mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-11 15:47:59 -05:00
Compare commits
7 Commits
docs_env_v
...
amd/hsivau
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7e1dceb77a | ||
|
|
90b2c1e777 | ||
|
|
2b47eb564e | ||
|
|
13bead9396 | ||
|
|
38ffa561d3 | ||
|
|
5b9a08921f | ||
|
|
eeea0d2180 |
@@ -254,6 +254,7 @@ jobs:
|
||||
parameters:
|
||||
componentName: rocPyDecode
|
||||
testDir: $(Agent.BuildDirectory)/rocm/share/rocpydecode/tests
|
||||
testParameters: '-vv --output-on-failure -R video_decode_python_ffmpeg -m 2 -d 0'
|
||||
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
|
||||
parameters:
|
||||
aptPackages: ${{ parameters.aptPackages }}
|
||||
|
||||
@@ -52,6 +52,7 @@ steps:
|
||||
inputs:
|
||||
targetType: inline
|
||||
script: |
|
||||
export AMD_LOG_LEVEL=7
|
||||
${{ iif(eq(parameters.os, 'almalinux8'), 'source /opt/rh/gcc-toolset-14/enable', '') }}
|
||||
${{ parameters.testExecutable }} ${{ parameters.testParameters }} ${{ parameters.extraTestParameters }}
|
||||
workingDirectory: ${{ parameters.testDir }}
|
||||
|
||||
@@ -138,13 +138,12 @@ To test for optimal performance, consult the recommended :ref:`System health ben
|
||||
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
|
||||
system's configuration.
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
|
||||
|
||||
{% set docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
|
||||
Use the following command to pull the Docker image from Docker Hub.
|
||||
@@ -153,8 +152,13 @@ system's configuration.
|
||||
|
||||
docker pull {{ docker.pull_tag }}
|
||||
|
||||
Benchmarking
|
||||
============
|
||||
Benchmarking
|
||||
============
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
|
||||
|
||||
{% set docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
|
||||
Once the setup is complete, choose between two options to reproduce the
|
||||
benchmark results:
|
||||
|
||||
@@ -25,7 +25,7 @@ It includes the following software components:
|
||||
{% for docker in dockers %}
|
||||
{% set jax_version = docker.components["JAX"] %}
|
||||
|
||||
.. tab-item:: JAX {{ jax_version }}
|
||||
.. tab-item:: ``{{ docker.pull_tag }}``
|
||||
:sync: {{ docker.pull_tag }}
|
||||
|
||||
.. list-table::
|
||||
@@ -132,6 +132,28 @@ This Docker image is optimized for specific model configurations outlined
|
||||
as follows. Performance can vary for other training workloads, as AMD
|
||||
doesn’t validate configurations and run conditions outside those described.
|
||||
|
||||
Pull the Docker image
|
||||
---------------------
|
||||
|
||||
Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/jax-maxtext-benchmark-models.yaml
|
||||
|
||||
{% set dockers = data.dockers %}
|
||||
.. tab-set::
|
||||
|
||||
{% for docker in dockers %}
|
||||
{% set jax_version = docker.components["JAX"] %}
|
||||
|
||||
.. tab-item:: JAX {{ jax_version }}
|
||||
:sync: {{ docker.pull_tag }}
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ docker.pull_tag }}
|
||||
|
||||
{% endfor %}
|
||||
|
||||
.. _amd-maxtext-multi-node-setup-v257:
|
||||
|
||||
Multi-node configuration
|
||||
|
||||
@@ -105,21 +105,26 @@ system's configuration.
|
||||
|
||||
.. _mi300x-amd-primus-megatron-lm-training:
|
||||
|
||||
Environment setup
|
||||
=================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
|
||||
|
||||
{% set dockers = data.dockers %}
|
||||
{% set docker = dockers[0] %}
|
||||
|
||||
Environment setup
|
||||
=================
|
||||
|
||||
Use the following instructions to set up the environment, configure the script to train models, and
|
||||
reproduce the benchmark results on MI300X series GPUs with the ``{{ docker.pull_tag }}`` image.
|
||||
|
||||
.. _amd-primus-megatron-lm-requirements:
|
||||
|
||||
Download the Docker image
|
||||
-------------------------
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
|
||||
|
||||
{% set dockers = data.dockers %}
|
||||
{% set docker = dockers[0] %}
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
|
||||
@@ -104,22 +104,25 @@ This Docker image is optimized for specific model configurations outlined
|
||||
below. Performance can vary for other training workloads, as AMD
|
||||
doesn’t test configurations and run conditions outside those described.
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
Use the following command to pull the `Docker image <{{ unified_docker.docker_hub_url }}>`_ from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ unified_docker.pull_tag }}
|
||||
|
||||
Run training
|
||||
============
|
||||
Run training
|
||||
============
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
|
||||
Once the setup is complete, choose between the following two workflows to start benchmarking training.
|
||||
|
||||
Reference in New Issue
Block a user