Compare commits

...

148 Commits

Author SHA1 Message Date
anisha-amd
773f5de407 Docs: Ray release 25.12 and compatibility version format standardization (#5845) 2026-01-08 12:09:11 -05:00
dependabot[bot]
b297ced032 Bump urllib3 from 2.5.0 to 2.6.3 in /docs/sphinx (#5842)
Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.5.0 to 2.6.3.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/2.5.0...2.6.3)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-version: 2.6.3
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-08 08:22:01 -05:00
peterjunpark
2dc22ca890 fix(primus-pytorch.rst): FP8 config instead of BF16 (#5839) 2026-01-07 13:49:31 -05:00
Joseph Macaranas
85102079ed [External CI] Add SIMDe dev package to HIP runtime pipeline (#5838) 2026-01-07 11:00:38 -05:00
dependabot[bot]
ba95e0e689 Bump pynacl from 1.6.1 to 1.6.2 in /docs/sphinx (#5836)
Bumps [pynacl](https://github.com/pyca/pynacl) from 1.6.1 to 1.6.2.
- [Changelog](https://github.com/pyca/pynacl/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/pynacl/compare/1.6.1...1.6.2)

---
updated-dependencies:
- dependency-name: pynacl
  dependency-version: 1.6.2
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-06 14:10:42 -05:00
Pratik Basyal
1691d369e9 ROCM-core version fixed (#5827) 2026-01-02 16:06:27 -05:00
peterjunpark
172b0f7c08 Fix inconsistency in xDiT doc
Fix inconsistency in xDiT doc
2025-12-29 10:26:25 -05:00
peterjunpark
c67fac78bd Update docs for xDiT diffusion inference 25.13 Docker release (#5820)
* archive previous version

* add xdit 25.13

* update history index

* add perf results section
2025-12-29 08:44:45 -05:00
peterjunpark
e0b8ec4dfb Update training docs for Primus/25.11 (#5819)
* update conf and toc.yml.in

* archive previous versions

archive data files

update anchors

* primus pytorch: remove training batch size args

* update primus megatron run cmds

multi-node

* update primus pytorch

update

* update

update

* update docker tag
2025-12-29 08:05:47 -05:00
Pratik Basyal
38f2d043dc OS table removed from compatibility table [develop] (#5810)
* OS table removed from compatibility table

* Feedback added

* Azure Linux 3.0 and compatibility version update

* Version fix

* Review feedback added

* Minor change
2025-12-23 16:28:19 -05:00
peterjunpark
3a43bacdda Update xdit diffusion inference history (#5808)
* Update xdit diffusion inference history

* fix
2025-12-22 11:05:32 -05:00
peterjunpark
48d8fe139b fix link to ROCm PyT docker image (#5803) 2025-12-19 15:47:55 -05:00
peterjunpark
7455fe57b8 clean up formatting in FA2 page (#5795) 2025-12-19 09:21:41 -05:00
peterjunpark
52c0a47e84 Update Flash Attention guidance in "Model acceleration libraries" (#5793)
* flash attention update

Signed-off-by: seungrok.jung <seungrok.jung@amd.com>

flash attention update

Signed-off-by: seungrok.jung <seungrok.jung@amd.com>

flash attention update

Signed-off-by: seungrok.jung <seungrok.jung@amd.com>

sentence-case heading

* Update docs/how-to/rocm-for-ai/inference-optimization/model-acceleration-libraries.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

---------

Co-authored-by: seungrok.jung <seungrok.jung@amd.com>
Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-12-19 08:48:52 -05:00
peterjunpark
cbab9a465d Update documentation for JAX training MaxText 25.11 release (#5789) 2025-12-18 11:23:58 -05:00
peterjunpark
459283da3c xDiT diffusion inference v25.12 documentation update (#5786)
* Add xdit-diffusion ROCm docs page.

* Update template formatting and fix sphinx warnings

* Add System Validation section.

* Add sw component versions/commits.

* Update to use latest v25.10 image instead of v25.9

* Update commands and add FLUX instructions.

* Update Flux instructions. Change image tag. Describe as diffusion inference instead of specifically video.

* git rm xdit-video-diffusion.rst

* Docs for v25.12

* Add hyperlinks to components

* Command fixes

* -Diffusers suffix

* Simplify yaml file and cleanup main rst page.

* Spelling, added 'js'

* fix merge conflict

fix

---------

Co-authored-by: Kristoffer <kristoffer.torp@amd.com>
2025-12-17 10:20:10 -05:00
peterjunpark
1b4f25733d vLLM inference benchmark 1210 (#5776)
* Archive previous ver

fix anchors

* Update vllm.rst and data yaml for 20251210
2025-12-17 09:21:57 -05:00
Ibrahim Wani
b287372be5 [origami] Test update (#5768)
* Fix the skipping of origami tests

* Update dependencies for origami refactor

* test

* Unsupress test output.

* Ctest implementation

* Test ctest

* Test ctest 2

* Add pip install test

* Fix python version

* Add python dep

* test

* test 2

* Debug for readme

* Fix pip install

* Fix pip install 2

* Clean up

* Run tests on 950

* Replace 950 with 1201

* 1101

* Add more archs

* Add more archs 2

* Comment out archs

* Move pip install script to ./azuredevops/scripts

* Fix path

* Fix path 2

* Fix path 3

* Fix path 4

* Remove pip install testing:

* Use inline script

* Add old deps
2025-12-16 15:37:41 -07:00
Pratik Basyal
78e8baf147 Taichi removed from ROCm docs [Develop] (#5779)
* Taichi removed from ROCm docs

* Warnings fixed
2025-12-16 13:12:40 -05:00
Matt Williams
3e0c8b47e3 Merge pull request #5771 from ROCm/mattwill-amd-patch-4
Reverting Optiq note
2025-12-12 17:53:41 -05:00
Matt Williams
c3f0b99cc0 Reverting Optiq note 2025-12-12 17:47:33 -05:00
dependabot[bot]
c9d1679486 Bump rocm-docs-core from 1.31.0 to 1.31.1 in /docs/sphinx
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.31.0 to 1.31.1.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.31.0...v1.31.1)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-version: 1.31.1
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-12-12 16:15:26 -05:00
Pratik Basyal
fdbef17d7b Onnx and rocshmem version updated (#5760) 2025-12-11 17:05:25 -05:00
Matt Williams
6592a41a7f Adding ROCm-Optiq note to What is ROCm page (#5709)
* Adding ROCm-Optiq note to What is ROCm page

Adding a note for a link to the Optiq docs

* Apply suggestion from @mattwill-amd

* Apply suggestion from @mattwill-amd

* Apply suggestion from @mattwill-amd

* Update what-is-rocm.rst

* Update what-is-rocm.rst

* Apply suggestion from @mattwill-amd

* Apply suggestion from @mattwill-amd

* Apply suggestion from @mattwill-amd

* Apply suggestion from @mattwill-amd
2025-12-10 12:56:33 -08:00
Matt Williams
65a936023b Fixing link redirects (#5758)
* Update multi-gpu-fine-tuning-and-inference.rst

* Update pytorch-training-v25.6.rst

* Update pytorch-compatibility.rst
2025-12-10 11:17:59 -05:00
anisha-amd
2a64949081 Docs: update verl compatibility - fix (#5756) 2025-12-09 19:51:37 -05:00
anisha-amd
0a17434517 Docs: update verl compatibility - fix (#5754) 2025-12-09 18:36:16 -05:00
anisha-amd
2be7e5ac1e Docs: verl framework - compatibility - 25.11 release (#5752) 2025-12-09 11:41:43 -05:00
dependabot[bot]
ae80c4a31c Bump rocm-docs-core from 1.30.1 to 1.31.0 in /docs/sphinx (#5751)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.30.1 to 1.31.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/v1.31.0/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.30.1...v1.31.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-version: 1.31.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-12-09 08:25:16 -05:00
Adel Johar
dd89a692e1 [Ex CI] Add rocAL dependencies 2025-12-09 10:56:23 +01:00
peterjunpark
bf74351e5a Fix Primus PyTorch doc: training.batch_size -> training.local_batch_size (#5748) 2025-12-08 13:35:22 -05:00
yugang-amd
f2067767e0 xdit-diffusion v25.11 docs (#5744) 2025-12-05 17:09:48 -05:00
Pratik Basyal
effd4174fb PyTorch 2.7 support added (#5740) 2025-12-04 15:49:23 -05:00
peterjunpark
453751a86f fix docker hub links for primus:v25.10 (#5738) 2025-12-04 09:17:33 -05:00
peterjunpark
fb644412d5 Update training Docker docs for Primus 25.10 (#5737) 2025-12-04 09:08:00 -05:00
Pratik Basyal
e8fdc34b71 711 hipBLASLT performance decline known issue added (#5730)
* hipBLASLT performance decline known issue added

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* GitHub Issue added

* Ram's feedback incorporated

* GitHub Issue added

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-12-03 08:50:25 -05:00
Pratik Basyal
b4031ef23c 7.1.1 known issues post GA (#5721)
* rocblas known issues added

* Minor change

* Update RELEASE.md

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Resolved

* Update RELEASE.md

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-11-28 16:34:47 -05:00
dependabot[bot]
d0bd4e6f03 Bump rocm-docs-core from 1.29.0 to 1.30.1 in /docs/sphinx (#5712)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.29.0 to 1.30.1.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.29.0...v1.30.1)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-version: 1.30.1
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-11-28 08:18:23 -05:00
Jan Stephan
0056b9453e Remove continuous numbering of tables and figures
Signed-off-by: Jan Stephan <jan.stephan@amd.com>
2025-11-28 10:29:01 +01:00
Pratik Basyal
3d1ad79766 Merged cell removed for coloring issue (#5713) 2025-11-27 19:52:36 -05:00
Pratik Basyal
8683bed11b Known issue from 7.1.0 removed (#5702) 2025-11-26 12:27:22 -05:00
Pratik Basyal
847cd7c423 Link and PyTorch version updated (#5700) 2025-11-26 11:52:47 -05:00
Alex Xu
42cad29c04 re-compile requirements.txt 2025-11-26 11:35:00 -05:00
alexxu-amd
f7b2fe0a48 Merge pull request #5699 from ROCm/sync-develop-from-internal
Sync develop from internal for 7.1.1
2025-11-26 11:27:48 -05:00
alexxu-amd
bb199aa2b9 Merge pull request #639 from ROCm/sync-develop-from-external
Sync develop from external
2025-11-26 11:10:19 -05:00
alexxu-amd
2f7b2a7fa1 Merge branch 'develop' into sync-develop-from-external 2025-11-26 10:54:34 -05:00
Pratik Basyal
7fd75919d1 711 GPU and environment variable link updated (#640)
* ROCm environment vairable link updated

* Programming patter link updated
2025-11-26 10:41:16 -05:00
Alex Xu
4490c57c6a resolve merge conflict 2025-11-26 10:33:02 -05:00
Alex Xu
007f24fe7b Merge remote-tracking branch 'external/develop' into sync-develop-from-external 2025-11-26 10:09:04 -05:00
Pratik Basyal
afbb6e0f61 PLDM table synced (#638) 2025-11-26 10:08:12 -05:00
Pratik Basyal
1b5a3e54c2 711 compatibility note update and review feedback added (#636)
* Leo's review feedback added

* rocshmem version bumped from 3.0.0 to 3.1.0

* Footnote cleaned

* Footnote updated

* Ram's feedback

* Link updated

* Footnote updated

* Link fixed
2025-11-26 09:46:57 -05:00
alexxu-amd
2c6eb9cf2a Update versions.md (#637)
* Update versions.md

* remove empty line
2025-11-26 09:03:54 -05:00
Pratik Basyal
b93fdb811c 7.1.1 pre-GA public link reset (#627)
* 7.1.1 pre-GA public link reset

* Update CHANGELOG.md
2025-11-26 08:38:13 -05:00
srayasam-amd
096d91e190 Updating rocm version to 7.1.1 GA (#5697)
* 7.1.1 GA update

* 7.1.1 GA update

* Update rocm-7.1.1.xml

* Update default.xml
2025-11-26 16:08:03 +05:30
Pratik Basyal
02037f4384 7.1.1 fixed issues added (#634)
* Fixed issues added

* Blank line added
2025-11-24 15:56:44 -05:00
peterjunpark
c64dc46a50 [7.1.1] docs(RELEASE.md): Add notes under "Driver and firmware related changes" (#632)
* Add notes under "Driver and firmware related changes"

update

* Update RELEASE.md

---------

Co-authored-by: Pratik Basyal <prbasyal@amd.com>
2025-11-24 13:18:53 -05:00
Pratik Basyal
702d8e4c8e New link updated for MIgraphx (#5691) 2025-11-24 11:52:38 -05:00
Istvan Kiss
19344d7b61 Fix rocr-runtime environment variables content link (#631) 2025-11-21 18:59:57 +01:00
amd-hsivasun
807ec6afcf [Ex CI] Update AMDMIGraphX CMake version (#5683) 2025-11-20 18:05:24 -05:00
amd-hsivasun
4c04da05c3 [Ex CI] Update pipeline ID for amdmis to monorepo (#5685) 2025-11-20 18:05:17 -05:00
dependabot[bot]
411334716c Bump rocm-docs-core from 1.28.0 to 1.29.0 in /docs/sphinx (#5659)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.28.0 to 1.29.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.28.0...v1.29.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-version: 1.29.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-11-20 13:54:33 -05:00
amd-hsivasun
99f0875e70 [Ex CI] amdsmi monorepo enablement (#5677)
* [Ex CI] amdsmi monorepo enablement

* Fix amdsmi yaml
2025-11-20 13:52:01 -05:00
peterjunpark
50658d0812 Update release highlights for 7.1.1 (#629) 2025-11-20 13:51:13 -05:00
Pratik Basyal
7aeecdf8e2 Document 7.1.1 Known issues (#628)
Co-authored-by: Peter Park <peter.park@amd.com>
2025-11-20 13:12:52 -05:00
Istvan Kiss
4f669eb2c6 Add JAX Plugin-PJRT support table (#619) 2025-11-20 10:55:51 -06:00
Jithun Nair
7d1f314303 Update PyTorch compatibility documentation with PyTorch2.9 for ROCm7.1.1 2025-11-19 19:15:04 -06:00
Jithun Nair
c523f51e58 Merge branch 'develop' into update-pytorch-compatibility 2025-11-19 19:11:22 -06:00
Melantha-S
b566858909 Update pytorch-compatibility.rst 2025-11-19 15:54:04 -07:00
Melantha-S
c33b9e3611 Update pytorch-compatibility.rst 2025-11-19 15:16:30 -07:00
Shao
2646b4841d Update pytorch compatibility documentation 2025-11-19 15:05:11 -07:00
Shao
ff2f40d800 Add logsumexp to spellcheck dictionary 2025-11-19 15:03:12 -07:00
Shao
71bcc5b204 Add PyTorch 2.9 release notes for ROCm 2025-11-19 14:59:27 -07:00
Pratik Basyal
fd840df30b JAX and PyTorch support and ROCProfiler upcoming changes updated 7.1.1 (#626)
* ROCProfiler upcoming changes updated

* ROCm examples moved

* JAX verison udpated

* Formatting updated"

* Update RELEASE.md

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Environment variable updated added

* Minor changelog fixes

* JAX reverted

* grid alignment

* Revert "grid alignment"

This reverts commit 47939743ab3175cad47f45fd2cd263476eaf14e1.

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-11-19 15:29:02 -05:00
Shao
58e26eede1 Add Cholesky and mx to spellcheck dictionary 2025-11-19 10:27:51 -07:00
Shao
407a9d4cb0 Update PyTorch compatibility documentation 2025-11-19 09:52:47 -07:00
Istvan Kiss
81b7745f8e Docs: Add Environment Variable Page (#395)
Co-authored-by: Adel Johar <adel.johar@amd.com>
2025-11-19 17:40:26 +01:00
Pratik Basyal
6af62fd30a 7.1.1 Compatibility table fixed (#624)
* broken table fixed

* Line break added

* Line break added
2025-11-19 11:22:47 -05:00
Pratik Basyal
bb692dfd84 711 Release Notes update [Batch1] (#623)
* Fixed issue updated

* Release notes updated

* Formatting correction

* RCCL performance decline issue added

* Known issue updated

* Minor update

* Known issues updated

* Review feedback added

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-11-19 08:04:37 -05:00
Adel Johar
8d51d0e803 [Ex CI] Add CXX override for MIGraphX 2025-11-19 10:45:10 +01:00
Adel Johar
66b8b96c72 [Ex CI] Add missing dependencies for rccl and mivisionx 2025-11-19 10:45:10 +01:00
Pratik Basyal
fb098b6354 Initial changes for 7.1.1 release notes (#622)
* Changelog and tables updates for 7.1.1 release notes

* Changelog synced

* Naming udpated

* Added upcoming changes for composable kernel

* Update RELEASE.md

Co-authored-by: Pratik Basyal <prbasyal@amd.com>

* Update RELEASE.md

* Highlights udpated for DGL, ROCm-DS, and HIP documentation

* Changelog synced"

* Offline, runfile and ROCm Bandwidth test updated

* CK/AITER highlight added

* Changelog synced

* AI model highlight updated

* PLDM version added

* Changelog updated

* Leo's feedback incorporated

* Compatibility and PLDM versions udpated

* New docs update added

* ROCm resolved issue added

* Review feedback added

* Link added

* PLDM updated

* PLDM table udpated

* Changes

---------

Co-authored-by: spolifroni-amd <Sandra.Polifroni@amd.com>
2025-11-17 12:09:59 -05:00
cfallows-amd
72107dd6d5 [Ex CI] Adding dependencies to rocprofiler-compute azure workflow (#5667) 2025-11-14 12:24:56 -05:00
amd-hsivasun
99c1590057 [Ex CI] Added ROCM_PATH env var to rocprofiler-compute (#5666) 2025-11-14 12:19:06 -05:00
Jeffrey Novotny
3d86323f88 Update licenses document to reflect monorepo (#620) 2025-11-14 09:16:48 -05:00
Carrie Fallows
636d4cc736 Adding dependencies to rocmDependencies in rocprof-compute yaml. Now needed for building because of rocprofiler-sdk dependency.
Signed-off-by: Carrie Fallows <Carrie.Fallows@amd.com>
2025-11-13 20:56:45 -05:00
amd-hsivasun
d1ce815d8d [Ex CI] Add rocprofiler-sdk dep to build for rocprofiler-compute (#5664) 2025-11-13 16:08:02 -05:00
Pratik Basyal
80ced95526 Changelog updated (#5660) 2025-11-13 10:18:15 -05:00
Pratik Basyal
09c6a9fdef 710 RCCL Known Issues and CRIU note update (#5647)
* RCCL ALltoALL known issue added

* CRIU note added

* Minor change

* Review feedback and AMDSMI detailed changelog link added

* Github issue link added
2025-11-11 16:54:36 -05:00
Alex Xu
372ddd5af3 revert test changes 2025-11-11 09:33:28 -05:00
peterjunpark
eb956cfc5c Fixed wording related to VLLM_V1_USE_PREFILL_DECODE_ATTENTION (#5605)
Co-authored-by: Hongxia Yang <hongxia.yang@amd.com>
2025-11-11 09:22:11 -05:00
peterjunpark
e05cdca54f Fix references to vLLM docs (#5651) 2025-11-11 09:00:07 -05:00
anisha-amd
04c7374f41 Docs: frameworks 25.10 - compatibility - DGL and llama.cpp (#5648) 2025-11-10 15:26:54 -05:00
Alex Xu
39de859bd1 update rocm-docs-core to 1.29.0 2025-11-10 14:10:06 -05:00
amd-hsivasun
c8531ac7ea [Ex CI] Update pipeline Id for hipTensor to monorepo (#5638) 2025-11-10 13:32:10 -05:00
Pratik Basyal
420bbfa126 7.1.0 MI325X PLDM note updated (#5644)
* PLDM note updated

* Footnote update

* Note added to compatibility

* Lint error fixed
2025-11-08 09:08:21 -05:00
Pratik Basyal
4881887e2c rocBLAS precision known issue added [Develop] (#5641)
* rocBLAS precision known issue added

* IPC note removed

* Review feedback added
2025-11-07 19:45:33 -05:00
Pratik Basyal
148d6670ad rocBLAS and HipBLASLt known issue added 7.1.0 (#5634)
* rocBLAS and HipBLASLt known issue added

* Title warning fixed

* Jeff's feedback added

* Leo's feedback incorporated

* Minor feedback

* MI325X PLDM udpate

* Leo's feedback added

* PyTorch profiling issue added

* Changelog synced

* JAX section removed

* Ram's feedback added
2025-11-07 17:48:36 -05:00
amd-hsivasun
9770e9b6ef [Ex CI] hiptensor Enablement (#5636) 2025-11-07 16:08:46 -05:00
Joseph Macaranas
ee4cf66d67 [External CI] Add simde-devel in dnf mapping (#5635) 2025-11-07 00:59:35 -05:00
Alex Xu
908862242a test preview banner 2025-11-06 12:24:52 -05:00
amd-hsivasun
6ba30f191c [Ex CI] rocWMMA increase timeout for test job (#5620) 2025-11-06 11:38:07 -05:00
yugang-amd
674dc355e4 vLLM 10/24 release (#5626)
* vLLM 10/24 release

* updates per SME inputs

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/vllm.rst

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-11-05 11:13:50 -05:00
Adel Johar
c7f3a56811 [Ex CI] Add half, rccl, and dependencies for rpp, mivisionx and rocjpeg 2025-11-05 15:59:15 +01:00
Pratik Basyal
0107fa731e ROCm Bandwidth test issue added (#5612) 2025-10-31 18:19:40 -04:00
Pratik Basyal
a87ec360e1 710 known issues update[Batch1] (#5604)
* Version update

* ROCm Bandwidth failure added

* Editorial feedback added

* Minor change

* rocprofv3 issue added

* Minor change

* ROCgdb issue added

* SME feedback incorpprated

* Leo's feedback added

* ROCm Compute Profiler known issue added

* Changelog synced
2025-10-31 14:57:13 -04:00
amd-hsivasun
7215e1e8c7 [Ex CI] Update rocwmma pipeline ID to monorepo (#5602) 2025-10-31 13:56:17 -04:00
amd-hsivasun
e4a59d8c66 [Ex CI] Enable rocWMMA Monorepo (#5597)
* [Ex CI] Enable rocWMMA Monorepo

* Updated to use component name parameter
2025-10-30 13:43:05 -04:00
Pratik Basyal
8108fe7275 7.1.0 Post GA updates (#5600)
* Post GA updates

* Mono repo link added

* AMD SMI changelog link removed
2025-10-30 13:27:25 -04:00
alexxu-amd
d3ff9d7c8e Merge pull request #5599 from ROCm/sync-develop-from-internal
Sync develop from internal for 7.1.0
2025-10-30 11:37:20 -04:00
Alex Xu
939ee7de0c Merge remote-tracking branch 'internal/develop' into sync-develop-from-internal 2025-10-30 11:15:00 -04:00
Pratik Basyal
f1e6c285dd 7.1.0 PRE GA Link reset (#616)
* Link reset

* Changelog synced and feedback incorporated

* Jeff's feedback added
2025-10-30 11:01:13 -04:00
alexxu-amd
ff1d9b4d69 Update versions.md for ROCm 7.1.0 GA (#615)
* Update versions.md

* fix linting
2025-10-30 10:00:32 -04:00
srayasam-amd
ef3fa601d5 7.1.0 GA update (#5598)
* PR for GA 7.1.0

* Create rocm-7.1.0.xml

* Update default.xml

* Update rocm-7.1.0.xml
2025-10-30 19:10:03 +05:30
Pratik Basyal
576191a104 710 release highlights update pre GA (#614)
* hipBLASLt highlights updated

* Flash attention highlight added

* PLDM highlight updated

* Spell fixes
2025-10-30 09:03:32 -04:00
Pratik Basyal
2db07b5cda Changelog updated for HIP (#613) 2025-10-29 18:27:05 -04:00
alexxu-amd
fe3dc988b8 Merge pull request #612 from ROCm/sync-develop-from-external
Sync develop from external for 7.1.0 GA
2025-10-29 17:13:01 -04:00
Alex Xu
36c879b7e0 resolve merge conflict 2025-10-29 17:08:07 -04:00
alexxu-amd
91450dca10 Merge branch 'develop' into sync-develop-from-external 2025-10-29 16:49:33 -04:00
Alex Xu
2de92767e6 Merge remote-tracking branch 'external/develop' into sync-develop-from-external 2025-10-29 16:48:29 -04:00
Pratik Basyal
54d226acd9 710 highlight updates [batch 2] (#611)
* Changelog updated for ROCdbg api"

* Systems profiler update

* Minor change
2025-10-29 16:42:57 -04:00
Pratik Basyal
f46d7ec00f 7.1.0 Release notes updated (#610)
* Release notes updated

* Changelog updated"

Changelog udpated
"

* Github link updated for Mono repo
2025-10-29 14:59:33 -04:00
Pratik Basyal
09c946b6fb 710 fixed issue update (#608)
* Resolved issues added

* Changelog synced

* Changelog synced
2025-10-29 12:28:09 -04:00
Pratik Basyal
5285669d98 7.1.0 release notes, changelog, and known issues update (#606)
* RCCL and hipblaslt changelog updated

* ROCProfiler-SDK highlight addede

* Review feedback from Leo and Swati added

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
Co-authored-by: Swati Rawat <120587655+SwRaw@users.noreply.github.com>

* ROCprofiler-SDK added

* Minor edits

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
Co-authored-by: Swati Rawat <120587655+SwRaw@users.noreply.github.com>
2025-10-29 10:22:52 -04:00
Jan Stephan
9b3138cffa [Ex CI] Add aomp, aomp-extras, composable_kernel and rocALUTION
Remove libomp-dev

Signed-off-by: Jan Stephan <jan.stephan@amd.com>
2025-10-29 11:22:27 +01:00
Pratik Basyal
61fffe3250 7.0.2 Broken link, version and known issue update (#5591)
* Version and known issue update

* Historical compatibility updated
2025-10-28 15:16:15 -04:00
dependabot[bot]
43ccfbbe80 Bump rocm-docs-core from 1.26.0 to 1.27.0 in /docs/sphinx (#5570)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.26.0 to 1.27.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.26.0...v1.27.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-version: 1.27.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-10-28 11:06:22 -04:00
peterjunpark
1515fb3779 Revert "Add xdit diffusion docs (#5576)" (#5580)
This reverts commit 4132a2609c.
2025-10-27 16:22:28 -04:00
randyh62
410a69efe4 Update RELEASE.md (#598)
Edit doorbell ring improvements
2025-10-27 13:14:45 -07:00
Joseph Macaranas
248cbf8bc1 [External CI] rccl triggers rocprofiler-sdk downstream (#5420)
- Update rccl component pipeline to include new additions made to projects already in super repos.
- Also update rccl to trigger rocproifler-sdk job upon completion.
- rocprofiler-sdk pipeline updated to include os parameter to enable future almalinux 8 job.
2025-10-27 12:14:30 -04:00
Istvan Kiss
0171dced89 Link fix and remove CentOS Stream mention from PyTorch release notes. (#593)
CentOS Stream not officially supported OS
2025-10-27 16:47:52 +01:00
Istvan Kiss
f2d6675839 Add back extra line to fix spellchecker (#604) 2025-10-27 16:39:29 +01:00
Pratik Basyal
7d0fad9aa8 Changelog duplication fixed (#601) 2025-10-27 10:38:44 -04:00
Kristoffer
4132a2609c Add xdit diffusion docs (#5576)
* Add xdit video diffusion base page.

* Update supported accelerators.

* Remove dependency on mad-tags.

* Update docker pull section.

* Update container launch instructions.

* Improve launch instruction options and layout.

* Add benchmark result outputs.

* Fix wrong HunyuanVideo path

* Finalize instructions.

* Consistent title.

* Make page and side-bar titles the same.

* Updated wordlist. Removed note container reg HF.

* Remove fp8_gemms in command and add release notes.

* Update accelerators naming.

* Add note regarding OOB performance.

* Fix admonition box.

* Overall fixes.
2025-10-27 14:56:55 +01:00
Pratik Basyal
c56d5b7495 7.1.0 release notes and compatibility footnote update (#599)
* RDC changelog and highlight addition

* Compatibility updated

* Minor change

* Consolidated changelog synced
2025-10-25 08:47:17 -05:00
Pratik Basyal
a2e2bd3277 710 Compatibility table fixed (#597)
* Compatibility table fixed

* Ryzen link updated

* rocJPEG added

* Driver updated

* Minor change

* PLDM udpate
2025-10-24 15:54:11 -04:00
randyh62
32d1cdcd90 Update RELEASE.md (#596)
Fix HIP 7.1 issues
2025-10-24 12:11:59 -07:00
Pratik Basyal
ac16524ebd 7.1.0 Compatibility updated (#595)
* Compatibility updated

* rocAL and MIgraphx changelog added

* Minor update

* Heading changes
2025-10-24 13:43:36 -04:00
Pratik Basyal
157d86b780 7.1.0 Release Notes Update (#591)
* Initial changelog added

* Changelog updated

* 7.1.0 draft changes

* Highlight changes

* Add release highlights

* formatting

* Order updated

* Highlights added

* Highlight update

* Changelog updated

* RCCL change

* RCCL changelog entry added

* Changelog updates added

* heading level fixed

* Updates added

* Leo's and Jeff's review feedback incorporated

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>

* Release notes feedback

* Updated highlights

* Minor changes

* TOC for internal updated

---------

Co-authored-by: Peter Park <peter.park@amd.com>
Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-10-24 12:41:23 -04:00
peterjunpark
35ca027aa4 Fix broken links under rocm-for-ai/ (#5564) 2025-10-23 14:39:58 -04:00
peterjunpark
90c1d9068f add xref to vllm v1 optimization guide in workload.rst (#5560) 2025-10-22 13:47:46 -04:00
peterjunpark
cb8d21a0df Updates to the vLLM optimization guide for MI300X/MI355X (#5554)
* Expand vLLM optimization guide for MI300X/MI355X with comprehensive AITER coverage. attention backend selection, environment variables (HIP/RCCL/Quick Reduce), parallelism strategies, quantization (FP8/FP4), engine tuning, CUDA graph modes, and multi-node scaling.

Co-authored-by: PinSiang <pinsiang.tan@embeddedllm.com>
Co-authored-by: Hongxia Yang <62075498+hongxiayang@users.noreply.github.com>
Co-authored-by: pinsiangamd <pinsiang.tan@amd.com>
Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-10-22 12:54:25 -04:00
Kiriti Gowda
6f8cf36279 Merge pull request #5530 from kiritigowda/kg/ctest-verbose
CTest - Output verbose
2025-10-21 13:16:12 -07:00
anisha-amd
8eb5fef37c Docs: frameworks compatibility standardization (#5488) 2025-10-21 16:12:18 -04:00
Pratik Basyal
a5f0b30a47 PLDM version update for MI350 series [Develop] (#5547)
* PLDM version update for MI350 series

* Minor update
2025-10-20 14:39:17 -04:00
Adel Johar
2ec051dec5 Merge pull request #5531 from adeljo-amd/ci_examples
[Ex CI] Add libomp-dev, MIVisionX, rocDecode and dependencies
2025-10-20 09:55:02 +02:00
Istvan Kiss
14ada81c41 Pytorch release notes with rocm 7.1 (#588)
* Add PyTorch release notes udpate

* Remove torchtext

Torchtext development stoped and only supported with PyTorch 2.2

* Update
2025-10-17 22:03:14 +02:00
Adel Johar
b3459da524 [Ex CI] Add libomp-dev, MIVisionX, rocDecode 2025-10-17 14:02:54 +02:00
kiritigowda
eba211d7f1 CTest - Output verbose 2025-10-16 15:22:27 -07:00
107 changed files with 16827 additions and 2786 deletions

View File

@@ -128,6 +128,9 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.28.6'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -152,6 +155,7 @@ jobs:
-DCMAKE_BUILD_TYPE=Release
-DGPU_TARGETS=${{ job.target }}
-DAMDGPU_TARGETS=${{ job.target }}
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_MODULE_PATH=$(Agent.BuildDirectory)/rocm/lib/cmake/hip
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm
-DHALF_INCLUDE_DIR=$(Agent.BuildDirectory)/rocm/include
@@ -192,6 +196,9 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.28.6'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -217,6 +224,7 @@ jobs:
-DCMAKE_BUILD_TYPE=Release
-DGPU_TARGETS=${{ job.target }}
-DAMDGPU_TARGETS=${{ job.target }}
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_MODULE_PATH=$(Agent.BuildDirectory)/rocm/lib/cmake/hip
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm/llvm;$(Agent.BuildDirectory)/rocm
-DHALF_INCLUDE_DIR=$(Agent.BuildDirectory)/rocm/include

View File

@@ -34,6 +34,7 @@ parameters:
default:
- cmake
- libnuma-dev
- libsimde-dev
- mesa-common-dev
- ninja-build
- ocl-icd-libopencl1

View File

@@ -1,10 +1,29 @@
parameters:
- name: componentName
type: string
default: amdsmi
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -31,7 +50,7 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: amdsmi_build_${{ job.os }}
- job: ${{ parameters.componentName }}_build_${{ job.os }}
pool:
${{ if eq(job.os, 'ubuntu2404') }}:
vmImage: 'ubuntu-24.04'
@@ -55,6 +74,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
@@ -65,50 +85,54 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
os: ${{ job.os }}
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
os: ${{ job.os }}
componentName: ${{ parameters.componentName }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
# - template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
# parameters:
# aptPackages: ${{ parameters.aptPackages }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: amdsmi_test_${{ job.os }}_${{ job.target }}
dependsOn: amdsmi_build_${{ job.os }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
parameters:
runRocminfo: false
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: amdsmi
testDir: '$(Agent.BuildDirectory)'
testExecutable: 'sudo ./rocm/share/amd_smi/tests/amdsmitst'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
parameters:
runRocminfo: false
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)'
testExecutable: 'sudo ./rocm/share/amd_smi/tests/amdsmitst'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -1,10 +1,29 @@
parameters:
- name: componentName
type: string
default: hipTensor
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -51,7 +70,7 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: hipTensor_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -66,12 +85,15 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-
@@ -85,9 +107,12 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -95,44 +120,47 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: hipTensor_test_${{ job.target }}
timeoutInMinutes: 90
dependsOn: hipTensor_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: hipTensor
testDir: '$(Agent.BuildDirectory)/rocm/bin/hiptensor'
testParameters: '-E ".*-extended" --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
timeoutInMinutes: 90
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin/hiptensor'
testParameters: '-E ".*-extended" --extra-verbose --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -39,6 +39,7 @@ parameters:
- python3
- python3-dev
- python3-pip
- python3-venv
- libgtest-dev
- libboost-filesystem-dev
- libboost-program-options-dev
@@ -46,6 +47,8 @@ parameters:
type: object
default:
- nanobind>=2.0.0
- pytest
- pytest-cov
- name: rocmDependencies
type: object
default:
@@ -72,8 +75,10 @@ parameters:
- { os: ubuntu2204, packageManager: apt }
- { os: almalinux8, packageManager: dnf }
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
# - { os: ubuntu2204, packageManager: apt, target: gfx1100 }
# - { os: ubuntu2204, packageManager: apt, target: gfx1151 }
# - { os: ubuntu2204, packageManager: apt, target: gfx1201 }
- name: downstreamComponentMatrix
type: object
default:
@@ -116,6 +121,11 @@ jobs:
parameters:
dependencyList:
- gtest
- ${{ if ne(job.os, 'almalinux8') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- catch2
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
@@ -137,6 +147,7 @@ jobs:
-DORIGAMI_BUILD_SHARED_LIBS=ON
-DORIGAMI_ENABLE_PYTHON=ON
-DORIGAMI_BUILD_TESTING=ON
-DORIGAMI_ENABLE_FETCH=ON
-GNinja
- ${{ if ne(job.os, 'almalinux8') }}:
- task: PublishPipelineArtifact@1
@@ -169,7 +180,6 @@ jobs:
dependsOn: origami_build_${{ job.os }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
@@ -180,30 +190,30 @@ jobs:
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- ${{ if ne(job.os, 'almalinux8') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- catch2
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
os: ${{ job.os }}
- task: DownloadPipelineArtifact@2
displayName: 'Download Build Directory Artifact'
inputs:
artifact: '${{ parameters.componentName }}_${{ job.os }}_build_dir'
path: '$(Agent.BuildDirectory)/s/build'
- task: DownloadPipelineArtifact@2
displayName: 'Download Python Source Artifact'
inputs:
artifact: '${{ parameters.componentName }}_${{ job.os }}_python_src'
path: '$(Agent.BuildDirectory)/s/python'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
@@ -212,25 +222,72 @@ jobs:
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- task: CMake@1
displayName: 'Origami Test CMake Configuration'
inputs:
cmakeArgs: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DORIGAMI_BUILD_SHARED_LIBS=ON
-DORIGAMI_ENABLE_PYTHON=ON
-DORIGAMI_BUILD_TESTING=ON
-GNinja
$(Agent.BuildDirectory)/s
- task: Bash@3
displayName: 'Build Origami Tests and Python Bindings'
inputs:
targetType: inline
workingDirectory: build
script: |
cmake --build . --target origami-tests origami_python -- -j$(nproc)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
# Run tests using CTest (discovers and runs both C++ and Python tests)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './origami-tests'
testParameters: '--yaml origami-tests.yaml --gtest_output=xml:./test_output.xml --gtest_color=yes'
- script: |
set -e
export PYTHONPATH=$(Agent.BuildDirectory)/s/build/python:$PYTHONPATH
echo "--- Running origami_test.py ---"
python3 $(Agent.BuildDirectory)/s/python/origami_test.py
echo "--- Running origami_grid_test.py ---"
python3 $(Agent.BuildDirectory)/s/python/origami_grid_test.py
displayName: 'Run Python Binding Tests'
condition: succeeded()
testDir: 'build'
testParameters: '--output-on-failure --force-new-ctest-process --output-junit test_output.xml'
# Test pip install workflow
# - task: Bash@3
# displayName: 'Test Pip Install'
# inputs:
# targetType: inline
# script: |
# set -e
# echo "==================================================================="
# echo "Testing pip install workflow (pip install -e .)"
# echo "==================================================================="
# # Set environment variables for pip install CMake build
# export ROCM_PATH=$(Agent.BuildDirectory)/rocm
# export CMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm:$(Agent.BuildDirectory)/vendor
# export CMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
# echo "ROCM_PATH: $ROCM_PATH"
# echo "CMAKE_PREFIX_PATH: $CMAKE_PREFIX_PATH"
# echo "CMAKE_CXX_COMPILER: $CMAKE_CXX_COMPILER"
# echo ""
# # Install from source directory
# cd "$(Agent.BuildDirectory)/s/python"
# pip install -e .
# # Verify import works
# echo ""
# echo "Verifying origami can be imported..."
# python3 -c "import origami; print('✓ Successfully imported origami')"
# # Run pytest on installed package
# echo ""
# echo "Running pytest tests..."
# python3 -m pytest tests/ -v -m "not slow" --tb=short
# echo ""
# echo "==================================================================="
# echo "Pip install test completed successfully"
# echo "==================================================================="
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -1,10 +1,35 @@
parameters:
- name: componentName
type: string
default: rccl
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: systemsRepo
type: string
default: systems_repo
- name: systemsSparseCheckoutDir
type: string
default: 'projects/rocprofiler-sdk'
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -57,19 +82,28 @@ parameters:
type: object
default:
buildJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
testJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
- name: downstreamComponentMatrix
type: object
default:
- rocprofiler-sdk:
name: rocprofiler-sdk
sparseCheckoutDir: ''
skipUnifiedBuild: 'false'
buildDependsOn:
- rccl_build
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: rccl_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
timeoutInMinutes: 120
variables:
- group: common
@@ -77,17 +111,23 @@ jobs:
- name: HIP_ROCCLR_HOME
value: $(Build.BinariesDirectory)/rocm
pool: ${{ variables.MEDIUM_BUILD_POOL }}
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
submoduleBehaviour: recursive
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
@@ -97,10 +137,14 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/bin/hipcc
@@ -112,58 +156,87 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
installLatestCMake: true
- ${{ if eq(job.os, 'ubuntu2204') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
extraEnvVars:
- HIP_ROCCLR_HOME:::/home/user/workspace/rocm
installLatestCMake: true
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rccl_test_${{ job.target }}
timeoutInMinutes: 120
dependsOn: rccl_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rccl
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './rccl-UnitTests'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
timeoutInMinutes: 120
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './rccl-UnitTests'
testParameters: '--gtest_output=xml:./test_output.xml --gtest_color=yes'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ if parameters.triggerDownstreamJobs }}:
- ${{ each component in parameters.downstreamComponentMatrix }}:
- ${{ if not(and(parameters.unifiedBuild, eq(component.skipUnifiedBuild, 'true'))) }}:
- template: /.azuredevops/components/${{ component.name }}.yml@pipelines_repo
parameters:
checkoutRepo: ${{ parameters.systemsRepo }}
sparseCheckoutDir: ${{ parameters.systemsSparseCheckoutDir }}
triggerDownstreamJobs: true
unifiedBuild: ${{ parameters.unifiedBuild }}
${{ if parameters.unifiedBuild }}:
buildDependsOn: ${{ component.unifiedBuild.buildDependsOn }}
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ component.unifiedBuild.downstreamAggregateNames }}
${{ else }}:
buildDependsOn: ${{ component.buildDependsOn }}
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}+${{ parameters.componentName }}

View File

@@ -1,10 +1,29 @@
parameters:
- name: componentName
type: string
default: rocWMMA
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -66,7 +85,11 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: rocWMMA_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -81,6 +104,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
@@ -102,9 +126,12 @@ jobs:
# gfx1030 not supported in documentation
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -112,43 +139,45 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rocWMMA_test_${{ job.target }}
timeoutInMinutes: 270
dependsOn: rocWMMA_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocWMMA
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocwmma'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
timeoutInMinutes: 350
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocwmma'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -81,7 +81,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocm-cmake
testParameters: '-E "pass-version-parent" --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
testParameters: '-E "pass-version-parent" --extra-verbose --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:

View File

@@ -21,13 +21,35 @@ parameters:
- libtbb-dev
- libtiff-dev
- libva-amdgpu-dev
- libva2-amdgpu
- mesa-amdgpu-va-drivers
- libavcodec-dev
- libavformat-dev
- libavutil-dev
- ninja-build
- python3-pip
- protobuf-compiler
- libprotoc-dev
- libopencv-dev
- name: pipModules
type: object
default:
- future==1.0.0
- pytz==2022.1
- numpy==1.23
- google==3.0.0
- protobuf==3.12.4
- onnx==1.12.0
- nnef==1.0.7
- name: rocmDependencies
type: object
default:
- AMDMIGraphX
- aomp
- aomp-extras
- clr
- half
- composable_kernel
- hipBLAS
- hipBLAS-common
- hipBLASLt
@@ -40,7 +62,13 @@ parameters:
- hipTensor
- llvm-project
- MIOpen
- MIVisionX
- rocm_smi_lib
- rccl
- rocAL
- rocALUTION
- rocBLAS
- rocDecode
- rocFFT
- rocJPEG
- rocPRIM
@@ -57,7 +85,11 @@ parameters:
type: object
default:
- AMDMIGraphX
- aomp
- aomp-extras
- clr
- half
- composable_kernel
- hipBLAS
- hipBLAS-common
- hipBLASLt
@@ -70,7 +102,13 @@ parameters:
- hipTensor
- llvm-project
- MIOpen
- MIVisionX
- rocm_smi_lib
- rccl
- rocAL
- rocALUTION
- rocBLAS
- rocDecode
- rocFFT
- rocminfo
- rocPRIM
@@ -113,6 +151,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
@@ -212,5 +251,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -65,6 +65,13 @@ parameters:
- pytest
- pytest-cov
- pytest-xdist
- name: rocmDependencies
type: object
default:
- clr
- llvm-project
- ROCR-Runtime
- rocprofiler-sdk
- name: rocmTestDependencies
type: object
default:
@@ -101,10 +108,12 @@ jobs:
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}_${{ job.target }}
- ${{ build }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
pool:
vmImage: ${{ variables.BASE_BUILD_POOL }}
workspace:
@@ -119,6 +128,14 @@ jobs:
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
extraBuildFlags: >-

View File

@@ -79,27 +79,27 @@ parameters:
type: object
default:
buildJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
testJobs:
- gfx942:
target: gfx942
- gfx90a:
target: gfx90a
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: rocprofiler_sdk_build_${{ job.target }}
- job: rocprofiler_sdk_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }}
- ${{ build }}_${{ job.os}}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
@@ -107,6 +107,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
@@ -118,6 +119,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
@@ -132,6 +134,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DROCPROFILER_BUILD_TESTS=ON
@@ -143,6 +146,7 @@ jobs:
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
@@ -158,8 +162,8 @@ jobs:
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rocprofiler_sdk_test_${{ job.target }}
dependsOn: rocprofiler_sdk_build_${{ job.target }}
- job: rocprofiler_sdk_test_${{ job.os }}_${{ job.target }}
dependsOn: rocprofiler_sdk_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
@@ -177,6 +181,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
@@ -188,6 +193,7 @@ jobs:
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
os: ${{ job.os }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
@@ -202,6 +208,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DROCPROFILER_BUILD_TESTS=ON
@@ -213,7 +220,8 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: $(Agent.BuildDirectory)/s/build
os: ${{ job.os }}
testDir: $(Agent.BuildDirectory)/build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -63,6 +63,7 @@ parameters:
libopenblas-dev: openblas-devel
libopenmpi-dev: openmpi-devel
libpci-dev: libpciaccess-devel
libsimde-dev: simde-devel
libssl-dev: openssl-devel
# note: libstdc++-devel is in the base packages list
libsystemd-dev: systemd-devel

View File

@@ -35,8 +35,8 @@ parameters:
developBranch: develop
hasGpuTarget: true
amdsmi:
pipelineId: 99
developBranch: amd-staging
pipelineId: 376
developBranch: develop
hasGpuTarget: false
aomp-extras:
pipelineId: 111
@@ -115,7 +115,7 @@ parameters:
developBranch: develop
hasGpuTarget: true
hipTensor:
pipelineId: 105
pipelineId: 374
developBranch: develop
hasGpuTarget: true
llvm-project:
@@ -263,7 +263,7 @@ parameters:
developBranch: develop
hasGpuTarget: true
rocWMMA:
pipelineId: 109
pipelineId: 370
developBranch: develop
hasGpuTarget: true
rpp:

View File

@@ -13,7 +13,7 @@ parameters:
default: ctest
- name: testParameters
type: string
default: --output-on-failure --force-new-ctest-process --output-junit test_output.xml
default: --extra-verbose --output-on-failure --force-new-ctest-process --output-junit test_output.xml
- name: extraTestParameters
type: string
default: ''

1
.gitignore vendored
View File

@@ -1,6 +1,7 @@
.venv
.vscode
build
__pycache__
# documentation artifacts
_build/

View File

@@ -27,6 +27,7 @@ ASICs
ASan
ASAN
ASm
Async
ATI
atomicRMW
AddressSanitizer
@@ -34,6 +35,7 @@ AlexNet
Andrej
Arb
Autocast
autograd
BARs
BatchNorm
BLAS
@@ -77,6 +79,7 @@ CX
Cavium
CentOS
ChatGPT
Cholesky
CoRR
Codespaces
Commitizen
@@ -86,9 +89,11 @@ Conda
ConnectX
CountOnes
CuPy
customizable
da
Dashboarding
Dataloading
dataflows
DBRX
DDR
DF
@@ -130,10 +135,13 @@ ELMo
ENDPGM
EPYC
ESXi
EP
EoS
etcd
equalto
fas
FBGEMM
FiLM
FIFOs
FFT
FFTs
@@ -154,10 +162,12 @@ Fortran
Fuyu
GALB
GAT
GATNE
GCC
GCD
GCDs
GCN
GCNN
GDB
GDDR
GDR
@@ -176,13 +186,16 @@ Glibc
GLXT
Gloo
GMI
GNN
GNNs
GPG
GPR
GPT
GPU
GPU's
GPUDirect
GPUs
Graphbolt
GraphBolt
GraphSage
GRBM
GRE
@@ -212,7 +225,10 @@ Haswell
Higgs
href
Hyperparameters
HybridEngine
Huggingface
Hunyuan
HunyuanVideo
IB
ICD
ICT
@@ -243,7 +259,9 @@ Intersphinx
Intra
Ioffe
JAX's
JAXLIB
Jinja
js
JSON
Jupyter
KFD
@@ -263,6 +281,7 @@ LLM
LLMs
LLVM
LM
logsumexp
LRU
LSAN
LSan
@@ -298,6 +317,7 @@ Makefiles
Matplotlib
Matrox
MaxText
MBT
Megablocks
Megatrends
Megatron
@@ -307,12 +327,14 @@ Meta's
Miniconda
MirroredStrategy
Mixtral
MLA
MosaicML
MoEs
Mooncake
Mpops
Multicore
Multithreaded
mx
MXFP
MyEnvironment
MyST
@@ -349,6 +371,7 @@ OFED
OMM
OMP
OMPI
OOM
OMPT
OMPX
ONNX
@@ -375,6 +398,7 @@ perf
PEQT
PIL
PILImage
PJRT
POR
PRNG
PRs
@@ -394,6 +418,7 @@ Profiler's
PyPi
Pytest
PyTorch
QPS
Qcycles
Qwen
RAII
@@ -496,13 +521,12 @@ TPS
TPU
TPUs
TSME
Taichi
Taichi's
Tagram
TensileLite
TensorBoard
TensorFlow
TensorParallel
TheRock
ToC
TorchAudio
torchaudio
@@ -520,6 +544,7 @@ UAC
UC
UCC
UCX
ud
UE
UIF
UMC
@@ -669,6 +694,7 @@ denoised
denoises
denormalize
dequantization
dequantized
dequantizes
deserializers
detections
@@ -784,6 +810,7 @@ linalg
linearized
linter
linux
llm
llvm
lm
localscratch
@@ -829,11 +856,13 @@ pallas
parallelization
parallelizing
param
params
parameterization
passthrough
pe
perfcounter
performant
piecewise
perl
pragma
pre
@@ -874,6 +903,7 @@ querySelectorAll
queueing
qwen
radeon
rc
rccl
rdc
rdma
@@ -935,6 +965,7 @@ scalability
scalable
scipy
seealso
selectattr
selectedTag
sendmsg
seqs
@@ -980,6 +1011,7 @@ tokenizer
tokenizes
toolchain
toolchains
topk
toolset
toolsets
torchtitan
@@ -1007,6 +1039,7 @@ USM
UTCL
UTIL
utils
UX
vL
variational
vdi
@@ -1036,6 +1069,8 @@ writebacks
wrreq
wzo
xargs
xdit
xDiT
xGMI
xPacked
xz

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,33 +1,17 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-7.0.2"
<default revision="refs/tags/rocm-7.1.1"
remote="rocm-org"
sync-c="true"
sync-j="4" />
<!--list of projects for ROCm-->
<project name="ROCK-Kernel-Driver" />
<project name="ROCR-Runtime" />
<project name="amdsmi" />
<project name="aqlprofile" />
<project name="rdc" />
<project name="rocm_bandwidth_test" />
<project name="rocm_smi_lib" />
<project name="rocm-core" />
<project name="rocm-examples" />
<project name="rocminfo" />
<project name="rocprofiler" />
<project name="rocprofiler-register" />
<project name="rocprofiler-sdk" />
<project name="rocprofiler-compute" />
<project name="rocprofiler-systems" />
<project name="roctracer" />
<!--HIP Projects-->
<project name="hip" />
<project name="hip-tests" />
<project name="HIPIFY" />
<project name="clr" />
<project name="hipother" />
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
<project name="half" />
<project name="llvm-project" />
@@ -41,6 +25,7 @@
<project groups="mathlibs" name="MIVisionX" />
<project groups="mathlibs" name="ROCmValidationSuite" />
<project groups="mathlibs" name="composable_kernel" />
<project groups="mathlibs" name="hipSOLVER" />
<project groups="mathlibs" name="hipTensor" />
<project groups="mathlibs" name="hipfort" />
<project groups="mathlibs" name="rccl" />
@@ -54,7 +39,14 @@
MIOpen rocBLAS rocFFT rocPRIM rocRAND
rocSPARSE rocThrust Tensile -->
<project groups="mathlibs" name="rocm-libraries" />
<!-- The following components have been migrated to rocm-systems:
aqlprofile clr hip hip-tests hipother
rdc rocm-core rocm_smi_lib rocminfo rocprofiler-compute
rocprofiler-register rocprofiler-sdk rocprofiler-systems
rocprofiler rocr-runtime roctracer -->
<project groups="mathlibs" name="rocm-systems" />
<project groups="mathlibs" name="rocPyDecode" />
<project groups="mathlibs" name="rocSOLVER" />
<project groups="mathlibs" name="rocSHMEM" />
<project groups="mathlibs" name="rocWMMA" />
<project groups="mathlibs" name="rocm-cmake" />

View File

@@ -25,69 +25,69 @@ additional licenses. Please review individual repositories for more information.
<!-- spellcheck-disable -->
| Component | License |
|:---------------------|:-------------------------|
| [AMD Compute Language Runtime (CLR)](https://github.com/ROCm/clr) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/LICENSE.txt) |
| [AMD Compute Language Runtime (CLR)](https://github.com/ROCm/rocm-systems/tree/develop/projects/clr) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/clr/LICENSE.md) |
| [AMD SMI](https://github.com/ROCm/amdsmi) | [MIT](https://github.com/ROCm/amdsmi/blob/amd-staging/LICENSE) |
| [aomp](https://github.com/ROCm/aomp/) | [Apache 2.0](https://github.com/ROCm/aomp/blob/aomp-dev/LICENSE) |
| [aomp-extras](https://github.com/ROCm/aomp-extras/) | [MIT](https://github.com/ROCm/aomp-extras/blob/aomp-dev/LICENSE) |
| [AQLprofile](https://github.com/rocm/aqlprofile/) | [MIT](https://github.com/ROCm/aqlprofile/blob/amd-staging/LICENSE.md) |
| [AQLprofile](https://github.com/ROCm/rocm-systems/tree/develop/projects/aqlprofile/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/aqlprofile/LICENSE.md) |
| [Code Object Manager (Comgr)](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/comgr) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/comgr/LICENSE.txt) |
| [Composable Kernel](https://github.com/ROCm/composable_kernel) | [MIT](https://github.com/ROCm/composable_kernel/blob/develop/LICENSE) |
| [half](https://github.com/ROCm/half/) | [MIT](https://github.com/ROCm/half/blob/rocm/LICENSE.txt) |
| [HIP](https://github.com/ROCm/HIP/) | [MIT](https://github.com/ROCm/HIP/blob/amd-staging/LICENSE.txt) |
| [hipamd](https://github.com/ROCm/clr/tree/amd-staging/hipamd) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/hipamd/LICENSE.txt) |
| [hipBLAS](https://github.com/ROCm/hipBLAS/) | [MIT](https://github.com/ROCm/hipBLAS/blob/develop/LICENSE.md) |
| [hipBLASLt](https://github.com/ROCm/hipBLASLt/) | [MIT](https://github.com/ROCm/hipBLASLt/blob/develop/LICENSE.md) |
| [HIP](https://github.com/ROCm/rocm-systems/tree/develop/projects/hip/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/hip/LICENSE.md) |
| [hipamd](https://github.com/ROCm/rocm-systems/tree/develop/projects/clr/hipamd/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/clr/hipamd/LICENSE.md) |
| [hipBLAS](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipblas/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipblas/LICENSE.md) |
| [hipBLASLt](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipblaslt/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipblaslt/LICENSE.md) |
| [HIPCC](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/hipcc) | [MIT](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/hipcc/LICENSE.txt) |
| [hipCUB](https://github.com/ROCm/hipCUB/) | [Custom](https://github.com/ROCm/hipCUB/blob/develop/LICENSE.txt) |
| [hipFFT](https://github.com/ROCm/hipFFT/) | [MIT](https://github.com/ROCm/hipFFT/blob/develop/LICENSE.md) |
| [hipCUB](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipcub/) | [Custom](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipcub/LICENSE.txt) |
| [hipFFT](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipfft/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipfft/LICENSE.md) |
| [hipfort](https://github.com/ROCm/hipfort/) | [MIT](https://github.com/ROCm/hipfort/blob/develop/LICENSE) |
| [HIPIFY](https://github.com/ROCm/HIPIFY/) | [MIT](https://github.com/ROCm/HIPIFY/blob/amd-staging/LICENSE.txt) |
| [hipRAND](https://github.com/ROCm/hipRAND/) | [MIT](https://github.com/ROCm/hipRAND/blob/develop/LICENSE.txt) |
| [hipSOLVER](https://github.com/ROCm/hipSOLVER/) | [MIT](https://github.com/ROCm/hipSOLVER/blob/develop/LICENSE.md) |
| [hipSPARSE](https://github.com/ROCm/hipSPARSE/) | [MIT](https://github.com/ROCm/hipSPARSE/blob/develop/LICENSE.md) |
| [hipSPARSELt](https://github.com/ROCm/hipSPARSELt/) | [MIT](https://github.com/ROCm/hipSPARSELt/blob/develop/LICENSE.md) |
| [hipTensor](https://github.com/ROCm/hipTensor) | [MIT](https://github.com/ROCm/hipTensor/blob/develop/LICENSE) |
| [hipRAND](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hiprand/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hiprand/LICENSE.md) |
| [hipSOLVER](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipsolver/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipsolver/LICENSE.md) |
| [hipSPARSE](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipsparse/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipsparse/LICENSE.md) |
| [hipSPARSELt](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hipsparselt/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hipsparselt/LICENSE.md) |
| [hipTensor](https://github.com/ROCm/rocm-libraries/tree/develop/projects/hiptensor/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/hiptensor/LICENSE) |
| [llvm-project](https://github.com/ROCm/llvm-project/) | [Apache](https://github.com/ROCm/llvm-project/blob/amd-staging/LICENSE.TXT) |
| [llvm-project/flang](https://github.com/ROCm/llvm-project/tree/amd-staging/flang) | [Apache 2.0](https://github.com/ROCm/llvm-project/blob/amd-staging/flang/LICENSE.TXT) |
| [MIGraphX](https://github.com/ROCm/AMDMIGraphX/) | [MIT](https://github.com/ROCm/AMDMIGraphX/blob/develop/LICENSE) |
| [MIOpen](https://github.com/ROCm/MIOpen/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/miopen/LICENSE.md) |
| [MIOpen](https://github.com/ROCm/rocm-libraries/tree/develop/projects/miopen/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/miopen/LICENSE.md) |
| [MIVisionX](https://github.com/ROCm/MIVisionX/) | [MIT](https://github.com/ROCm/MIVisionX/blob/develop/LICENSE.txt) |
| [rocAL](https://github.com/ROCm/rocAL) | [MIT](https://github.com/ROCm/rocAL/blob/develop/LICENSE.txt) |
| [rocALUTION](https://github.com/ROCm/rocALUTION/) | [MIT](https://github.com/ROCm/rocALUTION/blob/develop/LICENSE.md) |
| [rocBLAS](https://github.com/ROCm/rocBLAS/) | [MIT](https://github.com/ROCm/rocBLAS/blob/develop/LICENSE.md) |
| [rocBLAS](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocblas/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocblas/LICENSE.md) |
| [ROCdbgapi](https://github.com/ROCm/ROCdbgapi/) | [MIT](https://github.com/ROCm/ROCdbgapi/blob/amd-staging/LICENSE.txt) |
| [rocDecode](https://github.com/ROCm/rocDecode) | [MIT](https://github.com/ROCm/rocDecode/blob/develop/LICENSE) |
| [rocFFT](https://github.com/ROCm/rocFFT/) | [MIT](https://github.com/ROCm/rocFFT/blob/develop/LICENSE.md) |
| [rocFFT](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocfft/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocfft/LICENSE.md) |
| [ROCgdb](https://github.com/ROCm/ROCgdb/) | [GNU General Public License v3.0](https://github.com/ROCm/ROCgdb/blob/amd-staging/COPYING3) |
| [rocJPEG](https://github.com/ROCm/rocJPEG/) | [MIT](https://github.com/ROCm/rocJPEG/blob/develop/LICENSE) |
| [ROCK-Kernel-Driver](https://github.com/ROCm/ROCK-Kernel-Driver/) | [GPL 2.0 WITH Linux-syscall-note](https://github.com/ROCm/ROCK-Kernel-Driver/blob/master/COPYING) |
| [rocminfo](https://github.com/ROCm/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocminfo/blob/amd-staging/License.txt) |
| [rocminfo](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocminfo/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocminfo/License.txt) |
| [ROCm Bandwidth Test](https://github.com/ROCm/rocm_bandwidth_test/) | [MIT](https://github.com/ROCm/rocm_bandwidth_test/blob/master/LICENSE.txt) |
| [ROCm CMake](https://github.com/ROCm/rocm-cmake/) | [MIT](https://github.com/ROCm/rocm-cmake/blob/develop/LICENSE) |
| [ROCm Communication Collectives Library (RCCL)](https://github.com/ROCm/rccl/) | [Custom](https://github.com/ROCm/rccl/blob/develop/LICENSE.txt) |
| [ROCm-Core](https://github.com/ROCm/rocm-core) | [MIT](https://github.com/ROCm/rocm-core/blob/master/copyright) |
| [ROCm Compute Profiler](https://github.com/ROCm/rocprofiler-compute) | [MIT](https://github.com/ROCm/rocprofiler-compute/blob/amd-staging/LICENSE) |
| [ROCm Data Center (RDC)](https://github.com/ROCm/rdc/) | [MIT](https://github.com/ROCm/rdc/blob/amd-staging/LICENSE.md) |
| [ROCm-Core](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocm-core/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocm-core/LICENSE.md) |
| [ROCm Compute Profiler](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocprofiler-compute/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-compute/LICENSE.md) |
| [ROCm Data Center (RDC)](https://github.com/ROCm/rocm-systems/tree/develop/projects/rdc/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rdc/LICENSE.md) |
| [ROCm-Device-Libs](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/device-libs) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/device-libs/LICENSE.TXT) |
| [ROCm-OpenCL-Runtime](https://github.com/ROCm/clr/tree/amd-staging/opencl) | [MIT](https://github.com/ROCm/clr/blob/amd-staging/opencl/LICENSE.txt) |
| [ROCm-OpenCL-Runtime](https://github.com/ROCm/rocm-systems/tree/develop/projects/clr/opencl/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/clr/opencl/LICENSE.md) |
| [ROCm Performance Primitives (RPP)](https://github.com/ROCm/rpp) | [MIT](https://github.com/ROCm/rpp/blob/develop/LICENSE) |
| [ROCm SMI Lib](https://github.com/ROCm/rocm_smi_lib/) | [MIT](https://github.com/ROCm/rocm_smi_lib/blob/amd-staging/LICENSE.md) |
| [ROCm Systems Profiler](https://github.com/ROCm/rocprofiler-systems) | [MIT](https://github.com/ROCm/rocprofiler-systems/blob/amd-staging/LICENSE.md) |
| [ROCm SMI Lib](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocm-smi-lib/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocm-smi-lib/LICENSE.md) |
| [ROCm Systems Profiler](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocprofiler-systems/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-systems/LICENSE.md) |
| [ROCm Validation Suite](https://github.com/ROCm/ROCmValidationSuite/) | [MIT](https://github.com/ROCm/ROCmValidationSuite/blob/master/LICENSE) |
| [rocPRIM](https://github.com/ROCm/rocPRIM/) | [MIT](https://github.com/ROCm/rocPRIM/blob/develop/LICENSE.txt) |
| [ROCProfiler](https://github.com/ROCm/rocprofiler/) | [MIT](https://github.com/ROCm/rocprofiler/blob/amd-staging/LICENSE.md) |
| [ROCprofiler-SDK](https://github.com/ROCm/rocprofiler-sdk) | [MIT](https://github.com/ROCm/rocprofiler-sdk/blob/amd-mainline/LICENSE) |
| [rocPRIM](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocprim/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocprim/LICENSE.md) |
| [ROCProfiler](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocprofiler/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler/LICENSE.md) |
| [ROCprofiler-SDK](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocprofiler-sdk/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocprofiler-sdk/LICENSE.md) |
| [rocPyDecode](https://github.com/ROCm/rocPyDecode) | [MIT](https://github.com/ROCm/rocPyDecode/blob/develop/LICENSE.txt) |
| [rocRAND](https://github.com/ROCm/rocRAND/) | [MIT](https://github.com/ROCm/rocRAND/blob/develop/LICENSE.txt) |
| [rocRAND](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocrand/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocrand/LICENSE.md) |
| [ROCr Debug Agent](https://github.com/ROCm/rocr_debug_agent/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocr_debug_agent/blob/amd-staging/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/ROCR-Runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/ROCR-Runtime/blob/amd-staging/LICENSE.txt) |
| [ROCR-Runtime](https://github.com/ROCm/rocm-systems/tree/develop/projects/rocr-runtime/) | [The University of Illinois/NCSA](https://github.com/ROCm/rocm-systems/blob/develop/projects/rocr-runtime/LICENSE.txt) |
| [rocSHMEM](https://github.com/ROCm/rocSHMEM/) | [MIT](https://github.com/ROCm/rocSHMEM/blob/develop/LICENSE.md) |
| [rocSOLVER](https://github.com/ROCm/rocSOLVER/) | [BSD-2-Clause](https://github.com/ROCm/rocSOLVER/blob/develop/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCm/rocSPARSE/) | [MIT](https://github.com/ROCm/rocSPARSE/blob/develop/LICENSE.md) |
| [rocThrust](https://github.com/ROCm/rocThrust/) | [Apache 2.0](https://github.com/ROCm/rocThrust/blob/develop/LICENSE) |
| [ROCTracer](https://github.com/ROCm/roctracer/) | [MIT](https://github.com/ROCm/roctracer/blob/amd-master/LICENSE) |
| [rocWMMA](https://github.com/ROCm/rocWMMA/) | [MIT](https://github.com/ROCm/rocWMMA/blob/develop/LICENSE.md) |
| [Tensile](https://github.com/ROCm/Tensile/) | [MIT](https://github.com/ROCm/Tensile/blob/develop/LICENSE.md) |
| [rocSOLVER](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocsolver/) | [BSD-2-Clause](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocsolver/LICENSE.md) |
| [rocSPARSE](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocsparse/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocsparse/LICENSE.md) |
| [rocThrust](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocthrust/) | [Apache 2.0](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocthrust/LICENSE) |
| [ROCTracer](https://github.com/ROCm/rocm-systems/tree/develop/projects/roctracer/) | [MIT](https://github.com/ROCm/rocm-systems/blob/develop/projects/roctracer/LICENSE.md) |
| [rocWMMA](https://github.com/ROCm/rocm-libraries/tree/develop/projects/rocwmma/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/projects/rocwmma/LICENSE.md) |
| [Tensile](https://github.com/ROCm/rocm-libraries/tree/develop/shared/tensile/) | [MIT](https://github.com/ROCm/rocm-libraries/blob/develop/shared/tensile/LICENSE.md) |
| [TransferBench](https://github.com/ROCm/TransferBench) | [MIT](https://github.com/ROCm/TransferBench/blob/develop/LICENSE.md) |
Open sourced ROCm components are released via public GitHub

View File

@@ -1,137 +1,136 @@
ROCm Version,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 10.0 [#rhel-10-702-past-60]_, 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_","RHEL 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10 [#rhel-700-past-60]_,RHEL 8.10 [#rhel-700-past-60]_,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP7 [#sles-db-700-past-60]_,SLES 15 SP7 [#sles-db-700-past-60]_,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 10, 9, 8 [#ol-700-mi300x-past-60]_","Oracle Linux 9, 8 [#ol-700-mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,"Debian 13 [#db-mi300x-past-60]_, 12 [#sles-db-700-past-60]_",Debian 12 [#sles-db-700-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-630-past-60]_,Azure Linux 3.0 [#az-mi300x-630-past-60]_,,,,,,,,,,,,
,Rocky Linux 9 [#rl-700-past-60]_,Rocky Linux 9 [#rl-700-past-60]_,,,,,,,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,CDNA4,,,,,,,,,,,,,,,,,,
,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA4,RDNA4,RDNA4,RDNA4,RDNA4,,,,,,,,,,,,,,,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx950 [#mi350x-os-past-60]_,gfx950 [#mi350x-os-past-60]_,,,,,,,,,,,,,,,,,,
,gfx1201 [#RDNA-OS-700-past-60]_,gfx1201 [#RDNA-OS-700-past-60]_,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1200 [#RDNA-OS-700-past-60]_,gfx1200 [#RDNA-OS-700-past-60]_,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1101 [#RDNA-OS-700-past-60]_ [#rd-v710-past-60]_,gfx1101 [#RDNA-OS-700-past-60]_ [#rd-v710-past-60]_,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1100 [#RDNA-OS-700-past-60]_,gfx1100 [#RDNA-OS-700-past-60]_,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030 [#RDNA-OS-700-past-60]_ [#rd-v620-past-60]_,gfx1030 [#RDNA-OS-700-past-60]_ [#rd-v620-past-60]_,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942 [#mi325x-os-past-60]_ [#mi300x-os-past-60]_ [#mi300A-os-past-60]_,gfx942 [#mi325x-os-past-60]_ [#mi300x-os-past-60]_ [#mi300A-os-past-60]_,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a [#mi200x-os-past-60]_,gfx90a [#mi200x-os-past-60]_,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908 [#mi100-os-past-60]_,gfx908 [#mi100-os-past-60]_,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.8, 2.7, 2.6","2.7, 2.6, 2.5","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_","2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.6.0,0.6.0,0.4.35,0.4.35,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,1.8.0b1,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat-past-60]_,N/A,N/A,N/A,N/A,2.48.0.post0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat-past-60]_,N/A,b6356,b6356,b6356,b6356,b5997,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`FlashInfer <../compatibility/ml-compatibility/flashinfer-compatibility>` [#flashinfer_compat-past-60]_,N/A,N/A,N/A,N/A,v0.2.5,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.22.0,1.20.0,1.20.0,1.20.0,1.20.0,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.4.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
Thrust,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,,,,,
DRIVER & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x","30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.13.0,2.13.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.5.0,3.5.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,1.0.0,1.0.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,1.1.0,1.1.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.6.0,0.6.0,0.3.1,0.3.1,0.3.1,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,2.0.0,2.0.0,1.9.10,1.9.10,1.9.10,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.26.6,2.26.6,2.22.3,2.22.3,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
:doc:`rocSHMEM <rocshmem:index>`,3.0.0,3.0.0,2.0.1,2.0.1,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,3.0.2,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,1.0.0,1.0.0,0.12.1,0.12.1,0.12.1,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.20,1.0.20,1.0.18,1.0.18,1.0.18,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.7.0,0.7.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,3.0.0,3.0.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,3.0.0,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,4.0.1,4.0.1,3.2.0,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.4,0.2.4,0.2.3,0.2.3,0.2.3,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,4.0.0,4.0.0,3.2.3,3.2.3,3.2.3,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,5.0.2,5.0.0,4.4.1,4.4.1,4.4.0,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.34,1.0.34,1.0.32,1.0.32,1.0.32,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.30.1,3.30.0,3.28.2,3.28.2,3.28.0,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,4.0.2,4.0.2,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,2.0.0,2.0.0,1.7.0,1.7.0,1.7.0,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.44.0,4.43.0,4.43.0,4.43.0,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,4.0.0,4.0.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,2.0.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,4.0.1,4.0.0,3.4.1,3.4.1,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,7.0.51830,7.0.51830,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,26.0.2,26.0.0,25.5.1,25.5.1,25.4.2,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,1.1.0,1.1.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.8.0,7.7.0,7.5.0,7.5.0,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.2.0,1.2.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,2.6.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.2.3,3.2.3,3.1.1,3.1.1,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.1.1,1.1.0,1.0.2,1.0.2,1.0.1,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70002,2.0.70000,2.0.60403,2.0.60402,2.0.60401,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,1.0.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.70002,4.1.70000,4.1.60403,4.1.60402,4.1.60401,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,20.0.0,20.0.0,19.0.0,19.0.0,19.0.0,19.0.0,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.4,0.77.3,0.77.2,0.77.2,0.77.2,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,16.3.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.1.0,2.0.4,2.0.4,2.0.4,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.15.0,1.15.0,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
ROCm Version,7.1.1,7.1.0,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>` [#os-compatibility-past-60]_,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 10.1, 10.0, 9.7, 9.6, 9.4","RHEL 10.0, 9.6, 9.4","RHEL 10.0, 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP7,SLES 15 SP7,SLES 15 SP7,SLES 15 SP7,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 10, 9, 8","Oracle Linux 10, 9, 8","Oracle Linux 10, 9, 8","Oracle Linux 9, 8","Oracle Linux 9, 8","Oracle Linux 9, 8","Oracle Linux 9, 8","Oracle Linux 9, 8",Oracle Linux 8.10,Oracle Linux 8.10,Oracle Linux 8.10,Oracle Linux 8.10,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,Oracle Linux 8.9,,,
,"Debian 13, 12","Debian 13, 12","Debian 13, 12",Debian 12,Debian 12,Debian 12,Debian 12,Debian 12,Debian 12,Debian 12,Debian 12,,,,,,,,,,,
,,,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,Azure Linux 3.0,,,,,,,,,,,,
,Rocky Linux 9,Rocky Linux 9,Rocky Linux 9,Rocky Linux 9,,,,,,,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,CDNA4,CDNA4,CDNA4,,,,,,,,,,,,,,,,,,
,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA4,RDNA4,RDNA4,RDNA4,RDNA4,RDNA4,RDNA4,,,,,,,,,,,,,,,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` [#gpu-compatibility-past-60]_,gfx950,gfx950,gfx950,gfx950,,,,,,,,,,,,,,,,,,
,gfx1201,gfx1201,gfx1201,gfx1201,gfx1201,gfx1201,gfx1201,,,,,,,,,,,,,,,
,gfx1200,gfx1200,gfx1200,gfx1200,gfx1200,gfx1200,gfx1200,,,,,,,,,,,,,,,
,gfx1101,gfx1101,gfx1101,gfx1101,gfx1101,gfx1101,gfx1101,,,,,,,,,,,,,,,
,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942, gfx942, gfx942, gfx942, gfx942, gfx942, gfx942
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.9, 2.8, 2.7","2.8, 2.7, 2.6","2.8, 2.7, 2.6","2.7, 2.6, 2.5","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.20.0, 2.19.1, 2.18.1","2.20.0, 2.19.1, 2.18.1","2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_","2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.7.1,0.7.1,0.6.0,0.6.0,0.4.35,0.4.35,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat-past-60]_,N/A,N/A,N/A,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat-past-60]_,N/A,N/A,N/A,2.4.0,2.4.0,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat-past-60]_,N/A,N/A,N/A,2.51.1,N/A,N/A,2.48.0.post0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat-past-60]_,N/A,N/A,N/A,b6652,b6356,b6356,b6356,b5997,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`FlashInfer <../compatibility/ml-compatibility/flashinfer-compatibility>` [#flashinfer_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,v0.2.5,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.23.1,1.22.0,1.22.0,1.22.0,1.20.0,1.20.0,1.20.0,1.20.0,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.4.0,>=1.4.0,>=1.4.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.17.0,>=1.17.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
Thrust,2.8.5,2.8.5,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.8.5,2.8.5,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,,,,,,,
DRIVER & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.20.1, 30.20.0 [#mi325x_KVM-past-60]_, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x","30.20.0 [#mi325x_KVM-past-60]_, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x","30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x","30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.14.0,2.14.0,2.13.0,2.13.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.5.1,3.5.1,3.5.0,3.5.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.4.0,3.4.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.4.0,2.4.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,1.4.0,1.4.0,1.0.0,1.0.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,1.2.0,1.2.0,1.1.0,1.1.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.7.0,0.7.0,0.6.0,0.6.0,0.3.1,0.3.1,0.3.1,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,2.1.0,2.1.0,2.0.0,2.0.0,1.9.10,1.9.10,1.9.10,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.27.7,2.27.7,2.26.6,2.26.6,2.22.3,2.22.3,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
:doc:`rocSHMEM <rocshmem:index>`,3.1.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,3.1.0,3.1.0,3.0.2,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,1.1.0,1.1.0,1.0.0,1.0.0,0.12.1,0.12.1,0.12.1,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.21,1.0.21,1.0.20,1.0.20,1.0.18,1.0.18,1.0.18,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.7.1,0.7.1,0.7.0,0.7.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,3.1.0,3.1.0,3.0.0,3.0.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,3.1.0,3.1.0,3.0.0,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,4.1.0,4.1.0,4.0.1,4.0.1,3.2.0,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.5,0.2.5,0.2.4,0.2.4,0.2.3,0.2.3,0.2.3,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,4.0.1,4.0.1,4.0.0,4.0.0,3.2.3,3.2.3,3.2.3,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,5.1.1,5.1.0,5.0.2,5.0.0,4.4.1,4.4.1,4.4.0,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.35,1.0.35,1.0.34,1.0.34,1.0.32,1.0.32,1.0.32,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,4.1.0,4.1.0,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.31.0,3.31.0,3.30.1,3.30.0,3.28.2,3.28.2,3.28.0,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,4.1.0,4.1.0,4.0.2,4.0.2,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,2.1.0,2.0.0,2.0.0,2.0.0,1.7.0,1.7.0,1.7.0,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.44.0,4.44.0,4.44.0,4.43.0,4.43.0,4.43.0,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,4.1.0,4.1.0,4.0.0,4.0.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,2.0.0,2.0.0,2.0.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,4.1.0,4.1.0,4.0.1,4.0.0,3.4.1,3.4.1,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,4.1.0,4.1.0,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,7.1.52802,7.1.25424,7.0.51831,7.0.51830,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.1.1,7.1.0,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,26.2.0,26.1.0,26.0.2,26.0.0,25.5.1,25.5.1,25.4.2,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,1.2.0,1.2.0,1.1.0,1.1.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.8.0,7.8.0,7.8.0,7.7.0,7.5.0,7.5.0,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.3.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,2.6.0,2.6.0,2.6.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.3.1,3.3.0,3.2.3,3.2.3,3.1.1,3.1.1,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.2.1,1.2.0,1.1.1,1.1.0,1.0.2,1.0.2,1.0.1,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70101,2.0.70100,2.0.70002,2.0.70000,2.0.60403,2.0.60402,2.0.60401,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,1.0.0,1.0.0,1.0.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.70101,4.1.70100,4.1.70002,4.1.70000,4.1.60403,4.1.60402,4.1.60401,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,20.0.0,20.0.0,20.0.0,20.0.0,19.0.0,19.0.0,19.0.0,19.0.0,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.4,0.77.4,0.77.4,0.77.3,0.77.2,0.77.2,0.77.2,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,16.3.0,16.3.0,16.3.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.1.0,2.1.0,2.1.0,2.0.4,2.0.4,2.0.4,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,20.0.025444,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,20.0.025444,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.025444,20.0.025425,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.1.52802,7.1.25424,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,7.1.52802,7.1.25424,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.18.0,1.18.0,1.15.0,1.15.0,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 7.1.1 7.1.0 7.0.2 7.0.1/7.0.0 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` :ref:`Operating systems & kernels <OS-kernel-versions>` [#os-compatibility-past-60]_ Ubuntu 24.04.3 Ubuntu 24.04.3 Ubuntu 24.04.3 Ubuntu 24.04.3 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 10.1, 10.0, 9.7, 9.6, 9.4 RHEL 10.0, 9.6, 9.4 RHEL 10.0 [#rhel-10-702-past-60]_, 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_ RHEL 10.0, 9.6, 9.4 RHEL 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_ RHEL 9.6, 9.4 RHEL 9.6, 9.4 RHEL 9.6, 9.4 RHEL 9.6, 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 RHEL 8.10 [#rhel-700-past-60]_ RHEL 8.10 RHEL 8.10 [#rhel-700-past-60]_ RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP7 SLES 15 SP7 SLES 15 SP7 [#sles-db-700-past-60]_ SLES 15 SP7 SLES 15 SP7 [#sles-db-700-past-60]_ SLES 15 SP7 SLES 15 SP7, SP6 SLES 15 SP7, SP6 SLES 15 SP6 SLES 15 SP6 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 10, 9, 8 Oracle Linux 10, 9, 8 Oracle Linux 10, 9, 8 [#ol-700-mi300x-past-60]_ Oracle Linux 10, 9, 8 Oracle Linux 9, 8 [#ol-700-mi300x-past-60]_ Oracle Linux 9, 8 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9
10 Debian 13, 12 Debian 13, 12 Debian 13 [#db-mi300x-past-60]_, 12 [#sles-db-700-past-60]_ Debian 13, 12 Debian 12 [#sles-db-700-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12 Debian 12 [#single-node-past-60]_ Debian 12
11 Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#az-mi300x-630-past-60]_ Azure Linux 3.0 Azure Linux 3.0 [#az-mi300x-630-past-60]_ Azure Linux 3.0
12 Rocky Linux 9 Rocky Linux 9 Rocky Linux 9 [#rl-700-past-60]_ Rocky Linux 9 Rocky Linux 9 [#rl-700-past-60]_ Rocky Linux 9
13 .. _architecture-support-compatibility-matrix-past-60: .. _architecture-support-compatibility-matrix-past-60:
14 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA4 CDNA4 CDNA4 CDNA4
15 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
16 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
17 CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA
18 RDNA4 RDNA4 RDNA4 RDNA4 RDNA4 RDNA4 RDNA4
19 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
20 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
21 .. _gpu-support-compatibility-matrix-past-60: .. _gpu-support-compatibility-matrix-past-60:
22 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` [#gpu-compatibility-past-60]_ gfx950 gfx950 gfx950 [#mi350x-os-past-60]_ gfx950 gfx950 [#mi350x-os-past-60]_ gfx950
23 gfx1201 gfx1201 gfx1201 [#RDNA-OS-700-past-60]_ gfx1201 gfx1201 [#RDNA-OS-700-past-60]_ gfx1201 gfx1201 [#RDNA-OS-past-60]_ gfx1201 gfx1201 [#RDNA-OS-past-60]_ gfx1201 gfx1201 [#RDNA-OS-past-60]_ gfx1201
24 gfx1200 gfx1200 gfx1200 [#RDNA-OS-700-past-60]_ gfx1200 gfx1200 [#RDNA-OS-700-past-60]_ gfx1200 gfx1200 [#RDNA-OS-past-60]_ gfx1200 gfx1200 [#RDNA-OS-past-60]_ gfx1200 gfx1200 [#RDNA-OS-past-60]_ gfx1200
25 gfx1101 gfx1101 gfx1101 [#RDNA-OS-700-past-60]_ [#rd-v710-past-60]_ gfx1101 gfx1101 [#RDNA-OS-700-past-60]_ [#rd-v710-past-60]_ gfx1101 gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_ gfx1101 gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_ gfx1101 gfx1101 [#RDNA-OS-past-60]_ gfx1101
26 gfx1100 gfx1100 gfx1100 [#RDNA-OS-700-past-60]_ gfx1100 gfx1100 [#RDNA-OS-700-past-60]_ gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
27 gfx1030 gfx1030 gfx1030 [#RDNA-OS-700-past-60]_ [#rd-v620-past-60]_ gfx1030 gfx1030 [#RDNA-OS-700-past-60]_ [#rd-v620-past-60]_ gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
28 gfx942 gfx942 gfx942 [#mi325x-os-past-60]_ [#mi300x-os-past-60]_ [#mi300A-os-past-60]_ gfx942 gfx942 [#mi325x-os-past-60]_ [#mi300x-os-past-60]_ [#mi300A-os-past-60]_ gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 gfx942 [#mi300_622-past-60]_ gfx942 gfx942 [#mi300_621-past-60]_ gfx942 gfx942 [#mi300_620-past-60]_ gfx942 gfx942 [#mi300_612-past-60]_ gfx942 gfx942 [#mi300_612-past-60]_ gfx942 gfx942 [#mi300_611-past-60]_ gfx942 gfx942 [#mi300_610-past-60]_ gfx942 gfx942 [#mi300_602-past-60]_ gfx942 gfx942 [#mi300_600-past-60]_ gfx942
29 gfx90a gfx90a gfx90a [#mi200x-os-past-60]_ gfx90a gfx90a [#mi200x-os-past-60]_ gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
30 gfx908 gfx908 gfx908 [#mi100-os-past-60]_ gfx908 gfx908 [#mi100-os-past-60]_ gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908
31
32 FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60: .. _framework-support-compatibility-matrix-past-60:
33 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` 2.9, 2.8, 2.7 2.8, 2.7, 2.6 2.8, 2.7, 2.6 2.7, 2.6, 2.5 2.6, 2.5, 2.4, 2.3 2.6, 2.5, 2.4, 2.3 2.6, 2.5, 2.4, 2.3 2.6, 2.5, 2.4, 2.3 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
34 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.20.0, 2.19.1, 2.18.1 2.20.0, 2.19.1, 2.18.1 2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_ 2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_ 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
35 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.7.1 0.7.1 0.6.0 0.6.0 0.4.35 0.4.35 0.4.35 0.4.35 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
36 :doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat-past-60]_ N/A N/A N/A N/A 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.3.0.post0 N/A N/A N/A N/A N/A N/A
37 :doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat-past-60]_ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 85f95ae N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
38 :doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat-past-60]_ N/A N/A N/A N/A 2.4.0 N/A 2.4.0 N/A N/A 2.4.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
39 :doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat-past-60]_ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.7.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
40 :doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat-past-60]_ :doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat-past-60]_ N/A N/A N/A N/A 2.51.1 N/A N/A N/A 2.48.0.post0 N/A N/A 1.8.0b1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
41 :doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat-past-60]_ :doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat-past-60]_ N/A N/A N/A N/A b6652 N/A b6356 N/A b6356 2.48.0.post0 b6356 N/A b5997 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
42 :doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat-past-60]_ :doc:`FlashInfer <../compatibility/ml-compatibility/flashinfer-compatibility>` [#flashinfer_compat-past-60]_ N/A N/A N/A b6356 N/A b6356 N/A b6356 N/A b6356 v0.2.5 b5997 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
43 :doc:`FlashInfer <../compatibility/ml-compatibility/flashinfer-compatibility>` [#flashinfer_compat-past-60]_ `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.23.1 1.22.0 N/A 1.22.0 N/A 1.22.0 N/A 1.20.0 N/A 1.20.0 v0.2.5 1.20.0 N/A 1.20.0 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.14.1 N/A 1.14.1
44 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.22.0 1.22.0 1.20.0 1.20.0 1.20.0 1.20.0 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
45
46 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60:
47 THIRD PARTY COMMS `UCC <https://github.com/ROCm/ucc>`_ >=1.4.0 >=1.4.0 .. _thirdpartycomms-support-compatibility-matrix-past-60: >=1.4.0 >=1.4.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
48 `UCC <https://github.com/ROCm/ucc>`_ `UCX <https://github.com/ROCm/ucx>`_ >=1.17.0 >=1.17.0 >=1.4.0 >=1.17.0 >=1.4.0 >=1.17.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.15.0 >=1.3.0 >=1.14.1 >=1.3.0 >=1.14.1 >=1.3.0 >=1.14.1 >=1.3.0 >=1.14.1 >=1.2.0 >=1.14.1 >=1.2.0 >=1.14.1
49 `UCX <https://github.com/ROCm/ucx>`_ >=1.17.0 >=1.17.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
50 THIRD PARTY ALGORITHM .. _thirdpartyalgorithm-support-compatibility-matrix-past-60:
51 THIRD PARTY ALGORITHM Thrust 2.8.5 2.8.5 .. _thirdpartyalgorithm-support-compatibility-matrix-past-60: 2.6.0 2.6.0 2.5.0 2.5.0 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
52 Thrust CUB 2.8.5 2.8.5 2.6.0 2.6.0 2.5.0 2.5.0 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
53 CUB 2.6.0 2.6.0 2.5.0 2.5.0 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
54 DRIVER & USER SPACE [#kfd_support-past-60]_ .. _kfd-userspace-support-compatibility-matrix-past-60:
55 DRIVER & USER SPACE [#kfd_support-past-60]_ :doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` 30.20.1, 30.20.0 [#mi325x_KVM-past-60]_, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x 30.20.0 [#mi325x_KVM-past-60]_, 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x .. _kfd-userspace-support-compatibility-matrix-past-60: 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
56 :doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
57 ML & COMPUTER VISION .. _mllibs-support-compatibility-matrix-past-60:
58 ML & COMPUTER VISION :doc:`Composable Kernel <composable_kernel:index>` 1.1.0 1.1.0 .. _mllibs-support-compatibility-matrix-past-60: 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0
59 :doc:`Composable Kernel <composable_kernel:index>` :doc:`MIGraphX <amdmigraphx:index>` 2.14.0 2.14.0 1.1.0 2.13.0 1.1.0 2.13.0 1.1.0 2.12.0 1.1.0 2.12.0 1.1.0 2.12.0 1.1.0 2.12.0 1.1.0 2.11.0 1.1.0 2.11.0 1.1.0 2.11.0 1.1.0 2.11.0 1.1.0 2.10.0 1.1.0 2.10.0 1.1.0 2.10.0 1.1.0 2.10.0 1.1.0 2.9.0 1.1.0 2.9.0 1.1.0 2.9.0 1.1.0 2.9.0 1.1.0 2.8.0 1.1.0 2.8.0
60 :doc:`MIGraphX <amdmigraphx:index>` :doc:`MIOpen <miopen:index>` 3.5.1 3.5.1 2.13.0 3.5.0 2.13.0 3.5.0 2.12.0 3.4.0 2.12.0 3.4.0 2.12.0 3.4.0 2.12.0 3.4.0 2.11.0 3.3.0 2.11.0 3.3.0 2.11.0 3.3.0 2.11.0 3.3.0 2.10.0 3.2.0 2.10.0 3.2.0 2.10.0 3.2.0 2.10.0 3.2.0 2.9.0 3.1.0 2.9.0 3.1.0 2.9.0 3.1.0 2.9.0 3.1.0 2.8.0 3.0.0 2.8.0 3.0.0
61 :doc:`MIOpen <miopen:index>` :doc:`MIVisionX <mivisionx:index>` 3.4.0 3.4.0 3.5.0 3.3.0 3.5.0 3.3.0 3.4.0 3.2.0 3.4.0 3.2.0 3.4.0 3.2.0 3.4.0 3.2.0 3.3.0 3.1.0 3.3.0 3.1.0 3.3.0 3.1.0 3.3.0 3.1.0 3.2.0 3.0.0 3.2.0 3.0.0 3.2.0 3.0.0 3.2.0 3.0.0 3.1.0 2.5.0 3.1.0 2.5.0 3.1.0 2.5.0 3.1.0 2.5.0 3.0.0 2.5.0 3.0.0 2.5.0
62 :doc:`MIVisionX <mivisionx:index>` :doc:`rocAL <rocal:index>` 2.4.0 2.4.0 3.3.0 2.3.0 3.3.0 2.3.0 3.2.0 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.1.0 2.1.0 3.1.0 2.1.0 3.1.0 2.1.0 3.1.0 2.1.0 3.0.0 2.0.0 3.0.0 2.0.0 3.0.0 2.0.0 3.0.0 1.0.0 2.5.0 1.0.0 2.5.0 1.0.0 2.5.0 1.0.0 2.5.0 1.0.0 2.5.0 1.0.0 2.5.0 1.0.0
63 :doc:`rocAL <rocal:index>` :doc:`rocDecode <rocdecode:index>` 1.4.0 1.4.0 2.3.0 1.0.0 2.3.0 1.0.0 2.2.0 0.10.0 2.2.0 0.10.0 2.2.0 0.10.0 2.2.0 0.10.0 2.1.0 0.8.0 2.1.0 0.8.0 2.1.0 0.8.0 2.1.0 0.8.0 2.0.0 0.6.0 2.0.0 0.6.0 2.0.0 0.6.0 1.0.0 0.6.0 1.0.0 0.6.0 1.0.0 0.6.0 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0 N/A 1.0.0 N/A
64 :doc:`rocDecode <rocdecode:index>` :doc:`rocJPEG <rocjpeg:index>` 1.2.0 1.2.0 1.0.0 1.1.0 1.0.0 1.1.0 0.10.0 0.8.0 0.10.0 0.8.0 0.10.0 0.8.0 0.10.0 0.8.0 0.8.0 0.6.0 0.8.0 0.6.0 0.8.0 0.6.0 0.8.0 0.6.0 0.6.0 N/A 0.6.0 N/A 0.6.0 N/A 0.6.0 N/A 0.6.0 N/A 0.6.0 N/A 0.5.0 N/A 0.5.0 N/A N/A N/A
65 :doc:`rocJPEG <rocjpeg:index>` :doc:`rocPyDecode <rocpydecode:index>` 0.7.0 0.7.0 1.1.0 0.6.0 1.1.0 0.6.0 0.8.0 0.3.1 0.8.0 0.3.1 0.8.0 0.3.1 0.8.0 0.3.1 0.6.0 0.2.0 0.6.0 0.2.0 0.6.0 0.2.0 0.6.0 0.2.0 N/A 0.1.0 N/A 0.1.0 N/A 0.1.0 N/A 0.1.0 N/A N/A N/A N/A N/A N/A
66 :doc:`rocPyDecode <rocpydecode:index>` :doc:`RPP <rpp:index>` 2.1.0 2.1.0 0.6.0 2.0.0 0.6.0 2.0.0 0.3.1 1.9.10 0.3.1 1.9.10 0.3.1 1.9.10 0.3.1 1.9.10 0.2.0 1.9.1 0.2.0 1.9.1 0.2.0 1.9.1 0.2.0 1.9.1 0.1.0 1.8.0 0.1.0 1.8.0 0.1.0 1.8.0 0.1.0 1.8.0 N/A 1.5.0 N/A 1.5.0 N/A 1.5.0 N/A 1.5.0 N/A 1.4.0 N/A 1.4.0
67 :doc:`RPP <rpp:index>` 2.0.0 2.0.0 1.9.10 1.9.10 1.9.10 1.9.10 1.9.1 1.9.1 1.9.1 1.9.1 1.8.0 1.8.0 1.8.0 1.8.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0
68 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60:
69 COMMUNICATION :doc:`RCCL <rccl:index>` 2.27.7 2.27.7 .. _commlibs-support-compatibility-matrix-past-60: 2.26.6 2.26.6 2.22.3 2.22.3 2.22.3 2.22.3 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
70 :doc:`RCCL <rccl:index>` :doc:`rocSHMEM <rocshmem:index>` 3.1.0 3.0.0 2.26.6 3.0.0 2.26.6 3.0.0 2.22.3 2.0.1 2.22.3 2.0.1 2.22.3 2.0.0 2.22.3 2.0.0 2.21.5 N/A 2.21.5 N/A 2.21.5 N/A 2.21.5 N/A 2.20.5 N/A 2.20.5 N/A 2.20.5 N/A 2.20.5 N/A 2.18.6 N/A 2.18.6 N/A 2.18.6 N/A 2.18.6 N/A 2.18.3 N/A 2.18.3 N/A
71 :doc:`rocSHMEM <rocshmem:index>` 3.0.0 3.0.0 2.0.1 2.0.1 2.0.0 2.0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
72 MATH LIBS .. _mathlibs-support-compatibility-matrix-past-60:
73 MATH LIBS `half <https://github.com/ROCm/half>`_ 1.12.0 1.12.0 .. _mathlibs-support-compatibility-matrix-past-60: 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0 1.12.0
74 `half <https://github.com/ROCm/half>`_ :doc:`hipBLAS <hipblas:index>` 3.1.0 3.1.0 1.12.0 3.0.2 1.12.0 3.0.0 1.12.0 2.4.0 1.12.0 2.4.0 1.12.0 2.4.0 1.12.0 2.4.0 1.12.0 2.3.0 1.12.0 2.3.0 1.12.0 2.3.0 1.12.0 2.3.0 1.12.0 2.2.0 1.12.0 2.2.0 1.12.0 2.2.0 1.12.0 2.2.0 1.12.0 2.1.0 1.12.0 2.1.0 1.12.0 2.1.0 1.12.0 2.1.0 1.12.0 2.0.0 1.12.0 2.0.0
75 :doc:`hipBLAS <hipblas:index>` :doc:`hipBLASLt <hipblaslt:index>` 1.1.0 1.1.0 3.0.2 1.0.0 3.0.0 1.0.0 2.4.0 0.12.1 2.4.0 0.12.1 2.4.0 0.12.1 2.4.0 0.12.0 2.3.0 0.10.0 2.3.0 0.10.0 2.3.0 0.10.0 2.3.0 0.10.0 2.2.0 0.8.0 2.2.0 0.8.0 2.2.0 0.8.0 2.2.0 0.8.0 2.1.0 0.7.0 2.1.0 0.7.0 2.1.0 0.7.0 2.1.0 0.7.0 2.0.0 0.6.0 2.0.0 0.6.0
76 :doc:`hipBLASLt <hipblaslt:index>` :doc:`hipFFT <hipfft:index>` 1.0.21 1.0.21 1.0.0 1.0.20 1.0.0 1.0.20 0.12.1 1.0.18 0.12.1 1.0.18 0.12.1 1.0.18 0.12.0 1.0.18 0.10.0 1.0.17 0.10.0 1.0.17 0.10.0 1.0.17 0.10.0 1.0.17 0.8.0 1.0.16 0.8.0 1.0.15 0.8.0 1.0.15 0.8.0 1.0.14 0.7.0 1.0.14 0.7.0 1.0.14 0.7.0 1.0.14 0.7.0 1.0.14 0.6.0 1.0.13 0.6.0 1.0.13
77 :doc:`hipFFT <hipfft:index>` :doc:`hipfort <hipfort:index>` 0.7.1 0.7.1 1.0.20 0.7.0 1.0.20 0.7.0 1.0.18 0.6.0 1.0.18 0.6.0 1.0.18 0.6.0 1.0.18 0.6.0 1.0.17 0.5.1 1.0.17 0.5.1 1.0.17 0.5.0 1.0.17 0.5.0 1.0.16 0.4.0 1.0.15 0.4.0 1.0.15 0.4.0 1.0.14 0.4.0 1.0.14 0.4.0 1.0.14 0.4.0 1.0.14 0.4.0 1.0.14 0.4.0 1.0.13 0.4.0 1.0.13 0.4.0
78 :doc:`hipfort <hipfort:index>` :doc:`hipRAND <hiprand:index>` 3.1.0 3.1.0 0.7.0 3.0.0 0.7.0 3.0.0 0.6.0 2.12.0 0.6.0 2.12.0 0.6.0 2.12.0 0.6.0 2.12.0 0.5.1 2.11.1 0.5.1 2.11.1 0.5.0 2.11.1 0.5.0 2.11.0 0.4.0 2.11.1 0.4.0 2.11.0 0.4.0 2.11.0 0.4.0 2.11.0 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0 2.10.16 0.4.0 2.10.16
79 :doc:`hipRAND <hiprand:index>` :doc:`hipSOLVER <hipsolver:index>` 3.1.0 3.1.0 3.0.0 3.0.0 2.12.0 2.4.0 2.12.0 2.4.0 2.12.0 2.4.0 2.12.0 2.4.0 2.11.1 2.3.0 2.11.1 2.3.0 2.11.1 2.3.0 2.11.0 2.3.0 2.11.1 2.2.0 2.11.0 2.2.0 2.11.0 2.2.0 2.11.0 2.2.0 2.10.16 2.1.1 2.10.16 2.1.1 2.10.16 2.1.1 2.10.16 2.1.0 2.10.16 2.0.0 2.10.16 2.0.0
80 :doc:`hipSOLVER <hipsolver:index>` :doc:`hipSPARSE <hipsparse:index>` 4.1.0 4.1.0 3.0.0 4.0.1 3.0.0 4.0.1 2.4.0 3.2.0 2.4.0 3.2.0 2.4.0 3.2.0 2.4.0 3.2.0 2.3.0 3.1.2 2.3.0 3.1.2 2.3.0 3.1.2 2.3.0 3.1.2 2.2.0 3.1.1 2.2.0 3.1.1 2.2.0 3.1.1 2.2.0 3.1.1 2.1.1 3.0.1 2.1.1 3.0.1 2.1.1 3.0.1 2.1.0 3.0.1 2.0.0 3.0.0 2.0.0 3.0.0
81 :doc:`hipSPARSE <hipsparse:index>` :doc:`hipSPARSELt <hipsparselt:index>` 0.2.5 0.2.5 4.0.1 0.2.4 4.0.1 0.2.4 3.2.0 0.2.3 3.2.0 0.2.3 3.2.0 0.2.3 3.2.0 0.2.3 3.1.2 0.2.2 3.1.2 0.2.2 3.1.2 0.2.2 3.1.2 0.2.2 3.1.1 0.2.1 3.1.1 0.2.1 3.1.1 0.2.1 3.1.1 0.2.1 3.0.1 0.2.0 3.0.1 0.2.0 3.0.1 0.1.0 3.0.1 0.1.0 3.0.0 0.1.0 3.0.0 0.1.0
82 :doc:`hipSPARSELt <hipsparselt:index>` :doc:`rocALUTION <rocalution:index>` 4.0.1 4.0.1 0.2.4 4.0.0 0.2.4 4.0.0 0.2.3 3.2.3 0.2.3 3.2.3 0.2.3 3.2.3 0.2.3 3.2.2 0.2.2 3.2.1 0.2.2 3.2.1 0.2.2 3.2.1 0.2.2 3.2.1 0.2.1 3.2.1 0.2.1 3.2.0 0.2.1 3.2.0 0.2.1 3.2.0 0.2.0 3.1.1 0.2.0 3.1.1 0.1.0 3.1.1 0.1.0 3.1.1 0.1.0 3.0.3 0.1.0 3.0.3
83 :doc:`rocALUTION <rocalution:index>` :doc:`rocBLAS <rocblas:index>` 5.1.1 5.1.0 4.0.0 5.0.2 4.0.0 5.0.0 3.2.3 4.4.1 3.2.3 4.4.1 3.2.3 4.4.0 3.2.2 4.4.0 3.2.1 4.3.0 3.2.1 4.3.0 3.2.1 4.3.0 3.2.1 4.3.0 3.2.1 4.2.4 3.2.0 4.2.1 3.2.0 4.2.1 3.2.0 4.2.0 3.1.1 4.1.2 3.1.1 4.1.2 3.1.1 4.1.0 3.1.1 4.1.0 3.0.3 4.0.0 3.0.3 4.0.0
84 :doc:`rocBLAS <rocblas:index>` :doc:`rocFFT <rocfft:index>` 1.0.35 1.0.35 5.0.2 1.0.34 5.0.0 1.0.34 4.4.1 1.0.32 4.4.1 1.0.32 4.4.0 1.0.32 4.4.0 1.0.32 4.3.0 1.0.31 4.3.0 1.0.31 4.3.0 1.0.31 4.3.0 1.0.31 4.2.4 1.0.30 4.2.1 1.0.29 4.2.1 1.0.29 4.2.0 1.0.28 4.1.2 1.0.27 4.1.2 1.0.27 4.1.0 1.0.27 4.1.0 1.0.26 4.0.0 1.0.25 4.0.0 1.0.23
85 :doc:`rocFFT <rocfft:index>` :doc:`rocRAND <rocrand:index>` 4.1.0 4.1.0 1.0.34 4.0.0 1.0.34 4.0.0 1.0.32 3.3.0 1.0.32 3.3.0 1.0.32 3.3.0 1.0.32 3.3.0 1.0.31 3.2.0 1.0.31 3.2.0 1.0.31 3.2.0 1.0.31 3.2.0 1.0.30 3.1.1 1.0.29 3.1.0 1.0.29 3.1.0 1.0.28 3.1.0 1.0.27 3.0.1 1.0.27 3.0.1 1.0.27 3.0.1 1.0.26 3.0.1 1.0.25 3.0.0 1.0.23 2.10.17
86 :doc:`rocRAND <rocrand:index>` :doc:`rocSOLVER <rocsolver:index>` 3.31.0 3.31.0 4.0.0 3.30.1 4.0.0 3.30.0 3.3.0 3.28.2 3.3.0 3.28.2 3.3.0 3.28.0 3.3.0 3.28.0 3.2.0 3.27.0 3.2.0 3.27.0 3.2.0 3.27.0 3.2.0 3.27.0 3.1.1 3.26.2 3.1.0 3.26.0 3.1.0 3.26.0 3.1.0 3.26.0 3.0.1 3.25.0 3.0.1 3.25.0 3.0.1 3.25.0 3.0.1 3.25.0 3.0.0 3.24.0 2.10.17 3.24.0
87 :doc:`rocSOLVER <rocsolver:index>` :doc:`rocSPARSE <rocsparse:index>` 4.1.0 4.1.0 3.30.1 4.0.2 3.30.0 4.0.2 3.28.2 3.4.0 3.28.2 3.4.0 3.28.0 3.4.0 3.28.0 3.4.0 3.27.0 3.3.0 3.27.0 3.3.0 3.27.0 3.3.0 3.27.0 3.3.0 3.26.2 3.2.1 3.26.0 3.2.0 3.26.0 3.2.0 3.26.0 3.2.0 3.25.0 3.1.2 3.25.0 3.1.2 3.25.0 3.1.2 3.25.0 3.1.2 3.24.0 3.0.2 3.24.0 3.0.2
88 :doc:`rocSPARSE <rocsparse:index>` :doc:`rocWMMA <rocwmma:index>` 2.1.0 2.0.0 4.0.2 2.0.0 4.0.2 2.0.0 3.4.0 1.7.0 3.4.0 1.7.0 3.4.0 1.7.0 3.4.0 1.7.0 3.3.0 1.6.0 3.3.0 1.6.0 3.3.0 1.6.0 3.3.0 1.6.0 3.2.1 1.5.0 3.2.0 1.5.0 3.2.0 1.5.0 3.2.0 1.5.0 3.1.2 1.4.0 3.1.2 1.4.0 3.1.2 1.4.0 3.1.2 1.4.0 3.0.2 1.3.0 3.0.2 1.3.0
89 :doc:`rocWMMA <rocwmma:index>` :doc:`Tensile <tensile:src/index>` 4.44.0 4.44.0 2.0.0 4.44.0 2.0.0 4.44.0 1.7.0 4.43.0 1.7.0 4.43.0 1.7.0 4.43.0 1.7.0 4.43.0 1.6.0 4.42.0 1.6.0 4.42.0 1.6.0 4.42.0 1.6.0 4.42.0 1.5.0 4.41.0 1.5.0 4.41.0 1.5.0 4.41.0 1.5.0 4.41.0 1.4.0 4.40.0 1.4.0 4.40.0 1.4.0 4.40.0 1.4.0 4.40.0 1.3.0 4.39.0 1.3.0 4.39.0
90 :doc:`Tensile <tensile:src/index>` 4.44.0 4.44.0 4.43.0 4.43.0 4.43.0 4.43.0 4.42.0 4.42.0 4.42.0 4.42.0 4.41.0 4.41.0 4.41.0 4.41.0 4.40.0 4.40.0 4.40.0 4.40.0 4.39.0 4.39.0
91 PRIMITIVES .. _primitivelibs-support-compatibility-matrix-past-60:
92 PRIMITIVES :doc:`hipCUB <hipcub:index>` 4.1.0 4.1.0 .. _primitivelibs-support-compatibility-matrix-past-60: 4.0.0 4.0.0 3.4.0 3.4.0 3.4.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
93 :doc:`hipCUB <hipcub:index>` :doc:`hipTensor <hiptensor:index>` 2.0.0 2.0.0 4.0.0 2.0.0 4.0.0 2.0.0 3.4.0 1.5.0 3.4.0 1.5.0 3.4.0 1.5.0 3.4.0 1.5.0 3.3.0 1.4.0 3.3.0 1.4.0 3.3.0 1.4.0 3.3.0 1.4.0 3.2.1 1.3.0 3.2.0 1.3.0 3.2.0 1.3.0 3.2.0 1.3.0 3.1.0 1.2.0 3.1.0 1.2.0 3.1.0 1.2.0 3.1.0 1.2.0 3.0.0 1.1.0 3.0.0 1.1.0
94 :doc:`hipTensor <hiptensor:index>` :doc:`rocPRIM <rocprim:index>` 4.1.0 4.1.0 2.0.0 4.0.1 2.0.0 4.0.0 1.5.0 3.4.1 1.5.0 3.4.1 1.5.0 3.4.0 1.5.0 3.4.0 1.4.0 3.3.0 1.4.0 3.3.0 1.4.0 3.3.0 1.4.0 3.3.0 1.3.0 3.2.2 1.3.0 3.2.0 1.3.0 3.2.0 1.3.0 3.2.0 1.2.0 3.1.0 1.2.0 3.1.0 1.2.0 3.1.0 1.2.0 3.1.0 1.1.0 3.0.0 1.1.0 3.0.0
95 :doc:`rocPRIM <rocprim:index>` :doc:`rocThrust <rocthrust:index>` 4.1.0 4.1.0 4.0.1 4.0.0 4.0.0 3.4.1 3.3.0 3.4.1 3.3.0 3.4.0 3.3.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.2 3.1.1 3.2.0 3.1.0 3.2.0 3.1.0 3.2.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.1 3.0.0 3.0.0
96 :doc:`rocThrust <rocthrust:index>` 4.0.0 4.0.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.1.0 3.1.0 3.0.1 3.0.1 3.0.1 3.0.1 3.0.1 3.0.0 3.0.0
97 SUPPORT LIBS
98 SUPPORT LIBS `hipother <https://github.com/ROCm/hipother>`_ 7.1.52802 7.1.25424 7.0.51831 7.0.51830 6.4.43483 6.4.43483 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
99 `hipother <https://github.com/ROCm/hipother>`_ `rocm-core <https://github.com/ROCm/rocm-core>`_ 7.1.1 7.1.0 7.0.51830 7.0.2 7.0.51830 7.0.1/7.0.0 6.4.43483 6.4.3 6.4.43483 6.4.2 6.4.43483 6.4.1 6.4.43482 6.4.0 6.3.42134 6.3.3 6.3.42134 6.3.2 6.3.42133 6.3.1 6.3.42131 6.3.0 6.2.41134 6.2.4 6.2.41134 6.2.2 6.2.41134 6.2.1 6.2.41133 6.2.0 6.1.40093 6.1.5 6.1.40093 6.1.2 6.1.40092 6.1.1 6.1.40091 6.1.0 6.1.32831 6.0.2 6.1.32830 6.0.0
100 `rocm-core <https://github.com/ROCm/rocm-core>`_ `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 7.0.2 N/A [#ROCT-rocr-past-60]_ 7.0.1/7.0.0 N/A [#ROCT-rocr-past-60]_ 6.4.3 N/A [#ROCT-rocr-past-60]_ 6.4.2 N/A [#ROCT-rocr-past-60]_ 6.4.1 N/A [#ROCT-rocr-past-60]_ 6.4.0 N/A [#ROCT-rocr-past-60]_ 6.3.3 N/A [#ROCT-rocr-past-60]_ 6.3.2 N/A [#ROCT-rocr-past-60]_ 6.3.1 N/A [#ROCT-rocr-past-60]_ 6.3.0 N/A [#ROCT-rocr-past-60]_ 6.2.4 20240607.5.7 6.2.2 20240607.5.7 6.2.1 20240607.4.05 6.2.0 20240607.1.4246 6.1.5 20240125.5.08 6.1.2 20240125.5.08 6.1.1 20240125.5.08 6.1.0 20240125.3.30 6.0.2 20231016.2.245 6.0.0 20231016.2.245
101 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
102 SYSTEM MGMT TOOLS .. _tools-support-compatibility-matrix-past-60:
103 SYSTEM MGMT TOOLS :doc:`AMD SMI <amdsmi:index>` 26.2.0 26.1.0 .. _tools-support-compatibility-matrix-past-60: 26.0.2 26.0.0 25.5.1 25.5.1 25.4.2 25.3.0 24.7.1 24.7.1 24.7.1 24.7.1 24.6.3 24.6.3 24.6.3 24.6.2 24.5.1 24.5.1 24.5.1 24.4.1 23.4.2 23.4.2
104 :doc:`AMD SMI <amdsmi:index>` :doc:`ROCm Data Center Tool <rdc:index>` 1.2.0 1.2.0 26.0.2 1.1.0 26.0.0 1.1.0 25.5.1 0.3.0 25.5.1 0.3.0 25.4.2 0.3.0 25.3.0 0.3.0 24.7.1 0.3.0 24.7.1 0.3.0 24.7.1 0.3.0 24.7.1 0.3.0 24.6.3 0.3.0 24.6.3 0.3.0 24.6.3 0.3.0 24.6.2 0.3.0 24.5.1 0.3.0 24.5.1 0.3.0 24.5.1 0.3.0 24.4.1 0.3.0 23.4.2 0.3.0 23.4.2 0.3.0
105 :doc:`ROCm Data Center Tool <rdc:index>` :doc:`rocminfo <rocminfo:index>` 1.0.0 1.0.0 1.1.0 1.0.0 1.1.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0 0.3.0 1.0.0
106 :doc:`rocminfo <rocminfo:index>` :doc:`ROCm SMI <rocm_smi_lib:index>` 7.8.0 7.8.0 1.0.0 7.8.0 1.0.0 7.8.0 1.0.0 7.7.0 1.0.0 7.5.0 1.0.0 7.5.0 1.0.0 7.5.0 1.0.0 7.4.0 1.0.0 7.4.0 1.0.0 7.4.0 1.0.0 7.4.0 1.0.0 7.3.0 1.0.0 7.3.0 1.0.0 7.3.0 1.0.0 7.3.0 1.0.0 7.2.0 1.0.0 7.2.0 1.0.0 7.0.0 1.0.0 7.0.0 1.0.0 6.0.2 1.0.0 6.0.0
107 :doc:`ROCm SMI <rocm_smi_lib:index>` :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 1.3.0 1.2.0 7.8.0 1.2.0 7.8.0 1.2.0 7.7.0 1.1.0 7.5.0 1.1.0 7.5.0 1.1.0 7.5.0 1.1.0 7.4.0 1.1.0 7.4.0 1.1.0 7.4.0 1.1.0 7.4.0 1.1.0 7.3.0 1.0.60204 7.3.0 1.0.60202 7.3.0 1.0.60201 7.3.0 1.0.60200 7.2.0 1.0.60105 7.2.0 1.0.60102 7.0.0 1.0.60101 7.0.0 1.0.60100 6.0.2 1.0.60002 6.0.0 1.0.60000
108 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 1.2.0 1.2.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.0.60204 1.0.60202 1.0.60201 1.0.60200 1.0.60105 1.0.60102 1.0.60101 1.0.60100 1.0.60002 1.0.60000
109 PERFORMANCE TOOLS
110 PERFORMANCE TOOLS :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 2.6.0 2.6.0 2.6.0 2.6.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0 1.4.0
111 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 3.3.1 3.3.0 2.6.0 3.2.3 2.6.0 3.2.3 1.4.0 3.1.1 1.4.0 3.1.1 1.4.0 3.1.0 1.4.0 3.1.0 1.4.0 3.0.0 1.4.0 3.0.0 1.4.0 3.0.0 1.4.0 3.0.0 1.4.0 2.0.1 1.4.0 2.0.1 1.4.0 2.0.1 1.4.0 2.0.1 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A 1.4.0 N/A
112 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 1.2.1 1.2.0 3.2.3 1.1.1 3.2.3 1.1.0 3.1.1 1.0.2 3.1.1 1.0.2 3.1.0 1.0.1 3.1.0 1.0.0 3.0.0 0.1.2 3.0.0 0.1.1 3.0.0 0.1.0 3.0.0 0.1.0 2.0.1 1.11.2 2.0.1 1.11.2 2.0.1 1.11.2 2.0.1 1.11.2 N/A N/A N/A N/A N/A N/A
113 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` :doc:`ROCProfiler <rocprofiler:index>` 2.0.70101 2.0.70100 1.1.1 2.0.70002 1.1.0 2.0.70000 1.0.2 2.0.60403 1.0.2 2.0.60402 1.0.1 2.0.60401 1.0.0 2.0.60400 0.1.2 2.0.60303 0.1.1 2.0.60302 0.1.0 2.0.60301 0.1.0 2.0.60300 1.11.2 2.0.60204 1.11.2 2.0.60202 1.11.2 2.0.60201 1.11.2 2.0.60200 N/A 2.0.60105 N/A 2.0.60102 N/A 2.0.60101 N/A 2.0.60100 N/A 2.0.60002 N/A 2.0.60000
114 :doc:`ROCProfiler <rocprofiler:index>` :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 1.0.0 1.0.0 2.0.70002 1.0.0 2.0.70000 1.0.0 2.0.60403 0.6.0 2.0.60402 0.6.0 2.0.60401 0.6.0 2.0.60400 0.6.0 2.0.60303 0.5.0 2.0.60302 0.5.0 2.0.60301 0.5.0 2.0.60300 0.5.0 2.0.60204 0.4.0 2.0.60202 0.4.0 2.0.60201 0.4.0 2.0.60200 0.4.0 2.0.60105 N/A 2.0.60102 N/A 2.0.60101 N/A 2.0.60100 N/A 2.0.60002 N/A 2.0.60000 N/A
115 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` :doc:`ROCTracer <roctracer:index>` 4.1.70101 4.1.70100 1.0.0 4.1.70002 1.0.0 4.1.70000 0.6.0 4.1.60403 0.6.0 4.1.60402 0.6.0 4.1.60401 0.6.0 4.1.60400 0.5.0 4.1.60303 0.5.0 4.1.60302 0.5.0 4.1.60301 0.5.0 4.1.60300 0.4.0 4.1.60204 0.4.0 4.1.60202 0.4.0 4.1.60201 0.4.0 4.1.60200 N/A 4.1.60105 N/A 4.1.60102 N/A 4.1.60101 N/A 4.1.60100 N/A 4.1.60002 N/A 4.1.60000
116 :doc:`ROCTracer <roctracer:index>` 4.1.70002 4.1.70000 4.1.60403 4.1.60402 4.1.60401 4.1.60400 4.1.60303 4.1.60302 4.1.60301 4.1.60300 4.1.60204 4.1.60202 4.1.60201 4.1.60200 4.1.60105 4.1.60102 4.1.60101 4.1.60100 4.1.60002 4.1.60000
117 DEVELOPMENT TOOLS
118 DEVELOPMENT TOOLS :doc:`HIPIFY <hipify:index>` 20.0.0 20.0.0 20.0.0 20.0.0 19.0.0 19.0.0 19.0.0 19.0.0 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
119 :doc:`HIPIFY <hipify:index>` :doc:`ROCm CMake <rocmcmakebuildtools:index>` 0.14.0 0.14.0 20.0.0 0.14.0 20.0.0 0.14.0 19.0.0 0.14.0 19.0.0 0.14.0 19.0.0 0.14.0 19.0.0 0.14.0 18.0.0.25012 0.14.0 18.0.0.25012 0.14.0 18.0.0.24491 0.14.0 18.0.0.24455 0.14.0 18.0.0.24392 0.13.0 18.0.0.24355 0.13.0 18.0.0.24355 0.13.0 18.0.0.24232 0.13.0 17.0.0.24193 0.12.0 17.0.0.24193 0.12.0 17.0.0.24154 0.12.0 17.0.0.24103 0.12.0 17.0.0.24012 0.11.0 17.0.0.23483 0.11.0
120 :doc:`ROCm CMake <rocmcmakebuildtools:index>` :doc:`ROCdbgapi <rocdbgapi:index>` 0.77.4 0.77.4 0.14.0 0.77.4 0.14.0 0.77.3 0.14.0 0.77.2 0.14.0 0.77.2 0.14.0 0.77.2 0.14.0 0.77.2 0.14.0 0.77.0 0.14.0 0.77.0 0.14.0 0.77.0 0.14.0 0.77.0 0.13.0 0.76.0 0.13.0 0.76.0 0.13.0 0.76.0 0.13.0 0.76.0 0.12.0 0.71.0 0.12.0 0.71.0 0.12.0 0.71.0 0.12.0 0.71.0 0.11.0 0.71.0 0.11.0 0.71.0
121 :doc:`ROCdbgapi <rocdbgapi:index>` :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` 16.3.0 16.3.0 0.77.4 16.3.0 0.77.3 16.3.0 0.77.2 15.2.0 0.77.2 15.2.0 0.77.2 15.2.0 0.77.2 15.2.0 0.77.0 15.2.0 0.77.0 15.2.0 0.77.0 15.2.0 0.77.0 15.2.0 0.76.0 14.2.0 0.76.0 14.2.0 0.76.0 14.2.0 0.76.0 14.2.0 0.71.0 14.1.0 0.71.0 14.1.0 0.71.0 14.1.0 0.71.0 14.1.0 0.71.0 13.2.0 0.71.0 13.2.0
122 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ 0.5.0 0.5.0 16.3.0 0.5.0 16.3.0 0.5.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 15.2.0 0.4.0 14.2.0 0.4.0 14.2.0 0.4.0 14.2.0 0.4.0 14.2.0 0.4.0 14.1.0 0.3.0 14.1.0 0.3.0 14.1.0 0.3.0 14.1.0 0.3.0 13.2.0 N/A 13.2.0 N/A
123 `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ :doc:`ROCr Debug Agent <rocr_debug_agent:index>` 2.1.0 2.1.0 0.5.0 2.1.0 0.5.0 2.1.0 0.4.0 2.0.4 0.4.0 2.0.4 0.4.0 2.0.4 0.4.0 2.0.4 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.4.0 2.0.3 0.3.0 2.0.3 0.3.0 2.0.3 0.3.0 2.0.3 0.3.0 2.0.3 N/A 2.0.3 N/A 2.0.3
124 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` 2.1.0 2.1.0 2.0.4 2.0.4 2.0.4 2.0.4 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3 2.0.3
125 COMPILERS .. _compilers-support-compatibility-matrix-past-60:
126 COMPILERS `clang-ocl <https://github.com/ROCm/clang-ocl>`_ N/A N/A .. _compilers-support-compatibility-matrix-past-60: N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0
127 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ :doc:`hipCC <hipcc:index>` 1.1.1 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 N/A 1.1.1 0.5.0 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0 0.5.0 1.0.0
128 :doc:`hipCC <hipcc:index>` `Flang <https://github.com/ROCm/flang>`_ 20.0.025444 20.0.025425 1.1.1 20.0.0.25385 1.1.1 20.0.0.25314 1.1.1 19.0.0.25224 1.1.1 19.0.0.25224 1.1.1 19.0.0.25184 1.1.1 19.0.0.25133 1.1.1 18.0.0.25012 1.1.1 18.0.0.25012 1.1.1 18.0.0.24491 1.1.1 18.0.0.24455 1.1.1 18.0.0.24392 1.1.1 18.0.0.24355 1.1.1 18.0.0.24355 1.1.1 18.0.0.24232 1.0.0 17.0.0.24193 1.0.0 17.0.0.24193 1.0.0 17.0.0.24154 1.0.0 17.0.0.24103 1.0.0 17.0.0.24012 1.0.0 17.0.0.23483
129 `Flang <https://github.com/ROCm/flang>`_ :doc:`llvm-project <llvm-project:index>` 20.0.025444 20.0.025425 20.0.0.25385 20.0.0.25314 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
130 :doc:`llvm-project <llvm-project:index>` `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 20.0.025444 20.0.025425 20.0.0.25385 20.0.0.25314 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
131 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 20.0.0.25385 20.0.0.25314 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
132 RUNTIMES .. _runtime-support-compatibility-matrix-past-60:
133 RUNTIMES :doc:`AMD CLR <hip:understand/amd_clr>` 7.1.52802 7.1.25424 .. _runtime-support-compatibility-matrix-past-60: 7.0.51831 7.0.51830 6.4.43484 6.4.43484 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
134 :doc:`AMD CLR <hip:understand/amd_clr>` :doc:`HIP <hip:index>` 7.1.52802 7.1.25424 7.0.51831 7.0.51830 6.4.43484 6.4.43484 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
135 :doc:`HIP <hip:index>` `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 7.0.51831 2.0.0 7.0.51830 2.0.0 6.4.43484 2.0.0 6.4.43484 2.0.0 6.4.43483 2.0.0 6.4.43482 2.0.0 6.3.42134 2.0.0 6.3.42134 2.0.0 6.3.42133 2.0.0 6.3.42131 2.0.0 6.2.41134 2.0.0 6.2.41134 2.0.0 6.2.41134 2.0.0 6.2.41133 2.0.0 6.1.40093 2.0.0 6.1.40093 2.0.0 6.1.40092 2.0.0 6.1.40091 2.0.0 6.1.32831 2.0.0 6.1.32830 2.0.0
136 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ :doc:`ROCr Runtime <rocr-runtime:index>` 1.18.0 1.18.0 2.0.0 1.18.0 2.0.0 1.18.0 2.0.0 1.15.0 2.0.0 1.15.0 2.0.0 1.15.0 2.0.0 1.15.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.14.0 2.0.0 1.13.0 2.0.0 1.13.0 2.0.0 1.13.0 2.0.0 1.13.0 2.0.0 1.13.0 2.0.0 1.12.0 2.0.0 1.12.0
:doc:`ROCr Runtime <rocr-runtime:index>` 1.18.0 1.18.0 1.15.0 1.15.0 1.15.0 1.15.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -12,7 +12,7 @@ You can also refer to the :ref:`past versions of ROCm compatibility matrix<past-
GPUs listed in the following table support compute workloads (no display
information or graphics). If youre using ROCm with AMD Radeon GPUs or Ryzen APUs for graphics
workloads, see the :docs:`Use ROCm on Radeon and Ryzen <radeon:index.html>` to verify
workloads, see the :doc:`Use ROCm on Radeon and Ryzen <radeon:index>` to verify
compatibility and system requirements.
.. |br| raw:: html
@@ -22,18 +22,18 @@ compatibility and system requirements.
.. container:: format-big-table
.. csv-table::
:header: "ROCm Version", "7.0.2", "7.0.1/7.0.0", "6.4.0"
:header: "ROCm Version", "7.1.1", "7.1.0", "6.4.0"
:stub-columns: 1
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2
:ref:`Operating systems & kernels <OS-kernel-versions>` [#os-compatibility]_,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5
,"RHEL 10.0 [#rhel-10-702]_, 9.6 [#rhel-10-702]_, 9.4 [#rhel-94-702]_","RHEL 9.6 [#rhel-10-702]_, 9.4 [#rhel-94-702]_","RHEL 9.5, 9.4"
,RHEL 8.10 [#rhel-700]_,RHEL 8.10 [#rhel-700]_,RHEL 8.10
,SLES 15 SP7 [#sles-db-700]_,SLES 15 SP7 [#sles-db-700]_,SLES 15 SP6
,"Oracle Linux 10, 9, 8 [#ol-700-mi300x]_","Oracle Linux 9, 8 [#ol-700-mi300x]_","Oracle Linux 9, 8 [#ol-mi300x]_"
,"Debian 13 [#db-mi300x]_, 12 [#sles-db-700]_",Debian 12 [#sles-db-700]_,Debian 12 [#single-node]_
,Azure Linux 3.0 [#az-mi300x]_,Azure Linux 3.0 [#az-mi300x]_,Azure Linux 3.0 [#az-mi300x]_
,Rocky Linux 9 [#rl-700]_,Rocky Linux 9 [#rl-700]_,
,"RHEL 10.1, 10.0, 9.7, |br| 9.6, 9.4","RHEL 10.0, 9.6, 9.4","RHEL 9.5, 9.4"
,RHEL 8.10,RHEL 8.10,RHEL 8.10
,SLES 15 SP7,SLES 15 SP7,SLES 15 SP6
,"Oracle Linux 10, 9, 8","Oracle Linux 10, 9, 8","Oracle Linux 9, 8"
,"Debian 13, 12","Debian 13, 12",Debian 12
,,,Azure Linux 3.0
,Rocky Linux 9,Rocky Linux 9,
,.. _architecture-support-compatibility-matrix:,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,CDNA4,
,CDNA3,CDNA3,CDNA3
@@ -43,99 +43,99 @@ compatibility and system requirements.
,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix:,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx950 [#mi350x-os]_,gfx950 [#mi350x-os]_,
,gfx1201 [#RDNA-OS-700]_,gfx1201 [#RDNA-OS-700]_,
,gfx1200 [#RDNA-OS-700]_,gfx1200 [#RDNA-OS-700]_,
,gfx1101 [#RDNA-OS-700]_ [#rd-v710]_,gfx1101 [#RDNA-OS-700]_ [#rd-v710]_,
,gfx1100 [#RDNA-OS-700]_,gfx1100 [#RDNA-OS-700]_,gfx1100
,gfx1030 [#RDNA-OS-700]_ [#rd-v620]_,gfx1030 [#RDNA-OS-700]_ [#rd-v620]_,gfx1030
,gfx942 [#mi325x-os]_ [#mi300x-os]_ [#mi300A-os]_,gfx942 [#mi325x-os]_ [#mi300x-os]_ [#mi300A-os]_,gfx942
,gfx90a [#mi200x-os]_,gfx90a [#mi200x-os]_,gfx90a
,gfx908 [#mi100-os]_,gfx908 [#mi100-os]_,gfx908
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` [#gpu-compatibility]_,gfx950,gfx950,
,gfx1201,gfx1201,
,gfx1200,gfx1200,
,gfx1101,gfx1101,
,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942
,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908
,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.8, 2.7, 2.6","2.7, 2.6, 2.5","2.6, 2.5, 2.4, 2.3"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.19.1, 2.18.1, 2.17.1 [#tf-mi350]_","2.19.1, 2.18.1, 2.17.1 [#tf-mi350]_","2.18.1, 2.17.1, 2.16.2"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.6.0,0.6.0,0.4.35
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.9, 2.8, 2.7","2.8, 2.7, 2.6","2.6, 2.5, 2.4, 2.3"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.20.0, 2.19.1, 2.18.1","2.20.0, 2.19.1, 2.18.1","2.18.1, 2.17.1, 2.16.2"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.7.1,0.7.1,0.4.35
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,2.4.0
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_,N/A,b6356,b5997
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.22.0,1.20.0
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_,N/A,N/A,b5997
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.23.1,1.22.0,1.20.0
,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix:,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.4.0,>=1.3.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.15.0
,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix:,,
Thrust,2.6.0,2.6.0,2.5.0
CUB,2.6.0,2.6.0,2.5.0
Thrust,2.8.5,2.8.5,2.5.0
CUB,2.8.5,2.8.5,2.5.0
,,,
DRIVER & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10.2, 30.10.1 [#driver_patch]_, |br| 30.10, 6.4.x, 6.3.x","30.10.1 [#driver_patch]_, 30.10, |br| 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.20.1, 30.20.0 [#mi325x_KVM]_, |br| 30.10.2, 30.10.1 [#driver_patch]_, |br| 30.10, 6.4.x","30.20.0 [#mi325x_KVM]_, 30.10.2, |br| 30.10.1 [#driver_patch]_, 30.10, 6.4.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.13.0,2.13.0,2.12.0
:doc:`MIOpen <miopen:index>`,3.5.0,3.5.0,3.4.0
:doc:`MIVisionX <mivisionx:index>`,3.3.0,3.3.0,3.2.0
:doc:`rocAL <rocal:index>`,2.3.0,2.3.0,2.2.0
:doc:`rocDecode <rocdecode:index>`,1.0.0,1.0.0,0.10.0
:doc:`rocJPEG <rocjpeg:index>`,1.1.0,1.1.0,0.8.0
:doc:`rocPyDecode <rocpydecode:index>`,0.6.0,0.6.0,0.3.1
:doc:`RPP <rpp:index>`,2.0.0,2.0.0,1.9.10
:doc:`MIGraphX <amdmigraphx:index>`,2.14.0,2.14.0,2.12.0
:doc:`MIOpen <miopen:index>`,3.5.1,3.5.1,3.4.0
:doc:`MIVisionX <mivisionx:index>`,3.4.0,3.4.0,3.2.0
:doc:`rocAL <rocal:index>`,2.4.0,2.4.0,2.2.0
:doc:`rocDecode <rocdecode:index>`,1.4.0,1.4.0,0.10.0
:doc:`rocJPEG <rocjpeg:index>`,1.2.0,1.2.0,0.8.0
:doc:`rocPyDecode <rocpydecode:index>`,0.7.0,0.7.0,0.3.1
:doc:`RPP <rpp:index>`,2.1.0,2.1.0,1.9.10
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.26.6,2.26.6,2.22.3
:doc:`rocSHMEM <rocshmem:index>`,3.0.0,3.0.0,2.0.0
:doc:`RCCL <rccl:index>`,2.27.7,2.27.7,2.22.3
:doc:`rocSHMEM <rocshmem:index>`,3.1.0,3.0.0,2.0.0
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,3.0.2,3.0.0,2.4.0
:doc:`hipBLASLt <hipblaslt:index>`,1.0.0,1.0.0,0.12.0
:doc:`hipFFT <hipfft:index>`,1.0.20,1.0.20,1.0.18
:doc:`hipfort <hipfort:index>`,0.7.0,0.7.0,0.6.0
:doc:`hipRAND <hiprand:index>`,3.0.0,3.0.0,2.12.0
:doc:`hipSOLVER <hipsolver:index>`,3.0.0,3.0.0,2.4.0
:doc:`hipSPARSE <hipsparse:index>`,4.0.1,4.0.1,3.2.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.4,0.2.4,0.2.3
:doc:`rocALUTION <rocalution:index>`,4.0.0,4.0.0,3.2.2
:doc:`rocBLAS <rocblas:index>`,5.0.2,5.0.0,4.4.0
:doc:`rocFFT <rocfft:index>`,1.0.34,1.0.34,1.0.32
:doc:`rocRAND <rocrand:index>`,4.0.0,4.0.0,3.3.0
:doc:`rocSOLVER <rocsolver:index>`,3.30.1,3.30.0,3.28.0
:doc:`rocSPARSE <rocsparse:index>`,4.0.2,4.0.2,3.4.0
:doc:`rocWMMA <rocwmma:index>`,2.0.0,2.0.0,1.7.0
:doc:`hipBLAS <hipblas:index>`,3.1.0,3.1.0,2.4.0
:doc:`hipBLASLt <hipblaslt:index>`,1.1.0,1.1.0,0.12.0
:doc:`hipFFT <hipfft:index>`,1.0.21,1.0.21,1.0.18
:doc:`hipfort <hipfort:index>`,0.7.1,0.7.1,0.6.0
:doc:`hipRAND <hiprand:index>`,3.1.0,3.1.0,2.12.0
:doc:`hipSOLVER <hipsolver:index>`,3.1.0,3.1.0,2.4.0
:doc:`hipSPARSE <hipsparse:index>`,4.1.0,4.1.0,3.2.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.5,0.2.5,0.2.3
:doc:`rocALUTION <rocalution:index>`,4.0.1,4.0.1,3.2.2
:doc:`rocBLAS <rocblas:index>`,5.1.1,5.1.0,4.4.0
:doc:`rocFFT <rocfft:index>`,1.0.35,1.0.35,1.0.32
:doc:`rocRAND <rocrand:index>`,4.1.0,4.1.0,3.3.0
:doc:`rocSOLVER <rocsolver:index>`,3.31.0,3.31.0,3.28.0
:doc:`rocSPARSE <rocsparse:index>`,4.1.0,4.1.0,3.4.0
:doc:`rocWMMA <rocwmma:index>`,2.1.0,2.0.0,1.7.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.44.0,4.43.0
,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix:,,
:doc:`hipCUB <hipcub:index>`,4.0.0,4.0.0,3.4.0
:doc:`hipCUB <hipcub:index>`,4.1.0,4.1.0,3.4.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,2.0.0,1.5.0
:doc:`rocPRIM <rocprim:index>`,4.0.1,4.0.0,3.4.0
:doc:`rocThrust <rocthrust:index>`,4.0.0,4.0.0,3.3.0
:doc:`rocPRIM <rocprim:index>`,4.1.0,4.1.0,3.4.0
:doc:`rocThrust <rocthrust:index>`,4.1.0,4.1.0,3.3.0
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,7.0.51830,7.0.51830,6.4.43482
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.2,7.0.1/7.0.0,6.4.0
`hipother <https://github.com/ROCm/hipother>`_,7.1.52802,7.1.25424,6.4.43482
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.1.1,7.1.0,6.4.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_
,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,
:doc:`AMD SMI <amdsmi:index>`,26.0.2,26.0.0,25.3.0
:doc:`ROCm Data Center Tool <rdc:index>`,1.1.0,1.1.0,0.3.0
:doc:`AMD SMI <amdsmi:index>`,26.2.0,26.1.0,25.3.0
:doc:`ROCm Data Center Tool <rdc:index>`,1.2.0,1.2.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.8.0,7.5.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.2.0,1.2.0,1.1.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.3.0,1.2.0,1.1.0
,,,
PERFORMANCE TOOLS,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,2.6.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.2.3,3.2.3,3.1.0
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.1.1,1.1.0,1.0.0
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70002,2.0.70000,2.0.60400
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.3.1,3.3.0,3.1.0
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.2.1,1.2.0,1.0.0
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70101,2.0.70100,2.0.60400
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,1.0.0,0.6.0
:doc:`ROCTracer <roctracer:index>`,4.1.70002,4.1.70000,4.1.60400
:doc:`ROCTracer <roctracer:index>`,4.1.70101,4.1.70100,4.1.60400
,,,
DEVELOPMENT TOOLS,,,
:doc:`HIPIFY <hipify:index>`,20.0.0,20.0.0,19.0.0
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.4,0.77.3,0.77.2
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.4,0.77.4,0.77.2
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,16.3.0,15.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.5.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.1.0,2.0.4
@@ -143,86 +143,33 @@ compatibility and system requirements.
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,20.0.0.25385,20.0.0.25314,19.0.0.25133
:doc:`llvm-project <llvm-project:index>`,20.0.0.25385,20.0.0.25314,19.0.0.25133
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.0.25385,20.0.0.25314,19.0.0.25133
`Flang <https://github.com/ROCm/flang>`_,20.0.025444,20.0.025425,19.0.0.25133
:doc:`llvm-project <llvm-project:index>`,20.0.025444,20.0.025425,19.0.0.25133
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.025444,20.0.025425,19.0.0.25133
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.0.51831,7.0.51830,6.4.43482
:doc:`HIP <hip:index>`,7.0.51831,7.0.51830,6.4.43482
:doc:`AMD CLR <hip:understand/amd_clr>`,7.1.52802,7.1.25424,6.4.43482
:doc:`HIP <hip:index>`,7.1.52802,7.1.25424,6.4.43482
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.15.0
.. rubric:: Footnotes
.. [#rhel-10-702] RHEL 10.0 and RHEL 9.6 are supported on all listed :ref:`supported_GPUs` except AMD Radeon PRO V620 GPU.
.. [#rhel-94-702] RHEL 9.4 is supported on all AMD Instinct GPUs listed under :ref:`supported_GPUs`.
.. [#rhel-700] RHEL 8.10 is supported only on AMD Instinct MI300X, MI300A, MI250X, MI250, MI210, and MI100 GPUs.
.. [#ol-700-mi300x] **For ROCm 7.0.x** - Oracle Linux 10 and 9 are supported only on AMD Instinct MI355X, MI350X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPU.
.. [#ol-mi300x] **Prior ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X GPUs.
.. [#db-mi300x] **For ROCm 7.0.2** - Debian 13 is supported only on AMD Instinct MI300X GPUs.
.. [#sles-db-700] **For ROCm 7.0.x** - SLES 15 SP7 and Debian 12 are supported only on AMD Instinct MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
.. [#az-mi300x] Starting ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710 GPUs.
.. [#rl-700] Rocky Linux 9 is supported only on AMD Instinct MI300X and MI300A GPUs.
.. [#single-node] **Prior to ROCm 7.0.0** - Debian 12 is supported only on AMD Instinct MI300X GPUs for single-node functionality.
.. [#mi350x-os] AMD Instinct MI355X (gfx950) and MI350X(gfx950) GPUs are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, Oracle Linux 10, and Oracle Linux 9.
.. [#RDNA-OS-700] **For ROCm 7.0.x** - AMD Radeon PRO AI PRO R9700 (gfx1201), AMD Radeon RX 9070 XT (gfx1201), AMD Radeon RX 9070 GRE (gfx1201), AMD Radeon RX 9070 (gfx1201), AMD Radeon RX 9060 XT (gfx1200), AMD Radeon RX 9060 (gfx1200), AMD Radeon RX 7800 XT (gfx1101), AMD Radeon RX 7700 XT (gfx1101), AMD Radeon PRO W7700 (gfx1101), and AMD Radeon PRO W6800 (gfx1030) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, and RHEL 9.6.
.. [#rd-v710] **For ROCm 7.0.x** - AMD Radeon PRO V710 (gfx1101) GPUs are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, and Azure Linux 3.0.
.. [#rd-v620] **For ROCm 7.0.x** - AMD Radeon PRO V620 (gfx1030) GPUs are supported only on Ubuntu 24.04.3 and Ubuntu 22.04.5.
.. [#mi325x-os] **For ROCm 7.0.x** - AMD Instinct MI325X GPUs (gfx942) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#mi300x-os] **For ROCm 7.0.x** - AMD Instinct MI300X GPUs (gfx942) are supported on all listed :ref:`supported_distributions`.
.. [#mi300A-os] **For ROCm 7.0.x** - AMD Instinct MI300A GPUs (gfx942) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, Debian 12, and Rocky Linux 9.
.. [#mi200x-os] **For ROCm 7.0.x** - AMD Instinct MI200 Series GPUs (gfx90a) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, and Debian 12.
.. [#mi100-os] **For ROCm 7.0.x** - AMD Instinct MI100 GPUs (gfx908) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, and RHEL 8.10.
.. [#tf-mi350] TensorFlow 2.17.1 is not supported on AMD Instinct MI350 Series GPUs. Use TensorFlow 2.19.1 or 2.18.1 with MI350 Series GPUs instead.
.. [#dgl_compat] DGL is supported only on ROCm 6.4.0.
.. [#llama-cpp_compat] llama.cpp is supported only on ROCm 7.0.0 and ROCm 6.4.x.
.. [#os-compatibility] Some operating systems are supported on limited GPUs. For detailed information, see the latest :ref:`supported_distributions`. For version specific information, see `ROCm 7.1.1 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.1/reference/system-requirements.html#supported-operating-systems>`__, `ROCm 7.1.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.0/reference/system-requirements.html#supported-operating-systems>`__, and `ROCm 6.4.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/reference/system-requirements.html#supported-operating-systems>`__.
.. [#gpu-compatibility] Some GPUs have limited operating system support. For detailed information, see the latest :ref:`supported_GPUs`. For version specific information, see `ROCm 7.1.1 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.1/reference/system-requirements.html#supported-gpus>`__, `ROCm 7.1.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.0/reference/system-requirements.html#supported-gpus>`__, and `ROCm 6.4.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/reference/system-requirements.html#supported-gpus>`__.
.. [#dgl_compat] DGL is only supported on ROCm 7.0.0, ROCm 6.4.3 and ROCm 6.4.0.
.. [#llama-cpp_compat] llama.cpp is only supported on ROCm 7.0.0 and ROCm 6.4.x.
.. [#mi325x_KVM] For AMD Instinct MI325X KVM SR-IOV users, do not use AMD GPU Driver (amdgpu) 30.20.0.
.. [#driver_patch] AMD GPU Driver (amdgpu) 30.10.1 is a quality release that resolves an issue identified in the 30.10 release. There are no other significant changes or feature additions in ROCm 7.0.1 from ROCm 7.0.0. AMD GPU Driver (amdgpu) 30.10.1 is compatible with ROCm 7.0.1 and ROCm 7.0.0.
.. [#kfd_support] As of ROCm 6.4.0, forward and backward compatibility between the AMD GPU Driver (amdgpu) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and AMD GPU Driver support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
.. _OS-kernel-versions:
Operating systems, kernel and Glibc versions
*********************************************
Use this lookup table to confirm which operating system and kernel versions are supported with ROCm.
.. csv-table::
:header: "OS", "Version", "Kernel", "Glibc"
:widths: 40, 20, 30, 20
:stub-columns: 1
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 24.04.3, "6.8 [GA], 6.14 [HWE]", 2.39
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 24.04.2, "6.8 [GA], 6.11 [HWE]", 2.39
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 22.04.5, "5.15 [GA], 6.8 [HWE]", 2.35
,,
`Red Hat Enterprise Linux (RHEL 10) <https://access.redhat.com/articles/3078#RHEL9>`_, 10.0, 6.12.0-55, 2.39
,,
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.6, 5.14.0-570, 2.34
,9.5, 5.14+, 2.34
,9.4, 5.14.0-427, 2.34
,,
`Red Hat Enterprise Linux (RHEL 8) <https://access.redhat.com/articles/3078#RHEL8>`_, 8.10, 4.18.0-553, 2.28
,,
`SUSE Linux Enterprise Server (SLES) <https://www.suse.com/support/kb/doc/?id=000019587#SLE15SP4>`_, 15 SP7, 6.40-150700.51, 2.38
,15 SP6, "6.5.0+, 6.4.0", 2.38
,15 SP5, 5.14.21, 2.31
,,
`Rocky Linux <https://wiki.rockylinux.org/rocky/version/>`_, 9, 5.14.0-570, 2.34
,,
`Oracle Linux <https://blogs.oracle.com/scoter/post/oracle-linux-and-unbreakable-enterprise-kernel-uek-releases>`_, 10, 6.12.0 (UEK), 2.39
,9, 6.12.0 (UEK), 2.34
,8, 5.15.0 (UEK), 2.28
,,
`Debian <https://www.debian.org/download>`_,13, 6.12, 2.35
,12, 6.1.0, 2.36
,,
`Azure Linux <https://techcommunity.microsoft.com/blog/linuxandopensourceblog/azure-linux-3-0-now-in-preview-on-azure-kubernetes-service-v1-31/4287229>`_,3.0, 6.6.92, 2.38
,,
For detailed information on operating system supported on ROCm 7.1.1 and associated Kernel and Glibc version, see the latest :ref:`supported_distributions`. For version specific information, see `ROCm 7.1.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.0/reference/system-requirements.html#supported-operating-systems>`__, and `ROCm 6.4.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/reference/system-requirements.html#supported-operating-systems>`__.
.. note::
@@ -254,46 +201,17 @@ Expand for full historical view of:
.. rubric:: Footnotes
.. [#rhel-10-702-past-60] RHEL 10.0 and RHEL 9.6 are supported on all listed :ref:`supported_GPUs` except AMD Radeon PRO V620 GPU.
.. [#rhel-94-702-past-60] RHEL 9.4 is supported on all AMD Instinct GPUs listed under :ref:`supported_GPUs`.
.. [#rhel-700-past-60] **For ROCm 7.0.x** - RHEL 8.10 is supported only on AMD Instinct MI300X, MI300A, MI250X, MI250, MI210, and MI100 GPUs.
.. [#ol-700-mi300x-past-60] **For ROCm 7.0.x** - Oracle Linux 10 and 9 are supported only on AMD Instinct MI355X, MI350X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPU.
.. [#mi300x-past-60] **Prior ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X GPUs.
.. [#db-mi300x-past-60] **For ROCm 7.0.2** - Debian 13 is supported only on AMD Instinct MI300X GPUs.
.. [#sles-db-700-past-60] **For ROCm 7.0.x** - SLES 15 SP7 and Debian 12 are supported only on AMD Instinct MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
.. [#single-node-past-60] **Prior to ROCm 7.0.0** - Debian 12 is supported only on AMD Instinct MI300X GPUs for single-node functionality.
.. [#az-mi300x-past-60] Starting from ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710 GPUs.
.. [#az-mi300x-630-past-60] **Prior ROCm 6.4.0**- Azure Linux 3.0 is supported only on AMD Instinct MI300X GPUs.
.. [#rl-700-past-60] Rocky Linux 9 is supported only on AMD Instinct MI300X and MI300A GPUs.
.. [#mi350x-os-past-60] AMD Instinct MI355X (gfx950) and MI350X(gfx950) GPUs are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.4, and Oracle Linux 9.
.. [#RDNA-OS-700-past-60] **For ROCm 7.0.x** AMD Radeon PRO AI PRO R9700 (gfx1201), AMD Radeon RX 9070 XT (gfx1201), AMD Radeon RX 9070 GRE (gfx1201), AMD Radeon RX 9070 (gfx1201), AMD Radeon RX 9060 XT (gfx1200), AMD Radeon RX 9060 (gfx1200), AMD Radeon RX 7800 XT (gfx1101), AMD Radeon RX 7700 XT (gfx1101), AMD Radeon PRO W7700 (gfx1101), and AMD Radeon PRO W6800 (gfx1030) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, Oracle Linux 10, and Oracle Linux 9.
.. [#RDNA-OS-past-60] **Prior ROCm 7.0.0** - Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#rd-v710-past-60] **For ROCm 7.0.x** - AMD Radeon PRO V710 (gfx1101) is supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, and Azure Linux 3.0.
.. [#rd-v620-past-60] **For ROCm 7.0.x** - AMD Radeon PRO V620 (gfx1030) is supported only on Ubuntu 24.04.3 and Ubuntu 22.04.5.
.. [#mi325x-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI325X GPU (gfx942) is supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#mi300x-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI300X GPU (gfx942) is supported on all listed :ref:`supported_distributions`.
.. [#mi300A-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI300A GPU (gfx942) is supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, Debian 12, and Rocky Linux 9.
.. [#mi200x-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI200 Series GPUs (gfx90a) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, and Debian 12.
.. [#mi100-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI100 GPU (gfx908) is supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, and RHEL 8.10.
.. [#7700XT-OS-past-60] **Prior to ROCm 7.0.0** - Radeon RX 7700 XT (gfx1101) is supported only on Ubuntu 24.04.2 and RHEL 9.6.
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_621-past-60] **For ROCm 6.2.1** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_620-past-60] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_612-past-60] **For ROCm 6.1.2** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.4 and Oracle Linux.
.. [#mi300_611-past-60] **For ROCm 6.1.1** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.4 and Oracle Linux.
.. [#mi300_610-past-60] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.4.
.. [#mi300_602-past-60] **For ROCm 6.0.2** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.3.
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.3.
.. [#os-compatibility-past-60] Some operating systems are supported on limited GPUs. For detailed information, see the latest :ref:`supported_distributions`. For version specific information, see `ROCm 7.1.1 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.1/reference/system-requirements.html#supported-operating-systems>`__, `ROCm 7.1.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.0/reference/system-requirements.html#supported-operating-systems>`__, and `ROCm 6.4.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/reference/system-requirements.html#supported-operating-systems>`__.
.. [#gpu-compatibility-past-60] Some GPUs have limited operating system support. For detailed information, see the latest :ref:`supported_GPUs`. For version specific information, see `ROCm 7.1.1 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.1/reference/system-requirements.html#supported-gpus>`__, `ROCm 7.1.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-7.1.0/reference/system-requirements.html#supported-gpus>`__, and `ROCm 6.4.0 <https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.0/reference/system-requirements.html#supported-gpus>`__.
.. [#tf-mi350-past-60] TensorFlow 2.17.1 is not supported on AMD Instinct MI350 Series GPUs. Use TensorFlow 2.19.1 or 2.18.1 with MI350 Series GPUs instead.
.. [#verl_compat-past-60] verl is supported only on ROCm 6.2.0.
.. [#stanford-megatron-lm_compat-past-60] Stanford Megatron-LM is supported only on ROCm 6.3.0.
.. [#dgl_compat-past-60] DGL is supported only on ROCm 6.4.0.
.. [#megablocks_compat-past-60] Megablocks is supported only on ROCm 6.3.0.
.. [#taichi_compat-past-60] Taichi is supported only on ROCm 6.3.2.
.. [#ray_compat-past-60] Ray is supported only on ROCm 6.4.1.
.. [#llama-cpp_compat-past-60] llama.cpp is supported only on ROCm 7.0.0 and 6.4.x.
.. [#flashinfer_compat-past-60] FlashInfer is supported only on ROCm 6.4.1.
.. [#verl_compat-past-60] verl is only supported on ROCm 7.0.0 and 6.2.0.
.. [#stanford-megatron-lm_compat-past-60] Stanford Megatron-LM is only supported on ROCm 6.3.0.
.. [#dgl_compat-past-60] DGL is only supported on ROCm 7.0.0, ROCm 6.4.3 and ROCm 6.4.0.
.. [#megablocks_compat-past-60] Megablocks is only supported on ROCm 6.3.0.
.. [#ray_compat-past-60] Ray is only supported on ROCm 7.0.0 and 6.4.1.
.. [#llama-cpp_compat-past-60] llama.cpp is only supported on ROCm 7.0.0 and 6.4.x.
.. [#flashinfer_compat-past-60] FlashInfer is only supported on ROCm 6.4.1.
.. [#mi325x_KVM-past-60] For AMD Instinct MI325X KVM SR-IOV users, do not use AMD GPU Driver (amdgpu) 30.20.0.
.. [#driver_patch-past-60] AMD GPU Driver (amdgpu) 30.10.1 is a quality release that resolves an issue identified in the 30.10 release. There are no other significant changes or feature additions in ROCm 7.0.1 from ROCm 7.0.0. AMD GPU Driver (amdgpu) 30.10.1 is compatible with ROCm 7.0.1 and ROCm 7.0.0.
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD GPU Driver (amdgpu) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and AMD GPU Driver support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.

View File

@@ -2,7 +2,7 @@
.. meta::
:description: Deep Graph Library (DGL) compatibility
:keywords: GPU, DGL compatibility
:keywords: GPU, CPU, deep graph library, DGL, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -10,215 +10,274 @@
DGL compatibility
********************************************************************************
Deep Graph Library `(DGL) <https://www.dgl.ai/>`_ is an easy-to-use, high-performance and scalable
Deep Graph Library (`DGL <https://www.dgl.ai/>`__) is an easy-to-use, high-performance, and scalable
Python package for deep learning on graphs. DGL is framework agnostic, meaning
if a deep graph model is a component in an end-to-end application, the rest of
that if a deep graph model is a component in an end-to-end application, the rest of
the logic is implemented using PyTorch.
* ROCm support for DGL is hosted in the `https://github.com/ROCm/dgl <https://github.com/ROCm/dgl>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/dmlc/dgl <https://github.com/dmlc/dgl>`_ upstream repository.
* Use the prebuilt :ref:`Docker images <dgl-docker-compat>` with DGL, PyTorch, and ROCm preinstalled.
* See the :doc:`ROCm DGL installation guide <rocm-install-on-linux:install/3rd-party/dgl-install>`
to install and get started.
DGL provides a high-performance graph object that can reside on either CPUs or GPUs.
It bundles structural data features for better control and provides a variety of functions
for computing with graph objects, including efficient and customizable message passing
primitives for Graph Neural Networks.
Supported devices
Support overview
================================================================================
- **Officially Supported**: TF32 with AMD Instinct MI300X (through hipblaslt)
- **Partially Supported**: TF32 with AMD Instinct MI250X
- The ROCm-supported version of DGL is maintained in the official `https://github.com/ROCm/dgl
<https://github.com/ROCm/dgl>`__ repository, which differs from the
`https://github.com/dmlc/dgl <https://github.com/dmlc/dgl>`__ upstream repository.
- To get started and install DGL on ROCm, use the prebuilt :ref:`Docker images <dgl-docker-compat>`,
which include ROCm, DGL, and all required dependencies.
.. _dgl-recommendations:
Use cases and recommendations
================================================================================
DGL can be used for Graph Learning, and building popular graph models like
GAT, GCN and GraphSage. Using these we can support a variety of use-cases such as:
- Recommender systems
- Network Optimization and Analysis
- 1D (Temporal) and 2D (Image) Classification
- Drug Discovery
Multiple use cases of DGL have been tested and verified.
However, a recommended example follows a drug discovery pipeline using the ``SE3Transformer``.
Refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`_,
where you can search for DGL examples and best practices to optimize your training workflows on AMD GPUs.
Coverage includes:
- Single-GPU training/inference
- Multi-GPU training
- See the :doc:`ROCm DGL installation guide <rocm-install-on-linux:install/3rd-party/dgl-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://www.dgl.ai/pages/start.html>`__
for additional context.
.. _dgl-docker-compat:
Docker image compatibility
Compatibility matrix
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `DGL images <https://hub.docker.com/r/rocm/dgl>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`_.
AMD validates and publishes `DGL images <https://hub.docker.com/r/rocm/dgl/tags>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest available DGL version from the official Docker Hub.
Click the |docker-icon| to view the image on Docker Hub.
.. list-table:: DGL Docker image components
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker
* - Docker image
- ROCm
- DGL
- PyTorch
- Ubuntu
- Python
- GPU
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-8ce2c3bcfaa137ab94a75f9e2ea711894748980f57417739138402a542dd5564"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4.0.amd0_rocm7.0.0_ubuntu24.04_py3.12_pytorch_2.8.0/images/sha256-943698ddf54c22a7bcad2e5b4ff467752e29e4ba6d0c926789ae7b242cbd92dd"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`_
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.8.0 <https://github.com/pytorch/pytorch/releases/tag/v2.8.0>`__
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
- MI300X, MI250X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-cf1683283b8eeda867b690229c8091c5bbf1edb9f52e8fb3da437c49a612ebe4"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4.0.amd0_rocm7.0.0_ubuntu24.04_py3.12_pytorch_2.6.0/images/sha256-b2ec286a035eb7d0a6aab069561914d21a3cac462281e9c024501ba5ccedfbf7"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.6.0 <https://github.com/pytorch/pytorch/releases/tag/v2.6.0>`__
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
- MI300X, MI250X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-4834f178c3614e2d09e89e32041db8984c456d45dfd20286e377ca8635686554"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4.0.amd0_rocm7.0.0_ubuntu22.04_py3.10_pytorch_2.7.1/images/sha256-d27aee16df922ccf0bcd9107bfcb6d20d34235445d456c637e33ca6f19d11a51"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.7.1 <https://github.com/pytorch/pytorch/releases/tag/v2.7.1>`__
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`__
- MI300X, MI250X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-88740a2c8ab4084b42b10c3c6ba984cab33dd3a044f479c6d7618e2b2cb05e69"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4.0.amd0_rocm6.4.3_ubuntu24.04_py3.12_pytorch_2.6.0/images/sha256-f3ba6a3c9ec9f6c1cde28449dc9780e0c4c16c4140f4b23f158565fbfd422d6b"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`_
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- `6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.6.0 <https://github.com/pytorch/pytorch/releases/tag/v2.6.0>`__
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
- MI300X, MI250X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-8ce2c3bcfaa137ab94a75f9e2ea711894748980f57417739138402a542dd5564"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.6.0 <https://github.com/pytorch/pytorch/releases/tag/v2.6.0>`__
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
- MI300X, MI250X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-cf1683283b8eeda867b690229c8091c5bbf1edb9f52e8fb3da437c49a612ebe4"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.4.1 <https://github.com/pytorch/pytorch/releases/tag/v2.4.1>`__
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`__
- MI300X, MI250X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-4834f178c3614e2d09e89e32041db8984c456d45dfd20286e377ca8635686554"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.4.1 <https://github.com/pytorch/pytorch/releases/tag/v2.4.1>`__
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`__
- MI300X, MI250X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/dgl/dgl-2.4_rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-88740a2c8ab4084b42b10c3c6ba984cab33dd3a044f479c6d7618e2b2cb05e69"><i class="fab fa-docker fa-lg"></i> rocm/dgl</a>
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- `2.4.0 <https://github.com/dmlc/dgl/releases/tag/v2.4.0>`__
- `2.3.0 <https://github.com/pytorch/pytorch/releases/tag/v2.3.0>`__
- 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`__
- MI300X, MI250X
.. _dgl-key-rocm-libraries:
Key ROCm libraries for DGL
================================================================================
DGL on ROCm depends on specific libraries that affect its features and performance.
Using the DGL Docker container or building it with the provided docker file or a ROCm base image is recommended.
Using the DGL Docker container or building it with the provided Docker file or a ROCm base image is recommended.
If you prefer to build it yourself, ensure the following dependencies are installed:
.. list-table::
:header-rows: 1
* - ROCm library
- Version
- ROCm 7.0.0 Version
- ROCm 6.4.x Version
- Purpose
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- :version-ref:`"Composable Kernel" rocm_version`
- 1.1.0
- 1.1.0
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- :version-ref:`hipBLAS rocm_version`
- 3.0.0
- 2.4.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- :version-ref:`hipBLASLt rocm_version`
- 1.0.0
- 0.12.0
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- :version-ref:`hipCUB rocm_version`
- 4.0.0
- 3.4.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- :version-ref:`hipFFT rocm_version`
- 1.0.20
- 1.0.18
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- :version-ref:`hipRAND rocm_version`
- 3.0.0
- 2.12.0
- Provides fast random number generation for GPUs.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- :version-ref:`hipSOLVER rocm_version`
- 3.0.0
- 2.4.0
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- :version-ref:`hipSPARSE rocm_version`
- 4.0.1
- 3.2.0
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- :version-ref:`hipSPARSELt rocm_version`
- 0.2.4
- 0.2.3
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- :version-ref:`hipTensor rocm_version`
- 2.0.0
- 1.5.0
- Optimizes for high-performance tensor operations, such as contractions.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- :version-ref:`MIOpen rocm_version`
- 3.5.0
- 3.4.0
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- :version-ref:`MIGraphX rocm_version`
- 2.13.0
- 2.12.0
- Adds graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- :version-ref:`MIVisionX rocm_version`
- 3.3.0
- 3.2.0
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- :version-ref:`rocAL rocm_version`
- 3.3.0
- 2.2.0
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
* - `RCCL <https://github.com/ROCm/rccl>`_
- :version-ref:`RCCL rocm_version`
- 2.26.6
- 2.22.3
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- :version-ref:`rocDecode rocm_version`
- 1.0.0
- 0.10.0
- Provides hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- :version-ref:`rocJPEG rocm_version`
- 1.1.0
- 0.8.0
- Provides hardware-accelerated JPEG image decoding and encoding.
* - `RPP <https://github.com/ROCm/RPP>`_
- :version-ref:`RPP rocm_version`
- 2.0.0
- 1.9.10
- Speeds up data augmentation, transformation, and other preprocessing steps.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- :version-ref:`rocThrust rocm_version`
- 4.0.0
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- :version-ref:`rocWMMA rocm_version`
- 2.0.0
- 1.7.0
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
.. _dgl-supported-features-latest:
Supported features
Supported features with ROCm 7.0.0
================================================================================
Many functions and methods available in DGL Upstream are also supported in DGL ROCm.
Many functions and methods available upstream are also supported in DGL on ROCm.
Instead of listing them all, support is grouped into the following categories to provide a general overview.
* DGL Base
* DGL Backend
* DGL Data
* DGL Dataloading
* DGL DGLGraph
* DGL Graph
* DGL Function
* DGL Ops
* DGL Sampling
@@ -230,26 +289,76 @@ Instead of listing them all, support is grouped into the following categories to
* DGL NN
* DGL Optim
* DGL Sparse
* GraphBolt
.. _dgl-unsupported-features-latest:
Unsupported features
Unsupported features with ROCm 7.0.0
================================================================================
* Graphbolt
* Partial TF32 Support (MI250x only)
* Kineto/ ROCTracer integration
* TF32 Support (only supported for PyTorch 2.7 and above)
* Kineto/ROCTracer integration
.. _dgl-unsupported-functions:
Unsupported functions
Unsupported functions with ROCm 7.0.0
================================================================================
* ``more_nnz``
* ``bfs``
* ``format``
* ``multiprocess_sparse_adam_state_dict``
* ``record_stream_ndarray``
* ``half_spmm``
* ``segment_mm``
* ``gather_mm_idx_b``
* ``pgexplainer``
* ``sample_labors_prob``
* ``sample_labors_noprob``
* ``sparse_admin``
.. _dgl-recommendations:
Use cases and recommendations
================================================================================
DGL can be used for Graph Learning, and building popular graph models like
GAT, GCN, and GraphSage. Using these models, a variety of use cases are supported:
- Recommender systems
- Network Optimization and Analysis
- 1D (Temporal) and 2D (Image) Classification
- Drug Discovery
For use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for DGL examples and best practices to optimize your workloads on AMD GPUs.
* Although multiple use cases of DGL have been tested and verified, a few have been
outlined in the `DGL in the Real World: Running GNNs on Real Use Cases
<https://rocm.blogs.amd.com/artificial-intelligence/dgl_blog2/README.html>`__ blog
post, which walks through four real-world graph neural network (GNN) workloads
implemented with the Deep Graph Library on ROCm. It covers tasks ranging from
heterogeneous e-commerce graphs and multiplex networks (GATNE) to molecular graph
regression (GNN-FiLM) and EEG-based neurological diagnosis (EEG-GCNN). For each use
case, the authors detail: the dataset and task, how DGL is used, and their experience
porting to ROCm. It is shown that DGL codebases often run without modification, with
seamless integration of graph operations, message passing, sampling, and convolution.
* The `Graph Neural Networks (GNNs) at Scale: DGL with ROCm on AMD Hardware
<https://rocm.blogs.amd.com/artificial-intelligence/why-graph-neural/README.html>`__
blog post introduces the Deep Graph Library (DGL) and its enablement on the AMD ROCm platform,
bringing high-performance graph neural network (GNN) training to AMD GPUs. DGL bridges
the gap between dense tensor frameworks and the irregular nature of graph data through a
graph-first, message-passing abstraction. Its design ensures scalability, flexibility, and
interoperability across frameworks like PyTorch and TensorFlow. AMDs ROCm integration
enables DGL to run efficiently on HIP-based GPUs, supported by prebuilt Docker containers
and open-source repositories. This marks a major step in AMD's mission to advance open,
scalable AI ecosystems beyond traditional architectures.
You can pre-process datasets and begin training on AMD GPUs through:
* Single-GPU training/inference
* Multi-GPU training
Previous versions
===============================================================================
See :doc:`rocm-install-on-linux:install/3rd-party/previous-versions/dgl-history` to find documentation for previous releases
of the ``ROCm/dgl`` Docker image.

View File

@@ -1,8 +1,8 @@
:orphan:
.. meta::
:description: FlashInfer deep learning framework compatibility
:keywords: GPU, LLM, FlashInfer, compatibility
:description: FlashInfer compatibility
:keywords: GPU, LLM, FlashInfer, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -11,7 +11,7 @@ FlashInfer compatibility
********************************************************************************
`FlashInfer <https://docs.flashinfer.ai/index.html>`__ is a library and kernel generator
for Large Language Models (LLMs) that provides high-performance implementation of graphics
for Large Language Models (LLMs) that provides a high-performance implementation of graphics
processing units (GPUs) kernels. FlashInfer focuses on LLM serving and inference, as well
as advanced performance across diverse scenarios.
@@ -25,63 +25,35 @@ offers high-performance LLM-specific operators, with easy integration through Py
For the latest feature compatibility matrix, refer to the ``README`` of the
`https://github.com/ROCm/flashinfer <https://github.com/ROCm/flashinfer>`__ repository.
Support for the ROCm port of FlashInfer is available as follows:
Support overview
================================================================================
- ROCm support for FlashInfer is hosted in the `https://github.com/ROCm/flashinfer
<https://github.com/ROCm/flashinfer>`__ repository. This location differs from the
`https://github.com/flashinfer-ai/flashinfer <https://github.com/flashinfer-ai/flashinfer>`_
- The ROCm-supported version of FlashInfer is maintained in the official `https://github.com/ROCm/flashinfer
<https://github.com/ROCm/flashinfer>`__ repository, which differs from the
`https://github.com/flashinfer-ai/flashinfer <https://github.com/flashinfer-ai/flashinfer>`__
upstream repository.
- To install FlashInfer, use the prebuilt :ref:`Docker image <flashinfer-docker-compat>`,
which includes ROCm, FlashInfer, and all required dependencies.
- To get started and install FlashInfer on ROCm, use the prebuilt :ref:`Docker images <flashinfer-docker-compat>`,
which include ROCm, FlashInfer, and all required dependencies.
- See the :doc:`ROCm FlashInfer installation guide <rocm-install-on-linux:install/3rd-party/flashinfer-install>`
to install and get started.
for installation and setup instructions.
- See the `Installation guide <https://docs.flashinfer.ai/installation.html>`__
in the upstream FlashInfer documentation.
.. note::
Flashinfer is supported on ROCm 6.4.1.
Supported devices
================================================================================
**Officially Supported**: AMD Instinct™ MI300X
.. _flashinfer-recommendations:
Use cases and recommendations
================================================================================
This release of FlashInfer on ROCm provides the decode functionality for LLM inferencing.
In the decode phase, tokens are generated sequentially, with the model predicting each new
token based on the previously generated tokens and the input context.
FlashInfer on ROCm brings over upstream features such as load balancing, sparse and dense
attention optimizations, and batching support, enabling efficient execution on AMD Instinct™ MI300X GPUs.
Because large LLMs often require substantial KV caches or long context windows, FlashInfer on ROCm
also implements cascade attention from upstream to reduce memory usage.
For currently supported use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for examples and best practices to optimize your workloads on AMD GPUs.
- You can also consult the upstream `Installation guide <https://docs.flashinfer.ai/installation.html>`__
for additional context.
.. _flashinfer-docker-compat:
Docker image compatibility
Compatibility matrix
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `ROCm FlashInfer images <https://hub.docker.com/r/rocm/flashinfer/tags>`__
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories represent the FlashInfer version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__.
AMD validates and publishes `FlashInfer images <https://hub.docker.com/r/rocm/flashinfer/tags>`__
with ROCm backends on Docker Hub. The following Docker image tag and associated
inventories represent the latest available FlashInfer version from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
@@ -94,6 +66,7 @@ Click |docker-icon| to view the image on Docker Hub.
- PyTorch
- Ubuntu
- Python
- GPU
* - .. raw:: html
@@ -103,5 +76,23 @@ Click |docker-icon| to view the image on Docker Hub.
- `2.7.1 <https://github.com/ROCm/pytorch/releases/tag/v2.7.1>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3129/>`__
- MI300X
.. _flashinfer-recommendations:
Use cases and recommendations
================================================================================
The release of FlashInfer on ROCm provides the decode functionality for LLM inferencing.
In the decode phase, tokens are generated sequentially, with the model predicting each new
token based on the previously generated tokens and the input context.
FlashInfer on ROCm brings over upstream features such as load balancing, sparse and dense
attention optimizations, and batching support, enabling efficient execution on AMD Instinct™ MI300X GPUs.
Because large LLMs often require substantial KV caches or long context windows, FlashInfer on ROCm
also implements cascade attention from upstream to reduce memory usage.
For currently supported use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for examples and best practices to optimize your workloads on AMD GPUs.

View File

@@ -2,7 +2,7 @@
.. meta::
:description: JAX compatibility
:keywords: GPU, JAX compatibility
:keywords: GPU, JAX, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -10,42 +10,58 @@
JAX compatibility
*******************************************************************************
JAX provides a NumPy-like API, which combines automatic differentiation and the
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
learning at scale.
`JAX <https://docs.jax.dev/en/latest/notebooks/thinking_in_jax.html>`__ is a library
for array-oriented numerical computation (similar to NumPy), with automatic differentiation
and just-in-time (JIT) compilation to enable high-performance machine learning research.
JAX uses composable transformations of Python and NumPy through just-in-time
(JIT) compilation, automatic vectorization, and parallelization. To learn about
JAX, including profiling and optimizations, see the official `JAX documentation
<https://jax.readthedocs.io/en/latest/notebooks/quickstart.html>`_.
JAX provides an API that combines automatic differentiation and the
Accelerated Linear Algebra (XLA) compiler to achieve high-performance machine
learning at scale. JAX uses composable transformations of Python and NumPy through
JIT compilation, automatic vectorization, and parallelization.
ROCm support for JAX is upstreamed, and users can build the official source code
with ROCm support:
Support overview
================================================================================
- ROCm JAX release:
- The ROCm-supported version of JAX is maintained in the official `https://github.com/ROCm/rocm-jax
<https://github.com/ROCm/rocm-jax>`__ repository, which differs from the
`https://github.com/jax-ml/jax <https://github.com/jax-ml/jax>`__ upstream repository.
- Offers AMD-validated and community :ref:`Docker images <jax-docker-compat>`
with ROCm and JAX preinstalled.
- To get started and install JAX on ROCm, use the prebuilt :ref:`Docker images <jax-docker-compat>`,
which include ROCm, JAX, and all required dependencies.
- ROCm JAX repository: `ROCm/rocm-jax <https://github.com/ROCm/rocm-jax>`_
- See the :doc:`ROCm JAX installation guide <rocm-install-on-linux:install/3rd-party/jax-install>`
for installation and setup instructions.
- See the :doc:`ROCm JAX installation guide <rocm-install-on-linux:install/3rd-party/jax-install>`
to get started.
- You can also consult the upstream `Installation guide <https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`__
for additional context.
- Official JAX release:
Version support
--------------------------------------------------------------------------------
- Official JAX repository: `jax-ml/jax <https://github.com/jax-ml/jax>`_
AMD releases official `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax/tags>`_
quarterly alongside new ROCm releases. These images undergo full AMD testing.
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community/tags>`_
follow upstream JAX releases and use the latest available ROCm version.
- See the `AMD GPU (Linux) installation section
<https://jax.readthedocs.io/en/latest/installation.html#amd-gpu-linux>`_ in
the JAX documentation.
JAX Plugin-PJRT with JAX/JAXLIB compatibility
================================================================================
.. note::
Portable JIT Runtime (PJRT) is an open, stable interface for device runtime and
compiler. The following table details the ROCm version compatibility matrix
between JAX PluginPJRT and JAX/JAXLIB.
AMD releases official `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
quarterly alongside new ROCm releases. These images undergo full AMD testing.
`Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
follow upstream JAX releases and use the latest available ROCm version.
.. list-table::
:header-rows: 1
* - JAX Plugin-PJRT
- JAX/JAXLIB
- ROCm
* - 0.7.1
- 0.7.1
- 7.1.1, 7.1.0
* - 0.6.0
- 0.6.2, 0.6.0
- 7.0.2, 7.0.1, 7.0.0
Use cases and recommendations
================================================================================
@@ -71,7 +87,7 @@ Use cases and recommendations
* The `Distributed fine-tuning with JAX on AMD GPUs <https://rocm.blogs.amd.com/artificial-intelligence/distributed-sft-jax/README.html>`_
outlines the process of fine-tuning a Bidirectional Encoder Representations
from Transformers (BERT)-based large language model (LLM) using JAX for a text
classification task. The blog post discuss techniques for parallelizing the
classification task. The blog post discusses techniques for parallelizing the
fine-tuning across multiple AMD GPUs and assess the model's performance on a
holdout dataset. During the fine-tuning, a BERT-base-cased transformer model
and the General Language Understanding Evaluation (GLUE) benchmark dataset was
@@ -90,9 +106,9 @@ For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.b
Docker image compatibility
================================================================================
AMD provides preconfigured Docker images with JAX and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/jax>`__ and are the
recommended way to get started with deep learning with JAX on ROCm.
AMD validates and publishes `JAX images <https://hub.docker.com/r/rocm/jax/tags>`__
with ROCm backends on Docker Hub.
For ``jax-community`` images, see `rocm/jax-community
<https://hub.docker.com/r/rocm/jax-community/tags>`__ on Docker Hub.
@@ -234,7 +250,7 @@ The ROCm supported data types in JAX are collected in the following table.
.. note::
JAX data type support is effected by the :ref:`key_rocm_libraries` and it's
JAX data type support is affected by the :ref:`key_rocm_libraries` and it's
collected on :doc:`ROCm data types and precision support <rocm:reference/precision-support>`
page.

View File

@@ -1,8 +1,8 @@
:orphan:
.. meta::
:description: llama.cpp deep learning framework compatibility
:keywords: GPU, GGML, llama.cpp compatibility
:description: llama.cpp compatibility
:keywords: GPU, GGML, llama.cpp, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -20,73 +20,34 @@ to accelerate inference and reduce memory usage. Originally built as a CPU-first
llama.cpp is easy to integrate with other programming environments and is widely
adopted across diverse platforms, including consumer devices.
ROCm support for llama.cpp is upstreamed, and you can build the official source code
with ROCm support:
Support overview
================================================================================
- ROCm support for llama.cpp is hosted in the official `https://github.com/ROCm/llama.cpp
<https://github.com/ROCm/llama.cpp>`_ repository.
- The ROCm-supported version of llama.cpp is maintained in the official `https://github.com/ROCm/llama.cpp
<https://github.com/ROCm/llama.cpp>`__ repository, which differs from the
`https://github.com/ggml-org/llama.cpp <https://github.com/ggml-org/llama.cpp>`__ upstream repository.
- Due to independent compatibility considerations, this location differs from the
`https://github.com/ggml-org/llama.cpp <https://github.com/ggml-org/llama.cpp>`_ upstream repository.
- To install llama.cpp, use the prebuilt :ref:`Docker image <llama-cpp-docker-compat>`,
which includes ROCm, llama.cpp, and all required dependencies.
- To get started and install llama.cpp on ROCm, use the prebuilt :ref:`Docker images <llama-cpp-docker-compat>`,
which include ROCm, llama.cpp, and all required dependencies.
- See the :doc:`ROCm llama.cpp installation guide <rocm-install-on-linux:install/3rd-party/llama-cpp-install>`
to install and get started.
for installation and setup instructions.
- See the `Installation guide <https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md#hip>`__
in the upstream llama.cpp documentation.
.. note::
llama.cpp is supported on ROCm 7.0.0 and ROCm 6.4.x.
Supported devices
================================================================================
**Officially Supported**: AMD Instinct™ MI300X, MI325X, MI210
Use cases and recommendations
================================================================================
llama.cpp can be applied in a variety of scenarios, particularly when you need to meet one or more of the following requirements:
- Plain C/C++ implementation with no external dependencies
- Support for 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory usage
- Custom HIP (Heterogeneous-compute Interface for Portability) kernels for running large language models (LLMs) on AMD GPUs (graphics processing units)
- CPU (central processing unit) + GPU (graphics processing unit) hybrid inference for partially accelerating models larger than the total available VRAM (video random-access memory)
llama.cpp is also used in a range of real-world applications, including:
- Games such as `Lucy's Labyrinth <https://github.com/MorganRO8/Lucys_Labyrinth>`__:
A simple maze game where AI-controlled agents attempt to trick the player.
- Tools such as `Styled Lines <https://marketplace.unity.com/packages/tools/ai-ml-integration/style-text-webgl-ios-stand-alone-llm-llama-cpp-wrapper-292902>`__:
A proprietary, asynchronous inference wrapper for Unity3D game development, including pre-built mobile and web platform wrappers and a model example.
- Various other AI applications use llama.cpp as their inference engine;
for a detailed list, see the `user interfaces (UIs) section <https://github.com/ggml-org/llama.cpp?tab=readme-ov-file#description>`__.
For more use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for llama.cpp examples and best practices to optimize your workloads on AMD GPUs.
- The `Llama.cpp Meets Instinct: A New Era of Open-Source AI Acceleration <https://rocm.blogs.amd.com/ecosystems-and-partners/llama-cpp/README.html>`__
blog post outlines how the open-source llama.cpp framework enables efficient LLM inference—including interactive inference with ``llama-cli``,
server deployment with ``llama-server``, GGUF model preparation and quantization, performance benchmarking, and optimizations tailored for
AMD Instinct GPUs within the ROCm ecosystem.
- You can also consult the upstream `Installation guide <https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md>`__
for additional context.
.. _llama-cpp-docker-compat:
Docker image compatibility
Compatibility matrix
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `ROCm llama.cpp Docker images <https://hub.docker.com/r/rocm/llama.cpp/tags>`__
AMD validates and publishes `llama.cpp images <https://hub.docker.com/r/rocm/llama.cpp/tags>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories represent the available llama.cpp versions from the official Docker Hub.
inventories represent the latest available llama.cpp versions from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
.. important::
@@ -107,32 +68,35 @@ Click |docker-icon| to view the image on Docker Hub.
- llama.cpp
- ROCm
- Ubuntu
- GPU
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu24.04_full/images/sha256-a2ecd635eaa65bb289a9041330128677f3ae88bee6fee0597424b17e38d4903c"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu24.04_full/images/sha256-a94f0c7a598cc6504ff9e8371c016d7a2f93e69bf54a36c870f9522567201f10g"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu24.04_server/images/sha256-cb46b47df415addb5ceb6e6fdf0be70bf9d7f6863bbe6e10c2441ecb84246d52"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu24.04_server/images/sha256-be175932c3c96e882dfbc7e20e0e834f58c89c2925f48b222837ee929dfc47ee"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu24.04_light/images/sha256-8f8536eec4b05c0ff1c022f9fc6c527ad1c89e6c1ca0906e4d39e4de73edbde9"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu24.04_light/images/sha256-d8ba0c70603da502c879b1f8010b439c8e7fa9f6cbdac8bbbbbba97cb41ebc9e"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6652 <https://github.com/ROCm/llama.cpp/tree/release/b6652>`__
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- 24.04
- MI325X, MI300X, MI210
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu22.04_full/images/sha256-f36de2a3b03ae53e81c85422cb3780368c9891e1ac7884b04403a921fe2ea45d"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu22.04_full/images/sha256-37582168984f25dce636cc7288298e06d94472ea35f65346b3541e6422b678ee"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu22.04_server/images/sha256-df15e8ab11a6837cd3736644fec1e047465d49e37d610ab0b79df000371327df"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu22.04_server/images/sha256-7e70578e6c3530c6591cc2c26da24a9ee68a20d318e12241de93c83224f83720"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu22.04_light/images/sha256-4ea2d5bb7964f0ee3ea9b30ba7f343edd6ddfab1b1037669ca7eafad2e3c2bd7"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6652.amd0_rocm7.0.0_ubuntu22.04_light/images/sha256-9a5231acf88b4a229677bc2c636ea3fe78a7a80f558bd80910b919855de93ad5"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6652 <https://github.com/ROCm/llama.cpp/tree/release/b6652>`__
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- 22.04
- MI325X, MI300X, MI210
* - .. raw:: html
@@ -146,6 +110,7 @@ Click |docker-icon| to view the image on Docker Hub.
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__
- 24.04
- MI325X, MI300X, MI210
* - .. raw:: html
@@ -159,7 +124,7 @@ Click |docker-icon| to view the image on Docker Hub.
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__
- 22.04
- MI325X, MI300X, MI210
* - .. raw:: html
@@ -173,6 +138,7 @@ Click |docker-icon| to view the image on Docker Hub.
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__
- 24.04
- MI325X, MI300X, MI210
* - .. raw:: html
@@ -186,7 +152,7 @@ Click |docker-icon| to view the image on Docker Hub.
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__
- 22.04
- MI325X, MI300X, MI210
* - .. raw:: html
@@ -200,6 +166,7 @@ Click |docker-icon| to view the image on Docker Hub.
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- 24.04
- MI325X, MI300X, MI210
* - .. raw:: html
@@ -213,6 +180,7 @@ Click |docker-icon| to view the image on Docker Hub.
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- 22.04
- MI325X, MI300X, MI210
* - .. raw:: html
@@ -226,7 +194,9 @@ Click |docker-icon| to view the image on Docker Hub.
- `b5997 <https://github.com/ROCm/llama.cpp/tree/release/b5997>`__
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- 24.04
- MI300X, MI210
.. _llama-cpp-key-rocm-libraries:
Key ROCm libraries for llama.cpp
================================================================================
@@ -269,6 +239,36 @@ your corresponding ROCm version.
- Can be used to enhance the flash attention performance on AMD compute, by enabling
the flag during compile time.
.. _llama-cpp-uses-recommendations:
Use cases and recommendations
================================================================================
llama.cpp can be applied in a variety of scenarios, particularly when you need to meet one or more of the following requirements:
- Plain C/C++ implementation with no external dependencies
- Support for 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory usage
- Custom HIP (Heterogeneous-compute Interface for Portability) kernels for running large language models (LLMs) on AMD GPUs (graphics processing units)
- CPU (central processing unit) + GPU (graphics processing unit) hybrid inference for partially accelerating models larger than the total available VRAM (video random-access memory)
llama.cpp is also used in a range of real-world applications, including:
- Games such as `Lucy's Labyrinth <https://github.com/MorganRO8/Lucys_Labyrinth>`__:
A simple maze game where AI-controlled agents attempt to trick the player.
- Tools such as `Styled Lines <https://marketplace.unity.com/packages/tools/ai-ml-integration/style-text-webgl-ios-stand-alone-llm-llama-cpp-wrapper-292902>`__:
A proprietary, asynchronous inference wrapper for Unity3D game development, including pre-built mobile and web platform wrappers and a model example.
- Various other AI applications use llama.cpp as their inference engine;
for a detailed list, see the `user interfaces (UIs) section <https://github.com/ggml-org/llama.cpp?tab=readme-ov-file#description>`__.
For more use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for llama.cpp examples and best practices to optimize your workloads on AMD GPUs.
- The `Llama.cpp Meets Instinct: A New Era of Open-Source AI Acceleration <https://rocm.blogs.amd.com/ecosystems-and-partners/llama-cpp/README.html>`__
blog post outlines how the open-source llama.cpp framework enables efficient LLM inference—including interactive inference with ``llama-cli``,
server deployment with ``llama-server``, GGUF model preparation and quantization, performance benchmarking, and optimizations tailored for
AMD Instinct GPUs within the ROCm ecosystem.
Previous versions
===============================================================================
See :doc:`rocm-install-on-linux:install/3rd-party/previous-versions/llama-cpp-history` to find documentation for previous releases

View File

@@ -2,7 +2,7 @@
.. meta::
:description: Megablocks compatibility
:keywords: GPU, megablocks, compatibility
:keywords: GPU, megablocks, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -10,64 +10,41 @@
Megablocks compatibility
********************************************************************************
Megablocks is a light-weight library for mixture-of-experts (MoE) training.
`Megablocks <https://github.com/databricks/megablocks>`__ is a lightweight library
for mixture-of-experts `(MoE) <https://huggingface.co/blog/moe>`__ training.
The core of the system is efficient "dropless-MoE" and standard MoE layers.
Megablocks is integrated with `https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`_,
Megablocks is integrated with `https://github.com/stanford-futuredata/Megatron-LM
<https://github.com/stanford-futuredata/Megatron-LM>`__,
where data and pipeline parallel training of MoEs is supported.
* ROCm support for Megablocks is hosted in the official `https://github.com/ROCm/megablocks <https://github.com/ROCm/megablocks>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`_ upstream repository.
* Use the prebuilt :ref:`Docker image <megablocks-docker-compat>` with ROCm, PyTorch, and Megablocks preinstalled.
* See the :doc:`ROCm Megablocks installation guide <rocm-install-on-linux:install/3rd-party/megablocks-install>` to install and get started.
.. note::
Megablocks is supported on ROCm 6.3.0.
Supported devices
Support overview
================================================================================
- **Officially Supported**: AMD Instinct MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210
- The ROCm-supported version of Megablocks is maintained in the official `https://github.com/ROCm/megablocks
<https://github.com/ROCm/megablocks>`__ repository, which differs from the
`https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`__ upstream repository.
Supported models and features
================================================================================
- To get started and install Megablocks on ROCm, use the prebuilt :ref:`Docker image <megablocks-docker-compat>`,
which includes ROCm, Megablocks, and all required dependencies.
This section summarizes the Megablocks features supported by ROCm.
* Distributed Pre-training
* Activation Checkpointing and Recomputation
* Distributed Optimizer
* Mixture-of-Experts
* dropless-Mixture-of-Experts
.. _megablocks-recommendations:
Use cases and recommendations
================================================================================
The `ROCm Megablocks blog posts <https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`_
guide how to leverage the ROCm platform for pre-training using the Megablocks framework.
It features how to pre-process datasets and how to begin pre-training on AMD GPUs through:
* Single-GPU pre-training
* Multi-GPU pre-training
- See the :doc:`ROCm Megablocks installation guide <rocm-install-on-linux:install/3rd-party/megablocks-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://github.com/databricks/megablocks>`__
for additional context.
.. _megablocks-docker-compat:
Docker image compatibility
Compatibility matrix
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `ROCm Megablocks images <https://hub.docker.com/r/rocm/megablocks/tags>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest Megatron-LM version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
AMD validates and publishes `Megablocks images <https://hub.docker.com/r/rocm/megablocks/tags>`__
with ROCm backends on Docker Hub. The following Docker image tag and associated
inventories represent the latest available Megablocks version from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
@@ -80,6 +57,7 @@ Click |docker-icon| to view the image on Docker Hub.
- PyTorch
- Ubuntu
- Python
- GPU
* - .. raw:: html
@@ -89,5 +67,38 @@ Click |docker-icon| to view the image on Docker Hub.
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- MI300X
Supported models and features with ROCm 6.3.0
================================================================================
This section summarizes the Megablocks features supported by ROCm.
* Distributed Pre-training
* Activation Checkpointing and Recomputation
* Distributed Optimizer
* Mixture-of-Experts
* dropless-Mixture-of-Experts
.. _megablocks-recommendations:
Use cases and recommendations
================================================================================
* The `Efficient MoE training on AMD ROCm: How-to use Megablocks on AMD GPUs
<https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`__
blog post guides how to leverage the ROCm platform for pre-training using the
Megablocks framework. It introduces a streamlined approach for training Mixture-of-Experts
(MoE) models using the Megablocks library on AMD hardware. Focusing on GPT-2, it
demonstrates how block-sparse computations can enhance scalability and efficiency in MoE
training. The guide provides step-by-step instructions for setting up the environment,
including cloning the repository, building the Docker image, and running the training container.
Additionally, it offers insights into utilizing the ``oscar-1GB.json`` dataset for pre-training
language models. By leveraging Megablocks and the ROCm platform, you can optimize your MoE
training workflows for large-scale transformer models.
It features how to pre-process datasets and how to begin pre-training on AMD GPUs through:
* Single-GPU pre-training
* Multi-GPU pre-training

View File

@@ -2,7 +2,7 @@
.. meta::
:description: PyTorch compatibility
:keywords: GPU, PyTorch compatibility
:keywords: GPU, PyTorch, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -15,40 +15,42 @@ deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
using `MIOpen <https://github.com/ROCm/MIOpen>`__ and
`RCCL <https://github.com/ROCm/rccl>`__ libraries.
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due
to independent compatibility considerations, this results in two distinct
release cycles for PyTorch on ROCm:
PyTorch provides two high-level features:
- ROCm PyTorch release:
- Tensor computation (like NumPy) with strong GPU acceleration
- Provides the latest version of ROCm but might not necessarily support the
latest stable PyTorch version.
- Deep neural networks built on a tape-based autograd system (rapid computation
of multiple partial derivatives or gradients)
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
preinstalled.
Support overview
================================================================================
- ROCm PyTorch repository: `<https://github.com/ROCm/pytorch>`__
ROCm support for PyTorch is upstreamed into the official PyTorch repository.
ROCm development is aligned with the stable release of PyTorch, while upstream
PyTorch testing uses the stable release of ROCm to maintain consistency:
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`
to get started.
- The ROCm-supported version of PyTorch is maintained in the official `https://github.com/ROCm/pytorch
<https://github.com/ROCm/pytorch>`__ repository, which differs from the
`https://github.com/pytorch/pytorch <https://github.com/pytorch/pytorch>`__ upstream repository.
- Official PyTorch release:
- To get started and install PyTorch on ROCm, use the prebuilt :ref:`Docker images <pytorch-docker-compat>`,
which include ROCm, PyTorch, and all required dependencies.
- Provides the latest stable version of PyTorch but might not necessarily
support the latest ROCm version.
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`
for installation and setup instructions.
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`__
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`__
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`__
to get started.
- You can also consult the upstream `Installation guide <https://pytorch.org/get-started/locally/>`__ or
`Previous versions <https://pytorch.org/get-started/previous-versions/>`__ for additional context.
PyTorch includes tooling that generates HIP source code from the CUDA backend.
This approach allows PyTorch to support ROCm without requiring manual code
modifications. For more information, see :doc:`HIPIFY <hipify:index>`.
ROCm development is aligned with the stable release of PyTorch, while upstream
PyTorch testing uses the stable release of ROCm to maintain consistency.
Version support
--------------------------------------------------------------------------------
AMD releases official `ROCm PyTorch Docker images <https://hub.docker.com/r/rocm/pytorch/tags>`_
quarterly alongside new ROCm releases. These images undergo full AMD testing.
.. _pytorch-recommendations:
@@ -78,7 +80,7 @@ Use cases and recommendations
GPU.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the
describes how PyTorch integrates with ROCm for AI workloads. It outlines the
use of PyTorch on the ROCm platform and focuses on efficiently leveraging AMD
GPU hardware for training and inference tasks in AI applications.
@@ -89,9 +91,8 @@ For more use cases and recommendations, see `ROCm PyTorch blog posts <https://ro
Docker image compatibility
================================================================================
AMD provides preconfigured Docker images with PyTorch and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/pytorch>`__ and are the
recommended way to get started with deep learning with PyTorch on ROCm.
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch/tags>`__
with ROCm backends on Docker Hub.
To find the right image tag, see the :ref:`PyTorch on ROCm installation
documentation <rocm-install-on-linux:pytorch-docker-support>` for a list of
@@ -348,7 +349,7 @@ with ROCm.
you need to explicitly move audio data (waveform tensor) to GPU using
``.to('cuda')``.
* - `torchtune <https://docs.pytorch.org/torchtune/stable/index.html>`_
* - `torchtune <https://meta-pytorch.org/torchtune/stable/index.html>`_
- PyTorch-native library designed for fine-tuning large language models
(LLMs). Provides supports the full fine-tuning workflow and offers
compatibility with popular production inference systems.
@@ -360,21 +361,12 @@ with ROCm.
popular datasets, model architectures, and common image transformations
for computer vision applications.
* - `torchtext <https://docs.pytorch.org/text/stable/index.html>`_
- Text processing library for PyTorch. Provides data processing utilities
and popular datasets for natural language processing, including
tokenization, vocabulary management, and text embeddings.
**Note:** ``torchtext`` does not implement ROCm-specific kernels.
ROCm acceleration is provided through the underlying PyTorch framework
and ROCm library integration. Only official release exists.
* - `torchdata <https://meta-pytorch.org/data/beta/index.html#torchdata>`_
- Beta library of common modular data loading primitives for easily
constructing flexible and performant data pipelines, with features still
in prototype stage.
* - `torchrec <https://docs.pytorch.org/torchrec/>`_
* - `torchrec <https://meta-pytorch.org/torchrec/>`_
- PyTorch domain library for common sparsity and parallelism primitives
needed for large-scale recommender systems, enabling authors to train
models with large embedding tables shared across many GPUs.
@@ -407,7 +399,40 @@ with ROCm.
**Note:** Only official release exists.
Key features and enhancements for PyTorch 2.7 with ROCm 7.0
Key features and enhancements for PyTorch 2.9 with ROCm 7.1.1
================================================================================
- Scaled Dot Product Attention (SDPA) upgraded to use AOTriton version 0.11b.
- Default hipBLASLt support enabled for gfx908 architecture on ROCm 6.3 and later.
- MIOpen now supports channels last memory format for 3D convolutions and batch normalization.
- NHWC convolution operations in MIOpen optimized by eliminating unnecessary transpose operations.
- Improved tensor.item() performance by removing redundant synchronization.
- Enhanced performance for element-wise operations and reduction kernels.
- Added support for grouped GEMM operations through fbgemm_gpu generative AI components.
- Resolved device error in Inductor when using CUDA graph trees with HIP.
- Corrected logsumexp scaling in AOTriton-based SDPA implementation.
- Added stream graph capture status validation in memory copy synchronization functions.
Key features and enhancements for PyTorch 2.8 with ROCm 7.1
================================================================================
- MIOpen deep learning optimizations: Further optimized NHWC BatchNorm feature.
- Added float8 support for the DeepSpeed extension, allowing for decreased
memory footprint and increased throughput in training and inference workloads.
- ``torch.nn.functional.scaled_dot_product_attention`` now calling optimized
flash attention kernel automatically.
Key features and enhancements for PyTorch 2.7/2.8 with ROCm 7.0
================================================================================
- Enhanced TunableOp framework: Introduces ``tensorfloat32`` support for
@@ -442,10 +467,6 @@ Key features and enhancements for PyTorch 2.7 with ROCm 7.0
ROCm-specific test conditions, and enhanced unit test coverage for Flash
Attention and Memory Efficient operations.
- Build system and infrastructure improvements: Provides updated CentOS Stream 9
support, improved Docker configuration, migration to public MAGMA repository,
and enhanced QA automation scripts for PyTorch unit testing.
- Composable Kernel (CK) updates: Features updated CK submodule integration with
the latest optimizations and performance improvements for core mathematical
operations.
@@ -467,7 +488,7 @@ Key features and enhancements for PyTorch 2.7 with ROCm 7.0
network training or inference. For AMD platforms, ``amdclang++`` has been
validated as the supported compiler for building these extensions.
Known issues and notes for PyTorch 2.7 with ROCm 7.0
Known issues and notes for PyTorch 2.7/2.8 with ROCm 7.0 and ROCm 7.1
================================================================================
- The ``matmul.allow_fp16_reduced_precision_reduction`` and

View File

@@ -1,8 +1,8 @@
:orphan:
.. meta::
:description: Ray deep learning framework compatibility
:keywords: GPU, Ray compatibility
:description: Ray compatibility
:keywords: GPU, Ray, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -12,43 +12,74 @@ Ray compatibility
Ray is a unified framework for scaling AI and Python applications from your laptop
to a full cluster, without changing your code. Ray consists of `a core distributed
runtime <https://docs.ray.io/en/latest/ray-core/walkthrough.html>`_ and a set of
`AI libraries <https://docs.ray.io/en/latest/ray-air/getting-started.html>`_ for
runtime <https://docs.ray.io/en/latest/ray-core/walkthrough.html>`__ and a set of
`AI libraries <https://docs.ray.io/en/latest/ray-air/getting-started.html>`__ for
simplifying machine learning computations.
Ray is a general-purpose framework that runs many types of workloads efficiently.
Any Python application can be scaled with Ray, without extra infrastructure.
ROCm support for Ray is upstreamed, and you can build the official source code
with ROCm support:
- ROCm support for Ray is hosted in the official `https://github.com/ROCm/ray
<https://github.com/ROCm/ray>`_ repository.
- Due to independent compatibility considerations, this location differs from the
`https://github.com/ray-project/ray <https://github.com/ray-project/ray>`_ upstream repository.
- To install Ray, use the prebuilt :ref:`Docker image <ray-docker-compat>`
which includes ROCm, Ray, and all required dependencies.
- See the :doc:`ROCm Ray installation guide <rocm-install-on-linux:install/3rd-party/ray-install>`
for instructions to get started.
- See the `Installation section <https://docs.ray.io/en/latest/ray-overview/installation.html>`_
in the upstream Ray documentation.
- The Docker image provided is based on the upstream Ray `Daily Release (Nightly) wheels <https://docs.ray.io/en/latest/ray-overview/installation.html#daily-releases-nightlies>`__
corresponding to commit `005c372 <https://github.com/ray-project/ray/commit/005c372262e050d5745f475e22e64305fa07f8b8>`__.
.. note::
Ray is supported on ROCm 6.4.1.
Supported devices
Support overview
================================================================================
**Officially Supported**: AMD Instinct™ MI300X, MI210
- The ROCm-supported version of Ray is maintained in the official `https://github.com/ROCm/ray
<https://github.com/ROCm/ray>`__ repository, which differs from the
`https://github.com/ray-project/ray <https://github.com/ray-project/ray>`__ upstream repository.
- To get started and install Ray on ROCm, use the prebuilt :ref:`Docker image <ray-docker-compat>`,
which includes ROCm, Ray, and all required dependencies.
- See the :doc:`ROCm Ray installation guide <rocm-install-on-linux:install/3rd-party/ray-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://docs.ray.io/en/latest/ray-overview/installation.html>`__
for additional context.
.. _ray-docker-compat:
Compatibility matrix
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `ROCm Ray Docker images <https://hub.docker.com/r/rocm/ray/tags>`__
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest Ray version from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- ROCm
- Ray
- Pytorch
- Ubuntu
- Python
- GPU
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/ray/ray-2.51.1_rocm7.0.0_ubuntu22.04_py3.12_pytorch2.9.0/images/sha256-a02f6766b4ba406f88fd7e85707ec86c04b569834d869a08043ec9bcbd672168"><i class="fab fa-docker fa-lg"></i> rocm/ray</a>
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- `2.51.1 <https://github.com/ROCm/ray/tree/release/2.51.1>`__
- 2.9.0a0+git1c57644
- 22.04
- `3.12.12 <https://www.python.org/downloads/release/python-31212/>`__
- MI300X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/ray/ray-2.48.0.post0_rocm6.4.1_ubuntu24.04_py3.12_pytorch2.6.0/images/sha256-0d166fe6bdced38338c78eedfb96eff92655fb797da3478a62dd636365133cc0"><i class="fab fa-docker fa-lg"></i> rocm/ray</a>
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- `2.48.0.post0 <https://github.com/ROCm/ray/tree/release/2.48.0.post0>`__
- 2.6.0+git684f6f2
- 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`__
- MI300X, MI210
Use cases and recommendations
================================================================================
@@ -77,35 +108,7 @@ topic <https://docs.ray.io/en/latest/ray-core/scheduling/accelerators.html#accel
of the Ray core documentation and refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for Ray examples and best practices to optimize your workloads on AMD GPUs.
.. _ray-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `ROCm Ray Docker images <https://hub.docker.com/r/rocm/ray/tags>`__
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest Ray version from the official Docker Hub and are validated for
`ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- Ray
- Pytorch
- Ubuntu
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/ray/ray-2.48.0.post0_rocm6.4.1_ubuntu24.04_py3.12_pytorch2.6.0/images/sha256-0d166fe6bdced38338c78eedfb96eff92655fb797da3478a62dd636365133cc0"><i class="fab fa-docker fa-lg"></i> rocm/ray</a>
- `2.48.0.post0 <https://github.com/ROCm/ray/tree/release/2.48.0.post0>`_
- 2.6.0+git684f6f2
- 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
Previous versions
===============================================================================
See :doc:`rocm-install-on-linux:install/3rd-party/previous-versions/ray-history` to find documentation for previous releases
of the ``ROCm/ray`` Docker image.

View File

@@ -2,7 +2,7 @@
.. meta::
:description: Stanford Megatron-LM compatibility
:keywords: Stanford, Megatron-LM, compatibility
:keywords: Stanford, Megatron-LM, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -10,34 +10,76 @@
Stanford Megatron-LM compatibility
********************************************************************************
Stanford Megatron-LM is a large-scale language model training framework developed by NVIDIA `https://github.com/NVIDIA/Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_. It is
designed to train massive transformer-based language models efficiently by model and data parallelism.
Stanford Megatron-LM is a large-scale language model training framework developed
by NVIDIA at `https://github.com/NVIDIA/Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_.
It is designed to train massive transformer-based language models efficiently by model
and data parallelism.
* ROCm support for Stanford Megatron-LM is hosted in the official `https://github.com/ROCm/Stanford-Megatron-LM <https://github.com/ROCm/Stanford-Megatron-LM>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`_ upstream repository.
* Use the prebuilt :ref:`Docker image <megatron-lm-docker-compat>` with ROCm, PyTorch, and Megatron-LM preinstalled.
* See the :doc:`ROCm Stanford Megatron-LM installation guide <rocm-install-on-linux:install/3rd-party/stanford-megatron-lm-install>` to install and get started.
It provides efficient tensor, pipeline, and sequence-based model parallelism for
pre-training transformer-based language models such as GPT (Decoder Only), BERT
(Encoder Only), and T5 (Encoder-Decoder).
.. note::
Stanford Megatron-LM is supported on ROCm 6.3.0.
Supported Devices
Support overview
================================================================================
- **Officially Supported**: AMD Instinct MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210
- The ROCm-supported version of Stanford Megatron-LM is maintained in the official `https://github.com/ROCm/Stanford-Megatron-LM
<https://github.com/ROCm/Stanford-Megatron-LM>`__ repository, which differs from the
`https://github.com/stanford-futuredata/Megatron-LM <https://github.com/stanford-futuredata/Megatron-LM>`__ upstream repository.
- To get started and install Stanford Megatron-LM on ROCm, use the prebuilt :ref:`Docker image <megatron-lm-docker-compat>`,
which includes ROCm, Stanford Megatron-LM, and all required dependencies.
Supported models and features
- See the :doc:`ROCm Stanford Megatron-LM installation guide <rocm-install-on-linux:install/3rd-party/stanford-megatron-lm-install>`
for installation and setup instructions.
- You can also consult the upstream `Installation guide <https://github.com/NVIDIA/Megatron-LM>`__
for additional context.
.. _megatron-lm-docker-compat:
Compatibility matrix
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `Stanford Megatron-LM images <https://hub.docker.com/r/rocm/stanford-megatron-lm/tags>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest Stanford Megatron-LM version from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- ROCm
- Stanford Megatron-LM
- PyTorch
- Ubuntu
- Python
- GPU
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/stanford-megatron-lm/stanford-megatron-lm85f95ae_rocm6.3.0_ubuntu24.04_py3.12_pytorch2.4.0/images/sha256-070556f078be10888a1421a2cb4f48c29f28b02bfeddae02588d1f7fc02a96a6"><i class="fab fa-docker fa-lg"></i> rocm/stanford-megatron-lm</a>
- `6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_
- `85f95ae <https://github.com/stanford-futuredata/Megatron-LM/commit/85f95aef3b648075fe6f291c86714fdcbd9cd1f5>`_
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- MI300X
Supported models and features with ROCm 6.3.0
================================================================================
This section details models & features that are supported by the ROCm version on Stanford Megatron-LM.
Models:
* Bert
* BERT
* GPT
* T5
* ICT
@@ -54,47 +96,21 @@ Features:
Use cases and recommendations
================================================================================
See the `Efficient MoE training on AMD ROCm: How-to use Megablocks on AMD GPUs blog <https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`_ post
to leverage the ROCm platform for pre-training by using the Stanford Megatron-LM framework of pre-processing datasets on AMD GPUs.
Coverage includes:
The following blog post mentions Megablocks, but you can run Stanford Megatron-LM with the same steps to pre-process datasets on AMD GPUs:
* Single-GPU pre-training
* Multi-GPU pre-training
* The `Efficient MoE training on AMD ROCm: How-to use Megablocks on AMD GPUs
<https://rocm.blogs.amd.com/artificial-intelligence/megablocks/README.html>`__
blog post guides how to leverage the ROCm platform for pre-training using the
Megablocks framework. It introduces a streamlined approach for training Mixture-of-Experts
(MoE) models using the Megablocks library on AMD hardware. Focusing on GPT-2, it
demonstrates how block-sparse computations can enhance scalability and efficiency in MoE
training. The guide provides step-by-step instructions for setting up the environment,
including cloning the repository, building the Docker image, and running the training container.
Additionally, it offers insights into utilizing the ``oscar-1GB.json`` dataset for pre-training
language models. By leveraging Megablocks and the ROCm platform, you can optimize your MoE
training workflows for large-scale transformer models.
It features how to pre-process datasets and how to begin pre-training on AMD GPUs through:
.. _megatron-lm-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `Stanford Megatron-LM images <https://hub.docker.com/r/rocm/megatron-lm>`_
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories represent the latest Megatron-LM version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- Stanford Megatron-LM
- PyTorch
- Ubuntu
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/stanford-megatron-lm/stanford-megatron-lm85f95ae_rocm6.3.0_ubuntu24.04_py3.12_pytorch2.4.0/images/sha256-070556f078be10888a1421a2cb4f48c29f28b02bfeddae02588d1f7fc02a96a6"><i class="fab fa-docker fa-lg"></i></a>
- `85f95ae <https://github.com/stanford-futuredata/Megatron-LM/commit/85f95aef3b648075fe6f291c86714fdcbd9cd1f5>`_
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
* Single-GPU pre-training
* Multi-GPU pre-training

View File

@@ -1,76 +0,0 @@
:orphan:
.. meta::
:description: Taichi compatibility
:keywords: GPU, Taichi compatibility
.. version-set:: rocm_version latest
*******************************************************************************
Taichi compatibility
*******************************************************************************
`Taichi <https://www.taichi-lang.org/>`_ is an open-source, imperative, and parallel
programming language designed for high-performance numerical computation.
Embedded in Python, it leverages just-in-time (JIT) compilation frameworks such as LLVM to accelerate
compute-intensive Python code by compiling it to native GPU or CPU instructions.
Taichi is widely used across various domains, including real-time physical simulation,
numerical computing, augmented reality, artificial intelligence, computer vision, robotics,
visual effects in film and gaming, and general-purpose computing.
* ROCm support for Taichi is hosted in the official `https://github.com/ROCm/taichi <https://github.com/ROCm/taichi>`_ repository.
* Due to independent compatibility considerations, this location differs from the `https://github.com/taichi-dev <https://github.com/taichi-dev>`_ upstream repository.
* Use the prebuilt :ref:`Docker image <taichi-docker-compat>` with ROCm, PyTorch, and Taichi preinstalled.
* See the :doc:`ROCm Taichi installation guide <rocm-install-on-linux:install/3rd-party/taichi-install>` to install and get started.
.. note::
Taichi is supported on ROCm 6.3.2.
Supported devices and features
===============================================================================
There is support through the ROCm software stack for all Taichi GPU features on AMD Instinct MI250X and MI210X Series GPUs with the exception of Taichis GPU rendering system, CGUI.
AMD Instinct MI300X Series GPUs will be supported by November.
.. _taichi-recommendations:
Use cases and recommendations
================================================================================
To fully leverage Taichi's performance capabilities in compute-intensive tasks, it is best to adhere to specific coding patterns and utilize Taichi decorators.
A collection of example use cases is available in the `https://github.com/ROCm/taichi_examples <https://github.com/ROCm/taichi_examples>`_ repository,
providing practical insights and foundational knowledge for working with the Taichi programming language.
You can also refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`_ to search for Taichi examples and best practices to optimize your workflows on AMD GPUs.
.. _taichi-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `ROCm Taichi Docker images <https://hub.docker.com/r/rocm/taichi/tags>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated inventories
represent the latest Taichi version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.3.2 <https://rocm.docs.amd.com/en/docs-6.3.2/about/release-notes.html>`_.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- ROCm
- Taichi
- Ubuntu
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/taichi/taichi-1.8.0b1_rocm6.3.2_ubuntu22.04_py3.10.12/images/sha256-e016964a751e6a92199032d23e70fa3a564fff8555afe85cd718f8aa63f11fc6"><i class="fab fa-docker fa-lg"></i> rocm/taichi</a>
- `6.3.2 <https://repo.radeon.com/rocm/apt/6.3.2/>`_
- `1.8.0b1 <https://github.com/taichi-dev/taichi>`_
- 22.04
- `3.10.12 <https://www.python.org/downloads/release/python-31012/>`_

View File

@@ -2,7 +2,7 @@
.. meta::
:description: TensorFlow compatibility
:keywords: GPU, TensorFlow compatibility
:keywords: GPU, TensorFlow, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -12,37 +12,33 @@ TensorFlow compatibility
`TensorFlow <https://www.tensorflow.org/>`__ is an open-source library for
solving machine learning, deep learning, and AI problems. It can solve many
problems across different sectors and industries but primarily focuses on
neural network training and inference. It is one of the most popular and
in-demand frameworks and is very active in open-source contribution and
development.
problems across different sectors and industries, but primarily focuses on
neural network training and inference. It is one of the most popular deep
learning frameworks and is very active in open-source development.
Support overview
================================================================================
- The ROCm-supported version of TensorFlow is maintained in the official `https://github.com/ROCm/tensorflow-upstream
<https://github.com/ROCm/tensorflow-upstream>`__ repository, which differs from the
`https://github.com/tensorflow/tensorflow <https://github.com/tensorflow/tensorflow>`__ upstream repository.
- To get started and install TensorFlow on ROCm, use the prebuilt :ref:`Docker images <tensorflow-docker-compat>`,
which include ROCm, TensorFlow, and all required dependencies.
- See the :doc:`ROCm TensorFlow installation guide <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
for installation and setup instructions.
- You can also consult the `TensorFlow API versions <https://www.tensorflow.org/versions>`__ list
for additional context.
Version support
--------------------------------------------------------------------------------
The `official TensorFlow repository <http://github.com/tensorflow/tensorflow>`__
includes full ROCm support. AMD maintains a TensorFlow `ROCm repository
<http://github.com/rocm/tensorflow-upstream>`__ in order to quickly add bug
fixes, updates, and support for the latest ROCM versions.
- ROCm TensorFlow release:
- Offers :ref:`Docker images <tensorflow-docker-compat>` with
ROCm and TensorFlow pre-installed.
- ROCm TensorFlow repository: `<https://github.com/ROCm/tensorflow-upstream>`__
- See the :doc:`ROCm TensorFlow installation guide <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
to get started.
- Official TensorFlow release:
- Official TensorFlow repository: `<https://github.com/tensorflow/tensorflow>`__
- See the `TensorFlow API versions <https://www.tensorflow.org/versions>`__ list.
.. note::
The official TensorFlow documentation does not cover ROCm support. Use the
ROCm documentation for installation instructions for Tensorflow on ROCm.
See :doc:`rocm-install-on-linux:install/3rd-party/tensorflow-install`.
fixes, updates, and support for the latest ROCm versions.
.. _tensorflow-docker-compat:
@@ -140,7 +136,7 @@ The following section maps supported data types and GPU-accelerated TensorFlow
features to their minimum supported ROCm and TensorFlow versions.
Data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
---------------
The data type of a tensor is specified using the ``dtype`` attribute or
argument, and TensorFlow supports a wide range of data types for different use
@@ -258,7 +254,7 @@ are as follows:
- 1.7
Features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
---------------
This table provides an overview of key features in TensorFlow and their
availability in ROCm.
@@ -350,7 +346,7 @@ availability in ROCm.
- 1.9.2
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-----------------------------------
Enables developers to scale computations across multiple devices on a single machine or
across multiple machines.

View File

@@ -2,7 +2,7 @@
.. meta::
:description: verl compatibility
:keywords: GPU, verl compatibility
:keywords: GPU, verl, deep learning, framework compatibility
.. version-set:: rocm_version latest
@@ -10,77 +10,109 @@
verl compatibility
*******************************************************************************
Volcano Engine Reinforcement Learning for LLMs (verl) is a reinforcement learning framework designed for large language models (LLMs).
verl offers a scalable, open-source fine-tuning solution optimized for AMD Instinct GPUs with full ROCm support.
Volcano Engine Reinforcement Learning for LLMs (`verl <https://verl.readthedocs.io/en/latest/>`__)
is a reinforcement learning framework designed for large language models (LLMs).
verl offers a scalable, open-source fine-tuning solution by using a hybrid programming model
that makes it easy to define and run complex post-training dataflows efficiently.
* See the `verl documentation <https://verl.readthedocs.io/en/latest/>`_ for more information about verl.
* The official verl GitHub repository is `https://github.com/volcengine/verl <https://github.com/volcengine/verl>`_.
* Use the AMD-validated :ref:`Docker images <verl-docker-compat>` with ROCm and verl preinstalled.
* See the :doc:`ROCm verl installation guide <rocm-install-on-linux:install/3rd-party/verl-install>` to install and get started.
Its modular APIs separate computation from data, allowing smooth integration with other frameworks.
It also supports flexible model placement across GPUs for efficient scaling on different cluster sizes.
verl achieves high training and generation throughput by building on existing LLM frameworks.
Its 3D-HybridEngine reduces memory use and communication overhead when switching between training
and inference, improving overall performance.
.. note::
verl is supported on ROCm 6.2.0.
.. _verl-recommendations:
Use cases and recommendations
Support overview
================================================================================
The benefits of verl in large-scale reinforcement learning from human feedback (RLHF) are discussed in the `Reinforcement Learning from Human Feedback on AMD GPUs with verl and ROCm Integration <https://rocm.blogs.amd.com/artificial-intelligence/verl-large-scale/README.html>`_ blog.
- The ROCm-supported version of verl is maintained in the official `https://github.com/ROCm/verl
<https://github.com/ROCm/verl>`__ repository, which differs from the
`https://github.com/volcengine/verl <https://github.com/volcengine/verl>`__ upstream repository.
.. _verl-supported_features:
- To get started and install verl on ROCm, use the prebuilt :ref:`Docker image <verl-docker-compat>`,
which includes ROCm, verl, and all required dependencies.
Supported features
===============================================================================
- See the :doc:`ROCm verl installation guide <rocm-install-on-linux:install/3rd-party/verl-install>`
for installation and setup instructions.
The following table shows verl on ROCm support for GPU-accelerated modules.
.. list-table::
:header-rows: 1
* - Module
- Description
- verl version
- ROCm version
* - ``FSDP``
- Training engine
- 0.3.0.post0
- 6.2.0
* - ``vllm``
- Inference engine
- 0.3.0.post0
- 6.2.0
- You can also consult the upstream `verl documentation <https://verl.readthedocs.io/en/latest/>`__
for additional context.
.. _verl-docker-compat:
Docker image compatibility
Compatibility matrix
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `ROCm verl Docker images <https://hub.docker.com/r/rocm/verl/tags>`_
with ROCm backends on Docker Hub. The following Docker image tags and associated inventories represent the available verl versions from the official Docker Hub.
AMD validates and publishes `verl Docker images <https://hub.docker.com/r/rocm/verl/tags>`_
with ROCm backends on Docker Hub. The following Docker image tag and associated inventories
represent the latest verl version from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
:header-rows: 1
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- ROCm
- verl
- Ubuntu
- Pytorch
- Python
- vllm
* - Docker image
- ROCm
- verl
- Ubuntu
- PyTorch
- Python
- vllm
- GPU
* - .. raw:: html
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/verl/verl-0.3.0.post0_rocm6.2_vllm0.6.3/images/sha256-cbe423803fd7850448b22444176bee06f4dcf22cd3c94c27732752d3a39b04b2"><i class="fab fa-docker fa-lg"></i> rocm/verl</a>
- `6.2.0 <https://repo.radeon.com/rocm/apt/6.2/>`_
- `0.3.0post0 <https://github.com/volcengine/verl/releases/tag/v0.3.0.post0>`_
- 20.04
- `2.5.0 <https://github.com/ROCm/pytorch/tree/release/2.5>`_
- `3.9.19 <https://www.python.org/downloads/release/python-3919/>`_
- `0.6.3 <https://github.com/vllm-project/vllm/releases/tag/v0.6.3>`_
<a href="https://hub.docker.com/layers/rocm/verl/verl-0.6.0.amd0_rocm7.0_vllm0.11.0.dev/images/sha256-f70a3ebc94c1f66de42a2fcc3f8a6a8d6d0881eb0e65b6958d7d6d24b3eecb0d"><i class="fab fa-docker fa-lg"></i> rocm/verl</a>
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- `0.6.0 <https://github.com/volcengine/verl/releases/tag/v0.6.0>`__
- 22.04
- `2.9.0 <https://github.com/ROCm/pytorch/tree/release/2.9-rocm7.x-gfx115x>`__
- `3.12.11 <https://www.python.org/downloads/release/python-31211/>`__
- `0.11.0 <https://github.com/vllm-project/vllm/releases/tag/v0.11.0>`__
- MI300X
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/verl/verl-0.3.0.post0_rocm6.2_vllm0.6.3/images/sha256-cbe423803fd7850448b22444176bee06f4dcf22cd3c94c27732752d3a39b04b2"><i class="fab fa-docker fa-lg"></i> rocm/verl</a>
- `6.2.0 <https://repo.radeon.com/rocm/apt/6.2/>`__
- `0.3.0.post0 <https://github.com/volcengine/verl/releases/tag/v0.3.0.post0>`__
- 20.04
- `2.5.0 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- `3.9.19 <https://www.python.org/downloads/release/python-3919/>`__
- `0.6.3 <https://github.com/vllm-project/vllm/releases/tag/v0.6.3>`__
- MI300X
.. _verl-supported_features:
Supported modules with verl on ROCm
===============================================================================
The following GPU-accelerated modules are supported with verl on ROCm:
- ``FSDP``: Training engine
- ``vllm``: Inference engine
.. _verl-recommendations:
Use cases and recommendations
================================================================================
* The benefits of verl in large-scale reinforcement learning from human feedback
(RLHF) are discussed in the `Reinforcement Learning from Human Feedback on AMD
GPUs with verl and ROCm Integration <https://rocm.blogs.amd.com/artificial-intelligence/verl-large-scale/README.html>`__
blog. The blog post outlines how the Volcano Engine Reinforcement Learning
(verl) framework integrates with the AMD ROCm platform to optimize training on
AMD Instinct™ GPUs. The guide details the process of building a Docker image,
setting up single-node and multi-node training environments, and highlights
performance benchmarks demonstrating improved throughput and convergence accuracy.
This resource serves as a comprehensive starting point for deploying verl on AMD GPUs,
facilitating efficient RLHF training workflows.
Previous versions
===============================================================================
See :doc:`rocm-install-on-linux:install/3rd-party/previous-versions/verl-history` to find documentation for previous releases
of the ``ROCm/verl`` Docker image.

View File

@@ -34,7 +34,7 @@ Runtime
```{code-block} shell
:caption: Example to expose the 1. device and a device based on UUID.
export ROCR_VISIBLE_DEVICES="0,GPU-DEADBEEFDEADBEEF"
export ROCR_VISIBLE_DEVICES="0,GPU-4b2c1a9f-8d3e-6f7a-b5c9-2e4d8a1f6c3b"
```
### `GPU_DEVICE_ORDINAL`

View File

@@ -8,6 +8,7 @@ import os
import shutil
import sys
from pathlib import Path
from subprocess import run
gh_release_path = os.path.join("..", "RELEASE.md")
gh_changelog_path = os.path.join("..", "CHANGELOG.md")
@@ -80,24 +81,27 @@ latex_elements = {
}
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "rocm.docs.amd.com")
html_context = {}
html_context = {"docs_header_version": "7.1.1"}
if os.environ.get("READTHEDOCS", "") == "True":
html_context["READTHEDOCS"] = True
# Check if the branch is a docs/ branch
official_branch = run(["git", "rev-parse", "--abbrev-ref", "HEAD"], capture_output=True, text=True).stdout.find("docs/")
# configurations for PDF output by Read the Docs
project = "ROCm Documentation"
project_path = os.path.abspath(".").replace("\\", "/")
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
version = "7.0.2"
release = "7.0.2"
version = "7.1.1"
release = "7.1.1"
setting_all_article_info = True
all_article_info_os = ["linux", "windows"]
all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux"], "date": "2025-10-10"},
{"file": "about/release-notes", "os": ["linux"], "date": "2025-11-26"},
{"file": "release/changelog", "os": ["linux"],},
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
@@ -107,7 +111,6 @@ article_pages = [
{"file": "compatibility/ml-compatibility/stanford-megatron-lm-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/dgl-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/megablocks-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/taichi-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/ray-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/llama-cpp-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/flashinfer-compatibility", "os": ["linux"]},
@@ -132,9 +135,15 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.6", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.8", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.9", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.10", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-primus-migration-guide", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-megatron-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/primus-megatron", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-megatron-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-megatron-v25.8", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-megatron-v25.9", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-megatron-v25.10", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.3", "os": ["linux"]},
@@ -142,13 +151,19 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.6", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.8", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.9", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.10", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/primus-pytorch", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-pytorch-v25.8", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-pytorch-v25.9", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-pytorch-v25.10", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/xdit-diffusion-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/overview", "os": ["linux"]},
@@ -173,8 +188,16 @@ article_pages = [
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.1-20250702", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.9.1-20250715", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.10.0-20250812", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.10.1-20250909", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.10.2-20251006", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/vllm-0.11.1-20251103", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/sglang-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/xdit-diffusion-inference", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/xdit-25.10", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/xdit-25.11", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/xdit-25.12", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/xdit-25.13", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},
@@ -202,7 +225,7 @@ external_toc_path = "./sphinx/_toc.yml"
# Add the _extensions directory to Python's search path
sys.path.append(str(Path(__file__).parent / 'extension'))
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates", "version-ref", "csv-to-list-table"]
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates", "remote-content", "version-ref", "csv-to-list-table"]
compatibility_matrix_file = str(Path(__file__).parent / 'compatibility/compatibility-matrix-historical-6.0.csv')
@@ -212,10 +235,14 @@ external_projects_current_project = "rocm"
# external_projects_remote_repository = ""
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "https://rocm-stg.amd.com/")
html_context = {}
html_context = {"docs_header_version": "7.1.0"}
if os.environ.get("READTHEDOCS", "") == "True":
html_context["READTHEDOCS"] = True
html_context["official_branch"] = official_branch
html_context["version"] = version
html_context["release"] = release
html_theme = "rocm_docs_theme"
html_theme_options = {"flavor": "rocm-docs-home"}
@@ -241,3 +268,6 @@ html_context = {
"granularity_type" : [('Coarse-grained', 'coarse-grained'), ('Fine-grained', 'fine-grained')],
"scope_type" : [('Device', 'device'), ('System', 'system')]
}
# Disable figure and table numbering
numfig = False

View File

@@ -0,0 +1,316 @@
dockers:
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5
components:
ROCm: 7.0.0
vLLM: 0.10.2 (0.11.0rc2.dev160+g790d22168.rocm700)
PyTorch: 2.9.0a0+git1c57644
hipBLASLt: 1.0.0
dockerfile:
commit: 790d22168820507f3105fef29596549378cfe399
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B MXFP4
mad_tag: pyt_vllm_llama-3.1-405b_fp4
model_repo: amd/Llama-3.1-405B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B
mad_tag: pyt_vllm_llama-3.3-70b
model_repo: meta-llama/Llama-3.3-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B FP8
mad_tag: pyt_vllm_llama-3.3-70b_fp8
model_repo: amd/Llama-3.3-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B MXFP4
mad_tag: pyt_vllm_llama-3.3-70b_fp4
model_repo: amd/Llama-3.3-70B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 4 Scout 17Bx16E
mad_tag: pyt_vllm_llama-4-scout-17b-16e
model_repo: meta-llama/Llama-4-Scout-17B-16E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E
mad_tag: pyt_vllm_llama-4-maverick-17b-128e
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E FP8
mad_tag: pyt_vllm_llama-4-maverick-17b-128e_fp8
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek R1 0528 FP8
mad_tag: pyt_vllm_deepseek-r1
model_repo: deepseek-ai/DeepSeek-R1-0528
url: https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_seqs: 1024
max_num_batched_tokens: 131072
max_model_len: 8192
- group: OpenAI GPT OSS
tag: gpt-oss
models:
- model: GPT OSS 20B
mad_tag: pyt_vllm_gpt-oss-20b
model_repo: openai/gpt-oss-20b
url: https://huggingface.co/openai/gpt-oss-20b
precision: bfloat16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- model: GPT OSS 120B
mad_tag: pyt_vllm_gpt-oss-120b
model_repo: openai/gpt-oss-120b
url: https://huggingface.co/openai/gpt-oss-120b
precision: bfloat16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 65536
max_model_len: 8192
- group: Qwen
tag: qwen
models:
- model: Qwen3 8B
mad_tag: pyt_vllm_qwen3-8b
model_repo: Qwen/Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 32B
mad_tag: pyt_vllm_qwen3-32b
model_repo: Qwen/Qwen3-32b
url: https://huggingface.co/Qwen/Qwen3-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B FP8
mad_tag: pyt_vllm_qwen3-30b-a3b_fp8
model_repo: Qwen/Qwen3-30B-A3B-FP8
url: https://huggingface.co/Qwen/Qwen3-30B-A3B-FP8
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B
mad_tag: pyt_vllm_qwen3-235b-a22b
model_repo: Qwen/Qwen3-235B-A22B
url: https://huggingface.co/Qwen/Qwen3-235B-A22B
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B FP8
mad_tag: pyt_vllm_qwen3-235b-a22b_fp8
model_repo: Qwen/Qwen3-235B-A22B-FP8
url: https://huggingface.co/Qwen/Qwen3-235B-A22B-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 16384
max_model_len: 8192

View File

@@ -0,0 +1,316 @@
dockers:
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.11.1_20251103
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.11.1_20251103/images/sha256-8d60429043d4d00958da46039a1de0d9b82df814d45da482497eef26a6076506
components:
ROCm: 7.0.0
vLLM: 0.11.1 (0.11.1rc2.dev141+g38f225c2a.rocm700)
PyTorch: 2.9.0a0+git1c57644
hipBLASLt: 1.0.0
dockerfile:
commit: 38f225c2abeadc04c2cc398814c2f53ea02c3c72
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B MXFP4
mad_tag: pyt_vllm_llama-3.1-405b_fp4
model_repo: amd/Llama-3.1-405B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B
mad_tag: pyt_vllm_llama-3.3-70b
model_repo: meta-llama/Llama-3.3-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B FP8
mad_tag: pyt_vllm_llama-3.3-70b_fp8
model_repo: amd/Llama-3.3-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B MXFP4
mad_tag: pyt_vllm_llama-3.3-70b_fp4
model_repo: amd/Llama-3.3-70B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 4 Scout 17Bx16E
mad_tag: pyt_vllm_llama-4-scout-17b-16e
model_repo: meta-llama/Llama-4-Scout-17B-16E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E
mad_tag: pyt_vllm_llama-4-maverick-17b-128e
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E FP8
mad_tag: pyt_vllm_llama-4-maverick-17b-128e_fp8
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek R1 0528 FP8
mad_tag: pyt_vllm_deepseek-r1
model_repo: deepseek-ai/DeepSeek-R1-0528
url: https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_seqs: 1024
max_num_batched_tokens: 131072
max_model_len: 8192
- group: OpenAI GPT OSS
tag: gpt-oss
models:
- model: GPT OSS 20B
mad_tag: pyt_vllm_gpt-oss-20b
model_repo: openai/gpt-oss-20b
url: https://huggingface.co/openai/gpt-oss-20b
precision: bfloat16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- model: GPT OSS 120B
mad_tag: pyt_vllm_gpt-oss-120b
model_repo: openai/gpt-oss-120b
url: https://huggingface.co/openai/gpt-oss-120b
precision: bfloat16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 65536
max_model_len: 8192
- group: Qwen
tag: qwen
models:
- model: Qwen3 8B
mad_tag: pyt_vllm_qwen3-8b
model_repo: Qwen/Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 32B
mad_tag: pyt_vllm_qwen3-32b
model_repo: Qwen/Qwen3-32b
url: https://huggingface.co/Qwen/Qwen3-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B FP8
mad_tag: pyt_vllm_qwen3-30b-a3b_fp8
model_repo: Qwen/Qwen3-30B-A3B-FP8
url: https://huggingface.co/Qwen/Qwen3-30B-A3B-FP8
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B
mad_tag: pyt_vllm_qwen3-235b-a22b
model_repo: Qwen/Qwen3-235B-A22B
url: https://huggingface.co/Qwen/Qwen3-235B-A22B
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B FP8
mad_tag: pyt_vllm_qwen3-235b-a22b_fp8
model_repo: Qwen/Qwen3-235B-A22B-FP8
url: https://huggingface.co/Qwen/Qwen3-235B-A22B-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 16384
max_model_len: 8192

View File

@@ -0,0 +1,55 @@
xdit_diffusion_inference:
docker:
pull_tag: rocm/pytorch-xdit:v25.10
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-xdit/v25.10/images/sha256-d79715ff18a9470e3f907cec8a9654d6b783c63370b091446acffc0de4d7070e
ROCm: 7.9.0
components:
TheRock: 7afbe45
rccl: 9b04b2a
composable_kernel: b7a806f
rocm-libraries: f104555
rocm-systems: 25922d0
torch: 2.10.0a0+gite9c9017
torchvision: 0.22.0a0+966da7e
triton: 3.5.0+git52e49c12
accelerate: 1.11.0.dev0
aiter: 0.1.5.post4.dev20+ga25e55e79
diffusers: 0.36.0.dev0
xfuser: 0.4.4
yunchang: 0.6.3.post1
model_groups:
- group: Hunyuan Video
tag: hunyuan
models:
- model: Hunyuan Video
model_name: hunyuanvideo
model_repo: tencent/HunyuanVideo
revision: refs/pr/18
url: https://huggingface.co/tencent/HunyuanVideo
github: https://github.com/Tencent-Hunyuan/HunyuanVideo
mad_tag: pyt_xdit_hunyuanvideo
- group: Wan-AI
tag: wan
models:
- model: Wan2.1
model_name: wan2_1-i2v-14b-720p
model_repo: Wan-AI/Wan2.1-I2V-14B-720P
url: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P
github: https://github.com/Wan-Video/Wan2.1
mad_tag: pyt_xdit_wan_2_1
- model: Wan2.2
model_name: wan2_2-i2v-a14b
model_repo: Wan-AI/Wan2.2-I2V-A14B
url: https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B
github: https://github.com/Wan-Video/Wan2.2
mad_tag: pyt_xdit_wan_2_2
- group: FLUX
tag: flux
models:
- model: FLUX.1
model_name: FLUX.1-dev
model_repo: black-forest-labs/FLUX.1-dev
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
github: https://github.com/black-forest-labs/flux
mad_tag: pyt_xdit_flux

View File

@@ -0,0 +1,109 @@
xdit_diffusion_inference:
docker:
- version: v25-11
pull_tag: rocm/pytorch-xdit:v25.11
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-xdit/v25.11/images/sha256-c9fa659439bb024f854b4d5eea598347251b02c341c55f66c98110832bde4216
ROCm: 7.10.0
supported_models:
- group: Hunyuan Video
models:
- Hunyuan Video
- group: Wan-AI
models:
- Wan2.1
- Wan2.2
- group: FLUX
models:
- FLUX.1
whats_new:
- "Minor bug fixes and clarifications to READMEs."
- "Bumps TheRock, AITER, Diffusers, xDiT versions."
- "Changes Aiter rounding mode for faster gfx942 FWD Attention."
components:
TheRock: 3e3f834
rccl: d23d18f
composable_kernel: 2570462
rocm-libraries: 0588f07
rocm-systems: 473025a
torch: 73adac
torchvision: f5c6c2e
triton: 7416ffc
accelerate: 34c1779
aiter: de14bec
diffusers: 40528e9
xfuser: 83978b5
yunchang: 2c9b712
- version: v25-10
pull_tag: rocm/pytorch-xdit:v25.10
docker_hub_url: https://hub.docker.com/r/rocm/pytorch-xdit
ROCm: 7.9.0
supported_models:
- group: Hunyuan Video
models:
- Hunyuan Video
- group: Wan-AI
models:
- Wan2.1
- Wan2.2
- group: FLUX
models:
- FLUX.1
whats_new:
- "First official xDiT Docker Release for Diffusion Inference."
- "Supports gfx942 and gfx950 series (AMD Instinct™ MI300X, MI325X, MI350X, and MI355X)."
- "Support Wan 2.1, Wan 2.2, HunyuanVideo and Flux workloads."
components:
TheRock: 7afbe45
rccl: 9b04b2a
composable_kernel: b7a806f
rocm-libraries: f104555
rocm-systems: 25922d0
torch: 2.10.0a0+gite9c9017
torchvision: 0.22.0a0+966da7e
triton: 3.5.0+git52e49c12
accelerate: 1.11.0.dev0
aiter: 0.1.5.post4.dev20+ga25e55e79
diffusers: 0.36.0.dev0
xfuser: 0.4.4
yunchang: 0.6.3.post1
model_groups:
- group: Hunyuan Video
tag: hunyuan
models:
- model: Hunyuan Video
page_tag: hunyuan_tag
model_name: hunyuanvideo
model_repo: tencent/HunyuanVideo
revision: refs/pr/18
url: https://huggingface.co/tencent/HunyuanVideo
github: https://github.com/Tencent-Hunyuan/HunyuanVideo
mad_tag: pyt_xdit_hunyuanvideo
- group: Wan-AI
tag: wan
models:
- model: Wan2.1
page_tag: wan_21_tag
model_name: wan2_1-i2v-14b-720p
model_repo: Wan-AI/Wan2.1-I2V-14B-720P
url: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P
github: https://github.com/Wan-Video/Wan2.1
mad_tag: pyt_xdit_wan_2_1
- model: Wan2.2
page_tag: wan_22_tag
model_name: wan2_2-i2v-a14b
model_repo: Wan-AI/Wan2.2-I2V-A14B
url: https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B
github: https://github.com/Wan-Video/Wan2.2
mad_tag: pyt_xdit_wan_2_2
- group: FLUX
tag: flux
models:
- model: FLUX.1
page_tag: flux_1_tag
model_name: FLUX.1-dev
model_repo: black-forest-labs/FLUX.1-dev
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
github: https://github.com/black-forest-labs/flux
mad_tag: pyt_xdit_flux

View File

@@ -0,0 +1,91 @@
docker:
pull_tag: rocm/pytorch-xdit:v25.12
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-xdit/v25.12/images/sha256-e06895132316bf3c393366b70a91eaab6755902dad0100e6e2b38310547d9256
ROCm: 7.10.0
whats_new:
- "Adds T2V and TI2V support for Wan models."
- "Adds support for SD-3.5 T2I model."
components:
TheRock:
version: 3e3f834
url: https://github.com/ROCm/TheRock
rccl:
version: d23d18f
url: https://github.com/ROCm/rccl
composable_kernel:
version: 2570462
url: https://github.com/ROCm/composable_kernel
rocm-libraries:
version: 0588f07
url: https://github.com/ROCm/rocm-libraries
rocm-systems:
version: 473025a
url: https://github.com/ROCm/rocm-systems
torch:
version: 73adac
url: https://github.com/pytorch/pytorch
torchvision:
version: f5c6c2e
url: https://github.com/pytorch/vision
triton:
version: 7416ffc
url: https://github.com/triton-lang/triton
accelerate:
version: 34c1779
url: https://github.com/huggingface/accelerate
aiter:
version: de14bec
url: https://github.com/ROCm/aiter
diffusers:
version: 40528e9
url: https://github.com/huggingface/diffusers
xfuser:
version: ccba9d5
url: https://github.com/xdit-project/xDiT
yunchang:
version: 2c9b712
url: https://github.com/feifeibear/long-context-attention
supported_models:
- group: Hunyuan Video
js_tag: hunyuan
models:
- model: Hunyuan Video
model_repo: tencent/HunyuanVideo
revision: refs/pr/18
url: https://huggingface.co/tencent/HunyuanVideo
github: https://github.com/Tencent-Hunyuan/HunyuanVideo
mad_tag: pyt_xdit_hunyuanvideo
js_tag: hunyuan_tag
- group: Wan-AI
js_tag: wan
models:
- model: Wan2.1
model_repo: Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
url: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
github: https://github.com/Wan-Video/Wan2.1
mad_tag: pyt_xdit_wan_2_1
js_tag: wan_21_tag
- model: Wan2.2
model_repo: Wan-AI/Wan2.2-I2V-A14B-Diffusers
url: https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B-Diffusers
github: https://github.com/Wan-Video/Wan2.2
mad_tag: pyt_xdit_wan_2_2
js_tag: wan_22_tag
- group: FLUX
js_tag: flux
models:
- model: FLUX.1
model_repo: black-forest-labs/FLUX.1-dev
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
github: https://github.com/black-forest-labs/flux
mad_tag: pyt_xdit_flux
js_tag: flux_1_tag
- group: Stable Diffusion
js_tag: stablediffusion
models:
- model: stable-diffusion-3.5-large
model_repo: stabilityai/stable-diffusion-3.5-large
url: https://huggingface.co/stabilityai/stable-diffusion-3.5-large
github: https://github.com/Stability-AI/sd3.5
mad_tag: pyt_xdit_sd_3_5
js_tag: stable_diffusion_3_5_large_tag

View File

@@ -1,13 +1,13 @@
dockers:
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.11.2_20251210
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.11.2_20251210/images/sha256-e7f02dd2ce3824959658bc0391296f6158638e3ebce164f6c019c4eca8150ec7
components:
ROCm: 7.0.0
vLLM: 0.10.2 (0.11.0rc2.dev160+g790d22168.rocm700)
vLLM: 0.11.2 (0.11.2.dev673+g839868462.rocm700)
PyTorch: 2.9.0a0+git1c57644
hipBLASLt: 1.0.0
dockerfile:
commit: 790d22168820507f3105fef29596549378cfe399
commit: 8398684622109c806a35d660647060b0b9910663
model_groups:
- group: Meta Llama
tag: llama

View File

@@ -0,0 +1,105 @@
docker:
pull_tag: rocm/pytorch-xdit:v25.13
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-xdit/v25.13/images/sha256-81954713070d67bde08595e03f62110c8a3dd66a9ae17a77d611e01f83f0f4ef
ROCm: 7.11.0
whats_new:
- "Flux.1 Kontext support"
- "Flux.2 Dev support"
- "Flux FP8 GEMM support"
- "Hybrid FP8 attention support for Wan models"
components:
TheRock:
version: 1728a81
url: https://github.com/ROCm/TheRock
rccl:
version: d23d18f
url: https://github.com/ROCm/rccl
composable_kernel:
version: ab0101c
url: https://github.com/ROCm/composable_kernel
rocm-libraries:
version: a2f7c35
url: https://github.com/ROCm/rocm-libraries
rocm-systems:
version: 659737c
url: https://github.com/ROCm/rocm-systems
torch:
version: 91be249
url: https://github.com/ROCm/pytorch
torchvision:
version: b919bd0
url: https://github.com/pytorch/vision
triton:
version: a272dfa
url: https://github.com/ROCm/triton
accelerate:
version: b521400f
url: https://github.com/huggingface/accelerate
aiter:
version: de14bec0
url: https://github.com/ROCm/aiter
diffusers:
version: a1f36ee3e
url: https://github.com/huggingface/diffusers
xfuser:
version: adf2681
url: https://github.com/xdit-project/xDiT
yunchang:
version: 2c9b712
url: https://github.com/feifeibear/long-context-attention
supported_models:
- group: Hunyuan Video
js_tag: hunyuan
models:
- model: Hunyuan Video
model_repo: tencent/HunyuanVideo
revision: refs/pr/18
url: https://huggingface.co/tencent/HunyuanVideo
github: https://github.com/Tencent-Hunyuan/HunyuanVideo
mad_tag: pyt_xdit_hunyuanvideo
js_tag: hunyuan_tag
- group: Wan-AI
js_tag: wan
models:
- model: Wan2.1
model_repo: Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
url: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
github: https://github.com/Wan-Video/Wan2.1
mad_tag: pyt_xdit_wan_2_1
js_tag: wan_21_tag
- model: Wan2.2
model_repo: Wan-AI/Wan2.2-I2V-A14B-Diffusers
url: https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B-Diffusers
github: https://github.com/Wan-Video/Wan2.2
mad_tag: pyt_xdit_wan_2_2
js_tag: wan_22_tag
- group: FLUX
js_tag: flux
models:
- model: FLUX.1
model_repo: black-forest-labs/FLUX.1-dev
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
github: https://github.com/black-forest-labs/flux
mad_tag: pyt_xdit_flux
js_tag: flux_1_tag
- model: FLUX.1 Kontext
model_repo: black-forest-labs/FLUX.1-Kontext-dev
url: https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev
github: https://github.com/black-forest-labs/flux
mad_tag: pyt_xdit_flux_kontext
js_tag: flux_1_kontext_tag
- model: FLUX.2
model_repo: black-forest-labs/FLUX.2-dev
url: https://huggingface.co/black-forest-labs/FLUX.2-dev
github: https://github.com/black-forest-labs/flux2
mad_tag: pyt_xdit_flux_2
js_tag: flux_2_tag
- group: StableDiffusion
js_tag: stablediffusion
models:
- model: stable-diffusion-3.5-large
model_repo: stabilityai/stable-diffusion-3.5-large
url: https://huggingface.co/stabilityai/stable-diffusion-3.5-large
github: https://github.com/Stability-AI/sd3.5
mad_tag: pyt_xdit_sd_3_5
js_tag: stable_diffusion_3_5_large_tag

View File

@@ -1,12 +1,12 @@
dockers:
- pull_tag: rocm/jax-training:maxtext-v25.9
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
- pull_tag: rocm/jax-training:maxtext-v25.11
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.11/images/sha256-18e4d8f0b8ce7a7422c58046940dd5f32249960449fca09a562b65fb8eb1562a
components:
ROCm: 7.0.0
JAX: 0.6.2
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+c91bac54
hipBLASLt: 1.x.x
ROCm: 7.1.0
JAX: 0.7.1
Python: 3.12
Transformer Engine: 2.4.0.dev0+281042de
hipBLASLt: 1.2.x
model_groups:
- group: Meta Llama
tag: llama

View File

@@ -1,21 +1,17 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/megatron-lm:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: aab4234
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/megatron-lm:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
docker:
pull_tag: rocm/primus:v25.10
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197
components:
ROCm: 7.1.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.10.0.dev20251112+rocm7.1
Python: "3.10"
Transformer Engine: 2.4.0.dev0+32e2d1d4
Flash Attention: 2.8.3
hipBLASLt: 1.2.0-09ab7153e2
Triton: 3.4.0
RCCL: 2.27.7
model_groups:
- group: Meta Llama
tag: llama

View File

@@ -0,0 +1,64 @@
dockers:
- pull_tag: rocm/jax-training:maxtext-v25.9.1
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.9.1/images/sha256-60946cfbd470f6ee361fc9da740233a4fb2e892727f01719145b1f7627a1cff6
components:
ROCm: 7.0.0
JAX: 0.6.2
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+c91bac54
hipBLASLt: 1.x.x
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 2 7B
mad_tag: jax_maxtext_train_llama-2-7b
model_repo: Llama-2-7B
precision: bf16
multinode_training_script: llama2_7b_multinode.sh
doc_options: ["single-node", "multi-node"]
- model: Llama 2 70B
mad_tag: jax_maxtext_train_llama-2-70b
model_repo: Llama-2-70B
precision: bf16
multinode_training_script: llama2_70b_multinode.sh
doc_options: ["single-node", "multi-node"]
- model: Llama 3 8B (multi-node)
mad_tag: jax_maxtext_train_llama-3-8b
multinode_training_script: llama3_8b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3 70B (multi-node)
mad_tag: jax_maxtext_train_llama-3-70b
multinode_training_script: llama3_70b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3.1 8B
mad_tag: jax_maxtext_train_llama-3.1-8b
model_repo: Llama-3.1-8B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 70B
mad_tag: jax_maxtext_train_llama-3.1-70b
model_repo: Llama-3.1-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.3 70B
mad_tag: jax_maxtext_train_llama-3.3-70b
model_repo: Llama-3.3-70B
precision: bf16
doc_options: ["single-node"]
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V2-Lite (16B)
mad_tag: jax_maxtext_train_deepseek-v2-lite-16b
model_repo: DeepSeek-V2-lite
precision: bf16
doc_options: ["single-node"]
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: jax_maxtext_train_mixtral-8x7b
model_repo: Mixtral-8x7B
precision: bf16
doc_options: ["single-node"]

View File

@@ -0,0 +1,49 @@
docker:
pull_tag: rocm/primus:v25.10
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197
components:
ROCm: 7.1.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.10.0.dev20251112+rocm7.1
Python: "3.10"
Transformer Engine: 2.4.0.dev0+32e2d1d4
Flash Attention: 2.8.3
hipBLASLt: 1.2.0-09ab7153e2
Triton: 3.4.0
RCCL: 2.27.7
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B (proxy)
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: pyt_megatron_lm_train_qwen2.5-7b
- model: Qwen 2.5 72B
mad_tag: pyt_megatron_lm_train_qwen2.5-72b

View File

@@ -0,0 +1,53 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/megatron-lm:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: aab4234
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/megatron-lm:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B (proxy)
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: pyt_megatron_lm_train_qwen2.5-7b
- model: Qwen 2.5 72B
mad_tag: pyt_megatron_lm_train_qwen2.5-72b

View File

@@ -0,0 +1,58 @@
docker:
pull_tag: rocm/primus:v25.10
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197
components:
ROCm: 7.1.0
PyTorch: 2.10.0.dev20251112+rocm7.1
Python: "3.10"
Transformer Engine: 2.4.0.dev0+32e2d1d4
Flash Attention: 2.8.3
hipBLASLt: 1.2.0-09ab7153e2
Triton: 3.4.0
RCCL: 2.27.7
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.3-70b
config_name: llama3.3_70B-pretrain.yaml
- model: Llama 3.1 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-70b
config_name: llama3.1_70B-pretrain.yaml
- model: Llama 3.1 8B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-8b
config_name: llama3.1_8B-pretrain.yaml
- model: Llama 2 7B
mad_tag: primus_pyt_megatron_lm_train_llama-2-7b
config_name: llama2_7B-pretrain.yaml
- model: Llama 2 70B
mad_tag: primus_pyt_megatron_lm_train_llama-2-70b
config_name: llama2_70B-pretrain.yaml
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: primus_pyt_megatron_lm_train_deepseek-v3-proxy
config_name: deepseek_v3-pretrain.yaml
- model: DeepSeek-V2-Lite
mad_tag: primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
config_name: deepseek_v2_lite-pretrain.yaml
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x7b
config_name: mixtral_8x7B_v0.1-pretrain.yaml
- model: Mixtral 8x22B (proxy)
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
config_name: mixtral_8x22B_v0.1-pretrain.yaml
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-7b
config_name: primus_qwen2.5_7B-pretrain.yaml
- model: Qwen 2.5 72B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-72b
config_name: qwen2.5_72B-pretrain.yaml

View File

@@ -0,0 +1,65 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/primus:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/primus:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.3-70b
config_name: llama3.3_70B-pretrain.yaml
- model: Llama 3.1 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-70b
config_name: llama3.1_70B-pretrain.yaml
- model: Llama 3.1 8B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-8b
config_name: llama3.1_8B-pretrain.yaml
- model: Llama 2 7B
mad_tag: primus_pyt_megatron_lm_train_llama-2-7b
config_name: llama2_7B-pretrain.yaml
- model: Llama 2 70B
mad_tag: primus_pyt_megatron_lm_train_llama-2-70b
config_name: llama2_70B-pretrain.yaml
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: primus_pyt_megatron_lm_train_deepseek-v3-proxy
config_name: deepseek_v3-pretrain.yaml
- model: DeepSeek-V2-Lite
mad_tag: primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
config_name: deepseek_v2_lite-pretrain.yaml
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x7b
config_name: mixtral_8x7B_v0.1-pretrain.yaml
- model: Mixtral 8x22B (proxy)
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
config_name: mixtral_8x22B_v0.1-pretrain.yaml
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-7b
config_name: primus_qwen2.5_7B-pretrain.yaml
- model: Qwen 2.5 72B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-72b
config_name: qwen2.5_72B-pretrain.yaml

View File

@@ -0,0 +1,32 @@
docker:
pull_tag: rocm/primus:v25.10
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197
components:
ROCm: 7.1.0
PyTorch: 2.10.0.dev20251112+rocm7.1
Python: "3.10"
Transformer Engine: 2.4.0.dev0+32e2d1d4
Flash Attention: 2.8.3
hipBLASLt: 1.2.0-09ab7153e2
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: primus_pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
- model: Llama 3.1 70B
mad_tag: primus_pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek V2 16B
mad_tag: primus_pyt_train_deepseek-v2
model_repo: DeepSeek-V2
url: https://huggingface.co/deepseek-ai/DeepSeek-V2
precision: BF16

View File

@@ -0,0 +1,39 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/primus:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/primus:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: primus_pyt_train_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
config_file:
bf16: "./llama3_8b_fsdp_bf16.toml"
fp8: "./llama3_8b_fsdp_fp8.toml"
- model: Llama 3.1 70B
mad_tag: primus_pyt_train_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16
config_file:
bf16: "./llama3_70b_fsdp_bf16.toml"
fp8: "./llama3_70b_fsdp_fp8.toml"

View File

@@ -0,0 +1,197 @@
docker:
pull_tag: rocm/primus:v25.10
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197
components:
ROCm: 7.1.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.10.0.dev20251112+rocm7.1
Python: "3.10"
Transformer Engine: 2.4.0.dev0+32e2d1d4
Flash Attention: 2.8.3
hipBLASLt: 1.2.0-09ab7153e2
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 4 Scout 17B-16E
mad_tag: pyt_train_llama-4-scout-17b-16e
model_repo: Llama-4-17B_16E
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.3 70B
mad_tag: pyt_train_llama-3.3-70b
model_repo: Llama-3.3-70B
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.2 1B
mad_tag: pyt_train_llama-3.2-1b
model_repo: Llama-3.2-1B
url: https://huggingface.co/meta-llama/Llama-3.2-1B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 3B
mad_tag: pyt_train_llama-3.2-3b
model_repo: Llama-3.2-3B
url: https://huggingface.co/meta-llama/Llama-3.2-3B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 Vision 11B
mad_tag: pyt_train_llama-3.2-vision-11b
model_repo: Llama-3.2-Vision-11B
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.2 Vision 90B
mad_tag: pyt_train_llama-3.2-vision-90b
model_repo: Llama-3.2-Vision-90B
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora, HF_pretrain]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora]
- model: Llama 3.1 405B
mad_tag: pyt_train_llama-3.1-405b
model_repo: Llama-3.1-405B
url: https://huggingface.co/meta-llama/Llama-3.1-405B
precision: BF16
training_modes: [finetune_qlora]
- model: Llama 3 8B
mad_tag: pyt_train_llama-3-8b
model_repo: Llama-3-8B
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3 70B
mad_tag: pyt_train_llama-3-70b
model_repo: Llama-3-70B
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 7B
mad_tag: pyt_train_llama-2-7b
model_repo: Llama-2-7B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 2 13B
mad_tag: pyt_train_llama-2-13b
model_repo: Llama-2-13B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 70B
mad_tag: pyt_train_llama-2-70b
model_repo: Llama-2-70B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_lora, finetune_qlora]
- group: OpenAI
tag: openai
models:
- model: GPT OSS 20B
mad_tag: pyt_train_gpt_oss_20b
model_repo: GPT-OSS-20B
url: https://huggingface.co/openai/gpt-oss-20b
precision: BF16
training_modes: [HF_finetune_lora]
- model: GPT OSS 120B
mad_tag: pyt_train_gpt_oss_120b
model_repo: GPT-OSS-120B
url: https://huggingface.co/openai/gpt-oss-120b
precision: BF16
training_modes: [HF_finetune_lora]
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek V2 16B
mad_tag: primus_pyt_train_deepseek-v2
model_repo: DeepSeek-V2
url: https://huggingface.co/deepseek-ai/DeepSeek-V2
precision: BF16
training_modes: [pretrain]
- group: Qwen
tag: qwen
models:
- model: Qwen 3 8B
mad_tag: pyt_train_qwen3-8b
model_repo: Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 3 32B
mad_tag: pyt_train_qwen3-32b
model_repo: Qwen3-32
url: https://huggingface.co/Qwen/Qwen3-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 32B
mad_tag: pyt_train_qwen2.5-32b
model_repo: Qwen2.5-32B
url: https://huggingface.co/Qwen/Qwen2.5-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 72B
mad_tag: pyt_train_qwen2.5-72b
model_repo: Qwen2.5-72B
url: https://huggingface.co/Qwen/Qwen2.5-72B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2 1.5B
mad_tag: pyt_train_qwen2-1.5b
model_repo: Qwen2-1.5B
url: https://huggingface.co/Qwen/Qwen2-1.5B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 2 7B
mad_tag: pyt_train_qwen2-7b
model_repo: Qwen2-7B
url: https://huggingface.co/Qwen/Qwen2-7B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- group: Stable Diffusion
tag: sd
models:
- model: Stable Diffusion XL
mad_tag: pyt_huggingface_stable_diffusion_xl_2k_lora_finetuning
model_repo: SDXL
url: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
precision: BF16
training_modes: [posttrain]
- group: Flux
tag: flux
models:
- model: FLUX.1-dev
mad_tag: pyt_train_flux
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [posttrain]
- group: NCF
tag: ncf
models:
- model: NCF
mad_tag: pyt_ncf_training
model_repo:
url: https://github.com/ROCm/FluxBenchmark
precision: FP32
- group: DLRM
tag: dlrm
models:
- model: DLRM v2
mad_tag: pyt_train_dlrm
model_repo: DLRM
url: https://github.com/AMD-AGI/DLRMBenchmark
training_modes: [pretrain]

View File

@@ -0,0 +1,186 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/pytorch-training:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: aab4234
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/pytorch-training:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 4 Scout 17B-16E
mad_tag: pyt_train_llama-4-scout-17b-16e
model_repo: Llama-4-17B_16E
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.3 70B
mad_tag: pyt_train_llama-3.3-70b
model_repo: Llama-3.3-70B
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.2 1B
mad_tag: pyt_train_llama-3.2-1b
model_repo: Llama-3.2-1B
url: https://huggingface.co/meta-llama/Llama-3.2-1B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 3B
mad_tag: pyt_train_llama-3.2-3b
model_repo: Llama-3.2-3B
url: https://huggingface.co/meta-llama/Llama-3.2-3B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 Vision 11B
mad_tag: pyt_train_llama-3.2-vision-11b
model_repo: Llama-3.2-Vision-11B
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.2 Vision 90B
mad_tag: pyt_train_llama-3.2-vision-90b
model_repo: Llama-3.2-Vision-90B
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora, HF_pretrain]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora]
- model: Llama 3.1 405B
mad_tag: pyt_train_llama-3.1-405b
model_repo: Llama-3.1-405B
url: https://huggingface.co/meta-llama/Llama-3.1-405B
precision: BF16
training_modes: [finetune_qlora]
- model: Llama 3 8B
mad_tag: pyt_train_llama-3-8b
model_repo: Llama-3-8B
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3 70B
mad_tag: pyt_train_llama-3-70b
model_repo: Llama-3-70B
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 7B
mad_tag: pyt_train_llama-2-7b
model_repo: Llama-2-7B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 2 13B
mad_tag: pyt_train_llama-2-13b
model_repo: Llama-2-13B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 70B
mad_tag: pyt_train_llama-2-70b
model_repo: Llama-2-70B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_lora, finetune_qlora]
- group: OpenAI
tag: openai
models:
- model: GPT OSS 20B
mad_tag: pyt_train_gpt_oss_20b
model_repo: GPT-OSS-20B
url: https://huggingface.co/openai/gpt-oss-20b
precision: BF16
training_modes: [HF_finetune_lora]
- model: GPT OSS 120B
mad_tag: pyt_train_gpt_oss_120b
model_repo: GPT-OSS-120B
url: https://huggingface.co/openai/gpt-oss-120b
precision: BF16
training_modes: [HF_finetune_lora]
- group: Qwen
tag: qwen
models:
- model: Qwen 3 8B
mad_tag: pyt_train_qwen3-8b
model_repo: Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 3 32B
mad_tag: pyt_train_qwen3-32b
model_repo: Qwen3-32
url: https://huggingface.co/Qwen/Qwen3-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 32B
mad_tag: pyt_train_qwen2.5-32b
model_repo: Qwen2.5-32B
url: https://huggingface.co/Qwen/Qwen2.5-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 72B
mad_tag: pyt_train_qwen2.5-72b
model_repo: Qwen2.5-72B
url: https://huggingface.co/Qwen/Qwen2.5-72B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2 1.5B
mad_tag: pyt_train_qwen2-1.5b
model_repo: Qwen2-1.5B
url: https://huggingface.co/Qwen/Qwen2-1.5B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 2 7B
mad_tag: pyt_train_qwen2-7b
model_repo: Qwen2-7B
url: https://huggingface.co/Qwen/Qwen2-7B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- group: Stable Diffusion
tag: sd
models:
- model: Stable Diffusion XL
mad_tag: pyt_huggingface_stable_diffusion_xl_2k_lora_finetuning
model_repo: SDXL
url: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
precision: BF16
training_modes: [posttrain-p]
- group: Flux
tag: flux
models:
- model: FLUX.1-dev
mad_tag: pyt_train_flux
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [posttrain-p]
- group: NCF
tag: ncf
models:
- model: NCF
mad_tag: pyt_ncf_training
model_repo:
url: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
precision: FP32

View File

@@ -1,22 +1,15 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/primus:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/primus:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
docker:
pull_tag: rocm/primus:v25.11
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197
components:
ROCm: 7.1.0
PyTorch: 2.10.0.dev20251112+rocm7.1
Python: "3.10"
Transformer Engine: 2.4.0.dev0+32e2d1d4
Flash Attention: 2.8.3
hipBLASLt: 1.2.0-09ab7153e2
Triton: 3.4.0
RCCL: 2.27.7
model_groups:
- group: Meta Llama
tag: llama

View File

@@ -1,39 +1,32 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/primus:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/primus:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
docker:
pull_tag: rocm/primus:v25.11
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197
components:
ROCm: 7.1.0
PyTorch: 2.10.0.dev20251112+rocm7.1
Python: "3.10"
Transformer Engine: 2.4.0.dev0+32e2d1d4
Flash Attention: 2.8.3
hipBLASLt: 1.2.0-09ab7153e2
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: primus_pyt_train_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
config_file:
bf16: "./llama3_8b_fsdp_bf16.toml"
fp8: "./llama3_8b_fsdp_fp8.toml"
- model: Llama 3.1 70B
mad_tag: primus_pyt_train_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16
config_file:
bf16: "./llama3_70b_fsdp_bf16.toml"
fp8: "./llama3_70b_fsdp_fp8.toml"
- model: Llama 3.1 8B
mad_tag: primus_pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
- model: Llama 3.1 70B
mad_tag: primus_pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek V3 16B
mad_tag: primus_pyt_train_deepseek-v3-16b
model_repo: DeepSeek-V3
url: https://huggingface.co/deepseek-ai/DeepSeek-V3
precision: BF16

View File

@@ -1,21 +1,15 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/pytorch-training:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: aab4234
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/pytorch-training:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
docker:
pull_tag: rocm/primus:v25.10
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197
components:
ROCm: 7.1.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.10.0.dev20251112+rocm7.1
Python: "3.10"
Transformer Engine: 2.4.0.dev0+32e2d1d4
Flash Attention: 2.8.3
hipBLASLt: 1.2.0-09ab7153e2
model_groups:
- group: Meta Llama
tag: llama
@@ -119,6 +113,15 @@ model_groups:
url: https://huggingface.co/openai/gpt-oss-120b
precision: BF16
training_modes: [HF_finetune_lora]
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek V2 16B
mad_tag: primus_pyt_train_deepseek-v2
model_repo: DeepSeek-V2
url: https://huggingface.co/deepseek-ai/DeepSeek-V2
precision: BF16
training_modes: [pretrain]
- group: Qwen
tag: qwen
models:
@@ -166,7 +169,7 @@ model_groups:
model_repo: SDXL
url: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
precision: BF16
training_modes: [posttrain-p]
training_modes: [posttrain]
- group: Flux
tag: flux
models:
@@ -175,12 +178,20 @@ model_groups:
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [posttrain-p]
training_modes: [posttrain]
- group: NCF
tag: ncf
models:
- model: NCF
mad_tag: pyt_ncf_training
model_repo:
url: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
url: https://github.com/ROCm/FluxBenchmark
precision: FP32
- group: DLRM
tag: dlrm
models:
- model: DLRM v2
mad_tag: pyt_train_dlrm
model_repo: DLRM
url: https://github.com/AMD-AGI/DLRMBenchmark
training_modes: [pretrain]

View File

@@ -32,7 +32,7 @@ library_groups:
- name: "MIGraphX"
tag: "migraphx"
doc_link: "amdmigraphx:reference/cpp"
doc_link: "amdmigraphx:reference/MIGraphX-cpp"
data_types:
- type: "int8"
support: "⚠️"
@@ -290,7 +290,7 @@ library_groups:
- name: "Tensile"
tag: "tensile"
doc_link: "tensile:reference/precision-support"
doc_link: "tensile:src/reference/precision-support"
data_types:
- type: "int8"
support: "✅"

View File

@@ -0,0 +1,141 @@
from docutils import nodes
from docutils.parsers.rst import Directive
from docutils.statemachine import ViewList
from sphinx.util import logging
from sphinx.util.nodes import nested_parse_with_titles
import requests
import re
logger = logging.getLogger(__name__)
class BranchAwareRemoteContent(Directive):
"""
Directive that downloads and includes content from other repositories,
matching the branch/tag of the current documentation build.
Usage:
.. remote-content::
:repo: owner/repository
:path: path/to/file.rst
:default_branch: docs/develop # Branch to use when not on a release
:tag_prefix: Docs/ # Optional
"""
required_arguments = 0
optional_arguments = 0
final_argument_whitespace = True
has_content = False
option_spec = {
'repo': str,
'path': str,
'default_branch': str, # Branch to use when not on a release tag
'start_line': int, # Include the file from a specific line
'tag_prefix': str, # Prefix for release tags (e.g., 'Docs/')
}
def get_current_version(self):
"""Get current version/branch being built"""
env = self.state.document.settings.env
html_context = env.config.html_context
# Check if building from a tag
if "official_branch" in html_context:
if html_context["official_branch"] == 0:
if "version" in html_context:
# Remove any 'v' prefix
version = html_context["version"]
if re.match(r'^\d+\.\d+\.\d+$', version):
return version
# Not a version tag, so we'll use the default branch
return None
def get_target_ref(self):
"""Get target reference for the remote repository"""
current_version = self.get_current_version()
# If it's a version number, use tag prefix and version
if current_version:
tag_prefix = self.options.get('tag_prefix', '')
return f'{tag_prefix}{current_version}'
# For any other case, use the specified default branch
if 'default_branch' not in self.options:
logger.warning('No default_branch specified and not building from a version tag')
return None
return self.options['default_branch']
def construct_raw_url(self, repo, path, ref):
"""Construct the raw.githubusercontent.com URL"""
return f'https://raw.githubusercontent.com/{repo}/{ref}/{path}'
def fetch_and_parse_content(self, url, source_path):
"""Fetch content and parse it as RST"""
response = requests.get(url)
response.raise_for_status()
content = response.text
start_line = self.options.get('start_line', 0)
# Create ViewList for parsing
line_count = 0
content_list = ViewList()
for line_no, line in enumerate(content.splitlines()):
if line_count >= start_line:
content_list.append(line, source_path, line_no)
line_count+=1
# Create a section node and parse content
node = nodes.section()
nested_parse_with_titles(self.state, content_list, node)
return node.children
def run(self):
if 'repo' not in self.options or 'path' not in self.options:
logger.warning('Both repo and path options are required')
return []
target_ref = self.get_target_ref()
if not target_ref:
return []
raw_url = self.construct_raw_url(
self.options['repo'],
self.options['path'],
target_ref
)
try:
logger.info(f'Attempting to fetch content from {raw_url}')
return self.fetch_and_parse_content(raw_url, self.options['path'])
except requests.exceptions.RequestException as e:
logger.warning(f'Failed to fetch content from {raw_url}: {str(e)}')
# If we failed on a tag, try falling back to default_branch
if re.match(r'^\d+\.\d+\.\d+$', target_ref) or target_ref.startswith('Docs/'):
if 'default_branch' in self.options:
try:
fallback_ref = self.options['default_branch']
logger.info(f'Attempting fallback to {fallback_ref}...')
fallback_url = self.construct_raw_url(
self.options['repo'],
self.options['path'],
fallback_ref
)
return self.fetch_and_parse_content(fallback_url, self.options['path'])
except requests.exceptions.RequestException as e2:
logger.warning(f'Fallback also failed: {str(e2)}')
return []
def setup(app):
app.add_directive('remote-content', BranchAwareRemoteContent)
return {
'parallel_read_safe': True,
'parallel_write_safe': True,
}

View File

@@ -84,6 +84,8 @@ The table below summarizes information about ROCm-enabled deep learning framewor
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/dgl-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/dgl-install.html#use-a-prebuilt-docker-image-with-dgl-pre-installed>`__
- `Wheels package <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/dgl-install.html#use-a-wheels-package>`__
- .. raw:: html
<a href="https://github.com/ROCm/dgl"><i class="fab fa-github fa-lg"></i></a>
@@ -98,18 +100,6 @@ The table below summarizes information about ROCm-enabled deep learning framewor
<a href="https://github.com/ROCm/megablocks"><i class="fab fa-github fa-lg"></i></a>
* - `Taichi <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/taichi-compatibility.html>`__
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/taichi-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/taichi-install.html#use-a-prebuilt-docker-image-with-taichi-pre-installed>`__
- `Wheels package <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/taichi-install.html#use-a-wheels-package>`__
- .. raw:: html
<a href="https://github.com/ROCm/taichi"><i class="fab fa-github fa-lg"></i></a>
* - `Ray <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/ray-compatibility.html>`__
- .. raw:: html

View File

@@ -130,7 +130,7 @@ After loading the model in this way, the model is fully ready to use the resourc
torchtune for fine-tuning and inference
=============================================
`torchtune <https://pytorch.org/torchtune/main/>`_ is a PyTorch-native library for easy single and multi-GPU
`torchtune <https://meta-pytorch.org/torchtune/main/>`_ is a PyTorch-native library for easy single and multi-GPU
model fine-tuning and inference with LLMs.
#. Install torchtune using pip.

View File

@@ -24,94 +24,102 @@ performance.
:alt: Attention module of a large language module utilizing tiling
:align: center
Installation prerequisites
----------------------------
Before installing Flash Attention 2, ensure the following are available:
* ROCm-enabled PyTorch
* Triton
These can be installed by following the official
`PyTorch installation guide <https://pytorch.org/get-started/locally/>`_. Alternatively, for a simpler setup, you can use a preconfigured
:ref:`ROCm PyTorch Docker image <using-docker-with-pytorch-pre-installed>`, which already includes the required libraries.
Installing Flash Attention 2
----------------------------
ROCm provides two different implementations of Flash Attention 2 modules. They can be deployed interchangeably:
`Flash Attention <https://github.com/Dao-AILab/flash-attention>`_ supports two backend implementations on AMD GPUs.
* ROCm `Composable Kernel <https://github.com/ROCm/composable_kernel/tree/develop/example/01_gemm>`_
(CK) Flash Attention 2
* `Composable Kernel (CK) <https://github.com/ROCm/composable_kernel>`__ - the default backend
* `OpenAI Triton <https://github.com/triton-lang/triton>`__ - an alternative backend
* `OpenAI Triton <https://triton-lang.org/main/index.html>`_ Flash Attention 2
You can switch between these backends using the environment variable ``FLASH_ATTENTION_TRITON_AMD_ENABLE``:
.. tab-set::
``FLASH_ATTENTION_TRITON_AMD_ENABLE="FALSE"``
→ Use Composable Kernel (CK) backend (Flash Attention 2)
.. tab-item:: CK Flash Attention 2
``FLASH_ATTENTION_TRITON_AMD_ENABLE="TRUE"``
→ Use OpenAI Triton backend (Flash Attention 2)
To install CK Flash Attention 2, use the following commands.
To install Flash Attention 2, use the following commands:
.. code-block:: shell
.. code-block:: shell
# Install from source
git clone https://github.com/ROCm/flash-attention.git
cd flash-attention/
GPU_ARCHS=gfx942 python setup.py install #MI300 Series
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention/
pip install ninja
Hugging Face Transformers can easily deploy the CK Flash Attention 2 module by passing an argument
``attn_implementation="flash_attention_2"`` in the ``from_pretrained`` class.
# To install the CK backend flash attention
python setup.py install
.. code-block:: python
# To install the Triton backend flash attention
FLASH_ATTENTION_TRITON_AMD_ENABLE="TRUE" python setup.py install
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_name = "NousResearch/Meta-Llama-3-8B"
# To install both CK and Triton backend flash attention
FLASH_ATTENTION_TRITON_AMD_ENABLE=TRUE && FLASH_ATTENTION_SKIP_CK_BUILD=FALSE python setup.py install
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype=torch.float16, use_fast=False)
inputs = tokenizer('Today is', return_tensors='pt').to(device)
For detailed installation instructions, see `Flash Attention <https://github.com/Dao-AILab/flash-attention>`_.
model_eager = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, attn_implementation="eager").cuda(device)
model_ckFAv2 = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda(device)
Benchmarking Flash Attention 2
------------------------------
print("eager GQA: ", tokenizer.decode(model_eager.generate(**inputs, max_new_tokens=10)[0], skip_special_tokens=True))
print("ckFAv2 GQA: ", tokenizer.decode(model_ckFAv2.generate(**inputs, max_new_tokens=10)[0], skip_special_tokens=True))
Benchmark scripts to evaluate the performance of Flash Attention 2 are stored in the ``flash-attention/benchmarks/`` directory.
# eager GQA: Today is the day of the Lord, and we are the
# ckFAv2 GQA: Today is the day of the Lord, and we are the
To benchmark the CK backend
.. tab-item:: Triton Flash Attention 2
.. code-block:: shell
The Triton Flash Attention 2 module is implemented in Python and uses OpenAIs JIT compiler. This module has been
upstreamed into the vLLM serving toolkit, discussed in :doc:'llm-inference-frameworks'.
cd flash-attention/benchmarks
pip install transformers einops ninja
1. To install Triton Flash Attention 2 and run the benchmark, use the following commands.
python3 benchmark_flash_attention.py
.. code-block:: shell
To benchmark the Triton backend
# Install from the source
pip uninstall pytorch-triton-rocm triton -y
git clone https://github.com/ROCm/triton.git
cd triton/python
GPU_ARCHS=gfx942 python setup.py install #MI300 series
pip install matplotlib pandas
.. code-block:: shell
2. To test, run the Triton Flash Attention 2 performance benchmark.
FLASH_ATTENTION_TRITON_AMD_ENABLE="TRUE" python3 benchmark_flash_attention.py
.. code-block:: shell
# Test the triton FA v2 kernel
python https://github.com/ROCm/triton/blob/triton-mlir/python/perf-kernels/flash-attention.py
# Results (Okay to release TFLOPS number ???)
fused-attention-fwd-d128:
BATCH HQ HK N_CTX_Q N_CTX_K TFLOPS
0 16.0 16.0 16.0 1024.0 1024.0 287.528411
1 8.0 16.0 16.0 2048.0 2048.0 287.490806
2 4.0 16.0 16.0 4096.0 4096.0 345.966031
3 2.0 16.0 16.0 8192.0 8192.0 361.369510
4 1.0 16.0 16.0 16384.0 16384.0 356.873720
5 2.0 48.0 48.0 1024.0 1024.0 216.916235
6 2.0 48.0 48.0 2048.0 1024.0 271.027578
7 2.0 48.0 48.0 4096.0 8192.0 337.367372
8 2.0 48.0 48.0 8192.0 4096.0 363.481649
9 2.0 48.0 48.0 16384.0 8192.0 375.013622
10 8.0 16.0 16.0 1989.0 15344.0 321.791333
11 4.0 16.0 16.0 4097.0 163.0 122.104888
12 2.0 16.0 16.0 8122.0 2159.0 337.060283
13 1.0 16.0 16.0 16281.0 7.0 5.234012
14 2.0 48.0 48.0 1021.0 1020.0 214.657425
15 2.0 48.0 48.0 2001.0 2048.0 314.429118
16 2.0 48.0 48.0 3996.0 9639.0 330.411368
17 2.0 48.0 48.0 8181.0 1021.0 324.614980
Using Flash Attention 2
-----------------------
.. code-block:: python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_name = "NousResearch/Llama-3.2-1B"
tokenizer = AutoTokenizer.from_pretrained(model_name, dtype=torch.bfloat16, use_fast=False)
inputs = tokenizer('Today is', return_tensors='pt').to(device)
model_eager = AutoModelForCausalLM.from_pretrained(model_name, dtype=torch.bfloat16, attn_implementation="eager").cuda(device)
model_ckFAv2 = AutoModelForCausalLM.from_pretrained(model_name, dtype=torch.bfloat16, attn_implementation="flash_attention_2").cuda(device)
model_eager.generation_config.pad_token_id = model_eager.generation_config.eos_token_id
model_ckFAv2.generation_config.pad_token_id = model_ckFAv2.generation_config.eos_token_id
print("eager\n GQA: ", tokenizer.decode(model_eager.generate(**inputs, max_new_tokens=22)[0], skip_special_tokens=True, do_sample=False, num_beams=1))
print("ckFAv2\n GQA: ", tokenizer.decode(model_ckFAv2.generate(**inputs, max_new_tokens=22)[0], skip_special_tokens=True, do_sample=False, num_beams=1))
The outputs from eager mode and FlashAttention-2 are identical, although their performance behavior differs.
.. code-block:: shell
eager
GQA: Today is the 10th anniversary of the 9/11 attacks. I remember that day like it was yesterday.
ckFAv2
GQA: Today is the 10th anniversary of the 9/11 attacks. I remember that day like it was yesterday.
xFormers
========

File diff suppressed because it is too large Load Diff

View File

@@ -15,10 +15,9 @@ using PyTorch. It delves into specific workloads such as
:ref:`model inference <mi300x-vllm-optimization>`, offering strategies to
enhance efficiency.
The following topics highlight :ref:`auto-tunable configurations <mi300x-auto-tune>`
that streamline optimization as well as advanced techniques like
:ref:`Triton kernel optimization <mi300x-triton-kernel-performance-optimization>` for
meticulous tuning.
The following topics highlight :ref:`auto-tunable configurations <mi300x-auto-tune>` as
well as :ref:`Triton kernel optimization <mi300x-triton-kernel-performance-optimization>`
for meticulous tuning.
Workload tuning strategy
========================
@@ -86,27 +85,28 @@ Optimize model inference with vLLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
vLLM provides tools and techniques specifically designed for efficient model
inference on AMD Instinct MI300X GPUs. See :ref:`fine-tuning-llms-vllm`
for installation guidance. Optimizing performance with vLLM
involves configuring tensor parallelism, leveraging advanced features, and
ensuring efficient execution. Heres how to optimize vLLM performance:
inference on AMD Instinct GPUs. See the official `vLLM installation docs
<https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html>`__ for
installation guidance. Optimizing performance with vLLM involves configuring
tensor parallelism, leveraging advanced features, and ensuring efficient
execution.
* Tensor parallelism: Configure the
:ref:`tensor-parallel-size parameter <mi300x-vllm-multiple-gpus>` to distribute
tensor computations across multiple GPUs. Adjust parameters such as
``batch-size``, ``input-len``, and ``output-len`` based on your workload.
* Configuration for vLLM: Set :ref:`parameters <mi300x-vllm-optimization>`
according to workload requirements. Benchmark performance to understand
characteristics and identify bottlenecks.
* Configuration for vLLM: Set engine arguments according to workload
requirements.
* Benchmarking and performance metrics: Measure latency and throughput to
evaluate performance.
.. seealso::
See :doc:`vllm-optimization` to learn more about vLLM performance
optimization techniques.
.. _mi300x-auto-tune:
Auto-tunable configurations
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Auto-tunable configurations can significantly streamline performance
optimization by automatically adjusting parameters based on workload
characteristics. For example:
@@ -120,8 +120,7 @@ characteristics. For example:
your specific hardware.
* Triton: Use :ref:`Tritons auto-tuning features <mi300x-autotunable-kernel-config>`
to explore various kernel configurations and automatically select the
best-performing ones.
to explore various kernel configurations and select the best-performing ones.
Manual tuning
^^^^^^^^^^^^^
@@ -328,380 +327,21 @@ hardware counters are also included.
ROCm Systems Profiler timeline trace example.
.. _mi300x-vllm-optimization:
vLLM performance optimization
=============================
vLLM is a high-throughput and memory efficient inference and serving engine for large language models that has gained traction in the AI community for
its performance and ease of use. See :ref:`fine-tuning-llms-vllm` for a primer on vLLM with ROCm.
Performance environment variables
---------------------------------
The following performance tips are not *specific* to vLLM -- they are general
but relevant in this context. You can tune the following vLLM parameters to
achieve optimal request latency and throughput performance.
* As described in `Environment variables (MI300X)
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#environment-variables>`_,
the environment variable ``HIP_FORCE_DEV_KERNARG`` can improve vLLM
performance. Set it to ``export HIP_FORCE_DEV_KERNARG=1``.
* Set the :ref:`RCCL environment variable <mi300x-rccl>` ``NCCL_MIN_NCHANNELS``
to ``112`` to increase the number of channels on MI300X to potentially improve
performance.
* Set the environment variable ``TORCH_BLAS_PREFER_HIPBLASLT=1`` to use hipBLASLt to improve performance.
Auto-tuning using PyTorch TunableOp
------------------------------------
Since vLLM is based on the PyTorch framework, PyTorch TunableOp can be used for auto-tuning.
You can run auto-tuning with TunableOp in two simple steps without modifying your code:
* Enable TunableOp and tuning. Optionally, enable verbose mode:
.. code-block:: shell
PYTORCH_TUNABLEOP_ENABLED=1 PYTORCH_TUNABLEOP_VERBOSE=1 your_vllm_script.sh
* Enable TunableOp and disable tuning and measure.
.. code-block:: shell
PYTORCH_TUNABLEOP_ENABLED=1 PYTORCH_TUNABLEOP_TUNING=0 your_vllm_script.sh
Learn more about TunableOp in the :ref:`PyTorch TunableOp <mi300x-tunableop>` section.
Performance tuning based on vLLM engine configurations
-------------------------------------------------------
The following subsections describe vLLM-specific configurations for performance tuning.
You can tune the following vLLM parameters to achieve optimal performance.
* ``tensor_parallel_size``
* ``gpu_memory_utilization``
* ``dtype``
* ``enforce_eager``
* ``kv_cache_dtype``
* ``input_len``
* ``output_len``
* ``max_num_seqs``
* ``num_scheduler_steps``
* ``max_model_len``
* ``enable_chunked_prefill``
* ``distributed_executor_backend``
* ``max_seq_len_to_capture``
Refer to `vLLM documentation <https://docs.vllm.ai/en/latest/models/performance.html>`_
for additional performance tips. :ref:`fine-tuning-llms-vllm` describes vLLM
usage with ROCm.
ROCm provides a prebuilt optimized Docker image for validating the performance
of LLM inference with vLLM on MI300X Series GPUs. The Docker image includes
ROCm, vLLM, and PyTorch. For more information, see
:doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _mi300x-vllm-throughput-measurement:
Evaluating performance by throughput measurement
-------------------------------------------------
This tuning guide evaluates the performance of LLM inference workloads by measuring throughput in tokens per second (TPS). Throughput can be assessed using both real-world and synthetic data, depending on your evaluation goals.
Refer to the benchmarking script located at ``benchmarks/benchmark_throughput.py`` in the `vLLM repository <https://github.com/ROCm/vllm/blob/main/benchmarks/benchmark_throughput.py>`_.
Use this script to measure throughput effectively. You can assess throughput using real-world and synthetic data, depending on your evaluation goals.
* For realistic performance evaluation, you can use datasets like Hugging Face's
``ShareGPT_V3_unfiltered_cleaned_split.json``. This dataset includes real-world conversational
data, making it a good representation of typical use cases for language models. Download it using
the following command:
.. code-block:: shell
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
* For standardized benchmarking, you can set fixed input and output token
lengths. Synthetic prompts provide consistent benchmarking runs, making it
easier to compare performance across different models or configurations.
Additionally, a controlled environment simplifies analysis.
By balancing real-world data and synthetic data approaches, you can get a well-rounded understanding of model performance in varied scenarios.
.. _mi300x-vllm-single-node:
Maximizing vLLM instances on a single node
------------------------------------------
The general guideline is to maximize per-node throughput by running as many vLLM instances as possible.
However, running too many instances might lead to insufficient memory for the KV-cache, which can affect performance.
The Instinct MI300X GPU is equipped with 192 GB of HBM3 memory capacity and bandwidth.
For models that fit in one GPU -- to maximize the accumulated throughput -- you can run as many as eight vLLM instances
simultaneously on one MI300X node (with eight GPUs). To do so, use the GPU isolation environment
variable ``CUDA_VISIBLE_DEVICES``.
For example, this script runs eight instances of vLLM for throughput benchmarking at the same time
with a model that can fit in one GPU:
.. code-block:: shell
for i in $(seq 0 7);
do
CUDA_VISIBLE_DEVICES="$i" python3 /app/vllm/benchmarks/benchmark_throughput.py -tp 1 --dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
done
The total throughput achieved by running ``N`` instances of vLLM is generally much higher than running a
single vLLM instance across ``N`` GPUs simultaneously (that is, configuring ``tensor_parallel_size`` as N or
using the ``-tp`` N option, where ``1 < N ≤ 8``).
vLLM on MI300X GPUs can run a variety of model weights, including Llama 2 (7b, 13b, 70b), Llama 3 (8b, 70b), Qwen2 (7b, 72b), Mixtral-8x7b, Mixtral-8x22b, and so on.
Notable configurations include Llama2-70b and Llama3-70b models on a single MI300X GPU, and the Llama3.1 405b model can fit on one single node with 8 MI300X GPUs.
.. _mi300x-vllm-gpu-memory-utilization:
Configure the gpu_memory_utilization parameter
----------------------------------------------
There are two ways to increase throughput by configuring ``gpu-memory-utilization`` parameter.
1. Increase ``gpu-memory-utilization`` to improve the throughput for a single instance as long as
it does not incur HIP or CUDA Out Of Memory. The default ``gpu-memory-utilization`` is 0.9.
You can set it to ``>0.9`` and ``<1``.
For example, below benchmarking command set the ``gpu-memory-utilization`` as 0.98, or 98%.
.. code-block:: shell
/vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.98 --input-len 1024 --output-len 128 --model /path/to/model
2. Decrease ``gpu-memory-utilization`` to maximize the number of vLLM instances on the same GPU.
Specify GPU memory utilization to run as many instances of vLLM as possible on a single
GPU. However, too many instances can result in no memory for KV-cache. For small models, run
multiple instances of vLLM on the same GPU by specifying a smaller ``gpu-memory-utilization`` -- as
long as it would not cause HIP Out Of Memory.
For example, run two instances of the Llama3-8b model at the same time on a single GPU by specifying
``--gpu-memory-utilization`` to 0.4 (40%) as follows (on GPU ``0``):
.. code-block:: shell
CUDA_VISIBLE_DEVICES=0 python3 /vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.4
--dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
CUDA_VISIBLE_DEVICES=0 python3 /vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.4
--dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
See :ref:`vllm-engine-args` for other performance suggestions.
.. _mi300x-vllm-multiple-gpus:
Run vLLM on multiple GPUs
-------------------------
The two main reasons to use multiple GPUs are:
* The model size is too big to run vLLM using one GPU as it results HIP Out of Memory.
* To achieve better latency when using a single GPU is not desirable.
To run one vLLM instance on multiple GPUs, use the ``-tp`` or ``--tensor-parallel-size`` option to
specify multiple GPUs. Optionally, use the ``CUDA_VISIBLE_DEVICES`` environment variable to specify
the GPUs.
For example, you can use two GPUs to start an API server on port 8000:
.. code-block:: shell
python -m vllm.entrypoints.api_server --model /path/to/model --dtype
float16 -tp 2 --port 8000 &
To achieve both latency and throughput performance for serving, you can run multiple API servers on
different GPUs by specifying different ports for each server and use ``CUDA_VISIBLE_DEVICES`` to
specify the GPUs for each server, for example:
.. code-block:: shell
CUDA_VISIBLE_DEVICES=0,1 python -m vllm.entrypoints.api_server --model
/path/to/model --dtype float16 -tp 2 --port 8000 &
CUDA_VISIBLE_DEVICES=2,3 python -m vllm.entrypoints.api_server --model
/path/to/model --dtype float16 -tp 2 --port 8001 &
Choose an attention backend
---------------------------
vLLM on ROCm supports two attention backends, each suitable for different use cases and performance
requirements:
- **Triton Flash Attention** - For benchmarking, run vLLM scripts at
least once as a warm-up step so Triton can perform auto-tuning before
collecting benchmarking numbers. This is the default setting.
- **Composable Kernel (CK) Flash Attention** - To use CK Flash Attention, specify
the environment variable as ``export VLLM_USE_TRITON_FLASH_ATTN=0``.
Refer to :ref:`Model acceleration libraries <acceleration-flash-attention>`
to learn more about Flash Attention with Triton or CK backends.
.. _vllm-engine-args:
vLLM engine arguments
---------------------
The following are configuration suggestions to potentially improve performance with vLLM. See
`vLLM's engine arguments documentation <https://docs.vllm.ai/en/latest/serving/engine_args.html>`_
for a full list of configurable engine arguments.
Configure the max-num-seqs parameter
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Increase the ``max-num-seqs`` parameter from the default ``256`` to ``512`` (``--max-num-seqs
512``). This increases the maximum number of sequences per iteration and can improve throughput.
Use the float16 dtype
^^^^^^^^^^^^^^^^^^^^^
The default data type (``dtype``) is specified in the models configuration file. For instance, some models use ``torch.bfloat16`` as their default ``dtype``.
Use float16 (``--dtype float16``) for better performance.
Multi-step scheduling
^^^^^^^^^^^^^^^^^^^^^
Setting ``num-scheduler-steps`` for multi-step scheduling can increase performance. Set it between 10 to 15 (``--num-scheduler-steps 10``).
Distributed executor backend
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The vLLM supports two modes of distributed executor backend: ``ray`` and ``mp``. When using the `<https://github.com/ROCm/vllm>`__ fork, using the ``mp``
backend (``--distributed_executor_backend mp``) is recommended.
Graph mode max-seq-len-to-capture
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Maximum sequence length covered by CUDA graphs. In the default mode (where ``enforce_eager`` is ``False``), when a sequence has context length
larger than this, vLLM engine falls back to eager mode. The default is 8192.
When working with models that support long context lengths, set the parameter ``--max-seq-len-to-capture`` to 16384.
See this `vLLM blog <https://blog.vllm.ai/2024/10/23/vllm-serving-amd.html>`__ for details.
An example of long context length model is Qwen2-7b.
Whether to enable chunked prefill
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another vLLM performance tip is to enable chunked prefill to improve
throughput. Chunked prefill allows large prefills to be chunked into
smaller chunks and batched together with decode requests.
You can enable the feature by specifying ``--enable-chunked-prefill`` in the
command line or setting ``enable_chunked_prefill=True`` in the LLM
constructor. 
As stated in `vLLM's documentation, <https://docs.vllm.ai/en/latest/models/performance.html#chunked-prefill>`__,
you can tune the performance by changing ``max_num_batched_tokens``. By
default, it is set to 512 and optimized for ITL (inter-token latency).
Smaller ``max_num_batched_tokens`` achieves better ITL because there are
fewer prefills interrupting decodes.
Higher ``max_num_batched_tokens`` achieves better TTFT (time to the first
token) as you can put more prefill to the batch.
You might experience noticeable throughput improvements when
benchmarking on a single GPU or 8 GPUs using the vLLM throughput
benchmarking script along with the ShareGPT dataset as input.
In the case of fixed ``input-len``/``output-len``, for some configurations,
enabling chunked prefill increases the throughput. For some other
configurations, the throughput may be worse and elicit a need to tune
parameter ``max_num_batched_tokens`` (for example, increasing ``max_num_batched_tokens`` value to 4096 or larger).
.. note::
Chunked prefill is no longer recommended. See the vLLM blog: `Serving LLMs on AMD MI300X: Best Practices <https://blog.vllm.ai/2024/10/23/vllm-serving-amd.html>`_ (October 2024).
Quantization support
---------------------
Quantization reduces the precision of the models weights and activations, which significantly decreases the memory footprint.
``fp8(w8a8)`` and ``AWQ`` quantization are supported for ROCm.
FP8 quantization
^^^^^^^^^^^^^^^^^
`<https://github.com/ROCm/vllm>`__ supports FP8 (8-bit floating point) weight and activation quantization using hardware acceleration on the Instinct MI300X.
Quantization of models with FP8 allows for a 2x reduction in model memory requirements and up to a 1.6x improvement in throughput with minimal impact on accuracy.
AMD publishes Quark Quantized OCP FP8 models on Hugging Face. For example:
* `Llama-3.1-8B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV>`__
* `Llama-3.1-70B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`__
* `Llama-3.1-405B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`__
* `Mixtral-8x7B-Instruct-v0.1-FP8-KV <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`__
* `Mixtral-8x22B-Instruct-v0.1-FP8-KV <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`__
To enable vLLM benchmarking to run on fp8 quantized models, use the ``--quantization`` parameter with value ``fp8`` (``--quantization fp8``).
AWQ quantization
^^^^^^^^^^^^^^^^
You can quantize your own models by installing AutoAWQ or picking one of the 400+ models on Hugging Face. Be aware that
that AWQ support in vLLM is currently underoptimized.
To enable vLLM to run on ``awq`` quantized models, using ``--quantization`` parameter with ``awq`` (``--quantization awq``).
You can find more specifics in the `vLLM AutoAWQ documentation <https://docs.vllm.ai/en/stable/quantization/auto_awq.html>`_.
fp8 kv-cached-dtype
^^^^^^^^^^^^^^^^^^^^^^^
Using ``fp8 kv-cache dtype`` can improve performance as it reduces the size
of ``kv-cache``. As a result, it reduces the cost required for reading and
writing the ``kv-cache``.
To use this feature, specify ``--kv-cache-dtype`` as ``fp8``.
To specify the quantization scaling config, use the
``--quantization-param-path`` parameter. If the parameter is not specified,
the default scaling factor of ``1`` is used, which can lead to less accurate
results. To generate ``kv-cache`` scaling JSON file, see `FP8 KV
Cache <https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_kv_cache/README.md>`__
in the vLLM GitHub repository.
Two sample Llama scaling configuration files are in vLLM for ``llama2-70b`` and
``llama2-7b``.
If building the vLLM using
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile.rocm>`_
for ``llama2-70b`` scale config, find the file at
``/vllm-workspace/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json`` at
runtime.
Below is a sample command to run benchmarking with this feature enabled
for the ``llama2-70b`` model:
.. code-block:: shell
python3 /vllm-workspace/benchmarks/benchmark_throughput.py --model \
/path/to/llama2-70b-model --kv-cache-dtype "fp8" \
--quantization-param-path \
"/vllm-workspace/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json" \
--input-len 512 --output-len 256 --num-prompts 500
vLLM is a high-throughput and memory efficient inference and serving engine for
large language models that has gained traction in the AI community for its
performance and ease of use. See :doc:`vllm-optimization`, where you'll learn
how to:
* Enable AITER (AI Tensor Engine for ROCm) to speed up on LLM models.
* Configure environment variables for optimal HIP, RCCL, and Quick Reduce performance.
* Select the right attention backend for your workload (AITER MHA/MLA vs. Triton).
* Choose parallelism strategies (tensor, pipeline, data, expert) for multi-GPU deployments.
* Apply quantization (``FP8``/``FP4``) to reduce memory usage by 2-4× with minimal accuracy loss.
* Tune engine arguments (batch size, memory utilization, graph modes) for your use case.
* Benchmark and scale across single-node and multi-node configurations.
.. _mi300x-tunableop:
@@ -946,33 +586,33 @@ for details.
.. code-block:: shell
HIP_FORCE_DEV_KERNARG=1  hipblaslt-bench --alpha 1 --beta 0 -r f16_r \
HIP_FORCE_DEV_KERNARG=1 hipblaslt-bench --alpha 1 --beta 0 -r f16_r \
--a_type f16_r --b_type f8_r --compute_type f32_f16_r \
--initialization trig_float  --cold_iters 100 --iters 1000 --rotating 256
--initialization trig_float --cold_iters 100 --iters 1000 --rotating 256
* Example 2: Benchmark forward epilogues and backward epilogues
* ``HIPBLASLT_EPILOGUE_RELU: "--activation_type relu";``
* ``HIPBLASLT_EPILOGUE_RELU: "--activation_type relu";``
* ``HIPBLASLT_EPILOGUE_BIAS: "--bias_vector";``
* ``HIPBLASLT_EPILOGUE_BIAS: "--bias_vector";``
* ``HIPBLASLT_EPILOGUE_RELU_BIAS: "--activation_type relu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_RELU_BIAS: "--activation_type relu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU: "--activation_type gelu";``
* ``HIPBLASLT_EPILOGUE_GELU: "--activation_type gelu";``
* ``HIPBLASLT_EPILOGUE_DGELU": --activation_type gelu --gradient";``
* ``HIPBLASLT_EPILOGUE_GELU_BIAS: "--activation_type gelu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU_BIAS: "--activation_type gelu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX: "--activation_type gelu --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX: "--activation_type gelu --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX_BIAS: "--activation_type gelu --bias_vector --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX_BIAS: "--activation_type gelu --bias_vector --use_e";``
* ``HIPBLASLT_EPILOGUE_DGELU_BGRAD: "--activation_type gelu --bias_vector --gradient";``
* ``HIPBLASLT_EPILOGUE_DGELU_BGRAD: "--activation_type gelu --bias_vector --gradient";``
* ``HIPBLASLT_EPILOGUE_BGRADA: "--bias_vector --gradient --bias_source a";``
* ``HIPBLASLT_EPILOGUE_BGRADA: "--bias_vector --gradient --bias_source a";``
* ``HIPBLASLT_EPILOGUE_BGRADB:  "--bias_vector --gradient --bias_source b";``
* ``HIPBLASLT_EPILOGUE_BGRADB: "--bias_vector --gradient --bias_source b";``
hipBLASLt auto-tuning using hipblaslt-bench
@@ -1031,26 +671,26 @@ The tuning tool is a two-step tool. It first runs the benchmark, then it creates
.. code-block:: python
defaultBenchOptions = {"ProblemType": {
    "TransposeA": 0,
    "TransposeB": 0,
    "ComputeInputDataType": "s",
    "ComputeDataType": "s",
    "DataTypeC": "s",
    "DataTypeD": "s",
    "UseBias": False
}, "TestConfig": {
    "ColdIter": 20,
    "Iter": 100,
    "AlgoMethod": "all",
    "RequestedSolutions": 2, # Only works in AlgoMethod heuristic
    "SolutionIndex": None, # Only works in AlgoMethod index
    "ApiMethod": "cpp",
    "RotatingBuffer": 0,
}, "TuningParameters": {
    "SplitK": [0]
}, "ProblemSizes": []}
defaultCreateLogicOptions = {}  # Currently unused
defaultBenchOptions = {"ProblemType": {
"TransposeA": 0,
"TransposeB": 0,
"ComputeInputDataType": "s",
"ComputeDataType": "s",
"DataTypeC": "s",
"DataTypeD": "s",
"UseBias": False
}, "TestConfig": {
"ColdIter": 20,
"Iter": 100,
"AlgoMethod": "all",
"RequestedSolutions": 2, # Only works in AlgoMethod heuristic
"SolutionIndex": None, # Only works in AlgoMethod index
"ApiMethod": "cpp",
"RotatingBuffer": 0,
}, "TuningParameters": {
"SplitK": [0]
}, "ProblemSizes": []}
defaultCreateLogicOptions = {} # Currently unused
* ``TestConfig``
1. ``ColdIter``: This is number the warm-up iterations before starting the kernel benchmark.
@@ -1230,7 +870,7 @@ command:
.. code-block:: shell
merge.py original_dir new_tuned_yaml_dir output_dir 
merge.py original_dir new_tuned_yaml_dir output_dir
The following table describes the logic YAML files.
@@ -1833,7 +1473,7 @@ de-quantize the ``int4`` key-value from the ``int4`` data type to ``fp16``.
From the IR snippet, you can see ``i32`` data is loaded from global memory to
registers (``%190``). With a few element-wise operations in registers, it is
stored in shared memory (``%269``) for the transpose operation (``%270``), which
stored in shared memory (``%269``) for the transpose operation (``%270``), which
needs data movement across different threads. With the transpose done, it is
loaded from LDS to register again (``%276``), and with a few more
element-wise operations, it is stored to LDS again (``%298``). The last step
@@ -1967,7 +1607,7 @@ something similar to the following:
loaded at: [0x7fd4f100c000-0x7fd4f100e070]
The kernel name and the code object file should be listed. In the
example above, the kernel name is vector_add_assert_trap, but this might
example above, the kernel name is vector_add_assert_trap, but this might
also look like:
.. code-block:: text
@@ -2081,3 +1721,8 @@ Hardware efficiency is maximized with 4 or fewer HIP streams. These environment
configuration to two compute streams and two RCCL streams, aligning with this best practice.
Additionally, RCCL is often pre-optimized for MI300 systems in production by querying the node
topology during startup, reducing the need for extensive manual tuning.
Further reading
===============
* :doc:`vllm-optimization`

View File

@@ -0,0 +1,482 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker-930:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers a
prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI355X, MI350X, MI325X and MI300X
GPUs. This ROCm vLLM Docker image integrates vLLM and PyTorch tailored
specifically for AMD data center GPUs and includes the following components:
.. tab-set::
.. tab-item:: {{ docker.pull_tag }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-930>` for
AMD Instinct GPUs.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <vllm-history>`.
* Added support for AMD Instinct MI355X and MI350X GPUs.
* Added support and benchmarking instructions for the following models. See :ref:`vllm-benchmark-supported-models-930`.
* Llama 4 Scout and Maverick
* DeepSeek R1 0528 FP8
* MXFP4 models (MI355X and MI350X only): Llama 3.3 70B MXFP4 and Llama 3.1 405B MXFP4
* GPT OSS 20B and 120B
* Qwen 3 32B, 30B-A3B, and 235B-A22B
* Removed the deprecated ``--max-seq-len-to-capture`` flag.
* ``--gpu-memory-utilization`` is now configurable via the `configuration files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__ in the MAD
repository.
.. _vllm-benchmark-supported-models-930:
Supported models
================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-930:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started. MXFP4 models
are only supported on MI355X and MI350X GPUs.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm-930:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
{% if model.precision == "float4" %}
.. important::
MXFP4 is supported only on MI355X and MI350X GPUs.
{% endif %}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% if model.precision == "float8" and model.model_repo.startswith("amd") %}
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% if model.precision == "float4" and model.model_repo.startswith("amd") %}
This model uses FP4 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-930:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and serving measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct GPUs or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Benchmarking
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-930:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node with the
:literal:`{{model.precision}}` data type.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-930>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable it, include
the ``--tunableop on`` argument in your run.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the
performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
.. seealso::
For more information on configuration, see the `config files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__
in the MAD repository. Refer to the `vLLM engine <https://docs.vllm.ai/en/latest/configuration/engine_args.html#engineargs>`__
for descriptions of available configuration options
and `Benchmarking vLLM <https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md>`__ for
additional benchmarking information.
.. rubric:: Launch the container
You can run the vLLM benchmark tool independently by starting the
`Docker container <{{ docker.docker_hub_url }}>`_ as shown
in the following snippet.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
docker run -it \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--shm-size 16G \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--cap-add=SYS_PTRACE \
-v $(pwd):/workspace \
--env HUGGINGFACE_HUB_CACHE=/workspace \
--name test \
{{ docker.pull_tag }}
.. rubric:: Throughput command
Use the following command to start the throughput benchmark.
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
num_prompts={{ model.config.num_prompts | default(1024) }}
in={{ model.config.in | default(128) }}
out={{ model.config.in | default(128) }}
dtype={{ model.config.dtype | default("auto") }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs={{ model.config.max_num_seqs | default(1024) }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm bench throughput --model $model \
-tp $tp \
--num-prompts $num_prompts \
--input-len $in \
--output-len $out \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--trust-remote-code \
--output-json ${model}_throughput.json \
--gpu-memory-utilization {{ model.config.gpu_memory_utilization | default(0.9) }}
.. rubric:: Serving command
1. Start the server using the following command:
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=256
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm serve $model \
-tp $tp \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--no-enable-prefix-caching \
--swap-space 16 \
--disable-log-requests \
--trust-remote-code \
--gpu-memory-utilization 0.9
Wait until the model has loaded and the server is ready to accept requests.
2. On another terminal on the same machine, run the benchmark:
.. code-block:: shell
# Connect to the container
docker exec -it test bash
# Wait for the server to start
until curl -s http://localhost:8000/v1/models; do sleep 30; done
# Run the benchmark
model={{ model.model_repo }}
max_concurrency=1
num_prompts=10
in=128
out=128
vllm bench serve --model $model \
--percentile-metrics "ttft,tpot,itl,e2el" \
--dataset-name random \
--ignore-eos \
--max-concurrency $max_concurrency \
--num-prompts $num_prompts \
--random-input-len $in \
--random-output-len $out \
--trust-remote-code \
--save-result \
--result-filename ${model}_serving.json
.. note::
For improved performance with certain Mixture of Experts models, such as Mixtral 8x22B,
try adding ``export VLLM_ROCM_USE_AITER=1`` to your commands.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Advanced usage
==============
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/docs/dev-docker/README.md>`__.
Reproducing the Docker image
----------------------------
To reproduce this ROCm-enabled vLLM Docker image release, follow these steps:
1. Clone the `vLLM repository <https://github.com/vllm-project/vllm>`__.
.. code-block:: shell
git clone https://github.com/vllm-project/vllm.git
cd vllm
2. Use the following command to build the image directly from the specified commit.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20251006-benchmark-models.yaml
{% set docker = data.dockers[0] %}
.. code-block:: shell
docker build -f docker/Dockerfile.rocm \
--build-arg REMOTE_VLLM=1 \
--build-arg VLLM_REPO=https://github.com/ROCm/vllm \
--build-arg VLLM_BRANCH="{{ docker.dockerfile.commit }}" \
-t vllm-rocm .
.. tip::
Replace ``vllm-rocm`` with your desired image tag.
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
a brief introduction to vLLM and optimization strategies.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -0,0 +1,472 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker-1103:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.11.1_20251103-benchmark-models.yaml
{% set docker = data.dockers[0] %}
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers a
prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI355X, MI350X, MI325X and MI300X
GPUs. This ROCm vLLM Docker image integrates vLLM and PyTorch tailored
specifically for AMD data center GPUs and includes the following components:
.. tab-set::
.. tab-item:: {{ docker.pull_tag }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-1103>` for
AMD Instinct GPUs.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <vllm-history>`.
* Enabled :ref:`AITER <vllm-optimization-aiter-switches>` by default.
* Fixed ``rms_norm`` segfault issue with Qwen 3 235B.
* Known performance degradation on Llama 4 models due to `an upstream vLLM issue <https://github.com/vllm-project/vllm/issues/26320>`_.
.. _vllm-benchmark-supported-models-1103:
Supported models
================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.11.1_20251103-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-1103:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started. MXFP4 models
are only supported on MI355X and MI350X GPUs.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm-1103:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
{% if model.precision == "float4" %}
.. important::
MXFP4 is supported only on MI355X and MI350X GPUs.
{% endif %}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% if model.precision == "float8" and model.model_repo.startswith("amd") %}
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% if model.precision == "float4" and model.model_repo.startswith("amd") %}
This model uses FP4 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-1103:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and serving measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct GPUs or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.11.1_20251103-benchmark-models.yaml
{% set docker = data.dockers[0] %}
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Benchmarking
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.11.1_20251103-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-1103:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-1103` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node with the
:literal:`{{model.precision}}` data type.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-1103>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable it, include
the ``--tunableop on`` argument in your run.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the
performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-1103` to switch to another available model.
.. seealso::
For more information on configuration, see the `config files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__
in the MAD repository. Refer to the `vLLM engine <https://docs.vllm.ai/en/latest/configuration/engine_args.html#engineargs>`__
for descriptions of available configuration options
and `Benchmarking vLLM <https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md>`__ for
additional benchmarking information.
.. rubric:: Launch the container
You can run the vLLM benchmark tool independently by starting the
`Docker container <{{ docker.docker_hub_url }}>`_ as shown
in the following snippet.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
docker run -it \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--shm-size 16G \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--cap-add=SYS_PTRACE \
-v $(pwd):/workspace \
--env HUGGINGFACE_HUB_CACHE=/workspace \
--name test \
{{ docker.pull_tag }}
.. rubric:: Throughput command
Use the following command to start the throughput benchmark.
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
num_prompts={{ model.config.num_prompts | default(1024) }}
in={{ model.config.in | default(128) }}
out={{ model.config.in | default(128) }}
dtype={{ model.config.dtype | default("auto") }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs={{ model.config.max_num_seqs | default(1024) }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm bench throughput --model $model \
-tp $tp \
--num-prompts $num_prompts \
--input-len $in \
--output-len $out \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--trust-remote-code \
--output-json ${model}_throughput.json \
--gpu-memory-utilization {{ model.config.gpu_memory_utilization | default(0.9) }}
.. rubric:: Serving command
1. Start the server using the following command:
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=256
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm serve $model \
-tp $tp \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--no-enable-prefix-caching \
--swap-space 16 \
--disable-log-requests \
--trust-remote-code \
--gpu-memory-utilization 0.9
Wait until the model has loaded and the server is ready to accept requests.
2. On another terminal on the same machine, run the benchmark:
.. code-block:: shell
# Connect to the container
docker exec -it test bash
# Wait for the server to start
until curl -s http://localhost:8000/v1/models; do sleep 30; done
# Run the benchmark
model={{ model.model_repo }}
max_concurrency=1
num_prompts=10
in=128
out=128
vllm bench serve --model $model \
--percentile-metrics "ttft,tpot,itl,e2el" \
--dataset-name random \
--ignore-eos \
--max-concurrency $max_concurrency \
--num-prompts $num_prompts \
--random-input-len $in \
--random-output-len $out \
--trust-remote-code \
--save-result \
--result-filename ${model}_serving.json
.. note::
For improved performance with certain Mixture of Experts models, such as Mixtral 8x22B,
try adding ``export VLLM_ROCM_USE_AITER=1`` to your commands.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Advanced usage
==============
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/docs/dev-docker/README.md>`__.
.. note::
If youre using this Docker image on other AMD GPUs such as the AMD Instinct MI200 Series or Radeon, add ``export VLLM_ROCM_USE_AITER=0`` to your command, since AITER is only supported on gfx942 and gfx950 architectures.
Reproducing the Docker image
----------------------------
To reproduce this ROCm-enabled vLLM Docker image release, follow these steps:
1. Clone the `vLLM repository <https://github.com/vllm-project/vllm>`__.
.. code-block:: shell
git clone https://github.com/vllm-project/vllm.git
cd vllm
2. Use the following command to build the image directly from the specified commit.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.11.1_20251103-benchmark-models.yaml
{% set docker = data.dockers[0] %}
.. code-block:: shell
docker build -f docker/Dockerfile.rocm \
--build-arg REMOTE_VLLM=1 \
--build-arg VLLM_REPO=https://github.com/ROCm/vllm \
--build-arg VLLM_BRANCH="{{ docker.dockerfile.commit }}" \
-t vllm-rocm .
.. tip::
Replace ``vllm-rocm`` with your desired image tag.
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
a brief introduction to vLLM and optimization strategies.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -16,14 +16,31 @@ previous releases of the ``ROCm/vllm`` Docker image on `Docker Hub <https://hub.
- Components
- Resources
* - ``rocm/vllm:rocm7.0.0_vllm_0.11.2_20251210``
-
* ROCm 7.0.0
* vLLM 0.11.2
* PyTorch 2.9.0
-
* :doc:`Documentation <../vllm>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.11.2_20251210/images/sha256-e7f02dd2ce3824959658bc0391296f6158638e3ebce164f6c019c4eca8150ec7>`__
* - ``rocm/vllm:rocm7.0.0_vllm_0.11.1_20251103``
-
* ROCm 7.0.0
* vLLM 0.11.1
* PyTorch 2.9.0
-
* :doc:`Documentation <vllm-0.11.1-20251103>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.11.1_20251103/images/sha256-8d60429043d4d00958da46039a1de0d9b82df814d45da482497eef26a6076506>`__
* - ``rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006``
(latest)
-
* ROCm 7.0.0
* vLLM 0.10.2
* PyTorch 2.9.0
-
* :doc:`Documentation <../vllm>`
* :doc:`Documentation <vllm-0.10.2-20251006>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5>`__
* - ``rocm/vllm:rocm6.4.1_vllm_0.10.1_20250909``

View File

@@ -0,0 +1,398 @@
:orphan:
.. meta::
:description: Learn to validate diffusion model video generation on MI300X, MI350X and MI355X accelerators using
prebuilt and optimized docker images.
:keywords: xDiT, diffusion, video, video generation, image, image generation, validate, benchmark
************************
xDiT diffusion inference
************************
.. _xdit-video-diffusion-2510:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.10-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker %}
{% set model_groups = data.xdit_diffusion_inference.model_groups%}
The `rocm/pytorch-xdit <{{ docker.docker_hub_url }}>`_ Docker image offers
a prebuilt, optimized inference environment based on `xDiT
<https://github.com/xdit-project/xDiT>`_ for benchmarking diffusion-based
video and image generation on AMD Instinct MI355X, MI350X (gfx950), MI325X,
and MI300X (gfx942) GPUs.
This image is based on ROCm {{docker.ROCm}} preview release via `TheRock <https://github.com/ROCm/TheRock>`_
and includes the following software components:
.. tab-set::
.. tab-item:: {{ docker.pull_tag }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
Follow this guide to pull the required image, spin up a container, download the model, and run a benchmark.
For preview and development releases, see `amdsiloai/pytorch-xdit <https://hub.docker.com/r/amdsiloai/pytorch-xdit>`_.
What's new
==========
- Initial ROCm-enabled xDiT Docker release for diffusion inference.
- Supported architectures: gfx942 and gfx950 (AMD Instinct™ MI300X, MI325X, MI350X, and MI355X).
- Supported workloads: Wan 2.1, Wan 2.2, HunyuanVideo, and Flux models.
.. _xdit-video-diffusion-supported-models-2510:
Supported models
================
The following models are supported for inference performance benchmarking.
Some instructions, commands, and recommendations in this documentation might
vary by model -- select one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.10-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker %}
{% set model_groups = data.xdit_diffusion_inference.model_groups%}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length == 1 %}
<div class="col-12 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
.. note::
To learn more about your specific model see the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_
or visit the `GitHub page <{{ model.github }}>`__. Note that some models require access authorization before use via an
external license agreement through a third party.
{% endfor %}
{% endfor %}
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA
auto-balancing, you can skip this step. Otherwise, complete the procedures in
the `System validation and optimization
<https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/system-setup/prerequisite-system-validation.html>`__
guide to properly configure your system settings before starting.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.10-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker %}
For this tutorial, it's recommended to use the latest ``{{ docker.pull_tag }}`` Docker image.
Pull the image using the following command:
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Validate and benchmark
======================
Once the image has been downloaded you can follow these steps to
run benchmarks and generate outputs.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.10-inference-models.yaml
{% set model_groups = data.xdit_diffusion_inference.model_groups %}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
The following commands are written for {{ model.model }}.
See :ref:`xdit-video-diffusion-supported-models-2510` to switch to another available model.
{% endfor %}
{% endfor %}
.. _xdit-video-diffusion-setup-2510:
Prepare the model
-----------------
.. note::
If you're using ROCm MAD to :ref:`run your model
<xdit-video-diffusion-run-2510>`, you can skip this section. MAD will handle
starting the container and downloading required models inside the container.
You can either use an existing Hugging Face cache or download the model fresh inside the container.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.10-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker %}
{% set model_groups = data.xdit_diffusion_inference.model_groups%}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: Option 1: Use existing Hugging Face cache
If you already have models downloaded on your host system, you can mount your existing cache.
1. Set your Hugging Face cache location.
.. code-block:: shell
export HF_HOME=/your/hf_cache/location
2. Download the model (if not already cached).
.. code-block:: shell
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
3. Launch the container with mounted cache.
.. code-block:: shell
docker run \
-it --rm \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--user root \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--network host \
--privileged \
--shm-size 128G \
--name pytorch-xdit \
-e HSA_NO_SCRATCH_RECLAIM=1 \
-e OMP_NUM_THREADS=16 \
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
-e HF_HOME=/app/huggingface_models \
-v $HF_HOME:/app/huggingface_models \
{{ docker.pull_tag }}
.. tab-item:: Option 2: Download inside container
If you prefer to keep the container self-contained or don't have an existing cache.
1. Launch the container
.. code-block:: shell
docker run \
-it --rm \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--user root \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--network host \
--privileged \
--shm-size 128G \
--name pytorch-xdit \
-e HSA_NO_SCRATCH_RECLAIM=1 \
-e OMP_NUM_THREADS=16 \
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
{{ docker.pull_tag }}
2. Inside the container, set the Hugging Face cache location and download the model.
.. code-block:: shell
export HF_HOME=/app/huggingface_models
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
.. warning::
Models will be downloaded to the container's filesystem and will be lost when the container is removed unless you persist the data with a volume.
{% endfor %}
{% endfor %}
.. _xdit-video-diffusion-run-2510:
Run inference
=============
You can benchmark models through `MAD <https://github.com/ROCm/MAD>`__-integrated automation or standalone
torchrun commands.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.10-inference-models.yaml
{% set model_groups = data.xdit_diffusion_inference.model_groups%}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
.. tab-item:: Standalone benchmarking
To run the benchmarks for {{ model.model }}, use the following command:
.. code-block:: shell
{% if model.model == "Hunyuan Video" %}
cd /app/Hunyuanvideo
mkdir results
torchrun --nproc_per_node=8 run.py \
--model tencent/HunyuanVideo \
--prompt "In the large cage, two puppies were wagging their tails at each other." \
--height 720 --width 1280 --num_frames 129 \
--num_inference_steps 50 --warmup_steps 1 --n_repeats 1 \
--ulysses_degree 8 \
--enable_tiling --enable_slicing \
--use_torch_compile \
--bench_output results
{% endif %}
{% if model.model == "Wan2.1" %}
cd Wan2.1
mkdir results
torchrun --nproc_per_node=8 run.py \
--task i2v-14B \
--size 720*1280 --frame_num 81 \
--ckpt_dir "${HF_HOME}/hub/models--Wan-AI--Wan2.1-I2V-14B-720P/snapshots/8823af45fcc58a8aa999a54b04be9abc7d2aac98/" \
--image "/app/Wan2.1/examples/i2v_input.JPG" \
--ulysses_size 8 --ring_size 1 \
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
--benchmark_output_directory results --save_file video.mp4 --num_benchmark_steps 1 \
--offload_model 0 \
--vae_dtype bfloat16 \
--allow_tf32 \
--compile
{% endif %}
{% if model.model == "Wan2.2" %}
cd Wan2.2
mkdir results
torchrun --nproc_per_node=8 run.py \
--task i2v-A14B \
--size 720*1280 --frame_num 81 \
--ckpt_dir "${HF_HOME}/hub/models--Wan-AI--Wan2.2-I2V-A14B/snapshots/206a9ee1b7bfaaf8f7e4d81335650533490646a3/" \
--image "/app/Wan2.2/examples/i2v_input.JPG" \
--ulysses_size 8 --ring_size 1 \
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
--benchmark_output_directory results --save_file video.mp4 --num_benchmark_steps 1 \
--offload_model 0 \
--vae_dtype bfloat16 \
--allow_tf32 \
--compile
{% endif %}
{% if model.model == "FLUX.1" %}
cd Flux
mkdir results
torchrun --nproc_per_node=8 /app/Flux/run.py \
--model black-forest-labs/FLUX.1-dev \
--seed 42 \
--prompt "A small cat" \
--height 1024 \
--width 1024 \
--num_inference_steps 25 \
--max_sequence_length 256 \
--warmup_steps 5 \
--no_use_resolution_binning \
--ulysses_degree 8 \
--use_torch_compile \
--num_repetitions 1 \
--benchmark_output_directory results
{% endif %}
The generated video will be stored under the results directory. For the actual benchmark step runtimes, see {% if model.model == "Hunyuan Video" %}stdout.{% elif model.model in ["Wan2.1", "Wan2.2"] %}results/outputs/rank0_*.json{% elif model.model == "FLUX.1" %}results/timing.json{% endif %}
{% if model.model == "FLUX.1" %}You may also use ``run_usp.py`` which implements USP without modifying the default diffusers pipeline. {% endif %}
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- For a list of other ready-made Docker images for AI with ROCm, see `AMD
Infinity Hub
<https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`__.
Previous versions
=================
See :doc:`xdit-history` to find documentation for previous releases
of xDiT diffusion inference performance testing.

View File

@@ -0,0 +1,389 @@
:orphan:
.. meta::
:description: Learn to validate diffusion model video generation on MI300X, MI350X and MI355X accelerators using
prebuilt and optimized docker images.
:keywords: xDiT, diffusion, video, video generation, image, image generation, validate, benchmark
************************
xDiT diffusion inference
************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See
:doc:`/how-to/rocm-for-ai/inference/xdit-diffusion-inference` for the latest
version.
.. _xdit-video-diffusion-2511:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.11-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker | selectattr("version", "equalto", "v25-11") | first %}
{% set model_groups = data.xdit_diffusion_inference.model_groups%}
The `rocm/pytorch-xdit <{{ docker.docker_hub_url }}>`_ Docker image offers a prebuilt, optimized environment based on `xDiT <https://github.com/xdit-project/xDiT>`_ for
benchmarking diffusion model video and image generation on gfx942 and gfx950 series (AMD Instinct™ MI300X, MI325X, MI350X, and MI355X) GPUs.
The image runs ROCm **{{docker.ROCm}}** (preview) based on `TheRock <https://github.com/ROCm/TheRock>`_
and includes the following components:
.. dropdown:: Software components
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
Follow this guide to pull the required image, spin up a container, download the model, and run a benchmark.
For preview and development releases, see `amdsiloai/pytorch-xdit <https://hub.docker.com/r/amdsiloai/pytorch-xdit>`_.
What's new
==========
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.11-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker | selectattr("version", "equalto", "v25-11") | first %}
{% set model_groups = data.xdit_diffusion_inference.model_groups%}
{% for item in docker.whats_new %}
* {{ item }}
{% endfor %}
.. _xdit-video-diffusion-supported-models-2511:
Supported models
================
The following models are supported for inference performance benchmarking.
Some instructions, commands, and recommendations in this documentation might
vary by model -- select one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.11-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker | selectattr("version", "equalto", "v25-11") | first %}
{% set model_groups = data.xdit_diffusion_inference.model_groups %}
{# Create a lookup for supported models #}
{% set supported_lookup = {} %}
{% for supported in docker.supported_models %}
{% set _ = supported_lookup.update({supported.group: supported.models}) %}
{% endfor %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% if model_group.group in supported_lookup %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endif %}
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% if model_group.group in supported_lookup %}
{% set supported_models = supported_lookup[model_group.group] %}
{% set models = model_group.models %}
{% for model in models %}
{% if model.model in supported_models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.page_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.page_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endif %}
{% endfor %}
{% endif %}
{% endfor %}
</div>
</div>
</div>
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.page_tag }}
.. note::
To learn more about your specific model see the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_
or visit the `GitHub page <{{ model.github }}>`__. Note that some models require access authorization before use via an
external license agreement through a third party.
{% endfor %}
{% endfor %}
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.11-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker | selectattr("version", "equalto", "v25-11") | first %}
For this tutorial, it's recommended to use the latest ``{{ docker.pull_tag }}`` Docker image.
Pull the image using the following command:
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Validate and benchmark
======================
Once the image has been downloaded you can follow these steps to
run benchmarks and generate outputs.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.11-inference-models.yaml
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.page_tag}}
The following commands are written for {{ model.model }}.
See :ref:`xdit-video-diffusion-supported-models-2511` to switch to another available model.
{% endfor %}
{% endfor %}
Choose your setup method
------------------------
You can either use an existing Hugging Face cache or download the model fresh inside the container.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.11-inference-models.yaml
{% set docker = data.xdit_diffusion_inference.docker | selectattr("version", "equalto", "v25-11") | first %}
{% set model_groups = data.xdit_diffusion_inference.model_groups%}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.page_tag}}
.. tab-set::
.. tab-item:: Option 1: Use existing Hugging Face cache
If you already have models downloaded on your host system, you can mount your existing cache.
1. Set your Hugging Face cache location.
.. code-block:: shell
export HF_HOME=/your/hf_cache/location
2. Download the model (if not already cached).
.. code-block:: shell
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
3. Launch the container with mounted cache.
.. code-block:: shell
docker run \
-it --rm \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--user root \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--network host \
--privileged \
--shm-size 128G \
--name pytorch-xdit \
-e HSA_NO_SCRATCH_RECLAIM=1 \
-e OMP_NUM_THREADS=16 \
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
-e HF_HOME=/app/huggingface_models \
-v $HF_HOME:/app/huggingface_models \
{{ docker.pull_tag }}
.. tab-item:: Option 2: Download inside container
If you prefer to keep the container self-contained or don't have an existing cache.
1. Launch the container
.. code-block:: shell
docker run \
-it --rm \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--user root \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--network host \
--privileged \
--shm-size 128G \
--name pytorch-xdit \
-e HSA_NO_SCRATCH_RECLAIM=1 \
-e OMP_NUM_THREADS=16 \
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
{{ docker.pull_tag }}
2. Inside the container, set the Hugging Face cache location and download the model.
.. code-block:: shell
export HF_HOME=/app/huggingface_models
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
.. warning::
Models will be downloaded to the container's filesystem and will be lost when the container is removed unless you persist the data with a volume.
{% endfor %}
{% endfor %}
Run inference
=============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.11-inference-models.yaml
{% set model_groups = data.xdit_diffusion_inference.model_groups%}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.page_tag }}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
.. tab-item:: Standalone benchmarking
To run the benchmarks for {{ model.model }}, use the following command:
.. code-block:: shell
{% if model.model == "Hunyuan Video" %}
cd /app/Hunyuanvideo
mkdir results
torchrun --nproc_per_node=8 run.py \
--model tencent/HunyuanVideo \
--prompt "In the large cage, two puppies were wagging their tails at each other." \
--height 720 --width 1280 --num_frames 129 \
--num_inference_steps 50 --warmup_steps 1 --n_repeats 1 \
--ulysses_degree 8 \
--enable_tiling --enable_slicing \
--use_torch_compile \
--bench_output results
{% endif %}
{% if model.model == "Wan2.1" %}
cd Wan2.1
mkdir results
torchrun --nproc_per_node=8 run.py \
--task i2v-14B \
--size 720*1280 --frame_num 81 \
--ckpt_dir "${HF_HOME}/hub/models--Wan-AI--Wan2.1-I2V-14B-720P/snapshots/8823af45fcc58a8aa999a54b04be9abc7d2aac98/" \
--image "/app/Wan2.1/examples/i2v_input.JPG" \
--ulysses_size 8 --ring_size 1 \
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
--benchmark_output_directory results --save_file video.mp4 --num_benchmark_steps 1 \
--offload_model 0 \
--vae_dtype bfloat16 \
--allow_tf32 \
--compile
{% endif %}
{% if model.model == "Wan2.2" %}
cd Wan2.2
mkdir results
torchrun --nproc_per_node=8 run.py \
--task i2v-A14B \
--size 720*1280 --frame_num 81 \
--ckpt_dir "${HF_HOME}/hub/models--Wan-AI--Wan2.2-I2V-A14B/snapshots/206a9ee1b7bfaaf8f7e4d81335650533490646a3/" \
--image "/app/Wan2.2/examples/i2v_input.JPG" \
--ulysses_size 8 --ring_size 1 \
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
--benchmark_output_directory results --save_file video.mp4 --num_benchmark_steps 1 \
--offload_model 0 \
--vae_dtype bfloat16 \
--allow_tf32 \
--compile
{% endif %}
{% if model.model == "FLUX.1" %}
cd Flux
mkdir results
torchrun --nproc_per_node=8 /app/Flux/run.py \
--model black-forest-labs/FLUX.1-dev \
--seed 42 \
--prompt "A small cat" \
--height 1024 \
--width 1024 \
--num_inference_steps 25 \
--max_sequence_length 256 \
--warmup_steps 5 \
--no_use_resolution_binning \
--ulysses_degree 8 \
--use_torch_compile \
--num_repetitions 1 \
--benchmark_output_directory results
{% endif %}
The generated video will be stored under the results directory. For the actual benchmark step runtimes, see {% if model.model == "Hunyuan Video" %}stdout.{% elif model.model in ["Wan2.1", "Wan2.2"] %}results/outputs/rank0_*.json{% elif model.model == "FLUX.1" %}results/timing.json{% endif %}
{% if model.model == "FLUX.1" %}You may also use ``run_usp.py`` which implements USP without modifying the default diffusers pipeline. {% endif %}
{% endfor %}
{% endfor %}
Previous versions
=================
See
:doc:`/how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/xdit-history`
to find documentation for previous releases of xDiT diffusion inference
performance testing.

View File

@@ -0,0 +1,411 @@
:orphan:
.. meta::
:description: Learn to validate diffusion model video generation on MI300X, MI350X and MI355X accelerators using
prebuilt and optimized docker images.
:keywords: xDiT, diffusion, video, video generation, image, image generation, validate, benchmark
************************
xDiT diffusion inference
************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See
:doc:`/how-to/rocm-for-ai/inference/xdit-diffusion-inference` for the latest
version.
.. _xdit-video-diffusion-2512:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.12-inference-models.yaml
{% set docker = data.docker %}
The `rocm/pytorch-xdit <{{ docker.docker_hub_url }}>`_ Docker image offers
a prebuilt, optimized environment based on `xDiT
<https://github.com/xdit-project/xDiT>`_ for benchmarking diffusion model
video and image generation on AMD Instinct MI355X, MI350X (gfx950), MI325X,
and MI300X (gfx942) GPUs.
The image runs ROCm **{{docker.ROCm}}** (preview) based on `TheRock <https://github.com/ROCm/TheRock>`_
and includes the following components:
.. dropdown:: Software components
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_data in docker.components.items() %}
* - `{{ component_name }} <{{ component_data.url }}>`_
- {{ component_data.version }}
{% endfor %}
Follow this guide to pull the required image, spin up a container, download the model, and run a benchmark.
For preview and development releases, see `amdsiloai/pytorch-xdit <https://hub.docker.com/r/amdsiloai/pytorch-xdit>`_.
What's new
==========
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.12-inference-models.yaml
{% set docker = data.docker %}
{% for item in docker.whats_new %}
* {{ item }}
{% endfor %}
.. _xdit-video-diffusion-supported-models-2512:
Supported models
================
The following models are supported for inference performance benchmarking.
Some instructions, commands, and recommendations in this documentation might
vary by model -- select one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.12-inference-models.yaml
{% set docker = data.docker %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in docker.supported_models %}
<div class="col-6 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.js_tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in docker.supported_models %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.js_tag }}" data-param-group="{{ model_group.js_tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.js_tag }}" data-param-group="{{ model_group.js_tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
{% for model_group in docker.supported_models %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.js_tag }}
.. note::
To learn more about your specific model see the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_
or visit the `GitHub page <{{ model.github }}>`__. Note that some models require access authorization before use via an
external license agreement through a third party.
{% endfor %}
{% endfor %}
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.12-inference-models.yaml
{% set docker = data.docker %}
For this tutorial, it's recommended to use the latest ``{{ docker.pull_tag }}`` Docker image.
Pull the image using the following command:
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Validate and benchmark
======================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.12-inference-models.yaml
{% set docker = data.docker %}
Once the image has been downloaded you can follow these steps to
run benchmarks and generate outputs.
{% for model_group in docker.supported_models %}
{% for model in model_group.models %}
.. container:: model-doc {{model.js_tag}}
The following commands are written for {{ model.model }}.
See :ref:`xdit-video-diffusion-supported-models` to switch to another available model.
{% endfor %}
{% endfor %}
Choose your setup method
------------------------
You can either use an existing Hugging Face cache or download the model fresh inside the container.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.12-inference-models.yaml
{% set docker = data.docker %}
{% for model_group in docker.supported_models %}
{% for model in model_group.models %}
.. container:: model-doc {{model.js_tag}}
.. tab-set::
.. tab-item:: Option 1: Use existing Hugging Face cache
If you already have models downloaded on your host system, you can mount your existing cache.
1. Set your Hugging Face cache location.
.. code-block:: shell
export HF_HOME=/your/hf_cache/location
2. Download the model (if not already cached).
.. code-block:: shell
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
3. Launch the container with mounted cache.
.. code-block:: shell
docker run \
-it --rm \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--user root \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--network host \
--privileged \
--shm-size 128G \
--name pytorch-xdit \
-e HSA_NO_SCRATCH_RECLAIM=1 \
-e OMP_NUM_THREADS=16 \
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
-e HF_HOME=/app/huggingface_models \
-v $HF_HOME:/app/huggingface_models \
{{ docker.pull_tag }}
.. tab-item:: Option 2: Download inside container
If you prefer to keep the container self-contained or don't have an existing cache.
1. Launch the container
.. code-block:: shell
docker run \
-it --rm \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--user root \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--network host \
--privileged \
--shm-size 128G \
--name pytorch-xdit \
-e HSA_NO_SCRATCH_RECLAIM=1 \
-e OMP_NUM_THREADS=16 \
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
{{ docker.pull_tag }}
2. Inside the container, set the Hugging Face cache location and download the model.
.. code-block:: shell
export HF_HOME=/app/huggingface_models
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
.. warning::
Models will be downloaded to the container's filesystem and will be lost when the container is removed unless you persist the data with a volume.
{% endfor %}
{% endfor %}
Run inference
=============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/xdit_25.12-inference-models.yaml
{% set docker = data.docker %}
{% for model_group in docker.supported_models %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.js_tag }}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
.. tab-item:: Standalone benchmarking
To run the benchmarks for {{ model.model }}, use the following command:
.. code-block:: shell
{% if model.model == "Hunyuan Video" %}
cd /app/Hunyuanvideo
mkdir results
torchrun --nproc_per_node=8 run.py \
--model {{ model.model_repo }} \
--prompt "In the large cage, two puppies were wagging their tails at each other." \
--height 720 --width 1280 --num_frames 129 \
--num_inference_steps 50 --warmup_steps 1 --n_repeats 1 \
--ulysses_degree 8 \
--enable_tiling --enable_slicing \
--use_torch_compile \
--bench_output results
{% endif %}
{% if model.model == "Wan2.1" %}
cd Wan
mkdir results
torchrun --nproc_per_node=8 /app/Wan/run.py \
--task i2v \
--height 720 \
--width 1280 \
--model {{ model.model_repo }} \
--img_file_path /app/Wan/i2v_input.JPG \
--ulysses_degree 8 \
--seed 42 \
--num_frames 81 \
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
--num_repetitions 1 \
--num_inference_steps 40 \
--use_torch_compile
{% endif %}
{% if model.model == "Wan2.2" %}
cd Wan
mkdir results
torchrun --nproc_per_node=8 /app/Wan/run.py \
--task i2v \
--height 720 \
--width 1280 \
--model {{ model.model_repo }} \
--img_file_path /app/Wan/i2v_input.JPG \
--ulysses_degree 8 \
--seed 42 \
--num_frames 81 \
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
--num_repetitions 1 \
--num_inference_steps 40 \
--use_torch_compile
{% endif %}
{% if model.model == "FLUX.1" %}
cd Flux
mkdir results
torchrun --nproc_per_node=8 /app/Flux/run.py \
--model {{ model.model_repo }} \
--seed 42 \
--prompt "A small cat" \
--height 1024 \
--width 1024 \
--num_inference_steps 25 \
--max_sequence_length 256 \
--warmup_steps 5 \
--no_use_resolution_binning \
--ulysses_degree 8 \
--use_torch_compile \
--num_repetitions 50
{% endif %}
{% if model.model == "stable-diffusion-3.5-large" %}
cd StableDiffusion3.5
mkdir results
torchrun --nproc_per_node=8 /app/StableDiffusion3.5/run.py \
--model {{ model.model_repo }} \
--num_inference_steps 28 \
--prompt "A capybara holding a sign that reads Hello World" \
--use_torch_compile \
--pipefusion_parallel_degree 4 \
--use_cfg_parallel \
--num_repetitions 50 \
--dtype torch.float16 \
--output_path results
{% endif %}
The generated video will be stored under the results directory. For the actual benchmark step runtimes, see {% if model.model == "Hunyuan Video" %}stdout.{% elif model.model in ["Wan2.1", "Wan2.2"] %}results/outputs/rank0_*.json{% elif model.model == "FLUX.1" %}results/timing.json{% elif model.model == "stable-diffusion-3.5-large"%}benchmark_results.csv{% endif %}
{% if model.model == "FLUX.1" %}You may also use ``run_usp.py`` which implements USP without modifying the default diffusers pipeline. {% endif %}
{% endfor %}
{% endfor %}
Previous versions
=================
See
:doc:`/how-to/rocm-for-ai/inference/benchmark-docker/previous-versions/xdit-history`
to find documentation for previous releases of xDiT diffusion inference
performance testing.

View File

@@ -0,0 +1,47 @@
:orphan:
************************************************************
xDiT diffusion inference performance testing version history
************************************************************
This table lists previous versions of the ROCm xDiT diffusion inference performance
testing environment. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
* - Docker image tag
- Components
- Resources
* - ``rocm/pytorch-xdit:v25.13`` (latest)
-
* TheRock 1728a81
-
* :doc:`Documentation <../../xdit-diffusion-inference>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-xdit/v25.13/images/sha256-81954713070d67bde08595e03f62110c8a3dd66a9ae17a77d611e01f83f0f4ef>`__
* - ``rocm/pytorch-xdit:v25.12``
-
* `ROCm 7.10.0 preview <https://rocm.docs.amd.com/en/7.10.0-preview/about/release-notes.html>`__
* TheRock 3e3f834
-
* :doc:`Documentation <xdit-25.12>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-xdit/v25.12/images/sha256-e06895132316bf3c393366b70a91eaab6755902dad0100e6e2b38310547d9256>`__
* - ``rocm/pytorch-xdit:v25.11``
-
* `ROCm 7.10.0 preview <https://rocm.docs.amd.com/en/7.10.0-preview/about/release-notes.html>`__
* TheRock 3e3f834
-
* :doc:`Documentation <xdit-25.11>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-xdit/v25.11/images/sha256-c9fa659439bb024f854b4d5eea598347251b02c341c55f66c98110832bde4216>`__
* - ``rocm/pytorch-xdit:v25.10``
-
* `ROCm 7.9.0 preview <https://rocm.docs.amd.com/en/7.9.0-preview/about/release-notes.html>`__
* TheRock 7afbe45
-
* :doc:`Documentation <xdit-25.10>`
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-xdit/v25.10/images/sha256-d79715ff18a9470e3f907cec8a9654d6b783c63370b091446acffc0de4d7070e>`__

View File

@@ -6,7 +6,7 @@
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker-930:
.. _vllm-benchmark-unified-docker-1210:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
@@ -34,35 +34,18 @@ vLLM inference performance testing
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-930>` for
inference performance numbers <vllm-benchmark-performance-measurements-1210>` for
AMD Instinct GPUs.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <previous-versions/vllm-history>`.
The following is summary of notable changes since the :doc:`previous ROCm/vLLM
Docker release <previous-versions/vllm-history>`.
* Added support for AMD Instinct MI355X and MI350X GPUs.
- Improved performance on Llama 3 MXFP4 through AITER optimizations and improved kernel fusion.
* Added support and benchmarking instructions for the following models. See :ref:`vllm-benchmark-supported-models-930`.
* Llama 4 Scout and Maverick
* DeepSeek R1 0528 FP8
* MXFP4 models (MI355X and MI350X only): Llama 3.3 70B MXFP4 and Llama 3.1 405B MXFP4
* GPT OSS 20B and 120B
* Qwen 3 32B, 30B-A3B, and 235B-A22B
* Removed the deprecated ``--max-seq-len-to-capture`` flag.
* ``--gpu-memory-utilization`` is now configurable via the `configuration files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__ in the MAD
repository.
.. _vllm-benchmark-supported-models-930:
.. _vllm-benchmark-supported-models-1210:
Supported models
================
@@ -72,7 +55,7 @@ Supported models
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-930:
.. _vllm-benchmark-available-models-1210:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
@@ -108,7 +91,7 @@ Supported models
</div>
</div>
.. _vllm-benchmark-vllm-930:
.. _vllm-benchmark-vllm-1210:
{% for model_group in model_groups %}
{% for model in model_group.models %}
@@ -122,6 +105,15 @@ Supported models
MXFP4 is supported only on MI355X and MI350X GPUs.
{% endif %}
{% if model.mad_tag in ["pyt_vllm_mixtral-8x7b", "pyt_vllm_mixtral-8x7b_fp8", "pyt_vllm_mixtral-8x22b", "pyt_vllm_mixtral-8x22b_fp8", "pyt_vllm_deepseek-r1"] %}
.. caution::
There is a known regression with AITER for MoE models such as Mixtral and
DeepSeek-R1. Consider using the :doc:`previous release
<previous-versions/vllm-0.11.1-20251103>`
``rocm/vllm:rocm7.0.0_vllm_0.11.1_20251103`` for better performance.
{% endif %}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
@@ -136,7 +128,7 @@ Supported models
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-930:
.. _vllm-benchmark-performance-measurements-1210:
Performance measurements
========================
@@ -192,7 +184,7 @@ Benchmarking
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-930:
.. _vllm-benchmark-mad-1210:
{% for model_group in model_groups %}
{% for model in model_group.models %}
@@ -204,7 +196,7 @@ Benchmarking
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
See :ref:`vllm-benchmark-supported-models-1210` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
@@ -233,7 +225,7 @@ Benchmarking
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-930>` are preconfigured to collect
<vllm-benchmark-available-models-1210>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
@@ -258,7 +250,7 @@ Benchmarking
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
See :ref:`vllm-benchmark-supported-models-1210` to switch to another available model.
.. seealso::
@@ -419,6 +411,10 @@ Advanced usage
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/docs/dev-docker/README.md>`__.
.. note::
If youre using this Docker image on other AMD GPUs such as the AMD Instinct MI200 Series or Radeon, add ``export VLLM_ROCM_USE_AITER=0`` to your command, since AITER is only supported on gfx942 and gfx950 architectures.
Reproducing the Docker image
----------------------------
@@ -448,6 +444,14 @@ To reproduce this ROCm-enabled vLLM Docker image release, follow these steps:
Replace ``vllm-rocm`` with your desired image tag.
Known issues
============
There is a known regression with AITER for MoE models such as Mixtral and
DeepSeek-R1. Consider using the :doc:`previous release
<previous-versions/vllm-0.11.1-20251103>`
(``rocm/vllm:rocm7.0.0_vllm_0.11.1_20251103``) for better performance.
Further reading
===============

View File

@@ -22,7 +22,7 @@ See the `GitHub repository <https://github.com/vllm-project/vllm>`_ and `officia
<https://docs.vllm.ai/>`_ for more information.
For guidance on using vLLM with ROCm, refer to `Installation with ROCm
<https://docs.vllm.ai/en/latest/getting_started/amd-installation.html>`_.
<https://docs.vllm.ai/en/stable/getting_started/installation/gpu.html#amd-rocm>`__.
vLLM installation
-----------------

View File

@@ -26,4 +26,6 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
- :doc:`SGLang inference performance testing <benchmark-docker/sglang>`
- :doc:`xDiT diffusion inference <xdit-diffusion-inference>`
- :doc:`Deploying your model <deploy-your-model>`

View File

@@ -0,0 +1,462 @@
.. meta::
:description: Learn to validate diffusion model video generation on MI300X, MI350X and MI355X accelerators using
prebuilt and optimized docker images.
:keywords: xDiT, diffusion, video, video generation, image, image generation, validate, benchmark
************************
xDiT diffusion inference
************************
.. _xdit-video-diffusion:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
{% set docker = data.docker %}
The `rocm/pytorch-xdit <{{ docker.docker_hub_url }}>`_ Docker image offers
a prebuilt, optimized environment based on `xDiT
<https://github.com/xdit-project/xDiT>`_ for benchmarking diffusion model
video and image generation on AMD Instinct MI355X, MI350X (gfx950), MI325X,
and MI300X (gfx942) GPUs.
The image runs a preview version of ROCm using the new `TheRock
<https://github.com/ROCm/TheRock>`__ build system and includes the following
components:
.. dropdown:: Software components - {{ docker.pull_tag.split('-')|last }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_data in docker.components.items() %}
* - `{{ component_name }} <{{ component_data.url }}>`_
- {{ component_data.version }}
{% endfor %}
Follow this guide to pull the required image, spin up a container, download the model, and run a benchmark.
For preview and development releases, see `amdsiloai/pytorch-xdit <https://hub.docker.com/r/amdsiloai/pytorch-xdit>`_.
What's new
==========
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
{% set docker = data.docker %}
{% for item in docker.whats_new %}
* {{ item }}
{% endfor %}
.. _xdit-video-diffusion-supported-models:
Supported models
================
The following models are supported for inference performance benchmarking.
Some instructions, commands, and recommendations in this documentation might
vary by model -- select one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
{% set docker = data.docker %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in docker.supported_models %}
<div class="col-6 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.js_tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in docker.supported_models %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.js_tag }}" data-param-group="{{ model_group.js_tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.js_tag }}" data-param-group="{{ model_group.js_tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
{% for model_group in docker.supported_models %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.js_tag }}
.. note::
To learn more about your specific model see the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_
or visit the `GitHub page <{{ model.github }}>`__. Note that some models require access authorization before use via an
external license agreement through a third party.
{% endfor %}
{% endfor %}
Performance measurements
========================
To evaluate performance, the `Performance results with AMD ROCm software
<https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8543b7e6d-item-9eda09e707-tab>`__
page provides reference throughput and serving measurements for inferencing popular AI models.
.. important::
The performance data presented in `Performance results with AMD ROCm
software
<https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8543b7e6d-item-9eda09e707-tab>`__
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance
achievable by AMD Instinct GPUs or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
{% set docker = data.docker %}
For this tutorial, it's recommended to use the latest ``{{ docker.pull_tag }}`` Docker image.
Pull the image using the following command:
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Validate and benchmark
======================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
{% set docker = data.docker %}
Once the image has been downloaded you can follow these steps to
run benchmarks and generate outputs.
{% for model_group in docker.supported_models %}
{% for model in model_group.models %}
.. container:: model-doc {{model.js_tag}}
The following commands are written for {{ model.model }}.
See :ref:`xdit-video-diffusion-supported-models` to switch to another available model.
{% endfor %}
{% endfor %}
Choose your setup method
------------------------
You can either use an existing Hugging Face cache or download the model fresh inside the container.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
{% set docker = data.docker %}
{% for model_group in docker.supported_models %}
{% for model in model_group.models %}
.. container:: model-doc {{model.js_tag}}
.. tab-set::
.. tab-item:: Option 1: Use existing Hugging Face cache
If you already have models downloaded on your host system, you can mount your existing cache.
1. Set your Hugging Face cache location.
.. code-block:: shell
export HF_HOME=/your/hf_cache/location
2. Download the model (if not already cached).
.. code-block:: shell
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
3. Launch the container with mounted cache.
.. code-block:: shell
docker run \
-it --rm \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--user root \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--network host \
--privileged \
--shm-size 128G \
--name pytorch-xdit \
-e HSA_NO_SCRATCH_RECLAIM=1 \
-e OMP_NUM_THREADS=16 \
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
-e HF_HOME=/app/huggingface_models \
-v $HF_HOME:/app/huggingface_models \
{{ docker.pull_tag }}
.. tab-item:: Option 2: Download inside container
If you prefer to keep the container self-contained or don't have an existing cache.
1. Launch the container
.. code-block:: shell
docker run \
-it --rm \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--user root \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--network host \
--privileged \
--shm-size 128G \
--name pytorch-xdit \
-e HSA_NO_SCRATCH_RECLAIM=1 \
-e OMP_NUM_THREADS=16 \
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
{{ docker.pull_tag }}
2. Inside the container, set the Hugging Face cache location and download the model.
.. code-block:: shell
export HF_HOME=/app/huggingface_models
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
.. warning::
Models will be downloaded to the container's filesystem and will be lost when the container is removed unless you persist the data with a volume.
{% endfor %}
{% endfor %}
Run inference
=============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
{% set docker = data.docker %}
{% for model_group in docker.supported_models %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.js_tag }}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
.. tab-item:: Standalone benchmarking
To run the benchmarks for {{ model.model }}, use the following command:
.. code-block:: shell
{% if model.model == "Hunyuan Video" %}
cd /app/Hunyuanvideo
mkdir results
torchrun --nproc_per_node=8 run.py \
--model {{ model.model_repo }} \
--prompt "In the large cage, two puppies were wagging their tails at each other." \
--height 720 --width 1280 --num_frames 129 \
--num_inference_steps 50 --warmup_steps 1 --n_repeats 1 \
--ulysses_degree 8 \
--enable_tiling --enable_slicing \
--use_torch_compile \
--bench_output results
{% endif %}
{% if model.model == "Wan2.1" %}
cd /app/Wan
mkdir results
torchrun --nproc_per_node=8 /app/Wan/run.py \
--task i2v \
--height 720 \
--width 1280 \
--model {{ model.model_repo }} \
--img_file_path /app/Wan/i2v_input.JPG \
--ulysses_degree 8 \
--seed 42 \
--num_frames 81 \
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
--num_repetitions 1 \
--num_inference_steps 40 \
--use_torch_compile
{% endif %}
{% if model.model == "Wan2.2" %}
cd /app/Wan
mkdir results
torchrun --nproc_per_node=8 /app/Wan/run.py \
--task i2v \
--height 720 \
--width 1280 \
--model {{ model.model_repo }} \
--img_file_path /app/Wan/i2v_input.JPG \
--ulysses_degree 8 \
--seed 42 \
--num_frames 81 \
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
--num_repetitions 1 \
--num_inference_steps 40 \
--use_torch_compile
{% endif %}
{% if model.model == "FLUX.1" %}
cd /app/Flux
mkdir results
torchrun --nproc_per_node=8 /app/Flux/run.py \
--model {{ model.model_repo }} \
--seed 42 \
--prompt "A small cat" \
--height 1024 \
--width 1024 \
--num_inference_steps 25 \
--max_sequence_length 256 \
--warmup_steps 5 \
--no_use_resolution_binning \
--ulysses_degree 8 \
--use_torch_compile \
--num_repetitions 50
{% endif %}
{% if model.model == "FLUX.1 Kontext" %}
cd /app/Flux
mkdir results
torchrun --nproc_per_node=8 /app/Flux/run_usp.py \
--model {{ model.model_repo }} \
--seed 42 \
--prompt "Add a cool hat to the cat" \
--height 1024 \
--width 1024 \
--num_inference_steps 30 \
--max_sequence_length 512 \
--warmup_steps 5 \
--no_use_resolution_binning \
--ulysses_degree 8 \
--use_torch_compile \
--img_file_path /app/Flux/cat.png \
--model_type flux_kontext \
--guidance_scale 2.5 \
--num_repetitions 25
{% endif %}
{% if model.model == "FLUX.2" %}
cd /app/Flux
mkdir results
torchrun --nproc_per_node=8 /app/Flux/run_usp.py \
--model {{ model.model_repo }} \
--seed 42 \
--prompt "Add a cool hat to the cat" \
--height 1024 \
--width 1024 \
--num_inference_steps 50 \
--max_sequence_length 512 \
--warmup_steps 5 \
--no_use_resolution_binning \
--ulysses_degree 8 \
--use_torch_compile \
--img_file_paths /app/Flux/cat.png \
--model_type flux2 \
--guidance_scale 4.0 \
--num_repetitions 25
{% endif %}
{% if model.model == "stable-diffusion-3.5-large" %}
cd /app/StableDiffusion3.5
mkdir results
torchrun --nproc_per_node=8 /app/StableDiffusion3.5/run.py \
--model {{ model.model_repo }} \
--num_inference_steps 28 \
--prompt "A capybara holding a sign that reads Hello World" \
--use_torch_compile \
--pipefusion_parallel_degree 4 \
--use_cfg_parallel \
--num_repetitions 50 \
--dtype torch.float16 \
--output_path results
{% endif %}
The generated video will be stored under the results directory. For the actual benchmark step runtimes, see {% if model.model == "Hunyuan Video" %}stdout.{% elif model.model in ["Wan2.1", "Wan2.2"] %}results/outputs/rank0_*.json{% elif model.model in ["FLUX.1", "FLUX.1 Kontext", "FLUX.2"] %}results/timing.json{% elif model.model == "stable-diffusion-3.5-large"%}benchmark_results.csv{% endif %}
{% if model.model == "FLUX.1" %}You may also use ``run_usp.py`` which implements USP without modifying the default diffusers pipeline. {% endif %}
{% endfor %}
{% endfor %}
Previous versions
=================
See :doc:`benchmark-docker/previous-versions/xdit-history` to find documentation for previous releases
of xDiT diffusion inference performance testing.

View File

@@ -254,7 +254,7 @@ PyTorch training
The ROCm PyTorch Training Docker image now focuses on :doc:`Training a model
with Primus and PyTorch <../training/benchmark-docker/primus-pytorch>`. The
following example refers to the legacy workflow :ref:`Training a
model with PyTorch <amd-pytorch-training-multinode-examples>`.
model with PyTorch <amd-pytorch-training-multinode-examples-v259>`.
1. Download the ``run_multinode_train.sh`` benchmarking script from `<https://github.com/ROCm/MAD/tree/develop/scripts/pytorch_train>`__.
@@ -277,7 +277,7 @@ PyTorch training
.. seealso::
See :ref:`Training a model with PyTorch <amd-pytorch-multinode-examples>` for more examples and information.
See :ref:`Training a model with PyTorch <amd-pytorch-training-multinode-examples-v259>` for more examples and information.
Megatron-LM
-----------

View File

@@ -92,7 +92,7 @@ GPUs, which can impact end-to-end latency.
.. _healthcheck-install-transferbench:
1. To get started, use the instructions in the `TransferBench documentation
<https://rocm.docs.amd.com/projects/TransferBench/en/latest/install/install.html#install-transferbench>`_
<https://rocm.docs.amd.com/projects/TransferBench/en/latest/install/install.html#install-transferbench>`__
or use the following commands:
.. code:: shell
@@ -102,5 +102,5 @@ GPUs, which can impact end-to-end latency.
CC=hipcc make
2. Run the suggested TransferBench tests -- see `TransferBench benchmarking
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/mi300x/performance-bench.html#transferbench-benchmarking-results>`_
<https://instinct.docs.amd.com/projects/system-acceptance/en/latest/common/system-validation.html#transferbench>`__
in the Instinct performance benchmarking documentation for instructions.

View File

@@ -33,18 +33,15 @@ It includes the following software components:
- {{ component_version }}
{% endfor %}
{% if jax_version == "0.6.0" %}
.. note::
Shardy is a new config in JAX 0.6.0. You might get related errors if it's
not configured correctly. For now you can turn it off by setting
``shardy=False`` during the training run. You can also follow the `migration
guide <https://docs.jax.dev/en/latest/shardy_jax_migration.html>`__ to enable
it.
{% endif %}
{% endfor %}
.. note::
The ``rocm/jax-training:maxtext-v25.9`` has been updated to
``rocm/jax-training:maxtext-v25.9.1``. This revision should include
a fix to address segmentation fault issues during launch. See the
:doc:`versioned documentation <previous-versions/jax-maxtext-v25.9>`.
MaxText with on ROCm provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
@@ -57,7 +54,7 @@ MaxText with on ROCm provides the following key features to train large language
- NANOO FP8 (for MI300X series GPUs) and FP8 (for MI355X and MI350X) quantization support
.. _amd-maxtext-model-support-v259:
.. _amd-maxtext-model-support-v25.11:
Supported models
================
@@ -139,7 +136,7 @@ Use the following command to pull the Docker image from Docker Hub.
docker pull {{ docker.pull_tag }}
.. _amd-maxtext-multi-node-setup-v259:
.. _amd-maxtext-multi-node-setup-v25.11:
Multi-node configuration
------------------------
@@ -147,7 +144,7 @@ Multi-node configuration
See :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your
environment for multi-node training.
.. _amd-maxtext-get-started-v259:
.. _amd-maxtext-get-started-v25.11:
Benchmarking
============
@@ -172,7 +169,7 @@ benchmark results:
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`amd-maxtext-model-support-v259` to switch to another available model.
See :ref:`amd-maxtext-model-support-v25.11` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
@@ -203,7 +200,7 @@ benchmark results:
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}. See
:ref:`amd-maxtext-model-support-v259` to switch to another
:ref:`amd-maxtext-model-support-v25.11` to switch to another
available model. Some instructions and resources might not be
available for all models and configurations.
@@ -325,15 +322,67 @@ benchmark results:
sbatch -N <num_nodes> {{ model.multinode_training_script }}
.. rubric:: Profiling with rocprofv3
If you need to collect a trace and the JAX profiler isn't working, use ``rocprofv3`` provided by the :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` as a workaround. For example:
.. code-block:: bash
rocprofv3 \
--hip-trace \
--kernel-trace \
--memory-copy-trace \
--rccl-trace \
--output-format pftrace \
-d ./v3_traces \ # output directory
-- ./jax-maxtext_benchmark_report.sh -m {{ model.model_repo }} # or desired command
You can set the directory where you want the .json traces to be
saved using ``-d <TRACE_DIRECTORY>``. The resulting traces can be
opened in Perfetto: `<https://ui.perfetto.dev/>`__.
{% else %}
.. rubric:: Multi-node training
For multi-node training examples, choose a model from :ref:`amd-maxtext-model-support-v259`
For multi-node training examples, choose a model from :ref:`amd-maxtext-model-support-v25.11`
with an available `multi-node training script <https://github.com/ROCm/MAD/tree/develop/scripts/jax-maxtext/gpu-rocm>`__.
{% endif %}
{% endfor %}
{% endfor %}
Known issues
============
- Minor performance regression (< 4%) for BF16 quantization in Llama models and Mixtral 8x7b.
- You might see minor loss spikes, or loss curve may have slightly higher
convergence end values compared to the previous ``jax-training`` image.
- For FP8 training on MI355, many models will display a warning message like:
``Warning: Latency not found for MI_M=16, MI_N=16, MI_K=128,
mi_input_type=BFloat8Float8_fnuz. Returning latency value of 32 (really
slow).`` The compile step may take longer than usual, but training will run.
This will be fixed in a future release.
- The built-in JAX profiler isn't working. If you need to collect a trace and
the JAX profiler isn't working, use ``rocprofv3`` provided by the
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` as a workaround. For example:
.. code-block:: bash
rocprofv3 \
--hip-trace \
--kernel-trace \
--memory-copy-trace \
--rccl-trace \
--output-format pftrace \
-d ./v3_traces \ # output directory
-- ./jax-maxtext_benchmark_report.sh -m {{ model.model_repo }} # or desired command
You can set the directory where you want the .json traces to be
saved using ``-d <TRACE_DIRECTORY>``. The resulting traces can be
opened in Perfetto: `<https://ui.perfetto.dev/>`__.
Further reading
===============

View File

@@ -14,7 +14,7 @@ Training a model with Megatron-LM on ROCm
<https://hub.docker.com/r/rocm/megatron-lm/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including Megatron-LM, `torchtitan, and torchtune <primus-pytorch>`__.
including Megatron-LM and :doc:`torchtitan <primus-pytorch>`.
Primus with Megatron is designed to replace this ROCm Megatron-LM training workflow.
To learn how to migrate workloads from Megatron-LM to Primus with Megatron,
@@ -36,12 +36,10 @@ accelerate training workloads:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/megatron-lm-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. tab-item:: {{ data.docker.pull_tag }}
:sync: {{ data.docker.pull_tag }}
.. list-table::
:header-rows: 1
@@ -49,12 +47,12 @@ accelerate training workloads:
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
{% for component_name, component_version in data.docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
{% endfor %}
.. _amd-megatron-lm-model-support:
.. _amd-megatron-lm-model-support-v25.11:
Supported models
================
@@ -99,7 +97,7 @@ accelerate training workloads:
Some models, such as Llama, require an external license agreement through
a third party (for example, Meta).
.. _amd-megatron-lm-performance-measurements:
.. _amd-megatron-lm-performance-measurements-v25.11:
Performance measurements
========================
@@ -131,7 +129,7 @@ To test for optimal performance, consult the recommended :ref:`System health ben
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. _mi300x-amd-megatron-lm-training:
.. _mi300x-amd-megatron-lm-training-v25.11:
Environment setup
=================
@@ -140,52 +138,38 @@ Use the following instructions to set up the environment, configure the script t
reproduce the benchmark results on MI300X Series GPUs with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
.. _amd-megatron-lm-requirements-v25.11:
Download the Docker image
-------------------------
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/megatron-lm-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = data.docker %}
1. Use the following command to pull the Docker image from Docker Hub.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
docker pull {{ docker.pull_tag }}
2. Launch the Docker container.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--device /dev/infiniband \
--network host --ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 128G \
--name megatron_training_env \
{{ docker.pull_tag }}
{% endfor %}
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--device /dev/infiniband \
--network host --ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 128G \
--name megatron_training_env \
{{ docker.pull_tag }}
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
@@ -206,7 +190,7 @@ Download the Docker image
The Docker container hosts a verified commit of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev>`__.
.. _amd-megatron-lm-environment-setup:
.. _amd-megatron-lm-environment-setup-v25.11:
Configuration
=============
@@ -216,39 +200,39 @@ Configuration
Update the ``train_llama3.sh`` configuration script in the ``examples/llama``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/llama>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training>`.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v25.11>`.
.. container:: model-doc pyt_megatron_lm_train_llama-2-7b pyt_megatron_lm_train_llama-2-70b
Update the ``train_llama2.sh`` configuration script in the ``examples/llama``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/llama>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training>`.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v25.11>`.
.. container:: model-doc pyt_megatron_lm_train_deepseek-v3-proxy
Update the ``train_deepseekv3.sh`` configuration script in the ``examples/deepseek_v3``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/deepseek_v3>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training>`.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v25.11>`.
.. container:: model-doc pyt_megatron_lm_train_deepseek-v2-lite-16b
Update the ``train_deepseekv2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/deepseek_v2>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training>`.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v25.11>`.
.. container:: model-doc pyt_megatron_lm_train_mixtral-8x7b pyt_megatron_lm_train_mixtral-8x22b-proxy
Update the ``train_mixtral_moe.sh`` configuration script in the ``examples/mixtral``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/rocm_dev/examples/mixtral>`__ to configure your training run.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training>`.
Options can also be passed as command line arguments as described in :ref:`Run training <amd-megatron-lm-run-training-v25.11>`.
.. note::
See :ref:`Key options <amd-megatron-lm-benchmark-test-vars>` for more information on configuration options.
See :ref:`Key options <amd-megatron-lm-benchmark-test-vars-v25.11>` for more information on configuration options.
Multi-node configuration
------------------------
@@ -256,7 +240,7 @@ Multi-node configuration
Refer to :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your environment for multi-node
training. See :ref:`amd-megatron-lm-multi-node-examples` for example run commands.
.. _amd-megatron-lm-tokenizer:
.. _amd-megatron-lm-tokenizer-v25.11:
Tokenizer
---------
@@ -393,7 +377,7 @@ Download the dataset
``TOKENIZER_MODEL`` can be any accessible Hugging Face tokenizer.
Remember to either pre-download the tokenizer or setup Hugging Face access
otherwise when needed -- see the :ref:`Tokenizer <amd-megatron-lm-tokenizer>` section.
otherwise when needed -- see the :ref:`Tokenizer <amd-megatron-lm-tokenizer-v25.11>` section.
.. note::
@@ -495,15 +479,38 @@ Download the dataset
Ensure that the files are accessible inside the Docker container.
.. _amd-megatron-lm-run-training:
.. _amd-megatron-lm-run-training-v25.11:
Run training
============
Use the following example commands to set up the environment, configure
:ref:`key options <amd-megatron-lm-benchmark-test-vars>`, and run training on
:ref:`key options <amd-megatron-lm-benchmark-test-vars-v25.11>`, and run training on
MI300X Series GPUs with the AMD Megatron-LM environment.
Before starting training, export the following environment variables.
.. tab-set::
.. tab-item:: MI355X and MI350X
.. code-block:: shell
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
export NVTE_CK_USES_BWD_V3=1
.. tab-item:: MI325X and MI300X
.. code-block:: shell
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
export NVTE_CK_USES_BWD_V3=1
# Set this on MI325X/MI300X only
export NVTE_CK_IS_V3_ATOMIC_FP32=1
Single node training
--------------------
@@ -913,7 +920,7 @@ Single node training
RECOMPUTE_ACTIVATIONS=full \
CKPT_FORMAT=torch_dist
.. _amd-megatron-lm-multi-node-examples:
.. _amd-megatron-lm-multi-node-examples-v25.11:
Multi-node training examples
----------------------------
@@ -964,7 +971,7 @@ training on 16 nodes, try the following command:
sbatch examples/deepseek_v3/train_deepseek_v3_slurm.sh
.. _amd-megatron-lm-benchmark-test-vars:
.. _amd-megatron-lm-benchmark-test-vars-v25.11:
Key options
-----------
@@ -1029,11 +1036,6 @@ The benchmark tests support the following sets of variables.
``RECOMPUTE_NUM_LAYERS``
Number of layers used for checkpointing recompute.
Known issues
============
PyTorch Profiler may produce inaccurate traces when CPU activity profiling is enabled.
Previous versions
=================

View File

@@ -17,13 +17,22 @@ previous releases of the ``ROCm/jax-training`` Docker image on `Docker Hub <http
- Components
- Resources
* - 25.9 (latest)
* - 25.11
-
* ROCm 7.1.0
* JAX 0.7.1
-
* :doc:`Documentation <../jax-maxtext>`
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.11/images/sha256-18e4d8f0b8ce7a7422c58046940dd5f32249960449fca09a562b65fb8eb1562a>`__
* - 25.9.1
-
* ROCm 7.0.0
* JAX 0.6.2
-
* :doc:`Documentation <../jax-maxtext>`
* `Docker Hub <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7-jax060/images/sha256-7352212ae033a76dca2b9dceffc23c1b5f1a61a7a560082cf747a9bf1acfc9ce>`__
* :doc:`Documentation <jax-maxtext-v25.9>`
* `Docker Hub (25.9.1) <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.9.1/images/sha256-60946cfbd470f6ee361fc9da740233a4fb2e892727f01719145b1f7627a1cff6>`__
* `Docker Hub (25.9) <https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.9/images/sha256-4bb16ab58279ef09cb7a5e362c38e3fe3f901de44d8dbac5d0cb3bac5686441e>`__
* - 25.7
-

View File

@@ -24,7 +24,7 @@ provides a prebuilt environment for training on AMD Instinct MI300X and MI325X G
including essential components like JAX, XLA, ROCm libraries, and MaxText utilities.
It includes the following software components:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/jax-maxtext-benchmark-models.yaml
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/jax-maxtext-v25.7-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
@@ -80,7 +80,7 @@ series GPUs. Some instructions, commands, and available training
configurations in this documentation might vary by model -- select one to get
started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/jax-maxtext-benchmark-models.yaml
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/jax-maxtext-v25.7-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
@@ -144,7 +144,7 @@ Pull the Docker image
Use the following command to pull the Docker image from Docker Hub.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/jax-maxtext-benchmark-models.yaml
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/jax-maxtext-v25.7-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
@@ -177,7 +177,7 @@ Benchmarking
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/jax-maxtext-benchmark-models.yaml
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/jax-maxtext-v25.7-benchmark-models.yaml
.. _vllm-benchmark-mad:

View File

@@ -0,0 +1,365 @@
:orphan:
.. meta::
:description: How to train a model using JAX MaxText for ROCm.
:keywords: ROCm, AI, LLM, train, jax, torch, Llama, flux, tutorial, docker
******************************************
Training a model with JAX MaxText on ROCm
******************************************
.. caution::
This documentation does not reflect the latest version of ROCm JAX MaxText
training performance documentation. See :doc:`../jax-maxtext` for the latest version.
.. note::
We have refreshed the ``rocm/jax-training:maxtext-v25.9`` image as
`rocm/jax-training:maxtext-v25.9.1`. This should include a fix to address
segmentation fault issues during launch.
The MaxText for ROCm training Docker image
provides a prebuilt environment for training on AMD Instinct MI355X, MI350X, MI325X, and MI300X GPUs,
including essential components like JAX, XLA, ROCm libraries, and MaxText utilities.
It includes the following software components:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/jax-maxtext-v25.9-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for docker in dockers %}
{% set jax_version = docker.components["JAX"] %}
.. tab-item:: ``{{ docker.pull_tag }}``
:sync: {{ docker.pull_tag }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
{% if jax_version == "0.6.0" %}
.. note::
Shardy is a new config in JAX 0.6.0. You might get related errors if it's
not configured correctly. For now you can turn it off by setting
``shardy=False`` during the training run. You can also follow the `migration
guide <https://docs.jax.dev/en/latest/shardy_jax_migration.html>`__ to enable
it.
{% endif %}
{% endfor %}
MaxText with on ROCm provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- Flash Attention (FA) 3 -- with or without sequence input packing
- GEMM tuning
- Multi-node support
- NANOO FP8 (for MI300X series GPUs) and FP8 (for MI355X and MI350X) quantization support
.. _amd-maxtext-model-support-v259:
Supported models
================
The following models are pre-optimized for performance on AMD Instinct
GPUs. Some instructions, commands, and available training
configurations in this documentation might vary by model -- select one to get
started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/jax-maxtext-v25.9-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
as follows. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Pull the Docker image
---------------------
Use the following command to pull the Docker image from Docker Hub.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/jax-maxtext-v25.9-benchmark-models.yaml
{% set docker = data.dockers[0] %}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
.. _amd-maxtext-multi-node-setup-v259:
Multi-node configuration
------------------------
See :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your
environment for multi-node training.
.. _amd-maxtext-get-started-v259:
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/jax-maxtext-v25.9-benchmark-models.yaml
.. _vllm-benchmark-mad:
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
{% if model.mad_tag and "single-node" in model.doc_options %}
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`amd-maxtext-model-support-v259` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. Use this command to run the performance benchmark test on the {{ model.model }} model
using one GPU with the :literal:`{{model.precision}}` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/perf.csv/``.
{% endif %}
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}. See
:ref:`amd-maxtext-model-support-v259` to switch to another
available model. Some instructions and resources might not be
available for all models and configurations.
.. rubric:: Download the Docker image and required scripts
Run the JAX MaxText benchmark tool independently by starting the
Docker container as shown in the following snippet.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% if model.model_repo and "single-node" in model.doc_options %}
.. rubric:: Single node training
1. Set up environment variables.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN=<Your Hugging Face token>
export HF_HOME=<Location of saved/cached Hugging Face models>
``MAD_SECRETS_HFTOKEN`` is your Hugging Face access token to access models, tokenizers, and data.
See `User access tokens <https://huggingface.co/docs/hub/en/security-tokens>`__.
``HF_HOME`` is where ``huggingface_hub`` will store local data. See `huggingface_hub CLI <https://huggingface.co/docs/huggingface_hub/main/en/guides/cli#huggingface-cli-download>`__.
If you already have downloaded or cached Hugging Face artifacts, set this variable to that path.
Downloaded files typically get cached to ``~/.cache/huggingface``.
2. Launch the Docker container.
.. code-block:: shell
docker run -it \
--device=/dev/dri \
--device=/dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
-v $HF_HOME:/hf_cache \
-e HF_HOME=/hf_cache \
-e MAD_SECRETS_HFTOKEN=$MAD_SECRETS_HFTOKEN
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
3. In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``MAD/scripts/jax-maxtext``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/jax-maxtext
4. Run the setup scripts to install libraries and datasets needed
for benchmarking.
.. code-block:: shell
./jax-maxtext_benchmark_setup.sh -m {{ model.model_repo }}
5. To run the training benchmark without quantization, use the following command:
.. code-block:: shell
./jax-maxtext_benchmark_report.sh -m {{ model.model_repo }}
For quantized training, run the script with the appropriate option for your Instinct GPU.
.. tab-set::
.. tab-item:: MI355X and MI350X
For ``fp8`` quantized training on MI355X and MI350X GPUs, use the following command:
.. code-block:: shell
./jax-maxtext_benchmark_report.sh -m {{ model.model_repo }} -q fp8
{% if model.model_repo not in ["Llama-3.1-70B", "Llama-3.3-70B"] %}
.. tab-item:: MI325X and MI300X
For ``nanoo_fp8`` quantized training on MI300X series GPUs, use the following command:
.. code-block:: shell
./jax-maxtext_benchmark_report.sh -m {{ model.model_repo }} -q nanoo_fp8
{% endif %}
{% endif %}
{% if model.multinode_training_script and "multi-node" in model.doc_options %}
.. rubric:: Multi-node training
The following examples use SLURM to run on multiple nodes.
.. note::
The following scripts will launch the Docker container and run the
benchmark. Run them outside of any Docker container.
1. Make sure ``$HF_HOME`` is set before running the test. See
`ROCm benchmarking <https://github.com/ROCm/MAD/blob/develop/scripts/jax-maxtext/gpu-rocm/readme.md>`__
for more details on downloading the Llama models before running the
benchmark.
2. To run multi-node training for {{ model.model }},
use the
`multi-node training script <https://github.com/ROCm/MAD/blob/develop/scripts/jax-maxtext/gpu-rocm/{{ model.multinode_training_script }}>`__
under the ``scripts/jax-maxtext/gpu-rocm/`` directory.
3. Run the multi-node training benchmark script.
.. code-block:: shell
sbatch -N <num_nodes> {{ model.multinode_training_script }}
{% else %}
.. rubric:: Multi-node training
For multi-node training examples, choose a model from :ref:`amd-maxtext-model-support-v259`
with an available `multi-node training script <https://github.com/ROCm/MAD/tree/develop/scripts/jax-maxtext/gpu-rocm>`__.
{% endif %}
{% endfor %}
{% endfor %}
Further reading
===============
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`jax-maxtext-history` to find documentation for previous releases
of the ``ROCm/jax-training`` Docker image.

View File

@@ -16,14 +16,32 @@ previous releases of the ``ROCm/megatron-lm`` Docker image on `Docker Hub <https
- Components
- Resources
* - v25.9 (latest)
* - v25.11
-
* ROCm 7.1.0
* PyTorch 2.10.0.dev20251112+rocm7.1
-
* :doc:`Primus Megatron documentation <../primus-megatron>`
* :doc:`Megatron-LM (legacy) documentation <../megatron-lm>`
* `Docker Hub <https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197>`__
* - v25.10
-
* ROCm 7.1.0
* PyTorch 2.10.0.dev20251112+rocm7.1
-
* :doc:`Primus Megatron documentation <primus-megatron-v25.10>`
* :doc:`Megatron-LM (legacy) documentation <megatron-lm-v25.10>`
* `Docker Hub <https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197>`__
* - v25.9
-
* ROCm 7.0.0
* Primus 0.3.0
* PyTorch 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
-
* :doc:`Primus Megatron documentation <../primus-megatron>`
* :doc:`Megatron-LM (legacy) documentation <../megatron-lm>`
* :doc:`Primus Megatron documentation <primus-megatron-v25.9>`
* :doc:`Megatron-LM (legacy) documentation <megatron-lm-v25.9>`
* `Docker Hub (gfx950) <https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6>`__
* `Docker Hub (gfx942) <https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357>`__

View File

@@ -0,0 +1,448 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
****************************************
Training a model with Primus and PyTorch
****************************************
.. caution::
This documentation does not reflect the latest version of ROCm Primus PyTorch training
performance benchmark documentation. See :doc:`../primus-pytorch` for the latest version.
`Primus <https://github.com/AMD-AGI/Primus>`__ is a unified and flexible
LLM training framework designed to streamline training. It streamlines LLM
training on AMD Instinct GPUs using a modular, reproducible configuration paradigm.
Primus now supports the PyTorch torchtitan backend.
.. note::
For a unified training solution on AMD GPUs with ROCm, the `rocm/pytorch-training
<https://hub.docker.com/r/rocm/pytorch-training/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including torchtitan and :doc:`Megatron-LM <primus-megatron>`.
Primus with the PyTorch torchtitan backend is designed to replace the
:doc:`ROCm PyTorch training <pytorch-training>` workflow. See
:doc:`pytorch-training` to see steps to run workloads without Primus.
AMD provides a ready-to-use Docker image for MI355X, MI350X, MI325X, and
MI300X GPUs containing essential components for Primus and PyTorch training
with Primus Turbo optimizations.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
.. tab-set::
.. tab-item:: {{ data.docker.pull_tag }}
:sync: {{ data.docker.pull_tag }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in data.docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
.. _amd-primus-pytorch-model-support-v2510:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X GPUs.
Some instructions, commands, and training recommendations in this documentation might
vary by model -- select one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-6 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. seealso::
For additional workloads, including Llama 3.3, Llama 3.2, Llama 2, GPT OSS, Qwen, and Flux models,
see the documentation :doc:`pytorch-training` (without Primus)
.. _amd-primus-pytorch-performance-measurements-v2510:
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt test configurations and run conditions outside those described.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ data.docker.pull_tag }}
Run training
============
Once the setup is complete, choose between the following two workflows to start benchmarking training.
For fine-tuning workloads and multi-node training examples, see :doc:`pytorch-training` (without Primus).
For best performance on MI325X, MI350X, and MI355X GPUs, you might need to
tweak some configurations (such as batch sizes).
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set docker = data.docker %}
{% set model_groups = data.model_groups %}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following run command is tailored to {{ model.model }}.
See :ref:`amd-primus-pytorch-model-support-v2510` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. For example, use this command to run the performance benchmark test on the {{ model.model }} model
using one node with the {{ model.precision }} data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{ model.mad_tag }} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{ model.mad_tag }}``. The latency and throughput reports of the
model are collected in ``~/MAD/perf.csv``.
{% endfor %}
{% endfor %}
.. tab-item:: Primus benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following run commands are tailored to {{ model.model }}.
See :ref:`amd-primus-pytorch-model-support-v2510` to switch to another available model.
.. rubric:: Download the Docker image and required packages
1. Pull the ``{{ docker.pull_tag }}`` Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
2. Run the Docker container.
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
.. rubric:: Prepare training datasets and dependencies
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
.. rubric:: Pretraining
To get started, navigate to the ``Primus`` directory in your container.
.. code-block::
cd /workspace/Primus
Now, to start the pretraining benchmark, use the ``run_pretrain.sh`` script
included with Primus with the appropriate options.
.. rubric:: Benchmarking examples
.. container:: model-doc primus_pyt_train_llama-3.1-8b
Use the following command to run train Llama 3.1 8B with BF16 precision using Primus torchtitan.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI355X/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 6
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 6
.. tab-item:: MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 4
To train Llama 3.1 8B with FP8 precision, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI355X/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 8
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 7
.. tab-item:: MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 5
.. container:: model-doc primus_pyt_train_llama-3.1-70b
Use the following command to run train Llama 3.1 70B with BF16 precision using Primus torchtitan.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI355X/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 8
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 6
.. tab-item:: MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 4
To train Llama 3.1 70B with FP8 precision, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI355X/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 6
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 5
.. tab-item:: MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 3
.. container:: model-doc primus_pyt_train_deepseek-v2
Use the following command to run train DeepSeek V2 16B with BF16 precision using Primus torchtitan.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI355X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 16
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 10
.. tab-item:: MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 8
To train DeepSeek V2 16B with FP8 precision, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI355X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 16
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 8
.. tab-item:: MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 8
{% endfor %}
{% endfor %}
Further reading
===============
- For an introduction to Primus, see `Primus: A Lightweight, Unified Training
Framework for Large Models on AMD GPUs <https://rocm.blogs.amd.com/software-tools-optimization/primus/README.html>`__.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -0,0 +1,574 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
****************************************
Training a model with Primus and PyTorch
****************************************
.. caution::
This documentation does not reflect the latest version of ROCm Primus PyTorch training
performance benchmark documentation. See :doc:`../primus-pytorch` for the latest version.
`Primus <https://github.com/AMD-AGI/Primus>`__ is a unified and flexible
LLM training framework designed to streamline training. It streamlines LLM
training on AMD Instinct GPUs using a modular, reproducible configuration paradigm.
Primus now supports the PyTorch torchtitan backend.
.. note::
For a unified training solution on AMD GPUs with ROCm, the `rocm/pytorch-training
<https://hub.docker.com/r/rocm/pytorch-training/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including torchtitan and :doc:`Megatron-LM <../primus-megatron>`.
Primus with the PyTorch torchtitan backend is designed to replace the
:doc:`ROCm PyTorch training <../pytorch-training>` workflow. See
:doc:`../pytorch-training` to see steps to run workloads without Primus.
AMD provides a ready-to-use Docker image for MI355X, MI350X, MI325X, and
MI300X GPUs containing essential components for Primus and PyTorch training
with Primus Turbo optimizations.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-pytorch-v25.9-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
{% endfor %}
.. _amd-primus-pytorch-model-support-v259:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X GPUs.
Some instructions, commands, and training recommendations in this documentation might
vary by model -- select one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-pytorch-v25.9-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-12 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. seealso::
For additional workloads, including Llama 3.3, Llama 3.2, Llama 2, GPT OSS, Qwen, and Flux models,
see the documentation :doc:`../pytorch-training` (without Primus)
.. _amd-primus-pytorch-performance-measurements-v259:
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt test configurations and run conditions outside those described.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-pytorch-v25.9-benchmark-models.yaml
{% set dockers = data.dockers %}
Use the following command to pull the Docker image from Docker Hub.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
Run training
============
Once the setup is complete, choose between the following two workflows to start benchmarking training.
For fine-tuning workloads and multi-node training examples, see :doc:`../pytorch-training` (without Primus).
For best performance on MI325X, MI350X, and MI355X GPUs, you might need to
tweak some configurations (such as batch sizes).
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/primus-pytorch-v25.9-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set model_groups = data.model_groups %}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following run command is tailored to {{ model.model }}.
See :ref:`amd-primus-pytorch-model-support-v259` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. For example, use this command to run the performance benchmark test on the {{ model.model }} model
using one node with the {{ model.precision }} data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{ model.mad_tag }} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{ model.mad_tag }}``. The latency and throughput reports of the
model are collected in ``~/MAD/perf.csv``.
.. note::
Currently, Primus torchtitan models are run with Primus Turbo
enabled for enhanced performance. To disable Primus Turbo,
modify respective configuration file
``scripts/primus/pytorch_train/primus_torchtitan_scripts/llama3_[8B|70B]-[BF16|FP8].yaml``.
{% endfor %}
{% endfor %}
.. tab-item:: Primus benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following run commands are tailored to {{ model.model }}.
See :ref:`amd-primus-pytorch-model-support-v259` to switch to another available model.
.. rubric:: Download the Docker image and required packages
1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
2. Run the Docker container.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
{% endfor %}
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
.. rubric:: Prepare training datasets and dependencies
The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
.. rubric:: Pretraining
To get started, navigate to the ``Primus`` directory in your container.
.. code-block::
cd /workspace/Primus
Now, to start the pretraining benchmark, use the ``run_pretrain.sh`` script
included with Primus with the appropriate options.
.. rubric:: Benchmarking examples
.. container:: model-doc primus_pyt_train_llama-3.1-8b
Use the following command to run train Llama 3.1 8B with BF16 precision using Primus torchtitan.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 5
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 6
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 4
To train Llama 3.1 8B with FP8 precision, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 8
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 7
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 5
.. container:: model-doc primus_pyt_train_llama-3.1-70b
Use the following command to run train Llama 3.1 70B with BF16 precision using Primus torchtitan.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 8
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 6
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 4
To train Llama 3.1 70B with FP8 precision, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 6
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 5
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 3
{% endfor %}
{% endfor %}
.. tab-item:: Standalone torchtitan benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following run commands are tailored to {{ model.model }}.
See :ref:`amd-primus-pytorch-model-support-v259` to switch to another available model.
.. rubric:: Download the Docker image and required packages
1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
2. Run the Docker container.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
{% endfor %}
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
3. Navigate to the ``torchtitan`` workspace directory.
.. code-block:: shell
cd /workspace/torchtitan
.. rubric:: Download the tokenizer
1. The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
2. Download the tokenizer for your model.
.. container:: model-doc {{ model.mad_tag }}
.. code-block:: shell
python3 scripts/download_tokenizer.py \
--repo_id {{ model.model_repo }} \
--tokenizer_path "original" \
--hf_token=${HF_TOKEN}
.. rubric:: Pretraining examples
Run the training script with the appropriate configuration file.
For train with BF16 precicion, use the following command:
.. container:: model-doc {{ model.mad_tag }}
.. code-block:: shell
CONFIG_FILE={{ model.config_file.bf16 }} \
.run_train.sh
For train with BF16 precicion, use the following command:
.. container:: model-doc {{ model.mad_tag }}
.. code-block:: shell
CONFIG_FILE={{ model.config_file.fp8 }} \
.run_train.sh
{% endfor %}
{% endfor %}
Known issues
============
PyTorch Profiler may produce inaccurate traces when CPU activity profiling is enabled.
Further reading
===============
- For an introduction to Primus, see `Primus: A Lightweight, Unified Training
Framework for Large Models on AMD GPUs <https://rocm.blogs.amd.com/software-tools-optimization/primus/README.html>`__.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -16,14 +16,32 @@ previous releases of the ``ROCm/pytorch-training`` Docker image on `Docker Hub <
- Components
- Resources
* - v25.9 (latest)
* - v25.11
-
* ROCm 7.1.0
* PyTorch 2.10.0.dev20251112+rocm7.1
-
* :doc:`Primus PyTorch Training documentation <../primus-pytorch>`
* :doc:`PyTorch training (legacy) documentation <../pytorch-training>`
* `Docker Hub <https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197>`__
* - v25.10
-
* ROCm 7.1.0
* PyTorch 2.10.0.dev20251112+rocm7.1
-
* :doc:`Primus PyTorch Training documentation <primus-pytorch-v25.10>`
* :doc:`PyTorch training (legacy) documentation <pytorch-training-v25.10>`
* `Docker Hub <https://hub.docker.com/layers/rocm/primus/v25.10/images/sha256-140c37cd2eeeb183759b9622543fc03cc210dc97cbfa18eeefdcbda84420c197>`__
* - v25.9
-
* ROCm 7.0.0
* Primus 0.3.0
* PyTorch 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
-
* :doc:`Primus PyTorch Training documentation <../primus-pytorch>`
* :doc:`PyTorch training (legacy) documentation <../pytorch-training>`
* :doc:`Primus PyTorch Training documentation <primus-pytorch-v25.9>`
* :doc:`PyTorch training (legacy) documentation <pytorch-training-v25.9>`
* `Docker Hub (gfx950) <https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6>`__
* `Docker Hub (gfx942) <https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357>`__

View File

@@ -0,0 +1,669 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch on ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm PyTorch training
performance benchmark documentation. See :doc:`../pytorch-training` for the latest version.
.. note::
For a unified training solution on AMD GPUs with ROCm, the `rocm/pytorch-training
<https://hub.docker.com/r/rocm/pytorch-training/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including torchtitan and :doc:`Megatron-LM <../primus-megatron>`.
See :doc:`../primus-pytorch` for details.
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker image provides a prebuilt optimized
environment for fine-tuning and pretraining a model on AMD Instinct MI325X
and MI300X GPUs. It includes the following software components to accelerate
training workloads:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
.. tab-set::
.. tab-item:: {{ data.docker.pull_tag }}
:sync: {{ data.docker.pull_tag }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in data.docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
.. _amd-pytorch-training-model-support-v2510:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct
MI355X, MI350X, MI325X, and MI300X GPUs. Some instructions, commands, and
training recommendations in this documentation might vary by model -- select
one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _amd-pytorch-training-supported-training-modes-v2510:
The following table lists supported training modes per model.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. dropdown:: Supported training modes
.. list-table::
:header-rows: 1
* - Model
- Supported training modes
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if model.training_modes %}
* - {{ model.model }}
- ``{{ model.training_modes | join('``, ``') }}``
{% endif %}
{% endfor %}
{% endfor %}
.. note::
Some model and fine-tuning combinations are not listed. This is
because the `upstream torchtune repository <https://github.com/pytorch/torchtune>`__
doesn't provide default YAML configurations for them.
For advanced usage, you can create a custom configuration to enable
unlisted fine-tuning methods by using an existing file in the
``/workspace/torchtune/recipes/configs`` directory as a template.
.. _amd-pytorch-training-performance-measurements-v2510:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X GPUs or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt test configurations and run conditions outside those described.
Run training
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
{% set docker = data.docker %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to start benchmarking training:
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following run command is tailored to {{ model.model }}.
See :ref:`amd-pytorch-training-model-support-v2510` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. For example, use this command to run the performance benchmark test on the {{ model.model }} model
using one node with the {{ model.precision }} data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{ model.mad_tag }} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{ model.mad_tag }}``. The latency and throughput reports of the
model are collected in ``~/MAD/perf.csv``.
{% endfor %}
{% endfor %}
.. tab-item:: Standalone benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following commands are tailored to {{ model.model }}.
See :ref:`amd-pytorch-training-model-support-v2510` to switch to another available model.
{% endfor %}
{% endfor %}
.. rubric:: Download the Docker image and required packages
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
2. Launch the Docker container.
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
3. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
.. rubric:: Prepare training datasets and dependencies
1. The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
2. Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
.. container:: model-doc pyt_train_llama-3.1-8b
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 8B:
.. list-table::
:header-rows: 1
* - Library
- Reference
* - ``accelerate``
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
.. container:: model-doc pyt_train_llama-3.1-70b
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 70B:
.. list-table::
:header-rows: 1
* - Library
- Reference
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- `TorchData <https://meta-pytorch.org/data/beta/index.html#torchdata>`__
* - ``tomli``
- `Tomli <https://pypi.org/project/tomli/>`__
* - ``tiktoken``
- `tiktoken <https://github.com/openai/tiktoken>`__
* - ``blobfile``
- `blobfile <https://pypi.org/project/blobfile/>`__
* - ``tabulate``
- `tabulate <https://pypi.org/project/tabulate/>`__
* - ``wandb``
- `Weights & Biases <https://github.com/wandb/wandb>`__
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`__ 0.2.0
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`__ 2.18.0
.. container:: model-doc pyt_train_flux
``pytorch_benchmark_setup.sh`` installs the following libraries for FLUX:
.. list-table::
:header-rows: 1
* - Library
- Reference
* - ``accelerate``
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`__ 3.2.0
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`__ 0.2.0
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`__ 2.18.0
* - ``csvkit``
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`__ 2.0.1
* - ``deepspeed``
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`__ 0.16.2
* - ``diffusers``
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`__ 0.31.0
* - ``GitPython``
- `GitPython <https://github.com/gitpython-developers/GitPython>`__ 3.1.44
* - ``opencv-python-headless``
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`__ 4.10.0.84
* - ``peft``
- `PEFT <https://huggingface.co/docs/peft/en/index>`__ 0.14.0
* - ``protobuf``
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`__ 5.29.2
* - ``pytest``
- `PyTest <https://docs.pytest.org/en/stable/>`__ 8.3.4
* - ``python-dotenv``
- `python-dotenv <https://pypi.org/project/python-dotenv/>`__ 1.0.1
* - ``seaborn``
- `Seaborn <https://seaborn.pydata.org/>`__ 0.13.2
* - ``transformers``
- `Transformers <https://huggingface.co/docs/transformers/en/index>`__ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following datasets from Hugging Face:
* `frank-chieng/chinese_architecture_siheyuan <https://huggingface.co/datasets/frank-chieng/chinese_architecture_siheyuan>`__
{% for model_group in model_groups %}
{% for model in model_group.models %}
{% set training_modes = model.training_modes %}
{% set training_mode_descs = {
"pretrain": "Benchmark pre-training.",
"HF_pretrain": "Llama 3.1 8B pre-training with FP8 precision."
} %}
{% set available_modes = training_modes | select("in", ["pretrain", "HF_pretrain"]) | list %}
{% if available_modes %}
.. container:: model-doc {{ model.mad_tag }}
.. rubric:: Pretraining
To start the pre-training benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
{% if model.mad_tag == "pyt_train_dlrm" %}
1. Go to the DLRM directory.
.. code-block:: shell
cd /workspace/DLRMBenchmark
2. To run the single node training benchmark for DLRM-v2 with TF32 precision,
run the following script.
.. code-block:: shell
./launch_training_single_node.sh
To run with MAD within the Docker container, use the following command.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -m DLRM
{% else %}
.. code-block:: shell
./pytorch_benchmark_report.sh -t {% if available_modes | length == 1 %}{{ available_modes[0] }}{% else %}$training_mode{% endif %} \
-m {{ model.model_repo }} \
-p $datatype \
-s $sequence_length
{% if model.mad_tag == "pyt_train_flux" %}
.. container:: model-doc {{ model.mad_tag }}
.. note::
Currently, FLUX models are not supported out-of-the-box on this Docker.
To use FLUX, refer to ``rocm/pytorch-training`` Docker: :doc:`pytorch-training-v25.6`
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
{% endif %}
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
{% for mode in available_modes %}
* - {% if loop.first %}``$training_mode``{% endif %}
- ``{{ mode }}``
- {{ training_mode_descs[mode] }}
{% endfor %}
* - ``$datatype``
- ``BF16``{% if model.mad_tag == "pyt_train_llama-3.1-8b" %} or ``FP8``{% endif %}
- Only Llama 3.1 8B supports FP8 precision.
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
{% endif %}
{% endif %}
{% set training_modes = model.training_modes %}
{% set training_mode_descs = {
"posttrain": "Benchmark post-training.",
} %}
{% set available_modes = training_modes | select("in", ["posttrain"]) | list %}
{% if available_modes %}
.. container:: model-doc {{ model.mad_tag }}
.. rubric:: Post-training
To start the post-training benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {% if available_modes | length == 1 %}{{ available_modes[0] }}{% else %}$training_mode{% endif %} \
-m {{ model.model_repo }} \
-p $datatype \
-s $sequence_length
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
{% for mode in available_modes %}
* - {% if loop.first %}``$training_mode``{% endif %}
- ``{{ mode }}``
- {{ training_mode_descs[mode] }}
{% endfor %}
* - ``$datatype``
- ``BF16``{% if model.mad_tag == "pyt_train_llama-3.1-8b" %} or ``FP8``{% endif %}
- Only Llama 3.1 8B supports FP8 precision.
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
{% endif %}
{% set training_mode_descs = {
"finetune_fw": "Full weight fine-tuning (BF16 and FP8 supported).",
"finetune_lora": "LoRA fine-tuning (BF16 supported).",
"finetune_qlora": "QLoRA fine-tuning (BF16 supported).",
"HF_finetune_lora": "LoRA fine-tuning with Hugging Face PEFT.",
} %}
{% set available_modes = training_modes | select("in", ["finetune_fw", "finetune_lora", "finetune_qlora", "HF_finetune_lora"]) | list %}
{% if available_modes %}
.. container:: model-doc {{ model.mad_tag }}
.. rubric:: Fine-tuning
To start the fine-tuning benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
See :ref:`supported training modes <amd-pytorch-training-supported-training-modes-v2510>`.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode \
-m {{ model.model_repo }} \
-p $datatype \
-s $sequence_length
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
{% for mode in available_modes %}
* - {% if loop.first %}``$training_mode``{% endif %}
- ``{{ mode }}``
- {{ training_mode_descs[mode] }}
{% endfor %}
* - ``$datatype``
- ``BF16``{% if "finetune_fw" in available_modes %} or ``FP8``{% endif %}
- All models support BF16.{% if "finetune_fw" in available_modes %} FP8 is only available for full weight fine-tuning.{% endif %}
* - ``$sequence_length``
- Between 2048 and 16384.
- Sequence length for the language model.
{% if model.mad_tag in ["pyt_train_llama3.2-vision-11b", "pyt_train_llama-3.2-vision-90b"] %}
.. note::
For LoRA and QLoRA support with vision models (Llama 3.2 11B and 90B),
use the following torchtune commit for compatibility:
.. code-block:: shell
git checkout 48192e23188b1fc524dd6d127725ceb2348e7f0e
{% elif model.mad_tag in ["pyt_train_llama-2-7b", "pyt_train_llama-2-13b", "pyt_train_llama-2-70b"] %}
.. note::
You might encounter the following error with Llama 2: ``ValueError: seq_len (16384) of
input tensor should be smaller than max_seq_len (4096)``.
This error indicates that an input sequence is longer than the model's maximum context window.
Ensure your tokenized input does not exceed the model's ``max_seq_len`` (4096
tokens in this case). You can resolve this by truncating the input or splitting
it into smaller chunks before passing it to the model.
Note on reproducibility: The results in this guide are based on
commit ``b4c98ac`` from the upstream
`<https://github.com/pytorch/torchtune>`__ repository. For the
latest updates, you can use the main branch.
{% endif %}
{% endif %}
{% endfor %}
{% endfor %}
.. rubric:: Benchmarking examples
For examples of benchmarking commands, see `<https://github.com/ROCm/MAD/tree/develop/benchmark/pytorch_train#benchmarking-examples>`__.
.. _amd-pytorch-training-multinode-examples-v2510:
Multi-node training
-------------------
Refer to :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your environment for multi-node
training. See :ref:`rocm-for-ai-multi-node-setup-pyt-train-example` for example Slurm run commands.
Pre-training
~~~~~~~~~~~~
Multi-node training with torchtitan is supported. The provided SLURM script is pre-configured for Llama 3 70B.
To launch the training job on a SLURM cluster for Llama 3 70B, run the following commands from the MAD repository.
.. code-block:: shell
# In the MAD repository
cd scripts/pytorch_train
sbatch run_slurm_train.sh
Fine-tuning
~~~~~~~~~~~
Multi-node training with torchtune is supported. The provided SLURM script is pre-configured for Llama 3.3 70B.
To launch the training job on a SLURM cluster for Llama 3.3 70B, run the following commands from the MAD repository.
.. code-block:: shell
huggingface-cli login # Get access to HF Llama model space
huggingface-cli download meta-llama/Llama-3.3-70B-Instruct --local-dir ./models/Llama-3.3-70B-Instruct # Download the Llama 3.3 model locally
# In the MAD repository
cd scripts/pytorch_train
sbatch Torchtune_Multinode.sh
.. note::
Information regarding benchmark setup:
* By default, Llama 3.3 70B is fine-tuned using ``alpaca_dataset``.
* You can adjust the torchtune `YAML configuration file
<https://github.com/pytorch/torchtune/blob/main/recipes/configs/llama3_3/70B_full_multinode.yaml>`__
if you're using a different model.
* The number of nodes and other parameters can be tuned in the SLURM script ``Torchtune_Multinode.sh``.
* Set the ``mounting_paths`` inside the SLURM script.
Once the run is finished, you can find the log files in the ``result_torchtune/`` directory.
Further reading
===============
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -240,7 +240,7 @@ The following models are pre-optimized for performance on the AMD Instinct MI325
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- `TorchData <https://pytorch.org/data/beta/index.html>`_
- `TorchData <https://meta-pytorch.org/data/beta/index.html>`_
* - ``tomli``
- `Tomli <https://pypi.org/project/tomli/>`_

View File

@@ -0,0 +1,667 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch on ROCm
**************************************
.. caution::
This documentation does not reflect the latest version of ROCm PyTorch training
performance benchmark documentation. See :doc:`../pytorch-training` for the latest version.
.. note::
For a unified training solution on AMD GPUs with ROCm, the `rocm/pytorch-training
<https://hub.docker.com/r/rocm/pytorch-training/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including torchtitan and :doc:`Megatron-LM <../primus-megatron>`.
See :doc:`../primus-pytorch` for details.
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker image provides a prebuilt optimized
environment for fine-tuning and pretraining a model on AMD Instinct MI325X
and MI300X GPUs. It includes the following software components to accelerate
training workloads:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/pytorch-training-v25.9-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
{% endfor %}
.. _amd-pytorch-training-model-support-v259:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct
MI355X, MI350X, MI325X, and MI300X GPUs. Some instructions, commands, and
training recommendations in this documentation might vary by model -- select
one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/pytorch-training-v25.9-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _amd-pytorch-training-supported-training-modes-v259:
The following table lists supported training modes per model.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/pytorch-training-v25.9-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. dropdown:: Supported training modes
.. list-table::
:header-rows: 1
* - Model
- Supported training modes
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if model.training_modes %}
* - {{ model.model }}
- ``{{ model.training_modes | join('``, ``') }}``
{% endif %}
{% endfor %}
{% endfor %}
.. note::
Some model and fine-tuning combinations are not listed. This is
because the `upstream torchtune repository <https://github.com/pytorch/torchtune>`__
doesn't provide default YAML configurations for them.
For advanced usage, you can create a custom configuration to enable
unlisted fine-tuning methods by using an existing file in the
``/workspace/torchtune/recipes/configs`` directory as a template.
.. _amd-pytorch-training-performance-measurements-v259:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
page provides reference throughput and latency measurements for training
popular AI models.
.. note::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X GPUs or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt test configurations and run conditions outside those described.
Run training
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/pytorch-training-v25.9-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to start benchmarking training:
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following run command is tailored to {{ model.model }}.
See :ref:`amd-pytorch-training-model-support-v259` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. For example, use this command to run the performance benchmark test on the {{ model.model }} model
using one node with the {{ model.precision }} data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{ model.mad_tag }} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{ model.mad_tag }}``. The latency and throughput reports of the
model are collected in ``~/MAD/perf.csv``.
{% endfor %}
{% endfor %}
.. tab-item:: Standalone benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following commands are tailored to {{ model.model }}.
See :ref:`amd-pytorch-training-model-support-v259` to switch to another available model.
{% endfor %}
{% endfor %}
.. rubric:: Download the Docker image and required packages
1. Use the following command to pull the Docker image from Docker Hub.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
2. Launch the Docker container.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
{% endfor %}
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
3. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
repository and navigate to the benchmark scripts directory
``/workspace/MAD/scripts/pytorch_train``.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch_train
.. rubric:: Prepare training datasets and dependencies
1. The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
2. Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
.. container:: model-doc pyt_train_llama-3.1-8b
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 8B:
.. list-table::
:header-rows: 1
* - Library
- Reference
* - ``accelerate``
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
.. container:: model-doc pyt_train_llama-3.1-70b
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 70B:
.. list-table::
:header-rows: 1
* - Library
- Reference
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- `TorchData <https://meta-pytorch.org/data/beta/index.html#torchdata>`__
* - ``tomli``
- `Tomli <https://pypi.org/project/tomli/>`__
* - ``tiktoken``
- `tiktoken <https://github.com/openai/tiktoken>`__
* - ``blobfile``
- `blobfile <https://pypi.org/project/blobfile/>`__
* - ``tabulate``
- `tabulate <https://pypi.org/project/tabulate/>`__
* - ``wandb``
- `Weights & Biases <https://github.com/wandb/wandb>`__
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`__ 0.2.0
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`__ 2.18.0
.. container:: model-doc pyt_train_flux
``pytorch_benchmark_setup.sh`` installs the following libraries for FLUX:
.. list-table::
:header-rows: 1
* - Library
- Reference
* - ``accelerate``
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`__ 3.2.0
* - ``sentencepiece``
- `SentencePiece <https://github.com/google/sentencepiece>`__ 0.2.0
* - ``tensorboard``
- `TensorBoard <https://www.tensorflow.org/tensorboard>`__ 2.18.0
* - ``csvkit``
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`__ 2.0.1
* - ``deepspeed``
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`__ 0.16.2
* - ``diffusers``
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`__ 0.31.0
* - ``GitPython``
- `GitPython <https://github.com/gitpython-developers/GitPython>`__ 3.1.44
* - ``opencv-python-headless``
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`__ 4.10.0.84
* - ``peft``
- `PEFT <https://huggingface.co/docs/peft/en/index>`__ 0.14.0
* - ``protobuf``
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`__ 5.29.2
* - ``pytest``
- `PyTest <https://docs.pytest.org/en/stable/>`__ 8.3.4
* - ``python-dotenv``
- `python-dotenv <https://pypi.org/project/python-dotenv/>`__ 1.0.1
* - ``seaborn``
- `Seaborn <https://seaborn.pydata.org/>`__ 0.13.2
* - ``transformers``
- `Transformers <https://huggingface.co/docs/transformers/en/index>`__ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following datasets from Hugging Face:
* `frank-chieng/chinese_architecture_siheyuan <https://huggingface.co/datasets/frank-chieng/chinese_architecture_siheyuan>`__
{% for model_group in model_groups %}
{% for model in model_group.models %}
{% set training_modes = model.training_modes %}
{% set training_mode_descs = {
"pretrain": "Benchmark pre-training.",
"HF_pretrain": "Llama 3.1 8B pre-training with FP8 precision."
} %}
{% set available_modes = training_modes | select("in", ["pretrain", "HF_pretrain"]) | list %}
{% if available_modes %}
.. container:: model-doc {{ model.mad_tag }}
.. rubric:: Pre-training
To start the pre-training benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {% if available_modes | length == 1 %}{{ available_modes[0] }}{% else %}$training_mode{% endif %} \
-m {{ model.model_repo }} \
-p $datatype \
-s $sequence_length
{% if model.mad_tag == "pyt_train_flux" %}
.. container:: model-doc {{ model.mad_tag }}
.. note::
Currently, FLUX models are not supported out-of-the-box on this Docker.
To use FLUX, refer to ``rocm/pytorch-training`` Docker: :doc:`previous-versions/pytorch-training-v25.6`
Occasionally, downloading the Flux dataset might fail. In the event of this
error, manually download it from Hugging Face at
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
the required dataset.
{% endif %}
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
{% for mode in available_modes %}
* - {% if loop.first %}``$training_mode``{% endif %}
- ``{{ mode }}``
- {{ training_mode_descs[mode] }}
{% endfor %}
* - ``$datatype``
- ``BF16``{% if model.mad_tag == "pyt_train_llama-3.1-8b" %} or ``FP8``{% endif %}
- Only Llama 3.1 8B supports FP8 precision.
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
{% endif %}
{% set training_modes = model.training_modes %}
{% set training_mode_descs = {
"posttrain": "Benchmark post-training.",
} %}
{% set available_modes = training_modes | select("in", ["posttrain"]) | list %}
{% if available_modes %}
.. container:: model-doc {{ model.mad_tag }}
.. rubric:: Post-training
To start the post-training benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {% if available_modes | length == 1 %}{{ available_modes[0] }}{% else %}$training_mode{% endif %} \
-m {{ model.model_repo }} \
-p $datatype \
-s $sequence_length
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
{% for mode in available_modes %}
* - {% if loop.first %}``$training_mode``{% endif %}
- ``{{ mode }}``
- {{ training_mode_descs[mode] }}
{% endfor %}
* - ``$datatype``
- ``BF16``{% if model.mad_tag == "pyt_train_llama-3.1-8b" %} or ``FP8``{% endif %}
- Only Llama 3.1 8B supports FP8 precision.
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
{% endif %}
{% set training_mode_descs = {
"finetune_fw": "Full weight fine-tuning (BF16 and FP8 supported).",
"finetune_lora": "LoRA fine-tuning (BF16 supported).",
"finetune_qlora": "QLoRA fine-tuning (BF16 supported).",
"HF_finetune_lora": "LoRA fine-tuning with Hugging Face PEFT.",
} %}
{% set available_modes = training_modes | select("in", ["finetune_fw", "finetune_lora", "finetune_qlora", "HF_finetune_lora"]) | list %}
{% if available_modes %}
.. container:: model-doc {{ model.mad_tag }}
.. rubric:: Fine-tuning
To start the fine-tuning benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
See :ref:`supported training modes <amd-pytorch-training-supported-training-modes-v259>`.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode \
-m {{ model.model_repo }} \
-p $datatype \
-s $sequence_length
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
{% for mode in available_modes %}
* - {% if loop.first %}``$training_mode``{% endif %}
- ``{{ mode }}``
- {{ training_mode_descs[mode] }}
{% endfor %}
* - ``$datatype``
- ``BF16``{% if "finetune_fw" in available_modes %} or ``FP8``{% endif %}
- All models support BF16.{% if "finetune_fw" in available_modes %} FP8 is only available for full weight fine-tuning.{% endif %}
* - ``$sequence_length``
- Between 2048 and 16384.
- Sequence length for the language model.
{% if model.mad_tag in ["pyt_train_llama3.2-vision-11b", "pyt_train_llama-3.2-vision-90b"] %}
.. note::
For LoRA and QLoRA support with vision models (Llama 3.2 11B and 90B),
use the following torchtune commit for compatibility:
.. code-block:: shell
git checkout 48192e23188b1fc524dd6d127725ceb2348e7f0e
{% elif model.mad_tag in ["pyt_train_llama-2-7b", "pyt_train_llama-2-13b", "pyt_train_llama-2-70b"] %}
.. note::
You might encounter the following error with Llama 2: ``ValueError: seq_len (16384) of
input tensor should be smaller than max_seq_len (4096)``.
This error indicates that an input sequence is longer than the model's maximum context window.
Ensure your tokenized input does not exceed the model's ``max_seq_len`` (4096
tokens in this case). You can resolve this by truncating the input or splitting
it into smaller chunks before passing it to the model.
Note on reproducibility: The results in this guide are based on
commit ``b4c98ac`` from the upstream
`<https://github.com/pytorch/torchtune>`__ repository. For the
latest updates, you can use the main branch.
{% endif %}
{% endif %}
{% endfor %}
{% endfor %}
.. rubric:: Benchmarking examples
For examples of benchmarking commands, see `<https://github.com/ROCm/MAD/tree/develop/benchmark/pytorch_train#benchmarking-examples>`__.
.. _amd-pytorch-training-multinode-examples-v259:
Multi-node training
-------------------
Refer to :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your environment for multi-node
training. See :ref:`rocm-for-ai-multi-node-setup-pyt-train-example` for example Slurm run commands.
Pre-training
~~~~~~~~~~~~
Multi-node training with torchtitan is supported. The provided SLURM script is pre-configured for Llama 3 70B.
To launch the training job on a SLURM cluster for Llama 3 70B, run the following commands from the MAD repository.
.. code-block:: shell
# In the MAD repository
cd scripts/pytorch_train
sbatch run_slurm_train.sh
Fine-tuning
~~~~~~~~~~~
Multi-node training with torchtune is supported. The provided SLURM script is pre-configured for Llama 3.3 70B.
To launch the training job on a SLURM cluster for Llama 3.3 70B, run the following commands from the MAD repository.
.. code-block:: shell
huggingface-cli login # Get access to HF Llama model space
huggingface-cli download meta-llama/Llama-3.3-70B-Instruct --local-dir ./models/Llama-3.3-70B-Instruct # Download the Llama 3.3 model locally
# In the MAD repository
cd scripts/pytorch_train
sbatch Torchtune_Multinode.sh
.. note::
Information regarding benchmark setup:
* By default, Llama 3.3 70B is fine-tuned using ``alpaca_dataset``.
* You can adjust the torchtune `YAML configuration file
<https://github.com/pytorch/torchtune/blob/main/recipes/configs/llama3_3/70B_full_multinode.yaml>`__
if you're using a different model.
* The number of nodes and other parameters can be tuned in the SLURM script ``Torchtune_Multinode.sh``.
* Set the ``mounting_paths`` inside the SLURM script.
Once the run is finished, you can find the log files in the ``result_torchtune/`` directory.
Known issues
============
PyTorch Profiler may produce inaccurate traces when CPU activity profiling is enabled.
Further reading
===============
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`pytorch-training-history` to find documentation for previous releases
of the ``ROCm/pytorch-training`` Docker image.

View File

@@ -18,7 +18,7 @@ model training. Performance acceleration is powered by `Primus Turbo
<https://hub.docker.com/r/rocm/megatron-lm/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including Megatron-LM, `torchtitan, and torchtune <primus-pytorch>`__.
including Megatron-LM and :doc:`torchtitan <primus-pytorch>`.
Primus with Megatron is designed to replace the :doc:`ROCm Megatron-LM
training <megatron-lm>` workflow. To learn how to migrate workloads from
@@ -31,12 +31,10 @@ Megatron-LM.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. tab-item:: {{ data.docker.pull_tag }}
:sync: {{ data.docker.pull_tag }}
.. list-table::
:header-rows: 1
@@ -44,13 +42,12 @@ Megatron-LM.
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
{% for component_name, component_version in data.docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
{% endfor %}
.. _amd-primus-megatron-lm-model-support-v259:
.. _amd-primus-megatron-lm-model-support-v25.11:
Supported models
================
@@ -111,7 +108,7 @@ To test for optimal performance, consult the recommended :ref:`System health ben
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. _mi300x-amd-primus-megatron-lm-training-v259:
.. _mi300x-amd-primus-megatron-lm-training-v25.11:
Environment setup
=================
@@ -121,69 +118,55 @@ Environment setup
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on AMD Instinct GPUs.
.. _amd-primus-megatron-lm-requirements-v259:
.. _amd-primus-megatron-lm-requirements-v25.11:
Pull the Docker image
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = data.docker %}
1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.
1. Pull the ``{{ docker.pull_tag }}`` Docker image from Docker Hub.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
docker pull {{ docker.pull_tag }}
2. Launch the Docker container.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--device /dev/infiniband \
--network host --ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
--shm-size 128G \
--name primus_training_env \
{{ docker.pull_tag }}
.. code-block:: shell
Use these commands if you exit the ``primus_training_env`` container and need to return to it.
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--device /dev/infiniband \
--network host --ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
--shm-size 128G \
--name primus_training_env \
{{ docker.pull_tag }}
{% endfor %}
.. code-block:: shell
3. Use these commands if you exit the ``primus_training_env`` container and need to return to it.
docker start primus_training_env
docker exec -it primus_training_env bash
.. code-block:: shell
The Docker container hosts verified commit ``c4c083de`` of the `Primus
<https://github.com/AMD-AGI/Primus/tree/c4c083de64ba3e8f19ccc9629411267108931f9e/>`__ repository.
docker start primus_training_env
docker exec -it primus_training_env bash
The Docker container hosts verified commit ``e16b27b`` of the `Primus
<https://github.com/AMD-AGI/Primus/tree/e16b27b>`__ repository.
.. _amd-primus-megatron-lm-environment-setup-v259:
.. _amd-primus-megatron-lm-environment-setup-v25.11:
Configuration
=============
Primus defines a training configuration in YAML for each model in
`examples/megatron/configs <https://github.com/AMD-AGI/rss/tree/e16b27bf6c1b2798f38848fc574fee60d9a9b902/examples/megatron/configs>`__.
`examples/megatron/configs <https://github.com/AMD-AGI/Primus/tree/c4c083de64ba3e8f19ccc9629411267108931f9e/examples/megatron/configs>`__.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
@@ -224,7 +207,7 @@ You can use either mock data or real data for training.
Ensure that the files are accessible inside the Docker container.
.. _amd-primus-megatron-lm-tokenizer-v259:
.. _amd-primus-megatron-lm-tokenizer-v25.11:
Tokenizer
---------
@@ -245,7 +228,7 @@ right permissions to access the tokenizer for each model.
<https://github.com/AMD-AGI/Primus/blob/e16b27bf6c1b2798f38848fc574fee60d9a9b902/examples/megatron/configs/llama3.1_8B-pretrain.yaml>`__
definition.
.. _amd-primus-megatron-lm-run-training-v259:
.. _amd-primus-megatron-lm-run-training-v25.11:
Run training
============
@@ -269,7 +252,7 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.3 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run pre-training for Llama 3.3 70B BF16, run:
@@ -280,28 +263,27 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 6 \
--global_batch_size 48 \
EXP=examples/megatron/configs/MI355X/llama3.3_70B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 2 \
--global_batch_size 16
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/llama3.3_70B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-8b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 8B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run pre-training for Llama 3.1 8B FP8, run:
@@ -312,22 +294,21 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid \
--micro_batch_size 4 \
--global_batch_size 512 \
EXP=examples/megatron/configs/MI355X/llama3.1_8B-FP8-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/llama3.1_8B-FP8-pretrain.yaml \
bash ./examples/run_pretrain.sh
For Llama 3.1 8B BF16, use the following command:
@@ -338,26 +319,27 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 4 \
--global_batch_size 512 \
EXP=examples/megatron/configs/MI355X/llama3.1_BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/llama3.1_8B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run pre-training for Llama 3.1 70B BF16, run:
@@ -368,20 +350,21 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 4 \
--global_batch_size 32
EXP=examples/megatron/configs/MI355X/llama3.1_70B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/llama3.1_70B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
To run the training on a single node for Llama 3.1 70B FP8, use the following command.
@@ -398,20 +381,20 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid \
--no_fp8_weight_transpose_cache true \
--micro_batch_size 3 \
--global_batch_size 24
EXP=examples/megatron/configs/MI355X/llama3.1_70B-FP8-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/llama3.1_70B-FP8-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--num_layers 40 \
@@ -422,7 +405,7 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 7B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run pre-training for Llama 2 7B FP8, run:
@@ -433,22 +416,21 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid \
--micro_batch_size 13 \
--global_batch_size 416
EXP=examples/megatron/configs/MI355X/llama2_7B-FP8-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/llama2_7B-FP8-pretrain.yaml \
bash ./examples/run_pretrain.sh
To run pre-training for Llama 2 7B BF16, run:
@@ -459,26 +441,27 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 10 \
--global_batch_size 640
EXP=examples/megatron/configs/MI355X/llama2_7B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/llama2_7B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run pre-training for Llama 2 70B BF16, run:
@@ -489,26 +472,27 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 17 \
--global_batch_size 272
EXP=examples/megatron/configs/MI355X/llama2_70B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/llama2_70B-BF16-pretrain.yaml \
bash ./examples/run_pretrain.sh
.. container:: model-doc primus_pyt_megatron_lm_train_deepseek-v3-proxy
Once setup is complete, run the appropriate training command.
The following run commands are tailored to DeepSeek-V3.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run training on a single node for DeepSeek-V3 (MoE with expert parallel) BF16 with 3-layer proxy,
use the following command:
@@ -520,7 +504,7 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v3-pretrain.yaml \
EXP=examples/megatron/configs/MI355X/deepseek_v3-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--num_layers 3 \
--moe_layer_freq 1 \
@@ -533,7 +517,12 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v3-pretrain.yaml \
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/deepseek_v3-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--num_layers 3 \
--moe_layer_freq 1 \
@@ -543,7 +532,7 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
Once setup is complete, run the appropriate training command.
The following run commands are tailored to DeepSeek-V2-Lite.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run training on a single node for DeepSeek-V2-Lite (MoE with expert parallel) BF16,
use the following command:
@@ -555,27 +544,27 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v2_lite-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 12 \
--global_batch_size 768
EXP=examples/megatron/configs/MI355X/deepseek_v2_lite-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v2_lite-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--global_batch_size 256
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/deepseek_v2_lite-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Mixtral 8x7B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run training on a single node for Mixtral 8x7B (MoE with expert parallel),
use the following command:
@@ -587,18 +576,20 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x7B_v0.1-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 4 \
--global_batch_size 256
EXP=examples/megatron/configs/MI355X/mixtral_8x7B_v0.1-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x7B_v0.1-pretrain.yaml \
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/mixtral_8x7B_v0.1-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50
@@ -606,7 +597,7 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Mixtral 8x22B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run training on a single node for Mixtral 8x22B BF16 (MoE with expert parallel) 4-layer proxy,
use the following command:
@@ -618,20 +609,20 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x22B_v0.1-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--num_layers 4 \
--pipeline_model_parallel_size 1 \
--micro_batch_size 2 \
--global_batch_size 16
EXP=examples/megatron/configs/MI355X/mixtral_8x22B_v0.1-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x22B_v0.1-pretrain.yaml \
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/mixtral_8x22B_v0.1-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--num_layers 4 \
@@ -643,7 +634,7 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Qwen 2.5 7B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run training on a single node for Qwen 2.5 7B BF16, use the following
command:
@@ -655,20 +646,21 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 16 \
--global_batch_size 768
EXP=examples/megatron/configs/MI355X/qwen2.5_7B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/qwen2.5_7B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
For FP8, use the following command.
@@ -679,28 +671,27 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
--micro_batch_size 20 \
--global_batch_size 800
EXP=examples/megatron/configs/MI355X/qwen2.5_7B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
EXP=examples/megatron/configs/MI300X/qwen2.5_7B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-72b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Qwen 2.5 72B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To run the training on a single node for Qwen 2.5 72B BF16, use the following command.
@@ -711,7 +702,7 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
EXP=examples/megatron/configs/MI355X/qwen2.5_72B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 16 \
@@ -722,11 +713,15 @@ To run training on a single node, navigate to ``/workspace/Primus`` and use the
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
.. _amd-primus-megatron-multi-node-examples-v259:
EXP=examples/megatron/configs/MI300X/qwen2.5_72B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
.. _amd-primus-megatron-multi-node-examples-v25.11:
Multi-node training examples
----------------------------
@@ -740,28 +735,27 @@ to launch the multi-node workload. Use the following steps to setup your environ
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% set docker = data.docker %}
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
git clone --recurse-submodules https://github.com/AMD-AGI/Primus.git
cd Primus
git checkout c4c083de64ba3e8f19ccc9629411267108931f9e
git submodule update --init --recursive
.. code-block:: shell
export DOCKER_IMAGE={{ docker.pull_tag }}
export HF_TOKEN=<your_HF_token>
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
export NCCL_IB_HCA=<your_NCCL_IB_HCA> # specify which RDMA interfaces to use for communication
export NCCL_SOCKET_IFNAME=<your_NCCL_SOCKET_IFNAME> # your Network Interface
export GLOO_SOCKET_IFNAME=<your_GLOO_SOCKET_IFNAME> # your Network Interface
export NCCL_IB_GID_INDEX=3 # Set InfiniBand GID index for NCCL communication. Default is 3 for ROCE
git clone --recurse-submodules https://github.com/AMD-AGI/Primus.git
cd Primus
git checkout e16b27b
export DOCKER_IMAGE={{ docker.pull_tag }}
export HF_TOKEN=<your_HF_token>
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
export NCCL_IB_HCA=<your_NCCL_IB_HCA> # specify which RDMA interfaces to use for communication
export NCCL_SOCKET_IFNAME=<your_NCCL_SOCKET_IFNAME> # your Network Interface
export GLOO_SOCKET_IFNAME=<your_GLOO_SOCKET_IFNAME> # your Network Interface
export NCCL_IB_GID_INDEX=3 # Set InfiniBand GID index for NCCL communication. Default is 3 for ROCE
{% endfor %}
# Set the variables for better performance
# only on MI325X and MI300X
export PRIMUS_TURBO_ATTN_V3_ATOMIC_FP32=1
export NVTE_CK_IS_V3_ATOMIC_FP32=1
.. note::
@@ -769,13 +763,13 @@ to launch the multi-node workload. Use the following steps to setup your environ
* If ``NCCL_IB_HCA`` and ``NCCL_SOCKET_IFNAME`` are not set, Primus will try to auto-detect. However, since NICs can vary accross different cluster, it is encouraged to explicitly export your NCCL parameters for the cluster.
* To find your network interface, you can use ``ip a``.
* To find RDMA interfaces, you can use ``ibv_devices`` to get the list of all the RDMA/IB devices.
* Remember to set ``DOCKER_IMAGE`` and ``HF_TOKEN`` (see :ref:`amd-primus-megatron-lm-tokenizer-v259`) as appropriate.
* Remember to set ``DOCKER_IMAGE`` and ``HF_TOKEN`` (see :ref:`amd-primus-megatron-lm-tokenizer-v25.11`) as appropriate.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-8b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 8B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To train Llama 3.1 8B FP8 on 8 nodes, run:
@@ -784,16 +778,15 @@ to launch the multi-node workload. Use the following steps to setup your environ
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case.
NNODES=8 \
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/llama3.1_8B-FP8-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--global_batch_size 1024 \
--fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 7B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To train Llama 2 7B FP8 on 8 nodes, run:
@@ -802,16 +795,15 @@ to launch the multi-node workload. Use the following steps to setup your environ
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case.
NNODES=8 \
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/llama2_7B-FP8-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--global_batch_size 2048 \
--fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To train Llama 3.1 70B FP8 on 8 nodes, run:
@@ -820,20 +812,18 @@ to launch the multi-node workload. Use the following steps to setup your environ
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case.
NNODES=8 \
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 4 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 3.1 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 \
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 1 \
--global_batch_size 256 \
@@ -843,7 +833,7 @@ to launch the multi-node workload. Use the following steps to setup your environ
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To train Llama 2 70B FP8 on 8 nodes, run:
@@ -852,20 +842,18 @@ to launch the multi-node workload. Use the following steps to setup your environ
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case.
NNODES=8 \
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/llama2_70B-FP8-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 10 \
--global_batch_size 640 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 2 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 \
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/llama2_70B-BF16-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--micro_batch_size 2 \
--global_batch_size 1536 \
@@ -875,7 +863,7 @@ to launch the multi-node workload. Use the following steps to setup your environ
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.3 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To train Llama 3.3 70B FP8 on 8 nodes, run:
@@ -884,20 +872,18 @@ to launch the multi-node workload. Use the following steps to setup your environ
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 \
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/llama3.3_70B-FP8-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 4 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 3.3 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 \
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/llama3.3_70B-BF16-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 1 \
--global_batch_size 256 \
@@ -907,7 +893,7 @@ to launch the multi-node workload. Use the following steps to setup your environ
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To train Mixtral 8x7B BF16 on 8 nodes, run:
@@ -916,7 +902,7 @@ to launch the multi-node workload. Use the following steps to setup your environ
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 \
EXP=examples/megatron/configs/mixtral_8x7B_v0.1-pretrain.yaml \
EXP=examples/megatron/configs/MI300X/mixtral_8x7B_v0.1-BF16-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 2 \
--global_batch_size 256
@@ -925,7 +911,7 @@ to launch the multi-node workload. Use the following steps to setup your environ
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
See :ref:`amd-primus-megatron-lm-model-support-v25.11` to switch to another available model.
To train Qwen2.5 72B FP8 on 8 nodes, run:
@@ -934,15 +920,13 @@ to launch the multi-node workload. Use the following steps to setup your environ
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 \
EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
EXP=examples/megatron/configs/qwen2.5_72B-FP8-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 8 \
--global_batch_size 512 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
.. _amd-primus-megatron-lm-benchmark-test-vars-v259:
.. _amd-primus-megatron-lm-benchmark-test-vars-v25.11:
Key options
-----------
@@ -987,7 +971,10 @@ num_layers
Known issues
============
PyTorch Profiler may produce inaccurate traces when CPU activity profiling is enabled.
DeepSeekV3 proxy model and Mixtral 8x22B proxy model may exit with an error
due to a memory free issue. However, this does not impacts training runs. All
iterations, in this case 50, should have been completed before the exit and
the results should be available in the end.
Further reading
===============

View File

@@ -17,7 +17,7 @@ Primus now supports the PyTorch torchtitan backend.
<https://hub.docker.com/r/rocm/pytorch-training/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including `Megatron-LM <primus-megatron>`__, torchtitan, and torchtune.
including torchtitan and :doc:`Megatron-LM <primus-megatron>`.
Primus with the PyTorch torchtitan backend is designed to replace the
:doc:`ROCm PyTorch training <pytorch-training>` workflow. See
@@ -29,12 +29,10 @@ with Primus Turbo optimizations.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. tab-item:: {{ data.docker.pull_tag }}
:sync: {{ data.docker.pull_tag }}
.. list-table::
:header-rows: 1
@@ -42,13 +40,12 @@ with Primus Turbo optimizations.
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
{% for component_name, component_version in data.docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
{% endfor %}
.. _amd-primus-pytorch-model-support-v259:
.. _amd-primus-pytorch-model-support-v25.11:
Supported models
================
@@ -67,7 +64,7 @@ vary by model -- select one to get started.
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-12 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
<div class="col-6 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
@@ -94,7 +91,7 @@ vary by model -- select one to get started.
For additional workloads, including Llama 3.3, Llama 3.2, Llama 2, GPT OSS, Qwen, and Flux models,
see the documentation :doc:`pytorch-training` (without Primus)
.. _amd-primus-pytorch-performance-measurements-v259:
.. _amd-primus-pytorch-performance-measurements-v25.11:
System validation
=================
@@ -120,20 +117,11 @@ Pull the Docker image
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set dockers = data.dockers %}
Use the following command to pull the Docker image from Docker Hub.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
docker pull {{ data.docker.pull_tag }}
Run training
============
@@ -145,7 +133,7 @@ tweak some configurations (such as batch sizes).
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = data.docker %}
{% set model_groups = data.model_groups %}
.. tab-set::
@@ -158,7 +146,7 @@ tweak some configurations (such as batch sizes).
.. container:: model-doc {{ model.mad_tag }}
The following run command is tailored to {{ model.model }}.
See :ref:`amd-primus-pytorch-model-support-v259` to switch to another available model.
See :ref:`amd-primus-pytorch-model-support-v25.11` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
@@ -185,13 +173,6 @@ tweak some configurations (such as batch sizes).
``container_ci-{{ model.mad_tag }}``. The latency and throughput reports of the
model are collected in ``~/MAD/perf.csv``.
.. note::
Currently, Primus torchtitan models are run with Primus Turbo
enabled for enhanced performance. To disable Primus Turbo,
modify respective configuration file
``scripts/primus/pytorch_train/primus_torchtitan_scripts/llama3_[8B|70B]-[BF16|FP8].yaml``.
{% endfor %}
{% endfor %}
@@ -203,48 +184,34 @@ tweak some configurations (such as batch sizes).
.. container:: model-doc {{ model.mad_tag }}
The following run commands are tailored to {{ model.model }}.
See :ref:`amd-primus-pytorch-model-support-v259` to switch to another available model.
See :ref:`amd-primus-pytorch-model-support-v25.11` to switch to another available model.
.. rubric:: Download the Docker image and required packages
1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.
1. Pull the ``{{ docker.pull_tag }}`` Docker image from Docker Hub.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
docker pull {{ docker.pull_tag }}
2. Run the Docker container.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
{% endfor %}
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
Use these commands if you exit the ``training_env`` container and need to return to it.
@@ -253,6 +220,9 @@ tweak some configurations (such as batch sizes).
docker start training_env
docker exec -it training_env bash
The Docker container hosts verified commit ``c4c083de`` of the `Primus
<https://github.com/AMD-AGI/Primus/tree/c4c083de64ba3e8f19ccc9629411267108931f9e/>`__ repository.
.. rubric:: Prepare training datasets and dependencies
The following benchmarking examples require downloading models and datasets
@@ -283,75 +253,56 @@ tweak some configurations (such as batch sizes).
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI300X
:sync: MI355X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 5
EXP=examples/torchtitan/configs/MI355X/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 6
EXP=examples/torchtitan/configs/MI300X/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 6
.. tab-item:: MI300X
:sync: MI325X and MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 4
EXP=examples/torchtitan/configs/MI300X/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
To train Llama 3.1 8B with FP8 precision, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI300X
:sync: MI355X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 8
EXP=examples/torchtitan/configs/MI355X/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 7
EXP=examples/torchtitan/configs/MI300X/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 7
.. tab-item:: MI300X
:sync: MI325X and MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 5
EXP=examples/torchtitan/configs/MI300X/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh
.. container:: model-doc primus_pyt_train_llama-3.1-70b
@@ -364,36 +315,57 @@ tweak some configurations (such as batch sizes).
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 8
EXP=examples/torchtitan/configs/MI355X/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 6
EXP=examples/torchtitan/configs/MI300X/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 6
.. tab-item:: MI300X
:sync: MI325X and MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 4
EXP=examples/torchtitan/configs/MI300X/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh
To train Llama 3.1 70B with FP8 precision, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI355X/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 5
.. tab-item:: MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/MI300X/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh
.. container:: model-doc primus_pyt_train_deepseek-v3-16b
Use the following command to run train DeepSeek V3 16B with BF16 precision using Primus torchtitan.
.. tab-set::
.. tab-item:: MI355X and MI350X
@@ -401,151 +373,27 @@ tweak some configurations (such as batch sizes).
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 6
EXP=examples/torchtitan/configs/MI355X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh
.. tab-item:: MI325X
:sync: MI325X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 5
EXP=examples/torchtitan/configs/MI300X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh --training.local_batch_size 10
.. tab-item:: MI300X
:sync: MI325X and MI300X
:sync: MI300X
.. code-block:: shell
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
--metrics.enable_tensorboard false \
--profiling.enable_profiling false \
--training.batch_size 3
EXP=examples/torchtitan/configs/MI300X/deepseek_v3_16b-pretrain.yaml \
bash examples/run_pretrain.sh
{% endfor %}
{% endfor %}
.. tab-item:: Standalone torchtitan benchmarking
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
The following run commands are tailored to {{ model.model }}.
See :ref:`amd-primus-pytorch-model-support-v259` to switch to another available model.
.. rubric:: Download the Docker image and required packages
1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
2. Run the Docker container.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
{% endfor %}
Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
3. Navigate to the ``torchtitan`` workspace directory.
.. code-block:: shell
cd /workspace/torchtitan
.. rubric:: Download the tokenizer
1. The following benchmarking examples require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
.. code-block:: shell
export HF_TOKEN=$your_personal_hugging_face_access_token
2. Download the tokenizer for your model.
.. container:: model-doc {{ model.mad_tag }}
.. code-block:: shell
python3 scripts/download_tokenizer.py \
--repo_id {{ model.model_repo }} \
--tokenizer_path "original" \
--hf_token=${HF_TOKEN}
.. rubric:: Pretraining examples
Run the training script with the appropriate configuration file.
For train with BF16 precicion, use the following command:
.. container:: model-doc {{ model.mad_tag }}
.. code-block:: shell
CONFIG_FILE={{ model.config_file.bf16 }} \
.run_train.sh
For train with BF16 precicion, use the following command:
.. container:: model-doc {{ model.mad_tag }}
.. code-block:: shell
CONFIG_FILE={{ model.config_file.fp8 }} \
.run_train.sh
{% endfor %}
{% endfor %}
Known issues
============
PyTorch Profiler may produce inaccurate traces when CPU activity profiling is enabled.
Further reading
===============

View File

@@ -14,7 +14,7 @@ Training a model with PyTorch on ROCm
<https://hub.docker.com/r/rocm/pytorch-training/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including `Megatron-LM <primus-megatron>`__, torchtitan, and torchtune.
including torchtitan and :doc:`Megatron-LM <primus-megatron>`.
See :doc:`primus-pytorch` for details.
@@ -27,12 +27,10 @@ training workloads:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. tab-item:: {{ data.docker.pull_tag }}
:sync: {{ data.docker.pull_tag }}
.. list-table::
:header-rows: 1
@@ -40,13 +38,12 @@ training workloads:
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
{% for component_name, component_version in data.docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
{% endfor %}
.. _amd-pytorch-training-model-support-v259:
.. _amd-pytorch-training-model-support-v25.11:
Supported models
================
@@ -88,7 +85,7 @@ one to get started.
</div>
</div>
.. _amd-pytorch-training-supported-training-modes-v259:
.. _amd-pytorch-training-supported-training-modes-v25.11:
The following table lists supported training modes per model.
@@ -123,7 +120,7 @@ The following table lists supported training modes per model.
unlisted fine-tuning methods by using an existing file in the
``/workspace/torchtune/recipes/configs`` directory as a template.
.. _amd-pytorch-training-performance-measurements-v259:
.. _amd-pytorch-training-performance-measurements-v25.11:
Performance measurements
========================
@@ -164,7 +161,7 @@ Run training
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = data.docker %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to start benchmarking training:
@@ -179,7 +176,7 @@ Run training
.. container:: model-doc {{ model.mad_tag }}
The following run command is tailored to {{ model.model }}.
See :ref:`amd-pytorch-training-model-support-v259` to switch to another available model.
See :ref:`amd-pytorch-training-model-support-v25.11` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
@@ -217,7 +214,7 @@ Run training
.. container:: model-doc {{ model.mad_tag }}
The following commands are tailored to {{ model.model }}.
See :ref:`amd-pytorch-training-model-support-v259` to switch to another available model.
See :ref:`amd-pytorch-training-model-support-v25.11` to switch to another available model.
{% endfor %}
{% endfor %}
@@ -226,42 +223,28 @@ Run training
1. Use the following command to pull the Docker image from Docker Hub.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
docker pull {{ docker.pull_tag }}
2. Launch the Docker container.
.. tab-set::
.. code-block:: shell
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
{% endfor %}
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--network host \
--ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
-v $HOME/.ssh:/root/.ssh \
--shm-size 64G \
--name training_env \
{{ docker.pull_tag }}
Use these commands if you exit the ``training_env`` container and need to return to it.
@@ -419,11 +402,34 @@ Run training
.. container:: model-doc {{ model.mad_tag }}
.. rubric:: Pre-training
.. rubric:: Pretraining
To start the pre-training benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
{% if model.mad_tag == "pyt_train_dlrm" %}
1. Go to the DLRM directory.
.. code-block:: shell
cd /workspace/DLRMBenchmark
2. To run the single node training benchmark for DLRM-v2 with TF32 precision,
run the following script.
.. code-block:: shell
./launch_training_single_node.sh
To run with MAD within the Docker container, use the following command.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -m DLRM
{% else %}
.. code-block:: shell
./pytorch_benchmark_report.sh -t {% if available_modes | length == 1 %}{{ available_modes[0] }}{% else %}$training_mode{% endif %} \
@@ -466,6 +472,7 @@ Run training
* - ``$sequence_length``
- Sequence length for the language model.
- Between 2048 and 8192. 8192 by default.
{% endif %}
{% endif %}
{% set training_modes = model.training_modes %}
@@ -525,7 +532,7 @@ Run training
To start the fine-tuning benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
See :ref:`supported training modes <amd-pytorch-training-supported-training-modes-v259>`.
See :ref:`supported training modes <amd-pytorch-training-supported-training-modes-v25.11>`.
.. code-block:: shell
@@ -590,7 +597,7 @@ Run training
For examples of benchmarking commands, see `<https://github.com/ROCm/MAD/tree/develop/benchmark/pytorch_train#benchmarking-examples>`__.
.. _amd-pytorch-training-multinode-examples-v259:
.. _amd-pytorch-training-multinode-examples-v25.11:
Multi-node training
-------------------
@@ -639,11 +646,6 @@ To launch the training job on a SLURM cluster for Llama 3.3 70B, run the followi
Once the run is finished, you can find the log files in the ``result_torchtune/`` directory.
Known issues
============
PyTorch Profiler may produce inaccurate traces when CPU activity profiling is enabled.
Further reading
===============

View File

@@ -46,7 +46,7 @@ In DDP training, each process or worker owns a replica of the model and processe
See the following developer blogs for more in-depth explanations and examples.
* `Multi GPU training with DDP — PyTorch Tutorials <https://pytorch.org/tutorials/beginner/ddp_Series_multigpu.html>`_
* `Multi GPU training with DDP — PyTorch Tutorials <https://docs.pytorch.org/tutorials/beginner/ddp_series_multigpu.html>`__
* `Building a decoder transformer model on AMD GPUs — ROCm Blogs
<https://rocm.blogs.amd.com/artificial-intelligence/decoder-transformer/README.html#distributed-training-on-multiple-gpus>`_

View File

@@ -65,6 +65,8 @@ ROCm documentation is organized into the following categories:
* [ROCm libraries](./reference/api-libraries.md)
* [ROCm tools, compilers, and runtimes](./reference/rocm-tools.md)
* [GPU hardware specifications](./reference/gpu-arch-specs.rst)
* [Hardware atomics operation support](./reference/gpu-atomics-operation.rst)
* [Environment variables](./reference/env-variables.rst)
* [Data types and precision support](./reference/precision-support.rst)
* [Graph safe support](./reference/graph-safe-support.rst)
<!-- markdownlint-enable MD051 -->

View File

@@ -0,0 +1,173 @@
.. meta::
:description: Environment variables reference
:keywords: AMD, ROCm, environment variables, environment, reference, settings
.. role:: cpp(code)
:language: cpp
.. _env-variables-reference:
*************************************************************
ROCm environment variables
*************************************************************
ROCm provides a set of environment variables that allow users to configure and optimize their development
and runtime experience. These variables define key settings such as installation paths, platform selection,
and runtime behavior for applications running on AMD accelerators and GPUs.
This page outlines commonly used environment variables across different components of the ROCm software stack,
including HIP and ROCR-Runtime. Understanding these variables can help streamline software development and
execution in ROCm-based environments.
HIP environment variables
=========================
The following tables list the HIP environment variables.
GPU isolation variables
--------------------------------------------------------------------------------
.. remote-content::
:repo: ROCm/rocm-systems
:path: /projects/hip/docs/reference/env_variables/gpu_isolation_hip_env.rst
:default_branch: develop
:tag_prefix: docs/
Profiling variables
--------------------------------------------------------------------------------
.. remote-content::
:repo: ROCm/rocm-systems
:path: /projects/hip/docs/reference/env_variables/profiling_hip_env.rst
:default_branch: develop
:tag_prefix: docs/
Debug variables
--------------------------------------------------------------------------------
.. remote-content::
:repo: ROCm/rocm-systems
:path: /projects/hip/docs/reference/env_variables/debug_hip_env.rst
:default_branch: develop
:tag_prefix: docs/
Memory management related variables
--------------------------------------------------------------------------------
.. remote-content::
:repo: ROCm/rocm-systems
:path: /projects/hip/docs/reference/env_variables/memory_management_hip_env.rst
:default_branch: develop
:tag_prefix: docs/
Other useful variables
--------------------------------------------------------------------------------
.. remote-content::
:repo: ROCm/rocm-systems
:path: /projects/hip/docs/reference/env_variables/miscellaneous_hip_env.rst
:default_branch: develop
:tag_prefix: docs/
ROCR-Runtime environment variables
==================================
The following table lists the ROCR-Runtime environment variables:
.. remote-content::
:repo: ROCm/rocm-systems
:path: /projects/rocr-runtime/runtime/docs/data/env_variables.rst
:default_branch: develop
:tag_prefix: docs/
HIPCC environment variables
===========================
This topic provides descriptions of the HIPCC environment variables.
.. remote-content::
:repo: ROCm/llvm-project
:path: amd/hipcc/docs/env.rst
:default_branch: amd-staging
:start_line: 14
:tag_prefix: docs/
Environment variables in ROCm libraries
=======================================
Many ROCm libraries define environment variables for specific tuning, debugging,
or behavioral control. The table below provides an overview and links to further
documentation.
.. list-table::
:header-rows: 1
:widths: 30, 70
* - Library
- Purpose of Environment Variables
* - :doc:`hipBLASLt <hipblaslt:reference/env-variables>`
- Manage logging, debugging, offline tuning, and stream-K configuration
for hipBLASLt.
* - :doc:`hipSPARSELt <hipsparselt:reference/env-variables>`
- Control logging, debugging and performance monitoring of hipSPARSELt.
* - :doc:`rocBLAS <rocblas:reference/env-variables>`
- Performance tuning, kernel selection, logging, and debugging for BLAS
operations.
* - :doc:`rocSolver <rocsolver:reference/env_variables>`
- Control logging of rocSolver.
* - :doc:`rocSPARSE <rocsparse:reference/env_variables>`
- Control logging of rocSPARSE.
* - :doc:`MIGraphX <amdmigraphx:reference/MIGraphX-dev-env-vars>`
- Control debugging, testing, and model performance tuning options for
MIGraphX.
* - :doc:`MIOpen <miopen:reference/env_variables>`
- Control MIOpen logging and debugging, find mode and algorithm behavior
and others.
* - :doc:`MIVisionX <mivisionx:reference/MIVisionX-env-variables>`
- Control core OpenVX, GPU/device and debugging/profiling, stitching and
chroma key configurations, file I/O operations, model deployment, and
neural network parameters of MIVisionX.
* - :doc:`RCCL <rccl:api-reference/env-variables>`
- Control the logging, debugging, compiler and assembly behavior, and
cache of RPP.
* - :doc:`RPP <rpp:reference/rpp-env-variables>`
- Logging, debugging, compiler and assembly management, and cache control in RPP
* - `Tensile <https://rocm.docs.amd.com/projects/Tensile/en/latest/src/reference/environment-variables.html>`_
- Enable testing, debugging, and experimental features for Tensile clients and applications
Key single-variable details
===========================
This section provides detailed descriptions, in the standard format, for ROCm
libraries that feature a single, key environment variable (or a very minimal set)
which is documented directly on this page for convenience.
.. _rocalution-vars-detail:
rocALUTION
----------
.. list-table::
:header-rows: 1
:widths: 70,30
* - Environment variable
- Value
* - | ``ROCALUTION_LAYER``
| If set to ``1``, enable file logging. Logs each rocALUTION function call including object constructor/destructor, address of the object, memory allocation, data transfers, all function calls for matrices, vectors, solvers, and preconditioners. The log file is placed in the working directory.
- | ``1`` (Enable trace file logging)
| Default: Not set.

View File

@@ -93,7 +93,7 @@ The following table shows whether a ROCm library is graph-safe.
- ⚠️ (experimental)
*
- `rocThrust <https://github.com/ROCm/rocThrust>`_
- (see :doc:`details <rocthrust:hipgraph-support>`)
-
*
- `rocWMMA <https://github.com/ROCm/rocWMMA>`_
-

View File

@@ -10,6 +10,8 @@
| Version | Release date |
| ------- | ------------ |
| [7.1.1](https://rocm.docs.amd.com/en/docs-7.1.1/) | November 26, 2025 |
| [7.1.0](https://rocm.docs.amd.com/en/docs-7.1.0/) | October 30, 2025 |
| [7.0.2](https://rocm.docs.amd.com/en/docs-7.0.2/) | October 10, 2025 |
| [7.0.1](https://rocm.docs.amd.com/en/docs-7.0.1/) | September 17, 2025 |
| [7.0.0](https://rocm.docs.amd.com/en/docs-7.0.0/) | September 16, 2025 |

Some files were not shown because too many files have changed in this diff Show More