Compare commits

...

38 Commits

Author SHA1 Message Date
Peter Park
54ba8bfed1 update group name 2025-05-29 10:41:53 -04:00
Peter Park
55e13a3c38 add Falcon to vllm-benchmark-models.yaml 2025-05-08 14:13:03 -04:00
Wei Luo
d1debc7e45 [doc]: Add quark in model-quantization.rst (#374)
* Add quark in model-quantization.rst

---------

Co-authored-by: Peter Park <peter.park@amd.com>
Co-authored-by: Peter Park <git@peterjunpark.com>
2025-05-08 14:28:51 +08:00
Pratik Basyal
169f3bbe5e 641 Release notes update post RC2 batch1 (#387)
* Release highlight updated

* TOC updated for internal

* RC3 manifest added

* clarify docker image highlight

* update doc highlights

* RC3 changes added

* RC3 manifest added

* ROCm SMI version update

---------

Co-authored-by: Peter Park <peter.park@amd.com>
2025-05-06 15:07:54 -04:00
Pratik Basyal
e28eac2fe1 License typo fixed (#384) 2025-05-02 12:37:08 -04:00
Pratik Basyal
97ccce10ef Links and refernce text update (#383) 2025-05-01 16:13:39 -04:00
Pratik Basyal
217fb452f8 Initial changes to 6.4.1 RN (#379)
* Initial changes added

* Changelogs for RCCL, hipblaslt, compute profiler, and systems added

* 6.4.0 GA manifest

* 6.4.1 RC1 manifest

* RC2 Manifest added

* Update RELEASE.md

Add CLR Changelog entry for HIP 6.4.1

* Release highlight added

* AMD SMI changelog added

* ROCr runtime changelog added

* RCCL resolved issue added

* Minor change

* Minor fixes

* Quick changes to version

* Offline installer update

* Istallation udpated

* added rocalution to release notes

* Updated changelogs for components

* Changes to changelog

* Update RELEASE.md

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* Update RELEASE.md

Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>

* rocSHMEM related changes added

* Changelog updated with new changes

* Heading level fixed

* AMD SMI version bumped to 25.4.0

* Reordered

* Table zebra pattern updated

* Consolidated updated

* Zebra patter aligned

* Add ROCm SMI changes to 6.4.1

* Update CHANGELOG.md

Co-authored-by: Pratik Basyal <prbasyal@amd.com>

* update doc highlights

* Link to rocSHMEM

* update

* Minor changes

* Changelog feedback updated

---------

Co-authored-by: randyh62 <42045079+randyh62@users.noreply.github.com>
Co-authored-by: spolifroni-amd <sandra.polifroni@amd.com>
Co-authored-by: Peter Park <peter.park@amd.com>
2025-05-01 13:54:31 -04:00
Pratik Basyal
a7c158a14f Link updated (#4706) 2025-05-01 11:41:02 -04:00
Peter Park
85778177a1 Update vLLM docker pull tag 20250415 in vllm-benchmark.rst (#4702) 2025-04-30 16:09:30 -04:00
Daniel Su
28060c104b Ex CI: MIOpen exclude failing GPU_Conv2dTuningAsm_FP32 test (#4693) 2025-04-29 10:13:40 -04:00
Istvan Kiss
84177354de Pytorch compatibility page update 2025-04-29 14:43:40 +02:00
Peter Park
7458fcb7ab Update JAX MaxText benchmark doc to v25.5 (#4695)
* fix shell cmd formatting

* add previous versions section

* update docker details and add llama 3.3

* update missed docker image tags to 25.5
2025-04-28 17:52:53 -04:00
Peter Park
16d6e59003 fix link to pytorch-training v25.4 doc (#4696) 2025-04-28 17:52:33 -04:00
Daniel Su
fd9f576b26 Ex CI: add roctracer to rocprof-sys dependencies (#4694) 2025-04-28 14:04:15 -04:00
Peter Park
a66bc1d85e fix link to previous version in vllm-benchmark.rst (#4689) 2025-04-24 17:54:04 -04:00
Peter Park
36b6ffaf7c Add QwQ 32B to vllm-benchmark.rst (#4685)
* Add Qwen2 MoE 2.7B to vllm-benchmark-models.yaml

* Add QwQ-32B-Preview to vllm-benchmark-models.yaml

* add links to performance results

words

* change "performance validation" to "performance testing"

* remove "-Preview" from QwQ-32B

* move qwen2 MoE after qwen2

* add TunableOp section

* fix formatting

* add link to TunableOp doc

* add tunableop note

* fix vllm-benchmark template

* remove cmdline option for --tunableop on

* update docker details

* remove "training"

* remove qwen2
2025-04-24 16:44:34 -04:00
Peter Park
40e4ba3ecc Update vLLM inference benchmark Docker guide (#4653)
* Remove JAIS 13B and 30B

* update Docker details - vLLM 0.8.3

* add previous version

* Update docs/how-to/rocm-for-ai/inference/vllm-benchmark.rst

* fix link to previous version
2025-04-24 15:59:13 -04:00
Peter Park
1f41ce26be Add note for chai-1 benchmark Docker in pytorch-inference-benchmark.rst (#4684) 2025-04-24 15:48:53 -04:00
Daniel Su
9293723381 Ex CI: add targets to rocJPEG artifact names (#4681) 2025-04-24 12:13:34 -04:00
Daniel Su
588752ade4 Ex CI: fix rocprofiler-register tests (#4676) 2025-04-24 09:52:27 -04:00
Peter Park
c3faa9670b Add PyTorch inference benchmark Docker guide (+ CLIP and Chai-1) (#4654)
* update vLLM links in deploy-your-model.rst

* add pytorch inference benchmark doc

* update toc and vLLM title

* remove previous versions

* update

* wording

* fix link and "applies to"

* add pytorch to wordlist

* add tunableop note to clip

* make tunableop note appear to all models

* Update docs/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* fix incorrect links

* wording

* fix wrong docker pull tag

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-04-23 17:35:52 -04:00
Pratik Basyal
7246a673ce Broken link fixed (#4673) 2025-04-23 13:34:39 -04:00
Pratik Basyal
3f1c07afd7 Known issue for installation failure in 6.4.0 added (#4666)
* Known issue for installation failure added

* Github issue No. added

* Typo fixed

* Feedback from Anush updated

* Minor change

* Feedback from Fai added

* Public Issue No. updated

* Minor change
2025-04-23 12:26:11 -04:00
Peter Park
b29b3592bd Update ML framework Docker compatibility docs for 6.4.0 (#4667)
* update pytorch-compatibility.rst

* update tensorflow compat

fix

* update jax and jax-community docker versions
2025-04-22 16:16:16 -04:00
Daniel Su
2b2732fe6f Ex CI: add missing packages to rocprof-comp, clean up test job steps (#4669) 2025-04-22 15:50:47 -04:00
Daniel Su
396b6375ba Ex CI: add script to download artifacts from a provided manifest file (#4662)
* add files

* Allow command line args for download script

* Move script into separate folder

* Add newline to end of script

---------

Co-authored-by: David Dixon <david.dixon@amd.com>
2025-04-22 10:48:41 -04:00
Daniel Su
37a56b4ab6 Ex CI: add double quotes to pip packages with min versions (#4661) 2025-04-21 12:03:38 -04:00
Pratik Basyal
fc162d11e0 6.1.5 column added to historical compatibility develop branch (#4648)
* 6.1.5 column added to historical compatibility
2025-04-17 11:55:32 -04:00
Daniel Su
34288b5af2 Ex CI: add template to create Docker images with docker commit (#4649) 2025-04-17 11:01:17 -04:00
Joseph Macaranas
460e4be71d External CI: rocprofiler-systems CMake flags to find rocjpeg headers (#4656)
- Also add chrpath dependency
2025-04-17 10:57:41 -04:00
Joseph Macaranas
25ca422954 External CI: MIOpen build fix from aggregate pipeline rebase (#4651)
Merge conflict resolution dumped the new parameters to the wrong line.
2025-04-17 10:07:33 -04:00
Daniel Su
27edda496d Ex CI: reenable comgr cache for affected mathlibs (#4642) 2025-04-16 15:03:14 -04:00
Peter Park
9ff3c2c885 Update PyTorch training Docker doc for 25.5 (#4638)
* update pytorch-training to 25.5

* remove llama 2

* Revert "remove llama 2"

This reverts commit dab672fa7bcbd8bff730382c14177df4301a537d.

* add previous version

* fix run cmd

* add link to docker hub

* fix linting issue

* add Llama 3.3 70B

* update
2025-04-15 18:16:22 -04:00
Daniel Su
0d28491d16 Ex CI: make Docker image URLs lowercase (#4634) 2025-04-15 16:01:09 -04:00
Peter Park
7f708c8d87 fix links to amdsmi and rocmsmi changelogs (#4592)
(cherry picked from commit bdcfea9dbd)
2025-04-15 15:12:00 -04:00
Daniel Su
2ab35b3732 Ex CI: change Docker containerRegistry to ContainerService3 (#4631) 2025-04-15 11:50:34 -04:00
Peter Park
d057d49af1 Fix vllm Dockerfile.rocm path (#4628) 2025-04-15 11:26:54 -04:00
Pratik Basyal
15ec4cf910 GitHub link to component in highlights changed to documentation reference in develop (#4626)
* GitHub link to component in highlights changed to documentation

* Removed entry from ROCm Compute Profiler

* Jeff's feedback added

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* List updated

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-04-15 10:14:58 -04:00
45 changed files with 1719 additions and 2015 deletions

View File

@@ -32,12 +32,12 @@ parameters:
type: object
default:
- https://github.com/RadeonOpenCompute/rbuild/archive/master.tar.gz
- onnx>=1.14.1
- numpy>=1.21.6
- typing>=3.7.4
- pytest>=6.0.1
- packaging>=23.0
- protobuf>=3.20.2
- "onnx>=1.14.1"
- "numpy>=1.21.6"
- "typing>=3.7.4"
- "pytest>=6.0.1"
- "packaging>=23.0"
- "protobuf>=3.20.2"
- name: rocmDependencies
type: object
default:

View File

@@ -113,13 +113,13 @@ jobs:
mkdir -p $(Agent.BuildDirectory)/miopen-deps
export CXX=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
export CC=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
cmake -P install_deps.cmake --prefix $(Agent.BuildDirectory)/miopen-deps
cmake -P install_deps.cmake --prefix $(Agent.BuildDirectory)/miopen-deps --generator Ninja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
-DMIOPEN_BACKEND=HIP
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/miopen-deps --generator Ninja
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/miopen-deps
-DGPU_TARGETS=${{ job.target }}
-DMIOPEN_ENABLE_AI_KERNEL_TUNING=OFF
-DMIOPEN_ENABLE_AI_IMMED_MODE_FALLBACK=OFF
@@ -214,7 +214,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: MIOpen
testParameters: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml --exclude-regex test_rnn_seq_api'
testParameters: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml --exclude-regex "test_rnn_seq_api|GPU_Conv2dTuningAsm_FP32"'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -133,8 +133,6 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -27,7 +27,7 @@ parameters:
type: object
default:
- joblib
- packaging>=22.0
- "packaging>=22.0"
- --upgrade
- name: rocmDependencies
type: object
@@ -193,8 +193,6 @@ jobs:
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -134,8 +134,6 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -128,8 +128,6 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -107,8 +107,6 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -157,8 +157,6 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -89,6 +89,8 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
# - template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
# parameters:
@@ -122,6 +124,8 @@ jobs:
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
@@ -147,4 +151,3 @@ jobs:
environment: test
gpuTarget: ${{ job.target }}
registerROCmPackages: true
optSymLink: true

View File

@@ -143,8 +143,6 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -34,6 +34,7 @@ parameters:
- rocminfo
- rocPRIM
- rocprofiler-register
- roctracer
- name: rocmTestDependencies
type: object
default:
@@ -138,8 +139,6 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -125,8 +125,6 @@ jobs:
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: AMD_COMGR_CACHE
value: 0
pool: ${{ job.target }}_test_pool
workspace:
clean: all

View File

@@ -14,6 +14,8 @@ parameters:
type: object
default:
- cmake
- libdw-dev
- libtbb-dev
- locales
- ninja-build
- python3-pip
@@ -22,10 +24,10 @@ parameters:
default:
- astunparse==1.6.2
- colorlover
- dash>=1.12.0
- "dash>=1.12.0"
- matplotlib
- numpy>=1.17.5
- pandas>=1.4.3
- "numpy>=1.17.5"
- "pandas>=1.4.3"
- pymongo
- pyyaml
- tabulate
@@ -189,12 +191,9 @@ jobs:
displayName: Add ROCm binaries to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
- task: Bash@3
displayName: Add ROCm compilers to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
script: |
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -213,18 +212,6 @@ jobs:
componentName: rocprofiler-compute
testDir: $(Build.BinariesDirectory)/libexec/rocprofiler-compute
testExecutable: ROCM_PATH=$(Agent.BuildDirectory)/rocm ctest
- task: Bash@3
displayName: Remove ROCm binaries from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- task: Bash@3
displayName: Remove ROCm compilers from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/llvm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -37,20 +37,14 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: rocprofiler-register
extraBuildFlags: >-
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: rocprofiler-register-tests
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Build.BinariesDirectory)
-DROCPROFILER_REGISTER_BUILD_TESTS=ON
-DROCPROFILER_REGISTER_BUILD_SAMPLES=ON
-GNinja
cmakeBuildDir: 'tests/build'
installEnabled: false
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocprofiler-register
testDir: 'tests/build'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml

View File

@@ -36,7 +36,7 @@ parameters:
- pandas
- perfetto
- pycobertura
- pytest>=6.2.5
- "pytest>=6.2.5"
- pyyaml
- name: rocmDependencies
type: object

View File

@@ -21,6 +21,7 @@ parameters:
- bzip2
- clang
- cmake
- chrpath
- environment-modules
- ffmpeg
- g++-12
@@ -66,6 +67,7 @@ parameters:
- rocprofiler-register
- rocprofiler-sdk
- ROCR-Runtime
- roctracer
- name: jobMatrix
type: object
@@ -130,6 +132,7 @@ jobs:
-DDYNINST_BUILD_BOOST=ON
-DROCPROFSYS_USE_PAPI=ON
-DROCPROFSYS_USE_MPI=ON
-DCMAKE_CXX_FLAGS=-I$(Agent.BuildDirectory)/rocm/include/rocjpeg
-DGPU_TARGETS=${{ job.target }}
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
@@ -204,6 +207,7 @@ jobs:
-DDYNINST_BUILD_BOOST=ON
-DROCPROFSYS_USE_PAPI=ON
-DROCPROFSYS_USE_MPI=ON
-DCMAKE_CXX_FLAGS=-I$(Agent.BuildDirectory)/rocm/include/rocjpeg
-DGPU_TARGETS=${{ job.target }}
-GNinja
- task: Bash@3

View File

@@ -68,7 +68,7 @@ parameters:
default:
- cmake
- astunparse
- expecttest>=0.2.1
- "expecttest>=0.2.1"
- hypothesis
- numpy
- psutil
@@ -76,8 +76,8 @@ parameters:
- requests
- setuptools==75.8.0
- types-dataclasses
- typing-extensions>=4.8.0
- sympy>=1.13.0
- "typing-extensions>=4.8.0"
- "sympy>=1.13.0"
- filelock
- networkx
- jinja2
@@ -85,8 +85,8 @@ parameters:
- lintrunner
- ninja
- packaging
- optree>=0.13.0
- click>=8.0.3
- "optree>=0.13.0"
- "click>=8.0.3"
# list for vision
- auditwheel
- future

View File

@@ -0,0 +1,68 @@
#!/usr/bin/env python3
import json
import requests
import argparse
from pathlib import Path
def get_builds(entries, gpu_target, output):
already_downloaded = {}
for entry in entries:
already_downloaded = _get_builds(entry, gpu_target, already_downloaded, output)
def _get_builds(entry, gpu_target, already_downloaded, output):
print()
print(f"{entry['buildNumber']} - {entry['buildId']} - {entry['repoName']}")
if already_downloaded.get(entry['buildId']):
print('Skipping, already downloaded from build ' + entry['buildId'])
return already_downloaded
artifacts_url = f"https://dev.azure.com/ROCm-CI/ROCm-CI/_apis/build/builds/{entry['buildId']}/artifacts?api-version=7.1"
artifacts = requests.get(artifacts_url).json()
for artifact in artifacts['value']:
if 'gfx' in artifact['name'] and gpu_target not in artifact['name']:
continue
print('Artifact name: ' + artifact['name'])
print('File size: ~' +
str(round(int(artifact['resource']['properties']['artifactsize'])/1000000, 2)) + ' MB')
download_url = f"{artifact['resource']['downloadUrl']}"
download = requests.get(download_url)
zip_file = Path(output) / f"{artifact['name']}.zip"
with open(zip_file, 'wb') as f:
f.write(download.content)
already_downloaded[entry['buildId']] = True
return already_downloaded
def main():
parser = argparse.ArgumentParser(description="Command line tool for downloading external ci artifacts")
parser.add_argument('--target', type=str, dest="target", choices=["gfx90a", "gfx942"], help="Target gfx")
parser.add_argument('--manifest', type=str, dest="manifest", help='JSON manifest url or path to local manifest')
parser.add_argument('--output_dir', type=str, dest="output", help='Path to download directory')
args = parser.parse_args()
manifest = args.manifest
gpu_target = args.target
if not gpu_target:
print("Enter the GPU target (gfx942, gfx90a)")
gpu_target = input()
if not manifest:
print("Enter the manifest file (URL or local path)")
manifest = input()
if 'http' in manifest:
data = requests.get(manifest).json()
else:
with open(manifest, 'r') as f:
data = json.load(f)
entries = [e for e in data['current']]
entries.extend([e for e in data['dependencies']])
get_builds(entries, gpu_target, args.output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1 @@
requests

View File

@@ -0,0 +1,82 @@
# This template creates and uploads a Docker image from the current environment
# It uses `docker commit` to do so, which can provide more accurate images than the standard template
# It requires the following conditions:
# - Job must be run inside a Docker container
# - The container's external name must be the same as the container's internal hostname
# - Docker must be installed inside said container and given sufficient permissions
# Currently, it is only usable for test jobs run on our self-managed systems
# Jobs run on Azure VMs will not be able to use this template (most if not all build jobs)
parameters:
- name: gpuTarget
type: string
default: ''
- name: environment
type: string
default: build
values:
- build
- test
- combined
- amd
- nvidia
- name: extraPaths
type: string
default: ''
- name: extraEnvVars
type: object
default: []
- name: forceDockerCreation
type: boolean
default: false
steps:
- task: Bash@3
displayName: Commit container and initialize Dockerfile
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: |
docker commit $(hostname) az-ci-temp-image:latest
echo "FROM az-ci-temp-image:latest" > Dockerfile
echo "RUN sudo groupmod -g $(getent group render | awk -F: '{print $3}') render" >> Dockerfile
echo "RUN sudo groupmod -g $(getent group docker | awk -F: '{print $3}') docker" >> Dockerfile
echo "ENV PATH='$PATH:${{ parameters.extraPaths }}'" >> Dockerfile
echo "ENTRYPOINT [\"/bin/bash\"]" >> Dockerfile
- ${{ each extraEnvVar in parameters.extraEnvVars }}:
- task: Bash@3
displayName: Add extra environment variables
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: echo "ENV ${{ split(extraEnvVar, ':::')[0] }}='${{ split(extraEnvVar, ':::')[1] }}'" >> Dockerfile
- task: Bash@3
displayName: Print Dockerfile
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
script: cat Dockerfile
- task: Docker@2
displayName: Build and upload Docker image
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
containerRegistry: 'ContainerService3'
${{ if ne(parameters.gpuTarget, '') }}:
repository: '$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}'
${{ else }}:
repository: '$(Build.DefinitionName)-${{ parameters.environment }}'
Dockerfile: '$(Pipeline.Workspace)/Dockerfile'
buildContext: '$(Pipeline.Workspace)'
- task: Bash@3
condition: or(and(failed(), not(contains(variables['DOCKER_SKIP_GFX'], variables['JOB_GPU_TARGET']))), ${{ eq(parameters.forceDockerCreation, true) }})
displayName: "!! Docker Image URL !!"
inputs:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
${{ if ne(parameters.gpuTarget, '') }}:
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}:$(Build.BuildId)" | tr '[:upper:]' '[:lower:]'
${{ else }}:
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}:$(Build.BuildId)" | tr '[:upper:]' '[:lower:]'

View File

@@ -334,7 +334,7 @@ steps:
- task: Docker@2
condition: or(and(failed(), ${{ not(containsValue(parameters.dockerSkipGfx, parameters.gpuTarget)) }}), ${{ eq(parameters.forceDockerCreation, true) }})
inputs:
containerRegistry: 'ContainerService'
containerRegistry: 'ContainerService3'
${{ if ne(parameters.gpuTarget, '') }}:
repository: '$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}'
${{ else }}:
@@ -348,6 +348,6 @@ steps:
workingDirectory: $(Pipeline.Workspace)
targetType: inline
${{ if ne(parameters.gpuTarget, '') }}:
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}:$(Build.BuildId)"
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}-${{ parameters.gpuTarget }}:$(Build.BuildId)" | tr '[:upper:]' '[:lower:]'
${{ else }}:
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}:$(Build.BuildId)"
script: echo "rocmexternalcicd.azurecr.io/$(Build.DefinitionName)-${{ parameters.environment }}:$(Build.BuildId)" | tr '[:upper:]' '[:lower:]'

View File

@@ -76,6 +76,7 @@ Concretized
Conda
ConnectX
CuPy
da
Dashboarding
DBRX
DDR
@@ -751,6 +752,7 @@ profilers
protobuf
pseudorandom
py
pytorch
recommender
recommenders
quantile

View File

@@ -4,9 +4,117 @@ This page is a historical overview of changes made to ROCm components. This
consolidated changelog documents key modifications and improvements across
different versions of the ROCm software stack and its components.
## ROCm 6.4.1
See the [ROCm 6.4.1 release notes](https://rocm-stg.amd.com/en/latest/about/release-notes.html)
for a complete overview of this release.
### **AMD SMI** (25.4.2)
#### Added
* Dumping CPER entries from RAS tool `amdsmi_get_gpu_cper_entries()` to Python and C APIs.
- Dumping CPER entries consist of `amdsmi_cper_hdr_t`.
- Dumping CPER entries is also enabled in the CLI interface through `sudo amd-smi ras --cper`.
#### Resolved
* Fixed partition enumeration in `amd-smi list -e`, `amdsmi_get_gpu_enumeration_info()`, `amdsmi_enumeration_info_t`, `drm_card`, and `drm_render` fields.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **HIP** (6.4.1)
#### Added
* New debug mask, to print precise code object information for logging.
#### Changed
* Calling the code object has changed. HIP runtime now uses device bitcode before SPIR-V.
#### Optimized
* Improved kernel logging using the demangling shader names.
#### Resolved issues
* Stale state during the graph capture. The return error was fixed, and HIP runtime now always uses the latest dependent nodes during `hipEventRecord` capture.
* Issue of `hipEventRecords` failing to call the `hip::getStream` runtime function.
### **hipBLASLt** (0.12.1)
#### Resolved issues
* Fixed an accuracy issue for some solutions using an `FP32` or `TF32` data type with a TT transpose.
### **RCCL** (2.22.3)
#### Changed
* MSCCL++ is now disabled by default. To enable it, set `RCCL_MSCCLPP_ENABLE=1`.
#### Resolved issues
* Fixed an issue where early termination, in rare circumstances, could cause the application to stop responding by adding synchronization before destroying a proxy thread.
* Fixed the accuracy issue for the MSCCLPP `allreduce7` kernel in graph mode.
### **rocALUTION** (3.2.3)
#### Added
* The `-a` option has been added to the `rmake.py` build script. This option allows you to select specific architectures when building on Microsoft Windows.
#### Resolved issues
* Fixed an issue where the `HIP_PATH` environment variable was being ignored when compiling on Microsoft Windows.
### **ROCm Data Center Tool** (0.3.0)
#### Added
- Support for GPU partitions.
- `RDC_FI_GPU_BUSY_PERCENT` metric.
#### Changed
- Updated `rdc_field` to align with `rdc_bootstrap` for current metrics.
#### Resolved issues
- Fixed [ROCProfiler](https://rocm.docs.amd.com/projects/rocprofiler/en/docs-6.4.0/index.html) eval metrics and memory leaks.
### **ROCm SMI** (7.5.0)
#### Resolved issues
- Fixed partition enumeration. It now refers to the correct DRM Render and Card paths.
```{note}
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **ROCm Systems Profiler** (1.0.1)
#### Added
* How-to document for [network performance profiling](https://rocm.docs.amd.com/projects/rocprofiler-systems/en/amd-staging/how-to/nic-profiling.html) for standard Network Interface Cards (NICs).
#### Resolved issues
* Fixed a build issue with Dyninst on GCC 13.
### **ROCr Runtime** (1.15.0)
#### Resolved issues
* Fixed a rare occurrence issue on AMD Instinct MI25, MI50, and MI100 GPUs, where the `SDMA` copies might start before the dependent Kernel finishes and could cause memory corruption.
## ROCm 6.4.0
See the [ROCm 6.4.0 release notes](https://rocm-stg.amd.com/en/latest/about/release-notes.html)
See the [ROCm 6.4.0 release notes](https://rocm.docs.amd.com/en/docs-6.4.0/about/release-notes.html)
for a complete overview of this release.
### **AMD SMI** (25.3.0)
@@ -125,8 +233,7 @@ Some workaround options are as follows:
- The `pasid` field in struct `amdsmi_process_info_t` will be deprecated in a future ROCm release.
```{note}
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/rocm-6.4.x/CHANGELOG.md) for details, examples,
and in-depth descriptions.
See the full [AMD SMI changelog](https://github.com/ROCm/amdsmi/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **AMDMIGraphX** (2.12.0)
@@ -678,7 +785,6 @@ The following lists the backward incompatible changes planned for upcoming major
* Roofline support for Ubuntu 24.04.
* Experimental support `rocprofv3` (not enabled as default).
* Experimental feature: Spatial multiplexing.
#### Resolved issues
@@ -737,8 +843,7 @@ The following lists the backward incompatible changes planned for upcoming major
- Fixed `rsmi_dev_target_graphics_version_get`, `rocm-smi --showhw`, and `rocm-smi --showprod` not displaying graphics version correctly for Instinct MI200 series, MI100 series, and RDNA3-based GPUs.
```{note}
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/rocm-6.4.x/CHANGELOG.md) for details, examples,
and in-depth descriptions.
See the full [ROCm SMI changelog](https://github.com/ROCm/rocm_smi_lib/blob/release/rocm-rel-6.4/CHANGELOG.md) for details, examples, and in-depth descriptions.
```
### **ROCm Systems Profiler** (1.0.0)
@@ -3456,7 +3561,7 @@ See [issue #3499](https://github.com/ROCm/ROCm/issues/3499) on GitHub.
- Error when running Omniperf with an application with command line arguments. As a workaround, create an
intermediary script to call the application with the necessary arguments, then call the script with Omniperf. This
issue is fixed in a future release of Omniperf. See [#347](https://github.com/ROCm/omniperf/issues/347).
issue is fixed in a future release of Omniperf. See [#347](https://github.com/ROCm/rocprofiler-compute/issues/347).
- Omniperf might not work with AMD Instinct MI300 accelerators out of the box, resulting in the following error:
"*ERROR gfx942 is not enabled rocprofv1. Available profilers include: ['rocprofv2']*". As a workaround, add the
@@ -4333,7 +4438,7 @@ for a complete overview of this release.
* New multiple node and GPU support.
Unsmoothed and smoothed aggregations and Ruge-Stueben AMG now work with multiple nodes
and GPUs. For more information, refer to the
[API documentation](https://rocm.docs.amd.com/projects/rocALUTION/en/latest/usermanual/solvers.html#unsmoothed-aggregation-amg).
[API documentation](https://rocm.docs.amd.com/projects/rocALUTION/en/docs-6.1.0/usermanual/solvers.html#unsmoothed-aggregation-amg).
### **rocDecode** (0.5.0)

81
Manifest6.4.0 Normal file
View File

@@ -0,0 +1,81 @@
This XML file does not appear to have any style information associated with it. The document tree is shown below.
<manifest>
<remote name="gerritgit" fetch="ssh://gerritgit/" review="gerrit-git.amd.com"/>
<remote name="lightning-ghemu" fetch="ssh://github-emu/AMD-Lightning-Internal"/>
<remote name="rocm" fetch="https://github.com/ROCm"/>
<remote name="rocm-ghemu" fetch="ssh://github-emu/AMD-ROCm-Internal"/>
<default remote="gerritgit" revision="release/rocm-rel-6.4" sync-j="4" sync-c="true"/>
<project name="AMDMIGraphX" remote="rocm" revision="908b94a3f0822a4fee89d99c3cfc51cd9c93f2f6" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="MIOpen" remote="rocm" revision="f10c6ed8085cfabf8877294ab44301d8180999e8" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="MIVisionX" remote="rocm" revision="a2b69e5b30f2dbdf66055ec99a2b5559b572f7af" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="OpenCL-CLHPP" remote="rocm-ghemu" revision="6f7e82dee83aea7f277a4b874da309902ea51f6e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="OpenCL-Headers" remote="rocm-ghemu" revision="848d67b6fd471318816a81601d469b086487d18e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="ROCR-Runtime" remote="rocm-ghemu" revision="1d9f08cabd33bd6302add72d0be2bfe0e64eea3a" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="ROCdbgapi" remote="rocm-ghemu" revision="59be7ff0aaafe82feb78f30990c8fdf62838cc98" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="ROCgdb" remote="rocm-ghemu" revision="401bb21f2f3c72bbb90ccce12dc3ef481f9a1d8a" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="ROCmValidationSuite" remote="rocm" revision="5f1a9665f6241b0346c88cfd21a6073628da3593" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="Tensile" remote="rocm" revision="be49885fce2a61b600ae4593f1c2d00c8b4fa11e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="TransferBench" remote="rocm" revision="3ea2f226ec818158ba97e4ee0ec0b589f13f4641" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="amdsmi" remote="rocm-ghemu" revision="e6a209ef809f1b09a424572afd685ec754a9042b" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="aomp" path="openmp-extras/aomp" remote="lightning-ghemu" revision="24932c59c0759a57ee52d327d9a10a2e466e35a7" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="aomp-extras" path="openmp-extras/aomp-extras" remote="lightning-ghemu" revision="6f8038ada9dec082ea091d30c98c0834669d12a1" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="aqlprofile" remote="rocm-ghemu" revision="7fae75ec6bf7b1a631707ae859542d733f8a1f43" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="build-infra" path="ROCm" remote="rocm-ghemu" revision="811ec9cc6d1588bf66619365b9b4db96ac6acf68" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra"/>
<project name="clr" remote="rocm-ghemu" revision="a1adcfdd44f4560c0268e36c8afeb94f760dc963" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="composable_kernel" remote="rocm" revision="a8c5bd9b9ad950c3e742877e01cb784da91664e3" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="compute/ec/hip-examples" path="HIP-Examples" revision="41b0cff8077a25390c2bbda827eb9f6f37ec1ef3" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="compute/ec/hip-examples-private" path="hip-examples-private" revision="dc69edb405804987753735a369478503d82ce9c2" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="compute/ec/jenkins-utils" path="jenkins-utils" revision="bb517b014ff055b62d3860addc23ddd06b0c3e6e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,stage1"/>
<project name="compute/ec/ml-framework-ci" path="ml-framework-ci" revision="83440e22ebf1e9443b6df737224c1e5e2b91e0c4" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,framework"/>
<project name="compute/ec/packaging/meta" path="meta" revision="c7cffa2e4199da1fd68b8b3568282dd59d49a4df" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,stage1"/>
<project name="compute/ec/prototype" path="build" revision="d71a2766e11e057e5c698caea8fc4ebc0f72cb3e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,stage1"/>
<project name="compute/ec/rocm_bandwidth_test" path="rocm_bandwidth_test" revision="84b8ddd2686be9bd3e438126b44e6bb10d94d522" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="flang" path="openmp-extras/flang" remote="lightning-ghemu" revision="390169508a03cecf85d43f5cee41e223355f598f" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="half" remote="rocm" revision="1ddada225144cac0de8f6b5c0dd9acffd99a2e68" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hip" remote="rocm-ghemu" revision="22b0b2eb9a09e30dca11b213872127f9caa2e1e7" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="hip-tests" remote="rocm-ghemu" revision="dc28111737706aad93e38c2f746ccbc13dbf1b80" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="hipBLAS" remote="rocm" revision="0a335435e9c8a833d7106e4ae5057eb58cea2fef" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipBLAS-common" remote="rocm" revision="7c1566ba4628e777b91511242899b6df48555d04" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipBLASLt" remote="rocm" revision="4d62e135cfb4008cf7b508995cad347a1bc750c8" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipCUB" remote="rocm" revision="a6005943c5804535990429925318e7900eb6e801" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipFFT" remote="rocm" revision="396169c84a2bb3c7ed7245caefe66002138e7c6c" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipRAND" remote="rocm" revision="d2516cc199690fd91abfdc5908ecfd88e3553067" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipSOLVER" remote="rocm" revision="ca0de3c9c95df4345b76cd8a56e72c84b7d5fc79" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipSPARSE" remote="rocm" revision="a6c62e48eb8a2326475f7bbb4705c5b926a5edc8" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipSPARSELt" remote="rocm" revision="f3f4f590a49ae9f9c9ce1451c42db4c2bfd00eed" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipTensor" remote="rocm" revision="e5529b92914be79e4887a92b48b30f88b616c9a5" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipfort" remote="rocm" revision="f3d6aa3e8657d665a43fa2815ca2e49ce39a464a" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="hipify" path="HIPIFY" remote="lightning-ghemu" revision="ed0de49132211c6ddbd40f5cd89b5841e832ac3d" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="hipother" remote="rocm-ghemu" revision="49b1588f834dbe1a4db1bddb3647a91b15f618b8" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="llvm-project" remote="lightning-ghemu" revision="aa0c041cb49bb50af268504907b7899fec59ae4e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
<project name="rccl" remote="rocm" revision="12f8f61f3a5db87bf158c60fdd5e38a32c903b08" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rdc" remote="rocm-ghemu" revision="0224310c872df0fae56ffc883c50c7f47dc82870" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocAL" remote="rocm" revision="373ef865aca43528559e7a9134f09e49a9e9b7c6" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocALUTION" remote="rocm" revision="cb256de3574a4fcbc6a52ed5986b787173cd6dc2" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocBLAS" remote="rocm" revision="80e5394d6a68901ce48b03da47b33b1e69d58be7" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocDecode" remote="rocm" revision="a2a7b63cad8f90a94e21232b44460a8fb2d52304" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocFFT" remote="rocm" revision="058ba87fdcfdae334dbc8dbe048955b248e9328a" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocJPEG" remote="rocm" revision="73d36d35d90137ffbfcec276bdf973823ef0c0b9" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocPRIM" remote="rocm" revision="d8771ec18ad45c4d697800c22fb21241f22a915f" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocPyDecode" remote="rocm" revision="848e49d29d4d6173fb4b57a9223ce68c049baa28" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocRAND" remote="rocm" revision="4d5d3a88d1898705dadf5c06e7b0400d51a13c36" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocSHMEM" remote="rocm" revision="7702b3c0f3f41baf6a80aa6b22fa90dec1a6801e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocSOLVER" remote="rocm" revision="db754e3f55daab54abb86f17cd6b4066c504e163" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocSPARSE" remote="rocm" revision="4953add0aee37ad26700e8bcd6defbfa6b3a4d08" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocThrust" remote="rocm" revision="6bf2777019827e1a2898547ced9a03bf5024ed7d" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocWMMA" remote="rocm" revision="1a5b6231663fcf3e00abf790aeae843278f16a65" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocm-cmake" remote="rocm" revision="ecc716b97c2239cff00422ed7a43cd52a0839a0e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="rocm-core" remote="rocm-ghemu" revision="73dae9c82ace4fb8e1e4028f86ff0365f21c9f51" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="infra,stage1"/>
<project name="rocm-examples" remote="rocm" revision="3bbd2987a3b46cfd2c8348c2317042f3ad604e38" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocm_smi_lib" remote="rocm-ghemu" revision="1f242d314916336d6ce5c731f486edfaa8f0b987" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocminfo" remote="rocm-ghemu" revision="6ea2ba38c8e1ab2899acf66878148b1192fd0bee" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler" remote="rocm-ghemu" revision="40da7312a06f8052f5c148a4709cab64686f881d" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler-compute" remote="rocm" revision="7b25d958b4e030ea64a24ed0a62dcac1e48193ab" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler-register-internal" path="rocprofiler-register" remote="rocm-ghemu" revision="7c6cd44f637d400b50b803b0b351be302ad6827d" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler-sdk-internal" path="rocprofiler-sdk" remote="rocm-ghemu" revision="e8e49fe76971000a42a5a177d9a727d16dd0ebcf" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocprofiler-systems" remote="rocm" revision="2e945e4a08781e13a822f568814e2c434fd8858f" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rocr_debug_agent" remote="rocm-ghemu" revision="9eec1a52a36b5203bbac54a1b442fe9a45b6a43e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="roctracer" remote="rocm-ghemu" revision="f55a6943816641c081aa167c8a45904ddae2ba5e" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="stage1"/>
<project name="rpp" remote="rocm" revision="5fb204ca7018b87889e061b720c5b06f6b9bce9b" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="mathlibs"/>
<project name="spirv-llvm-translator" path="llvm-project/llvm/projects/SPIRV-LLVM-Translator" remote="lightning-ghemu" revision="ae12ddbec86765df369b18ac764e170082079819" upstream="release/rocm-rel-6.4" dest-branch="release/rocm-rel-6.4" groups="llvmdeps,stage1"/>
</manifest>

1390
RELEASE.md

File diff suppressed because it is too large Load Diff

View File

@@ -81,6 +81,7 @@ additional licenses. Please review individual repositories for more information.
| [rocRAND](https://github.com/ROCm/rocRAND/) | [MIT](https://github.com/ROCm/rocRAND/blob/develop/LICENSE.txt) |
| [ROCr Debug Agent](https://github.com/ROCm/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocr_debug_agent/blob/amd-staging/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/amd-staging/LICENSE.txt) |
| [rocSHMEM](https://github.com/ROCm/rocSHMEM/) | [MIT](https://github.com/ROCm/rocSHMEM/blob/develop/LICENSE.md) |
| [rocSOLVER](https://github.com/ROCm/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCm/rocSOLVER/blob/develop/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCm/rocSPARSE/) | [MIT](https://github.com/ROCm/rocSPARSE/blob/develop/LICENSE.md) |
| [rocThrust](https://github.com/ROCm/rocThrust/) | [Apache 2.0](https://github.com/ROCm/rocThrust/blob/develop/LICENSE) |

View File

@@ -1,121 +1,122 @@
ROCm Version,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
Thrust,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.2,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60102,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60102,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60102,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,19.0.0.25104,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
ROCm Version,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,Azure Linux 3.0 [#mi300x-past-60]_,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.2,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
Thrust,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,1.9.10,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.1,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.6.0,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,3.2.3,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,4.4.0,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.28.0,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,25.4.2,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.1,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60401,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.60401,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,19.0.0,19.0.0,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25172,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,19.0.0.25172,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25172,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP6 SLES 15 SP6 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_
10 Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_
11 Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_ Azure Linux 3.0 [#mi300x-past-60]_
12 .. _architecture-support-compatibility-matrix-past-60: .. _architecture-support-compatibility-matrix-past-60:
13 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
14 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
15 CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA
16 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
17 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
18 .. _gpu-support-compatibility-matrix-past-60: .. _gpu-support-compatibility-matrix-past-60:
19 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
20 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
21 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
22 gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
23 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908
24
25 FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60: .. _framework-support-compatibility-matrix-past-60:
26 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` 2.6, 2.5, 2.4, 2.3 2.6, 2.5, 2.4, 2.3 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
27 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
28 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.4.35 0.4.35 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
29 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.2 1.2 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
30
31
32 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60: .. _thirdpartycomms-support-compatibility-matrix-past-60:
33 `UCC <https://github.com/ROCm/ucc>`_ >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
34 `UCX <https://github.com/ROCm/ucx>`_ >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
35
36 THIRD PARTY ALGORITHM .. _thirdpartyalgorithm-support-compatibility-matrix-past-60: .. _thirdpartyalgorithm-support-compatibility-matrix-past-60:
37 Thrust 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
38 CUB 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
39
40 KMD & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60: .. _kfd-userspace-support-compatibility-matrix-past-60:
41 KMD versions 6.4.x, 6.3.x 6.4.x, 6.3.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
42
43 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60: .. _mllibs-support-compatibility-matrix-past-60:
44 :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
45 :doc:`MIGraphX <amdmigraphx:index>` 2.12.0 2.12.0 2.11.0 2.11.0 2.11.0 2.11.0 2.10.0 2.10.0 2.10.0 2.10.0 2.9.0 2.9.0 2.9.0 2.9.0 2.8.0 2.8.0
46 :doc:`MIOpen <miopen:index>` 3.4.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.0 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
47 :doc:`MIVisionX <mivisionx:index>` 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0 3.0.0 3.0.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0
48 :doc:`rocAL <rocal:index>` 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.0 2.0.0 2.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
49 :doc:`rocDecode <rocdecode:index>` 0.10.0 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.6.0 0.5.0 0.5.0 N/A N/A
50 :doc:`rocJPEG <rocjpeg:index>` 0.8.0 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
51 :doc:`rocPyDecode <rocpydecode:index>` 0.3.1 0.3.1 0.2.0 0.2.0 0.2.0 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0 N/A N/A N/A N/A N/A N/A
52 :doc:`RPP <rpp:index>` 1.9.10 1.9.10 1.9.1 1.9.1 1.9.1 1.9.1 1.8.0 1.8.0 1.8.0 1.8.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0
53
54 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60: .. _commlibs-support-compatibility-matrix-past-60:
55 :doc:`RCCL <rccl:index>` 2.22.3 2.22.3 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
56 `rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ 2.0.0 2.0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
57 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60:
58 `half <https://github.com/ROCm/half>`_ MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60: 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0
59 :doc:`hipBLAS <hipblas:index>` `half <https://github.com/ROCm/half>`_ 1.12.0 2.4.0 1.12.0 2.3.0 1.12.0 2.3.0 1.12.0 2.3.0 1.12.0 2.3.0 1.12.0 2.2.0 1.12.0 2.2.0 1.12.0 2.2.0 1.12.0 2.2.0 1.12.0 2.1.0 1.12.0 2.1.0 1.12.0 2.1.0 1.12.0 2.1.0 1.12.0 2.0.0 1.12.0 2.0.0 1.12.0
60 :doc:`hipBLASLt <hipblaslt:index>` :doc:`hipBLAS <hipblas:index>` 2.4.0 0.12.0 2.4.0 0.10.0 2.3.0 0.10.0 2.3.0 0.10.0 2.3.0 0.10.0 2.3.0 0.8.0 2.2.0 0.8.0 2.2.0 0.8.0 2.2.0 0.8.0 2.2.0 0.7.0 2.1.0 0.7.0 2.1.0 0.7.0 2.1.0 0.7.0 2.1.0 0.6.0 2.0.0 0.6.0 2.0.0
61 :doc:`hipFFT <hipfft:index>` :doc:`hipBLASLt <hipblaslt:index>` 0.12.1 1.0.18 0.12.0 1.0.17 0.10.0 1.0.17 0.10.0 1.0.17 0.10.0 1.0.17 0.10.0 1.0.16 0.8.0 1.0.15 0.8.0 1.0.15 0.8.0 1.0.14 0.8.0 1.0.14 0.7.0 1.0.14 0.7.0 1.0.14 0.7.0 1.0.14 0.7.0 1.0.13 0.6.0 1.0.13 0.6.0
62 :doc:`hipfort <hipfort:index>` :doc:`hipFFT <hipfft:index>` 1.0.18 0.6.0 1.0.18 0.5.1 1.0.17 0.5.1 1.0.17 0.5.0 1.0.17 0.5.0 1.0.17 0.4.0 1.0.16 0.4.0 1.0.15 0.4.0 1.0.15 0.4.0 1.0.14 0.4.0 1.0.14 0.4.0 1.0.14 0.4.0 1.0.14 0.4.0 1.0.14 0.4.0 1.0.13 0.4.0 1.0.13
63 :doc:`hipRAND <hiprand:index>` :doc:`hipfort <hipfort:index>` 0.6.0 2.12.0 0.6.0 2.11.1 0.5.1 2.11.1 0.5.1 2.11.1 0.5.0 2.11.0 0.5.0 2.11.1 0.4.0 2.11.0 0.4.0 2.11.0 0.4.0 2.11.0 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0
64 :doc:`hipSOLVER <hipsolver:index>` :doc:`hipRAND <hiprand:index>` 2.12.0 2.4.0 2.12.0 2.3.0 2.11.1 2.3.0 2.11.1 2.3.0 2.11.1 2.3.0 2.11.0 2.2.0 2.11.1 2.2.0 2.11.0 2.2.0 2.11.0 2.2.0 2.11.0 2.1.1 2.10.16 2.1.1 2.10.16 2.1.1 2.10.16 2.1.0 2.10.16 2.0.0 2.10.16 2.0.0 2.10.16
65 :doc:`hipSPARSE <hipsparse:index>` :doc:`hipSOLVER <hipsolver:index>` 2.4.0 3.2.0 2.4.0 3.1.2 2.3.0 3.1.2 2.3.0 3.1.2 2.3.0 3.1.2 2.3.0 3.1.1 2.2.0 3.1.1 2.2.0 3.1.1 2.2.0 3.1.1 2.2.0 3.0.1 2.1.1 3.0.1 2.1.1 3.0.1 2.1.1 3.0.1 2.1.0 3.0.0 2.0.0 3.0.0 2.0.0
66 :doc:`hipSPARSELt <hipsparselt:index>` :doc:`hipSPARSE <hipsparse:index>` 3.2.0 0.2.3 3.2.0 0.2.2 3.1.2 0.2.2 3.1.2 0.2.2 3.1.2 0.2.2 3.1.2 0.2.1 3.1.1 0.2.1 3.1.1 0.2.1 3.1.1 0.2.1 3.1.1 0.2.0 3.0.1 0.2.0 3.0.1 0.1.0 3.0.1 0.1.0 3.0.1 0.1.0 3.0.0 0.1.0 3.0.0
67 :doc:`rocALUTION <rocalution:index>` :doc:`hipSPARSELt <hipsparselt:index>` 0.2.3 3.2.2 0.2.3 3.2.1 0.2.2 3.2.1 0.2.2 3.2.1 0.2.2 3.2.1 0.2.2 3.2.1 0.2.1 3.2.0 0.2.1 3.2.0 0.2.1 3.2.0 0.2.1 3.1.1 0.2.0 3.1.1 0.2.0 3.1.1 0.1.0 3.1.1 0.1.0 3.0.3 0.1.0 3.0.3 0.1.0
68 :doc:`rocBLAS <rocblas:index>` :doc:`rocALUTION <rocalution:index>` 3.2.3 4.4.0 3.2.2 4.3.0 3.2.1 4.3.0 3.2.1 4.3.0 3.2.1 4.3.0 3.2.1 4.2.4 3.2.1 4.2.1 3.2.0 4.2.1 3.2.0 4.2.0 3.2.0 4.1.2 3.1.1 4.1.2 3.1.1 4.1.0 3.1.1 4.1.0 3.1.1 4.0.0 3.0.3 4.0.0 3.0.3
69 :doc:`rocFFT <rocfft:index>` :doc:`rocBLAS <rocblas:index>` 4.4.0 1.0.32 4.4.0 1.0.31 4.3.0 1.0.31 4.3.0 1.0.31 4.3.0 1.0.31 4.3.0 1.0.30 4.2.4 1.0.29 4.2.1 1.0.29 4.2.1 1.0.28 4.2.0 1.0.27 4.1.2 1.0.27 4.1.2 1.0.27 4.1.0 1.0.26 4.1.0 1.0.25 4.0.0 1.0.23 4.0.0
70 :doc:`rocRAND <rocrand:index>` :doc:`rocFFT <rocfft:index>` 1.0.32 3.3.0 1.0.32 3.2.0 1.0.31 3.2.0 1.0.31 3.2.0 1.0.31 3.2.0 1.0.31 3.1.1 1.0.30 3.1.0 1.0.29 3.1.0 1.0.29 3.1.0 1.0.28 3.0.1 1.0.27 3.0.1 1.0.27 3.0.1 1.0.27 3.0.1 1.0.26 3.0.0 1.0.25 2.10.17 1.0.23
71 :doc:`rocSOLVER <rocsolver:index>` :doc:`rocRAND <rocrand:index>` 3.3.0 3.28.0 3.3.0 3.27.0 3.2.0 3.27.0 3.2.0 3.27.0 3.2.0 3.27.0 3.2.0 3.26.2 3.1.1 3.26.0 3.1.0 3.26.0 3.1.0 3.26.0 3.1.0 3.25.0 3.0.1 3.25.0 3.0.1 3.25.0 3.0.1 3.25.0 3.0.1 3.24.0 3.0.0 3.24.0 2.10.17
72 :doc:`rocSPARSE <rocsparse:index>` :doc:`rocSOLVER <rocsolver:index>` 3.28.0 3.4.0 3.28.0 3.3.0 3.27.0 3.3.0 3.27.0 3.3.0 3.27.0 3.3.0 3.27.0 3.2.1 3.26.2 3.2.0 3.26.0 3.2.0 3.26.0 3.2.0 3.26.0 3.1.2 3.25.0 3.1.2 3.25.0 3.1.2 3.25.0 3.1.2 3.25.0 3.0.2 3.24.0 3.0.2 3.24.0
73 :doc:`rocWMMA <rocwmma:index>` :doc:`rocSPARSE <rocsparse:index>` 3.4.0 1.7.0 3.4.0 1.6.0 3.3.0 1.6.0 3.3.0 1.6.0 3.3.0 1.6.0 3.3.0 1.5.0 3.2.1 1.5.0 3.2.0 1.5.0 3.2.0 1.5.0 3.2.0 1.4.0 3.1.2 1.4.0 3.1.2 1.4.0 3.1.2 1.4.0 3.1.2 1.3.0 3.0.2 1.3.0 3.0.2
74 :doc:`Tensile <tensile:src/index>` :doc:`rocWMMA <rocwmma:index>` 1.7.0 4.43.0 1.7.0 4.42.0 1.6.0 4.42.0 1.6.0 4.42.0 1.6.0 4.42.0 1.6.0 4.41.0 1.5.0 4.41.0 1.5.0 4.41.0 1.5.0 4.41.0 1.5.0 4.40.0 1.4.0 4.40.0 1.4.0 4.40.0 1.4.0 4.40.0 1.4.0 4.39.0 1.3.0 4.39.0 1.3.0
75 :doc:`Tensile <tensile:src/index>` 4.43.0 4.43.0 4.42.0 4.42.0 4.42.0 4.42.0 4.41.0 4.41.0 4.41.0 4.41.0 4.40.0 4.40.0 4.40.0 4.40.0 4.39.0 4.39.0
76 PRIMITIVES .. _primitivelibs-support-compatibility-matrix-past-60:
77 :doc:`hipCUB <hipcub:index>` PRIMITIVES .. _primitivelibs-support-compatibility-matrix-past-60: 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
78 :doc:`hipTensor <hiptensor:index>` :doc:`hipCUB <hipcub:index>` 3.4.0 1.5.0 3.4.0 1.4.0 3.3.0 1.4.0 3.3.0 1.4.0 3.3.0 1.4.0 3.3.0 1.3.0 3.2.1 1.3.0 3.2.0 1.3.0 3.2.0 1.3.0 3.2.0 1.2.0 3.1.0 1.2.0 3.1.0 1.2.0 3.1.0 1.2.0 3.1.0 1.1.0 3.0.0 1.1.0 3.0.0
79 :doc:`rocPRIM <rocprim:index>` :doc:`hipTensor <hiptensor:index>` 1.5.0 3.4.0 1.5.0 3.3.0 1.4.0 3.3.0 1.4.0 3.3.0 1.4.0 3.3.0 1.4.0 3.2.2 1.3.0 3.2.0 1.3.0 3.2.0 1.3.0 3.2.0 1.3.0 3.1.0 1.2.0 3.1.0 1.2.0 3.1.0 1.2.0 3.1.0 1.2.0 3.0.0 1.1.0 3.0.0 1.1.0
80 :doc:`rocThrust <rocthrust:index>` :doc:`rocPRIM <rocprim:index>` 3.4.0 3.3.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.2.2 3.1.0 3.2.0 3.1.0 3.2.0 3.0.1 3.2.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.0 3.0.0
81 :doc:`rocThrust <rocthrust:index>` 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
82 SUPPORT LIBS
83 `hipother <https://github.com/ROCm/hipother>`_ SUPPORT LIBS 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
84 `rocm-core <https://github.com/ROCm/rocm-core>`_ `hipother <https://github.com/ROCm/hipother>`_ 6.4.43483 6.4.0 6.4.43482 6.3.3 6.3.42134 6.3.2 6.3.42134 6.3.1 6.3.42133 6.3.0 6.3.42131 6.2.4 6.2.41134 6.2.2 6.2.41134 6.2.1 6.2.41134 6.2.0 6.2.41133 6.1.2 6.1.40093 6.1.2 6.1.40093 6.1.1 6.1.40092 6.1.0 6.1.40091 6.0.2 6.1.32831 6.0.0 6.1.32830
85 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ `rocm-core <https://github.com/ROCm/rocm-core>`_ 6.4.1 N/A [#ROCT-rocr-past-60]_ 6.4.0 N/A [#ROCT-rocr-past-60]_ 6.3.3 N/A [#ROCT-rocr-past-60]_ 6.3.2 N/A [#ROCT-rocr-past-60]_ 6.3.1 N/A [#ROCT-rocr-past-60]_ 6.3.0 20240607.5.7 6.2.4 20240607.5.7 6.2.2 20240607.4.05 6.2.1 20240607.1.4246 6.2.0 20240125.5.08 6.1.5 20240125.5.08 6.1.2 20240125.5.08 6.1.1 20240125.3.30 6.1.0 20231016.2.245 6.0.2 20231016.2.245 6.0.0
86 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
87 SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60:
88 :doc:`AMD SMI <amdsmi:index>` SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60: 25.3.0 24.7.1 24.7.1 24.7.1 24.7.1 24.6.3 24.6.3 24.6.3 24.6.2 24.5.1 24.5.1 24.5.1 24.4.1 23.4.2 23.4.2
89 :doc:`ROCm Data Center Tool <rdc:index>` :doc:`AMD SMI <amdsmi:index>` 25.4.2 0.3.0 25.3.0 0.3.0 24.7.1 0.3.0 24.7.1 0.3.0 24.7.1 0.3.0 24.7.1 0.3.0 24.6.3 0.3.0 24.6.3 0.3.0 24.6.3 0.3.0 24.6.2 0.3.0 24.5.1 0.3.0 24.5.1 0.3.0 24.5.1 0.3.0 24.4.1 0.3.0 23.4.2 0.3.0 23.4.2
90 :doc:`rocminfo <rocminfo:index>` :doc:`ROCm Data Center Tool <rdc:index>` 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0
91 :doc:`ROCm SMI <rocm_smi_lib:index>` :doc:`rocminfo <rocminfo:index>` 1.0.0 7.5.0 1.0.0 7.4.0 1.0.0 7.4.0 1.0.0 7.4.0 1.0.0 7.4.0 1.0.0 7.3.0 1.0.0 7.3.0 1.0.0 7.3.0 1.0.0 7.3.0 1.0.0 7.2.0 1.0.0 7.2.0 1.0.0 7.0.0 1.0.0 7.0.0 1.0.0 6.0.2 1.0.0 6.0.0 1.0.0
92 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` :doc:`ROCm SMI <rocm_smi_lib:index>` 7.5.0 1.1.0 7.5.0 1.1.0 7.4.0 1.1.0 7.4.0 1.1.0 7.4.0 1.1.0 7.4.0 1.0.60204 7.3.0 1.0.60202 7.3.0 1.0.60201 7.3.0 1.0.60200 7.3.0 1.0.60102 7.2.0 1.0.60102 7.2.0 1.0.60101 7.0.0 1.0.60100 7.0.0 1.0.60002 6.0.2 1.0.60000 6.0.0
93 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.0.60204 1.0.60202 1.0.60201 1.0.60200 1.0.60105 1.0.60102 1.0.60101 1.0.60100 1.0.60002 1.0.60000
94 PERFORMANCE TOOLS
95 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` PERFORMANCE TOOLS 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0
96 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 1.4.0 3.1.0 1.4.0 3.0.0 1.4.0 3.0.0 1.4.0 3.0.0 1.4.0 3.0.0 1.4.0 2.0.1 1.4.0 2.0.1 1.4.0 2.0.1 1.4.0 2.0.1 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0
97 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 3.1.0 1.0.0 3.1.0 0.1.2 3.0.0 0.1.1 3.0.0 0.1.0 3.0.0 0.1.0 3.0.0 1.11.2 2.0.1 1.11.2 2.0.1 1.11.2 2.0.1 1.11.2 2.0.1 N/A N/A N/A N/A N/A N/A
98 :doc:`ROCProfiler <rocprofiler:index>` :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 1.0.1 2.0.60400 1.0.0 2.0.60303 0.1.2 2.0.60302 0.1.1 2.0.60301 0.1.0 2.0.60300 0.1.0 2.0.60204 1.11.2 2.0.60202 1.11.2 2.0.60201 1.11.2 2.0.60200 1.11.2 2.0.60102 N/A 2.0.60102 N/A 2.0.60101 N/A 2.0.60100 N/A 2.0.60002 N/A 2.0.60000 N/A
99 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` :doc:`ROCProfiler <rocprofiler:index>` 2.0.60401 0.6.0 2.0.60400 0.5.0 2.0.60303 0.5.0 2.0.60302 0.5.0 2.0.60301 0.5.0 2.0.60300 0.4.0 2.0.60204 0.4.0 2.0.60202 0.4.0 2.0.60201 0.4.0 2.0.60200 N/A 2.0.60105 N/A 2.0.60102 N/A 2.0.60101 N/A 2.0.60100 N/A 2.0.60002 N/A 2.0.60000
100 :doc:`ROCTracer <roctracer:index>` :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 0.6.0 4.1.60400 0.6.0 4.1.60303 0.5.0 4.1.60302 0.5.0 4.1.60301 0.5.0 4.1.60300 0.5.0 4.1.60204 0.4.0 4.1.60202 0.4.0 4.1.60201 0.4.0 4.1.60200 0.4.0 4.1.60102 N/A 4.1.60102 N/A 4.1.60101 N/A 4.1.60100 N/A 4.1.60002 N/A 4.1.60000 N/A
101 :doc:`ROCTracer <roctracer:index>` 4.1.60401 4.1.60400 4.1.60303 4.1.60302 4.1.60301 4.1.60300 4.1.60204 4.1.60202 4.1.60201 4.1.60200 4.1.60105 4.1.60102 4.1.60101 4.1.60100 4.1.60002 4.1.60000
102 DEVELOPMENT TOOLS
103 :doc:`HIPIFY <hipify:index>` DEVELOPMENT TOOLS 19.0.0.25104 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
104 :doc:`ROCm CMake <rocmcmakebuildtools:index>` :doc:`HIPIFY <hipify:index>` 19.0.0 0.14.0 19.0.0 0.14.0 18.0.0.25012 0.14.0 18.0.0.25012 0.14.0 18.0.0.24491 0.14.0 18.0.0.24455 0.13.0 18.0.0.24392 0.13.0 18.0.0.24355 0.13.0 18.0.0.24355 0.13.0 18.0.0.24232 0.12.0 17.0.0.24193 0.12.0 17.0.0.24193 0.12.0 17.0.0.24154 0.12.0 17.0.0.24103 0.11.0 17.0.0.24012 0.11.0 17.0.0.23483
105 :doc:`ROCdbgapi <rocdbgapi:index>` :doc:`ROCm CMake <rocmcmakebuildtools:index>` 0.14.0 0.77.2 0.14.0 0.77.0 0.14.0 0.77.0 0.14.0 0.77.0 0.14.0 0.77.0 0.14.0 0.76.0 0.13.0 0.76.0 0.13.0 0.76.0 0.13.0 0.76.0 0.13.0 0.71.0 0.12.0 0.71.0 0.12.0 0.71.0 0.12.0 0.71.0 0.12.0 0.71.0 0.11.0 0.71.0 0.11.0
106 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` :doc:`ROCdbgapi <rocdbgapi:index>` 0.77.2 15.2.0 0.77.2 15.2.0 0.77.0 15.2.0 0.77.0 15.2.0 0.77.0 15.2.0 0.77.0 14.2.0 0.76.0 14.2.0 0.76.0 14.2.0 0.76.0 14.2.0 0.76.0 14.1.0 0.71.0 14.1.0 0.71.0 14.1.0 0.71.0 14.1.0 0.71.0 13.2.0 0.71.0 13.2.0 0.71.0
107 `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 14.2.0 0.4.0 14.2.0 0.4.0 14.2.0 0.4.0 14.2.0 0.3.0 14.1.0 0.3.0 14.1.0 0.3.0 14.1.0 0.3.0 14.1.0 N/A 13.2.0 N/A 13.2.0
108 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ 0.4.0 2.0.4 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.3.0 2.0.3 0.3.0 2.0.3 0.3.0 2.0.3 0.3.0 2.0.3 N/A 2.0.3 N/A
109 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` 2.0.4 2.0.4 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3
110 COMPILERS .. _compilers-support-compatibility-matrix-past-60:
111 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ COMPILERS .. _compilers-support-compatibility-matrix-past-60: N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0
112 :doc:`hipCC <hipcc:index>` `clang-ocl <https://github.com/ROCm/clang-ocl>`_ N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0 0.5.0
113 `Flang <https://github.com/ROCm/flang>`_ :doc:`hipCC <hipcc:index>` 1.1.1 19.0.0.25133 1.1.1 18.0.0.25012 1.1.1 18.0.0.25012 1.1.1 18.0.0.24491 1.1.1 18.0.0.24455 1.1.1 18.0.0.24392 1.1.1 18.0.0.24355 1.1.1 18.0.0.24355 1.1.1 18.0.0.24232 1.1.1 17.0.0.24193 1.0.0 17.0.0.24193 1.0.0 17.0.0.24154 1.0.0 17.0.0.24103 1.0.0 17.0.0.24012 1.0.0 17.0.0.23483 1.0.0
114 :doc:`llvm-project <llvm-project:index>` `Flang <https://github.com/ROCm/flang>`_ 19.0.0.25172 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
115 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ :doc:`llvm-project <llvm-project:index>` 19.0.0.25172 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
116 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 19.0.0.25172 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
117 RUNTIMES .. _runtime-support-compatibility-matrix-past-60:
118 :doc:`AMD CLR <hip:understand/amd_clr>` RUNTIMES .. _runtime-support-compatibility-matrix-past-60: 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
119 :doc:`HIP <hip:index>` :doc:`AMD CLR <hip:understand/amd_clr>` 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
120 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ :doc:`HIP <hip:index>` 6.4.43483 2.0.0 6.4.43482 2.0.0 6.3.42134 2.0.0 6.3.42134 2.0.0 6.3.42133 2.0.0 6.3.42131 2.0.0 6.2.41134 2.0.0 6.2.41134 2.0.0 6.2.41134 2.0.0 6.2.41133 2.0.0 6.1.40093 2.0.0 6.1.40093 2.0.0 6.1.40092 2.0.0 6.1.40091 2.0.0 6.1.32831 2.0.0 6.1.32830
121 :doc:`ROCr Runtime <rocr-runtime:index>` `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 1.15.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.13.0 2.0.0 1.13.0 2.0.0 1.13.0 2.0.0 1.13.0 2.0.0 1.13.0 2.0.0 1.12.0 2.0.0 1.12.0 2.0.0
122 :doc:`ROCr Runtime <rocr-runtime:index>` 1.15.0 1.15.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -23,15 +23,15 @@ compatibility and system requirements.
.. container:: format-big-table
.. csv-table::
:header: "ROCm Version", "6.4.0", "6.3.3", "6.2.0"
:header: "ROCm Version", "6.4.1", "6.4.0", "6.3.0"
:stub-columns: 1
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04
,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4"
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3"
,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9"
,"SLES 15 SP6","SLES 15 SP6, SP5","SLES 15 SP6, SP5"
,"Oracle Linux 9, 8 [#mi300x]_",Oracle Linux 8.10 [#mi300x]_,Oracle Linux 8.9 [#mi300x]_
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5
,"RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4"
,RHEL 8.10,RHEL 8.10,RHEL 8.10
,SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5"
,"Oracle Linux 9, 8 [#mi300x]_","Oracle Linux 9, 8 [#mi300x]_",Oracle Linux 8.10 [#mi300x]_
,Debian 12 [#single-node]_,Debian 12 [#single-node]_,
,Azure Linux 3.0 [#mi300x]_,Azure Linux 3.0 [#mi300x]_,
,.. _architecture-support-compatibility-matrix:,,
@@ -43,106 +43,107 @@ compatibility and system requirements.
,.. _gpu-support-compatibility-matrix:,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942 [#mi300_620]_
,gfx942,gfx942,gfx942
,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908
,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.31,0.4.26
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.20,1.17.3,1.17.3
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.4.35,0.4.35,0.4.31
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.2,1.17.3
,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix:,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.3.0,>=1.3.0,>=1.3.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.15.0,>=1.15.0,>=1.15.0
,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix:,,
Thrust,2.5.0,2.3.2,2.2.0
CUB,2.5.0,2.3.2,2.2.0
Thrust,2.5.0,2.5.0,2.3.2
CUB,2.5.0,2.5.0,2.3.2
,,,
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x"
KMD versions,"6.4.x, 6.3.x","6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.11.0,2.10.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.3.0,3.2.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.1.0,3.0.0
:doc:`rocAL <rocal:index>`,2.2.0,2.1.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.8.0,0.6.0
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.6.0,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.2.0,0.1.0
:doc:`RPP <rpp:index>`,1.9.10,1.9.1,1.8.0
:doc:`MIGraphX <amdmigraphx:index>`,2.12.0,2.12.0,2.11.0
:doc:`MIOpen <miopen:index>`,3.4.0,3.4.0,3.3.0
:doc:`MIVisionX <mivisionx:index>`,3.2.0,3.2.0,3.1.0
:doc:`rocAL <rocal:index>`,2.2.0,2.2.0,2.1.0
:doc:`rocDecode <rocdecode:index>`,0.10.0,0.10.0,0.8.0
:doc:`rocJPEG <rocjpeg:index>`,0.8.0,0.8.0,0.6.0
:doc:`rocPyDecode <rocpydecode:index>`,0.3.1,0.3.1,0.2.0
:doc:`RPP <rpp:index>`,1.9.10,1.9.10,1.9.1
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.22.3,2.21.5,2.20.5
:doc:`RCCL <rccl:index>`,2.22.3,2.22.3,2.21.5
`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_ ,2.0.0,2.0.0,N/A
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.3.0,2.2.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.0,0.10.0,0.8.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.17,1.0.14
:doc:`hipfort <hipfort:index>`,0.6.0,0.5.1,0.4.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.11.1,2.11.0
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.3.0,2.2.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.1.2,3.1.1
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.2,0.2.1
:doc:`rocALUTION <rocalution:index>`,3.2.2,3.2.1,3.2.0
:doc:`rocBLAS <rocblas:index>`,4.4.0,4.3.0,4.2.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.31,1.0.28
:doc:`rocRAND <rocrand:index>`,3.3.0,3.2.0,3.1.0
:doc:`rocSOLVER <rocsolver:index>`,3.28.0,3.27.0,3.26.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.3.0,3.2.0
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.6.0,1.5.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.42.0,4.41.0
:doc:`hipBLAS <hipblas:index>`,2.4.0,2.4.0,2.3.0
:doc:`hipBLASLt <hipblaslt:index>`,0.12.1,0.12.0,0.10.0
:doc:`hipFFT <hipfft:index>`,1.0.18,1.0.18,1.0.17
:doc:`hipfort <hipfort:index>`,0.6.0,0.6.0,0.5.0
:doc:`hipRAND <hiprand:index>`,2.12.0,2.12.0,2.11.0
:doc:`hipSOLVER <hipsolver:index>`,2.4.0,2.4.0,2.3.0
:doc:`hipSPARSE <hipsparse:index>`,3.2.0,3.2.0,3.1.2
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.3,0.2.3,0.2.2
:doc:`rocALUTION <rocalution:index>`,3.2.3,3.2.2,3.2.1
:doc:`rocBLAS <rocblas:index>`,4.4.0,4.4.0,4.3.0
:doc:`rocFFT <rocfft:index>`,1.0.32,1.0.32,1.0.31
:doc:`rocRAND <rocrand:index>`,3.3.0,3.3.0,3.2.0
:doc:`rocSOLVER <rocsolver:index>`,3.28.0,3.28.0,3.27.0
:doc:`rocSPARSE <rocsparse:index>`,3.4.0,3.4.0,3.3.0
:doc:`rocWMMA <rocwmma:index>`,1.7.0,1.7.0,1.6.0
:doc:`Tensile <tensile:src/index>`,4.43.0,4.43.0,4.42.0
,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix:,,
:doc:`hipCUB <hipcub:index>`,3.4.0,3.3.0,3.2.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.4.0,1.3.0
:doc:`rocPRIM <rocprim:index>`,3.4.0,3.3.0,3.2.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.0.1
:doc:`hipCUB <hipcub:index>`,3.4.0,3.4.0,3.3.0
:doc:`hipTensor <hiptensor:index>`,1.5.0,1.5.0,1.4.0
:doc:`rocPRIM <rocprim:index>`,3.4.0,3.4.0,3.3.0
:doc:`rocThrust <rocthrust:index>`,3.3.0,3.3.0,3.3.0
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,6.4.43482,6.3.42134,6.2.41133
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.0,6.3.3,6.2.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,20240607.1.4246
`hipother <https://github.com/ROCm/hipother>`_,6.4.43483,6.4.43482,6.3.42131
`rocm-core <https://github.com/ROCm/rocm-core>`_,6.4.1,6.4.0,6.3.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_
,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,
:doc:`AMD SMI <amdsmi:index>`,25.3.0,24.7.1,24.6.2
:doc:`AMD SMI <amdsmi:index>`,25.4.2,25.3.0,24.7.1
:doc:`ROCm Data Center Tool <rdc:index>`,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.4.0,7.3.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.0.60200
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.5.0,7.5.0,7.4.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.1.0,1.1.0,1.1.0
,,,
PERFORMANCE TOOLS,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.0.0,2.0.1
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.0,0.1.2,1.11.2
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60400,2.0.60303,2.0.60200
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.5.0,0.4.0
:doc:`ROCTracer <roctracer:index>`,4.1.60400,4.1.60303,4.1.60200
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.1.0,3.1.0,3.0.0
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.0.1,1.0.0,0.1.0
:doc:`ROCProfiler <rocprofiler:index>`,2.0.60401,2.0.60400,2.0.60300
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,0.6.0,0.6.0,0.5.0
:doc:`ROCTracer <roctracer:index>`,4.1.60401,4.1.60400,4.1.60300
,,,
DEVELOPMENT TOOLS,,,
:doc:`HIPIFY <hipify:index>`,19.0.0.25133,18.0.0.25012,18.0.0.24232
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.13.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.0,0.76.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,14.2.0
:doc:`HIPIFY <hipify:index>`,19.0.0,19.0.0,18.0.0.24455
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.2,0.77.2,0.77.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,15.2.0,15.2.0,15.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.4.0,0.4.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.3,2.0.3
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.0.4,2.0.4,2.0.3
,,,
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25133,18.0.0.25012,18.0.0.24232
:doc:`llvm-project <llvm-project:index>`,19.0.0.25133,18.0.0.25012,18.0.0.24232
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25133,18.0.0.25012,18.0.0.24232
`Flang <https://github.com/ROCm/flang>`_,19.0.0.25172,19.0.0.25133,18.0.0.24455
:doc:`llvm-project <llvm-project:index>`,19.0.0.25172,19.0.0.25133,18.0.0.24491
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,19.0.0.25172,19.0.0.25133,18.0.0.24491
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43482,6.3.42134,6.2.41133
:doc:`HIP <hip:index>`,6.4.43482,6.3.42134,6.2.41133
:doc:`AMD CLR <hip:understand/amd_clr>`,6.4.43483,6.4.43482,6.3.42131
:doc:`HIP <hip:index>`,6.4.43483,6.4.43482,6.3.42131
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.14.0,1.13.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.15.0,1.15.0,1.14.0
.. rubric:: Footnotes

View File

@@ -58,7 +58,7 @@ Docker image compatibility
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for
`ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click the |docker-icon|
`ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
@@ -68,24 +68,26 @@ icon to view the image on Docker Hub.
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.3.1-jax0.4.31-py3.12/images/sha256-085a0cd5207110922f1fca684933a9359c66d42db6c5aba4760ed5214fdabde0"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.12/images/sha256-4069398229078f3311128b6d276c6af377c7e97d3363d020b0bf7154fae619ca"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.31 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.31>`_
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 24.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.3.1-jax0.4.31-py3.10/images/sha256-f88eddad8f47856d8640b694da4da347ffc1750d7363175ab7dc872e82b43324"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4-jax0.4.35-py3.10/images/sha256-a137f901f91ce6c13b424c40a6cf535248d4d20fd36d5daf5eee0570190a4a11"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.31 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.31>`_
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.14 <https://www.python.org/downloads/release/python-31014/>`_
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are tested for `ROCm 6.2.4 <https://repo.radeon.com/rocm/apt/6.2.4/>`_.
associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/apt/6.3.2/>`_.
.. list-table:: JAX community Docker image components
:header-rows: 1
@@ -94,27 +96,30 @@ associated inventories are tested for `ROCm 6.2.4 <https://repo.radeon.com/rocm/
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.12.7/images/sha256-a6032d89c07573b84c44e42c637bf9752b1b7cd2a222d39344e603d8f4c63beb?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.12.8/images/sha256-25dfaa0183e274bd0a3554a309af3249c6f16a1793226cb5373f418e39d3146a"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.12.7 <https://www.python.org/downloads/release/python-3127/>`_
- `3.12.8 <https://www.python.org/downloads/release/python-3128/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.11.10/images/sha256-d462f7e445545fba2f3b92234a21beaa52fe6c5f550faabcfdcd1bf53486d991?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.11.11/images/sha256-ff9baeca9067d13e6c279c911e5a9e5beed0817d24fafd424367cc3d5bd381d7"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.11.10 <https://www.python.org/downloads/release/python-31110/>`_
- `3.11.11 <https://www.python.org/downloads/release/python-31111/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.2.4-jax0.4.35-py3.10.15/images/sha256-6f2d4d0f529378d9572f0e8cfdcbc101d1e1d335bd626bb3336fff87814e9d60?context=explore"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.10.16/images/sha256-8bab484be1713655f74da51a191ed824bb9d03db1104fd63530a1ac3c37cf7b1"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.10.15 <https://www.python.org/downloads/release/python-31015/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
Critical ROCm libraries for JAX
================================================================================

View File

@@ -21,31 +21,68 @@ release cycles for PyTorch on ROCm:
- ROCm PyTorch release:
- Provides the latest version of ROCm but doesn't immediately support the latest stable PyTorch
version.
- Provides the latest version of ROCm but might not necessarily support the
latest stable PyTorch version.
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
pre-installed.
preinstalled.
- ROCm PyTorch repository: `<https://github.com/ROCm/pytorch>`_
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`
to get started.
- Official PyTorch release:
- Provides the latest stable version of PyTorch but doesn't immediately support the latest ROCm version.
- Provides the latest stable version of PyTorch but might not necessarily
support the latest ROCm version.
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`_
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`_
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_ to get started.
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_
to get started.
The upstream PyTorch includes an automatic HIPification solution that automatically generates HIP
source code from the CUDA backend. This approach allows PyTorch to support ROCm without requiring
manual code modifications.
PyTorch includes tooling that generates HIP source code from the CUDA backend.
This approach allows PyTorch to support ROCm without requiring manual code
modifications. For more information, see :doc:`HIPIFY <hipify:index>`.
Development of ROCm is aligned with the stable release of PyTorch while upstream PyTorch testing uses
the stable release of ROCm to maintain consistency.
ROCm development is aligned with the stable release of PyTorch, while upstream
PyTorch testing uses the stable release of ROCm to maintain consistency.
.. _pytorch-recommendations:
Use cases and recommendations
================================================================================
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/training/benchmark-docker/pytorch-training>`
guides how to leverage the ROCm platform for training AI models. It covers the
steps, tools, and best practices for optimizing training workflows on AMD GPUs
using PyTorch features.
* :doc:`Single-GPU fine-tuning and inference </how-to/rocm-for-ai/fine-tuning/single-gpu-fine-tuning-and-inference>`
describes and demonstrates how to use the ROCm platform for the fine-tuning
and inference of machine learning models, particularly large language models
(LLMs), on systems with a single GPU. This topic provides a detailed guide for
setting up, optimizing, and executing fine-tuning and inference workflows in
such environments.
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/rocm-for-ai/fine-tuning/multi-gpu-fine-tuning-and-inference>`
describes and demonstrates the fine-tuning and inference of machine learning
models on systems with multiple GPUs.
* The :doc:`Instinct MI300X workload optimization guide </how-to/rocm-for-ai/inference-optimization/workload>`
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. This guide helps users achieve optimal performance for
deep learning and other high-performance computing tasks on the MI300X
accelerator.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the
use of PyTorch on the ROCm platform and focuses on efficiently leveraging AMD
GPU hardware for training and inference tasks in AI applications.
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_.
.. _pytorch-docker-compat:
@@ -56,10 +93,10 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_.
Click the |docker-icon| icon to view the image on Docker Hub.
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
:header-rows: 1
@@ -79,9 +116,84 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-6c798857b2c9526b44ba535710b93a1737546acea79b53a93c646195c272f1d5"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-ab1d350b818b90123cfda31363019d11c0d41a8f12a19e3cb2cb40cf0261137d"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-130536fdfceb374626a7bcb8d00b9d796ddfc3115677d51229e5b852d96b5ef4"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`_
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-20a2e24b4738dc1f1a44a04f23827918b56c99f7e697e6fccb90e9c4fae8ca9b"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.11_pytorch_release_2.5.1/images/sha256-f09cb8ca39cc39222fb554060711f5c19130f7b4047aaf41fad4ba3ec470ca03"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.11.9 <https://www.python.org/downloads/release/python-3119/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-a91c100d1fe608dae3eb7f60a751630363d4027ac3d077d428e92945204c338e"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`_
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-66a89ce6485bb887af74bb9bd76bb613ab9834a6b1374649ea7ae379883454a4"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
@@ -94,116 +206,55 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-a09b21248133876fc8912a5ff4e6ee2c8d62b14120313e426b3dadda5702713d"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-c716cf167e6e49893f11de03606ed37044153aca089e74ca615065c06877f86b"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-963187534467f0f9da77996762fc1d112a6faa5372277c348a505533e7876ec8"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-0434cbc9b07b2c26e39480d7447f676f9057a1054dcff00e0050c25a6eddbd3c"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-952f2621bd2bf3078bef19061e05b209105a82a7908e7e6cdf85014938a4d93a"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-688b1c0073092615fb98778d78b16191e506097ee116a2d3d2628b264d5d367b"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-a2fe20e170feb9e05da3e5728bb98e40d08567e137be8e6ba797962ed2852608"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-7f231937c897cca5f89e360be33c70a2017d60f62d1fbe81292be48c15fe345b"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-616a47758004f91951e2da6c1fe291f903de65a7b2318d4b18359b48fe3032f4"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.19.0 <https://github.com/tensorflow/tensorboard/tree/2.19>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-a2cfb365aea58b84595e241ffdb0d5ef3e6566e98c10b5499f4aa29983a74ea2"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
Critical ROCm libraries for PyTorch
Key ROCm libraries for PyTorch
================================================================================
The functionality of PyTorch with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
PyTorch functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers.
.. list-table::
:header-rows: 1
@@ -223,24 +274,23 @@ are available in ROCm :version:`rocm_version`.
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations like matrix multiplication, matrix-vector products,
and tensor contractions. Utilized in both dense and batched linear
algebra operations.
- Supports operations such as matrix multiplication, matrix-vector
products, and tensor contractions. Utilized in both dense and batched
linear algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
- Accelerates operations such as ``torch.matmul``, ``torch.mm``, and the
matrix multiplications used in convolutional and linear layers.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
and ``torch.topk``. Operations on sparse tensors or tensors with
irregular shapes often involve scanning, sorting, and filtering, which
hipCUB handles efficiently.
- Supports operations such as ``torch.sum``, ``torch.cumsum``,
``torch.sort`` irregular shapes often involve scanning, sorting, and
filtering, which hipCUB handles efficiently.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
@@ -248,8 +298,8 @@ are available in ROCm :version:`rocm_version`.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
``torch.nn.Dropout``.
- The ``torch.rand``, ``torch.randn``, and stochastic layers like
``torch.nn.Dropout`` rely on hipRAND.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
@@ -320,7 +370,7 @@ are available in ROCm :version:`rocm_version`.
- :version-ref:`RPP rocm_version`
- Speeds up data augmentation, transformation, and other preprocessing steps.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
``torchvision`` data load workloads to speed up data processing.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
@@ -337,11 +387,11 @@ are available in ROCm :version:`rocm_version`.
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
more.
Supported and unsupported features
Supported features
================================================================================
The following section maps GPU-accelerated PyTorch features to their supported
ROCm and PyTorch versions.
This section maps GPU-accelerated PyTorch features to their supported ROCm and
PyTorch versions.
torch
--------------------------------------------------------------------------------
@@ -349,23 +399,24 @@ torch
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
PyTorch, providing data structures for multi-dimensional tensors and
implementing mathematical operations on them. It also includes utilities for
efficient serialization of tensors and arbitrary data types, along with various
other tools.
efficient serialization of tensors and arbitrary data types and other tools.
Tensor data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The data type of a tensor is specified using the ``dtype`` attribute or argument, and PyTorch supports a wide range of data types for different use cases.
The tensor data type is specified using the ``dtype`` attribute or argument.
PyTorch supports many data types for different use cases.
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_'s single data types:
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_
single data types:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - ``torch.float8_e4m3fn``
- 8-bit floating point, e4m3
- 2.3
@@ -457,11 +508,11 @@ The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors
.. note::
Unsigned types aside from ``uint8`` are currently only have limited support in
eager mode (they primarily exist to assist usage with ``torch.compile``).
Unsigned types except ``uint8`` have limited support in eager mode. They
primarily exist to assist usage with ``torch.compile``.
The :doc:`ROCm precision support page <rocm:reference/precision-support>`
collected the native HW support of different data types.
See :doc:`ROCm precision support <rocm:reference/precision-support>` for the
native hardware support of data types.
torch.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -476,8 +527,8 @@ leveraging ROCm and CUDA as the underlying frameworks.
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - Device management
- Utilities for managing and interacting with GPUs.
- 0.4.0
@@ -551,8 +602,8 @@ PyTorch interacts with the ROCm or CUDA environment.
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - ``cufft_plan_cache``
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
- 1.7.0
@@ -600,8 +651,8 @@ Supported ``torch`` options include:
* - Option
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - ``allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
Ampere or newer GPUs.
@@ -616,28 +667,28 @@ Supported ``torch`` options include:
Automatic mixed precision: torch.amp
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PyTorch that automates the process of using both 16-bit (half-precision,
float16) and 32-bit (single-precision, float32) floating-point types in model
training and inference.
PyTorch automates the process of using both 16-bit (half-precision, float16) and
32-bit (single-precision, float32) floating-point types in model training and
inference.
.. list-table::
:header-rows: 1
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - Autocasting
- Instances of autocast serve as context managers or decorators that allow
- Autocast instances serve as context managers or decorators that allow
regions of your script to run in mixed precision.
- 1.9
- 2.5
* - Gradient scaling
- To prevent underflow, “gradient scaling” multiplies the networks
loss(es) by a scale factor and invokes a backward pass on the scaled
loss(es). Gradients flowing backward through the network are then
scaled by the same factor. In other words, gradient values have a
larger magnitude, so they dont flush to zero.
loss by a scale factor and invokes a backward pass on the scaled
loss. The same factor then scales gradients flowing backward through
the network. In other words, gradient values have a larger magnitude so
that they dont flush to zero.
- 1.9
- 2.5
* - CUDA op-specific behavior
@@ -651,7 +702,7 @@ training and inference.
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The PyTorch distributed library includes a collective of parallelism modules, a
PyTorch distributed library includes a collective of parallelism modules, a
communications layer, and infrastructure for launching and debugging large
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
@@ -665,13 +716,13 @@ of computational resources and scalability for large-scale tasks.
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - TensorPipe
- A point-to-point communication library integrated into
PyTorch for distributed training. It is designed to handle tensor data
transfers efficiently between different processes or devices, including
those on separate machines.
PyTorch for distributed training. It handles tensor data transfers
efficiently between different processes or devices, including those on
separate machines.
- 1.8
- 5.4
* - Gloo
@@ -690,8 +741,8 @@ torch.compiler
* - Feature
- Description
- Since PyTorch
- Since ROCm
- As of PyTorch
- As of ROCm
* - ``torch.compiler`` (AOT Autograd)
- Autograd captures not only the user-level code, but also backpropagation,
which results in capturing the backwards pass “ahead-of-time”. This
@@ -714,8 +765,8 @@ The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
utilities for processing audio data in PyTorch, such as audio loading,
transformations, and feature extraction.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to move audio
data (waveform tensor) explicitly to GPU using ``.to('cuda')``.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to
explicitly move audio data (waveform tensor) to GPU using ``.to('cuda')``.
The following ``torchaudio`` features are GPU-accelerated.
@@ -724,10 +775,10 @@ The following ``torchaudio`` features are GPU-accelerated.
* - Feature
- Description
- Since torchaudio version
- Since ROCm
- As of torchaudio version
- As of ROCm
* - ``torchaudio.transforms.Spectrogram``
- Generates spectrogram of an input waveform using STFT.
- Generate a spectrogram of an input waveform using STFT.
- 0.6.0
- 4.5
* - ``torchaudio.transforms.MelSpectrogram``
@@ -747,7 +798,7 @@ torchvision
--------------------------------------------------------------------------------
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
provide datasets, model architectures, and common image transformations for
provides datasets, model architectures, and common image transformations for
computer vision.
The following ``torchvision`` features are GPU-accelerated.
@@ -757,8 +808,8 @@ The following ``torchvision`` features are GPU-accelerated.
* - Feature
- Description
- Since torchvision version
- Since ROCm
- As of torchvision version
- As of ROCm
* - ``torchvision.transforms.functional``
- Provides GPU-compatible transformations for image preprocessing like
resize, normalize, rotate and crop.
@@ -804,7 +855,7 @@ torchtune
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
authoring, fine-tuning and experimenting with LLMs.
* Usage: It works out-of-the-box, enabling developers to fine-tune ROCm PyTorch solutions.
* Usage: Enabling developers to fine-tune ROCm PyTorch solutions.
* Only official release exists.
@@ -815,7 +866,8 @@ The `torchserve <https://pytorch.org/serve/>`_ is a PyTorch domain library
for common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* torchtext does not implement its own kernels. ROCm support is enabled by
linking against ROCm libraries.
* Only official release exists.
@@ -826,14 +878,16 @@ The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchrec does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* torchrec does not implement its own kernels. ROCm support is enabled by
linking against ROCm libraries.
* Only official release exists.
Unsupported PyTorch features
----------------------------
================================================================================
The following are GPU-accelerated PyTorch features not currently supported by ROCm.
The following GPU-accelerated PyTorch features are not supported by ROCm for
the listed supported PyTorch versions.
.. list-table::
:widths: 30, 60, 10
@@ -841,7 +895,7 @@ The following are GPU-accelerated PyTorch features not currently supported by RO
* - Feature
- Description
- Since PyTorch
- As of PyTorch
* - APEX batch norm
- Use APEX batch norm instead of PyTorch batch norm.
- 1.6.0
@@ -897,31 +951,3 @@ The following are GPU-accelerated PyTorch features not currently supported by RO
utilized effectively through custom CUDA extensions or advanced
workflows.
- Not a core feature
Use cases and recommendations
================================================================================
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/training/train-a-model>` provides
guidance on how to leverage the ROCm platform for training AI models. It covers the steps, tools, and best practices
for optimizing training workflows on AMD GPUs using PyTorch features.
* :doc:`Single-GPU fine-tuning and inference </how-to/rocm-for-ai/fine-tuning/single-gpu-fine-tuning-and-inference>`
describes and demonstrates how to use the ROCm platform for the fine-tuning and inference of
machine learning models, particularly large language models (LLMs), on systems with a single AMD
Instinct MI300X accelerator. This page provides a detailed guide for setting up, optimizing, and
executing fine-tuning and inference workflows in such environments.
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/rocm-for-ai/fine-tuning/multi-gpu-fine-tuning-and-inference>`
describes and demonstrates the fine-tuning and inference of machine learning models on systems
with multi MI300X accelerators.
* The :doc:`Instinct MI300X workload optimization guide </how-to/rocm-for-ai/inference-optimization/workload>` provides detailed
guidance on optimizing workloads for the AMD Instinct MI300X accelerator using ROCm. This guide is aimed at helping
users achieve optimal performance for deep learning and other high-performance computing tasks on the MI300X
accelerator.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the use of PyTorch on the ROCm platform and
focuses on how to efficiently leverage AMD GPU hardware for training and inference tasks in AI applications.
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_.

View File

@@ -56,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_. Click
validated for `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -64,57 +64,91 @@ the |docker-icon| icon to view the image on Docker Hub.
* - Docker image
- TensorFlow
- Ubuntu
- Dev
- Python
- TensorBoard
* - .. raw:: html
- `rocm/tensorflow`__
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-dev/images/sha256-fa9cf5fa6c6079a7118727531ccd0056c6e3224a42c3d6e78a49e7781daafff4"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
- `rocm/tensorflow`__
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.18-runtime/images/sha256-14addca4b92a47c806b83ebaeed593fc6672cd99f0017ed8dad759fe72ed0309"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-dev/images/sha256-f5e151060df04ff5fb59f5604b49cd371931bbe75b06aec9fe7781397c4be0ce"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
- `rocm/tensorflow`__
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.18-runtime/images/sha256-5cd4c03fdb1036570c0d4929da60a65c4466998dc80f1dc8a5a0b173eae017fb"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-dev/images/sha256-b3add80e374a2db2d1088d746e740afa89d439aca02cacba959ad298f5cd2b3f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
- `rocm/tensorflow`__
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.12-tf2.17-runtime/images/sha256-3a244f026c32177eff7958ffbad390de85b438b2b48b455cc39f15d70fa1270d"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- runtime
- 24.04
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-dev/images/sha256-e0cecdfacb59169335049983cdab6da578c209bb9f4d08aad97e184ae59171a6"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
- `rocm/tensorflow`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4-py3.10-tf2.17-runtime/images/sha256-6f43de12f7eb202791b698ac51d28b72098de90034dbcd48486629b0125f7707"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
* - .. raw:: html
- `rocm/tensorflow`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- runtime
- 22.04
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
Critical ROCm libraries for TensorFlow
===============================================================================

View File

@@ -34,15 +34,15 @@ project = "ROCm Documentation"
project_path = os.path.abspath(".").replace("\\", "/")
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
version = "6.4.0"
release = "6.4.0"
version = "6.4.1"
release = "6.4.1"
setting_all_article_info = True
all_article_info_os = ["linux", "windows"]
all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux"], "date": "2025-04-11"},
{"file": "about/release-notes", "os": ["linux"], "date": "2025-05-07"},
{"file": "release/changelog", "os": ["linux"],},
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
@@ -70,6 +70,7 @@ article_pages = [
{"file": "how-to/rocm-for-ai/inference/hugging-face-models", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/pytorch-inference-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},

View File

@@ -0,0 +1,25 @@
pytorch_inference_benchmark:
unified_docker:
latest: &rocm-pytorch-docker-latest
pull_tag: rocm/pytorch:latest
docker_hub_url:
rocm_version:
pytorch_version:
hipblaslt_version:
model_groups:
- group: CLIP
tag: clip
models:
- model: CLIP
mad_tag: pyt_clip_inference
model_repo: laion/CLIP-ViT-B-32-laion2B-s34B-b79K
url: https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K
precision: float16
- group: Chai-1
tag: chai
models:
- model: Chai-1
mad_tag: pyt_chai1_inference
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/chaidiscovery/chai-1
precision: float16

View File

@@ -1,10 +1,10 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:instinct_main
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250311/images/sha256-de0a2649b735f45b7ecab8813eb7b19778ae1f40591ca1196b07bc29c42ed4a3
pull_tag: rocm/vllm:rocm6.3.1_instinct_vllm0.8.3_20250415
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.8.3_20250415/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845
rocm_version: 6.3.1
vllm_version: 0.7.3
vllm_version: 0.8.3
pytorch_version: 2.7.0 (dev nightly)
hipblaslt_version: 0.13
model_groups:
@@ -102,19 +102,12 @@ vllm_benchmark:
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- group: JAIS
tag: jais
models:
- model: JAIS 13B
mad_tag: pyt_vllm_jais-13b
model_repo: core42/jais-13b-chat
url: https://huggingface.co/core42/jais-13b-chat
precision: float16
- model: JAIS 30B
mad_tag: pyt_vllm_jais-30b
model_repo: core42/jais-30b-chat-v3
url: https://huggingface.co/core42/jais-30b-chat-v3
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
tunableop: true
- group: DBRX
tag: dbrx
models:
@@ -157,3 +150,11 @@ vllm_benchmark:
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16
- group: TII Falcon
tag: falcon
models:
- model: Falcon 180B
mad_tag: pyt_vllm_falcon-180b
model_repo: tiiuae/falcon-180B
url: https://huggingface.co/tiiuae/falcon-180B
precision: float16

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

View File

@@ -1,15 +1,178 @@
.. meta::
:description: How to use model quantization techniques to speed up inference.
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, quantization, GPTQ, transformers, bitsandbytes
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, quantization, Quark, GPTQ, transformers, bitsandbytes
*****************************
Model quantization techniques
*****************************
Quantization reduces the model size compared to its native full-precision version, making it easier to fit large models
onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using GPTQ
onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using AMD Quark, GPTQ
and bitsandbytes on AMD Instinct hardware.
.. _quantize-llms-quark:
AMD Quark
=========
`AMD Quark <https://quark.docs.amd.com/latest/>`_ offers the leading efficient and scalable quantization solution tailored to AMD Instinct GPUs. It supports ``FP8`` and ``INT8`` quantization for activations, weights, and KV cache,
including ``FP8`` attention. For very large models, it employs a two-level ``INT4-FP8`` scheme—storing weights in ``INT4`` while computing with ``FP8``—for nearly 4× compression without sacrificing accuracy.
Quark scales efficiently across multiple GPUs, efficiently handling ultra-large models like Llama-3.1-405B. Quantized ``FP8`` models like Llama, Mixtral, and Grok-1 are available under the `AMD organization on Hugging Face <https://huggingface.co/collections/amd/quark-quantized-ocp-fp8-models-66db7936d18fcbaf95d4405c>`_, and can be deployed directly via `vLLM <https://github.com/vllm-project/vllm/tree/main/vllm>`_.
Installing Quark
-------------------
The latest release of Quark can be installed with pip
.. code-block:: shell
pip install amd-quark
For detailed installation instructions, refer to the `Quark documentation <https://quark.docs.amd.com/latest/install.html>`_.
Using Quark for quantization
-----------------------------
#. First, load the pre-trained model and its corresponding tokenizer using the Hugging Face ``transformers`` library.
.. code-block:: python
from transformers import AutoTokenizer, AutoModelForCausalLM
MODEL_ID = "meta-llama/Llama-2-70b-chat-hf"
MAX_SEQ_LEN = 512
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, model_max_length=MAX_SEQ_LEN)
tokenizer.pad_token = tokenizer.eos_token
#. Prepare the calibration DataLoader (static quantization requires calibration data).
.. code-block:: python
from datasets import load_dataset
from torch.utils.data import DataLoader
BATCH_SIZE = 1
NUM_CALIBRATION_DATA = 512
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
text_data = dataset["text"][:NUM_CALIBRATION_DATA]
tokenized_outputs = tokenizer(
text_data, return_tensors="pt", padding=True, truncation=True, max_length=MAX_SEQ_LEN
)
calib_dataloader = DataLoader(
tokenized_outputs['input_ids'], batch_size=BATCH_SIZE, drop_last=True
)
#. Define the quantization configuration. See the comments in the following code snippet for descriptions of each configuration option.
.. code-block:: python
from quark.torch.quantization import (Config, QuantizationConfig,
FP8E4M3PerTensorSpec)
# Define fp8/per-tensor/static spec.
FP8_PER_TENSOR_SPEC = FP8E4M3PerTensorSpec(observer_method="min_max",
is_dynamic=False).to_quantization_spec()
# Define global quantization config, input tensors and weight apply FP8_PER_TENSOR_SPEC.
global_quant_config = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC,
weight=FP8_PER_TENSOR_SPEC)
# Define quantization config for kv-cache layers, output tensors apply FP8_PER_TENSOR_SPEC.
KV_CACHE_SPEC = FP8_PER_TENSOR_SPEC
kv_cache_layer_names_for_llama = ["*k_proj", "*v_proj"]
kv_cache_quant_config = {name :
QuantizationConfig(input_tensors=global_quant_config.input_tensors,
weight=global_quant_config.weight,
output_tensors=KV_CACHE_SPEC)
for name in kv_cache_layer_names_for_llama}
layer_quant_config = kv_cache_quant_config.copy()
EXCLUDE_LAYERS = ["lm_head"]
quant_config = Config(
global_quant_config=global_quant_config,
layer_quant_config=layer_quant_config,
kv_cache_quant_config=kv_cache_quant_config,
exclude=EXCLUDE_LAYERS)
#. Quantize the model and export
.. code-block:: python
import torch
from quark.torch import ModelQuantizer, ModelExporter
from quark.torch.export import ExporterConfig, JsonExporterConfig
# Apply quantization.
quantizer = ModelQuantizer(quant_config)
quant_model = quantizer.quantize_model(model, calib_dataloader)
# Freeze quantized model to export.
freezed_model = quantizer.freeze(model)
# Define export config.
LLAMA_KV_CACHE_GROUP = ["*k_proj", "*v_proj"]
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
export_config.json_export_config.kv_cache_group = LLAMA_KV_CACHE_GROUP
EXPORT_DIR = MODEL_ID.split("/")[1] + "-w-fp8-a-fp8-kvcache-fp8-pertensor"
exporter = ModelExporter(config=export_config, export_dir=EXPORT_DIR)
with torch.no_grad():
exporter.export_safetensors_model(freezed_model,
quant_config=quant_config, tokenizer=tokenizer)
Evaluating the quantized model with vLLM
----------------------------------------
The exported Quark-quantized model can be loaded directly by vLLM for inference. You need to specify the model path and inform vLLM about the quantization method (``quantization='quark'``) and the KV cache data type (``kv_cache_dtype='fp8'``).
Use the ``LLM`` interface to load the model:
.. code-block:: python
from vllm import LLM, SamplingParamsinterface
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor",
kv_cache_dtype='fp8',quantization='quark')
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
You can also evaluate the quantized model's accuracy on standard benchmarks using the `lm-evaluation-harness <https://github.com/EleutherAI/lm-evaluation-harness>`_. Pass the necessary vLLM arguments to ``lm_eval`` via ``--model_args``.
.. code-block:: shell
lm_eval --model vllm \
--model_args pretrained=Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor,kv_cache_dtype='fp8',quantization='quark' \
--tasks gsm8k
This provides a standardized way to measure the performance impact of quantization.
.. _fine-tune-llms-gptq:
GPTQ
@@ -33,7 +196,7 @@ The AutoGPTQ library implements the GPTQ algorithm.
.. code-block:: shell
# This will install pre-built wheel for a specific ROCm version.
pip install auto-gptq --no-build-isolation --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm573/
Or, install AutoGPTQ from source for the appropriate ROCm version (for example, ROCm 6.1).
@@ -43,10 +206,10 @@ The AutoGPTQ library implements the GPTQ algorithm.
# Clone the source code.
git clone https://github.com/AutoGPTQ/AutoGPTQ.git
cd AutoGPTQ
# Speed up the compilation by specifying PYTORCH_ROCM_ARCH to target device.
PYTORCH_ROCM_ARCH=gfx942 ROCM_VERSION=6.1 pip install .
# Show the package after the installation
#. Run ``pip show auto-gptq`` to print information for the installed ``auto-gptq`` package. Its output should look like
@@ -112,7 +275,7 @@ Using GPTQ with Hugging Face Transformers
.. code-block:: python
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
base_model_name = " NousResearch/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
gptq_config = GPTQConfig(bits=4, dataset="c4", tokenizer=tokenizer)
@@ -212,10 +375,10 @@ To get started with bitsandbytes primitives, use the following code as reference
.. code-block:: python
import bitsandbytes as bnb
# Use Int8 Matrix Multiplication
bnb.matmul(..., threshold=6.0)
# Use bitsandbytes 8-bit Optimizers
adam = bnb.optim.Adam8bit(model.parameters(), lr=0.001, betas=(0.9, 0.995))
@@ -227,14 +390,14 @@ To load a Transformers model in 4-bit, set ``load_in_4bit=true`` in ``BitsAndByt
.. code-block:: python
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
base_model_name = "NousResearch/Llama-2-7b-hf"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
bnb_model_4bit = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
quantization_config=quantization_config)
# Check the memory footprint with get_memory_footprint method
print(bnb_model_4bit.get_memory_footprint())
@@ -243,9 +406,9 @@ To load a model in 8-bit for inference, use the ``load_in_8bit`` option.
.. code-block:: python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
base_model_name = "NousResearch/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
@@ -253,7 +416,7 @@ To load a model in 8-bit for inference, use the ``load_in_8bit`` option.
base_model_name,
device_map="auto",
quantization_config=quantization_config)
prompt = "What is a large language model?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)

View File

@@ -16,8 +16,7 @@ ROCm supports vLLM and Hugging Face TGI as major LLM-serving frameworks.
Serving using vLLM
==================
vLLM is a fast and easy-to-use library for LLM inference and serving. vLLM officially supports ROCm versions 5.7 and
6.0. AMD is actively working with the vLLM team to improve performance and support later ROCm versions.
vLLM is a fast and easy-to-use library for LLM inference and serving. AMD is actively working with the vLLM team to improve performance and support the latest ROCm versions.
See the `GitHub repository <https://github.com/vllm-project/vllm>`_ and `official vLLM documentation
<https://docs.vllm.ai/>`_ for more information.
@@ -31,9 +30,9 @@ vLLM installation
vLLM supports two ROCm-capable installation methods. Refer to the official documentation use the following links.
- `Build from source with Docker
<https://docs.vllm.ai/en/latest/getting_started/amd-installation.html#build-from-source-docker-rocm>`_ (recommended)
<https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html?device=rocm#build-image-from-source>`_ (recommended)
- `Build from source <https://docs.vllm.ai/en/latest/getting_started/amd-installation.html#build-from-source-rocm>`_
- `Build from source <https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html?device=rocm#build-wheel-from-source>`_
vLLM walkthrough
----------------

View File

@@ -36,7 +36,7 @@ Installing vLLM
git clone https://github.com/vllm-project/vllm.git
cd vllm
docker build -f Dockerfile.rocm -t vllm-rocm .
docker build -f docker/Dockerfile.rocm -t vllm-rocm .
.. tab-set::

View File

@@ -0,0 +1,167 @@
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
ROCm PyTorch Docker image.
:keywords: model, MAD, automation, dashboarding, validate, pytorch
*************************************
PyTorch inference performance testing
*************************************
.. _pytorch-inference-benchmark-docker:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/pytorch-inference-benchmark-models.yaml
{% set unified_docker = data.pytorch_inference_benchmark.unified_docker.latest %}
{% set model_groups = data.pytorch_inference_benchmark.model_groups %}
The `ROCm PyTorch Docker <https://hub.docker.com/r/rocm/pytorch/tags>`_ image offers a prebuilt,
optimized environment for testing model inference performance on AMD Instinct™ MI300X series
accelerators. This guide demonstrates how to use the AMD Model Automation and Dashboarding (MAD)
tool with the ROCm PyTorch container to test inference performance on various models efficiently.
.. _pytorch-inference-benchmark-available-models:
Supported models
================
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-6 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row mt-1" style="display: none;">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
<div class="col-12 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endfor %}
{% endfor %}
</div>
</div>
</div>
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization before use via an external license agreement through a third party.
{% endfor %}
{% endfor %}
Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X series accelerator with the prebuilt PyTorch Docker image.
.. _pytorch-benchmark-get-started:
1. Disable NUMA auto-balancing.
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
.. code-block:: shell
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. container:: model-doc pyt_chai1_inference
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-05b55983e5154f46e7441897d0908d79877370adca4d1fff4899d9539d6c4969>`_ from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch:rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue
.. note::
The Chai-1 benchmark uses a specifically selected Docker image using ROCm 6.2.3 and PyTorch 2.3.0 to address an accuracy issue.
.. container:: model-doc pyt_clip_inference
2. Use the following command to pull the `ROCm PyTorch Docker image <https://hub.docker.com/layers/rocm/pytorch/rocm6.2.3_ubuntu22.04_py3.10_pytorch_release_2.3.0_triton_llvm_reg_issue/images/sha256-b736a4239ab38a9d0e448af6d4adca83b117debed00bfbe33846f99c4540f79b>`_ from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch:latest
Benchmarking
============
.. _pytorch-inference-benchmark-mad:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
To simplify performance testing, the ROCm Model Automation and Dashboarding
(`<https://github.com/ROCm/MAD>`__) project provides ready-to-use scripts and configuration.
To start, clone the MAD repository to a local directory and install the required packages on the
host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in ``perf.csv``.
.. note::
For improved performance, consider enabling TunableOp. By default,
``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable
it, edit the default run behavior in the ``tools/run_models.py``-- update the model's
run ``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
Although this might increase the initial training time, it can result in a performance gain.
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- To learn how to run LLM models from Hugging Face or your model, see
:doc:`Running models from Hugging Face <hugging-face-models>`.
- To learn how to optimize inference on LLMs, see
:doc:`Inference optimization <../inference-optimization/index>`.
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.

View File

@@ -3,9 +3,9 @@
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
********************************************************
LLM inference performance testing on AMD Instinct MI300X
********************************************************
**********************************
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker:
@@ -16,7 +16,7 @@ LLM inference performance testing on AMD Instinct MI300X
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerator. This ROCm vLLM
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
@@ -34,7 +34,7 @@ LLM inference performance testing on AMD Instinct MI300X
.. _vllm-benchmark-available-models:
Available models
Supported models
================
.. raw:: html
@@ -183,6 +183,25 @@ LLM inference performance testing on AMD Instinct MI300X
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled
(see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To
enable it, edit the default run behavior in the ``models.json``
configuration before running inference -- update the model's run
``args`` by changing ``--tunableop off`` to ``--tunableop on``.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
Run the vLLM benchmark tool independently by starting the
@@ -331,11 +350,18 @@ for benchmarking, see the version-specific documentation.
- PyTorch version
- Resources
* - 6.3.1
- 0.7.3
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_instinct_vllm0.7.3_20250325/images/sha256-25245924f61750b19be6dcd8e787e46088a496c1fe17ee9b9e397f3d84d35640>`_
* - 6.3.1
- 0.6.6
- 2.7.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html>`_
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.2/how-to/rocm-for-ai/inference/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
* - 6.2.1

View File

@@ -12,7 +12,7 @@ ROCm is an optimized fork of the upstream
`<https://github.com/AI-Hypercomputer/maxtext>`__ enabling efficient AI workloads
on AMD MI300X series accelerators.
The MaxText for ROCm training Docker (``rocm/jax-training:maxtext-v25.4``) image
The MaxText for ROCm training Docker (``rocm/jax-training:maxtext-v25.5``) image
provides a prebuilt environment for training on AMD Instinct MI300X and MI325X accelerators,
including essential components like JAX, XLA, ROCm libraries, and MaxText utilities.
It includes the following software components:
@@ -20,15 +20,15 @@ It includes the following software components:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| JAX | 0.4.31 |
| JAX | 0.4.35 |
+--------------------------+--------------------------------+
| Python | 3.10 |
| Python | 3.10.12 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.12.0.dev0+f81a3eb |
| Transformer Engine | 1.12.0.dev0+b8b92dc |
+--------------------------+--------------------------------+
| hipBLASLt | git78ec8622 |
| hipBLASLt | 0.13.0-ae9c477a |
+--------------------------+--------------------------------+
Supported features and models
@@ -48,6 +48,8 @@ MaxText provides the following key features to train large language models effic
The following models are pre-optimized for performance on AMD Instinct MI300X series accelerators.
* Llama 3.3 70B
* Llama 3.1 8B
* Llama 3.1 70B
@@ -115,7 +117,7 @@ with RDMA, skip ahead to :ref:`amd-maxtext-download-docker`.
a. Master address
Change `localhost` to the master node's resolvable hostname or IP address:
Change ``localhost`` to the master node's resolvable hostname or IP address:
.. code-block:: bash
@@ -180,13 +182,15 @@ Download the Docker image
.. code-block:: shell
docker pull rocm/jax-training:maxtext-v25.4
docker pull rocm/jax-training:maxtext-v25.5
2. Run the Docker container.
2. Use the following command to launch the Docker container. Note that the benchmarking scripts
used in the :ref:`following section <amd-maxtext-get-started>` automatically launch the Docker container
and execute the benchmark.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME/.ssh:/root/.ssh --shm-size 128G --name maxtext_training rocm/jax-training:maxtext-v25.4
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME/.ssh:/root/.ssh --shm-size 128G --name maxtext_training rocm/jax-training:maxtext-v25.5
.. _amd-maxtext-get-started:
@@ -219,7 +223,9 @@ Single node training benchmarking examples
Run the single node training benchmark:
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama2_7b.sh
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama2_7b.sh
* Example 2: Single node training with Llama 2 70B
@@ -233,7 +239,7 @@ Single node training benchmarking examples
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama2_70b.sh
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama2_70b.sh
* Example 3: Single node training with Llama 3 8B
@@ -247,7 +253,7 @@ Single node training benchmarking examples
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama3_8b.sh
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama3_8b.sh
* Example 4: Single node training with Llama 3 70B
@@ -261,9 +267,23 @@ Single node training benchmarking examples
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./llama3_70b.sh
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama3_70b.sh
* Example 5: Single node training with DeepSeek V2 16B
* Example 5: Single node training with Llama 3.3 70B
Download the benchmarking script:
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/maxtext/refs/heads/main/benchmarks/gpu-rocm/llama3.3_70b.sh
Run the single node training benchmark:
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./llama3.3_70b.sh
* Example 6: Single node training with DeepSeek V2 16B
Download the benchmarking script:
@@ -275,7 +295,7 @@ Single node training benchmarking examples
.. code-block:: shell
IMAGE="rocm/jax-training:maxtext-v25.4" bash ./deepseek_v2_16b.sh
IMAGE="rocm/jax-training:maxtext-v25.5" bash ./deepseek_v2_16b.sh
.. note::
@@ -343,3 +363,26 @@ own cluster setup.
.. code-block:: shell
sbatch -N <num_nodes> llama3_70b_multinode.sh
Previous versions
=================
This table lists previous versions of the ROCm JAX MaxText Docker image for training
performance testing. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - Image version
- ROCm version
- JAX version
- Resources
* - 25.4
- 6.3.0
- 0.4.31
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.4/images/sha256-fb3eb71cd74298a7b3044b7130cf84113f14d518ff05a2cd625c11ea5f6a7b01>`_

View File

@@ -9,7 +9,8 @@ Training a model with PyTorch for ROCm
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.4``) image
The `PyTorch for ROCm training Docker <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
(``rocm/pytorch-training:v25.5``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
@@ -17,19 +18,19 @@ software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
| ROCm | 6.3.4 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
| Transformer Engine | 1.12.0.dev0+25a33da |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
| hipBLASLt | git53b53bf |
+--------------------------+--------------------------------+
| Triton | 3.1 |
| Triton | 3.2.0 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
@@ -39,6 +40,8 @@ Supported models
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
* Llama 3.3 70B
* Llama 3.1 8B
* Llama 3.1 70B
@@ -79,309 +82,346 @@ auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
and optimization steps <train-a-model-system-validation>` to set up your system
before starting training.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
Benchmarking
============
1. Use the following command to pull the Docker image from Docker Hub.
Once the setup is complete, choose between two options to start benchmarking:
.. code-block:: shell
.. tab-set::
docker pull rocm/pytorch-training:v25.4
.. tab-item:: MAD-integrated benchmarking
2. Run the Docker container.
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.4
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
3. Use these commands if you exit the ``training_env`` container and need to return to it.
For example, use this command to run the performance benchmark test on the Llama 3.1 8B model
using one GPU with the float16 data type on the host machine.
.. code-block:: shell
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_train_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
The available models for MAD-integrated benchmarking are:
.. code-block:: shell
* ``pyt_train_llama-3.3-70b``
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
* ``pyt_train_llama-3.1-8b``
Prepare training datasets and dependencies
------------------------------------------
* ``pyt_train_llama-3.1-70b``
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
* ``pyt_train_flux``
.. code-block:: shell
MAD launches a Docker container with the name
``container_ci-pyt_train_llama-3.1-8b``, for example. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv``.
export HF_TOKEN=$your_personal_hugging_face_access_token
.. tab-item:: Standalone benchmarking
Run the setup script to install libraries and datasets needed for benchmarking.
.. rubric:: Download the Docker image and required packages
.. code-block:: shell
Use the following command to pull the Docker image from Docker Hub.
./pytorch_benchmark_setup.sh
.. code-block:: shell
``pytorch_benchmark_setup.sh`` installs the following libraries:
docker pull rocm/pytorch-training:v25.5
.. list-table::
:header-rows: 1
Run the Docker container.
* - Library
- Benchmark model
- Reference
.. code-block:: shell
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.5
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
Use these commands if you exit the ``training_env`` container and need to return to it.
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
.. code-block:: shell
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
docker start training_env
docker exec -it training_env bash
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
.. code-block:: shell
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
.. rubric:: Prepare training datasets and dependencies
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
.. code-block:: shell
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
export HF_TOKEN=$your_personal_hugging_face_access_token
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
Run the setup script to install libraries and datasets needed for benchmarking.
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
.. code-block:: shell
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
./pytorch_benchmark_setup.sh
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
``pytorch_benchmark_setup.sh`` installs the following libraries:
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
.. list-table::
:header-rows: 1
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - Library
- Benchmark model
- Reference
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
Along with the following datasets:
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
Getting started
===============
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI325X and MI300X
accelerators with the AMD PyTorch training Docker image.
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
Once your environment is set up, use the following commands and examples to start benchmarking.
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
Pretraining
-----------
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
.. code-block:: shell
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
.. list-table::
:header-rows: 1
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
* - Name
- Options
- Description
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
Along with the following datasets:
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
* `UltraChat 200k <https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k>`_
* - ``$model_repo``
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
.. rubric:: Pretraining
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
.. code-block:: shell
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
.. note::
.. list-table::
:header-rows: 1
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
* - Name
- Options
- Description
Fine-tuning
-----------
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
.. code-block:: shell
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
* -
- ``HF_finetune_lora``
- Benchmark LoRA fine-tuning with Hugging Face PEFT (Llama 2 70B with BF16)
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
* - ``$datatype``
- ``FP8`` or ``BF16``
- Only Llama 3.1 8B supports FP8 precision.
.. code-block:: shell
* - ``$model_repo``
- ``Llama-3.3-70B``
- `Llama 3.3 70B <https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct>`_
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
* -
- ``Llama-3.1-8B``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
Benchmarking examples
---------------------
* -
- ``Llama-3.1-70B``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
Here are some examples of how to use the command.
* -
- ``Llama-2-70B``
- `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70B>`_
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
* -
- ``Flux``
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
.. code-block:: shell
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
.. note::
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
.. code-block:: shell
.. rubric:: Fine-tuning
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 3.1 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
Use the following command to run the benchmarking example of Llama 2 70B with the UltraChat 200k dataset using
`Hugging Face PEFT <https://huggingface.co/docs/peft/en/index>`_.
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
.. rubric:: Benchmarking examples
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
Here are some example commands to get started pretraining and fine-tuning with various model configurations.
.. code-block:: shell
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
.. code-block:: shell
* Example 6: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
.. code-block:: shell
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B
* Example 6: Torchtune full weight fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.3-70B
* Example 7: Torchtune LoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.3-70B
* Example 8: Torchtune QLoRA fine-tuning with Llama-3.3-70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_qlora -p BF16 -m Llama-3.3-70B
* Example 9: Hugging Face PEFT LoRA fine-tuning with Llama 2 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t HF_finetune_lora -p BF16 -m Llama-2-70B
Previous versions
=================
@@ -399,6 +439,13 @@ benchmarking, see the version-specific documentation.
- PyTorch version
- Resources
* - v25.4
- 6.3.0
- 2.7.0a0+git637433
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.3/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.4/images/sha256-fa98a9aa69968e654466c06f05aaa12730db79b48b113c1ab4f7a5fe6920a20b>`_
* - v25.3
- 6.3.0
- 2.7.0a0+git637433

View File

@@ -45,6 +45,7 @@
(communication-libraries)=
* {doc}`RCCL <rccl:index>`
* [rocSHMEM](https://github.com/ROCm/rocSHMEM)
:::
:::{grid-item-card} Math

View File

@@ -12,14 +12,14 @@ subtrees:
- file: compatibility/compatibility-matrix.rst
title: Compatibility matrix
entries:
- url: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html
- url: https://rocm.docs.amd.com/projects/install-on-linux-internal/en/latest/reference/system-requirements.html
title: Linux system requirements
- url: https://rocm.docs.amd.com/projects/install-on-windows/en/${branch}/reference/system-requirements.html
title: Windows system requirements
- caption: Install
entries:
- url: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/
- url: https://rocm.docs.amd.com/projects/install-on-linux-internal/en/latest/
title: ROCm on Linux
- url: https://rocm.docs.amd.com/projects/install-on-windows/en/${branch}/
title: HIP SDK on Windows
@@ -75,7 +75,9 @@ subtrees:
- file: how-to/rocm-for-ai/inference/llm-inference-frameworks.rst
title: LLM inference frameworks
- file: how-to/rocm-for-ai/inference/vllm-benchmark.rst
title: Performance testing
title: vLLM inference performance testing
- file: how-to/rocm-for-ai/inference/pytorch-inference-benchmark.rst
title: PyTorch inference performance testing
- file: how-to/rocm-for-ai/inference/deploy-your-model.rst
title: Deploy your model

View File

@@ -10,7 +10,7 @@ ROCm is a software stack, composed primarily of open-source software, that
provides the tools for programming AMD Graphics Processing Units (GPUs), from
low-level kernels to high-level end-user applications.
.. image:: data/rocm-software-stack-6_3_2.jpg
.. image:: data/rocm-software-stack-6_4_0.jpg
:width: 800
:alt: AMD's ROCm software stack and enabling technologies.
:align: center
@@ -52,6 +52,7 @@ Communication
:header: "Component", "Description"
":doc:`RCCL <rccl:index>`", "Standalone library that provides multi-GPU and multi-node collective communication primitives"
"`rocSHMEM <https://github.com/ROCm/rocSHMEM>`_", "Runtime that provides GPU-centric networking through an OpenSHMEM-like interface. This intra-kernel networking library simplifies application code complexity and enables more fine-grained communication/computation overlap than traditional host-driven networking."
Math
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^