MI300X
********************************************************
**********************************
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker:
@@ -16,7 +16,7 @@ LLM inference performance testing on AMD Instinct MI300X
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerator. This ROCm vLLM
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
@@ -34,7 +34,7 @@ LLM inference performance testing on AMD Instinct MI300X
.. _vllm-benchmark-available-models:
Available models
Supported models
================
.. raw:: html
@@ -111,35 +111,37 @@ LLM inference performance testing on AMD Instinct MI300X
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
Getting started
===============
System validation
=================
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
.. _vllm-benchmark-get-started:
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see the :ref:`system validation steps <rocm-for-ai-system-optimization>`.
1. Disable NUMA auto-balancing.
.. code-block:: shell
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. code-block:: shell
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
Pull the Docker image
=====================
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
docker pull {{ unified_docker.pull_tag }}
Benchmarking
============
@@ -183,6 +185,25 @@ LLM inference performance testing on AMD Instinct MI300X
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
@@ -257,7 +278,7 @@ LLM inference performance testing on AMD Instinct MI300X
* Latency benchmark
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block::
@@ -267,11 +288,11 @@ LLM inference performance testing on AMD Instinct MI300X
* Throughput benchmark
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
Use this command to benchmark the throughput of the {{model.model}} model on eight GPUs with ``{{model.precision}}`` precision.
.. code-block:: shell
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
./vllm_benchmark_report.sh -s throughput -m {{model.model_repo}} -g 8 -d {{model.precision}}
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
@@ -331,11 +352,18 @@ for benchmarking, see the version-specific documentation.
- PyTorch version
- Resources
* - 6.3.1
- 0.7.3
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250325/images/sha256-25245924f61750b19be6dcd8e787e46088a496c1fe17ee9b9e397f3d84d35640>`_
* - 6.3.1
- 0.6.6
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html>`_
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
* - 6.2.1

View File

@@ -30,7 +30,7 @@ ROCm supports multiple :doc:`installation methods <rocm-install-on-linux:install
* :doc:`Using the AMDGPU installer <rocm-install-on-linux:install/amdgpu-install>`
* :ref:`Multi-version installation <rocm-install-on-linux:installation-types>`.
* :ref:`Multi-version installation <rocm-install-on-linux:installation-types>`
.. grid:: 1
@@ -59,4 +59,8 @@ images with the framework pre-installed.
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
The sections that follow in :doc:`Training a model <../training/train-a-model>` are geared for a ROCm with PyTorch installation.
Next steps
==========
After installing ROCm and your desired ML libraries -- and before running AI workloads -- conduct system health benchmarks
to test the optimal performance of your AMD hardware. See :doc:`system-health-check` to get started.

View File

@@ -0,0 +1,104 @@
.. meta::
:description: System health checks with RVS, RCCL tests, BabelStream, and TransferBench to validate AMD hardware performance running AI workloads.
:keywords: gpu, accelerator, system, health, validation, bench, perf, performance, rvs, rccl, babel, mi300x, mi325x, flops, bandwidth, rbt, training, inference
.. _rocm-for-ai-system-health-bench:
************************
System health benchmarks
************************
Before running AI workloads, it is important to validate that your AMD hardware is configured correctly and is performing optimally. This topic outlines several system health benchmarks you can use to test key aspects like GPU compute capabilities (FLOPS), memory bandwidth, and interconnect performance. Many of these tests are part of the ROCm Validation Suite (RVS).
ROCm Validation Suite (RVS) tests
=================================
RVS provides a collection of tests, benchmarks, and qualification tools, each
targeting a specific subsystem of the system under test. It includes tests for
GPU stress and memory bandwidth.
.. _healthcheck-install-rvs:
Install ROCm Validation Suite
-----------------------------
To get started, install RVS. For example, on an Ubuntu system with ROCm already
installed, run the following command:
.. code-block:: shell
sudo apt update
sudo apt install rocm-validation-suite
See the `ROCm Validation Suite installation instructions <https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/install/installation.html>`_,
and `System validation tests <https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/system-validation.html#system-validation-tests>`_
in the Instinct documentation for more detailed instructions.
Benchmark, stress, and qualification tests
------------------------------------------
The GPU stress test runs various GEMM computations as workloads to stress the GPU FLOPS performance and check whether it
meets the configured target GFLOPS.
Run the benchmark, stress, and qualification tests included with RVS. See the `Benchmark, stress, qualification
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/system-validation.html#benchmark-stress-qualification>`_
section of the Instinct documentation for usage instructions.
BabelStream test
----------------
BabelStream is a synthetic GPU benchmark based on the STREAM benchmark for
CPUs, measuring memory transfer rates to and from global device memory.
BabelStream tests are included with the RVS package as part of the `BABEL module
<https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/conceptual/rvs-modules.html#babel-benchmark-test-babel-module>`_.
For more information, see `Performance benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#babelstream-benchmarking-results>`_
in the Instinct documentation.
RCCL tests
==========
The ROCm Communication Collectives Library (RCCL) enables efficient multi-GPU
communication. The `<https://github.com/ROCm/rccl-tests>`__ suite benchmarks
the performance and verifies the correctness of these collective operations.
This helps ensure optimal scaling for multi-accelerator tasks.
1. To get started, build RCCL-tests using the official instructions in the README at
`<https://github.com/ROCm/rccl-tests?tab=readme-ov-file#build>`__ or use the
following commands:
.. code-block:: shell
git clone https://github.com/ROCm/rccl-tests.git
cd rccl-tests
make
2. Run the suggested RCCL tests -- see `RCCL benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#rccl-benchmarking-results>`_
in the Instinct performance benchmarking documentation for instructions.
TransferBench test
==================
TransferBench is a standalone utility for benchmarking simultaneous data
transfer performance between various devices in the system, including
CPU-to-GPU and GPU-to-GPU (peer-to-peer). This helps identify potential
bottlenecks in data movement between the host system and the GPUs, or between
GPUs, which can impact end-to-end latency.
.. _healthcheck-install-transferbench:
1. To get started, use the instructions in the `TransferBench documentation
<https://rocm.docs.amd.com/projects/TransferBench/en/latest/install/install.html#install-transferbench>`_
or use the following commands:
.. code:: shell
git clone https://github.com/ROCm/TransferBench.git
cd TransferBench
CC=hipcc make
2. Run the suggested TransferBench tests -- see `TransferBench benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#transferbench-benchmarking-results>`_
in the Instinct performance benchmarking documentation for instructions.

View File

@@ -12,7 +12,7 @@ ROCm is an optimized fork of the upstream
`<https://github.com/AI-Hypercomputer/maxtext>`__ enabling efficient AI workloads
on AMD MI300X series accelerators.
The MaxText for ROCm training Docker (``rocm/jax-training:maxtext-v25.4``) image
The MaxText for ROCm training Docker (``rocm/jax-training:maxtext-v25.5``) image
provides a prebuilt environment for training on AMD Instinct MI300X and MI325X accelerators,
including essential components like JAX, XLA, ROCm libraries, and MaxText utilities.
It includes the following software components:
@@ -20,15 +20,15 @@ It includes the following software components:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| JAX | 0.4.31 |
| JAX | 0.4.35 |
+--------------------------+--------------------------------+
| Python | 3.10 |
| Python | 3.10.12 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.12.0.dev0+f81a3eb |
| Transformer Engine | 1.12.0.dev0+b8b92dc |
+--------------------------+--------------------------------+
| hipBLASLt | git78ec8622 |
| hipBLASLt | 0.13.0-ae9c477a |
+--------------------------+--------------------------------+
Supported features and models
@@ -48,6 +48,8 @@ MaxText provides the following key features to train large language models effic
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
* Llama 3.3 70B
* Llama 3.1 8B
* Llama 3.1 70B
@@ -77,11 +79,18 @@ across different input sequences. Support for packed input format is planned for
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Environment setup
=================
@@ -115,7 +124,7 @@ with RDMA, skip ahead to :ref:`amd-maxtext-download-docker`.
a. Master address
Change `localhost` to the master node's resolvable hostname or IP address:
Change ``localhost`` to the master node's resolvable hostname or IP address:
.. code-block:: bash
@@ -173,20 +182,22 @@ with RDMA, skip ahead to :ref:`amd-maxtext-download-docker`.
.. _amd-maxtext-download-docker:
Download the Docker image
-------------------------
Pull the Docker image
---------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/jax-training:maxtext-v25.4
docker pull rocm/jax-training:maxtext-v25.5
2. Run the Docker container.
2. Use the following command to launch the Docker container. Note that the benchmarking scripts
used in the :ref:`following section <amd-maxtext-get-started>` automatically launch the Docker container
and execute the benchmark.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME/.ssh:/root/.ssh --shm-size 128G --name maxtext_training rocm/jax-training:maxtext-v25.4
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME/.ssh:/root/.ssh --shm-size 128G --name maxtext_training rocm/jax-training:maxtext-v25.5
.. _amd-maxtext-get-started:
@@ -219,7 +230,9 @@ Single node training benchmarking examples
Run the single node training benchmark:
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama2_7b.sh
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama2_7b.sh
* Example 2: Single node training with Llama 2 70B
@@ -233,7 +246,7 @@ Single node training benchmarking examples
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama2_70b.sh
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama2_70b.sh
* Example 3: Single node training with Llama 3 8B
@@ -247,7 +260,7 @@ Single node training benchmarking examples
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama3_8b.sh
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama3_8b.sh
* Example 4: Single node training with Llama 3 70B
@@ -261,9 +274,23 @@ Single node training benchmarking examples
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama3_70b.sh
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama3_70b.sh
* Example 5: Single node training with DeepSeek V2 16B
* Example 5: Single node training with Llama 3.3 70B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3.3_70b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama3.3_70b.sh
* Example 6: Single node training with DeepSeek V2 16B
Download the benchmarking script:
@@ -275,7 +302,7 @@ Single node training benchmarking examples
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./deepseek_v2_16b.sh
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./deepseek_v2_16b.sh
.. note::
@@ -343,3 +370,26 @@ own cluster setup.
.. code-block:: shell
sbatch -N <num_nodes> llama3_70b_multinode.sh
Previous versions
=================
This table lists previous versions of the ROCm JAX MaxText Docker image for training
performance testing. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- JAX version
- Resources
* - 25.4
- 6.3.0
- 0.4.31
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.4/images/sha256-fb3eb71cd74298a7b3044b7130cf84113f14d518ff05a2cd625c11ea5f6a7b01>`_

View File

@@ -103,11 +103,18 @@ popular AI models.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. _mi300x-amd-megatron-lm-training:
Environment setup

View File

@@ -0,0 +1,175 @@
.. meta::
:description: How to train a model using LLM Foundry for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
******************************************
Training MPT-30B with LLM Foundry and ROCm
******************************************
MPT-30B is a 30-billion parameter decoder-style transformer-based model from
the Mosaic Pretrained Transformer (MPT) family -- learn more about it in
MosaicML's research blog `MPT-30B: Raising the bar for open-source foundation
models <https://www.databricks.com/blog/mpt-30b>`_.
ROCm and `<https://github.com/ROCm/MAD>`__ provide a pre-configured training
environment for the MPT-30B model using the ``rocm/pytorch-training:v25.5``
base `Docker image <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
and the `LLM Foundry <https://github.com/mosaicml/llm-foundry>`_ framework.
This environment packages the following software components to train
on AMD Instinct MI300X series accelerators:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git6374332 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0.post1 |
+--------------------------+--------------------------------+
Using this image, you can build, run, and test the training process
for MPT-30B with access to detailed logs and performance metrics.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Getting started
===============
The following procedures help you set up the training environment in a
reproducible Docker container. This training environment is tailored for
training MPT-30B using LLM Foundry and the specific model configurations outlined.
Other configurations and run conditions outside those described in this
document are not validated.
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
On your host machine, clone the ROCm Model Automation and Dashboarding
(`<https://github.com/ROCm/MAD>`__) repository to a local directory and
install the required packages.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to initiate the MPT-30B training benchmark.
.. code-block:: shell
python3 tools/run_models.py --tags pyt_mpt30b_training --keep-model-dir --live-output --clean-docker-cache
.. tip::
If you experience data download failures, set the
``MAD_SECRETS_HFTOKEN`` variable to your Hugging Face access token. See
`User access tokens <https://huggingface.co/docs/hub/security-tokens>`_
for details.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
.. note::
For improved performance (training throughput), consider enabling TunableOp.
By default, ``pyt_mpt30b_training`` runs with TunableOp disabled. To enable it,
run ``tools/run_models.py`` with the ``--tunableop on`` argument or edit the
``models.json`` configuration before running training.
Although this might increase the initial training time, it can result in a performance gain.
.. tab-item:: Standalone benchmarking
To set up the training environment, clone the
`<https://github.com/ROCm/MAD>`__ repo and build the Docker image. In
this snippet, the image is named ``mosaic_mpt30_image``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
docker build --build-arg MAD_SYSTEM_GPU_ARCHITECTURE=gfx942 -f docker/pyt_mpt30b_training.ubuntu.amd.Dockerfile -t mosaic_mpt30_image .
Start a ``mosaic_mpt30_image`` container using the following command.
.. code-block:: shell
docker run -it --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --shm-size=8G mosaic_mpt30_image
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory at
``/workspace/MAD/scripts/pyt_mpt30b_training``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pyt_mpt30b_training
To initiate the training process, use the following command. This script uses the hyperparameters defined in
``mpt-30b-instruct.yaml``.
.. code-block:: shell
source run.sh
.. note::
For improved performance (training throughput), consider enabling TunableOp.
To enable it, add the ``--tunableop on`` flag.
.. code-block:: shell
source run.sh --tunableop on
Although this might increase the initial training time, it can result in a performance gain.
Interpreting the output
=======================
The training output will be displayed in the terminal and simultaneously saved
to the ``output.txt`` file in the current directory. Key performance metrics will
also be extracted and appended to the ``perf_pyt_mpt30b_training.csv`` file.
Key performance metrics include:
- Training logs: Real-time display of loss metrics, accuracy, and training progress.
- Model checkpoints: Periodically saved model snapshots for potential resume or evaluation.
- Performance metrics: Detailed summaries of training speed and training loss metrics.
- Performance (throughput/samples_per_sec)
Overall throughput, measuring the total samples processed per second. Higher values indicate better hardware utilization.
- Performance per device (throughput/samples_per_sec)
Throughput on a per-device basis, showing how each GPU or CPU is performing.
- Language Cross Entropy (metrics/train/LanguageCrossEntropy)
Measures prediction accuracy. Lower cross entropy suggests the models output is closer to the expected distribution.
- Training loss (loss/train/total)
Overall training loss. A decreasing trend indicates the model is learning effectively.

View File

@@ -9,7 +9,8 @@ Training a model with PyTorch for ROCm
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.4``) image
The `PyTorch for ROCm training Docker <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
(``rocm/pytorch-training:v25.5``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
@@ -17,19 +18,19 @@ software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
| Transformer Engine | 1.12.0.dev0+25a33da |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
| hipBLASLt | git53b53bf |
+--------------------------+--------------------------------+
| Triton | 3.1 |
| Triton | 3.2.0 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
@@ -39,6 +40,8 @@ Supported models
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
* Llama 3.3 70B
* Llama 3.1 8B
* Llama 3.1 70B
@@ -74,314 +77,358 @@ popular AI models.
System validation
=================
If you have already validated your system settings, including NUMA
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
Environment setup
=================
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
Benchmarking
============
1. Use the following command to pull the Docker image from Docker Hub.
Once the setup is complete, choose between two options to start benchmarking:
.. code-block:: shell
.. tab-set::
docker pull rocm/pytorch-training:v25.4
.. tab-item:: MAD-integrated benchmarking
2. Run the Docker container.
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.4
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
3. Use these commands if you exit the ``training_env`` container and need to return to it.
For example, use this command to run the performance benchmark test on the Llama 3.1 8B model
using one GPU with the float16 data type on the host machine.
.. code-block:: shell
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_train_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
The available models for MAD-integrated benchmarking are:
.. code-block:: shell
* ``pyt_train_llama-3.3-70b``
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
* ``pyt_train_llama-3.1-8b``
Prepare training datasets and dependencies
------------------------------------------
* ``pyt_train_llama-3.1-70b``
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
* ``pyt_train_flux``
.. code-block:: shell
MAD launches a Docker container with the name
``container_ci-pyt_train_llama-3.1-8b``, for example. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv``.
export HF_TOKEN=$your_personal_hugging_face_access_token
.. tab-item:: Standalone benchmarking
Run the setup script to install libraries and datasets needed for benchmarking.
.. rubric:: Download the Docker image and required packages
.. code-block:: shell
Use the following command to pull the Docker image from Docker Hub.
./pytorch_benchmark_setup.sh
.. code-block:: shell
``pytorch_benchmark_setup.sh`` installs the following libraries:
docker pull rocm/pytorch-training:v25.5
.. list-table::
:header-rows: 1
Run the Docker container.
* - Library
- Benchmark model
- Reference
.. code-block:: shell
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.5
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
Use these commands if you exit the ``training_env`` container and need to return to it.
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
.. code-block:: shell
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
docker start training_env
docker exec -it training_env bash
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
.. code-block:: shell
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
.. rubric:: Prepare training datasets and dependencies
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
.. code-block:: shell
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
export HF_TOKEN=$your_personal_hugging_face_access_token
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
Run the setup script to install libraries and datasets needed for benchmarking.
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
.. code-block:: shell
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
./pytorch_benchmark_setup.sh
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
``pytorch_benchmark_setup.sh`` installs the following libraries:
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
.. list-table::
:header-rows: 1
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - Library
- Benchmark model
- Reference
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
Along with the following datasets:
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
Getting started
===============
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI325X and MI300X
accelerators with the AMD PyTorch training Docker image.
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
Once your environment is set up, use the following commands and examples to start benchmarking.
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
Pretraining
-----------
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
.. code-block:: shell
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
.. list-table::
:header-rows: 1
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
* - Name
- Options
- Description
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
Along with the following datasets:
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* - ``$model_repo``
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
.. rubric:: Pretraining
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
.. code-block:: shell
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
.. note::
.. list-table::
:header-rows: 1
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
* - Name
- Options
- Description
Fine-tuning
-----------
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
.. code-block:: shell
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
.. code-block:: shell
* - ``$model_repo``
- ``Llama-3.3-70B``
- `Llama 3.3 70B <https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct>`_
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
* -
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
Benchmarking examples
---------------------
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
Here are some examples of how to use the command.
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
.. code-block:: shell
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
.. note::
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
.. code-block:: shell
.. rubric:: Fine-tuning
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
.. rubric:: Benchmarking examples
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
Here are some example commands to get started pretraining and fine-tuning with various model configurations.
.. code-block:: shell
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
.. code-block:: shell
* Example 6: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
.. code-block:: shell
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
* Example 6: Torchtune full weight fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.3-70B
* Example 7: Torchtune LoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.3-70B
* Example 8: Torchtune QLoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_qlora -p BF16 -m Llama-3.3-70B
* Example 9: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
Previous versions
=================
@@ -399,6 +446,13 @@ benchmarking, see the version-specific documentation.
- PyTorch version
- Resources
* - v25.4
- 6.3.0
- 2.7.0a0+git637433
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.4/images/sha256-fa98a9aa69968e654466c06f05aaa12730db79b48b113c1ab4f7a5fe6920a20b>`_
* - v25.3
- 6.3.0
- 2.7.0a0+git637433

View File

@@ -21,8 +21,12 @@ In this guide, you'll learn about:
- Training a model
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`With Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
- :doc:`With PyTorch <benchmark-docker/pytorch-training>`
- :doc:`With JAX MaxText <benchmark-docker/jax-maxtext>`
- :doc:`With LLM Foundry <benchmark-docker/mpt-llm-foundry>`
- :doc:`Scaling model training <scale-model-training>`

Some files were not shown because too many files have changed in this diff Show More