Compare commits

...

35 Commits

Author SHA1 Message Date
Saad Rahim
468310d53f Merge branch 'master' into roc-5.2.x 2022-08-18 12:30:04 -06:00
Saad Rahim
12a8174f06 Updates to release notes for 5.2.3 (#1785) 2022-08-18 12:24:02 -06:00
Roopa Malavally
f75183b8aa Update README.md 2022-08-09 16:20:22 -07:00
Saad Rahim
ce33a75e3f Reorganizing the README and CHANGELOG for 5.2.3 (#1775)
* Update manifest to 5.2.1 release

* Update README.md

* Removing unused files (#1772)

* Adding a CODEOWNERS file (#1771)

* Reorganizing into README and CHANGELOG

* Reformatting

* Reformatting

* Reformatting

* Reorganizing versioning

* Reorganizing Changelog description

* Orgnizing release notes

* Changed to HIP Libraries

* Update README.md

* Trying variable

* Trying variable

* Removing versioning

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Draft release notes

* Compiler release notes

Co-authored-by: zhozha <zhongyu.zhang@amd.com>
Co-authored-by: Roopa Malavally <56051583+Rmalavally@users.noreply.github.com>
2022-08-09 16:16:54 -07:00
Saad Rahim
8a1231e89b Draft release notes 2022-08-04 16:55:18 -06:00
Saad Rahim
2a5f42bb44 Draft release notes 2022-08-04 16:44:18 -06:00
Saad Rahim
ddc1379bff Draft release notes 2022-08-04 16:32:50 -06:00
Saad Rahim
7356984836 Draft release notes 2022-08-04 16:21:18 -06:00
Saad Rahim
35eb9be40b Draft release notes 2022-08-04 16:20:36 -06:00
Saad Rahim
27dfc3a7f7 Draft release notes 2022-08-04 16:05:15 -06:00
Saad Rahim
eb297f632b Draft release notes 2022-08-04 14:07:34 -06:00
Saad Rahim
0e81c2defb Draft release notes 2022-08-04 11:30:25 -06:00
Saad Rahim
42561c26cb Draft release notes 2022-08-04 10:14:40 -06:00
Saad Rahim
c7b5f4b692 Draft release notes 2022-08-04 10:13:28 -06:00
Saad Rahim
3352334b03 Draft release notes 2022-08-04 10:08:11 -06:00
Saad Rahim
340a05ed47 Draft release notes 2022-08-04 09:58:47 -06:00
Saad Rahim
d091ae2f0e Draft release notes 2022-08-04 09:55:04 -06:00
Saad Rahim
29a1da2d15 Draft release notes 2022-08-04 09:49:21 -06:00
Saad Rahim
f453061217 Draft release notes 2022-08-04 09:48:38 -06:00
Saad Rahim
22d79a942f Draft release notes 2022-08-04 09:47:23 -06:00
Saad Rahim
2632c43ee6 Removing versioning 2022-08-02 12:29:35 -06:00
Saad Rahim
25a3b3eff4 Trying variable 2022-08-02 12:00:30 -06:00
Saad Rahim
e79d3447e8 Merge branch 'master' of github.com:saadrahim/ROCm 2022-08-02 11:59:21 -06:00
Saad Rahim
0c37b6c89c Trying variable 2022-08-02 11:59:01 -06:00
Saad Rahim
9ae47c256e Update README.md 2022-08-02 11:54:21 -06:00
Saad Rahim
3095164bff Changed to HIP Libraries 2022-08-02 11:49:51 -06:00
Saad Rahim
33f6296b58 Orgnizing release notes 2022-08-02 10:09:24 -06:00
Saad Rahim
c3bf77aeff Reorganizing Changelog description 2022-08-02 09:51:28 -06:00
Saad Rahim
6d9979891b Reorganizing versioning 2022-08-02 09:49:46 -06:00
Saad Rahim
b7c366c713 Reformatting 2022-08-02 09:47:46 -06:00
Saad Rahim
6b4492a5ab Reformatting 2022-08-02 09:45:50 -06:00
Saad Rahim
8ee063fdc4 Reformatting 2022-08-02 09:45:19 -06:00
Saad Rahim
4e5dd3ed2b Reorganizing into README and CHANGELOG 2022-08-02 09:38:41 -06:00
Saad Rahim
8d44096bd9 Merge remote-tracking branch 'origin/master' 2022-08-02 09:36:34 -06:00
zhozha
a8ef40fbf5 Update manifest to 5.2.1 release 2022-07-21 17:26:25 -07:00
3 changed files with 809 additions and 752 deletions

761
CHANGELOG.md Normal file
View File

@@ -0,0 +1,761 @@
Changelog
------------------
# AMD ROCm™ Releases
## AMD ROCm™ V5.2 Release
AMD ROCm v5.2 is now released. The release documentation is available at https://docs.amd.com.
## AMD ROCm™ V5.1.3 Release
AMD ROCm v5.1.3 is now released. The release documentation is available at https://docs.amd.com.
## AMD ROCm™ V5.1.1 Release
AMD ROCm v5.1.1 is now released. The release documentation is available at https://docs.amd.com.
## AMD ROCm™ V5.1 Release
AMD ROCm v5.1 is now released. The release documentation is available at https://docs.amd.com.
## AMD ROCm™ v5.0.2 Release Notes
### Fixed Defects in This Release
The following defects are fixed in the ROCm v5.0.2 release.
#### Issue with hostcall Facility in HIP Runtime
In ROCm v5.0, when using the “assert()” call in a HIP kernel, the compiler may sometimes fail to emit kernel metadata related to the hostcall facility, which results in incomplete initialization of the hostcall facility in the HIP runtime. This can cause the HIP kernel to crash when it attempts to execute the “assert()” call.
The root cause was an incorrect check in the compiler to determine whether the hostcall facility is required by the kernel. This is fixed in the ROCm v5.0.2 release.
The resolution includes a compiler change, which emits the required metadata by default, unless the compiler can prove that the hostcall facility is not required by the kernel. This ensures that the “assert()” call never fails.
**Note**: This fix may lead to breakage in some OpenMP offload use cases, which use print inside a target region and result in an abort in device code. The issue will be fixed in a future release.
#### Compatibility Matrix Updates to ROCm Deep Learning Guide
The compatibility matrix in the AMD Deep Learning Guide is updated for ROCm v5.0.2.
For more information and documentation updates, refer to https://docs.amd.com.
## AMD ROCm™ v5.0.1 Release Notes
### Deprecations and Warnings
#### Refactor of HIPCC/HIPCONFIG
In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target compiler options, target platform, compiler, and runtime appropriately.
In ROCm v5.0.1, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of the hipcc and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as experimental. ROCm plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release. The existing hipcc and hipconfig Perl scripts are renamed to hipcc.pl and hipconfig.pl respectively. New top-level hipcc and hipconfig Perl scripts are created, which can switch between the Perl script or the compiled binary based on the environment variable HIPCC_USE_PERL_SCRIPT.
In ROCm 5.0.1, by default, this environment variable is set to use hipcc and hipconfig through the Perl scripts.
Subsequently, Perl scripts will no longer be available in ROCm in a future release.
### ROCM DOCUMENTATION UPDATES FOR ROCM 5.0.1
* ROCm Downloads Guide
* ROCm Installation Guide
* ROCm Release Notes
For more information, see https://docs.amd.com.
## AMD ROCm™ v5.0 Release Notes
# ROCm Installation Updates
This document describes the features, fixed issues, and information about downloading and installing the AMD ROCm™ software.
It also covers known issues and deprecations in this release.
## Notice for Open-source and Closed-source ROCm Repositories in Future Releases
To make a distinction between open-source and closed-source components, all ROCm repositories will consist of sub-folders in future releases.
- All open-source components will be placed in the `base-url/<rocm-ver>/main` sub-folder
- All closed-source components will reside in the `base-url/<rocm-ver>/proprietary` sub-folder
## List of Supported Operating Systems
The AMD ROCm platform supports the following operating systems:
| **OS-Version (64-bit)** | **Kernel Versions** |
| --- | --- |
| CentOS 8.3 | 4.18.0-193.el8 |
| CentOS 7.9 | 3.10.0-1127 |
| RHEL 8.5 | 4.18.0-348.7.1.el8\_5.x86\_64 |
| RHEL 8.4 | 4.18.0-305.el8.x86\_64 |
| RHEL 7.9 | 3.10.0-1160.6.1.el7 |
| SLES 15 SP3 | 5.3.18-59.16-default |
| Ubuntu 20.04.3 | 5.8.0 LTS / 5.11 HWE |
| Ubuntu 18.04.5 [5.4 HWE kernel] | 5.4.0-71-generic |
### Support for RHEL v8.5
This release extends support for RHEL v8.5.
### Supported GPUs
#### Radeon Pro V620 and W6800 Workstation GPUs
This release extends ROCm support for Radeon Pro V620 and W6800 Workstation GPUs.
- SRIOV virtualization support for Radeon Pro V620
- KVM Hypervisor (1VF support only) on Ubuntu Host OS with Ubuntu, CentOs, and RHEL Guest
- Support for ROCm-SMI in an SRIOV environment. For more details, refer to the ROCm SMI API documentation.
**Note:** Radeon Pro v620 is not supported on SLES.
## ROCm Installation Updates for ROCm v5.0
This release has the following ROCm installation enhancements.
### Support for Kernel Mode Driver
In this release, users can install the kernel-mode driver using the Installer method. Some of the ROCm-specific use cases that the installer currently supports are:
- OpenCL (ROCr/KFD based) runtime
- HIP runtimes
- ROCm libraries and applications
- ROCm Compiler and device libraries
- ROCr runtime and thunk
- Kernel-mode driver
### Support for Multi-version ROCm Installation and Uninstallation
Users now can install multiple ROCm releases simultaneously on a system using the newly introduced installer script and package manager install mechanism.
Users can also uninstall multi-version ROCm releases using the `amdgpu-uninstall` script and package manager.
### Support for Updating Information on Local Repositories
In this release, the `amdgpu-install` script automates the process of updating local repository information before proceeding to ROCm installation.
### Support for Release Upgrades
Users can now upgrade the existing ROCm installation to specific or latest ROCm releases.
For more details, refer to the AMD ROCm Installation Guide v5.0.
# AMD ROCm V5.0 Documentation Updates
## New AMD ROCm Information Portal ROCm v4.5 and Above
Beginning ROCm release v5.0, AMD ROCm documentation has a new portal at https://docs.amd.com. This portal consists of ROCm documentation v4.5 and above.
For documentation prior to ROCm v4.5, you may continue to access https://rocmdocs.amd.com.
## Documentation Updates for ROCm 5.0
### Deployment Tools
#### ROCm Data Center Tool Documentation Updates
- ROCm Data Center Tool User Guide
- ROCm Data Center Tool API Guide
#### ROCm System Management Interface Updates
- System Management Interface Guide
- System Management Interface API Guide
#### ROCm Command Line Interface Updates
- Command Line Interface Guide
### Machine Learning/AI Documentation Updates
- Deep Learning Guide
- MIGraphX API Guide
- MIOpen API Guide
- MIVisionX API Guide
### ROCm Libraries Documentation Updates
- hipSOLVER User Guide
- RCCL User Guide
- rocALUTION User Guide
- rocBLAS User Guide
- rocFFT User Guide
- rocRAND User Guide
- rocSOLVER User Guide
- rocSPARSE User Guide
- rocThrust User Guide
### Compilers and Tools
#### ROCDebugger Documentation Updates
- ROCDebugger User Guide
- ROCDebugger API Guide
#### ROCTracer
- ROCTracer User Guide
- ROCTracer API Guide
#### Compilers
- AMD Instinct High Performance Computing and Tuning Guide
- AMD Compiler Reference Guide
#### HIPify Documentation
- HIPify User Guide
- HIP Supported CUDA API Reference Guide
#### ROCm Debug Agent
- ROCm Debug Agent Guide
- System Level Debug Guide
- ROCm Validation Suite
### Programming Models Documentation
#### HIP Documentation
- HIP Programming Guide
- HIP API Guide
- HIP FAQ Guide
#### OpenMP Documentation
- OpenMP Support Guide
### ROCm Glossary
- ROCm Glossary Terms and Definitions
## AMD ROCm Legacy Documentation Links ROCm v4.3 and Prior
- For AMD ROCm documentation, see
https://rocmdocs.amd.com/en/latest/
- For installation instructions on supported platforms, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
- For AMD ROCm binary structure, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Software-Stack-for-AMD-GPU.html
- For AMD ROCm release history, see
https://rocmdocs.amd.com/en/latest/Current_Release_Notes/ROCm-Version-History.html
# What's New in This Release
## HIP Enhancements
The ROCm v5.0 release consists of the following HIP enhancements.
### HIP Installation Guide Updates
The HIP Installation Guide is updated to include building HIP from source on the NVIDIA platform.
Refer to the HIP Installation Guide v5.0 for more details.
### Managed Memory Allocation
Managed memory, including the `__managed__` keyword, is now supported in the HIP combined host/device compilation. Through unified memory allocation, managed memory allows data to be shared and accessible to both the CPU and GPU using a single pointer. The allocation is managed by the AMD GPU driver using the Linux Heterogeneous Memory Management (HMM) mechanism. The user can call managed memory API hipMallocManaged to allocate a large chunk of HMM memory, execute kernels on a device, and fetch data between the host and device as needed.
**Note:** In a HIP application, it is recommended to do a capability check before calling the managed memory APIs. For example,
```c
int managed_memory = 0;
HIPCHECK(hipDeviceGetAttribute(&managed_memory, hipDeviceAttributeManagedMemory, p_gpuDevice));
if (!managed_memory) {
printf ("info: managed memory access not supported on the device %d\n Skipped\n", p_gpuDevice);
} else {
HIPCHECK(hipSetDevice(p_gpuDevice));
HIPCHECK(hipMallocManaged(&Hmm, N * sizeof(T)));
. . .
}
```
**Note:** The managed memory capability check may not be necessary; however, if HMM is not supported, managed malloc will fall back to using system memory. Other managed memory API calls will, then, have
Refer to the HIP API documentation for more details on managed memory APIs.
For the application, see [hipMallocManaged.cpp](https://github.com/ROCm-Developer-Tools/HIP/blob/rocm-4.5.x/tests/src/runtimeApi/memory/hipMallocManaged.cpp)
## New Environment Variable
The following new environment variable is added in this release:
| **Environment Variable** | **Value** | **Description** |
| --- | --- | --- |
| **HSA\_COOP\_CU\_COUNT** | 0 or 1 (default is 0) | Some processors support more compute units than can reliably be used in a cooperative dispatch. Setting the environment variable HSA\_COOP\_CU\_COUNT to 1 will cause ROCr to return the correct CU count for cooperative groups through the HSA\_AMD\_AGENT\_INFO\_COOPERATIVE\_COMPUTE\_UNIT\_COUNT attribute of hsa\_agent\_get\_info(). Setting HSA\_COOP\_CU\_COUNT to other values, or leaving it unset, will cause ROCr to return the same CU count for the attributes HSA\_AMD\_AGENT\_INFO\_COOPERATIVE\_COMPUTE\_UNIT\_COUNT and HSA\_AMD\_AGENT\_INFO\_COMPUTE\_UNIT\_COUNT. Future ROCm releases will make HSA\_COOP\_CU\_COUNT=1 the default.
|
## ROCm Math and Communication Libraries
| **Library** | **Changes** |
| --- | --- |
| **rocBLAS** | **Added** <ul><li>Added rocblas\_get\_version\_string\_size convenience function</li><li>Added rocblas\_xtrmm\_outofplace, an out-of-place version of rocblas\_xtrmm</li><li>Added hpl and trig initialization for gemm\_ex to rocblas-bench</li><li>Added source code gemm. It can be used as an alternative to Tensile for debugging and development</li><li>Added option `ROCM_MATHLIBS_API_USE_HIP_COMPLEX` to opt-in to use hipFloatComplex and hipDoubleComplex</li></ul> **Optimizations** <ul><li>Improved performance of non-batched and batched single-precision GER for size m > 1024. Performance enhanced by 5-10% measured on a MI100 (gfx908) GPU.</li><li>Improved performance of non-batched and batched HER for all sizes and data types. Performance enhanced by 2-17% measured on a MI100 (gfx908) GPU.</li></ul> **Changed** <ul><li>Instantiate templated rocBLAS functions to reduce size of librocblas.so</li><li>Removed static library dependency on msgpack</li><li>Removed boost dependencies for clients</li></ul> **Fixed** <ul><li>Option to install script to build only rocBLAS clients with a pre-built rocBLAS library</li><li>Correctly set output of nrm2\_batched\_ex and nrm2\_strided\_batched\_ex when given bad input</li><li>Fix for dgmm with side == rocblas\_side\_left and a negative incx</li><li>Fixed out-of-bounds read for small trsm</li><li>Fixed numerical checking for tbmv\_strided\_batched</li></ul> |
| | |
| **hipBLAS** | **Added** <ul><li>Added rocSOLVER functions to hipblas-bench</li><li>Added option `ROCM_MATHLIBS_API_USE_HIP_COMPLEX` to opt-in to use hipFloatComplex and hipDoubleComplex</li><li>Added compilation warning for future trmm changes</li><li>Added documentation to hipblas.h</li><li>Added option to forgo pivoting for getrf and getri when ipiv is nullptr</li><li>Added code coverage option</li></ul> **Fixed** <ul><li>Fixed use of incorrect `HIP_PATH` when building from source.</li><li>Fixed windows packaging</li><li>Allowing negative increments in hipblas-bench</li><li>Removed boost dependency</li></ul> |
| | |
| **rocFFT** | **Changed** <ul><li>Enabled runtime compilation of single FFT kernels > length 1024.</li><li>Re-aligned split device library into 4 roughly equal libraries.</li><li>Implemented the FuseShim framework to replace the original OptimizePlan</li><li>Implemented the generic buffer-assignment framework. The buffer assignment is no longer performed by each node. A generic algorithm is designed to test and pick the best assignment path. With the help of FuseShim, more kernel-fusions are achieved.</li><li>Do not read the imaginary part of the DC and Nyquist modes for even-length complex-to-real transforms.</li></ul> **Optimizations** <ul><li>Optimized twiddle-conjugation; complex-to-complex inverse transforms have similar performance to foward transforms now.</li><li>Improved performance of single-kernel small 2D transforms.</li></ul> |
| | |
| **hipFFT** | **Fixed** <ul><li>Fixed incorrect reporting of rocFFT version.</li></ul> **Changed** <ul><li>Unconditionally enabled callback functionality. On the CUDA backend, callbacks only run correctly when hipFFT is built as a static library, and is linked against the static cuFFT library.</li></ul> |
| | |
| **rocSPARSE** | **Added** <ul><li>csrmv, coomv, ellmv, hybmv for (conjugate) transposed matricescsrmv for symmetric matrices</li></ul> **Changed** <ul><li>spmm\_ex is now deprecated and will be removed in the next major release</li></ul> **Improved** <ul><li>Optimization for gtsv</li></ul> |
| | |
| **hipSPARSE** | **Added** <ul><li>Added (conjugate) transpose support for csrmv, hybmv and spmv routines</li></ul> |
| | |
| **rocALUTION** | **Changed** <ul><li>Removed deprecated GlobalPairwiseAMG class, please use PairwiseAMG instead.</li></ul> **Improved** <ul><li>Improved documentation</li></ul> |
| | |
| **rocTHRUST** | **Updates** <ul><li>Updated to match upstream Thrust 1.13.0</li><li>Updated to match upstream Thrust 1.14.0</li><li>Added async scan</li></ul> **Changed** <ul><li>Scan algorithms: inclusive\_scan now uses the input-type as accumulator-type, exclusive\_scan uses initial-value-type. This particularly changes behaviour of small-size input types with large-size output types (e.g. short input, int output). And low-res input with high-res output (e.g. float input, double output)</li></ul> |
| | |
| **rocSOLVER** | **Added** <ul><li>Symmetric matrix factorizations: <ul><li>LASYF</li><li>SYTF2, SYTRF (with batched and strided\_batched versions)</li></ul><li>Added rocsolver\_get\_version\_string\_size to help with version string queries</li><li>Added rocblas\_layer\_mode\_ex and the ability to print kernel calls in the trace and profile logs</li><li>Expanded batched and strided\_batched sample programs.</li></ul> **Optimizations** <ul><li>Improved general performance of LU factorization</li><li>Increased parallelism of specialized kernels when compiling from source, reducing build times on multi-core systems.</li></ul> **Changed** <ul><li>The rocsolver-test client now prints the rocSOLVER version used to run the tests, rather than the version used to build them</li><li>The rocsolver-bench client now prints the rocSOLVER version used in the benchmark</li></ul> **Fixed** <ul><li>Added missing stdint.h include to rocsolver.h</li></ul> |
| | |
| **hipSOLVER** | **Added** <ul><li>Added SYTRF functions: hipsolverSsytrf\_bufferSize, hipsolverDsytrf\_bufferSize, hipsolverCsytrf\_bufferSize, hipsolverZsytrf\_bufferSize, hipsolverSsytrf, hipsolverDsytrf, hipsolverCsytrf, hipsolverZsytrf</li></ul> **Fixed** <ul><li>Fixed use of incorrect `HIP_PATH` when building from source</li></ul> |
| | |
| **RCCL** | **Added** <ul><li>Compatibility with NCCL 2.10.3</li></ul> **Known issues** <ul><li>Managed memory is not currently supported for clique-based kernels</li></ul> |
| | |
| **hipCUB** | **Fixed** <ul><li>Added missing includes to hipcub.hpp</li></ul> **Added** <ul><li>Bfloat16 support to test cases (device\_reduce & device\_radix\_sort)</li><li>Device merge sort</li><li>Block merge sort</li><li>API update to CUB 1.14.0</li></ul> **Changed** <ul><li>The SetupNVCC.cmake automatic target selector select all of the capabalities of all available card for NVIDIA backend.</li></ul> |
| | |
| **rocPRIM** | **Fixed** <ul><li>Enable bfloat16 tests and reduce threshold for bfloat16</li><li>Fix device scan limit\_size feature</li><li>Non-optimized builds no longer trigger local memory limit errors</li></ul> **Added** <ul><li>Scan size limit feature</li><li>Reduce size limit feature</li><li>Transform size limit feature</li><li>Add block\_load\_striped and block\_store\_striped</li><li>Add gather\_to\_blocked to gather values from other threads into a blocked arrangement</li><li>The block sizes for device merge sorts initial block sort and its merge steps are now separate in its kernel config (the block sort step supports multiple items per thread)</li></ul> **Changed** <ul><li>size\_limit for scan, reduce and transform can now be set in the config struct instead of a parameter</li><li>device\_scan and device\_segmented\_scan: inclusive\_scan now uses the input-type as accumulator-type, exclusive\_scan uses initial-value-type. This particularly changes behaviour of small-size input types with large-size output types (e.g. short input, int output) and low-res input with high-res output (e.g. float input, double output)</li><li>Revert old Fiji workaround, because the issue was solved at compiler side</li><li>Update README cmake minimum version number</li><li>Block sort support multiple items per thread. Currently only powers of two block sizes, and items per threads are supported and only for full blocks</li><li>Bumped the minimum required version of CMake to 3.16</li></ul> **Known issues** <ul><li>Unit tests may soft hang on MI200 when running in hipMallocManaged mode.</li><li>device\_segmented\_radix\_sort, device\_scan unit tests failing for HIP on WindowsReduceEmptyInput cause random failure with bfloat16</li><li>Managed memory is not currently supported for clique-based kernels</li></ul> |
## System Management Interface
### Clock Throttling for GPU Events
This feature lists GPU events as they occur in real-time and can be used with _kfdtest_ to produce _vm\_fault_ events for testing.
The command can be called with either &quot; `-e` or `--showevents` like this:
-e [EVENT [EVENT ...]], --showevents [EVENT [EVENT ...]] Show event list
Where `EVENT` is any list combination of `VM_FAULT`, `THERMAL_THROTTLE`, or `GPU_RESET` and is NOT case sensitive.
**Note:** If no event arguments are passed, all events will be watched by default.
#### CLI Commands
```
$ rocm-smi --showevents vm_fault thermal_throttle gpu_reset
======================= ROCm System Management Interface =======================
================================= Show Events ==================================
press 'q' or 'ctrl + c' to quit
DEVICE TIME TYPE DESCRIPTION
============================= End of ROCm SMI Log ==============================
```
(Run kfdtest in another window to test for vm\_fault events.)
**Note:** Unlike other rocm-smi CLI commands, this command does not quit unless specified by the user. Users may press either `q` or `ctrl + c` to quit.
### Display XGMI Bandwidth Between Nodes
The _rsmi\_minmax\_bandwidth\_get_ API reads the HW Topology file and displays bandwidth (min-max) between any two NUMA nodes in a matrix format.
The Command Line Interface (CLI) command can be called as follows:
```
$ rocm-smi --shownodesbw
======================= ROCm System Management Interface =======================
================================== Bandwidth ===================================
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
GPU0 N/A 50000-200000 50000-50000 0-0 0-0 0-0 50000-100000 0-0
GPU1 50000-200000 N/A 0-0 50000-50000 0-0 50000-50000 0-0 0-0
GPU2 50000-50000 0-0 N/A 50000-200000 50000-100000 0-0 0-0 0-0
GPU3 0-0 50000-50000 50000-200000 N/A 0-0 0-0 0-0 50000-50000
GPU4 0-0 0-0 50000-100000 0-0 N/A 50000-200000 50000-50000 0-0
GPU5 0-0 50000-50000 0-0 0-0 50000-200000 N/A 0-0 50000-50000
GPU6 50000-100000 0-0 0-0 0-0 50000-50000 0-0 N/A 50000-200000
GPU7 0-0 0-0 0-0 50000-50000 0-0 50000-50000 50000-200000 N/A
Format: min-max; Units: mps
============================= End of ROCm SMI Log ==============================
```
The sample output above shows the maximum theoretical xgmi bandwidth between 2 numa nodes,
**Note:** "0-0" min-max bandwidth indicates devices are not connected directly.
### P2P Connection Status
The _rsmi\_is\_p2p\_accessible_ API returns "True" if P2P can be implemented between two nodes, and returns "False" if P2P cannot be implemented between the two nodes.
The Command Line Interface command can be called as follows:
rocm-smi --showtopoaccess
Sample Output:
```
$ rocm-smi --showtopoaccess
======================= ROCm System Management Interface =======================
===================== Link accessibility between two GPUs ======================
GPU0 GPU1
GPU0 True True
GPU1 True True
============================= End of ROCm SMI Log ==============================
```
# Breaking Changes
## Runtime Breaking Change
Re-ordering of the enumerated type in hip\_runtime\_api.h to better match NV. See below for the difference in enumerated types.
ROCm software will be affected if any of the defined enums listed below are used in the code. Applications built with ROCm v5.0 enumerated types will work with a ROCm 4.5.2 driver. However, an undefined behavior error will occur with a ROCm v4.5.2 application that uses these enumerated types with a ROCm 5.0 runtime.
```c
typedef enum hipDeviceAttribute_t {
hipDeviceAttributeMaxThreadsPerBlock, // Maximum number of threads per block.
hipDeviceAttributeMaxBlockDimX, // Maximum x-dimension of a block.
hipDeviceAttributeMaxBlockDimY, // Maximum y-dimension of a block.
hipDeviceAttributeMaxBlockDimZ, // Maximum z-dimension of a block.
hipDeviceAttributeMaxGridDimX, // Maximum x-dimension of a grid.
hipDeviceAttributeMaxGridDimY, // Maximum y-dimension of a grid.
hipDeviceAttributeMaxGridDimZ, // Maximum z-dimension of a grid.
hipDeviceAttributeMaxSharedMemoryPerBlock, // Maximum shared memory available per block in bytes.
hipDeviceAttributeTotalConstantMemory, // Constant memory size in bytes.
hipDeviceAttributeWarpSize, // Warp size in threads.
hipDeviceAttributeMaxRegistersPerBlock, // Maximum number of 32-bit registers available to a
// thread block. This number is shared by all thread
// blocks simultaneously resident on a
// multiprocessor.
hipDeviceAttributeClockRate, // Peak clock frequency in kilohertz.
hipDeviceAttributeMemoryClockRate, // Peak memory clock frequency in kilohertz.
hipDeviceAttributeMemoryBusWidth, // Global memory bus width in bits.
hipDeviceAttributeMultiprocessorCount, // Number of multiprocessors on the device.
hipDeviceAttributeComputeMode, // Compute mode that device is currently in.
hipDeviceAttributeL2CacheSize, // Size of L2 cache in bytes. 0 if the device doesn't have L2
// cache.
hipDeviceAttributeMaxThreadsPerMultiProcessor, // Maximum resident threads per
// multiprocessor.
hipDeviceAttributeComputeCapabilityMajor, // Major compute capability version number.
hipDeviceAttributeComputeCapabilityMinor, // Minor compute capability version number.
hipDeviceAttributeConcurrentKernels, // Device can possibly execute multiple kernels
// concurrently.
hipDeviceAttributePciBusId, // PCI Bus ID.
hipDeviceAttributePciDeviceId, // PCI Device ID.
hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, // Maximum Shared Memory Per
// Multiprocessor.
hipDeviceAttributeIsMultiGpuBoard, // Multiple GPU devices.
hipDeviceAttributeIntegrated, // iGPU
hipDeviceAttributeCooperativeLaunch, // Support cooperative launch
hipDeviceAttributeCooperativeMultiDeviceLaunch, // Support cooperative launch on multiple devices
hipDeviceAttributeMaxTexture1DWidth, // Maximum number of elements in 1D images
hipDeviceAttributeMaxTexture2DWidth, // Maximum dimension width of 2D images in image elements
hipDeviceAttributeMaxTexture2DHeight, // Maximum dimension height of 2D images in image elements
hipDeviceAttributeMaxTexture3DWidth, // Maximum dimension width of 3D images in image elements
hipDeviceAttributeMaxTexture3DHeight, // Maximum dimensions height of 3D images in image elements
hipDeviceAttributeMaxTexture3DDepth, // Maximum dimensions depth of 3D images in image elements
hipDeviceAttributeCudaCompatibleBegin = 0,
hipDeviceAttributeHdpMemFlushCntl, // Address of the HDP\_MEM\_COHERENCY\_FLUSH\_CNTL register
hipDeviceAttributeHdpRegFlushCntl, // Address of the HDP\_REG\_COHERENCY\_FLUSH\_CNTL register
hipDeviceAttributeEccEnabled = hipDeviceAttributeCudaCompatibleBegin, // Whether ECC support is enabled.
hipDeviceAttributeAccessPolicyMaxWindowSize, // Cuda only. The maximum size of the window policy in bytes.
hipDeviceAttributeAsyncEngineCount, // Cuda only. Asynchronous engines number.
hipDeviceAttributeCanMapHostMemory, // Whether host memory can be mapped into device address space
hipDeviceAttributeCanUseHostPointerForRegisteredMem, // Cuda only. Device can access host registered memory
// at the same virtual address as the CPU
hipDeviceAttributeClockRate, // Peak clock frequency in kilohertz.
hipDeviceAttributeComputeMode, // Compute mode that device is currently in.
hipDeviceAttributeComputePreemptionSupported, // Cuda only. Device supports Compute Preemption.
hipDeviceAttributeConcurrentKernels, // Device can possibly execute multiple kernels concurrently.
hipDeviceAttributeConcurrentManagedAccess, // Device can coherently access managed memory concurrently with the CPU
hipDeviceAttributeCooperativeLaunch, // Support cooperative launch
hipDeviceAttributeCooperativeMultiDeviceLaunch, // Support cooperative launch on multiple devices
hipDeviceAttributeDeviceOverlap, // Cuda only. Device can concurrently copy memory and execute a kernel.
// Deprecated. Use instead asyncEngineCount.
hipDeviceAttributeDirectManagedMemAccessFromHost, // Host can directly access managed memory on
// the device without migration
hipDeviceAttributeGlobalL1CacheSupported, // Cuda only. Device supports caching globals in L1
hipDeviceAttributeHostNativeAtomicSupported, // Cuda only. Link between the device and the host supports native atomic operations
hipDeviceAttributeIntegrated, // Device is integrated GPU
hipDeviceAttributeIsMultiGpuBoard, // Multiple GPU devices.
hipDeviceAttributeKernelExecTimeout, // Run time limit for kernels executed on the device
hipDeviceAttributeL2CacheSize, // Size of L2 cache in bytes. 0 if the device doesn&#39;t have L2 cache.
hipDeviceAttributeLocalL1CacheSupported, // caching locals in L1 is supported
hipDeviceAttributeLuid, // Cuda only. 8-byte locally unique identifier in 8 bytes. Undefined on TCC and non-Windows platforms
hipDeviceAttributeLuidDeviceNodeMask, // Cuda only. Luid device node mask. Undefined on TCC and non-Windows platforms
hipDeviceAttributeComputeCapabilityMajor, // Major compute capability version number.
hipDeviceAttributeManagedMemory, // Device supports allocating managed memory on this system
hipDeviceAttributeMaxBlocksPerMultiProcessor, // Cuda only. Max block size per multiprocessor
hipDeviceAttributeMaxBlockDimX, // Max block size in width.
hipDeviceAttributeMaxBlockDimY, // Max block size in height.
hipDeviceAttributeMaxBlockDimZ, // Max block size in depth.
hipDeviceAttributeMaxGridDimX, // Max grid size in width.
hipDeviceAttributeMaxGridDimY, // Max grid size in height.
hipDeviceAttributeMaxGridDimZ, // Max grid size in depth.
hipDeviceAttributeMaxSurface1D, // Maximum size of 1D surface.
hipDeviceAttributeMaxSurface1DLayered, // Cuda only. Maximum dimensions of 1D layered surface.
hipDeviceAttributeMaxSurface2D, // Maximum dimension (width, height) of 2D surface.
hipDeviceAttributeMaxSurface2DLayered, // Cuda only. Maximum dimensions of 2D layered surface.
hipDeviceAttributeMaxSurface3D, // Maximum dimension (width, height, depth) of 3D surface.
hipDeviceAttributeMaxSurfaceCubemap, // Cuda only. Maximum dimensions of Cubemap surface.
hipDeviceAttributeMaxSurfaceCubemapLayered, // Cuda only. Maximum dimension of Cubemap layered surface.
hipDeviceAttributeMaxTexture1DWidth, // Maximum size of 1D texture.
hipDeviceAttributeMaxTexture1DLayered, // Cuda only. Maximum dimensions of 1D layered texture.
hipDeviceAttributeMaxTexture1DLinear, // Maximum number of elements allocatable in a 1D linear texture.
// Use cudaDeviceGetTexture1DLinearMaxWidth() instead on Cuda.
hipDeviceAttributeMaxTexture1DMipmap, // Cuda only. Maximum size of 1D mipmapped texture.
hipDeviceAttributeMaxTexture2DWidth, // Maximum dimension width of 2D texture.
hipDeviceAttributeMaxTexture2DHeight, // Maximum dimension hight of 2D texture.
hipDeviceAttributeMaxTexture2DGather, // Cuda only. Maximum dimensions of 2D texture if gather operations performed.
hipDeviceAttributeMaxTexture2DLayered, // Cuda only. Maximum dimensions of 2D layered texture.
hipDeviceAttributeMaxTexture2DLinear, // Cuda only. Maximum dimensions (width, height, pitch) of 2D textures bound to pitched memory.
hipDeviceAttributeMaxTexture2DMipmap, // Cuda only. Maximum dimensions of 2D mipmapped texture.
hipDeviceAttributeMaxTexture3DWidth, // Maximum dimension width of 3D texture.
hipDeviceAttributeMaxTexture3DHeight, // Maximum dimension height of 3D texture.
hipDeviceAttributeMaxTexture3DDepth, // Maximum dimension depth of 3D texture.
hipDeviceAttributeMaxTexture3DAlt, // Cuda only. Maximum dimensions of alternate 3D texture.
hipDeviceAttributeMaxTextureCubemap, // Cuda only. Maximum dimensions of Cubemap texture
hipDeviceAttributeMaxTextureCubemapLayered, // Cuda only. Maximum dimensions of Cubemap layered texture.
hipDeviceAttributeMaxThreadsDim, // Maximum dimension of a block
hipDeviceAttributeMaxThreadsPerBlock, // Maximum number of threads per block.
hipDeviceAttributeMaxThreadsPerMultiProcessor, // Maximum resident threads per multiprocessor.
hipDeviceAttributeMaxPitch, // Maximum pitch in bytes allowed by memory copies
hipDeviceAttributeMemoryBusWidth, // Global memory bus width in bits.
hipDeviceAttributeMemoryClockRate, // Peak memory clock frequency in kilohertz.
hipDeviceAttributeComputeCapabilityMinor, // Minor compute capability version number.
hipDeviceAttributeMultiGpuBoardGroupID, // Cuda only. Unique ID of device group on the same multi-GPU board
hipDeviceAttributeMultiprocessorCount, // Number of multiprocessors on the device.
hipDeviceAttributeName, // Device name.
hipDeviceAttributePageableMemoryAccess, // Device supports coherently accessing pageable memory
// without calling hipHostRegister on it
hipDeviceAttributePageableMemoryAccessUsesHostPageTables, // Device accesses pageable memory via the host&#39;s page tables
hipDeviceAttributePciBusId, // PCI Bus ID.
hipDeviceAttributePciDeviceId, // PCI Device ID.
hipDeviceAttributePciDomainID, // PCI Domain ID.
hipDeviceAttributePersistingL2CacheMaxSize, // Cuda11 only. Maximum l2 persisting lines capacity in bytes
hipDeviceAttributeMaxRegistersPerBlock, // 32-bit registers available to a thread block. This number is shared
// by all thread blocks simultaneously resident on a multiprocessor.
hipDeviceAttributeMaxRegistersPerMultiprocessor, // 32-bit registers available per block.
hipDeviceAttributeReservedSharedMemPerBlock, // Cuda11 only. Shared memory reserved by CUDA driver per block.
hipDeviceAttributeMaxSharedMemoryPerBlock, // Maximum shared memory available per block in bytes.
hipDeviceAttributeSharedMemPerBlockOptin, // Cuda only. Maximum shared memory per block usable by special opt in.
hipDeviceAttributeSharedMemPerMultiprocessor, // Cuda only. Shared memory available per multiprocessor.
hipDeviceAttributeSingleToDoublePrecisionPerfRatio, // Cuda only. Performance ratio of single precision to double precision.
hipDeviceAttributeStreamPrioritiesSupported, // Cuda only. Whether to support stream priorities.
hipDeviceAttributeSurfaceAlignment, // Cuda only. Alignment requirement for surfaces
hipDeviceAttributeTccDriver, // Cuda only. Whether device is a Tesla device using TCC driver
hipDeviceAttributeTextureAlignment, // Alignment requirement for textures
hipDeviceAttributeTexturePitchAlignment, // Pitch alignment requirement for 2D texture references bound to pitched memory;
hipDeviceAttributeTotalConstantMemory, // Constant memory size in bytes.
hipDeviceAttributeTotalGlobalMem, // Global memory available on devicice.
hipDeviceAttributeUnifiedAddressing, // Cuda only. An unified address space shared with the host.
hipDeviceAttributeUuid, // Cuda only. Unique ID in 16 byte.
hipDeviceAttributeWarpSize, // Warp size in threads.
hipDeviceAttributeMaxPitch, // Maximum pitch in bytes allowed by memory copies
hipDeviceAttributeTextureAlignment, //Alignment requirement for textures
hipDeviceAttributeTexturePitchAlignment, //Pitch alignment requirement for 2D texture references bound to pitched memory;
hipDeviceAttributeKernelExecTimeout, //Run time limit for kernels executed on the device
hipDeviceAttributeCanMapHostMemory, //Device can map host memory into device address space
hipDeviceAttributeEccEnabled, //Device has ECC support enabled
hipDeviceAttributeCudaCompatibleEnd = 9999,
hipDeviceAttributeAmdSpecificBegin = 10000,
hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, // Supports cooperative launch on multiple
// devices with unmatched functions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, // Supports cooperative launch on multiple
// devices with unmatched grid dimensions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, // Supports cooperative launch on multiple
// devices with unmatched block dimensions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, // Supports cooperative launch on multiple
// devices with unmatched shared memories
hipDeviceAttributeAsicRevision, // Revision of the GPU in this device
hipDeviceAttributeManagedMemory, // Device supports allocating managed memory on this system
hipDeviceAttributeDirectManagedMemAccessFromHost, // Host can directly access managed memory on
// the device without migration
hipDeviceAttributeConcurrentManagedAccess, // Device can coherently access managed memory
// concurrently with the CPU
hipDeviceAttributePageableMemoryAccess, // Device supports coherently accessing pageable memory
// without calling hipHostRegister on it
hipDeviceAttributePageableMemoryAccessUsesHostPageTables, // Device accesses pageable memory via
// the host's page tables
hipDeviceAttributeCanUseStreamWaitValue // '1' if Device supports hipStreamWaitValue32() and
// hipStreamWaitValue64(), '0' otherwise.
hipDeviceAttributeClockInstructionRate = hipDeviceAttributeAmdSpecificBegin, // Frequency in khz of the timer used by the device-side "clock"
hipDeviceAttributeArch, // Device architecture
hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, // Maximum Shared Memory PerMultiprocessor.
hipDeviceAttributeGcnArch, // Device gcn architecture
hipDeviceAttributeGcnArchName, // Device gcnArch name in 256 bytes
hipDeviceAttributeHdpMemFlushCntl, // Address of the HDP_MEM_COHERENCY_FLUSH_CNTL register
hipDeviceAttributeHdpRegFlushCntl, // Address of the HDP_REG_COHERENCY_FLUSH_CNTL register
hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, // Supports cooperative launch on multiple
// devices with unmatched functions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, // Supports cooperative launch on multiple
// devices with unmatched grid dimensions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, // Supports cooperative launch on multiple
// devices with unmatched block dimensions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, // Supports cooperative launch on multiple
// devices with unmatched shared memories
hipDeviceAttributeIsLargeBar, // Whether it is LargeBar
hipDeviceAttributeAsicRevision, // Revision of the GPU in this device
hipDeviceAttributeCanUseStreamWaitValue, // '1' if Device supports hipStreamWaitValue32() and
// hipStreamWaitValue64() , '0' otherwise.
hipDeviceAttributeAmdSpecificEnd = 19999,
hipDeviceAttributeVendorSpecificBegin = 20000, // Extended attributes for vendors
} hipDeviceAttribute_t;
```
# Known Issues in This Release
## Incorrect dGPU Behavior When Using AMDVBFlash Tool
The AMDVBFlash tool, used for flashing the VBIOS image to dGPU, does not communicate with the ROM Controller specifically when the driver is present. This is because the driver, as part of its runtime power management feature, puts the dGPU to a sleep state.
As a workaround, users can run `amdgpu.runpm=0`, which temporarily disables the runtime power management feature from the driver and dynamically changes some power control-related sysfs files.
## Issue with START Timestamp in ROCProfiler
Users may encounter an issue with the enabled timestamp functionality for monitoring one or multiple counters. ROCProfiler outputs the following four timestamps for each kernel:
- Dispatch
- Start
- End
- Complete
**Issue**
This defect is related to the Start timestamp functionality, which incorrectly shows an earlier time than the Dispatch timestamp.
To reproduce the issue,
1. Enable timing using the `--timestamp on` flag.
2. Use the `-i` option with the input filename that contains the name of the counter(s) to monitor.
3. Run the program.
4. Check the output result file.
**Current behavior**
BeginNS is lower than DispatchNS, which is incorrect.
**Expected behavior**
The correct order is:
_Dispatch < Start < End < Complete_
Users cannot use ROCProfiler to measure the time spent on each kernel because of the incorrect timestamp with counter collection enabled.
**Recommended Workaround**
Users are recommended to collect kernel execution timestamps without monitoring counters, as follows:
1. Enable timing using the `--timestamp on` flag, and run the application.
2. Rerun the application using the `-i` option with the input filename that contains the name of the counter(s) to monitor, and save this to a different output file using the `-o` flag.
3. Check the output result file from step 1.
4. The order of timestamps correctly displays as:
_DispathNS < BeginNS < EndNS < CompleteNS_
1. Users can find the values of the collected counters in the output file generated in step 2.
## Radeon Pro V620 and W6800 Workstation GPUs
### No Support for SMI and ROCDebugger on SRIOV
System Management Interface (SMI) and ROCDebugger are not supported in the SRIOV environment on any GPU. For more information, refer to the Systems Management Interface documentation.
# Deprecations and Warnings in This Release
## ROCm Libraries Changes Deprecations and Deprecation Removal
- The hipfft.h header is now provided only by the hipfft package. Up to ROCm 5.0, users would get hipfft.h in the rocfft package too.
- The GlobalPairwiseAMG class is now entirely removed, users should use the PairwiseAMG class instead.
- The rocsparse\_spmm signature in 5.0 was changed to match that of rocsparse\_spmm\_ex. In 5.0, rocsparse\_spmm\_ex is still present, but deprecated. Signature diff for rocsparse\_spmm
### _rocsparse\_spmm_ in 5.0
```c
rocsparse_status rocsparse_spmm(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
const void* alpha,
const rocsparse_spmat_descr mat_A,
const rocsparse_dnmat_descr mat_B,
const void* beta,
const rocsparse_dnmat_descr mat_C,
rocsparse_datatype compute_type,
rocsparse_spmm_alg alg,
rocsparse_spmm_stage stage,
size_t* buffer_size,
void* temp_buffer);
```
### _rocsparse\_spmm_ in 4.0
```c
rocsparse_status rocsparse_spmm(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
const void* alpha,
const rocsparse_spmat_descr mat_A,
const rocsparse_dnmat_descr mat_B,
const void* beta,
const rocsparse_dnmat_descr mat_C,
rocsparse_datatype compute_type,
rocsparse_spmm_alg alg,
size_t* buffer_size,
void* temp_buffer);
```
## HIP API Deprecations and Warnings
### Warning - Arithmetic Operators of HIP Complex and Vector Types
In this release, arithmetic operators of HIP complex and vector types are deprecated.
- As alternatives to arithmetic operators of HIP complex types, users can use arithmetic operators of std::complex types.
- As alternatives to arithmetic operators of HIP vector types, users can use the operators of the native clang vector type associated with the data member of HIP vector types.
During the deprecation, two macros `__HIP_ENABLE_COMPLEX_OPERATORS` and `__HIP_ENABLE_VECTOR_OPERATORS` are provided to allow users to conditionally enable arithmetic operators of HIP complex or vector types.
Note, the two macros are mutually exclusive and, by default, set to off.
The arithmetic operators of HIP complex and vector types will be removed in a future release.
Refer to the HIP API Guide for more information.
### Refactor of HIPCC/HIPCONFIG
In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target compiler options, target platform, compiler, and runtime appropriately.
In ROCm v5.0, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of the hipcc and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as experimental. ROCm plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release. The existing hipcc and hipconfig Perl scripts are renamed to hipcc.pl and hipconfig.pl respectively. New top-level hipcc and hipconfig Perl scripts are created, which can switch between the Perl script or the compiled binary based on the environment variable `HIPCC_USE_PERL_SCRIPT`.
In ROCm 5.0, by default, this environment variable is set to use hipcc and hipconfig through the Perl scripts.
Subsequently, Perl scripts will no longer be available in ROCm in a future release.
## Warning - Compiler-Generated Code Object Version 4 Deprecation
Support for loading compiler-generated code object version 4 will be deprecated in a future release with no release announcement and replaced with code object 5 as the default version.
The current default is code object version 4.
## Warning - MIOpenTensile Deprecation
MIOpenTensile will be deprecated in a future release.
Archived Documentation
----------------------
Older rocm documentation is archived at https://rocmdocs.amd.com.
# Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard versionchanges, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.THIS INFORMATION IS PROVIDED AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
©[2021]Advanced Micro Devices, Inc.All rights reserved.
## Third-party Disclaimer
Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

798
README.md
View File

@@ -1,767 +1,63 @@
# ROCm™ 5.2.3
This repository contains the manifest file for ROCm™ releases, changelogs and release information. The file default.xml contains information all the repositories and the associated commit use to build the current ROCm release. The default.xml file uses the repo Manifest Format.
New AMD ROCm Information Portal ROCm v4.5 and Above
-----------------------------------------------------
# ROCm™ v5.2.3
This repository contains the manifest file for ROCm™ releases, changelogs and release information. The file default.xml contains information all the repositories and the associated commit use to build the current ROCm release. The default.xml file uses the repo Manifest format.
Beginning ROCm release v5.0, AMD ROCm documentation has a new portal at https://docs.amd.com This portal consists of ROCm documentation v4.5 and above.
# Release Notes
The ROCm v5.2.3 patch release is now available. The details are listed below. Highlights of this release include a bump in RCCL version compatibility and minor bug fixes in the HIP Runtime. Additionally, ROCm releases will return to use of the
[ROCm](https://github.com/RadeonOpenCompute/ROCm) repository for version controlled release notes henceforth. This
release of ROCm is validated with the AMDGPU release 22.20.1.
For documentation prior to ROCm v4.5, you may continue to access https://rocmdocs.amd.com.
All users of the ROCm v5.2.1 release and below are encouraged to upgrade. Refer to https://docs.amd.com for all documentation associated with this release.
# AMD ROCm™ Releases
## AMD ROCm™ V5.2.1 Release
## All Components
### Ubuntu 18.04 End of Life Announcement
ROCm v5.2.3 is the last release to support Ubuntu 18.04. Future releases of ROCm will not provide prebuilt packages for Ubuntu 18.04.
AMD ROCm v5.2.1 is now released. The release documentation is available at https://docs.amd.com.
## HIP and Other Runtimes
## AMD ROCm™ V5.2 Release
### HIP Runtime
AMD ROCm v5.2 is now released. The release documentation is available at https://docs.amd.com.
#### Fixes
- A bug was discovered in the HIP graph capture implementation in the ROCm v5.2.0 release. If the same kernel is called twice
(with different argument values) in a graph capture, the implementation was only keeping the argument values for
the second kernel call. This bug is now fixed.
- A bug was introduced in the hiprtc implementation in the ROCm v5.2.0 release. This bug caused the *hiprtcGetLoweredName* call failed
for named expressions with a whitespace in it.
## AMD ROCm™ V5.1.3 Release
**Example:** The named expression ```my_sqrt<complex<double>>``` passed but ```my_sqrt<complex<double>>``` failed. This bug has now been fixed.
AMD ROCm v5.1.3 is now released. The release documentation is available at https://docs.amd.com.
## ROCm Libraries
## AMD ROCm™ V5.1.1 Release
### RCCL
AMD ROCm v5.1.1 is now released. The release documentation is available at https://docs.amd.com.
#### Added
- Compatibility with NCCL 2.12.10
- Packages for test and benchmark executables on all supported OSes using CPack.
- Adding custom signal handler - opt-in with RCCL_ENABLE_SIGNALHANDLER=1
- Additional details provided if Binary File Descriptor library (BFD) is pre-installed
- Adding experimental support for using multiple ranks per device
- Requires using a new interface to create communicator (ncclCommInitRankMulti), please
refer to the interface documentation for details.
- To avoid potential deadlocks, user might have to set an environment variables increasing
the number of hardware queues (e.g. export GPU_MAX_HW_QUEUES=16)
- Adding support for reusing ports in NET/IB channels
- Opt-in with NCCL_IB_SOCK_CLIENT_PORT_REUSE=1 and NCCL_IB_SOCK_SERVER_PORT_REUSE=1
- When "Call to bind failed : Address already in use" error happens in large-scale AlltoAll
(e.g., >=64 MI200 nodes), users are suggested to opt-in either one or both of the options
to resolve the massive port usage issue
- Avoid using NCCL_IB_SOCK_SERVER_PORT_REUSE when NCCL_NCHANNELS_PER_NET_PEER is tuned >1
#### Removed
- Removed experimental clique-based kernels
## AMD ROCm™ V5.1 Release
## Development Tools
No notable changes in this release for our development tools including the compiler, profiler and debugger.
AMD ROCm v5.1 is now released. The release documentation is available at https://docs.amd.com.
## Deployment and Management Tools
No notable changes in this release for our deployment and management tools.
# Older ROCm™ Releases
For release information for older ROCm™ releases, please visit the [CHANGELOG](CHANGELOG.md).
## AMD ROCm™ v5.0.2 Release Notes
### Fixed Defects in This Release
The following defects are fixed in the ROCm v5.0.2 release.
#### Issue with hostcall Facility in HIP Runtime
In ROCm v5.0, when using the “assert()” call in a HIP kernel, the compiler may sometimes fail to emit kernel metadata related to the hostcall facility, which results in incomplete initialization of the hostcall facility in the HIP runtime. This can cause the HIP kernel to crash when it attempts to execute the “assert()” call.
The root cause was an incorrect check in the compiler to determine whether the hostcall facility is required by the kernel. This is fixed in the ROCm v5.0.2 release.
The resolution includes a compiler change, which emits the required metadata by default, unless the compiler can prove that the hostcall facility is not required by the kernel. This ensures that the “assert()” call never fails.
**Note**: This fix may lead to breakage in some OpenMP offload use cases, which use print inside a target region and result in an abort in device code. The issue will be fixed in a future release.
#### Compatibility Matrix Updates to ROCm Deep Learning Guide
The compatibility matrix in the AMD Deep Learning Guide is updated for ROCm v5.0.2.
For more information and documentation updates, refer to https://docs.amd.com.
## AMD ROCm™ v5.0.1 Release Notes
### Deprecations and Warnings
#### Refactor of HIPCC/HIPCONFIG
In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target compiler options, target platform, compiler, and runtime appropriately.
In ROCm v5.0.1, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of the hipcc and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as experimental. ROCm plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release. The existing hipcc and hipconfig Perl scripts are renamed to hipcc.pl and hipconfig.pl respectively. New top-level hipcc and hipconfig Perl scripts are created, which can switch between the Perl script or the compiled binary based on the environment variable HIPCC_USE_PERL_SCRIPT.
In ROCm 5.0.1, by default, this environment variable is set to use hipcc and hipconfig through the Perl scripts.
Subsequently, Perl scripts will no longer be available in ROCm in a future release.
### ROCM DOCUMENTATION UPDATES FOR ROCM 5.0.1
* ROCm Downloads Guide
* ROCm Installation Guide
* ROCm Release Notes
For more information, see https://docs.amd.com.
## AMD ROCm™ v5.0 Release Notes
# ROCm Installation Updates
This document describes the features, fixed issues, and information about downloading and installing the AMD ROCm™ software.
It also covers known issues and deprecations in this release.
## Notice for Open-source and Closed-source ROCm Repositories in Future Releases
To make a distinction between open-source and closed-source components, all ROCm repositories will consist of sub-folders in future releases.
- All open-source components will be placed in the `base-url/<rocm-ver>/main` sub-folder
- All closed-source components will reside in the `base-url/<rocm-ver>/proprietary` sub-folder
## List of Supported Operating Systems
The AMD ROCm platform supports the following operating systems:
| **OS-Version (64-bit)** | **Kernel Versions** |
| --- | --- |
| CentOS 8.3 | 4.18.0-193.el8 |
| CentOS 7.9 | 3.10.0-1127 |
| RHEL 8.5 | 4.18.0-348.7.1.el8\_5.x86\_64 |
| RHEL 8.4 | 4.18.0-305.el8.x86\_64 |
| RHEL 7.9 | 3.10.0-1160.6.1.el7 |
| SLES 15 SP3 | 5.3.18-59.16-default |
| Ubuntu 20.04.3 | 5.8.0 LTS / 5.11 HWE |
| Ubuntu 18.04.5 [5.4 HWE kernel] | 5.4.0-71-generic |
### Support for RHEL v8.5
This release extends support for RHEL v8.5.
### Supported GPUs
#### Radeon Pro V620 and W6800 Workstation GPUs
This release extends ROCm support for Radeon Pro V620 and W6800 Workstation GPUs.
- SRIOV virtualization support for Radeon Pro V620
- KVM Hypervisor (1VF support only) on Ubuntu Host OS with Ubuntu, CentOs, and RHEL Guest
- Support for ROCm-SMI in an SRIOV environment. For more details, refer to the ROCm SMI API documentation.
**Note:** Radeon Pro v620 is not supported on SLES.
## ROCm Installation Updates for ROCm v5.0
This release has the following ROCm installation enhancements.
### Support for Kernel Mode Driver
In this release, users can install the kernel-mode driver using the Installer method. Some of the ROCm-specific use cases that the installer currently supports are:
- OpenCL (ROCr/KFD based) runtime
- HIP runtimes
- ROCm libraries and applications
- ROCm Compiler and device libraries
- ROCr runtime and thunk
- Kernel-mode driver
### Support for Multi-version ROCm Installation and Uninstallation
Users now can install multiple ROCm releases simultaneously on a system using the newly introduced installer script and package manager install mechanism.
Users can also uninstall multi-version ROCm releases using the `amdgpu-uninstall` script and package manager.
### Support for Updating Information on Local Repositories
In this release, the `amdgpu-install` script automates the process of updating local repository information before proceeding to ROCm installation.
### Support for Release Upgrades
Users can now upgrade the existing ROCm installation to specific or latest ROCm releases.
For more details, refer to the AMD ROCm Installation Guide v5.0.
# AMD ROCm V5.0 Documentation Updates
## New AMD ROCm Information Portal ROCm v4.5 and Above
Beginning ROCm release v5.0, AMD ROCm documentation has a new portal at https://docs.amd.com. This portal consists of ROCm documentation v4.5 and above.
For documentation prior to ROCm v4.5, you may continue to access https://rocmdocs.amd.com.
## Documentation Updates for ROCm 5.0
### Deployment Tools
#### ROCm Data Center Tool Documentation Updates
- ROCm Data Center Tool User Guide
- ROCm Data Center Tool API Guide
#### ROCm System Management Interface Updates
- System Management Interface Guide
- System Management Interface API Guide
#### ROCm Command Line Interface Updates
- Command Line Interface Guide
### Machine Learning/AI Documentation Updates
- Deep Learning Guide
- MIGraphX API Guide
- MIOpen API Guide
- MIVisionX API Guide
### ROCm Libraries Documentation Updates
- hipSOLVER User Guide
- RCCL User Guide
- rocALUTION User Guide
- rocBLAS User Guide
- rocFFT User Guide
- rocRAND User Guide
- rocSOLVER User Guide
- rocSPARSE User Guide
- rocThrust User Guide
### Compilers and Tools
#### ROCDebugger Documentation Updates
- ROCDebugger User Guide
- ROCDebugger API Guide
#### ROCTracer
- ROCTracer User Guide
- ROCTracer API Guide
#### Compilers
- AMD Instinct High Performance Computing and Tuning Guide
- AMD Compiler Reference Guide
#### HIPify Documentation
- HIPify User Guide
- HIP Supported CUDA API Reference Guide
#### ROCm Debug Agent
- ROCm Debug Agent Guide
- System Level Debug Guide
- ROCm Validation Suite
### Programming Models Documentation
#### HIP Documentation
- HIP Programming Guide
- HIP API Guide
- HIP FAQ Guide
#### OpenMP Documentation
- OpenMP Support Guide
### ROCm Glossary
- ROCm Glossary Terms and Definitions
## AMD ROCm Legacy Documentation Links ROCm v4.3 and Prior
- For AMD ROCm documentation, see
https://rocmdocs.amd.com/en/latest/
- For installation instructions on supported platforms, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
- For AMD ROCm binary structure, see
https://rocmdocs.amd.com/en/latest/Installation_Guide/Software-Stack-for-AMD-GPU.html
- For AMD ROCm release history, see
https://rocmdocs.amd.com/en/latest/Current_Release_Notes/ROCm-Version-History.html
# What's New in This Release
## HIP Enhancements
The ROCm v5.0 release consists of the following HIP enhancements.
### HIP Installation Guide Updates
The HIP Installation Guide is updated to include building HIP from source on the NVIDIA platform.
Refer to the HIP Installation Guide v5.0 for more details.
### Managed Memory Allocation
Managed memory, including the `__managed__` keyword, is now supported in the HIP combined host/device compilation. Through unified memory allocation, managed memory allows data to be shared and accessible to both the CPU and GPU using a single pointer. The allocation is managed by the AMD GPU driver using the Linux Heterogeneous Memory Management (HMM) mechanism. The user can call managed memory API hipMallocManaged to allocate a large chunk of HMM memory, execute kernels on a device, and fetch data between the host and device as needed.
**Note:** In a HIP application, it is recommended to do a capability check before calling the managed memory APIs. For example,
```c
int managed_memory = 0;
HIPCHECK(hipDeviceGetAttribute(&managed_memory, hipDeviceAttributeManagedMemory, p_gpuDevice));
if (!managed_memory) {
printf ("info: managed memory access not supported on the device %d\n Skipped\n", p_gpuDevice);
} else {
HIPCHECK(hipSetDevice(p_gpuDevice));
HIPCHECK(hipMallocManaged(&Hmm, N * sizeof(T)));
. . .
}
```
**Note:** The managed memory capability check may not be necessary; however, if HMM is not supported, managed malloc will fall back to using system memory. Other managed memory API calls will, then, have
Refer to the HIP API documentation for more details on managed memory APIs.
For the application, see [hipMallocManaged.cpp](https://github.com/ROCm-Developer-Tools/HIP/blob/rocm-4.5.x/tests/src/runtimeApi/memory/hipMallocManaged.cpp)
## New Environment Variable
The following new environment variable is added in this release:
| **Environment Variable** | **Value** | **Description** |
| --- | --- | --- |
| **HSA\_COOP\_CU\_COUNT** | 0 or 1 (default is 0) | Some processors support more compute units than can reliably be used in a cooperative dispatch. Setting the environment variable HSA\_COOP\_CU\_COUNT to 1 will cause ROCr to return the correct CU count for cooperative groups through the HSA\_AMD\_AGENT\_INFO\_COOPERATIVE\_COMPUTE\_UNIT\_COUNT attribute of hsa\_agent\_get\_info(). Setting HSA\_COOP\_CU\_COUNT to other values, or leaving it unset, will cause ROCr to return the same CU count for the attributes HSA\_AMD\_AGENT\_INFO\_COOPERATIVE\_COMPUTE\_UNIT\_COUNT and HSA\_AMD\_AGENT\_INFO\_COMPUTE\_UNIT\_COUNT. Future ROCm releases will make HSA\_COOP\_CU\_COUNT=1 the default.
|
## ROCm Math and Communication Libraries
| **Library** | **Changes** |
| --- | --- |
| **rocBLAS** | **Added** <ul><li>Added rocblas\_get\_version\_string\_size convenience function</li><li>Added rocblas\_xtrmm\_outofplace, an out-of-place version of rocblas\_xtrmm</li><li>Added hpl and trig initialization for gemm\_ex to rocblas-bench</li><li>Added source code gemm. It can be used as an alternative to Tensile for debugging and development</li><li>Added option `ROCM_MATHLIBS_API_USE_HIP_COMPLEX` to opt-in to use hipFloatComplex and hipDoubleComplex</li></ul> **Optimizations** <ul><li>Improved performance of non-batched and batched single-precision GER for size m > 1024. Performance enhanced by 5-10% measured on a MI100 (gfx908) GPU.</li><li>Improved performance of non-batched and batched HER for all sizes and data types. Performance enhanced by 2-17% measured on a MI100 (gfx908) GPU.</li></ul> **Changed** <ul><li>Instantiate templated rocBLAS functions to reduce size of librocblas.so</li><li>Removed static library dependency on msgpack</li><li>Removed boost dependencies for clients</li></ul> **Fixed** <ul><li>Option to install script to build only rocBLAS clients with a pre-built rocBLAS library</li><li>Correctly set output of nrm2\_batched\_ex and nrm2\_strided\_batched\_ex when given bad input</li><li>Fix for dgmm with side == rocblas\_side\_left and a negative incx</li><li>Fixed out-of-bounds read for small trsm</li><li>Fixed numerical checking for tbmv\_strided\_batched</li></ul> |
| | |
| **hipBLAS** | **Added** <ul><li>Added rocSOLVER functions to hipblas-bench</li><li>Added option `ROCM_MATHLIBS_API_USE_HIP_COMPLEX` to opt-in to use hipFloatComplex and hipDoubleComplex</li><li>Added compilation warning for future trmm changes</li><li>Added documentation to hipblas.h</li><li>Added option to forgo pivoting for getrf and getri when ipiv is nullptr</li><li>Added code coverage option</li></ul> **Fixed** <ul><li>Fixed use of incorrect `HIP_PATH` when building from source.</li><li>Fixed windows packaging</li><li>Allowing negative increments in hipblas-bench</li><li>Removed boost dependency</li></ul> |
| | |
| **rocFFT** | **Changed** <ul><li>Enabled runtime compilation of single FFT kernels > length 1024.</li><li>Re-aligned split device library into 4 roughly equal libraries.</li><li>Implemented the FuseShim framework to replace the original OptimizePlan</li><li>Implemented the generic buffer-assignment framework. The buffer assignment is no longer performed by each node. A generic algorithm is designed to test and pick the best assignment path. With the help of FuseShim, more kernel-fusions are achieved.</li><li>Do not read the imaginary part of the DC and Nyquist modes for even-length complex-to-real transforms.</li></ul> **Optimizations** <ul><li>Optimized twiddle-conjugation; complex-to-complex inverse transforms have similar performance to foward transforms now.</li><li>Improved performance of single-kernel small 2D transforms.</li></ul> |
| | |
| **hipFFT** | **Fixed** <ul><li>Fixed incorrect reporting of rocFFT version.</li></ul> **Changed** <ul><li>Unconditionally enabled callback functionality. On the CUDA backend, callbacks only run correctly when hipFFT is built as a static library, and is linked against the static cuFFT library.</li></ul> |
| | |
| **rocSPARSE** | **Added** <ul><li>csrmv, coomv, ellmv, hybmv for (conjugate) transposed matricescsrmv for symmetric matrices</li></ul> **Changed** <ul><li>spmm\_ex is now deprecated and will be removed in the next major release</li></ul> **Improved** <ul><li>Optimization for gtsv</li></ul> |
| | |
| **hipSPARSE** | **Added** <ul><li>Added (conjugate) transpose support for csrmv, hybmv and spmv routines</li></ul> |
| | |
| **rocALUTION** | **Changed** <ul><li>Removed deprecated GlobalPairwiseAMG class, please use PairwiseAMG instead.</li></ul> **Improved** <ul><li>Improved documentation</li></ul> |
| | |
| **rocTHRUST** | **Updates** <ul><li>Updated to match upstream Thrust 1.13.0</li><li>Updated to match upstream Thrust 1.14.0</li><li>Added async scan</li></ul> **Changed** <ul><li>Scan algorithms: inclusive\_scan now uses the input-type as accumulator-type, exclusive\_scan uses initial-value-type. This particularly changes behaviour of small-size input types with large-size output types (e.g. short input, int output). And low-res input with high-res output (e.g. float input, double output)</li></ul> |
| | |
| **rocSOLVER** | **Added** <ul><li>Symmetric matrix factorizations: <ul><li>LASYF</li><li>SYTF2, SYTRF (with batched and strided\_batched versions)</li></ul><li>Added rocsolver\_get\_version\_string\_size to help with version string queries</li><li>Added rocblas\_layer\_mode\_ex and the ability to print kernel calls in the trace and profile logs</li><li>Expanded batched and strided\_batched sample programs.</li></ul> **Optimizations** <ul><li>Improved general performance of LU factorization</li><li>Increased parallelism of specialized kernels when compiling from source, reducing build times on multi-core systems.</li></ul> **Changed** <ul><li>The rocsolver-test client now prints the rocSOLVER version used to run the tests, rather than the version used to build them</li><li>The rocsolver-bench client now prints the rocSOLVER version used in the benchmark</li></ul> **Fixed** <ul><li>Added missing stdint.h include to rocsolver.h</li></ul> |
| | |
| **hipSOLVER** | **Added** <ul><li>Added SYTRF functions: hipsolverSsytrf\_bufferSize, hipsolverDsytrf\_bufferSize, hipsolverCsytrf\_bufferSize, hipsolverZsytrf\_bufferSize, hipsolverSsytrf, hipsolverDsytrf, hipsolverCsytrf, hipsolverZsytrf</li></ul> **Fixed** <ul><li>Fixed use of incorrect `HIP_PATH` when building from source</li></ul> |
| | |
| **RCCL** | **Added** <ul><li>Compatibility with NCCL 2.10.3</li></ul> **Known issues** <ul><li>Managed memory is not currently supported for clique-based kernels</li></ul> |
| | |
| **hipCUB** | **Fixed** <ul><li>Added missing includes to hipcub.hpp</li></ul> **Added** <ul><li>Bfloat16 support to test cases (device\_reduce & device\_radix\_sort)</li><li>Device merge sort</li><li>Block merge sort</li><li>API update to CUB 1.14.0</li></ul> **Changed** <ul><li>The SetupNVCC.cmake automatic target selector select all of the capabalities of all available card for NVIDIA backend.</li></ul> |
| | |
| **rocPRIM** | **Fixed** <ul><li>Enable bfloat16 tests and reduce threshold for bfloat16</li><li>Fix device scan limit\_size feature</li><li>Non-optimized builds no longer trigger local memory limit errors</li></ul> **Added** <ul><li>Scan size limit feature</li><li>Reduce size limit feature</li><li>Transform size limit feature</li><li>Add block\_load\_striped and block\_store\_striped</li><li>Add gather\_to\_blocked to gather values from other threads into a blocked arrangement</li><li>The block sizes for device merge sorts initial block sort and its merge steps are now separate in its kernel config (the block sort step supports multiple items per thread)</li></ul> **Changed** <ul><li>size\_limit for scan, reduce and transform can now be set in the config struct instead of a parameter</li><li>device\_scan and device\_segmented\_scan: inclusive\_scan now uses the input-type as accumulator-type, exclusive\_scan uses initial-value-type. This particularly changes behaviour of small-size input types with large-size output types (e.g. short input, int output) and low-res input with high-res output (e.g. float input, double output)</li><li>Revert old Fiji workaround, because the issue was solved at compiler side</li><li>Update README cmake minimum version number</li><li>Block sort support multiple items per thread. Currently only powers of two block sizes, and items per threads are supported and only for full blocks</li><li>Bumped the minimum required version of CMake to 3.16</li></ul> **Known issues** <ul><li>Unit tests may soft hang on MI200 when running in hipMallocManaged mode.</li><li>device\_segmented\_radix\_sort, device\_scan unit tests failing for HIP on WindowsReduceEmptyInput cause random failure with bfloat16</li><li>Managed memory is not currently supported for clique-based kernels</li></ul> |
## System Management Interface
### Clock Throttling for GPU Events
This feature lists GPU events as they occur in real-time and can be used with _kfdtest_ to produce _vm\_fault_ events for testing.
The command can be called with either &quot; `-e` or `--showevents` like this:
-e [EVENT [EVENT ...]], --showevents [EVENT [EVENT ...]] Show event list
Where `EVENT` is any list combination of `VM_FAULT`, `THERMAL_THROTTLE`, or `GPU_RESET` and is NOT case sensitive.
**Note:** If no event arguments are passed, all events will be watched by default.
#### CLI Commands
```
$ rocm-smi --showevents vm_fault thermal_throttle gpu_reset
======================= ROCm System Management Interface =======================
================================= Show Events ==================================
press 'q' or 'ctrl + c' to quit
DEVICE TIME TYPE DESCRIPTION
============================= End of ROCm SMI Log ==============================
```
(Run kfdtest in another window to test for vm\_fault events.)
**Note:** Unlike other rocm-smi CLI commands, this command does not quit unless specified by the user. Users may press either `q` or `ctrl + c` to quit.
### Display XGMI Bandwidth Between Nodes
The _rsmi\_minmax\_bandwidth\_get_ API reads the HW Topology file and displays bandwidth (min-max) between any two NUMA nodes in a matrix format.
The Command Line Interface (CLI) command can be called as follows:
```
$ rocm-smi --shownodesbw
======================= ROCm System Management Interface =======================
================================== Bandwidth ===================================
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
GPU0 N/A 50000-200000 50000-50000 0-0 0-0 0-0 50000-100000 0-0
GPU1 50000-200000 N/A 0-0 50000-50000 0-0 50000-50000 0-0 0-0
GPU2 50000-50000 0-0 N/A 50000-200000 50000-100000 0-0 0-0 0-0
GPU3 0-0 50000-50000 50000-200000 N/A 0-0 0-0 0-0 50000-50000
GPU4 0-0 0-0 50000-100000 0-0 N/A 50000-200000 50000-50000 0-0
GPU5 0-0 50000-50000 0-0 0-0 50000-200000 N/A 0-0 50000-50000
GPU6 50000-100000 0-0 0-0 0-0 50000-50000 0-0 N/A 50000-200000
GPU7 0-0 0-0 0-0 50000-50000 0-0 50000-50000 50000-200000 N/A
Format: min-max; Units: mps
============================= End of ROCm SMI Log ==============================
```
The sample output above shows the maximum theoretical xgmi bandwidth between 2 numa nodes,
**Note:** "0-0" min-max bandwidth indicates devices are not connected directly.
### P2P Connection Status
The _rsmi\_is\_p2p\_accessible_ API returns "True" if P2P can be implemented between two nodes, and returns "False" if P2P cannot be implemented between the two nodes.
The Command Line Interface command can be called as follows:
rocm-smi --showtopoaccess
Sample Output:
```
$ rocm-smi --showtopoaccess
======================= ROCm System Management Interface =======================
===================== Link accessibility between two GPUs ======================
GPU0 GPU1
GPU0 True True
GPU1 True True
============================= End of ROCm SMI Log ==============================
```
# Breaking Changes
## Runtime Breaking Change
Re-ordering of the enumerated type in hip\_runtime\_api.h to better match NV. See below for the difference in enumerated types.
ROCm software will be affected if any of the defined enums listed below are used in the code. Applications built with ROCm v5.0 enumerated types will work with a ROCm 4.5.2 driver. However, an undefined behavior error will occur with a ROCm v4.5.2 application that uses these enumerated types with a ROCm 5.0 runtime.
```c
typedef enum hipDeviceAttribute_t {
hipDeviceAttributeMaxThreadsPerBlock, // Maximum number of threads per block.
hipDeviceAttributeMaxBlockDimX, // Maximum x-dimension of a block.
hipDeviceAttributeMaxBlockDimY, // Maximum y-dimension of a block.
hipDeviceAttributeMaxBlockDimZ, // Maximum z-dimension of a block.
hipDeviceAttributeMaxGridDimX, // Maximum x-dimension of a grid.
hipDeviceAttributeMaxGridDimY, // Maximum y-dimension of a grid.
hipDeviceAttributeMaxGridDimZ, // Maximum z-dimension of a grid.
hipDeviceAttributeMaxSharedMemoryPerBlock, // Maximum shared memory available per block in bytes.
hipDeviceAttributeTotalConstantMemory, // Constant memory size in bytes.
hipDeviceAttributeWarpSize, // Warp size in threads.
hipDeviceAttributeMaxRegistersPerBlock, // Maximum number of 32-bit registers available to a
// thread block. This number is shared by all thread
// blocks simultaneously resident on a
// multiprocessor.
hipDeviceAttributeClockRate, // Peak clock frequency in kilohertz.
hipDeviceAttributeMemoryClockRate, // Peak memory clock frequency in kilohertz.
hipDeviceAttributeMemoryBusWidth, // Global memory bus width in bits.
hipDeviceAttributeMultiprocessorCount, // Number of multiprocessors on the device.
hipDeviceAttributeComputeMode, // Compute mode that device is currently in.
hipDeviceAttributeL2CacheSize, // Size of L2 cache in bytes. 0 if the device doesn't have L2
// cache.
hipDeviceAttributeMaxThreadsPerMultiProcessor, // Maximum resident threads per
// multiprocessor.
hipDeviceAttributeComputeCapabilityMajor, // Major compute capability version number.
hipDeviceAttributeComputeCapabilityMinor, // Minor compute capability version number.
hipDeviceAttributeConcurrentKernels, // Device can possibly execute multiple kernels
// concurrently.
hipDeviceAttributePciBusId, // PCI Bus ID.
hipDeviceAttributePciDeviceId, // PCI Device ID.
hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, // Maximum Shared Memory Per
// Multiprocessor.
hipDeviceAttributeIsMultiGpuBoard, // Multiple GPU devices.
hipDeviceAttributeIntegrated, // iGPU
hipDeviceAttributeCooperativeLaunch, // Support cooperative launch
hipDeviceAttributeCooperativeMultiDeviceLaunch, // Support cooperative launch on multiple devices
hipDeviceAttributeMaxTexture1DWidth, // Maximum number of elements in 1D images
hipDeviceAttributeMaxTexture2DWidth, // Maximum dimension width of 2D images in image elements
hipDeviceAttributeMaxTexture2DHeight, // Maximum dimension height of 2D images in image elements
hipDeviceAttributeMaxTexture3DWidth, // Maximum dimension width of 3D images in image elements
hipDeviceAttributeMaxTexture3DHeight, // Maximum dimensions height of 3D images in image elements
hipDeviceAttributeMaxTexture3DDepth, // Maximum dimensions depth of 3D images in image elements
hipDeviceAttributeCudaCompatibleBegin = 0,
hipDeviceAttributeHdpMemFlushCntl, // Address of the HDP\_MEM\_COHERENCY\_FLUSH\_CNTL register
hipDeviceAttributeHdpRegFlushCntl, // Address of the HDP\_REG\_COHERENCY\_FLUSH\_CNTL register
hipDeviceAttributeEccEnabled = hipDeviceAttributeCudaCompatibleBegin, // Whether ECC support is enabled.
hipDeviceAttributeAccessPolicyMaxWindowSize, // Cuda only. The maximum size of the window policy in bytes.
hipDeviceAttributeAsyncEngineCount, // Cuda only. Asynchronous engines number.
hipDeviceAttributeCanMapHostMemory, // Whether host memory can be mapped into device address space
hipDeviceAttributeCanUseHostPointerForRegisteredMem, // Cuda only. Device can access host registered memory
// at the same virtual address as the CPU
hipDeviceAttributeClockRate, // Peak clock frequency in kilohertz.
hipDeviceAttributeComputeMode, // Compute mode that device is currently in.
hipDeviceAttributeComputePreemptionSupported, // Cuda only. Device supports Compute Preemption.
hipDeviceAttributeConcurrentKernels, // Device can possibly execute multiple kernels concurrently.
hipDeviceAttributeConcurrentManagedAccess, // Device can coherently access managed memory concurrently with the CPU
hipDeviceAttributeCooperativeLaunch, // Support cooperative launch
hipDeviceAttributeCooperativeMultiDeviceLaunch, // Support cooperative launch on multiple devices
hipDeviceAttributeDeviceOverlap, // Cuda only. Device can concurrently copy memory and execute a kernel.
// Deprecated. Use instead asyncEngineCount.
hipDeviceAttributeDirectManagedMemAccessFromHost, // Host can directly access managed memory on
// the device without migration
hipDeviceAttributeGlobalL1CacheSupported, // Cuda only. Device supports caching globals in L1
hipDeviceAttributeHostNativeAtomicSupported, // Cuda only. Link between the device and the host supports native atomic operations
hipDeviceAttributeIntegrated, // Device is integrated GPU
hipDeviceAttributeIsMultiGpuBoard, // Multiple GPU devices.
hipDeviceAttributeKernelExecTimeout, // Run time limit for kernels executed on the device
hipDeviceAttributeL2CacheSize, // Size of L2 cache in bytes. 0 if the device doesn&#39;t have L2 cache.
hipDeviceAttributeLocalL1CacheSupported, // caching locals in L1 is supported
hipDeviceAttributeLuid, // Cuda only. 8-byte locally unique identifier in 8 bytes. Undefined on TCC and non-Windows platforms
hipDeviceAttributeLuidDeviceNodeMask, // Cuda only. Luid device node mask. Undefined on TCC and non-Windows platforms
hipDeviceAttributeComputeCapabilityMajor, // Major compute capability version number.
hipDeviceAttributeManagedMemory, // Device supports allocating managed memory on this system
hipDeviceAttributeMaxBlocksPerMultiProcessor, // Cuda only. Max block size per multiprocessor
hipDeviceAttributeMaxBlockDimX, // Max block size in width.
hipDeviceAttributeMaxBlockDimY, // Max block size in height.
hipDeviceAttributeMaxBlockDimZ, // Max block size in depth.
hipDeviceAttributeMaxGridDimX, // Max grid size in width.
hipDeviceAttributeMaxGridDimY, // Max grid size in height.
hipDeviceAttributeMaxGridDimZ, // Max grid size in depth.
hipDeviceAttributeMaxSurface1D, // Maximum size of 1D surface.
hipDeviceAttributeMaxSurface1DLayered, // Cuda only. Maximum dimensions of 1D layered surface.
hipDeviceAttributeMaxSurface2D, // Maximum dimension (width, height) of 2D surface.
hipDeviceAttributeMaxSurface2DLayered, // Cuda only. Maximum dimensions of 2D layered surface.
hipDeviceAttributeMaxSurface3D, // Maximum dimension (width, height, depth) of 3D surface.
hipDeviceAttributeMaxSurfaceCubemap, // Cuda only. Maximum dimensions of Cubemap surface.
hipDeviceAttributeMaxSurfaceCubemapLayered, // Cuda only. Maximum dimension of Cubemap layered surface.
hipDeviceAttributeMaxTexture1DWidth, // Maximum size of 1D texture.
hipDeviceAttributeMaxTexture1DLayered, // Cuda only. Maximum dimensions of 1D layered texture.
hipDeviceAttributeMaxTexture1DLinear, // Maximum number of elements allocatable in a 1D linear texture.
// Use cudaDeviceGetTexture1DLinearMaxWidth() instead on Cuda.
hipDeviceAttributeMaxTexture1DMipmap, // Cuda only. Maximum size of 1D mipmapped texture.
hipDeviceAttributeMaxTexture2DWidth, // Maximum dimension width of 2D texture.
hipDeviceAttributeMaxTexture2DHeight, // Maximum dimension hight of 2D texture.
hipDeviceAttributeMaxTexture2DGather, // Cuda only. Maximum dimensions of 2D texture if gather operations performed.
hipDeviceAttributeMaxTexture2DLayered, // Cuda only. Maximum dimensions of 2D layered texture.
hipDeviceAttributeMaxTexture2DLinear, // Cuda only. Maximum dimensions (width, height, pitch) of 2D textures bound to pitched memory.
hipDeviceAttributeMaxTexture2DMipmap, // Cuda only. Maximum dimensions of 2D mipmapped texture.
hipDeviceAttributeMaxTexture3DWidth, // Maximum dimension width of 3D texture.
hipDeviceAttributeMaxTexture3DHeight, // Maximum dimension height of 3D texture.
hipDeviceAttributeMaxTexture3DDepth, // Maximum dimension depth of 3D texture.
hipDeviceAttributeMaxTexture3DAlt, // Cuda only. Maximum dimensions of alternate 3D texture.
hipDeviceAttributeMaxTextureCubemap, // Cuda only. Maximum dimensions of Cubemap texture
hipDeviceAttributeMaxTextureCubemapLayered, // Cuda only. Maximum dimensions of Cubemap layered texture.
hipDeviceAttributeMaxThreadsDim, // Maximum dimension of a block
hipDeviceAttributeMaxThreadsPerBlock, // Maximum number of threads per block.
hipDeviceAttributeMaxThreadsPerMultiProcessor, // Maximum resident threads per multiprocessor.
hipDeviceAttributeMaxPitch, // Maximum pitch in bytes allowed by memory copies
hipDeviceAttributeMemoryBusWidth, // Global memory bus width in bits.
hipDeviceAttributeMemoryClockRate, // Peak memory clock frequency in kilohertz.
hipDeviceAttributeComputeCapabilityMinor, // Minor compute capability version number.
hipDeviceAttributeMultiGpuBoardGroupID, // Cuda only. Unique ID of device group on the same multi-GPU board
hipDeviceAttributeMultiprocessorCount, // Number of multiprocessors on the device.
hipDeviceAttributeName, // Device name.
hipDeviceAttributePageableMemoryAccess, // Device supports coherently accessing pageable memory
// without calling hipHostRegister on it
hipDeviceAttributePageableMemoryAccessUsesHostPageTables, // Device accesses pageable memory via the host&#39;s page tables
hipDeviceAttributePciBusId, // PCI Bus ID.
hipDeviceAttributePciDeviceId, // PCI Device ID.
hipDeviceAttributePciDomainID, // PCI Domain ID.
hipDeviceAttributePersistingL2CacheMaxSize, // Cuda11 only. Maximum l2 persisting lines capacity in bytes
hipDeviceAttributeMaxRegistersPerBlock, // 32-bit registers available to a thread block. This number is shared
// by all thread blocks simultaneously resident on a multiprocessor.
hipDeviceAttributeMaxRegistersPerMultiprocessor, // 32-bit registers available per block.
hipDeviceAttributeReservedSharedMemPerBlock, // Cuda11 only. Shared memory reserved by CUDA driver per block.
hipDeviceAttributeMaxSharedMemoryPerBlock, // Maximum shared memory available per block in bytes.
hipDeviceAttributeSharedMemPerBlockOptin, // Cuda only. Maximum shared memory per block usable by special opt in.
hipDeviceAttributeSharedMemPerMultiprocessor, // Cuda only. Shared memory available per multiprocessor.
hipDeviceAttributeSingleToDoublePrecisionPerfRatio, // Cuda only. Performance ratio of single precision to double precision.
hipDeviceAttributeStreamPrioritiesSupported, // Cuda only. Whether to support stream priorities.
hipDeviceAttributeSurfaceAlignment, // Cuda only. Alignment requirement for surfaces
hipDeviceAttributeTccDriver, // Cuda only. Whether device is a Tesla device using TCC driver
hipDeviceAttributeTextureAlignment, // Alignment requirement for textures
hipDeviceAttributeTexturePitchAlignment, // Pitch alignment requirement for 2D texture references bound to pitched memory;
hipDeviceAttributeTotalConstantMemory, // Constant memory size in bytes.
hipDeviceAttributeTotalGlobalMem, // Global memory available on devicice.
hipDeviceAttributeUnifiedAddressing, // Cuda only. An unified address space shared with the host.
hipDeviceAttributeUuid, // Cuda only. Unique ID in 16 byte.
hipDeviceAttributeWarpSize, // Warp size in threads.
hipDeviceAttributeMaxPitch, // Maximum pitch in bytes allowed by memory copies
hipDeviceAttributeTextureAlignment, //Alignment requirement for textures
hipDeviceAttributeTexturePitchAlignment, //Pitch alignment requirement for 2D texture references bound to pitched memory;
hipDeviceAttributeKernelExecTimeout, //Run time limit for kernels executed on the device
hipDeviceAttributeCanMapHostMemory, //Device can map host memory into device address space
hipDeviceAttributeEccEnabled, //Device has ECC support enabled
hipDeviceAttributeCudaCompatibleEnd = 9999,
hipDeviceAttributeAmdSpecificBegin = 10000,
hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, // Supports cooperative launch on multiple
// devices with unmatched functions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, // Supports cooperative launch on multiple
// devices with unmatched grid dimensions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, // Supports cooperative launch on multiple
// devices with unmatched block dimensions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, // Supports cooperative launch on multiple
// devices with unmatched shared memories
hipDeviceAttributeAsicRevision, // Revision of the GPU in this device
hipDeviceAttributeManagedMemory, // Device supports allocating managed memory on this system
hipDeviceAttributeDirectManagedMemAccessFromHost, // Host can directly access managed memory on
// the device without migration
hipDeviceAttributeConcurrentManagedAccess, // Device can coherently access managed memory
// concurrently with the CPU
hipDeviceAttributePageableMemoryAccess, // Device supports coherently accessing pageable memory
// without calling hipHostRegister on it
hipDeviceAttributePageableMemoryAccessUsesHostPageTables, // Device accesses pageable memory via
// the host's page tables
hipDeviceAttributeCanUseStreamWaitValue // '1' if Device supports hipStreamWaitValue32() and
// hipStreamWaitValue64(), '0' otherwise.
hipDeviceAttributeClockInstructionRate = hipDeviceAttributeAmdSpecificBegin, // Frequency in khz of the timer used by the device-side "clock"
hipDeviceAttributeArch, // Device architecture
hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, // Maximum Shared Memory PerMultiprocessor.
hipDeviceAttributeGcnArch, // Device gcn architecture
hipDeviceAttributeGcnArchName, // Device gcnArch name in 256 bytes
hipDeviceAttributeHdpMemFlushCntl, // Address of the HDP_MEM_COHERENCY_FLUSH_CNTL register
hipDeviceAttributeHdpRegFlushCntl, // Address of the HDP_REG_COHERENCY_FLUSH_CNTL register
hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, // Supports cooperative launch on multiple
// devices with unmatched functions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, // Supports cooperative launch on multiple
// devices with unmatched grid dimensions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, // Supports cooperative launch on multiple
// devices with unmatched block dimensions
hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, // Supports cooperative launch on multiple
// devices with unmatched shared memories
hipDeviceAttributeIsLargeBar, // Whether it is LargeBar
hipDeviceAttributeAsicRevision, // Revision of the GPU in this device
hipDeviceAttributeCanUseStreamWaitValue, // '1' if Device supports hipStreamWaitValue32() and
// hipStreamWaitValue64() , '0' otherwise.
hipDeviceAttributeAmdSpecificEnd = 19999,
hipDeviceAttributeVendorSpecificBegin = 20000, // Extended attributes for vendors
} hipDeviceAttribute_t;
```
# Known Issues in This Release
## Incorrect dGPU Behavior When Using AMDVBFlash Tool
The AMDVBFlash tool, used for flashing the VBIOS image to dGPU, does not communicate with the ROM Controller specifically when the driver is present. This is because the driver, as part of its runtime power management feature, puts the dGPU to a sleep state.
As a workaround, users can run `amdgpu.runpm=0`, which temporarily disables the runtime power management feature from the driver and dynamically changes some power control-related sysfs files.
## Issue with START Timestamp in ROCProfiler
Users may encounter an issue with the enabled timestamp functionality for monitoring one or multiple counters. ROCProfiler outputs the following four timestamps for each kernel:
- Dispatch
- Start
- End
- Complete
**Issue**
This defect is related to the Start timestamp functionality, which incorrectly shows an earlier time than the Dispatch timestamp.
To reproduce the issue,
1. Enable timing using the `--timestamp on` flag.
2. Use the `-i` option with the input filename that contains the name of the counter(s) to monitor.
3. Run the program.
4. Check the output result file.
**Current behavior**
BeginNS is lower than DispatchNS, which is incorrect.
**Expected behavior**
The correct order is:
_Dispatch < Start < End < Complete_
Users cannot use ROCProfiler to measure the time spent on each kernel because of the incorrect timestamp with counter collection enabled.
**Recommended Workaround**
Users are recommended to collect kernel execution timestamps without monitoring counters, as follows:
1. Enable timing using the `--timestamp on` flag, and run the application.
2. Rerun the application using the `-i` option with the input filename that contains the name of the counter(s) to monitor, and save this to a different output file using the `-o` flag.
3. Check the output result file from step 1.
4. The order of timestamps correctly displays as:
_DispathNS < BeginNS < EndNS < CompleteNS_
1. Users can find the values of the collected counters in the output file generated in step 2.
## Radeon Pro V620 and W6800 Workstation GPUs
### No Support for SMI and ROCDebugger on SRIOV
System Management Interface (SMI) and ROCDebugger are not supported in the SRIOV environment on any GPU. For more information, refer to the Systems Management Interface documentation.
# Deprecations and Warnings in This Release
## ROCm Libraries Changes Deprecations and Deprecation Removal
- The hipfft.h header is now provided only by the hipfft package. Up to ROCm 5.0, users would get hipfft.h in the rocfft package too.
- The GlobalPairwiseAMG class is now entirely removed, users should use the PairwiseAMG class instead.
- The rocsparse\_spmm signature in 5.0 was changed to match that of rocsparse\_spmm\_ex. In 5.0, rocsparse\_spmm\_ex is still present, but deprecated. Signature diff for rocsparse\_spmm
### _rocsparse\_spmm_ in 5.0
```c
rocsparse_status rocsparse_spmm(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
const void* alpha,
const rocsparse_spmat_descr mat_A,
const rocsparse_dnmat_descr mat_B,
const void* beta,
const rocsparse_dnmat_descr mat_C,
rocsparse_datatype compute_type,
rocsparse_spmm_alg alg,
rocsparse_spmm_stage stage,
size_t* buffer_size,
void* temp_buffer);
```
### _rocsparse\_spmm_ in 4.0
```c
rocsparse_status rocsparse_spmm(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
const void* alpha,
const rocsparse_spmat_descr mat_A,
const rocsparse_dnmat_descr mat_B,
const void* beta,
const rocsparse_dnmat_descr mat_C,
rocsparse_datatype compute_type,
rocsparse_spmm_alg alg,
size_t* buffer_size,
void* temp_buffer);
```
## HIP API Deprecations and Warnings
### Warning - Arithmetic Operators of HIP Complex and Vector Types
In this release, arithmetic operators of HIP complex and vector types are deprecated.
- As alternatives to arithmetic operators of HIP complex types, users can use arithmetic operators of std::complex types.
- As alternatives to arithmetic operators of HIP vector types, users can use the operators of the native clang vector type associated with the data member of HIP vector types.
During the deprecation, two macros `__HIP_ENABLE_COMPLEX_OPERATORS` and `__HIP_ENABLE_VECTOR_OPERATORS` are provided to allow users to conditionally enable arithmetic operators of HIP complex or vector types.
Note, the two macros are mutually exclusive and, by default, set to off.
The arithmetic operators of HIP complex and vector types will be removed in a future release.
Refer to the HIP API Guide for more information.
### Refactor of HIPCC/HIPCONFIG
In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target compiler options, target platform, compiler, and runtime appropriately.
In ROCm v5.0, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of the hipcc and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as experimental. ROCm plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release. The existing hipcc and hipconfig Perl scripts are renamed to hipcc.pl and hipconfig.pl respectively. New top-level hipcc and hipconfig Perl scripts are created, which can switch between the Perl script or the compiled binary based on the environment variable `HIPCC_USE_PERL_SCRIPT`.
In ROCm 5.0, by default, this environment variable is set to use hipcc and hipconfig through the Perl scripts.
Subsequently, Perl scripts will no longer be available in ROCm in a future release.
## Warning - Compiler-Generated Code Object Version 4 Deprecation
Support for loading compiler-generated code object version 4 will be deprecated in a future release with no release announcement and replaced with code object 5 as the default version.
The current default is code object version 4.
## Warning - MIOpenTensile Deprecation
MIOpenTensile will be deprecated in a future release.
# Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard versionchanges, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.THIS INFORMATION IS PROVIDED AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
©[2021]Advanced Micro Devices, Inc.All rights reserved.
## Third-party Disclaimer
Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

View File

@@ -12,7 +12,7 @@ fetch="https://github.com/GPUOpen-ProfessionalCompute-Libraries/" />
fetch="https://github.com/GPUOpen-Tools/" />
<remote name="KhronosGroup"
fetch="https://github.com/KhronosGroup/" />
<default revision="refs/tags/rocm-5.2.1"
<default revision="refs/tags/rocm-5.2.3"
remote="roc-github"
sync-c="true"
sync-j="4" />