Compare commits
220 Commits
rocm-4.1.0
...
roc-5.2.x
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
468310d53f | ||
|
|
12a8174f06 | ||
|
|
f75183b8aa | ||
|
|
ce33a75e3f | ||
|
|
8a1231e89b | ||
|
|
2a5f42bb44 | ||
|
|
ddc1379bff | ||
|
|
7356984836 | ||
|
|
35eb9be40b | ||
|
|
27dfc3a7f7 | ||
|
|
eb297f632b | ||
|
|
0e81c2defb | ||
|
|
42561c26cb | ||
|
|
c7b5f4b692 | ||
|
|
3352334b03 | ||
|
|
340a05ed47 | ||
|
|
d091ae2f0e | ||
|
|
29a1da2d15 | ||
|
|
f453061217 | ||
|
|
22d79a942f | ||
|
|
2632c43ee6 | ||
|
|
25a3b3eff4 | ||
|
|
e79d3447e8 | ||
|
|
0c37b6c89c | ||
|
|
9ae47c256e | ||
|
|
3095164bff | ||
|
|
33f6296b58 | ||
|
|
c3bf77aeff | ||
|
|
6d9979891b | ||
|
|
b7c366c713 | ||
|
|
6b4492a5ab | ||
|
|
8ee063fdc4 | ||
|
|
4e5dd3ed2b | ||
|
|
8d44096bd9 | ||
|
|
f034733da2 | ||
|
|
d4879fdec4 | ||
|
|
60957c84b7 | ||
|
|
a8ef40fbf5 | ||
|
|
3859eef2a9 | ||
|
|
4915438362 | ||
|
|
c4ce059e12 | ||
|
|
ca4d4597ba | ||
|
|
418e8bfda6 | ||
|
|
82477df454 | ||
|
|
075562b1f2 | ||
|
|
74d067032e | ||
|
|
526846dc7e | ||
|
|
a47030ca10 | ||
|
|
fac29ca466 | ||
|
|
986ba19e80 | ||
|
|
e00f7f6d59 | ||
|
|
cac8ecf2bc | ||
|
|
2653e081e2 | ||
|
|
34eb2a85f3 | ||
|
|
164129954e | ||
|
|
eaf8e74802 | ||
|
|
403c81a83e | ||
|
|
ced195c62c | ||
|
|
3486206b09 | ||
|
|
c379917e1c | ||
|
|
0a60a3b256 | ||
|
|
99a3476a5e | ||
|
|
ad3a774274 | ||
|
|
5bb9c86fb6 | ||
|
|
0a0b750e0e | ||
|
|
c6ec9d7b55 | ||
|
|
a1eac48dea | ||
|
|
94f4488904 | ||
|
|
afc1a33ad7 | ||
|
|
9b6fb663c9 | ||
|
|
7d78a111b4 | ||
|
|
f04316efdb | ||
|
|
0083f955a7 | ||
|
|
237e662486 | ||
|
|
475711bb7d | ||
|
|
dc2b00f43d | ||
|
|
c0cd1b72ce | ||
|
|
95493f625c | ||
|
|
c3f91afb26 | ||
|
|
d827b836b2 | ||
|
|
99d5fb03e0 | ||
|
|
1f6c308006 | ||
|
|
bb3aa02a86 | ||
|
|
9b82c422d0 | ||
|
|
8eed074e8a | ||
|
|
53db303dd3 | ||
|
|
36ec27d9a4 | ||
|
|
d78bb0121b | ||
|
|
f72c130e06 | ||
|
|
c058e7a1c9 | ||
|
|
0d12925fe9 | ||
|
|
f088317e44 | ||
|
|
ca8f60e96f | ||
|
|
ba8c56abdc | ||
|
|
18410afcd7 | ||
|
|
c637c2a964 | ||
|
|
5a56a31fac | ||
|
|
82b35be1ee | ||
|
|
03fb0f863c | ||
|
|
c730ade1e3 | ||
|
|
164a386ed6 | ||
|
|
db517138f6 | ||
|
|
bc63e35725 | ||
|
|
c9a8556171 | ||
|
|
91f193a510 | ||
|
|
b2fac149b5 | ||
|
|
1d23bb0ec6 | ||
|
|
fedfa50634 | ||
|
|
51ea894667 | ||
|
|
63b0e6d273 | ||
|
|
f1383c5d16 | ||
|
|
f3ec7b4720 | ||
|
|
9492fc9b0d | ||
|
|
c103fe233f | ||
|
|
63c16a229e | ||
|
|
18aa89804f | ||
|
|
65a4524834 | ||
|
|
b04ab30e81 | ||
|
|
4c8787087a | ||
|
|
7cd85779c4 | ||
|
|
c676ff480e | ||
|
|
6d19f5b6c1 | ||
|
|
4679e8ac87 | ||
|
|
8a3209f985 | ||
|
|
79d0d00b2a | ||
|
|
db5121cdfe | ||
|
|
035f4995bb | ||
|
|
f63e3f9ce1 | ||
|
|
4e56ed7dc3 | ||
|
|
2faf5b6ab7 | ||
|
|
e69b7e6f71 | ||
|
|
d53ffd1c89 | ||
|
|
e177599de1 | ||
|
|
9fc1ba3970 | ||
|
|
520764faa3 | ||
|
|
7d0b53c87f | ||
|
|
c3a8ecd0c5 | ||
|
|
21cf37b2df | ||
|
|
f4419a3d1c | ||
|
|
5ffdcf84ab | ||
|
|
085295daea | ||
|
|
cf5cec2580 | ||
|
|
e7a93ae3f5 | ||
|
|
e3b7d2f39d | ||
|
|
0c4565d913 | ||
|
|
313a589132 | ||
|
|
1caf5514e8 | ||
|
|
d029ad24cf | ||
|
|
ca6638d917 | ||
|
|
5cba920022 | ||
|
|
cefc8ef1d7 | ||
|
|
b71c5705a2 | ||
|
|
977a1d14cd | ||
|
|
3ab60d1326 | ||
|
|
4b5b13294e | ||
|
|
ce66b14d9e | ||
|
|
01f63f546f | ||
|
|
72eab2779e | ||
|
|
8a366db3d7 | ||
|
|
8267a84345 | ||
|
|
f7b3a38d49 | ||
|
|
12e3bb376b | ||
|
|
a44e82f263 | ||
|
|
9af988ffc8 | ||
|
|
5fed386cf1 | ||
|
|
d729428302 | ||
|
|
8611c5f450 | ||
|
|
ae0b56d029 | ||
|
|
3862c69b09 | ||
|
|
be34f32307 | ||
|
|
08c9cce749 | ||
|
|
a83a7c9206 | ||
|
|
71faa9c81f | ||
|
|
6b021edb23 | ||
|
|
3936d236e6 | ||
|
|
dbcb26756d | ||
|
|
96de448de6 | ||
|
|
ee0bc562e6 | ||
|
|
376b8673b7 | ||
|
|
e9147a9103 | ||
|
|
fab1a697f0 | ||
|
|
a369e642b8 | ||
|
|
9101972654 | ||
|
|
f3ba8df53d | ||
|
|
ba7a87a2dc | ||
|
|
df6d746d50 | ||
|
|
2b2bab5bf3 | ||
|
|
5ec9b12f99 | ||
|
|
803148affd | ||
|
|
9275fb6298 | ||
|
|
b6ae3f145e | ||
|
|
f80eefc965 | ||
|
|
c5d91843a7 | ||
|
|
733a9c097c | ||
|
|
ff2b3f8a23 | ||
|
|
5a4cf1cee1 | ||
|
|
dccf5ca356 | ||
|
|
8b20bd56a6 | ||
|
|
65cb10e5e8 | ||
|
|
ac2625dd26 | ||
|
|
3716310e93 | ||
|
|
2dee17f7d6 | ||
|
|
61e8b0d70e | ||
|
|
8a3304a8d9 | ||
|
|
55488a9424 | ||
|
|
ff4a1d4059 | ||
|
|
4b2d93fb7e | ||
|
|
061ccd21b8 | ||
|
|
0ed1bd9f8e | ||
|
|
856c74de55 | ||
|
|
12c6f60e45 | ||
|
|
897b1e8e2d | ||
|
|
67bd7501c1 | ||
|
|
d62f1c4247 | ||
|
|
c3d5bc6406 | ||
|
|
db45731729 | ||
|
|
34552e95e0 | ||
|
|
8d0c516c5c | ||
|
|
5cba919767 | ||
|
|
bb0022e972 |
1
.github/CODEOWNERS
vendored
Normal file
@@ -0,0 +1 @@
|
||||
* @saadrahim
|
||||
761
CHANGELOG.md
Normal file
@@ -0,0 +1,761 @@
|
||||
Changelog
|
||||
------------------
|
||||
# AMD ROCm™ Releases
|
||||
|
||||
## AMD ROCm™ V5.2 Release
|
||||
|
||||
AMD ROCm v5.2 is now released. The release documentation is available at https://docs.amd.com.
|
||||
|
||||
## AMD ROCm™ V5.1.3 Release
|
||||
|
||||
AMD ROCm v5.1.3 is now released. The release documentation is available at https://docs.amd.com.
|
||||
|
||||
## AMD ROCm™ V5.1.1 Release
|
||||
|
||||
AMD ROCm v5.1.1 is now released. The release documentation is available at https://docs.amd.com.
|
||||
|
||||
## AMD ROCm™ V5.1 Release
|
||||
|
||||
AMD ROCm v5.1 is now released. The release documentation is available at https://docs.amd.com.
|
||||
|
||||
|
||||
## AMD ROCm™ v5.0.2 Release Notes
|
||||
|
||||
### Fixed Defects in This Release
|
||||
|
||||
The following defects are fixed in the ROCm v5.0.2 release.
|
||||
|
||||
#### Issue with hostcall Facility in HIP Runtime
|
||||
|
||||
In ROCm v5.0, when using the “assert()” call in a HIP kernel, the compiler may sometimes fail to emit kernel metadata related to the hostcall facility, which results in incomplete initialization of the hostcall facility in the HIP runtime. This can cause the HIP kernel to crash when it attempts to execute the “assert()” call.
|
||||
The root cause was an incorrect check in the compiler to determine whether the hostcall facility is required by the kernel. This is fixed in the ROCm v5.0.2 release.
|
||||
The resolution includes a compiler change, which emits the required metadata by default, unless the compiler can prove that the hostcall facility is not required by the kernel. This ensures that the “assert()” call never fails.
|
||||
|
||||
**Note**: This fix may lead to breakage in some OpenMP offload use cases, which use print inside a target region and result in an abort in device code. The issue will be fixed in a future release.
|
||||
|
||||
#### Compatibility Matrix Updates to ROCm Deep Learning Guide
|
||||
|
||||
The compatibility matrix in the AMD Deep Learning Guide is updated for ROCm v5.0.2.
|
||||
|
||||
For more information and documentation updates, refer to https://docs.amd.com.
|
||||
|
||||
|
||||
|
||||
## AMD ROCm™ v5.0.1 Release Notes
|
||||
|
||||
### Deprecations and Warnings
|
||||
|
||||
#### Refactor of HIPCC/HIPCONFIG
|
||||
|
||||
In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target compiler options, target platform, compiler, and runtime appropriately.
|
||||
In ROCm v5.0.1, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of the hipcc and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as experimental. ROCm plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release. The existing hipcc and hipconfig Perl scripts are renamed to hipcc.pl and hipconfig.pl respectively. New top-level hipcc and hipconfig Perl scripts are created, which can switch between the Perl script or the compiled binary based on the environment variable HIPCC_USE_PERL_SCRIPT.
|
||||
In ROCm 5.0.1, by default, this environment variable is set to use hipcc and hipconfig through the Perl scripts.
|
||||
Subsequently, Perl scripts will no longer be available in ROCm in a future release.
|
||||
|
||||
|
||||
### ROCM DOCUMENTATION UPDATES FOR ROCM 5.0.1
|
||||
|
||||
* ROCm Downloads Guide
|
||||
|
||||
* ROCm Installation Guide
|
||||
|
||||
* ROCm Release Notes
|
||||
|
||||
For more information, see https://docs.amd.com.
|
||||
|
||||
|
||||
|
||||
## AMD ROCm™ v5.0 Release Notes
|
||||
|
||||
|
||||
# ROCm Installation Updates
|
||||
|
||||
This document describes the features, fixed issues, and information about downloading and installing the AMD ROCm™ software.
|
||||
|
||||
It also covers known issues and deprecations in this release.
|
||||
|
||||
## Notice for Open-source and Closed-source ROCm Repositories in Future Releases
|
||||
|
||||
To make a distinction between open-source and closed-source components, all ROCm repositories will consist of sub-folders in future releases.
|
||||
|
||||
- All open-source components will be placed in the `base-url/<rocm-ver>/main` sub-folder
|
||||
- All closed-source components will reside in the `base-url/<rocm-ver>/proprietary` sub-folder
|
||||
|
||||
## List of Supported Operating Systems
|
||||
|
||||
The AMD ROCm platform supports the following operating systems:
|
||||
|
||||
| **OS-Version (64-bit)** | **Kernel Versions** |
|
||||
| --- | --- |
|
||||
| CentOS 8.3 | 4.18.0-193.el8 |
|
||||
| CentOS 7.9 | 3.10.0-1127 |
|
||||
| RHEL 8.5 | 4.18.0-348.7.1.el8\_5.x86\_64 |
|
||||
| RHEL 8.4 | 4.18.0-305.el8.x86\_64 |
|
||||
| RHEL 7.9 | 3.10.0-1160.6.1.el7 |
|
||||
| SLES 15 SP3 | 5.3.18-59.16-default |
|
||||
| Ubuntu 20.04.3 | 5.8.0 LTS / 5.11 HWE |
|
||||
| Ubuntu 18.04.5 [5.4 HWE kernel] | 5.4.0-71-generic |
|
||||
|
||||
### Support for RHEL v8.5
|
||||
|
||||
This release extends support for RHEL v8.5.
|
||||
|
||||
### Supported GPUs
|
||||
|
||||
#### Radeon Pro V620 and W6800 Workstation GPUs
|
||||
|
||||
This release extends ROCm support for Radeon Pro V620 and W6800 Workstation GPUs.
|
||||
|
||||
- SRIOV virtualization support for Radeon Pro V620
|
||||
- KVM Hypervisor (1VF support only) on Ubuntu Host OS with Ubuntu, CentOs, and RHEL Guest
|
||||
- Support for ROCm-SMI in an SRIOV environment. For more details, refer to the ROCm SMI API documentation.
|
||||
|
||||
**Note:** Radeon Pro v620 is not supported on SLES.
|
||||
|
||||
## ROCm Installation Updates for ROCm v5.0
|
||||
|
||||
This release has the following ROCm installation enhancements.
|
||||
|
||||
### Support for Kernel Mode Driver
|
||||
|
||||
In this release, users can install the kernel-mode driver using the Installer method. Some of the ROCm-specific use cases that the installer currently supports are:
|
||||
|
||||
- OpenCL (ROCr/KFD based) runtime
|
||||
- HIP runtimes
|
||||
- ROCm libraries and applications
|
||||
- ROCm Compiler and device libraries
|
||||
- ROCr runtime and thunk
|
||||
- Kernel-mode driver
|
||||
|
||||
### Support for Multi-version ROCm Installation and Uninstallation
|
||||
|
||||
Users now can install multiple ROCm releases simultaneously on a system using the newly introduced installer script and package manager install mechanism.
|
||||
|
||||
Users can also uninstall multi-version ROCm releases using the `amdgpu-uninstall` script and package manager.
|
||||
|
||||
### Support for Updating Information on Local Repositories
|
||||
|
||||
In this release, the `amdgpu-install` script automates the process of updating local repository information before proceeding to ROCm installation.
|
||||
|
||||
### Support for Release Upgrades
|
||||
|
||||
Users can now upgrade the existing ROCm installation to specific or latest ROCm releases.
|
||||
|
||||
For more details, refer to the AMD ROCm Installation Guide v5.0.
|
||||
|
||||
# AMD ROCm V5.0 Documentation Updates
|
||||
|
||||
## New AMD ROCm Information Portal – ROCm v4.5 and Above
|
||||
|
||||
Beginning ROCm release v5.0, AMD ROCm documentation has a new portal at https://docs.amd.com. This portal consists of ROCm documentation v4.5 and above.
|
||||
|
||||
For documentation prior to ROCm v4.5, you may continue to access https://rocmdocs.amd.com.
|
||||
|
||||
## Documentation Updates for ROCm 5.0
|
||||
|
||||
### Deployment Tools
|
||||
|
||||
#### ROCm Data Center Tool Documentation Updates
|
||||
|
||||
- ROCm Data Center Tool User Guide
|
||||
- ROCm Data Center Tool API Guide
|
||||
|
||||
#### ROCm System Management Interface Updates
|
||||
|
||||
- System Management Interface Guide
|
||||
- System Management Interface API Guide
|
||||
|
||||
#### ROCm Command Line Interface Updates
|
||||
|
||||
- Command Line Interface Guide
|
||||
|
||||
### Machine Learning/AI Documentation Updates
|
||||
|
||||
- Deep Learning Guide
|
||||
- MIGraphX API Guide
|
||||
- MIOpen API Guide
|
||||
- MIVisionX API Guide
|
||||
|
||||
### ROCm Libraries Documentation Updates
|
||||
|
||||
- hipSOLVER User Guide
|
||||
- RCCL User Guide
|
||||
- rocALUTION User Guide
|
||||
- rocBLAS User Guide
|
||||
- rocFFT User Guide
|
||||
- rocRAND User Guide
|
||||
- rocSOLVER User Guide
|
||||
- rocSPARSE User Guide
|
||||
- rocThrust User Guide
|
||||
|
||||
### Compilers and Tools
|
||||
|
||||
#### ROCDebugger Documentation Updates
|
||||
|
||||
- ROCDebugger User Guide
|
||||
- ROCDebugger API Guide
|
||||
|
||||
#### ROCTracer
|
||||
|
||||
- ROCTracer User Guide
|
||||
- ROCTracer API Guide
|
||||
|
||||
#### Compilers
|
||||
|
||||
- AMD Instinct High Performance Computing and Tuning Guide
|
||||
- AMD Compiler Reference Guide
|
||||
|
||||
#### HIPify Documentation
|
||||
|
||||
- HIPify User Guide
|
||||
- HIP Supported CUDA API Reference Guide
|
||||
|
||||
#### ROCm Debug Agent
|
||||
|
||||
- ROCm Debug Agent Guide
|
||||
- System Level Debug Guide
|
||||
- ROCm Validation Suite
|
||||
|
||||
### Programming Models Documentation
|
||||
|
||||
#### HIP Documentation
|
||||
|
||||
- HIP Programming Guide
|
||||
- HIP API Guide
|
||||
- HIP FAQ Guide
|
||||
|
||||
#### OpenMP Documentation
|
||||
|
||||
- OpenMP Support Guide
|
||||
|
||||
### ROCm Glossary
|
||||
|
||||
- ROCm Glossary – Terms and Definitions
|
||||
|
||||
## AMD ROCm Legacy Documentation Links – ROCm v4.3 and Prior
|
||||
|
||||
- For AMD ROCm documentation, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/
|
||||
|
||||
- For installation instructions on supported platforms, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
|
||||
|
||||
- For AMD ROCm binary structure, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Installation_Guide/Software-Stack-for-AMD-GPU.html
|
||||
|
||||
- For AMD ROCm release history, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Current_Release_Notes/ROCm-Version-History.html
|
||||
|
||||
# What's New in This Release
|
||||
|
||||
## HIP Enhancements
|
||||
|
||||
The ROCm v5.0 release consists of the following HIP enhancements.
|
||||
|
||||
### HIP Installation Guide Updates
|
||||
|
||||
The HIP Installation Guide is updated to include building HIP from source on the NVIDIA platform.
|
||||
|
||||
Refer to the HIP Installation Guide v5.0 for more details.
|
||||
|
||||
### Managed Memory Allocation
|
||||
|
||||
Managed memory, including the `__managed__` keyword, is now supported in the HIP combined host/device compilation. Through unified memory allocation, managed memory allows data to be shared and accessible to both the CPU and GPU using a single pointer. The allocation is managed by the AMD GPU driver using the Linux Heterogeneous Memory Management (HMM) mechanism. The user can call managed memory API hipMallocManaged to allocate a large chunk of HMM memory, execute kernels on a device, and fetch data between the host and device as needed.
|
||||
|
||||
**Note:** In a HIP application, it is recommended to do a capability check before calling the managed memory APIs. For example,
|
||||
|
||||
```c
|
||||
int managed_memory = 0;
|
||||
HIPCHECK(hipDeviceGetAttribute(&managed_memory, hipDeviceAttributeManagedMemory, p_gpuDevice));
|
||||
|
||||
if (!managed_memory) {
|
||||
printf ("info: managed memory access not supported on the device %d\n Skipped\n", p_gpuDevice);
|
||||
} else {
|
||||
HIPCHECK(hipSetDevice(p_gpuDevice));
|
||||
HIPCHECK(hipMallocManaged(&Hmm, N * sizeof(T)));
|
||||
. . .
|
||||
}
|
||||
```
|
||||
|
||||
**Note:** The managed memory capability check may not be necessary; however, if HMM is not supported, managed malloc will fall back to using system memory. Other managed memory API calls will, then, have
|
||||
|
||||
Refer to the HIP API documentation for more details on managed memory APIs.
|
||||
|
||||
For the application, see [hipMallocManaged.cpp](https://github.com/ROCm-Developer-Tools/HIP/blob/rocm-4.5.x/tests/src/runtimeApi/memory/hipMallocManaged.cpp)
|
||||
|
||||
## New Environment Variable
|
||||
|
||||
The following new environment variable is added in this release:
|
||||
|
||||
| **Environment Variable** | **Value** | **Description** |
|
||||
| --- | --- | --- |
|
||||
| **HSA\_COOP\_CU\_COUNT** | 0 or 1 (default is 0) | Some processors support more compute units than can reliably be used in a cooperative dispatch. Setting the environment variable HSA\_COOP\_CU\_COUNT to 1 will cause ROCr to return the correct CU count for cooperative groups through the HSA\_AMD\_AGENT\_INFO\_COOPERATIVE\_COMPUTE\_UNIT\_COUNT attribute of hsa\_agent\_get\_info(). Setting HSA\_COOP\_CU\_COUNT to other values, or leaving it unset, will cause ROCr to return the same CU count for the attributes HSA\_AMD\_AGENT\_INFO\_COOPERATIVE\_COMPUTE\_UNIT\_COUNT and HSA\_AMD\_AGENT\_INFO\_COMPUTE\_UNIT\_COUNT. Future ROCm releases will make HSA\_COOP\_CU\_COUNT=1 the default.
|
||||
|
|
||||
|
||||
## ROCm Math and Communication Libraries
|
||||
|
||||
| **Library** | **Changes** |
|
||||
| --- | --- |
|
||||
| **rocBLAS** | **Added** <ul><li>Added rocblas\_get\_version\_string\_size convenience function</li><li>Added rocblas\_xtrmm\_outofplace, an out-of-place version of rocblas\_xtrmm</li><li>Added hpl and trig initialization for gemm\_ex to rocblas-bench</li><li>Added source code gemm. It can be used as an alternative to Tensile for debugging and development</li><li>Added option `ROCM_MATHLIBS_API_USE_HIP_COMPLEX` to opt-in to use hipFloatComplex and hipDoubleComplex</li></ul> **Optimizations** <ul><li>Improved performance of non-batched and batched single-precision GER for size m > 1024. Performance enhanced by 5-10% measured on a MI100 (gfx908) GPU.</li><li>Improved performance of non-batched and batched HER for all sizes and data types. Performance enhanced by 2-17% measured on a MI100 (gfx908) GPU.</li></ul> **Changed** <ul><li>Instantiate templated rocBLAS functions to reduce size of librocblas.so</li><li>Removed static library dependency on msgpack</li><li>Removed boost dependencies for clients</li></ul> **Fixed** <ul><li>Option to install script to build only rocBLAS clients with a pre-built rocBLAS library</li><li>Correctly set output of nrm2\_batched\_ex and nrm2\_strided\_batched\_ex when given bad input</li><li>Fix for dgmm with side == rocblas\_side\_left and a negative incx</li><li>Fixed out-of-bounds read for small trsm</li><li>Fixed numerical checking for tbmv\_strided\_batched</li></ul> |
|
||||
| | |
|
||||
| **hipBLAS** | **Added** <ul><li>Added rocSOLVER functions to hipblas-bench</li><li>Added option `ROCM_MATHLIBS_API_USE_HIP_COMPLEX` to opt-in to use hipFloatComplex and hipDoubleComplex</li><li>Added compilation warning for future trmm changes</li><li>Added documentation to hipblas.h</li><li>Added option to forgo pivoting for getrf and getri when ipiv is nullptr</li><li>Added code coverage option</li></ul> **Fixed** <ul><li>Fixed use of incorrect `HIP_PATH` when building from source.</li><li>Fixed windows packaging</li><li>Allowing negative increments in hipblas-bench</li><li>Removed boost dependency</li></ul> |
|
||||
| | |
|
||||
| **rocFFT** | **Changed** <ul><li>Enabled runtime compilation of single FFT kernels > length 1024.</li><li>Re-aligned split device library into 4 roughly equal libraries.</li><li>Implemented the FuseShim framework to replace the original OptimizePlan</li><li>Implemented the generic buffer-assignment framework. The buffer assignment is no longer performed by each node. A generic algorithm is designed to test and pick the best assignment path. With the help of FuseShim, more kernel-fusions are achieved.</li><li>Do not read the imaginary part of the DC and Nyquist modes for even-length complex-to-real transforms.</li></ul> **Optimizations** <ul><li>Optimized twiddle-conjugation; complex-to-complex inverse transforms have similar performance to foward transforms now.</li><li>Improved performance of single-kernel small 2D transforms.</li></ul> |
|
||||
| | |
|
||||
| **hipFFT** | **Fixed** <ul><li>Fixed incorrect reporting of rocFFT version.</li></ul> **Changed** <ul><li>Unconditionally enabled callback functionality. On the CUDA backend, callbacks only run correctly when hipFFT is built as a static library, and is linked against the static cuFFT library.</li></ul> |
|
||||
| | |
|
||||
| **rocSPARSE** | **Added** <ul><li>csrmv, coomv, ellmv, hybmv for (conjugate) transposed matricescsrmv for symmetric matrices</li></ul> **Changed** <ul><li>spmm\_ex is now deprecated and will be removed in the next major release</li></ul> **Improved** <ul><li>Optimization for gtsv</li></ul> |
|
||||
| | |
|
||||
| **hipSPARSE** | **Added** <ul><li>Added (conjugate) transpose support for csrmv, hybmv and spmv routines</li></ul> |
|
||||
| | |
|
||||
| **rocALUTION** | **Changed** <ul><li>Removed deprecated GlobalPairwiseAMG class, please use PairwiseAMG instead.</li></ul> **Improved** <ul><li>Improved documentation</li></ul> |
|
||||
| | |
|
||||
| **rocTHRUST** | **Updates** <ul><li>Updated to match upstream Thrust 1.13.0</li><li>Updated to match upstream Thrust 1.14.0</li><li>Added async scan</li></ul> **Changed** <ul><li>Scan algorithms: inclusive\_scan now uses the input-type as accumulator-type, exclusive\_scan uses initial-value-type. This particularly changes behaviour of small-size input types with large-size output types (e.g. short input, int output). And low-res input with high-res output (e.g. float input, double output)</li></ul> |
|
||||
| | |
|
||||
| **rocSOLVER** | **Added** <ul><li>Symmetric matrix factorizations: <ul><li>LASYF</li><li>SYTF2, SYTRF (with batched and strided\_batched versions)</li></ul><li>Added rocsolver\_get\_version\_string\_size to help with version string queries</li><li>Added rocblas\_layer\_mode\_ex and the ability to print kernel calls in the trace and profile logs</li><li>Expanded batched and strided\_batched sample programs.</li></ul> **Optimizations** <ul><li>Improved general performance of LU factorization</li><li>Increased parallelism of specialized kernels when compiling from source, reducing build times on multi-core systems.</li></ul> **Changed** <ul><li>The rocsolver-test client now prints the rocSOLVER version used to run the tests, rather than the version used to build them</li><li>The rocsolver-bench client now prints the rocSOLVER version used in the benchmark</li></ul> **Fixed** <ul><li>Added missing stdint.h include to rocsolver.h</li></ul> |
|
||||
| | |
|
||||
| **hipSOLVER** | **Added** <ul><li>Added SYTRF functions: hipsolverSsytrf\_bufferSize, hipsolverDsytrf\_bufferSize, hipsolverCsytrf\_bufferSize, hipsolverZsytrf\_bufferSize, hipsolverSsytrf, hipsolverDsytrf, hipsolverCsytrf, hipsolverZsytrf</li></ul> **Fixed** <ul><li>Fixed use of incorrect `HIP_PATH` when building from source</li></ul> |
|
||||
| | |
|
||||
| **RCCL** | **Added** <ul><li>Compatibility with NCCL 2.10.3</li></ul> **Known issues** <ul><li>Managed memory is not currently supported for clique-based kernels</li></ul> |
|
||||
| | |
|
||||
| **hipCUB** | **Fixed** <ul><li>Added missing includes to hipcub.hpp</li></ul> **Added** <ul><li>Bfloat16 support to test cases (device\_reduce & device\_radix\_sort)</li><li>Device merge sort</li><li>Block merge sort</li><li>API update to CUB 1.14.0</li></ul> **Changed** <ul><li>The SetupNVCC.cmake automatic target selector select all of the capabalities of all available card for NVIDIA backend.</li></ul> |
|
||||
| | |
|
||||
| **rocPRIM** | **Fixed** <ul><li>Enable bfloat16 tests and reduce threshold for bfloat16</li><li>Fix device scan limit\_size feature</li><li>Non-optimized builds no longer trigger local memory limit errors</li></ul> **Added** <ul><li>Scan size limit feature</li><li>Reduce size limit feature</li><li>Transform size limit feature</li><li>Add block\_load\_striped and block\_store\_striped</li><li>Add gather\_to\_blocked to gather values from other threads into a blocked arrangement</li><li>The block sizes for device merge sorts initial block sort and its merge steps are now separate in its kernel config (the block sort step supports multiple items per thread)</li></ul> **Changed** <ul><li>size\_limit for scan, reduce and transform can now be set in the config struct instead of a parameter</li><li>device\_scan and device\_segmented\_scan: inclusive\_scan now uses the input-type as accumulator-type, exclusive\_scan uses initial-value-type. This particularly changes behaviour of small-size input types with large-size output types (e.g. short input, int output) and low-res input with high-res output (e.g. float input, double output)</li><li>Revert old Fiji workaround, because the issue was solved at compiler side</li><li>Update README cmake minimum version number</li><li>Block sort support multiple items per thread. Currently only powers of two block sizes, and items per threads are supported and only for full blocks</li><li>Bumped the minimum required version of CMake to 3.16</li></ul> **Known issues** <ul><li>Unit tests may soft hang on MI200 when running in hipMallocManaged mode.</li><li>device\_segmented\_radix\_sort, device\_scan unit tests failing for HIP on WindowsReduceEmptyInput cause random failure with bfloat16</li><li>Managed memory is not currently supported for clique-based kernels</li></ul> |
|
||||
|
||||
## System Management Interface
|
||||
|
||||
### Clock Throttling for GPU Events
|
||||
|
||||
This feature lists GPU events as they occur in real-time and can be used with _kfdtest_ to produce _vm\_fault_ events for testing.
|
||||
|
||||
The command can be called with either " `-e` or `--showevents` like this:
|
||||
|
||||
-e [EVENT [EVENT ...]], --showevents [EVENT [EVENT ...]] Show event list
|
||||
|
||||
Where `EVENT` is any list combination of `VM_FAULT`, `THERMAL_THROTTLE`, or `GPU_RESET` and is NOT case sensitive.
|
||||
|
||||
**Note:** If no event arguments are passed, all events will be watched by default.
|
||||
|
||||
#### CLI Commands
|
||||
|
||||
```
|
||||
$ rocm-smi --showevents vm_fault thermal_throttle gpu_reset
|
||||
|
||||
======================= ROCm System Management Interface =======================
|
||||
================================= Show Events ==================================
|
||||
press 'q' or 'ctrl + c' to quit
|
||||
DEVICE TIME TYPE DESCRIPTION
|
||||
|
||||
============================= End of ROCm SMI Log ==============================
|
||||
```
|
||||
|
||||
(Run kfdtest in another window to test for vm\_fault events.)
|
||||
|
||||
**Note:** Unlike other rocm-smi CLI commands, this command does not quit unless specified by the user. Users may press either `q` or `ctrl + c` to quit.
|
||||
|
||||
### Display XGMI Bandwidth Between Nodes
|
||||
|
||||
The _rsmi\_minmax\_bandwidth\_get_ API reads the HW Topology file and displays bandwidth (min-max) between any two NUMA nodes in a matrix format.
|
||||
|
||||
The Command Line Interface (CLI) command can be called as follows:
|
||||
|
||||
```
|
||||
$ rocm-smi --shownodesbw
|
||||
|
||||
======================= ROCm System Management Interface =======================
|
||||
================================== Bandwidth ===================================
|
||||
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
|
||||
GPU0 N/A 50000-200000 50000-50000 0-0 0-0 0-0 50000-100000 0-0
|
||||
GPU1 50000-200000 N/A 0-0 50000-50000 0-0 50000-50000 0-0 0-0
|
||||
GPU2 50000-50000 0-0 N/A 50000-200000 50000-100000 0-0 0-0 0-0
|
||||
GPU3 0-0 50000-50000 50000-200000 N/A 0-0 0-0 0-0 50000-50000
|
||||
GPU4 0-0 0-0 50000-100000 0-0 N/A 50000-200000 50000-50000 0-0
|
||||
GPU5 0-0 50000-50000 0-0 0-0 50000-200000 N/A 0-0 50000-50000
|
||||
GPU6 50000-100000 0-0 0-0 0-0 50000-50000 0-0 N/A 50000-200000
|
||||
GPU7 0-0 0-0 0-0 50000-50000 0-0 50000-50000 50000-200000 N/A
|
||||
Format: min-max; Units: mps
|
||||
============================= End of ROCm SMI Log ==============================
|
||||
```
|
||||
|
||||
The sample output above shows the maximum theoretical xgmi bandwidth between 2 numa nodes,
|
||||
|
||||
**Note:** "0-0" min-max bandwidth indicates devices are not connected directly.
|
||||
|
||||
### P2P Connection Status
|
||||
|
||||
The _rsmi\_is\_p2p\_accessible_ API returns "True" if P2P can be implemented between two nodes, and returns "False" if P2P cannot be implemented between the two nodes.
|
||||
|
||||
The Command Line Interface command can be called as follows:
|
||||
|
||||
rocm-smi --showtopoaccess
|
||||
|
||||
Sample Output:
|
||||
|
||||
```
|
||||
$ rocm-smi --showtopoaccess
|
||||
======================= ROCm System Management Interface =======================
|
||||
===================== Link accessibility between two GPUs ======================
|
||||
GPU0 GPU1
|
||||
GPU0 True True
|
||||
GPU1 True True
|
||||
============================= End of ROCm SMI Log ==============================
|
||||
```
|
||||
|
||||
# Breaking Changes
|
||||
|
||||
## Runtime Breaking Change
|
||||
|
||||
Re-ordering of the enumerated type in hip\_runtime\_api.h to better match NV. See below for the difference in enumerated types.
|
||||
|
||||
ROCm software will be affected if any of the defined enums listed below are used in the code. Applications built with ROCm v5.0 enumerated types will work with a ROCm 4.5.2 driver. However, an undefined behavior error will occur with a ROCm v4.5.2 application that uses these enumerated types with a ROCm 5.0 runtime.
|
||||
|
||||
```c
|
||||
typedef enum hipDeviceAttribute_t {
|
||||
hipDeviceAttributeMaxThreadsPerBlock, // Maximum number of threads per block.
|
||||
hipDeviceAttributeMaxBlockDimX, // Maximum x-dimension of a block.
|
||||
hipDeviceAttributeMaxBlockDimY, // Maximum y-dimension of a block.
|
||||
hipDeviceAttributeMaxBlockDimZ, // Maximum z-dimension of a block.
|
||||
hipDeviceAttributeMaxGridDimX, // Maximum x-dimension of a grid.
|
||||
hipDeviceAttributeMaxGridDimY, // Maximum y-dimension of a grid.
|
||||
hipDeviceAttributeMaxGridDimZ, // Maximum z-dimension of a grid.
|
||||
hipDeviceAttributeMaxSharedMemoryPerBlock, // Maximum shared memory available per block in bytes.
|
||||
hipDeviceAttributeTotalConstantMemory, // Constant memory size in bytes.
|
||||
hipDeviceAttributeWarpSize, // Warp size in threads.
|
||||
hipDeviceAttributeMaxRegistersPerBlock, // Maximum number of 32-bit registers available to a
|
||||
// thread block. This number is shared by all thread
|
||||
// blocks simultaneously resident on a
|
||||
// multiprocessor.
|
||||
hipDeviceAttributeClockRate, // Peak clock frequency in kilohertz.
|
||||
hipDeviceAttributeMemoryClockRate, // Peak memory clock frequency in kilohertz.
|
||||
hipDeviceAttributeMemoryBusWidth, // Global memory bus width in bits.
|
||||
hipDeviceAttributeMultiprocessorCount, // Number of multiprocessors on the device.
|
||||
hipDeviceAttributeComputeMode, // Compute mode that device is currently in.
|
||||
hipDeviceAttributeL2CacheSize, // Size of L2 cache in bytes. 0 if the device doesn't have L2
|
||||
// cache.
|
||||
hipDeviceAttributeMaxThreadsPerMultiProcessor, // Maximum resident threads per
|
||||
// multiprocessor.
|
||||
hipDeviceAttributeComputeCapabilityMajor, // Major compute capability version number.
|
||||
hipDeviceAttributeComputeCapabilityMinor, // Minor compute capability version number.
|
||||
hipDeviceAttributeConcurrentKernels, // Device can possibly execute multiple kernels
|
||||
// concurrently.
|
||||
hipDeviceAttributePciBusId, // PCI Bus ID.
|
||||
hipDeviceAttributePciDeviceId, // PCI Device ID.
|
||||
hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, // Maximum Shared Memory Per
|
||||
// Multiprocessor.
|
||||
hipDeviceAttributeIsMultiGpuBoard, // Multiple GPU devices.
|
||||
hipDeviceAttributeIntegrated, // iGPU
|
||||
hipDeviceAttributeCooperativeLaunch, // Support cooperative launch
|
||||
hipDeviceAttributeCooperativeMultiDeviceLaunch, // Support cooperative launch on multiple devices
|
||||
hipDeviceAttributeMaxTexture1DWidth, // Maximum number of elements in 1D images
|
||||
hipDeviceAttributeMaxTexture2DWidth, // Maximum dimension width of 2D images in image elements
|
||||
hipDeviceAttributeMaxTexture2DHeight, // Maximum dimension height of 2D images in image elements
|
||||
hipDeviceAttributeMaxTexture3DWidth, // Maximum dimension width of 3D images in image elements
|
||||
hipDeviceAttributeMaxTexture3DHeight, // Maximum dimensions height of 3D images in image elements
|
||||
hipDeviceAttributeMaxTexture3DDepth, // Maximum dimensions depth of 3D images in image elements
|
||||
hipDeviceAttributeCudaCompatibleBegin = 0,
|
||||
hipDeviceAttributeHdpMemFlushCntl, // Address of the HDP\_MEM\_COHERENCY\_FLUSH\_CNTL register
|
||||
hipDeviceAttributeHdpRegFlushCntl, // Address of the HDP\_REG\_COHERENCY\_FLUSH\_CNTL register
|
||||
hipDeviceAttributeEccEnabled = hipDeviceAttributeCudaCompatibleBegin, // Whether ECC support is enabled.
|
||||
hipDeviceAttributeAccessPolicyMaxWindowSize, // Cuda only. The maximum size of the window policy in bytes.
|
||||
hipDeviceAttributeAsyncEngineCount, // Cuda only. Asynchronous engines number.
|
||||
hipDeviceAttributeCanMapHostMemory, // Whether host memory can be mapped into device address space
|
||||
hipDeviceAttributeCanUseHostPointerForRegisteredMem, // Cuda only. Device can access host registered memory
|
||||
// at the same virtual address as the CPU
|
||||
hipDeviceAttributeClockRate, // Peak clock frequency in kilohertz.
|
||||
hipDeviceAttributeComputeMode, // Compute mode that device is currently in.
|
||||
hipDeviceAttributeComputePreemptionSupported, // Cuda only. Device supports Compute Preemption.
|
||||
hipDeviceAttributeConcurrentKernels, // Device can possibly execute multiple kernels concurrently.
|
||||
hipDeviceAttributeConcurrentManagedAccess, // Device can coherently access managed memory concurrently with the CPU
|
||||
hipDeviceAttributeCooperativeLaunch, // Support cooperative launch
|
||||
hipDeviceAttributeCooperativeMultiDeviceLaunch, // Support cooperative launch on multiple devices
|
||||
hipDeviceAttributeDeviceOverlap, // Cuda only. Device can concurrently copy memory and execute a kernel.
|
||||
// Deprecated. Use instead asyncEngineCount.
|
||||
hipDeviceAttributeDirectManagedMemAccessFromHost, // Host can directly access managed memory on
|
||||
// the device without migration
|
||||
hipDeviceAttributeGlobalL1CacheSupported, // Cuda only. Device supports caching globals in L1
|
||||
hipDeviceAttributeHostNativeAtomicSupported, // Cuda only. Link between the device and the host supports native atomic operations
|
||||
hipDeviceAttributeIntegrated, // Device is integrated GPU
|
||||
hipDeviceAttributeIsMultiGpuBoard, // Multiple GPU devices.
|
||||
hipDeviceAttributeKernelExecTimeout, // Run time limit for kernels executed on the device
|
||||
hipDeviceAttributeL2CacheSize, // Size of L2 cache in bytes. 0 if the device doesn't have L2 cache.
|
||||
hipDeviceAttributeLocalL1CacheSupported, // caching locals in L1 is supported
|
||||
hipDeviceAttributeLuid, // Cuda only. 8-byte locally unique identifier in 8 bytes. Undefined on TCC and non-Windows platforms
|
||||
hipDeviceAttributeLuidDeviceNodeMask, // Cuda only. Luid device node mask. Undefined on TCC and non-Windows platforms
|
||||
hipDeviceAttributeComputeCapabilityMajor, // Major compute capability version number.
|
||||
hipDeviceAttributeManagedMemory, // Device supports allocating managed memory on this system
|
||||
hipDeviceAttributeMaxBlocksPerMultiProcessor, // Cuda only. Max block size per multiprocessor
|
||||
hipDeviceAttributeMaxBlockDimX, // Max block size in width.
|
||||
hipDeviceAttributeMaxBlockDimY, // Max block size in height.
|
||||
hipDeviceAttributeMaxBlockDimZ, // Max block size in depth.
|
||||
hipDeviceAttributeMaxGridDimX, // Max grid size in width.
|
||||
hipDeviceAttributeMaxGridDimY, // Max grid size in height.
|
||||
hipDeviceAttributeMaxGridDimZ, // Max grid size in depth.
|
||||
hipDeviceAttributeMaxSurface1D, // Maximum size of 1D surface.
|
||||
hipDeviceAttributeMaxSurface1DLayered, // Cuda only. Maximum dimensions of 1D layered surface.
|
||||
hipDeviceAttributeMaxSurface2D, // Maximum dimension (width, height) of 2D surface.
|
||||
hipDeviceAttributeMaxSurface2DLayered, // Cuda only. Maximum dimensions of 2D layered surface.
|
||||
hipDeviceAttributeMaxSurface3D, // Maximum dimension (width, height, depth) of 3D surface.
|
||||
hipDeviceAttributeMaxSurfaceCubemap, // Cuda only. Maximum dimensions of Cubemap surface.
|
||||
hipDeviceAttributeMaxSurfaceCubemapLayered, // Cuda only. Maximum dimension of Cubemap layered surface.
|
||||
hipDeviceAttributeMaxTexture1DWidth, // Maximum size of 1D texture.
|
||||
hipDeviceAttributeMaxTexture1DLayered, // Cuda only. Maximum dimensions of 1D layered texture.
|
||||
hipDeviceAttributeMaxTexture1DLinear, // Maximum number of elements allocatable in a 1D linear texture.
|
||||
// Use cudaDeviceGetTexture1DLinearMaxWidth() instead on Cuda.
|
||||
hipDeviceAttributeMaxTexture1DMipmap, // Cuda only. Maximum size of 1D mipmapped texture.
|
||||
hipDeviceAttributeMaxTexture2DWidth, // Maximum dimension width of 2D texture.
|
||||
hipDeviceAttributeMaxTexture2DHeight, // Maximum dimension hight of 2D texture.
|
||||
hipDeviceAttributeMaxTexture2DGather, // Cuda only. Maximum dimensions of 2D texture if gather operations performed.
|
||||
hipDeviceAttributeMaxTexture2DLayered, // Cuda only. Maximum dimensions of 2D layered texture.
|
||||
hipDeviceAttributeMaxTexture2DLinear, // Cuda only. Maximum dimensions (width, height, pitch) of 2D textures bound to pitched memory.
|
||||
hipDeviceAttributeMaxTexture2DMipmap, // Cuda only. Maximum dimensions of 2D mipmapped texture.
|
||||
hipDeviceAttributeMaxTexture3DWidth, // Maximum dimension width of 3D texture.
|
||||
hipDeviceAttributeMaxTexture3DHeight, // Maximum dimension height of 3D texture.
|
||||
hipDeviceAttributeMaxTexture3DDepth, // Maximum dimension depth of 3D texture.
|
||||
hipDeviceAttributeMaxTexture3DAlt, // Cuda only. Maximum dimensions of alternate 3D texture.
|
||||
hipDeviceAttributeMaxTextureCubemap, // Cuda only. Maximum dimensions of Cubemap texture
|
||||
hipDeviceAttributeMaxTextureCubemapLayered, // Cuda only. Maximum dimensions of Cubemap layered texture.
|
||||
hipDeviceAttributeMaxThreadsDim, // Maximum dimension of a block
|
||||
hipDeviceAttributeMaxThreadsPerBlock, // Maximum number of threads per block.
|
||||
hipDeviceAttributeMaxThreadsPerMultiProcessor, // Maximum resident threads per multiprocessor.
|
||||
hipDeviceAttributeMaxPitch, // Maximum pitch in bytes allowed by memory copies
|
||||
hipDeviceAttributeMemoryBusWidth, // Global memory bus width in bits.
|
||||
hipDeviceAttributeMemoryClockRate, // Peak memory clock frequency in kilohertz.
|
||||
hipDeviceAttributeComputeCapabilityMinor, // Minor compute capability version number.
|
||||
hipDeviceAttributeMultiGpuBoardGroupID, // Cuda only. Unique ID of device group on the same multi-GPU board
|
||||
hipDeviceAttributeMultiprocessorCount, // Number of multiprocessors on the device.
|
||||
hipDeviceAttributeName, // Device name.
|
||||
hipDeviceAttributePageableMemoryAccess, // Device supports coherently accessing pageable memory
|
||||
// without calling hipHostRegister on it
|
||||
hipDeviceAttributePageableMemoryAccessUsesHostPageTables, // Device accesses pageable memory via the host's page tables
|
||||
hipDeviceAttributePciBusId, // PCI Bus ID.
|
||||
hipDeviceAttributePciDeviceId, // PCI Device ID.
|
||||
hipDeviceAttributePciDomainID, // PCI Domain ID.
|
||||
hipDeviceAttributePersistingL2CacheMaxSize, // Cuda11 only. Maximum l2 persisting lines capacity in bytes
|
||||
hipDeviceAttributeMaxRegistersPerBlock, // 32-bit registers available to a thread block. This number is shared
|
||||
// by all thread blocks simultaneously resident on a multiprocessor.
|
||||
hipDeviceAttributeMaxRegistersPerMultiprocessor, // 32-bit registers available per block.
|
||||
hipDeviceAttributeReservedSharedMemPerBlock, // Cuda11 only. Shared memory reserved by CUDA driver per block.
|
||||
hipDeviceAttributeMaxSharedMemoryPerBlock, // Maximum shared memory available per block in bytes.
|
||||
hipDeviceAttributeSharedMemPerBlockOptin, // Cuda only. Maximum shared memory per block usable by special opt in.
|
||||
hipDeviceAttributeSharedMemPerMultiprocessor, // Cuda only. Shared memory available per multiprocessor.
|
||||
hipDeviceAttributeSingleToDoublePrecisionPerfRatio, // Cuda only. Performance ratio of single precision to double precision.
|
||||
hipDeviceAttributeStreamPrioritiesSupported, // Cuda only. Whether to support stream priorities.
|
||||
hipDeviceAttributeSurfaceAlignment, // Cuda only. Alignment requirement for surfaces
|
||||
hipDeviceAttributeTccDriver, // Cuda only. Whether device is a Tesla device using TCC driver
|
||||
hipDeviceAttributeTextureAlignment, // Alignment requirement for textures
|
||||
hipDeviceAttributeTexturePitchAlignment, // Pitch alignment requirement for 2D texture references bound to pitched memory;
|
||||
hipDeviceAttributeTotalConstantMemory, // Constant memory size in bytes.
|
||||
hipDeviceAttributeTotalGlobalMem, // Global memory available on devicice.
|
||||
hipDeviceAttributeUnifiedAddressing, // Cuda only. An unified address space shared with the host.
|
||||
hipDeviceAttributeUuid, // Cuda only. Unique ID in 16 byte.
|
||||
hipDeviceAttributeWarpSize, // Warp size in threads.
|
||||
hipDeviceAttributeMaxPitch, // Maximum pitch in bytes allowed by memory copies
|
||||
hipDeviceAttributeTextureAlignment, //Alignment requirement for textures
|
||||
hipDeviceAttributeTexturePitchAlignment, //Pitch alignment requirement for 2D texture references bound to pitched memory;
|
||||
hipDeviceAttributeKernelExecTimeout, //Run time limit for kernels executed on the device
|
||||
hipDeviceAttributeCanMapHostMemory, //Device can map host memory into device address space
|
||||
hipDeviceAttributeEccEnabled, //Device has ECC support enabled
|
||||
hipDeviceAttributeCudaCompatibleEnd = 9999,
|
||||
hipDeviceAttributeAmdSpecificBegin = 10000,
|
||||
hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, // Supports cooperative launch on multiple
|
||||
// devices with unmatched functions
|
||||
hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, // Supports cooperative launch on multiple
|
||||
// devices with unmatched grid dimensions
|
||||
hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, // Supports cooperative launch on multiple
|
||||
// devices with unmatched block dimensions
|
||||
hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, // Supports cooperative launch on multiple
|
||||
// devices with unmatched shared memories
|
||||
hipDeviceAttributeAsicRevision, // Revision of the GPU in this device
|
||||
hipDeviceAttributeManagedMemory, // Device supports allocating managed memory on this system
|
||||
hipDeviceAttributeDirectManagedMemAccessFromHost, // Host can directly access managed memory on
|
||||
// the device without migration
|
||||
hipDeviceAttributeConcurrentManagedAccess, // Device can coherently access managed memory
|
||||
// concurrently with the CPU
|
||||
hipDeviceAttributePageableMemoryAccess, // Device supports coherently accessing pageable memory
|
||||
// without calling hipHostRegister on it
|
||||
hipDeviceAttributePageableMemoryAccessUsesHostPageTables, // Device accesses pageable memory via
|
||||
// the host's page tables
|
||||
hipDeviceAttributeCanUseStreamWaitValue // '1' if Device supports hipStreamWaitValue32() and
|
||||
// hipStreamWaitValue64(), '0' otherwise.
|
||||
hipDeviceAttributeClockInstructionRate = hipDeviceAttributeAmdSpecificBegin, // Frequency in khz of the timer used by the device-side "clock"
|
||||
hipDeviceAttributeArch, // Device architecture
|
||||
hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, // Maximum Shared Memory PerMultiprocessor.
|
||||
hipDeviceAttributeGcnArch, // Device gcn architecture
|
||||
hipDeviceAttributeGcnArchName, // Device gcnArch name in 256 bytes
|
||||
hipDeviceAttributeHdpMemFlushCntl, // Address of the HDP_MEM_COHERENCY_FLUSH_CNTL register
|
||||
hipDeviceAttributeHdpRegFlushCntl, // Address of the HDP_REG_COHERENCY_FLUSH_CNTL register
|
||||
hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, // Supports cooperative launch on multiple
|
||||
// devices with unmatched functions
|
||||
hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, // Supports cooperative launch on multiple
|
||||
// devices with unmatched grid dimensions
|
||||
hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, // Supports cooperative launch on multiple
|
||||
// devices with unmatched block dimensions
|
||||
hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, // Supports cooperative launch on multiple
|
||||
// devices with unmatched shared memories
|
||||
hipDeviceAttributeIsLargeBar, // Whether it is LargeBar
|
||||
hipDeviceAttributeAsicRevision, // Revision of the GPU in this device
|
||||
hipDeviceAttributeCanUseStreamWaitValue, // '1' if Device supports hipStreamWaitValue32() and
|
||||
// hipStreamWaitValue64() , '0' otherwise.
|
||||
hipDeviceAttributeAmdSpecificEnd = 19999,
|
||||
hipDeviceAttributeVendorSpecificBegin = 20000, // Extended attributes for vendors
|
||||
} hipDeviceAttribute_t;
|
||||
```
|
||||
|
||||
# Known Issues in This Release
|
||||
|
||||
## Incorrect dGPU Behavior When Using AMDVBFlash Tool
|
||||
|
||||
The AMDVBFlash tool, used for flashing the VBIOS image to dGPU, does not communicate with the ROM Controller specifically when the driver is present. This is because the driver, as part of its runtime power management feature, puts the dGPU to a sleep state.
|
||||
|
||||
As a workaround, users can run `amdgpu.runpm=0`, which temporarily disables the runtime power management feature from the driver and dynamically changes some power control-related sysfs files.
|
||||
|
||||
## Issue with START Timestamp in ROCProfiler
|
||||
|
||||
Users may encounter an issue with the enabled timestamp functionality for monitoring one or multiple counters. ROCProfiler outputs the following four timestamps for each kernel:
|
||||
|
||||
- Dispatch
|
||||
- Start
|
||||
- End
|
||||
- Complete
|
||||
|
||||
**Issue**
|
||||
|
||||
This defect is related to the Start timestamp functionality, which incorrectly shows an earlier time than the Dispatch timestamp.
|
||||
|
||||
To reproduce the issue,
|
||||
|
||||
1. Enable timing using the `--timestamp on` flag.
|
||||
2. Use the `-i` option with the input filename that contains the name of the counter(s) to monitor.
|
||||
3. Run the program.
|
||||
4. Check the output result file.
|
||||
|
||||
**Current behavior**
|
||||
|
||||
BeginNS is lower than DispatchNS, which is incorrect.
|
||||
|
||||
**Expected behavior**
|
||||
|
||||
The correct order is:
|
||||
|
||||
_Dispatch < Start < End < Complete_
|
||||
|
||||
Users cannot use ROCProfiler to measure the time spent on each kernel because of the incorrect timestamp with counter collection enabled.
|
||||
|
||||
**Recommended Workaround**
|
||||
|
||||
Users are recommended to collect kernel execution timestamps without monitoring counters, as follows:
|
||||
|
||||
1. Enable timing using the `--timestamp on` flag, and run the application.
|
||||
2. Rerun the application using the `-i` option with the input filename that contains the name of the counter(s) to monitor, and save this to a different output file using the `-o` flag.
|
||||
3. Check the output result file from step 1.
|
||||
4. The order of timestamps correctly displays as:
|
||||
|
||||
_DispathNS < BeginNS < EndNS < CompleteNS_
|
||||
|
||||
1. Users can find the values of the collected counters in the output file generated in step 2.
|
||||
|
||||
## Radeon Pro V620 and W6800 Workstation GPUs
|
||||
|
||||
### No Support for SMI and ROCDebugger on SRIOV
|
||||
|
||||
System Management Interface (SMI) and ROCDebugger are not supported in the SRIOV environment on any GPU. For more information, refer to the Systems Management Interface documentation.
|
||||
|
||||
# Deprecations and Warnings in This Release
|
||||
|
||||
## ROCm Libraries Changes – Deprecations and Deprecation Removal
|
||||
|
||||
- The hipfft.h header is now provided only by the hipfft package. Up to ROCm 5.0, users would get hipfft.h in the rocfft package too.
|
||||
- The GlobalPairwiseAMG class is now entirely removed, users should use the PairwiseAMG class instead.
|
||||
- The rocsparse\_spmm signature in 5.0 was changed to match that of rocsparse\_spmm\_ex. In 5.0, rocsparse\_spmm\_ex is still present, but deprecated. Signature diff for rocsparse\_spmm
|
||||
|
||||
### _rocsparse\_spmm_ in 5.0
|
||||
|
||||
```c
|
||||
rocsparse_status rocsparse_spmm(rocsparse_handle handle,
|
||||
rocsparse_operation trans_A,
|
||||
rocsparse_operation trans_B,
|
||||
const void* alpha,
|
||||
const rocsparse_spmat_descr mat_A,
|
||||
const rocsparse_dnmat_descr mat_B,
|
||||
const void* beta,
|
||||
const rocsparse_dnmat_descr mat_C,
|
||||
rocsparse_datatype compute_type,
|
||||
rocsparse_spmm_alg alg,
|
||||
rocsparse_spmm_stage stage,
|
||||
size_t* buffer_size,
|
||||
void* temp_buffer);
|
||||
```
|
||||
|
||||
### _rocsparse\_spmm_ in 4.0
|
||||
|
||||
```c
|
||||
rocsparse_status rocsparse_spmm(rocsparse_handle handle,
|
||||
rocsparse_operation trans_A,
|
||||
rocsparse_operation trans_B,
|
||||
const void* alpha,
|
||||
const rocsparse_spmat_descr mat_A,
|
||||
const rocsparse_dnmat_descr mat_B,
|
||||
const void* beta,
|
||||
const rocsparse_dnmat_descr mat_C,
|
||||
rocsparse_datatype compute_type,
|
||||
rocsparse_spmm_alg alg,
|
||||
size_t* buffer_size,
|
||||
void* temp_buffer);
|
||||
```
|
||||
|
||||
## HIP API Deprecations and Warnings
|
||||
|
||||
### Warning - Arithmetic Operators of HIP Complex and Vector Types
|
||||
|
||||
In this release, arithmetic operators of HIP complex and vector types are deprecated.
|
||||
|
||||
- As alternatives to arithmetic operators of HIP complex types, users can use arithmetic operators of std::complex types.
|
||||
- As alternatives to arithmetic operators of HIP vector types, users can use the operators of the native clang vector type associated with the data member of HIP vector types.
|
||||
|
||||
During the deprecation, two macros `__HIP_ENABLE_COMPLEX_OPERATORS` and `__HIP_ENABLE_VECTOR_OPERATORS` are provided to allow users to conditionally enable arithmetic operators of HIP complex or vector types.
|
||||
|
||||
Note, the two macros are mutually exclusive and, by default, set to off.
|
||||
|
||||
The arithmetic operators of HIP complex and vector types will be removed in a future release.
|
||||
|
||||
Refer to the HIP API Guide for more information.
|
||||
|
||||
### Refactor of HIPCC/HIPCONFIG
|
||||
|
||||
In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target compiler options, target platform, compiler, and runtime appropriately.
|
||||
|
||||
In ROCm v5.0, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of the hipcc and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as experimental. ROCm plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release. The existing hipcc and hipconfig Perl scripts are renamed to hipcc.pl and hipconfig.pl respectively. New top-level hipcc and hipconfig Perl scripts are created, which can switch between the Perl script or the compiled binary based on the environment variable `HIPCC_USE_PERL_SCRIPT`.
|
||||
|
||||
In ROCm 5.0, by default, this environment variable is set to use hipcc and hipconfig through the Perl scripts.
|
||||
|
||||
Subsequently, Perl scripts will no longer be available in ROCm in a future release.
|
||||
|
||||
## Warning - Compiler-Generated Code Object Version 4 Deprecation
|
||||
|
||||
Support for loading compiler-generated code object version 4 will be deprecated in a future release with no release announcement and replaced with code object 5 as the default version.
|
||||
|
||||
The current default is code object version 4.
|
||||
|
||||
## Warning - MIOpenTensile Deprecation
|
||||
|
||||
MIOpenTensile will be deprecated in a future release.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Archived Documentation
|
||||
----------------------
|
||||
Older rocm documentation is archived at https://rocmdocs.amd.com.
|
||||
|
||||
# Disclaimer
|
||||
|
||||
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard versionchanges, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
|
||||
©[2021]Advanced Micro Devices, Inc.All rights reserved.
|
||||
|
||||
## Third-party Disclaimer
|
||||
Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.
|
||||
684
README.md
@@ -1,653 +1,63 @@
|
||||
# AMD ROCm™ v4.1 Release Notes
|
||||
This document describes the features, fixed issues, and information about downloading and installing the AMD ROCm™ software. It also covers known issues and deprecations in the AMD ROCm v4.1 release.
|
||||
# ROCm™ 5.2.3
|
||||
This repository contains the manifest file for ROCm™ releases, changelogs and release information. The file default.xml contains information all the repositories and the associated commit use to build the current ROCm release. The default.xml file uses the repo Manifest Format.
|
||||
|
||||
- [Supported Operating Systems and Documentation Updates](#Supported-Operating-Systems-and-Documentation-Updates)
|
||||
* [Supported Operating Systems](#Supported-Operating-Systems)
|
||||
* [ROCm Installation Updates](#ROCm-Installation-Updates)
|
||||
* [AMD ROCm Documentation Updates](#AMD-ROCm-Documentation-Updates)
|
||||
# ROCm™ v5.2.3
|
||||
This repository contains the manifest file for ROCm™ releases, changelogs and release information. The file default.xml contains information all the repositories and the associated commit use to build the current ROCm release. The default.xml file uses the repo Manifest format.
|
||||
|
||||
- [Driver Compatibility Issue in This Release](#Driver-Compatibility-Issue-in-This-Release)
|
||||
|
||||
- [What\'s New in This Release](#Whats-New-in-This-Release)
|
||||
* [TargetID for Multiple Configurations](#TargetID-for-Multiple-Configurations)
|
||||
* [ROCm Data Center Tool](#ROCm-Data-Center-Tool)
|
||||
* [ROCm Math and Communication Libraries](#ROCm-Math-and-Communication-Libraries)
|
||||
* [HIP Enhancements](#HIP-Enhancements)
|
||||
* [OpenMP Enhancements and Fixes](#OpenMP-Enhancements-and-Fixes)
|
||||
* [MIOpen Tensile Integration](#MIOpen-Tensile-Integration)
|
||||
# Release Notes
|
||||
The ROCm v5.2.3 patch release is now available. The details are listed below. Highlights of this release include a bump in RCCL version compatibility and minor bug fixes in the HIP Runtime. Additionally, ROCm releases will return to use of the
|
||||
[ROCm](https://github.com/RadeonOpenCompute/ROCm) repository for version controlled release notes henceforth. This
|
||||
release of ROCm is validated with the AMDGPU release 22.20.1.
|
||||
|
||||
|
||||
- [Known Issues](#Known-Issues)
|
||||
All users of the ROCm v5.2.1 release and below are encouraged to upgrade. Refer to https://docs.amd.com for all documentation associated with this release.
|
||||
|
||||
- [Deprecations](#Deprecations)
|
||||
|
||||
* [Compiler Generated Code Object Version 2 Deprecation ](#Compiler-Generated-Code-Object-Version-2-Deprecation)
|
||||
## All Components
|
||||
### Ubuntu 18.04 End of Life Announcement
|
||||
ROCm v5.2.3 is the last release to support Ubuntu 18.04. Future releases of ROCm will not provide prebuilt packages for Ubuntu 18.04.
|
||||
|
||||
- [Deploying ROCm](#Deploying-ROCm)
|
||||
|
||||
- [Hardware and Software Support](#Hardware-and-Software-Support)
|
||||
## HIP and Other Runtimes
|
||||
|
||||
- [Machine Learning and High Performance Computing Software Stack for AMD GPU](#Machine-Learning-and-High-Performance-Computing-Software-Stack-for-AMD-GPU)
|
||||
* [ROCm Binary Package Structure](#ROCm-Binary-Package-Structure)
|
||||
* [ROCm Platform Packages](#ROCm-Platform-Packages)
|
||||
|
||||
### HIP Runtime
|
||||
|
||||
#### Fixes
|
||||
- A bug was discovered in the HIP graph capture implementation in the ROCm v5.2.0 release. If the same kernel is called twice
|
||||
(with different argument values) in a graph capture, the implementation was only keeping the argument values for
|
||||
the second kernel call. This bug is now fixed.
|
||||
- A bug was introduced in the hiprtc implementation in the ROCm v5.2.0 release. This bug caused the *hiprtcGetLoweredName* call failed
|
||||
for named expressions with a whitespace in it.
|
||||
|
||||
**Example:** The named expression ```my_sqrt<complex<double>>``` passed but ```my_sqrt<complex<double>>``` failed. This bug has now been fixed.
|
||||
|
||||
## ROCm Installation Updates
|
||||
## ROCm Libraries
|
||||
|
||||
### List of Supported Operating Systems
|
||||
### RCCL
|
||||
|
||||
The AMD ROCm platform is designed to support the following operating systems:
|
||||
#### Added
|
||||
- Compatibility with NCCL 2.12.10
|
||||
- Packages for test and benchmark executables on all supported OSes using CPack.
|
||||
- Adding custom signal handler - opt-in with RCCL_ENABLE_SIGNALHANDLER=1
|
||||
- Additional details provided if Binary File Descriptor library (BFD) is pre-installed
|
||||
- Adding experimental support for using multiple ranks per device
|
||||
- Requires using a new interface to create communicator (ncclCommInitRankMulti), please
|
||||
refer to the interface documentation for details.
|
||||
- To avoid potential deadlocks, user might have to set an environment variables increasing
|
||||
the number of hardware queues (e.g. export GPU_MAX_HW_QUEUES=16)
|
||||
- Adding support for reusing ports in NET/IB channels
|
||||
- Opt-in with NCCL_IB_SOCK_CLIENT_PORT_REUSE=1 and NCCL_IB_SOCK_SERVER_PORT_REUSE=1
|
||||
- When "Call to bind failed : Address already in use" error happens in large-scale AlltoAll
|
||||
(e.g., >=64 MI200 nodes), users are suggested to opt-in either one or both of the options
|
||||
to resolve the massive port usage issue
|
||||
- Avoid using NCCL_IB_SOCK_SERVER_PORT_REUSE when NCCL_NCHANNELS_PER_NET_PEER is tuned >1
|
||||
#### Removed
|
||||
- Removed experimental clique-based kernels
|
||||
|
||||
* Ubuntu 20.04.1 (5.4 and 5.6-oem) and 18.04.5 (Kernel 5.4)
|
||||
* CentOS 7.9 (3.10.0-1127) & RHEL 7.9 (3.10.0-1160.6.1.el7) (Using devtoolset-7 runtime support)
|
||||
* CentOS 8.3 (4.18.0-193.el8) and RHEL 8.3 (4.18.0-193.1.1.el8) (devtoolset is not required)
|
||||
* SLES 15 SP2
|
||||
## Development Tools
|
||||
No notable changes in this release for our development tools including the compiler, profiler and debugger.
|
||||
|
||||
### FRESH INSTALLATION OF AMD ROCM V4.1 RECOMMENDED
|
||||
## Deployment and Management Tools
|
||||
No notable changes in this release for our deployment and management tools.
|
||||
|
||||
A complete uninstallation of previous ROCm versions is required before installing a new version of ROCm. An upgrade from previous releases to AMD ROCm v4.1 is not supported. For more information, refer to the AMD ROCm Installation Guide at
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
|
||||
|
||||
**Note**: AMD ROCm release v3.3 or prior releases are not fully compatible with AMD ROCm v3.5 and higher versions. You must perform a fresh ROCm installation if you want to upgrade from AMD ROCm v3.3 or older to 3.5 or higher versions and vice-versa.
|
||||
|
||||
**Note**: *render* group is required only for Ubuntu v20.04. For all other ROCm supported operating systems, continue to use video group.
|
||||
|
||||
* For ROCm v3.5 and releases thereafter, the clinfo path is changed to /opt/rocm/opencl/bin/clinfo.
|
||||
|
||||
* For ROCm v3.3 and older releases, the clinfo path remains /opt/rocm/opencl/bin/x86_64/clinfo.
|
||||
|
||||
### ROCM MULTI-VERSION INSTALLATION UPDATE
|
||||
|
||||
With the AMD ROCm v4.1 release, the following ROCm multi-version installation changes apply:
|
||||
|
||||
The meta packages rocm-dkms<version> are now deprecated for multi-version ROCm installs. For example, rocm-dkms3.7.0, rocm-dkms3.8.0.
|
||||
|
||||
* Multi-version installation of ROCm should be performed by installing rocm-dev<version> using each of the desired ROCm versions. For example, rocm-dev3.7.0, rocm-dev3.8.0, rocm-dev3.9.0.
|
||||
|
||||
* Version files must be created for each multi-version rocm <= 4.1.0
|
||||
|
||||
* Command: echo <version> | sudo tee /opt/rocm-<version>/.info/version
|
||||
|
||||
* Example: echo 4.1.0 | sudo tee /opt/rocm-4.1.0/.info/version
|
||||
|
||||
* The rock-dkms loadable kernel modules should be installed using a single rock-dkms package.
|
||||
|
||||
* ROCm v3.9 and above will not set any ldconfig entries for ROCm libraries for multi-version installation. Users must set LD_LIBRARY_PATH to load the ROCm library version of choice.
|
||||
|
||||
**NOTE**: The single version installation of the ROCm stack remains the same. The rocm-dkms package can be used for single version installs and is not deprecated at this time.
|
||||
|
||||
|
||||
|
||||
# Driver Compatibility Issue in This Release
|
||||
|
||||
In certain scenarios, the ROCm 4.1 run-time and userspace environment are not compatible with ROCm v4.0 and older driver implementations for 7nm-based (Vega 20) hardware (MI50 and MI60).
|
||||
|
||||
To mitigate issues, the ROCm v4.1 or newer userspace prevents running older drivers for these GPUs.
|
||||
|
||||
Users are notified in the following scenarios:
|
||||
|
||||
* Bare Metal
|
||||
* Containers
|
||||
|
||||
## Bare Metal
|
||||
|
||||
In the bare-metal environment, the following error message displays in the console:
|
||||
|
||||
*“HSA Error: Incompatible kernel and userspace, Vega 20 disabled. Upgrade amdgpu.”*
|
||||
|
||||
To test the compatibility, run the ROCm v4.1 version of rocminfo using the following instruction:
|
||||
|
||||
*/opt/rocm-4.1.0/bin/rocminfo 2>&1 | less*
|
||||
|
||||
## Containers
|
||||
|
||||
A container (built with error detection for this issue) using a ROCm v4.1 or newer run-time is initiated to execute on an older kernel. The container fails to start and the following warning appears:
|
||||
|
||||
*Error: Incompatible ROCm environment. The Docker container requires the latest kernel driver to operate correctly.
|
||||
Upgrade the ROCm kernel to v4.1 or newer, or use a container tagged for v4.0.1 or older.*
|
||||
|
||||
To inspect the version of the installed kernel driver, run either:
|
||||
|
||||
* dpkg --status rock-dkms [Debian-based]
|
||||
|
||||
or
|
||||
|
||||
* rpm -ql rock-dkms [RHEL, SUSE, and others]
|
||||
|
||||
To install or update the driver, follow the installation instructions at:
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
|
||||
|
||||
|
||||
# AMD ROCm Documentation Updates
|
||||
|
||||
## AMD ROCm Installation Guide
|
||||
|
||||
The AMD ROCm Installation Guide in this release includes:
|
||||
|
||||
* Supported Environments
|
||||
|
||||
* Installation Instructions for v4.1
|
||||
|
||||
* HIP Installation Instructions
|
||||
|
||||
For more information, refer to the ROCm documentation website at:
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/
|
||||
|
||||
|
||||
## AMD ROCm - HIP Documentation Updates
|
||||
|
||||
* HIP Programming Guide v4.1
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide_v4.1.pdf
|
||||
|
||||
* HIP API Guide v4.1
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_API_Guide_v4.1.pdf
|
||||
|
||||
|
||||
* HIP-Supported CUDA API Reference Guide v4.1
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/HIP_Supported_CUDA_API_Reference_Guide_v4.1.pdf
|
||||
|
||||
* HIP FAQ
|
||||
|
||||
For more information, refer to
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq
|
||||
|
||||
|
||||
## ROCm Data Center User and API Guide
|
||||
|
||||
* ROCm Data Center Tool User Guide
|
||||
|
||||
- Grafana Plugin Integration
|
||||
|
||||
For more information, refer to the ROCm Data Center User Guide at,
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_v4.1.pdf
|
||||
|
||||
|
||||
* ROCm Data Center Tool API Guide
|
||||
|
||||
For more information, refer to the ROCm Data Center API Guide at,
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_Data_Center_Tool_API_Manual_4.1.pdf
|
||||
|
||||
|
||||
## ROCm SMI API Documentation Updates
|
||||
|
||||
* ROCm SMI API Guide
|
||||
|
||||
For more information, refer to the ROCm SMI API Guide at,
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_API_GUIDE_v4.1.pdf
|
||||
|
||||
## ROC Debugger User and API Guide
|
||||
|
||||
* ROC Debugger User Guide
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/Debugging%20with%20ROCGDB%20User%20Guide%20v4.1.pdf
|
||||
|
||||
|
||||
* Debugger API Guide
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-Debugger%20API%20Guide%20v4.1.pdf
|
||||
|
||||
|
||||
## General AMD ROCm Documentation Links
|
||||
|
||||
Access the following links for more information:
|
||||
|
||||
* For AMD ROCm documentation, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/
|
||||
|
||||
* For installation instructions on supped platforms, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
|
||||
|
||||
* For AMD ROCm binary structure, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Installation_Guide/Software-Stack-for-AMD-GPU.html
|
||||
|
||||
|
||||
* For AMD ROCm Release History, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Current_Release_Notes/ROCm-Version-History.html
|
||||
|
||||
|
||||
|
||||
# What\'s New in This Release
|
||||
|
||||
## TARGETID FOR MULTIPLE CONFIGURATIONS
|
||||
|
||||
The new TargetID functionality allows compilations to specify various configurations of the supported hardware.
|
||||
|
||||
Previously, ROCm supported only a single configuration per target.
|
||||
|
||||
With the TargetID enhancement, ROCm supports configurations for Linux, PAL and associated configurations such as XNACK. This feature addresses configurations for the same target in different modes and allows applications to build executables that specify the supported configurations, including the option to be agnostic for the desired setting.
|
||||
|
||||
|
||||
### New Code Object Format Version for TargetID
|
||||
|
||||
* A new clang option -mcode-object-version can be used to request the legacy code object version 3 or code object version 2. For more information, refer to
|
||||
|
||||
https://llvm.org/docs/AMDGPUUsage.html#elf-code-object
|
||||
|
||||
* A new clang --offload-arch= option is introduced to specify the offload target architecture(s) for the HIP language.
|
||||
|
||||
* The clang --offload-arch= and -mcpu options accept a new Target ID syntax. This allows both the processor and target feature settings to be specified. For more details, refer to
|
||||
|
||||
https://llvm.org/docs/AMDGPUUsage.html#amdgpu-target-id
|
||||
|
||||
- If a target feature is not specified, it defaults to a new concept of "any". The compiler, then, produces code,
|
||||
which executes on a target configured for either value of the setting impacting the overall performance.
|
||||
|
||||
It is recommended to explicitly specify the setting for more efficient performance.
|
||||
|
||||
- In particular, the setting for XNACK now defaults to produce less performant code than previous ROCm releases.
|
||||
|
||||
- The legacy clang -mxnack, -mno-xnack, -msram-ecc, and -mno-sram-ecc options are deprecated. They are still
|
||||
supported, however, they will be removed in a future release.
|
||||
|
||||
- The new Target ID syntax renames the SRAM ECC feature from sram-ecc to sramecc.
|
||||
|
||||
* The clang offload bundler uses the new offload hipv4 for HIP code object version 4. For more information, see
|
||||
https://clang.llvm.org/docs/ClangOffloadBundler.html
|
||||
|
||||
* ROCm v4.1 corrects code object loading to enforce target feature settings of the code object to match the setting of the agent. It also corrects the recording of target feature settings in the code object. As a consequence, the legacy code objects may no longer load due to mismatches.
|
||||
|
||||
* gfx802, gfx803, and gfx805 do not support the XNACK target feature in the ROCm v4.1 release.
|
||||
|
||||
|
||||
### New Code Object Tools
|
||||
|
||||
AMD ROCm v4.1 provides new code object tools *roc-obj-ls* and *roc-obj-extract*. These tools allow for the listing and extraction of AMD GPU ROCm code objects that are embedded in HIP executables and shared objects. Each tool supports a --help option that provides more information.
|
||||
|
||||
Refer to the HIP Programming Guide v4.1 for additional information and examples.
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide_v4.1.pdf
|
||||
|
||||
**Note**
|
||||
|
||||
The extractkernel tool in previous AMD ROCm releases has been removed from the AMD ROCm v4.1 release
|
||||
and will no longer be supported.
|
||||
|
||||
**Note**
|
||||
|
||||
The roc-obj-ls and roc-obj-extract tools may generate an error about the following missing Perl modules:
|
||||
|
||||
* File::Which
|
||||
* File::BaseDir
|
||||
* File::Copy
|
||||
* URI::Encode
|
||||
|
||||
This error is due to the missing dependencies in the hip-base installer package. As a workaround, you may use the
|
||||
following instructions to install the Perl modules:
|
||||
|
||||
*Ubuntu*
|
||||
|
||||
apt-get install libfile-which-perl libfile-basedir-perl libfile-copy-recursive-perl liburi-encode-perl
|
||||
|
||||
*CentOS*
|
||||
|
||||
yum install “ perl(File::Which) perl(File::BaseDir) perl(File::Copy) perl(URI::Encode)
|
||||
|
||||
|
||||
|
||||
## ROCm Data Center Tool
|
||||
|
||||
### Grafana Integration
|
||||
|
||||
The ROCm Data Center (RDC) Tool is enhanced with the Grafana plugin. Grafana is a common monitoring stack used for storing and visualizing time series data. Prometheus acts as the storage backend, and Grafana is used as the interface for analysis and visualization. Grafana has a plethora of visualization options and can be integrated with Prometheus for the ROCm Data Center (RDC) dashboard.
|
||||
|
||||
For more information about Grafana integration and installation, refer to the ROCm Data Center Tool User guide at:
|
||||
|
||||
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_v4.1.pdf
|
||||
|
||||
|
||||
|
||||
## ROCm Math and Communication Libraries
|
||||
|
||||
### rocSPARSE
|
||||
|
||||
rocSPARSE extends support for:
|
||||
|
||||
* gebsrmm
|
||||
* gebsrmv
|
||||
* gebsrsv
|
||||
* coo2dense and dense2coo
|
||||
* generic API including axpby, gather, scatter, rot, spvv, spmv, spgemm, sparsetodense, densetosparse
|
||||
* mixed indexing types in matrix formats
|
||||
|
||||
For more information, see
|
||||
|
||||
https://rocsparse.readthedocs.io/en/latest/
|
||||
|
||||
|
||||
### rocSOLVER
|
||||
|
||||
rocSOLVER extends support for:
|
||||
|
||||
* Eigensolver routines for symmetric/hermitian matrices:
|
||||
- STERF, STEQR
|
||||
|
||||
* Linear solvers for general non-square systems:
|
||||
- GELS (API added with batched and strided_batched versions. Only the overdetermined non-transpose case is implemented in
|
||||
this release. Other cases will return rocblas_status_not_implemented status for now.)
|
||||
|
||||
* Extended test coverage for functions returning information
|
||||
|
||||
* Changelog file
|
||||
|
||||
* Tridiagonalization routines for symmetric and hermitian matrices:
|
||||
- LATRD
|
||||
- SYTD2, SYTRD (with batched and strided_batched versions)
|
||||
- HETD2, HETRD (with batched and strided_batched versions)
|
||||
|
||||
* Sample code and unit test for unified memory model/Heterogeneous Memory Management (HMM)
|
||||
|
||||
For more information, see
|
||||
|
||||
https://rocsolver.readthedocs.io/en/latest/
|
||||
|
||||
### hipCUB
|
||||
|
||||
The new iterator DiscardOutputIterator in hipCUB represents a special kind of pointer that ignores values written to it upon dereference. It is useful for ignoring the output of certain algorithms without wasting memory capacity or bandwidth. DiscardOutputIterator may also be used to count the size of an algorithm's output, which was not known previously.
|
||||
|
||||
For more information, see
|
||||
|
||||
https://hipcub.readthedocs.io/en/latest/
|
||||
|
||||
|
||||
## HIP Enhancements
|
||||
|
||||
### Support for hipEventDisableTiming Flag
|
||||
|
||||
HIP now supports the hipEventDisableTiming flag for hipEventCreateWithFlags. Note, events created with this flag do not record profiling data and provide optimal performance when used for synchronization.
|
||||
|
||||
### Cooperative Group Functions
|
||||
|
||||
Cooperative Groups defines, synchronizes, and communicates between groups of threads and blocks for efficiency and ease of management. HIP now supports the following kernel language Cooperative Groups types and functions:
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
|
||||
### Support for Extern Shared Declarations
|
||||
|
||||
Previously, it was required to declare dynamic shared memory using the HIP_DYNAMIC_SHARED macro for accuracy as using static shared memory in the same kernel could result in overlapping memory ranges and data-races.
|
||||
Now, the HIP-Clang compiler provides support for extern shared declarations, and the HIP_DYNAMIC_SHARED option is no longer required.
|
||||
|
||||
You may use the standard extern definition:
|
||||
|
||||
extern __shared__ type var[];
|
||||
|
||||
|
||||
## OpenMP Enhancements and Fixes
|
||||
|
||||
This release includes the following OpenMP changes:
|
||||
|
||||
* Usability Enhancements
|
||||
* Fixes to Internal Clang Math Headers
|
||||
* OpenMP Defect Fixes
|
||||
|
||||
### Usability Enhancements
|
||||
|
||||
* OMPD updates for flang
|
||||
* To support OpenMP debugging, the selected OpenMP runtime sources are included in lib-debug/src/openmp. The ROCgdb debugger
|
||||
will find these automatically.
|
||||
* Threadsafe hsa plugin for libomptarget
|
||||
* Support multiple devices with malloc and hostrpc
|
||||
* Improve hostrpc version check
|
||||
* Add max reduction offload feature to flang
|
||||
* Integration of changes to support HPC Toolkit
|
||||
* Support for fprintf
|
||||
* Initial support for GPU malloc and Free. The internal (device rtl) is required for GPU malloc and Free for nested parallelism.
|
||||
GPU malloc and Free are now replaced, which improves the device memory footprint.
|
||||
* Increase detail of debug printing controlled by LIBOMPTARGET_KERNEL_TRACE environment variable
|
||||
* Add support for -gpubnames in Flang Driver
|
||||
* Increase detail of debug printing controlled by LIBOMPTARGET_KERNEL_TRACE environment variable
|
||||
* Add support for -gpubnames in Flang Driver
|
||||
|
||||
### Fixes to Internal Clang Math Headers
|
||||
|
||||
This release includes a set of changes applied to Clang internal headers to support OpenMP C, C++, FORTRAN, and HIP C. This establishes consistency between NVPTX and AMDGCN offloading, and OpenMP, HIP, and CUDA. OpenMP uses function variants and header overlays to define device versions of functions. This causes Clang LLVM IR codegen to mangle names of variants in both the definition and callsites of functions defined in the internal Clang headers. The changes apply to headers found in the installation subdirectory lib/clang/11.0.0/include.
|
||||
|
||||
The changes also temporarily eliminate the use of the libm bitcode libraries for C and C++. Although math functions are now defined with internal clang headers, a bitcode library of the C functions defined in the headers is still built for the FORTRAN toolchain linking. This is because FORTRAN cannot use C math headers. This bitcode library is installed in lib/libdevice/libm-.bc. The source build of the bitcode library is implemented with the aomp-extras repository and the component-built script build_extras.sh.
|
||||
|
||||
### OpenMP Defect Fixes
|
||||
|
||||
The following OpenMP defects are fixed in this release:
|
||||
|
||||
* Openmpi configuration issue with real16.
|
||||
* [flang] The AOMP 11.7-1 Fortran compiler claims to support the -isystem flag, but ignores it.
|
||||
* [flang] producing internal compiler error when the character is used with KIND.
|
||||
* [flang] openmp map clause on complex allocatable expressions !$omp target data map( chunk%tiles(1)%field%density0).
|
||||
* Add a fatal error if missing -Xopenmp-target or -march options when -fopenmp-targets is specified. However, this requirement is not
|
||||
applicable for offloading to the host when there is only a single target and that target is the host.
|
||||
* Openmp error message output for no_rocm_device_lib was asserting.
|
||||
* Linkage on constant per-kernel symbols from external to weaklinkageonly to prevent duplicate symbols when building kokkos.
|
||||
* Add environment variables ROCM_LLD_ARGS ROCM_LINK_ARGS ROCM_SELECT_ARGS to test driver options without compiler rebuild.
|
||||
* Fix problems with device math functions being ambiguous, especially the pow function.ix aompcc to accept file type cxx.
|
||||
* Fix a latent race between host runtime and devicertl.
|
||||
|
||||
## MIOPEN TENSILE INTEGRATION
|
||||
|
||||
MIOpenTensile provides host-callable interfaces to the Tensile library and supports the HIP programming model. You may use the Tensile feature in the HIP backend by setting the building environment variable value to ON.
|
||||
|
||||
MIOPEN_USE_MIOPENTENSILE=ON
|
||||
|
||||
MIOpenTensile is an open-source collaboration tool where external entities can submit source pull requests (PRs) for updates. MIOpenTensile maintainers review and approve the PRs using standard open-source practices.
|
||||
|
||||
For more information about the sources and the build system, see
|
||||
|
||||
https://github.com/ROCmSoftwarePlatform/MIOpenTensile
|
||||
|
||||
|
||||
# Known Issues
|
||||
|
||||
The following are the known issues in this release.
|
||||
|
||||
## Upgrade to AMD ROCm v4.1 Not Supported
|
||||
|
||||
An upgrade from previous releases to AMD ROCm v4.1 is not supported. A complete uninstallation of previous ROCm versions is required before installing a new version of ROCm.
|
||||
|
||||
## Performance Impact for Kernel Launch Bound Attribute
|
||||
|
||||
Kernels without the *__launch_bounds__* attribute assume the default maximum threads per block value. In the previous ROCm release, this value was 256. In the ROCm v4.1 release, it is changed to 1024. The objective of this change ensures the actual threads per block value used to launch a kernel, by default, are always within the launch bounds, thus, establishing the correctness of HIP programs.
|
||||
|
||||
**NOTE**: Using the above-mentioned approach may incur performance degradation in certain cases. Users must add a minimum launch bound to each kernel, which covers all possible threads per block values used to launch that kernel for correctness and performance.
|
||||
|
||||
The recommended workaround to recover the performance is to add *--gpu-max-threads-per-block=256* to the compilation options for HIP programs.
|
||||
|
||||
## Issue with Passing a Subset of GPUs in a Multi-GPU System
|
||||
|
||||
ROCm support for passing individual GPUs via the docker --device flag in a Docker run command has a known issue when passing a subset of GPUs in a multi-GPU system. The command runs without any warning or error notification. However, all GPU executable run outputs are randomly corrupted.
|
||||
|
||||
Using GPU targeting via the Docker command is not recommended for users of ROCm 4.1. There is no workaround for this issue currently.
|
||||
|
||||
## Performance Impact for LDS-Bound Kernels
|
||||
|
||||
The compiler in ROCm v4.1 generates LDS load and stores instructions that incorrectly assume equal performance between aligned and misaligned accesses. While this does not impact code correctness, it may result in sub-optimal performance.
|
||||
|
||||
This issue is under investigation, and there is no known workaround at this time.
|
||||
|
||||
|
||||
# Deprecations
|
||||
|
||||
This section describes deprecations and removals in AMD ROCm.
|
||||
|
||||
## Compiler Generated Code Object Version 2 Deprecation
|
||||
|
||||
Compiler-generated code object version 2 is no longer supported and has been completely removed. Support for loading code object version 2 is also deprecated with no announced removal release.
|
||||
|
||||
|
||||
# Deploying ROCm
|
||||
|
||||
AMD hosts both Debian and RPM repositories for the ROCm packages.
|
||||
|
||||
For more information on ROCM installation on all platforms, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
|
||||
|
||||
|
||||
# Machine Learning and High Performance Computing Software Stack for AMD GPU
|
||||
|
||||
For an updated version of the software stack for AMD GPU, see
|
||||
|
||||
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html#software-stack-for-amd-gpu
|
||||
|
||||
|
||||
|
||||
# Hardware and Software Support
|
||||
ROCm is focused on using AMD GPUs to accelerate computational tasks such as machine learning, engineering workloads, and scientific computing.
|
||||
In order to focus our development efforts on these domains of interest, ROCm supports a targeted set of hardware configurations which are detailed further in this section.
|
||||
|
||||
**Note:** The AMD ROCm™ open software platform is a compute stack for headless system deployments. GUI-based software applications are currently not supported.
|
||||
|
||||
#### Supported GPUs
|
||||
Because the ROCm Platform has a focus on particular computational domains, we offer official support for a selection of AMD GPUs that are designed to offer good performance and price in these domains.
|
||||
|
||||
**Note:** The integrated GPUs of Ryzen are not officially supported targets for ROCm.
|
||||
|
||||
ROCm officially supports AMD GPUs that use following chips:
|
||||
|
||||
* GFX9 GPUs
|
||||
|
||||
- "Vega 10" chips, such as on the AMD Radeon RX Vega 64 and Radeon Instinct MI25
|
||||
|
||||
- "Vega 7nm" chips, such as on the Radeon Instinct MI50, Radeon Instinct MI60 or AMD Radeon VII, Radeon Pro VII
|
||||
|
||||
* CDNA GPUs
|
||||
|
||||
- MI100 chips such as on the AMD Instinct™ MI100
|
||||
|
||||
|
||||
ROCm is a collection of software ranging from drivers and runtimes to libraries and developer tools.
|
||||
Some of this software may work with more GPUs than the "officially supported" list above, though AMD does not make any official claims of support for these devices on the ROCm software platform.
|
||||
|
||||
The following list of GPUs are enabled in the ROCm software, though full support is not guaranteed:
|
||||
|
||||
* GFX8 GPUs
|
||||
* "Polaris 11" chips, such as on the AMD Radeon RX 570 and Radeon Pro WX 4100
|
||||
* "Polaris 12" chips, such as on the AMD Radeon RX 550 and Radeon RX 540
|
||||
* GFX7 GPUs
|
||||
* "Hawaii" chips, such as the AMD Radeon R9 390X and FirePro W9100
|
||||
|
||||
As described in the next section, GFX8 GPUs require PCI Express 3.0 (PCIe 3.0) with support for PCIe atomics. This requires both CPU and motherboard support. GFX9 GPUs require PCIe 3.0 with support for PCIe atomics by default, but they can operate in most cases without this capability.
|
||||
|
||||
The integrated GPUs in AMD APUs are not officially supported targets for ROCm.
|
||||
As described [below](#limited-support), "Carrizo", "Bristol Ridge", and "Raven Ridge" APUs are enabled in our upstream drivers and the ROCm OpenCL runtime.
|
||||
However, they are not enabled in the HIP runtime, and may not work due to motherboard or OEM hardware limitations.
|
||||
As such, they are not yet officially supported targets for ROCm.
|
||||
|
||||
For a more detailed list of hardware support, please see [the following documentation](https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units).
|
||||
|
||||
#### Supported CPUs
|
||||
As described above, GFX8 GPUs require PCIe 3.0 with PCIe atomics in order to run ROCm.
|
||||
In particular, the CPU and every active PCIe point between the CPU and GPU require support for PCIe 3.0 and PCIe atomics.
|
||||
The CPU root must indicate PCIe AtomicOp Completion capabilities and any intermediate switch must indicate PCIe AtomicOp Routing capabilities.
|
||||
|
||||
Current CPUs which support PCIe Gen3 + PCIe Atomics are:
|
||||
|
||||
* AMD Ryzen CPUs
|
||||
* The CPUs in AMD Ryzen APUs
|
||||
* AMD Ryzen Threadripper CPUs
|
||||
* AMD EPYC CPUs
|
||||
* Intel Xeon E7 v3 or newer CPUs
|
||||
* Intel Xeon E5 v3 or newer CPUs
|
||||
* Intel Xeon E3 v3 or newer CPUs
|
||||
* Intel Core i7 v4, Core i5 v4, Core i3 v4 or newer CPUs (i.e. Haswell family or newer)
|
||||
* Some Ivy Bridge-E systems
|
||||
|
||||
Beginning with ROCm 1.8, GFX9 GPUs (such as Vega 10) no longer require PCIe atomics.
|
||||
We have similarly opened up more options for number of PCIe lanes.
|
||||
GFX9 GPUs can now be run on CPUs without PCIe atomics and on older PCIe generations, such as PCIe 2.0.
|
||||
This is not supported on GPUs below GFX9, e.g. GFX8 cards in the Fiji and Polaris families.
|
||||
|
||||
If you are using any PCIe switches in your system, please note that PCIe Atomics are only supported on some switches, such as Broadcom PLX.
|
||||
When you install your GPUs, make sure you install them in a PCIe 3.1.0 x16, x8, x4, or x1 slot attached either directly to the CPU's Root I/O controller or via a PCIe switch directly attached to the CPU's Root I/O controller.
|
||||
|
||||
In our experience, many issues stem from trying to use consumer motherboards which provide physical x16 connectors that are electrically connected as e.g. PCIe 2.0 x4, PCIe slots connected via the Southbridge PCIe I/O controller, or PCIe slots connected through a PCIe switch that does
|
||||
not support PCIe atomics.
|
||||
|
||||
If you attempt to run ROCm on a system without proper PCIe atomic support, you may see an error in the kernel log (`dmesg`):
|
||||
```
|
||||
kfd: skipped device 1002:7300, PCI rejects atomics
|
||||
```
|
||||
|
||||
Experimental support for our Hawaii (GFX7) GPUs (Radeon R9 290, R9 390, FirePro W9100, S9150, S9170)
|
||||
does not require or take advantage of PCIe Atomics. However, we still recommend that you use a CPU
|
||||
from the list provided above for compatibility purposes.
|
||||
|
||||
#### Not supported or limited support under ROCm
|
||||
|
||||
##### Limited support
|
||||
|
||||
* ROCm 4.x should support PCIe 2.0 enabled CPUs such as the AMD Opteron, Phenom, Phenom II, Athlon, Athlon X2, Athlon II and older Intel Xeon and Intel Core Architecture and Pentium CPUs. However, we have done very limited testing on these configurations, since our test farm has been catering to CPUs listed above. This is where we need community support. _If you find problems on such setups, please report these issues_.
|
||||
* Thunderbolt 1, 2, and 3 enabled breakout boxes should now be able to work with ROCm. Thunderbolt 1 and 2 are PCIe 2.0 based, and thus are only supported with GPUs that do not require PCIe 3.1.0 atomics (e.g. Vega 10). However, we have done no testing on this configuration and would need community support due to limited access to this type of equipment.
|
||||
* AMD "Carrizo" and "Bristol Ridge" APUs are enabled to run OpenCL, but do not yet support HIP or our libraries built on top of these compilers and runtimes.
|
||||
* As of ROCm 2.1, "Carrizo" and "Bristol Ridge" require the use of upstream kernel drivers.
|
||||
* In addition, various "Carrizo" and "Bristol Ridge" platforms may not work due to OEM and ODM choices when it comes to key configurations parameters such as inclusion of the required CRAT tables and IOMMU configuration parameters in the system BIOS.
|
||||
* Before purchasing such a system for ROCm, please verify that the BIOS provides an option for enabling IOMMUv2 and that the system BIOS properly exposes the correct CRAT table. Inquire with your vendor about the latter.
|
||||
* AMD "Raven Ridge" APUs are enabled to run OpenCL, but do not yet support HIP or our libraries built on top of these compilers and runtimes.
|
||||
* As of ROCm 2.1, "Raven Ridge" requires the use of upstream kernel drivers.
|
||||
* In addition, various "Raven Ridge" platforms may not work due to OEM and ODM choices when it comes to key configurations parameters such as inclusion of the required CRAT tables and IOMMU configuration parameters in the system BIOS.
|
||||
* Before purchasing such a system for ROCm, please verify that the BIOS provides an option for enabling IOMMUv2 and that the system BIOS properly exposes the correct CRAT table. Inquire with your vendor about the latter.
|
||||
|
||||
##### Not supported
|
||||
|
||||
* "Tonga", "Iceland", "Vega M", and "Vega 12" GPUs are not supported.
|
||||
* We do not support GFX8-class GPUs (Fiji, Polaris, etc.) on CPUs that do not have PCIe 3.0 with PCIe atomics.
|
||||
* As such, we do not support AMD Carrizo and Kaveri APUs as hosts for such GPUs.
|
||||
* Thunderbolt 1 and 2 enabled GPUs are not supported by GFX8 GPUs on ROCm. Thunderbolt 1 & 2 are based on PCIe 2.0.
|
||||
|
||||
In the default ROCm configuration, GFX8 and GFX9 GPUs require PCI Express 3.0 with PCIe atomics. The ROCm platform leverages these advanced capabilities to allow features such as user-level submission of work from the host to the GPU. This includes PCIe atomic Fetch and Add, Compare and Swap, Unconditional Swap, and AtomicOp Completion.
|
||||
|
||||
#### ROCm support in upstream Linux kernels
|
||||
|
||||
As of ROCm 1.9.0, the ROCm user-level software is compatible with the AMD drivers in certain upstream Linux kernels.
|
||||
As such, users have the option of either using the ROCK kernel driver that are part of AMD's ROCm repositories or using the upstream driver and only installing ROCm user-level utilities from AMD's ROCm repositories.
|
||||
|
||||
These releases of the upstream Linux kernel support the following GPUs in ROCm:
|
||||
* 4.17: Fiji, Polaris 10, Polaris 11
|
||||
* 4.18: Fiji, Polaris 10, Polaris 11, Vega10
|
||||
* 4.20: Fiji, Polaris 10, Polaris 11, Vega10, Vega 7nm
|
||||
|
||||
The upstream driver may be useful for running ROCm software on systems that are not compatible with the kernel driver available in AMD's repositories.
|
||||
For users that have the option of using either AMD's or the upstreamed driver, there are various tradeoffs to take into consideration:
|
||||
|
||||
| | Using AMD's `rock-dkms` package | Using the upstream kernel driver |
|
||||
| ---- | ------------------------------------------------------------| ----- |
|
||||
| Pros | More GPU features, and they are enabled earlier | Includes the latest Linux kernel features |
|
||||
| | Tested by AMD on supported distributions | May work on other distributions and with custom kernels |
|
||||
| | Supported GPUs enabled regardless of kernel version | |
|
||||
| | Includes the latest GPU firmware | |
|
||||
| Cons | May not work on all Linux distributions or versions | Features and hardware support varies depending on kernel version |
|
||||
| | Not currently supported on kernels newer than 5.4 | Limits GPU's usage of system memory to 3/8 of system memory (before 5.6). For 5.6 and beyond, both DKMS and upstream kernels allow use of 15/16 of system memory. |
|
||||
| | | IPC and RDMA capabilities are not yet enabled |
|
||||
| | | Not tested by AMD to the same level as `rock-dkms` package |
|
||||
| | | Does not include most up-to-date firmware |
|
||||
|
||||
|
||||
# Disclaimer
|
||||
|
||||
AMD®, the AMD Arrow logo, AMD Instinct™, Radeon™, ROCm® and combinations thereof are trademarks of Advanced Micro Devices, Inc.
|
||||
|
||||
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
|
||||
|
||||
PCIe® is a registered trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
|
||||
|
||||
Google® is a registered trademark of Google LLC.
|
||||
|
||||
Ubuntu and the Ubuntu logo are registered trademarks of Canonical Ltd.
|
||||
|
||||
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
|
||||
# Older ROCm™ Releases
|
||||
For release information for older ROCm™ releases, please visit the [CHANGELOG](CHANGELOG.md).
|
||||
|
||||
|
||||
12
default.xml
@@ -1,7 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<manifest>
|
||||
<remote name="roc-github"
|
||||
fetch="http://github.com/RadeonOpenCompute/" />
|
||||
fetch="https://github.com/RadeonOpenCompute/" />
|
||||
<remote name="rocm-devtools"
|
||||
fetch="https://github.com/ROCm-Developer-Tools/" />
|
||||
<remote name="rocm-swplat"
|
||||
@@ -12,7 +12,7 @@ fetch="https://github.com/GPUOpen-ProfessionalCompute-Libraries/" />
|
||||
fetch="https://github.com/GPUOpen-Tools/" />
|
||||
<remote name="KhronosGroup"
|
||||
fetch="https://github.com/KhronosGroup/" />
|
||||
<default revision="refs/tags/rocm-4.1.0"
|
||||
<default revision="refs/tags/rocm-5.2.3"
|
||||
remote="roc-github"
|
||||
sync-c="true"
|
||||
sync-j="4" />
|
||||
@@ -20,7 +20,6 @@ fetch="https://github.com/KhronosGroup/" />
|
||||
<project name="ROCK-Kernel-Driver" />
|
||||
<project name="ROCT-Thunk-Interface" />
|
||||
<project name="ROCR-Runtime" />
|
||||
<project name="ROC-smi" />
|
||||
<project name="rocm_smi_lib" />
|
||||
<project name="rocm-cmake" />
|
||||
<project name="rocminfo" />
|
||||
@@ -31,9 +30,11 @@ fetch="https://github.com/KhronosGroup/" />
|
||||
<project name="clang-ocl" />
|
||||
<!--HIP Projects-->
|
||||
<project name="HIP" remote="rocm-devtools" />
|
||||
<project name="hipamd" remote="rocm-devtools" />
|
||||
<project name="HIP-Examples" remote="rocm-devtools" />
|
||||
<project name="ROCclr" remote="rocm-devtools" />
|
||||
<project name="HIPIFY" remote="rocm-devtools" />
|
||||
<project name="HIPCC" remote="rocm-devtools" />
|
||||
<!-- The following projects are all associated with the AMDGPU LLVM compiler -->
|
||||
<project name="llvm-project" />
|
||||
<project name="ROCm-Device-Libs" />
|
||||
@@ -47,14 +48,16 @@ fetch="https://github.com/KhronosGroup/" />
|
||||
<project name="ROCgdb" remote="rocm-devtools" />
|
||||
<project name="ROCdbgapi" remote="rocm-devtools" />
|
||||
<!-- ROCm Libraries -->
|
||||
<project name="rdc" remote="roc-github" />
|
||||
<project name="rdc" />
|
||||
<project name="rocBLAS" remote="rocm-swplat" />
|
||||
<project name="Tensile" remote="rocm-swplat" />
|
||||
<project name="hipBLAS" remote="rocm-swplat" />
|
||||
<project name="rocFFT" remote="rocm-swplat" />
|
||||
<project name="hipFFT" remote="rocm-swplat" />
|
||||
<project name="rocRAND" remote="rocm-swplat" />
|
||||
<project name="rocSPARSE" remote="rocm-swplat" />
|
||||
<project name="rocSOLVER" remote="rocm-swplat" />
|
||||
<project name="hipSOLVER" remote="rocm-swplat" />
|
||||
<project name="hipSPARSE" remote="rocm-swplat" />
|
||||
<project name="rocALUTION" remote="rocm-swplat" />
|
||||
<project name="MIOpenGEMM" remote="rocm-swplat" />
|
||||
@@ -64,6 +67,7 @@ fetch="https://github.com/KhronosGroup/" />
|
||||
<project name="rocThrust" remote="rocm-swplat" />
|
||||
<project name="hipCUB" remote="rocm-swplat" />
|
||||
<project name="rocPRIM" remote="rocm-swplat" />
|
||||
<project name="rocWMMA" remote="rocm-swplat" />
|
||||
<project name="hipfort" remote="rocm-swplat" />
|
||||
<project name="AMDMIGraphX" remote="rocm-swplat" />
|
||||
<project name="ROCmValidationSuite" remote="rocm-devtools" />
|
||||
|
||||
BIN
images/CG1.PNG
|
Before Width: | Height: | Size: 3.8 KiB |
BIN
images/CG2.PNG
|
Before Width: | Height: | Size: 31 KiB |
BIN
images/CG3.PNG
|
Before Width: | Height: | Size: 5.0 KiB |
BIN
images/CLI1.PNG
|
Before Width: | Height: | Size: 7.7 KiB |
BIN
images/CLI2.PNG
|
Before Width: | Height: | Size: 13 KiB |
BIN
images/SMI.PNG
|
Before Width: | Height: | Size: 13 KiB |
|
Before Width: | Height: | Size: 51 KiB |
|
Before Width: | Height: | Size: 47 KiB |
|
Before Width: | Height: | Size: 58 KiB |