Compare commits

...

7 Commits

Author SHA1 Message Date
amd-hsivasun
7e1dceb77a Run Test 12 2025-10-07 23:02:17 +00:00
amd-hsivasun
90b2c1e777 Run test 14 2025-10-07 22:31:38 +00:00
amd-hsivasun
2b47eb564e Update the rocpydecode Tests 2025-10-07 20:12:29 +00:00
amd-hsivasun
13bead9396 Updated testParameters 2025-10-07 18:50:30 +00:00
amd-hsivasun
38ffa561d3 Update log level in test.yml 2025-10-07 18:38:43 +00:00
amd-hsivasun
5b9a08921f [Ex CI] Set log level to 7 for rocPyDecode 2025-10-06 16:49:52 -04:00
peterjunpark
eeea0d2180 Fix heading levels in pages using embedded templates (#5468) 2025-10-03 13:33:14 -04:00
6 changed files with 53 additions and 17 deletions

View File

@@ -254,6 +254,7 @@ jobs:
parameters:
componentName: rocPyDecode
testDir: $(Agent.BuildDirectory)/rocm/share/rocpydecode/tests
testParameters: '-vv --output-on-failure -R video_decode_python_ffmpeg -m 2 -d 0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -52,6 +52,7 @@ steps:
inputs:
targetType: inline
script: |
export AMD_LOG_LEVEL=7
${{ iif(eq(parameters.os, 'almalinux8'), 'source /opt/rh/gcc-toolset-14/enable', '') }}
${{ parameters.testExecutable }} ${{ parameters.testParameters }} ${{ parameters.extraTestParameters }}
workingDirectory: ${{ parameters.testDir }}

View File

@@ -138,13 +138,12 @@ To test for optimal performance, consult the recommended :ref:`System health ben
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
@@ -153,8 +152,13 @@ system's configuration.
docker pull {{ docker.pull_tag }}
Benchmarking
============
Benchmarking
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to reproduce the
benchmark results:

View File

@@ -25,7 +25,7 @@ It includes the following software components:
{% for docker in dockers %}
{% set jax_version = docker.components["JAX"] %}
.. tab-item:: JAX {{ jax_version }}
.. tab-item:: ``{{ docker.pull_tag }}``
:sync: {{ docker.pull_tag }}
.. list-table::
@@ -132,6 +132,28 @@ This Docker image is optimized for specific model configurations outlined
as follows. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Pull the Docker image
---------------------
Use the following command to pull the Docker image from Docker Hub.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/jax-maxtext-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for docker in dockers %}
{% set jax_version = docker.components["JAX"] %}
.. tab-item:: JAX {{ jax_version }}
:sync: {{ docker.pull_tag }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
.. _amd-maxtext-multi-node-setup-v257:
Multi-node configuration

View File

@@ -105,21 +105,26 @@ system's configuration.
.. _mi300x-amd-primus-megatron-lm-training:
Environment setup
=================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = dockers[0] %}
Environment setup
=================
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on MI300X series GPUs with the ``{{ docker.pull_tag }}`` image.
.. _amd-primus-megatron-lm-requirements:
Download the Docker image
-------------------------
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
{% set docker = dockers[0] %}
1. Use the following command to pull the Docker image from Docker Hub.

View File

@@ -104,22 +104,25 @@ This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt test configurations and run conditions outside those described.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set unified_docker = data.dockers[0] %}
Pull the Docker image
=====================
Use the following command to pull the `Docker image <{{ unified_docker.docker_hub_url }}>`_ from Docker Hub.
.. code-block:: shell
docker pull {{ unified_docker.pull_tag }}
Run training
============
Run training
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
{% set unified_docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between the following two workflows to start benchmarking training.