Compare commits

...

47 Commits

Author SHA1 Message Date
Adel Johar
5393e90a8e Merge pull request #4393 from ROCm/docs_fix_arch
Docs: Fix gpu-arch-spec.rst
2025-02-27 16:35:33 +01:00
Peter Park
fbc2815223 Merge pull request #4417 from peterjunpark/docs/6.3.3
[docs/6.3.3] Update PT and TF docker inventories in compatibility docs (#4415)
2025-02-26 09:28:30 -05:00
Peter Park
2b96a37b08 Fix tensorflow-rocm repo.radeon.com url 2025-02-25 12:58:02 -05:00
Peter Park
1e5ad14d86 Update PT and TF docker inventories in compatibility docs (#4415)
* update PyTorch docker inventories in compatibility doc

* update TF docker inventories in compatibility doc

* update text to rocm 6.3.3

(cherry picked from commit 934767322b)
2025-02-25 12:38:25 -05:00
Peter Park
f9d6bd4db8 Merge pull request #4410 from peterjunpark/docs/6.3.3
[docs/6.3.3] fix tab sync and nested tab Megatron-LM doc (#4409)
2025-02-21 17:23:06 -05:00
Peter Park
23e78c8d55 fix tab sync and nested tab Megatron-LM doc (#4409)
(cherry picked from commit 1ea1c5c6e0)
2025-02-21 17:20:15 -05:00
Peter Park
0edd31bde6 Merge pull request #4408 from peterjunpark/docs/6.3.3
Update docs on Megatron-LM and PyTorch training Dockers (#4407)
2025-02-21 13:29:10 -05:00
Peter Park
4af488e27d Update docs on Megatron-LM and PyTorch training Dockers (#4407)
* Update Megatron-LM and PyTorch Training Docker docs

Also restructure TOC

* Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update "start training" text

Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update conf.py

fix spacing

fix branding issue

add disable numa

reorg

remove extra text

(cherry picked from commit 389fa7071b)
2025-02-21 13:10:42 -05:00
Parag Bhandari
7ae7046301 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 17:25:14 -05:00
Parag Bhandari
358092386e Merge branch 'develop' into roc-6.3.x 2025-02-19 17:25:03 -05:00
Parag Bhandari
e071738908 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 17:22:38 -05:00
pbhandar-amd
cd79403931 Update vllm-benchmark.rst 2025-02-19 17:21:29 -05:00
Parag Bhandari
275ef1d511 Merge branch 'roc-6.3.x' into docs/6.3.3 2025-02-19 16:41:11 -05:00
Parag Bhandari
065fe8b138 Merge branch 'develop' into roc-6.3.x 2025-02-19 16:30:33 -05:00
Parag Bhandari
be36c1808e Merge branch 'develop' into docs/6.3.3 2025-02-19 15:34:46 -05:00
Parag Bhandari
64c362a961 Manually update requirements.in and txt 2025-02-19 11:35:30 -05:00
pbhandar-amd
d392eca232 Update documentation requirements 2025-02-19 11:10:09 -05:00
pbhandar-amd
1b58c08394 Sync develop into docs/6.3.3 2025-02-18 14:05:45 -05:00
alexxu-amd
73ab81fbaf Merge pull request #4314 from amd-jnovotny/ai-tutorials-link-roc63x
Cherry-pick to roc-6.3.x: Add ToC and index links to the AI Developer Tutorials (#4312)
2025-01-29 16:44:22 -05:00
Jeffrey Novotny
ddfb5bda12 Add ToC and index links to the AI Developer Tutorials (#4312)
* Add ToC and index links to the AI Developer Tutorials

* Change link positioning

* Change wording

(cherry picked from commit d401b5f152)
2025-01-29 14:45:32 -05:00
Alex Xu
ae7f47a0a2 Merge branch 'develop' into roc-6.3.x 2025-01-28 17:05:44 -05:00
Alex Xu
5e5f7d6bb7 Merge branch 'develop' into roc-6.3.x 2025-01-28 16:41:02 -05:00
Alex Xu
da1125e228 Merge branch 'develop' into roc-6.3.x 2025-01-28 14:25:35 -05:00
Alex Xu
e55b9f2a33 Merge branch 'develop' into roc-6.3.x 2025-01-28 14:18:28 -05:00
Yanyao Wang
761a524d03 Merge pull request #4225 from WBobby/roc-6.3.x
Fix miopen-deps build issue by updating rocm-recipes for boost link
2025-01-06 10:03:50 -06:00
Wang, Yanyao
c895ee483c Fix miopen-deps build issue by updating rocm-recipes for boost link
Signed-off-by: Wang, Yanyao <yanyao.wang@amd.com>
2025-01-05 18:07:31 -08:00
Yanyao Wang
e049d952d4 Merge pull request #4221 from WBobby/roc-6.3.x
Add the required manifest file into roc-6.3.x branch
2025-01-03 11:21:45 -06:00
Wang, Yanyao
ce41922bb5 Update the base docker images for ROCm6.3 2025-01-03 08:10:06 -08:00
Wang, Yanyao
2b53b40caa Add manifest file for ROCm6.3.1 2025-01-03 08:07:38 -08:00
Peter Park
9250e1ba28 Fix PyTorch Compatibility link and remove incomplete rows (#4195)
* fix pytorch-compatibility filename

fix links

* remove incomplete rows in pytorch-compatibility

* fix broken refs
2024-12-24 13:51:33 -05:00
alexxu-amd
3c055ab65b Change version variable to latest
Since gpu-cluster-networking gets moved to dcgpu. All versioning will be renamed.
2024-12-24 13:51:33 -05:00
Peter Park
44aaf1b57c Add PyTorch compatibility doc (#4193)
* Add compatibility framework pages

* update formatting

* WIP

* satisfy spellcheck linter

* PR feedbacks

* caps

* remove jax and tensorflow pages

* comment out "?"s

* update wordlist

* fix toc and table

* update toc and deep-learning-rocm.rst

---------

Co-authored-by: Istvan Kiss <neon60@gmail.com>
2024-12-24 13:51:33 -05:00
alexxu-amd
822e789998 Update index.md 2024-12-24 13:51:33 -05:00
alexxu-amd
243ac78609 Update _toc.yml.in 2024-12-24 13:51:33 -05:00
Daniel Su
c2f483332f External CI: revert sync changes (#4191) 2024-12-24 13:51:33 -05:00
dependabot[bot]
b35267b6bd Build(deps): Bump rocm-docs-core from 1.11.0 to 1.12.0 in /docs/sphinx (#4167)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.11.0 to 1.12.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.11.0...v1.12.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-12-24 13:51:33 -05:00
Alex Xu
deb4895b11 Merge branch 'develop' into roc-6.3.x 2024-12-20 18:42:53 -05:00
Yanyao Wang
8c036531e8 Merge pull request #4163 from WBobby/roc-6.3.x-pr
Update build scripts of ROCm6.3 release to roc-6.3.x branch
2024-12-16 12:23:11 -06:00
Wang, Yanyao
484cbefc2e Update build scripts of ROCm6.3 release to roc-6.3.x branch 2024-12-15 17:35:58 -08:00
alexxu-amd
721b60d52f Merge pull request #4155 from amd-jnovotny/user-kernel-space-rocm-roc63x
Cherry-pick to roc-6.3.x: Change reference to kernel-mode GPU compute driver in ROCm (#4147)
2024-12-13 13:15:06 -05:00
Jeffrey Novotny
8ebe7be283 Change reference to kernel-mode GPU compute driver in ROCm (#4147)
* Change reference to kernel-mode GPU compute driver in ROCm

* More changes for kernel-mode terminology

* Fix linting

(cherry picked from commit 04fdc08328)
2024-12-13 12:13:15 -05:00
Sam Wu
7e8947fdb4 Merge pull request #4128 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-06 11:34:46 -07:00
Sam Wu
66cac5301f Merge pull request #4113 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-05 09:35:17 -07:00
Sam Wu
9f3a1de117 Merge branch 'develop' into roc-6.3.x 2024-12-04 19:34:29 -07:00
Sam Wu
0915fb17e8 Merge pull request #4109 from ROCm/develop
fix links to smi tools full changelog on GH (#4108) in 6.3 release branch
2024-12-04 19:08:06 -07:00
Sam Wu
0d3eb1d774 Merge pull request #4104 from ROCm/develop
Merge develop into ROCm 6.3 release branch
2024-12-04 17:09:23 -07:00
Sam Wu
7a258cdba9 Merge pull request #4093 from ROCm/develop
Merge develop into roc-6.3.x
2024-12-03 16:17:01 -07:00
24 changed files with 2108 additions and 1596 deletions

View File

@@ -1,29 +0,0 @@
variables:
- group: common
- template: /.azuredevops/variables-global.yml
parameters:
- name: checkoutRef
type: string
default: refs/tags/$(LATEST_RELEASE_TAG)
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
- repository: release_repo
type: github
endpoint: ROCm
name: ROCm/TransferBench
ref: ${{ parameters.checkoutRef }}
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_COMPONENT_PATH }}/TransferBench.yml
parameters:
checkoutRepo: release_repo
checkoutRef: ${{ parameters.checkoutRef }}

View File

@@ -117,6 +117,7 @@ FX
Filesystem
FindDb
Flang
FluxBenchmark
Fortran
Fuyu
GALB
@@ -131,6 +132,7 @@ GDS
GEMM
GEMMs
GFortran
GFXIP
Gemma
GiB
GIM
@@ -154,6 +156,7 @@ HCA
HGX
HIPCC
HIPExtension
HIPification
HIPIFY
HIPification
HIPify
@@ -316,6 +319,7 @@ PipelineParallel
PnP
PowerEdge
PowerShell
Pretraining
Profiler's
PyPi
Pytest
@@ -715,6 +719,7 @@ preprocessing
preprocessor
prequantized
prerequisites
pretraining
profiler
profilers
protobuf

View File

@@ -56,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
associated inventories are validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_.
Click the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
@@ -77,26 +77,26 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-6c798857b2c9526b44ba535710b93a1737546acea79b53a93c646195c272f1d5"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-a09b21248133876fc8912a5ff4e6ee2c8d62b14120313e426b3dadda5702713d"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -107,11 +107,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-963187534467f0f9da77996762fc1d112a6faa5372277c348a505533e7876ec8"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9.18 <https://www.python.org/downloads/release/python-3918/>`_
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -122,11 +122,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-952f2621bd2bf3078bef19061e05b209105a82a7908e7e6cdf85014938a4d93a"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -137,7 +137,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-a2fe20e170feb9e05da3e5728bb98e40d08567e137be8e6ba797962ed2852608"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
@@ -152,7 +152,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-7f231937c897cca5f89e360be33c70a2017d60f62d1fbe81292be48c15fe345b"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
@@ -167,14 +167,14 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-616a47758004f91951e2da6c1fe291f903de65a7b2318d4b18359b48fe3032f4"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `2.19.0 <https://github.com/tensorflow/tensorboard/tree/2.19>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
@@ -182,7 +182,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-a2cfb365aea58b84595e241ffdb0d5ef3e6566e98c10b5499f4aa29983a74ea2"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04

View File

@@ -54,7 +54,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click
validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -68,47 +68,47 @@ the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.17.0-dev/images/sha256-804121ee4985718277ba7dcec53c57bdade130a1ef42f544b6c48090ad379c17"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.17-dev/images/sha256-fd2653f436880366cc874aa24264ca9dabd892d76ccb63fb807debba459bcaaf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.17.0-dev/images/sha256-776837ffa945913f6c466bfe477810a11453d21d5b6afb200be1c36e48fbc08e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.17-dev/images/sha256-8a5eb7443798935dd269575e2abae847b702e1dfb06766ab84f081a6314d8b95"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `TensorBoard 2.17.0 <https://github.com/tensorflow/tensorboard/tree/2.17.0>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.16.2-dev/images/sha256-c793e1483e30809c3c28fc5d7805bedc033c73da224f839fff370717cb100944"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.16-dev/images/sha256-8fc939b10cdd6d2b11407474880d4c8ab2b52ab6e2d1743c921fc2adbfd0422f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.16.0-dev/images/sha256-263e78414ae85d7bcd52a025a94131d0a279872a45ed632b9165336dfdcd4443"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.16-dev/images/sha256-a4cc6ab23d59fdf5459ceac1f0a603e6c16ae7f885d30e42c0c2b3ac60c2ad10"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.15.0-dev/images/sha256-479046a8477ca701a9494a813ab17e8ab4f6baa54641e65dc8d07629f1e6a880"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.15-dev/images/sha256-60887c488421184adcb60b9ed4f72a8bd7bdb64d238e50943ca7cbde38e4aa48"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.15.2 <https://github.com/tensorflow/tensorboard/tree/2.15.2>`_
Critical ROCm libraries for TensorFlow

View File

@@ -0,0 +1,916 @@
.. meta::
:description: PyTorch compatibility
:keywords: GPU, PyTorch compatibility
********************************************************************************
PyTorch compatibility
********************************************************************************
`PyTorch <https://pytorch.org/>`_ is an open-source tensor library designed for
deep learning. PyTorch on ROCm provides mixed-precision and large-scale training
using `MIOpen <https://github.com/ROCm/MIOpen>`_ and
`RCCL <https://github.com/ROCm/rccl>`_ libraries.
ROCm support for PyTorch is upstreamed into the official PyTorch repository. Due to independent
compatibility considerations, this results in two distinct release cycles for PyTorch on ROCm:
- ROCm PyTorch release:
- Provides the latest version of ROCm but doesn't immediately support the latest stable PyTorch
version.
- Offers :ref:`Docker images <pytorch-docker-compat>` with ROCm and PyTorch
pre-installed.
- ROCm PyTorch repository: `<https://github.com/rocm/pytorch>`__
- See the :doc:`ROCm PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>` to get started.
- Official PyTorch release:
- Provides the latest stable version of PyTorch but doesn't immediately support the latest ROCm version.
- Official PyTorch repository: `<https://github.com/pytorch/pytorch>`__
- See the `Nightly and latest stable version installation guide <https://pytorch.org/get-started/locally/>`_
or `Previous versions <https://pytorch.org/get-started/previous-versions/>`_ to get started.
The upstream PyTorch includes an automatic HIPification solution that automatically generates HIP
source code from the CUDA backend. This approach allows PyTorch to support ROCm without requiring
manual code modifications.
ROCm's development is aligned with the stable release of PyTorch while upstream PyTorch testing uses
the stable release of ROCm to maintain consistency.
.. _pytorch-docker-compat:
Docker image compatibility
================================================================================
AMD validates and publishes ready-made `PyTorch <https://hub.docker.com/r/rocm/pytorch>`_
images with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
.. list-table:: PyTorch Docker image components
:header-rows: 1
:class: docker-image-compatibility
* - Docker
- PyTorch
- Ubuntu
- Python
- Apex
- torchvision
- TensorBoard
- MAGMA
- UCX
- OMPI
- OFED
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9 <https://www.python.org/downloads/release/python-3918/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.2.0 <https://github.com/ROCm/apex/tree/release/1.2.0>`_
- `0.17.1 <https://github.com/pytorch/vision/tree/v0.17.1>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04
- `3.9 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
Critical ROCm libraries for PyTorch
================================================================================
The functionality of PyTorch with ROCm is shaped by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
.. list-table::
:header-rows: 1
* - ROCm library
- Version
- Purpose
- Used in
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- 1.1.0
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
and ``torch.nn.MultiheadAttention``.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations like matrix multiplication, matrix-vector products,
and tensor contractions. Utilized in both dense and batched linear
algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
matrix multiplications used in convolutional and linear layers.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
and ``torch.topk``. Operations on sparse tensors or tensors with
irregular shapes often involve scanning, sorting, and filtering, which
hipCUB handles efficiently.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like the ``torch.fft`` module.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 2.11.0
- Provides fast random number generation for GPUs.
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
``torch.nn.Dropout``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Supports functions like ``torch.linalg.solve``,
``torch.linalg.eig``, and ``torch.linalg.svd``.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.2
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- 1.4.0
- Optimizes for high-performance tensor operations, such as contractions.
- Accelerates tensor algebra, especially in deep learning and scientific
computing.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- 2.11.0
- Add graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
- Speeds up inference models and executes ONNX models for
compatibility with other frameworks.
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- 3.1.0
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
- Faster data preprocessing and augmentation pipelines for datasets like
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
and ``torchvision`` workflows.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- 2.1.0
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
Handles communication in multi-GPU setups.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- 0.8.0
- Provide hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
and ``torch.distributed``.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- 0.6.0
- Provide hardware-accelerated JPEG image decoding and encoding.
- GPU accelerated ``torchvision.io.decode_jpeg`` and
``torchvision.io.encode_jpeg`` and can be integrated in
``torch.utils.data`` and ``torchvision``.
* - `RPP <https://github.com/ROCm/RPP>`_
- 1.9.1
- Speed up data augmentation, transformation, and other preprocessing step.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Utilized in backend operations for tensor computations requiring
parallel processing.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- 1.6.0
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
- Linear layers (``torch.nn.Linear``), convolutional layers
(``torch.nn.Conv2d``), attention layers, general tensor operations that
involve matrix products, such as ``torch.matmul``, ``torch.bmm``, and
more.
Supported and unsupported features
================================================================================
The following section maps GPU-accelerated PyTorch features to their supported
ROCm and PyTorch versions.
torch
--------------------------------------------------------------------------------
`torch <https://pytorch.org/docs/stable/index.html>`_ is the central module of
PyTorch, providing data structures for multi-dimensional tensors and
implementing mathematical operations on them. It also includes utilities for
efficient serialization of tensors and arbitrary data types, along with various
other tools.
Tensor data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The data type of a tensor is specified using the ``dtype`` attribute or argument, and PyTorch supports a wide range of data types for different use cases.
The following table lists `torch.Tensor <https://pytorch.org/docs/stable/tensors.html>`_'s single data types:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``torch.float8_e4m3fn``
- 8-bit floating point, e4m3
- 2.3
- 5.5
* - ``torch.float8_e5m2``
- 8-bit floating point, e5m2
- 2.3
- 5.5
* - ``torch.float16`` or ``torch.half``
- 16-bit floating point
- 0.1.6
- 2.0
* - ``torch.bfloat16``
- 16-bit floating point
- 1.6
- 2.6
* - ``torch.float32`` or ``torch.float``
- 32-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.float64`` or ``torch.double``
- 64-bit floating point
- 0.1.12_2
- 2.0
* - ``torch.complex32`` or ``torch.chalf``
- PyTorch provides native support for 32-bit complex numbers
- 1.6
- 2.0
* - ``torch.complex64`` or ``torch.cfloat``
- PyTorch provides native support for 64-bit complex numbers
- 1.6
- 2.0
* - ``torch.complex128`` or ``torch.cdouble``
- PyTorch provides native support for 128-bit complex numbers
- 1.6
- 2.0
* - ``torch.uint8``
- 8-bit integer (unsigned)
- 0.1.12_2
- 2.0
* - ``torch.uint16``
- 16-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.uint32``
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.uint64``
- 32-bit integer (unsigned)
- 2.3
- Not natively supported
* - ``torch.int8``
- 8-bit integer (signed)
- 1.12
- 5.0
* - ``torch.int16`` or ``torch.short``
- 16-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int32`` or ``torch.int``
- 32-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.int64`` or ``torch.long``
- 64-bit integer (signed)
- 0.1.12_2
- 2.0
* - ``torch.bool``
- Boolean
- 1.2
- 2.0
* - ``torch.quint8``
- Quantized 8-bit integer (unsigned)
- 1.8
- 5.0
* - ``torch.qint8``
- Quantized 8-bit integer (signed)
- 1.8
- 5.0
* - ``torch.qint32``
- Quantized 32-bit integer (signed)
- 1.8
- 5.0
* - ``torch.quint4x2``
- Quantized 4-bit integer (unsigned)
- 1.8
- 5.0
.. note::
Unsigned types aside from ``uint8`` are currently only have limited support in
eager mode (they primarily exist to assist usage with ``torch.compile``).
The :doc:`ROCm precision support page <rocm:reference/precision-support>`
collected the native HW support of different data types.
torch.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.cuda`` in PyTorch is a module that provides utilities and functions for
managing and utilizing AMD and NVIDIA GPUs. It enables GPU-accelerated
computations, memory management, and efficient execution of tensor operations,
leveraging ROCm and CUDA as the underlying frameworks.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - Device management
- Utilities for managing and interacting with GPUs.
- 0.4.0
- 3.8
* - Tensor operations on GPU
- Perform tensor operations such as addition and matrix multiplications on
the GPU.
- 0.4.0
- 3.8
* - Streams and events
- Streams allow overlapping computation and communication for optimized
performance, events enable synchronization.
- 1.6.0
- 3.8
* - Memory management
- Functions to manage and inspect memory usage like
``torch.cuda.memory_allocated()``, ``torch.cuda.max_memory_allocated()``,
``torch.cuda.memory_reserved()`` and ``torch.cuda.empty_cache()``.
- 0.3.0
- 1.9.2
* - Running process lists of memory management
- Return a human-readable printout of the running processes and their GPU
memory use for a given device with functions like
``torch.cuda.memory_stats()`` and ``torch.cuda.memory_summary()``.
- 1.8.0
- 4.0
* - Communication collectives
- A set of APIs that enable efficient communication between multiple GPUs,
allowing for distributed computing and data parallelism.
- 1.9.0
- 5.0
* - ``torch.cuda.CUDAGraph``
- Graphs capture sequences of GPU operations to minimize kernel launch
overhead and improve performance.
- 1.10.0
- 5.3
* - TunableOp
- A mechanism that allows certain operations to be more flexible and
optimized for performance. It enables automatic tuning of kernel
configurations and other settings to achieve the best possible
performance based on the specific hardware (GPU) and workload.
- 2.0
- 5.4
* - NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.8.0
- ❌
* - Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.13.0
- ❌
* - Jiterator (beta)
- Jiterator allows asynchronous data streaming into computation streams
during training loops.
- 1.13.0
- 5.2
.. Need to validate and extend.
torch.backends.cuda
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``torch.backends.cuda`` is a PyTorch module that provides configuration options
and flags to control the behavior of CUDA or ROCm operations. It is part of the
PyTorch backend configuration system, which allows users to fine-tune how
PyTorch interacts with the CUDA or ROCm environment.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``cufft_plan_cache``
- Manages caching of GPU FFT plans to optimize repeated FFT computations.
- 1.7.0
- 5.0
* - ``matmul.allow_tf32``
- Enables or disables the use of TensorFloat-32 (TF32) precision for
faster matrix multiplications on GPUs with Tensor Cores.
- 1.10.0
- ❌
* - ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions (e.g., with fp16 accumulation type) are
allowed with fp16 GEMMs.
- 2.0
- ❌
* - ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
- ❌
* - ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
- ❌
* - ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
- ❌
* - ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
- ❌
* - ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
- ❌
.. Need to validate and extend.
torch.backends.cudnn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Supported ``torch`` options:
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - ``allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions on NVIDIA
Ampere or newer GPUs.
- 1.12.0
- ❌
* - ``deterministic``
- A bool that, if True, causes cuDNN to only use deterministic
convolution algorithms.
- 1.12.0
- 6.0
Automatic mixed precision: torch.amp
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PyTorch that automates the process of using both 16-bit (half-precision,
float16) and 32-bit (single-precision, float32) floating-point types in model
training and inference.
.. list-table::
:header-rows: 1
* - Data type
- Description
- Since PyTorch
- Since ROCm
* - Autocasting
- Instances of autocast serve as context managers or decorators that allow
regions of your script to run in mixed precision.
- 1.9
- 2.5
* - Gradient scaling
- To prevent underflow, “gradient scaling” multiplies the networks
loss(es) by a scale factor and invokes a backward pass on the scaled
loss(es). Gradients flowing backward through the network are then
scaled by the same factor. In other words, gradient values have a
larger magnitude, so they dont flush to zero.
- 1.9
- 2.5
* - CUDA op-specific behavior
- These ops always go through autocasting whether they are invoked as part
of a ``torch.nn.Module``, as a function, or as a ``torch.Tensor`` method. If
functions are exposed in multiple namespaces, they go through
autocasting regardless of the namespace.
- 1.9
- 2.5
Distributed library features
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The PyTorch distributed library includes a collective of parallelism modules, a
communications layer, and infrastructure for launching and debugging large
training jobs. See :ref:`rocm-for-ai-pytorch-distributed` for more information.
The Distributed Library feature in PyTorch provides tools and APIs for building
and running distributed machine learning workflows. It allows training models
across multiple processes, GPUs, or nodes in a cluster, enabling efficient use
of computational resources and scalability for large-scale tasks.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since PyTorch
- Since ROCm
* - TensorPipe
- TensorPipe is a point-to-point communication library integrated into
PyTorch for distributed training. It is designed to handle tensor data
transfers efficiently between different processes or devices, including
those on separate machines.
- 1.8
- 5.4
* - Gloo
- Gloo is designed for multi-machine and multi-GPU setups, enabling
efficient communication and synchronization between processes. Gloo is
one of the default backends for PyTorch's Distributed Data Parallel
(DDP) and RPC frameworks, alongside other backends like NCCL and MPI.
- 1.0
- 2.0
torch.compiler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Features
- Description
- Since PyTorch
- Since ROCm
* - ``torch.compiler`` (AOT Autograd)
- Autograd captures not only the user-level code, but also backpropagation,
which results in capturing the backwards pass “ahead-of-time”. This
enables acceleration of both forwards and backwards pass using
``TorchInductor``.
- 2.0
- 5.3
* - ``torch.compiler`` (TorchInductor)
- The default ``torch.compile`` deep learning compiler that generates fast
code for multiple accelerators and backends. You need to use a backend
compiler to make speedups through ``torch.compile`` possible. For AMD,
NVIDIA, and Intel GPUs, it leverages OpenAI Triton as the key building block.
- 2.0
- 5.3
torchaudio
--------------------------------------------------------------------------------
The `torchaudio <https://pytorch.org/audio/stable/index.html>`_ library provides
utilities for processing audio data in PyTorch, such as audio loading,
transformations, and feature extraction.
To ensure GPU-acceleration with ``torchaudio.transforms``, you need to move audio
data (waveform tensor) explicitly to GPU using ``.to('cuda')``.
The following ``torchaudio`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since torchaudio version
- Since ROCm
* - ``torchaudio.transforms.Spectrogram``
- Generate spectrogram of an input waveform using STFT.
- 0.6.0
- 4.5
* - ``torchaudio.transforms.MelSpectrogram``
- Generate the mel-scale spectrogram of raw audio signals.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.MFCC``
- Extract of MFCC features.
- 0.9.0
- 4.5
* - ``torchaudio.transforms.Resample``
- Resample a signal from one frequency to another
- 0.9.0
- 4.5
torchvision
--------------------------------------------------------------------------------
The `torchvision <https://pytorch.org/vision/stable/index.html>`_ library
provide datasets, model architectures, and common image transformations for
computer vision.
The following ``torchvision`` features are GPU-accelerated.
.. list-table::
:header-rows: 1
* - Features
- Description
- Since torchvision version
- Since ROCm
* - ``torchvision.transforms.functional``
- Provides GPU-compatible transformations for image preprocessing like
resize, normalize, rotate and crop.
- 0.2.0
- 4.0
* - ``torchvision.ops``
- GPU-accelerated operations for object detection and segmentation tasks.
``torchvision.ops.roi_align``, ``torchvision.ops.nms`` and
``box_convert``.
- 0.6.0
- 3.3
* - ``torchvision.models`` with ``.to('cuda')``
- ``torchvision`` provides several pre-trained models (ResNet, Faster
R-CNN, Mask R-CNN, ...) that can run on CUDA for faster inference and
training.
- 0.1.6
- 2.x
* - ``torchvision.io``
- Video decoding and frame extraction using GPU acceleration with NVIDIAs
NVDEC and nvJPEG (rocJPEG) on CUDA-enabled GPUs.
- 0.4.0
- 6.3
torchtext
--------------------------------------------------------------------------------
The `torchtext <https://pytorch.org/text/stable/index.html>`_ library provides
utilities for processing and working with text data in PyTorch, including
tokenization, vocabulary management, and text embeddings. torchtext supports
preprocessing pipelines and integration with PyTorch models, simplifying the
implementation of natural language processing (NLP) tasks.
To leverage GPU acceleration in torchtext, you need to move tensors
explicitly to the GPU using ``.to('cuda')``.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
torchtune
--------------------------------------------------------------------------------
The `torchtune <https://pytorch.org/torchtune/stable/index.html>`_ library for
authoring, fine-tuning and experimenting with LLMs.
* Usage: It works out-of-the-box, enabling developers to fine-tune ROCm PyTorch solutions.
* Only official release exists.
torchserve
--------------------------------------------------------------------------------
The `torchserve <https://pytorch.org/torchserve/>`_ is a PyTorch domain library
for common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchtext does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
torchrec
--------------------------------------------------------------------------------
The `torchrec <https://pytorch.org/torchrec/>`_ is a PyTorch domain library for
common sparsity and parallelism primitives needed for large-scale recommender
systems.
* torchrec does not implement its own kernels. ROCm support is enabled by linking against ROCm libraries.
* Only official release exists.
Unsupported PyTorch features
----------------------------
The following are GPU-accelerated PyTorch features not currently supported by ROCm.
.. list-table::
:widths: 30, 60, 10
:header-rows: 1
* - Data type
- Description
- Since PyTorch
* - APEX batch norm
- Use APEX batch norm instead of PyTorch batch norm.
- 1.6.0
* - ``torch.backends.cuda`` / ``matmul.allow_tf32``
- A bool that controls whether TensorFloat-32 tensor cores may be used in
matrix multiplications.
- 1.7
* - ``torch.cuda`` / NVIDIA Tools Extension (NVTX)
- Integration with NVTX for profiling and debugging GPU performance using
NVIDIA's Nsight tools.
- 1.7.0
* - ``torch.cuda`` / Lazy loading NVRTC
- Delays JIT compilation with NVRTC until the code is explicitly needed.
- 1.8.0
* - ``torch-tensorrt``
- Integrate TensorRT library for optimizing and deploying PyTorch models.
ROCm does not have equialent library for TensorRT.
- 1.9.0
* - ``torch.backends`` / ``cudnn.allow_tf32``
- TensorFloat-32 tensor cores may be used in cuDNN convolutions.
- 1.10.0
* - ``torch.backends.cuda`` / ``matmul.allow_fp16_reduced_precision_reduction``
- Reduced precision reductions with fp16 accumulation type are
allowed with fp16 GEMMs.
- 2.0
* - ``torch.backends.cuda`` / ``matmul.allow_bf16_reduced_precision_reduction``
- Reduced precision reductions are allowed with bf16 GEMMs.
- 2.0
* - ``torch.nn.functional`` / ``scaled_dot_product_attention``
- Flash attention backend for SDPA to accelerate attention computation in
transformer-based models.
- 2.0
* - ``torch.backends.cuda`` / ``enable_cudnn_sdp``
- Globally enables cuDNN SDPA's kernels within SDPA.
- 2.0
* - ``torch.backends.cuda`` / ``enable_flash_sdp``
- Globally enables or disables FlashAttention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_mem_efficient_sdp``
- Globally enables or disables Memory-Efficient Attention for SDPA.
- 2.1
* - ``torch.backends.cuda`` / ``enable_math_sdp``
- Globally enables or disables the PyTorch C++ implementation within SDPA.
- 2.1
* - Dynamic parallelism
- PyTorch itself does not directly expose dynamic parallelism as a core
feature. Dynamic parallelism allow GPU threads to launch additional
threads which can be reached using custom operations via the
``torch.utils.cpp_extension`` module.
- Not a core feature
* - Unified memory support in PyTorch
- Unified Memory is not directly exposed in PyTorch's core API, it can be
utilized effectively through custom CUDA extensions or advanced
workflows.
- Not a core feature
Use cases and recommendations
================================================================================
* :doc:`Using ROCm for AI: training a model </how-to/rocm-for-ai/train-a-model>` provides
guidance on how to leverage the ROCm platform for training AI models. It covers the steps, tools, and best practices
for optimizing training workflows on AMD GPUs using PyTorch features.
* :doc:`Single-GPU fine-tuning and inference </how-to/llm-fine-tuning-optimization/single-gpu-fine-tuning-and-inference>`
describes and demonstrates how to use the ROCm platform for the fine-tuning and inference of
machine learning models, particularly large language models (LLMs), on systems with a single AMD
Instinct MI300X accelerator. This page provides a detailed guide for setting up, optimizing, and
executing fine-tuning and inference workflows in such environments.
* :doc:`Multi-GPU fine-tuning and inference optimization </how-to/llm-fine-tuning-optimization/multi-gpu-fine-tuning-and-inference>`
describes and demonstrates the fine-tuning and inference of machine learning models on systems
with multi MI300X accelerators.
* The :doc:`Instinct MI300X workload optimization guide </how-to/tuning-guides/mi300x/workload>` provides detailed
guidance on optimizing workloads for the AMD Instinct MI300X accelerator using ROCm. This guide is aimed at helping
users achieve optimal performance for deep learning and other high-performance computing tasks on the MI300X
accelerator.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the use of PyTorch on the ROCm platform and
focuses on how to efficiently leverage AMD GPU hardware for training and inference tasks in AI applications.
For more use cases and recommendations, see `ROCm PyTorch blog posts <https://rocm.blogs.amd.com/blog/tag/pytorch.html>`_

View File

@@ -49,6 +49,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},

View File

@@ -0,0 +1,547 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
designed to enable efficient training of large-scale language models on AMD
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
enhanced scalability, performance, and resource utilization for AI workloads.
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
DeepSeek, enabling developers to train next-generation AI models more
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
AMD provides a ready-to-use Docker image for MI300X accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
.. _mi300x-amd-megatron-lm-training:
Environment setup
=================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:v25.3
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.3
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of Megatron-LM from the `release branch <https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3>`_.
.. _amd-megatron-lm-environment-setup:
Configuration scripts
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
script in the ``examples/llama`` directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/llama>`__.
Likewise, if you're working with Llama 3 or Llama 3.1, then use ``train_llama3.sh`` and update
the configuration script accordingly.
.. tab-item:: DeepSeek V2
:sync: deepseek
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/deepseek_v2>`__
and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
To avoid connectivity issues in multi-node deployments, ensure the correct network interface
is set in your training scripts.
1. Run the following command (outside the container) to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH=${DATA_PATH:-"/data/bookcorpus_text_sentence"} # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
.. tab-item:: DeepSeek V2
:sync: deepseek
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
.. tab-set::
.. tab-item:: Llama
:sync: llama
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
.. tab-item:: DeepSeek V2
:sync: deepseek
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
Multi-node training
^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
Start training on AMD Instinct accelerators
===========================================
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD Megatron-LM Docker image.
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
To run training on a single node, navigate to the Megatron-LM folder and use the
following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 bash examples/llama/train_llama3.sh
.. tab-item:: Multi-node training
:sync: multi-node
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
.. tab-item:: DeepSeek V2
:sync: deepseek
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
.. code-block:: shell
cd /workspace/Megatron-LM
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none bash examples/deepseek_v2/train_deepseekv2.sh
Key options
-----------
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the following sets of variables:
.. tab-set::
.. tab-item:: Llama
:sync: llama
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for BP16 (default) or ``1`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP``
Tensor parallel (``1``, ``2``, ``4``, ``8``).
``SEQ_LENGTH``
Input sequence length.
.. tab-item:: DeepSeek V2
:sync: deepseek
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``GBS``
Global batch size.
Benchmarking examples
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi-node training
:sync: multi-node
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
This table lists previous versions of the ROCm Megatron-LM Docker image for training
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- Megatron-LM version
- PyTorch version
- Resources
* - 6.1
- 24.12-dev
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/rocm-for-ai/train-a-model.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_

View File

@@ -0,0 +1,341 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.3``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 3.1 8B
* Llama 3.1 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.3
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.3
3. Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__ repository and navigate to the benchmark scripts directory.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch-train
Prepare training datasets and dependencies
------------------------------------------
The following benchmarking examples may require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
Start training on AMD Instinct accelerators
===========================================
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD PyTorch training Docker image.
Once your environment is set up, use the following commands and examples to start benchmarking.
Pretraining
-----------
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* - ``$datatype``
- FP8 or BF16
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- Llama-3.1-8B
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- Llama-3.1-70B
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- Flux
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Fine-tuning
-----------
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 2 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Benchmarking examples
---------------------
Here are some examples of how to use the command.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B

View File

@@ -19,6 +19,10 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
In this guide, you'll learn about:
- :doc:`Training a model <train-a-model>`
- Training a model
- :doc:`Scale model training <scale-model-training>`
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
- :doc:`Scaling model training <scale-model-training>`

View File

@@ -0,0 +1,130 @@
:orphan:
.. meta::
:description: Prerequisite system validation before using ROCm for AI.
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax
.. _train-a-model-system-validation:
**********************************************
Prerequisite system validation before training
**********************************************
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test for multi-node setups
-----------------------------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pretraining, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800

View File

@@ -1,503 +0,0 @@
.. meta::
:description: How to train a model using ROCm Megatron-LM
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
**************************************
Training a model with ROCm Megatron-LM
**************************************
.. _amd-megatron-lm:
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
following software to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.1 |
+--------------------------+--------------------------------+
| PyTorch | 2.4.0 |
+--------------------------+--------------------------------+
| PyTorch Lightning | 2.4.0 |
+--------------------------+--------------------------------+
| Megatron Core | 0.9.0 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.5.0 |
+--------------------------+--------------------------------+
| Flash Attention | v2.6 |
+--------------------------+--------------------------------+
| Transformers | 4.44.0 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 2
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
Prerequisite system validation steps
====================================
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test
-------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800
.. _mi300x-amd-megatron-lm-training:
Start training on MI300X accelerators
=====================================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image and required packages
-----------------------------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:24.12-dev
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/Megatron-LM
cd Megatron-LM
.. note::
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
Checking out this specific commit is recommended for a stable and reproducible environment.
.. code-block:: shell
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
Prepare training datasets
-------------------------
If you already have the preprocessed data, you can skip this section.
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
end-of-document token, remove sentence splitting, and use the tokenizer type.
.. code-block:: shell
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-gpt2 \
--vocab-file gpt2-vocab.json \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--append-eod
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
``my-gpt2_text_document.idx``.
.. image:: ../../../data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
:width: 800
.. _amd-megatron-lm-environment-setup:
Environment setup
-----------------
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
``train_llama3.sh`` and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
1. Run the following command to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
You can use either mock data or real data for training.
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: shell
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
.. code-block:: shell
--data-path $DATA_PATH
Ensure that the files are accessible inside the Docker container.
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
.. code-block:: shell
--mock-data
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
Run benchmark tests
-------------------
.. note::
If you're running **multi node training**, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama2.sh
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama3.sh
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the same set of variables:
+--------------------------+-----------------------+-----------------------+
| Name | Options | Description |
+==========================+=======================+=======================+
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
| | | log |
| | | |
| | | 1: enable training |
| | | log |
+--------------------------+-----------------------+-----------------------+
| ``MBS`` | | Micro batch size |
+--------------------------+-----------------------+-----------------------+
| ``BS`` | | Batch size |
+--------------------------+-----------------------+-----------------------+
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
+--------------------------+-----------------------+-----------------------+
| ``TE_FP8`` | 0 or 1 | Datatype. |
| | | If it is set to 1, |
| | | FP8. |
| | | |
| | | If it is set to 0. |
| | | BP16 |
+--------------------------+-----------------------+-----------------------+
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
| | | enable torch.compile. |
| | | |
| | | If it is set to 0. |
| | | Disable torch.compile |
| | | (default) |
+--------------------------+-----------------------+-----------------------+
| ``SEQ_LENGTH`` | | Input sequence length |
+--------------------------+-----------------------+-----------------------+
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
| | | enable gemm tuning. |
| | | |
| | | If it is set to 0, |
| | | disable gemm tuning |
+--------------------------+-----------------------+-----------------------+
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
| | | attention |
| | | |
| | | 1: enable flash |
| | | attention |
+--------------------------+-----------------------+-----------------------+
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
| | | profiling |
| | | |
| | | 1: enable torch |
| | | profiling |
+--------------------------+-----------------------+-----------------------+
| ``MODEL_SIZE`` | | The size of the mode: |
| | | 7B/70B, etc. |
+--------------------------+-----------------------+-----------------------+
| ``TOTAL_ITERS`` | | Total number of |
| | | iterations |
+--------------------------+-----------------------+-----------------------+
| ``transformer-impl`` | transformer_engine or | Enable transformer |
| | local | engine by default |
+--------------------------+-----------------------+-----------------------+
Benchmarking examples
^^^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Single node training
:sync: single
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi node training
:sync: multi
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800

View File

@@ -21,8 +21,6 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- Model
- Architecture
- LLVM target name
- Device Major version
- Device Minor version
- VRAM (GiB)
- Compute Units
- Wavefront Size
@@ -34,12 +32,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L1 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- MI325X
- CDNA3
- gfx942
- 9
- 4
- 256
- 304 (38 per XCD)
- 64
@@ -51,12 +49,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI300X
- CDNA3
- gfx942
- 9
- 4
- 192
- 304 (38 per XCD)
- 64
@@ -68,12 +66,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI300A
- CDNA3
- gfx942
- 9
- 4
- 128
- 228 (38 per XCD)
- 64
@@ -85,12 +83,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI250X
- CDNA2
- gfx90a
- 9
- 0
- 128
- 220 (110 per GCD)
- 64
@@ -102,12 +100,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI250
- CDNA2
- gfx90a
- 9
- 0
- 128
- 208 (104 per GCD)
- 64
@@ -119,12 +117,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI210
- CDNA2
- gfx90a
- 9
- 0
- 64
- 104
- 64
@@ -136,12 +134,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI100
- CDNA
- gfx908
- 9
- 0
- 32
- 120
- 64
@@ -153,12 +151,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256 VGPR and 256 AccVGPR
- 12.5
- 9
- 0
*
- MI60
- GCN5.1
- gfx906
- 9
- 0
- 32
- 64
- 64
@@ -170,12 +168,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI50 (32GB)
- GCN5.1
- gfx906
- 9
- 0
- 32
- 60
- 64
@@ -187,12 +185,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI50 (16GB)
- GCN5.1
- gfx906
- 9
- 0
- 16
- 60
- 64
@@ -204,12 +202,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI25
- GCN5.0
- gfx900
- 9
- 0
- 16 
- 64
- 64
@@ -221,12 +219,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI8
- GCN3.0
- gfx803
- 8
- 0
- 4
- 64
- 64
@@ -238,12 +236,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 4 CUs
- 256
- 12.5
- 8
- 0
*
- MI6
- GCN4.0
- gfx803
- 8
- 0
- 16
- 36
- 64
@@ -255,6 +253,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 4 CUs
- 256
- 12.5
- 8
- 0
.. tab-item:: AMD Radeon PRO GPUs
@@ -266,8 +266,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- Model
- Architecture
- LLVM target name
- Device Major version
- Device Minor version
- VRAM (GiB)
- Compute Units
- Wavefront Size
@@ -280,12 +279,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L0 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon PRO V710
- RDNA3
- gfx1101
- 11
- 0
- 28
- 54
- 32
@@ -298,12 +297,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7900 Dual Slot
- RDNA3
- gfx1100
- 11
- 0
- 48
- 96
- 32
@@ -316,12 +315,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7900
- RDNA3
- gfx1100
- 11
- 0
- 48
- 96
- 32
@@ -334,12 +333,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7800
- RDNA3
- gfx1100
- 11
- 0
- 32
- 70
- 32
@@ -352,12 +351,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7700
- RDNA3
- gfx1101
- 11
- 0
- 16
- 48
- 32
@@ -370,12 +369,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W6800
- RDNA2
- gfx1030
- 10
- 3
- 32
- 60
- 32
@@ -388,12 +387,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon PRO W6600
- RDNA2
- gfx1032
- 10
- 3
- 8
- 28
- 32
@@ -406,12 +405,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon PRO V620
- RDNA2
- gfx1030
- 10
- 3
- 32
- 72
- 32
@@ -424,12 +423,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon Pro W5500
- RDNA
- gfx1012
- 10
- 1
- 8
- 22
- 32
@@ -442,12 +441,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 20
- 10
- 1
*
- Radeon Pro VII
- GCN5.1
- gfx906
- 9
- 0
- 16
- 60
- 64
@@ -460,6 +459,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
.. tab-item:: AMD Radeon GPUs
@@ -471,8 +472,6 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- Model
- Architecture
- LLVM target name
- Device Major version
- Device Minor version
- VRAM (GiB)
- Compute Units
- Wavefront Size
@@ -485,12 +484,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L0 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon RX 7900 XTX
- RDNA3
- gfx1100
- 11
- 0
- 24
- 96
- 32
@@ -503,12 +502,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7900 XT
- RDNA3
- gfx1100
- 11
- 0
- 20
- 84
- 32
@@ -521,12 +520,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7900 GRE
- RDNA3
- gfx1100
- 11
- 0
- 16
- 80
- 32
@@ -539,12 +538,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7800 XT
- RDNA3
- gfx1101
- 11
- 0
- 16
- 60
- 32
@@ -557,12 +556,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7700 XT
- RDNA3
- gfx1101
- 11
- 0
- 12
- 54
- 32
@@ -575,12 +574,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7600
- RDNA3
- gfx1102
- 11
- 0
- 8
- 32
- 32
@@ -593,12 +592,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 11
- 0
*
- Radeon RX 6950 XT
- RDNA2
- gfx1030
- 10
- 3
- 16
- 80
- 32
@@ -611,12 +610,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6900 XT
- RDNA2
- gfx1030
- 10
- 3
- 16
- 80
- 32
@@ -629,12 +628,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6800 XT
- RDNA2
- gfx1030
- 10
- 3
- 16
- 72
- 32
@@ -647,12 +646,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6800
- RDNA2
- gfx1030
- 10
- 3
- 16
- 60
- 32
@@ -665,12 +664,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6750 XT
- RDNA2
- gfx1031
- 10
- 3
- 12
- 40
- 32
@@ -683,12 +682,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6700 XT
- RDNA2
- gfx1031
- 10
- 3
- 12
- 40
- 32
@@ -701,13 +700,13 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6700
- RDNA2
- gfx1031
- 10
- 3
- 10
- 36
- 32
- 128
@@ -719,12 +718,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6650 XT
- RDNA2
- gfx1032
- 10
- 3
- 8
- 32
- 32
@@ -737,12 +736,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6600 XT
- RDNA2
- gfx1032
- 10
- 3
- 8
- 32
- 32
@@ -755,12 +754,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6600
- RDNA2
- gfx1032
- 10
- 3
- 8
- 28
- 32
@@ -773,12 +772,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon VII
- GCN5.1
- gfx906
- 9
- 0
- 16
- 60
- 64
@@ -791,6 +790,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
Glossary
========
@@ -804,18 +805,6 @@ For more information about the terms used, see the
Argument to pass to clang in ``--offload-arch`` to compile code for the given
architecture.
**Device major version**
Indicates the core instruction set of the GPU architecture. For example, a value
of 11 would correspond to Navi III (RDNA3).
**Device minor version**
Indicates a particular configuration, feature set, or variation within the group
represented by the device compute version. For example, different models within
the same major version might have varying levels of support for certain features
or optimizations.
**VRAM**
Amount of memory available on the GPU.
@@ -898,6 +887,26 @@ Purpose Vector Registers, used specifically in matrix instructions.
Size of the Scalar General Purpose Register (SGPR) file. Holds data used in
scalar instructions.
**GFXIP**
GFXIP (Graphics IP) is a versioning system used by AMD to identify the GPU
architecture and its instruction set. It helps categorize different generations
of GPUs and their feature sets.
**GFXIP major version**
Defines the GPU's core instruction set and architecture, which determines
compatibility with software stacks such as HIP and OpenCL. For example, a GFXIP
11 major version corresponds to the RDNA 3 (Navi 3x) architecture, influencing
driver support and available compute features.
**GFXIP minor version**
Represents specific variations within a GFXIP major version and affects feature sets,
optimizations, and driver behavior in software stacks such as HIP and OpenCL. Different
GPU models within the same major version can have unique capabilities, impacting
performance and supported instructions.
**GCD**
Graphics Compute Die.

View File

@@ -40,11 +40,13 @@ subtrees:
title: Training
subtrees:
- entries:
- file: how-to/rocm-for-ai/training/train-a-model.rst
title: Train a model
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
title: Train a model with Megatron-LM
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
title: Train a model with PyTorch
- file: how-to/rocm-for-ai/training/scale-model-training.rst
title: Scale model training
- file: how-to/rocm-for-ai/fine-tuning/index.rst
title: Fine-tuning LLMs
subtrees:

View File

@@ -1,3 +1,3 @@
rocm-docs-core==1.15.0
rocm-docs-core==1.17.0
sphinx-reredirects
sphinx-sitemap

View File

@@ -1,5 +1,5 @@
#
# This file is autogenerated by pip-compile with Python 3.10
# This file is autogenerated by pip-compile with Python 3.11
# by the following command:
#
# pip-compile requirements.in
@@ -8,6 +8,8 @@ accessible-pygments==0.0.5
# via pydata-sphinx-theme
alabaster==1.0.0
# via sphinx
appnope==0.1.4
# via ipykernel
asttokens==3.0.0
# via stack-data
attrs==25.1.0
@@ -23,7 +25,7 @@ beautifulsoup4==4.12.3
# via pydata-sphinx-theme
breathe==4.35.0
# via rocm-docs-core
certifi==2024.8.30
certifi==2024.12.14
# via requests
cffi==1.17.1
# via
@@ -37,7 +39,7 @@ click==8.1.7
# sphinx-external-toc
comm==0.2.2
# via ipykernel
cryptography==44.0.1
cryptography==44.0.0
# via pyjwt
debugpy==1.8.12
# via ipykernel
@@ -51,11 +53,9 @@ docutils==0.21.2
# myst-parser
# pydata-sphinx-theme
# sphinx
exceptiongroup==1.2.2
# via ipython
executing==2.2.0
# via stack-data
fastjsonschema==2.20.0
fastjsonschema==2.21.1
# via
# nbformat
# rocm-docs-core
@@ -63,8 +63,6 @@ gitdb==4.0.11
# via gitpython
gitpython==3.1.43
# via rocm-docs-core
greenlet==3.1.1
# via sqlalchemy
idna==3.10
# via requests
imagesize==1.4.1
@@ -75,13 +73,13 @@ importlib-metadata==8.6.1
# myst-nb
ipykernel==6.29.5
# via myst-nb
ipython==8.31.0
ipython==8.32.0
# via
# ipykernel
# myst-nb
jedi==0.19.2
# via ipython
jinja2==3.1.5
jinja2==3.1.4
# via
# myst-parser
# sphinx
@@ -115,7 +113,7 @@ mdit-py-plugins==0.4.2
# via myst-parser
mdurl==0.1.2
# via markdown-it-py
myst-nb==1.1.2
myst-nb==1.2.0
# via rocm-docs-core
myst-parser==4.0.0
# via myst-nb
@@ -142,7 +140,7 @@ platformdirs==4.3.6
# via jupyter-core
prompt-toolkit==3.0.50
# via ipython
psutil==6.1.1
psutil==7.0.0
# via ipykernel
ptyprocess==0.7.0
# via pexpect
@@ -150,7 +148,7 @@ pure-eval==0.2.3
# via stack-data
pycparser==2.22
# via cffi
pydata-sphinx-theme==0.16.0
pydata-sphinx-theme==0.16.1
# via
# rocm-docs-core
# sphinx-book-theme
@@ -162,7 +160,7 @@ pygments==2.18.0
# ipython
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.10.0
pyjwt[crypto]==2.10.1
# via pygithub
pynacl==1.5.0
# via pygithub
@@ -175,7 +173,7 @@ pyyaml==6.0.2
# myst-parser
# rocm-docs-core
# sphinx-external-toc
pyzmq==26.2.0
pyzmq==26.2.1
# via
# ipykernel
# jupyter-client
@@ -187,7 +185,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.15.0
rocm-docs-core==1.17.0
# via -r requirements.in
rpds-py==0.22.3
# via
@@ -241,14 +239,12 @@ sphinxcontrib-qthelp==2.0.0
# via sphinx
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.37
sqlalchemy==2.0.38
# via jupyter-cache
stack-data==0.6.3
# via ipython
tabulate==0.9.0
# via jupyter-cache
tomli==2.1.0
# via sphinx
tornado==6.4.2
# via
# ipykernel

View File

@@ -68,85 +68,6 @@ set_address_sanitizer_off() {
export LDFLAGS=""
}
build_miopen_ckProf() {
ENABLE_ADDRESS_SANITIZER=false
echo "Start Building Composable Kernel Profiler"
if [ "${ENABLE_ADDRESS_SANITIZER}" == "true" ]; then
set_asan_env_vars
set_address_sanitizer_on
else
unset_asan_env_vars
set_address_sanitizer_off
fi
cd $COMPONENT_SRC
cd "$BUILD_DIR"
rm -rf *
architectures='gfx10 gfx11 gfx90 gfx94'
if [ -n "$GPU_ARCHS" ]; then
architectures=$(echo ${GPU_ARCHS} | awk -F';' '{for(i=1;i<=NF;i++) a[substr($i,1,5)]} END{for(i in a) printf i" "}')
fi
for arch in ${architectures}
do
if [ "${ASAN_CMAKE_PARAMS}" == "true" ] ; then
cmake -DBUILD_DEV=OFF \
-DCMAKE_PREFIX_PATH="${ROCM_PATH%-*}/lib/cmake;${ROCM_PATH%-*}/$ASAN_LIBDIR;${ROCM_PATH%-*}/llvm;${ROCM_PATH%-*}" \
-DCMAKE_BUILD_TYPE=${BUILD_TYPE:-'RelWithDebInfo'} \
-DCMAKE_SHARED_LINKER_FLAGS_INIT="-Wl,--enable-new-dtags,--rpath,$ROCM_ASAN_LIB_RPATH" \
-DCMAKE_EXE_LINKER_FLAGS_INIT="-Wl,--enable-new-dtags,--rpath,$ROCM_ASAN_EXE_RPATH" \
-DCMAKE_VERBOSE_MAKEFILE=1 \
-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=FALSE \
-DCMAKE_INSTALL_PREFIX="${ROCM_PATH}" \
-DCMAKE_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DBUILD_FILE_REORG_BACKWARD_COMPATIBILITY=OFF \
-DROCM_SYMLINK_LIBS=OFF \
-DCPACK_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DROCM_DISABLE_LDCONFIG=ON \
-DROCM_PATH="${ROCM_PATH}" \
-DCPACK_GENERATOR="${PKGTYPE^^}" \
-DCMAKE_CXX_COMPILER="${ROCM_PATH}/llvm/bin/clang++" \
-DCMAKE_C_COMPILER="${ROCM_PATH}/llvm/bin/clang" \
${LAUNCHER_FLAGS} \
-DPROFILER_ONLY=ON \
-DENABLE_ASAN_PACKAGING=true \
-DGPU_ARCH="${arch}" \
"$COMPONENT_SRC"
else
cmake -DBUILD_DEV=OFF \
-DCMAKE_PREFIX_PATH="${ROCM_PATH%-*}" \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_SHARED_LINKER_FLAGS_INIT='-Wl,--enable-new-dtags,--rpath,$ORIGIN' \
-DCMAKE_EXE_LINKER_FLAGS_INIT='-Wl,--enable-new-dtags,--rpath,$ORIGIN/../lib' \
-DCMAKE_VERBOSE_MAKEFILE=1 \
-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=FALSE \
-DCMAKE_INSTALL_PREFIX="${ROCM_PATH}" \
-DCMAKE_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DBUILD_FILE_REORG_BACKWARD_COMPATIBILITY=OFF \
-DROCM_SYMLINK_LIBS=OFF \
-DCPACK_PACKAGING_INSTALL_PREFIX="${ROCM_PATH}" \
-DROCM_DISABLE_LDCONFIG=ON \
-DROCM_PATH="${ROCM_PATH}" \
-DCPACK_GENERATOR="${PKGTYPE^^}" \
-DCMAKE_CXX_COMPILER="${ROCM_PATH}/llvm/bin/clang++" \
-DCMAKE_C_COMPILER="${ROCM_PATH}/llvm/bin/clang" \
${LAUNCHER_FLAGS} \
-DPROFILER_ONLY=ON \
-DGPU_ARCH="${arch}" \
"$COMPONENT_SRC"
fi
cmake --build . -- -j${PROC} package
cp ./*ckprofiler*.${PKGTYPE} $PACKAGE_DIR
rm -rf *
done
rm -rf _CPack_Packages/ && find -name '*.o' -delete
echo "Finished building Composable Kernel"
show_build_cache_stats
}
clean_miopen_ck() {
echo "Cleaning MIOpen-CK build directory: ${BUILD_DIR} ${PACKAGE_DIR}"
rm -rf "$BUILD_DIR" "$PACKAGE_DIR"

View File

@@ -42,7 +42,6 @@ DEB_PATH="$(getDebPath $PROJ_NAME)"
RPM_PATH="$(getRpmPath $PROJ_NAME)"
INSTALL_PATH="${ROCM_INSTALL_PATH}/lib/llvm"
LLVM_ROOT_LCL="${LLVM_ROOT}"
ROCM_WHEEL_DIR="${BUILD_PATH}/_wheel"
TARGET="all"
MAKEOPTS="$DASH_JAY"
@@ -150,7 +149,6 @@ ENABLE_RUNTIMES="$ENABLE_RUNTIMES;libcxx;libcxxabi"
BOOTSTRAPPING_BUILD_LIBCXX=1
clean_lightning() {
rm -rf "$ROCM_WHEEL_DIR"
rm -rf "$BUILD_PATH"
rm -rf "$DEB_PATH"
rm -rf "$RPM_PATH"
@@ -332,15 +330,6 @@ build_lightning() {
echo "End Workaround for race condition"
cmake --build . -- $MAKEOPTS
case "$DISTRO_ID" in
(rhel*|centos*)
RHEL_BUILD=1
;;
(*)
RHEL_BUILD=0
;;
esac
if [ $SKIP_LIT_TESTS -eq 0 ]; then
if [ $RHEL_BUILD -eq 1 ]; then
cmake --build . -- $MAKEOPTS check-lld check-mlir
@@ -1158,9 +1147,4 @@ case $TARGET in
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -1,171 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
printUsage() {
echo
echo "Usage: ${BASH_SOURCE##*/} [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -s, --static Build static lib (.a). build instead of dynamic/shared(.so) "
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -a, --address_sanitizer Enable address sanitizer"
echo " -o, --outdir <pkg_type> Print path of output directory containing packages of
type referred to by pkg_type"
echo " -w, --wheel Creates python wheel package of omniperf.
It needs to be used along with -r option"
echo " -h, --help Prints this help"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
API_NAME="omniperf"
PROJ_NAME="$API_NAME"
LIB_NAME="lib${API_NAME}"
TARGET="build"
MAKETARGET="deb"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_LIB="$(getLibPath)"
BUILD_DIR="$(getBuildPath $API_NAME)"
PACKAGE_DEB="$(getPackageRoot)/deb/$API_NAME"
PACKAGE_RPM="$(getPackageRoot)/rpm/$API_NAME"
ROCM_WHEEL_DIR="${BUILD_DIR}/_wheel"
BUILD_TYPE="Debug"
MAKE_OPTS="$DASH_JAY -C $BUILD_DIR"
SHARED_LIBS="ON"
CLEAN_OR_OUT=0;
MAKETARGET="deb"
PKGTYPE="deb"
WHEEL_PACKAGE=false
#parse the arguments
VALID_STR=$(getopt -o hcraso:p:w --long help,clean,release,static,address_sanitizer,outdir:,package:,wheel -- "$@")
eval set -- "$VALID_STR"
while true ;
do
case "$1" in
-h | --help)
printUsage ; exit 0;;
-c | --clean)
TARGET="clean" ; ((CLEAN_OR_OUT|=1)) ; shift ;;
-r | --release)
BUILD_TYPE="Release" ; shift ;;
-a | --address_sanitizer)
set_asan_env_vars
set_address_sanitizer_on ; shift ;;
-s | --static)
SHARED_LIBS="OFF" ; shift ;;
-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
-p | --package)
MAKETARGET="$2" ; shift 2 ;;
-w | --wheel)
WHEEL_PACKAGE=true ; shift ;;
--) shift; break;; # end delimiter
*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] ">&2 ; exit 20;;
esac
done
RET_CONFLICT=1
check_conflicting_options "$CLEAN_OR_OUT" "$PKGTYPE" "$MAKETARGET"
if [ $RET_CONFLICT -ge 30 ]; then
print_vars "$API_NAME" "$TARGET" "$BUILD_TYPE" "$SHARED_LIBS" "$CLEAN_OR_OUT" "$PKGTYPE" "$MAKETARGET"
exit $RET_CONFLICT
fi
clean() {
echo "Cleaning $PROJ_NAME"
rm -rf "$ROCM_WHEEL_DIR"
rm -rf "$BUILD_DIR"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME:?}"
rm -rf "$PACKAGE_LIB/${LIB_NAME:?}"*
}
build() {
echo "Building $PROJ_NAME"
if [ "$DISTRO_ID" = centos-7 ]; then
echo "Skip make and uploading packages for Omniperf on Centos7 distro, due to python dependency"
exit 0
fi
if [ ! -d "$BUILD_DIR" ]; then
mkdir -p "$BUILD_DIR"
pushd "$BUILD_DIR" || exit
echo "ROCm CMake Params: $(rocm_cmake_params)"
echo "ROCm Common CMake Params: $(rocm_common_cmake_params)"
print_lib_type $SHARED_LIBS
cmake \
$(rocm_cmake_params) \
$(rocm_common_cmake_params) \
-DCHECK_PYTHON_DEPS=NO \
-DPYTHON_DEPS=${BUILD_DIR}/python-libs \
-DMOD_INSTALL_PATH=${BUILD_DIR}/modulefiles \
"$OMNIPERF_ROOT"
fi
make $MAKE_OPTS
make $MAKE_OPTS install
make $MAKE_OPTS package
copy_if DEB "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_DEB" "$BUILD_DIR/${API_NAME}"*.deb
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_RPM" "$BUILD_DIR/${API_NAME}"*.rpm
}
create_wheel_package() {
echo "Creating Omniperf wheel package"
# Copy the setup.py generator to build folder
mkdir -p "$ROCM_WHEEL_DIR"
cp -f "$SCRIPT_ROOT"/generate_setup_py.py "$ROCM_WHEEL_DIR"
cp -f "$SCRIPT_ROOT"/repackage_wheel.sh "$ROCM_WHEEL_DIR"
cd "$ROCM_WHEEL_DIR" || exit
# Currently only supports python3.6
./repackage_wheel.sh "$BUILD_DIR"/*.rpm python3.6
# Copy the wheel created to RPM folder which will be uploaded to artifactory
copy_if WHL "WHL" "$PACKAGE_RPM" "$ROCM_WHEEL_DIR"/dist/*.whl
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
echo "${PACKAGE_DEB}";;
("rpm")
echo "${PACKAGE_RPM}";;
(*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2; exit 1;;
esac
exit
}
verifyEnvSetup
case "$TARGET" in
(clean) clean ;;
(build) build ;;
(outdir) print_output_directory ;;
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -1,191 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
printUsage() {
echo
echo "Usage: ${BASH_SOURCE##*/} [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -s, --static Build static lib (.a). build instead of dynamic/shared(.so) "
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -a, --address_sanitizer Enable address sanitizer"
echo " -o, --outdir <pkg_type> Print path of output directory containing packages of
type referred to by pkg_type"
echo " -w, --wheel Creates python wheel package of omnitrace.
It needs to be used along with -r option"
echo " -h, --help Prints this help"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
API_NAME="omnitrace"
PROJ_NAME="$API_NAME"
LIB_NAME="lib${API_NAME}"
TARGET="build"
MAKETARGET="deb"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_LIB="$(getLibPath)"
BUILD_DIR="$(getBuildPath $API_NAME)"
PACKAGE_DEB="$(getPackageRoot)/deb/$API_NAME"
PACKAGE_RPM="$(getPackageRoot)/rpm/$API_NAME"
BUILD_TYPE="Debug"
MAKE_OPTS="-j 8"
SHARED_LIBS="ON"
CLEAN_OR_OUT=0
MAKETARGET="deb"
PKGTYPE="deb"
ASAN=0
#parse the arguments
VALID_STR=$(getopt -o hcraso:p:w --long help,clean,release,address_sanitizer,static,outdir:,package:,wheel -- "$@")
eval set -- "$VALID_STR"
while true; do
case "$1" in
-h | --help)
printUsage
exit 0
;;
-c | --clean)
TARGET="clean"
((CLEAN_OR_OUT |= 1))
shift
;;
-r | --release)
BUILD_TYPE="RelWithDebInfo"
shift
;;
-a | --address_sanitizer)
ack_and_ignore_asan
ASAN=1
shift
;;
-s | --static)
SHARED_LIBS="OFF"
shift
;;
-o | --outdir)
TARGET="outdir"
PKGTYPE=$2
((CLEAN_OR_OUT |= 2))
shift 2
;;
-p | --package)
MAKETARGET="$2"
shift 2
;;
-w | --wheel)
echo "omnitrace: wheel build option accepted and ignored"
shift
;;
--)
shift
break
;;
*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] " >&2
exit 20
;;
esac
done
RET_CONFLICT=1
check_conflicting_options $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
if [ $RET_CONFLICT -ge 30 ]; then
print_vars $API_NAME $TARGET $BUILD_TYPE $SHARED_LIBS $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
exit $RET_CONFLICT
fi
clean() {
echo "Cleaning $PROJ_NAME"
rm -rf "$BUILD_DIR"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME:?}"
rm -rf "$PACKAGE_LIB/${LIB_NAME:?}"*
}
build_omnitrace() {
echo "Building $PROJ_NAME"
if [ "$DISTRO_ID" = "mariner-2.0" ] || [ "$DISTRO_ID" = "ubuntu-24.04" ] || [ "$DISTRO_ID" = "azurelinux-3.0" ]; then
echo "Skip make and uploading packages for Omnitrace on \"${DISTRO_ID}\" distro"
exit 0
fi
if [ $ASAN == 1 ]; then
echo "Skip make and uploading packages for Omnitrace on ASAN build"
exit 0
fi
if [ ! -d "$BUILD_DIR" ]; then
mkdir -p "$BUILD_DIR"
echo "Created build directory: $BUILD_DIR"
fi
echo "Build directory: $BUILD_DIR"
pushd "$BUILD_DIR" || exit
print_lib_type $SHARED_LIBS
echo "ROCm CMake Params: $(rocm_cmake_params)"
echo "ROCm Common CMake Params: $(rocm_common_cmake_params)"
if [ $ASAN == 1 ]; then
echo "Address Sanitizer path"
else
cmake \
$(rocm_cmake_params) \
$(rocm_common_cmake_params) \
-DOMNITRACE_BUILD_{LIBUNWIND,DYNINST}=ON \
-DDYNINST_BUILD_{TBB,BOOST,ELFUTILS,LIBIBERTY}=ON \
"$OMNITRACE_ROOT"
fi
popd || exit
echo "Make Options: $MAKE_OPTS"
cmake --build "$BUILD_DIR" --target all -- $MAKE_OPTS
cmake --build "$BUILD_DIR" --target install -- $MAKE_OPTS
cmake --build "$BUILD_DIR" --target package -- $MAKE_OPTS
copy_if DEB "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_DEB" "$BUILD_DIR/${API_NAME}"*.deb
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$PACKAGE_RPM" "$BUILD_DIR/${API_NAME}"*.rpm
}
print_output_directory() {
case ${PKGTYPE} in
"deb")
echo "${PACKAGE_DEB}"
;;
"rpm")
echo "${PACKAGE_RPM}"
;;
*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2
exit 1
;;
esac
exit
}
verifyEnvSetup
case "$TARGET" in
clean) clean ;;
build) build_omnitrace ;;
outdir) print_output_directory ;;
*) die "Invalid target $TARGET" ;;
esac
echo "Operation complete"

View File

@@ -1,141 +0,0 @@
#!/bin/bash
source "$(dirname "${BASH_SOURCE}")/compute_utils.sh"
PROJ_NAME=OpenCL-ICD-Loader
TARGET="build"
MAKEOPTS="$DASH_JAY"
BUILD_TYPE="Debug"
PACKAGE_ROOT="$(getPackageRoot)"
PACKAGE_DEB="$PACKAGE_ROOT/deb/${PROJ_NAME,,}"
PACKAGE_RPM="$PACKAGE_ROOT/rpm/${PROJ_NAME,,}"
CLEAN_OR_OUT=0;
PKGTYPE="deb"
MAKETARGET="deb"
API_NAME="rocm-opencl-icd-loader"
printUsage() {
echo
echo "Usage: $(basename "${BASH_SOURCE}") [options ...]"
echo
echo "Options:"
echo " -c, --clean Clean output and delete all intermediate work"
echo " -p, --package <type> Specify packaging format"
echo " -r, --release Make a release build instead of a debug build"
echo " -h, --help Prints this help"
echo " -o, --outdir Print path of output directory containing packages"
echo " -s, --static Component/Build does not support static builds just accepting this param & ignore. No effect of the param on this build"
echo
echo "Possible values for <type>:"
echo " deb -> Debian format (default)"
echo " rpm -> RPM format"
echo
return 0
}
RET_CONFLICT=1
check_conflicting_options $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
if [ $RET_CONFLICT -ge 30 ]; then
print_vars $TARGET $BUILD_TYPE $CLEAN_OR_OUT $PKGTYPE $MAKETARGET
exit $RET_CONFLICT
fi
clean_opencl_icd_loader() {
echo "Cleaning $PROJ_NAME"
rm -rf "$PACKAGE_DEB"
rm -rf "$PACKAGE_RPM"
rm -rf "$PACKAGE_ROOT/${PROJ_NAME,,}"
}
copy_pkg_files_to_rocm() {
local comp_folder=$1
local comp_pkg_name=$2
cd "${OUT_DIR}/${PKGTYPE}/${comp_folder}"|| exit 2
if [ "${PKGTYPE}" = 'deb' ]; then
dpkg-deb -x ${comp_pkg_name}_*.deb pkg/
else
mkdir pkg && pushd pkg/ || exit 2
if [[ "${comp_pkg_name}" != *-dev* ]]; then
rpm2cpio ../${comp_pkg_name}-*.rpm | cpio -idmv
else
rpm2cpio ../${comp_pkg_name}el-*.rpm | cpio -idmv
fi
popd || exit 2
fi
ls ./pkg -alt
cp -r ./pkg/*/rocm*/* "${ROCM_PATH}" || exit 2
rm -rf pkg/
}
build_opencl_icd_loader() {
echo "Downloading $PROJ_NAME" package
if [ "$DISTRO_NAME" = ubuntu ]; then
mkdir -p "$PACKAGE_DEB"
local rocm_ver=${ROCM_VERSION}
if [ ${ROCM_VERSION##*.} = 0 ]; then
rocm_ver=${ROCM_VERSION%.*}
fi
local url="https://repo.radeon.com/rocm/apt/${rocm_ver}/pool/main/r/${API_NAME}/"
local package
package=$(curl -s "$url" | grep -Po 'href="\K[^"]*' | grep "${DISTRO_RELEASE}" | head -n 1)
if [ -z "$package" ]; then
echo "No package found for Ubuntu version $DISTRO_RELEASE"
exit 1
fi
wget -t3 -P "$PACKAGE_DEB" "${url}${package}"
copy_pkg_files_to_rocm ${PROJ_NAME,,} ${API_NAME}
else
echo "$DISTRO_ID is not supported..."
exit 2
fi
echo "Installing $PROJ_NAME" package
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
echo ${PACKAGE_DEB};;
("rpm")
echo ${PACKAGE_RPM};;
(*)
echo "Invalid package type \"${PKGTYPE}\" provided for -o" >&2; exit 1;;
esac
exit
}
VALID_STR=`getopt -o hcraswlo:p: --long help,clean,release,outdir:,package: -- "$@"`
eval set -- "$VALID_STR"
while true ;
do
case "$1" in
(-c | --clean )
TARGET="clean" ; ((CLEAN_OR_OUT|=1)) ; shift ;;
(-r | --release )
BUILD_TYPE="RelWithDebInfo" ; shift ;;
(-h | --help )
printUsage ; exit 0 ;;
(-a | --address_sanitizer)
ack_and_ignore_asan ; shift ;;
(-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
(-p | --package)
MAKETARGET="$2" ; shift 2;;
(-s | --static)
echo "-s parameter accepted but ignored" ; shift ;;
--) shift; break;;
(*)
echo " This should never come but just incase : UNEXPECTED ERROR Parm : [$1] ">&2 ; exit 20;;
esac
done
case $TARGET in
(clean) clean_opencl_icd_loader ;;
(build) build_opencl_icd_loader ;;
(outdir) print_output_directory ;;
(*) die "Invalid target $TARGET" ;;
esac
echo "Operation complete"

View File

@@ -32,7 +32,6 @@ ROCM_CMAKE_BUILD_DIR="$(getBuildPath rocm-cmake)"
ROCM_CMAKE_BUILD_DIR="$(getBuildPath rocm-cmake)"
ROCM_CMAKE_PACKAGE_DEB="$(getPackageRoot)/deb/rocm-cmake"
ROCM_CMAKE_PACKAGE_RPM="$(getPackageRoot)/rpm/rocm-cmake"
ROCM_WHEEL_DIR="${ROCM_CMAKE_BUILD_DIR}/_wheel"
ROCM_CMAKE_BUILD_TYPE="debug"
BUILD_TYPE="Debug"
SHARED_LIBS="ON"
@@ -56,8 +55,6 @@ do
ack_and_ignore_asan ; shift ;;
(-s | --static)
SHARED_LIBS="OFF" ; shift ;;
(-w | --wheel)
WHEEL_PACKAGE=true ; shift ;;
(-o | --outdir)
TARGET="outdir"; PKGTYPE=$2 ; OUT_DIR_SPECIFIED=1 ; ((CLEAN_OR_OUT|=2)) ; shift 2 ;;
(-p | --package)
@@ -78,7 +75,6 @@ fi
clean_rocm_cmake() {
rm -rf "$ROCM_WHEEL_DIR"
rm -rf $ROCM_CMAKE_BUILD_DIR
rm -rf $ROCM_CMAKE_PACKAGE_DEB
rm -rf $ROCM_CMAKE_PACKAGE_RPM
@@ -106,19 +102,6 @@ build_rocm_cmake() {
copy_if RPM "${CPACKGEN:-"DEB;RPM"}" "$ROCM_CMAKE_PACKAGE_RPM" $ROCM_CMAKE_BUILD_DIR/rocm-cmake*.rpm
}
create_wheel_package() {
echo "Creating rocm-cmake wheel package"
# Copy the setup.py generator to build folder
mkdir -p $ROCM_WHEEL_DIR
cp -f $SCRIPT_ROOT/generate_setup_py.py $ROCM_WHEEL_DIR
cp -f $SCRIPT_ROOT/repackage_wheel.sh $ROCM_WHEEL_DIR
cd $ROCM_WHEEL_DIR
# Currently only supports python3.6
./repackage_wheel.sh $ROCM_CMAKE_BUILD_DIR/rocm-cmake*.rpm python3.6
# Copy the wheel created to RPM folder which will be uploaded to artifactory
copy_if WHL "WHL" "$ROCM_CMAKE_PACKAGE_RPM" "$ROCM_WHEEL_DIR"/dist/*.whl
}
print_output_directory() {
case ${PKGTYPE} in
("deb")
@@ -138,9 +121,4 @@ case $TARGET in
(*) die "Invalid target $TARGET" ;;
esac
if [[ $WHEEL_PACKAGE == true ]]; then
echo "Wheel Package build started !!!!"
create_wheel_package
fi
echo "Operation complete"

View File

@@ -7,7 +7,6 @@ bison
bridge-utils
build-essential
bzip2
ccache
check
chrpath
cifs-utils
@@ -121,11 +120,9 @@ python3-yaml
python3.8-dev
re2c
redis-tools
# Eventually we should be able to remove rpm for debian builds.
rpm
rsync
ssh
# This makes life more pleasent inside the container
strace
sudo
systemtap-sdt-dev

View File

@@ -1,285 +0,0 @@
#! /usr/bin/bash
set -x
apt-get -y update
DEBIAN_FRONTEND=noninteractive DEBCONF_NONINTERACTIVE_SEEN=true apt-get install --no-install-recommends -y $(sed 's/#.*//' /tmp/packages)
apt-get clean
rm -rf /var/cache/apt/ /var/lib/apt/lists/* /etc/apt/apt.conf.d/01proxy
#Install 2.17.1 version of git as we are seeing issues with 2.25 , where it was not allowing to add git submodules if the user is different for parent git directory
curl -o git.tar.gz https://cdn.kernel.org/pub/software/scm/git/git-2.17.1.tar.gz
tar -zxf git.tar.gz
cd git-*
make prefix=/usr/local all
make prefix=/usr/local install
git --version
#install argparse and CppHeaderParser python modules for roctracer and rocprofiler
#install rocm-docs-core for the docs-as-code project. Only needed on one OS
# CppHeader needs setuptools. setuptools needs wheel.
# Looks like I need them as seperate commands
# Sigh, install both python2 and python 3 version
pip3 install --no-cache-dir setuptools wheel tox
pip3 install --no-cache-dir CppHeaderParser argparse requests lxml barectf recommonmark jinja2==3.0.0 websockets matplotlib numpy scipy minimal msgpack pytest sphinx joblib PyYAML rocm-docs-core cmake==3.25.2 pandas myst-parser
# Allow sudo for everyone user
echo 'ALL ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/everyone
# Install OCaml packages to build LLVM's OCaml bindings to be used in lightning compiler test pipeline
wget -nv https://sourceforge.net/projects/opam.mirror/files/2.1.4/opam-2.1.4-x86_64-linux -O /usr/local/bin/opam
chmod +x /usr/local/bin/opam
opam init --yes --disable-sandboxing
opam install ctypes --yes
# Install and modify git-repo (#!/usr/bin/env python -> #!/usr/bin/env python3)
curl https://storage.googleapis.com/git-repo-downloads/repo > /usr/bin/repo
chmod a+x /usr/bin/repo
# Build ccache from the source
cd /tmp
git clone https://github.com/ccache/ccache -b v4.7.5
cd ccache
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
make install
cd /tmp
rm -rf ccache
# Install sharp from MLNX_OFED_LINUX as dependency for rccl-rdma-sharp-plugins
cd /var/tmp
mkdir mlnx
wget -O mlnx/tar.tgz https://content.mellanox.com/ofed/MLNX_OFED-24.01-0.3.3.1/MLNX_OFED_LINUX-24.01-0.3.3.1-ubuntu22.04-x86_64.tgz
tar -xz -C mlnx -f mlnx/tar.tgz
apt-key add mlnx/*/RPM-GPG-KEY-Mellanox
echo "deb [arch=amd64] file:$(echo $PWD/mlnx/*/DEBS) ./" > /etc/apt/sources.list.d/sharp.list
apt update
apt install -y sharp
apt clean
rm -rf /var/cache/apt/ /var/lib/apt/lists/* mlnx /etc/apt/sources.list.d/sharp.list
apt update
apt -y install libunwind-dev
apt -y install libgoogle-glog-dev
# Install python3.8 from source
curl -LO https://www.python.org/ftp/python/3.8.13/Python-3.8.13.tar.xz
tar -xvf Python-3.8.13.tar.xz
pwd
ls /var/tmp/
ls Python-3.8.13
mv Python-3.8.13 /opt/
apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libsqlite3-dev libreadline-dev libffi-dev curl libbz2-dev pkg-config make -y
cd /opt/Python-3.8.13/
./configure --enable-optimizations --enable-shared
make
make -j 6
make altinstall
ldconfig /opt/Python3.8.13
python3.8 --version
# roctracer and rocprofiler needs this python3.8
python3.8 -m pip install setuptools wheel
python3.8 -m pip install CppHeaderParser argparse requests lxml PyYAML joblib
#Install older version of hwloc-devel package for rocrtst
curl -lO https://download.open-mpi.org/release/hwloc/v1.11/hwloc-1.11.13.tar.bz2
tar -xvf hwloc-1.11.13.tar.bz2
cd hwloc-1.11.13
./configure
make
make install
cp /usr/local/lib/libhwloc.so.5 /usr/lib
hwloc-info --version
# Install gtest
mkdir -p /tmp/gtest
cd /tmp/gtest
wget https://github.com/google/googletest/archive/refs/tags/v1.14.0.zip -O googletest.zip
unzip googletest.zip
cd googletest-1.14.0/
mkdir build
cd build
cmake ..
make -j$(nproc)
make install
rm -rf /tmp/gtest
## Install gRPC from source
## RDC Pre-requisites
GRPC_ARCHIVE=grpc-1.61.0.tar.gz
mkdir /tmp/grpc
mkdir /usr/grpc
cd /tmp
git clone --recurse-submodules -b v1.61.0 https://github.com/grpc/grpc
cd grpc
mkdir -p build
cd build
cmake -DgRPC_INSTALL=ON -DBUILD_SHARED_LIBS=ON -DgRPC_BUILD_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/usr/grpc -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_STANDARD=14 -DCMAKE_SHARED_LINKER_FLAGS_INIT=-Wl,--enable-new-dtags,--build-id=sha1,--rpath,'$ORIGIN' ..
make -j $(nproc) install
rm -rf /tmp/grpc
## rocBLAS Pre-requisites
## Download prebuilt AMD multithreaded blis (2.0)
## Reference : https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/install.sh#L403
mkdir -p /tmp/blis
cd /tmp/blis
wget -O - https://github.com/amd/blis/releases/download/2.0/aocl-blis-mt-ubuntu-2.0.tar.gz | tar xfz -
mv amd-blis-mt /usr/blis
cd /
rm -rf /tmp/blis
## rocBLAS Pre-requisites(SWDEV-404612)
## Download aocl-linux-gcc-4.2.0_1_amd64.deb
mkdir -p /tmp/aocl
cd /tmp/aocl
wget -nv https://download.amd.com/developer/eula/aocl/aocl-4-2/aocl-linux-gcc-4.2.0_1_amd64.deb
apt install ./aocl-linux-gcc-4.2.0_1_amd64.deb
rm -rf /tmp/aocl
## hipBLAS Pre-requisites
## lapack(3.9.1v)
## Reference https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/install.sh#L174
lapack_version=3.9.1
lapack_srcdir=lapack-$lapack_version
lapack_blddir=lapack-$lapack_version-bld
mkdir -p /tmp/lapack
cd /tmp/lapack
rm -rf "$lapack_srcdir" "$lapack_blddir"
wget -O - https://github.com/Reference-LAPACK/lapack/archive/refs/tags/v3.9.1.tar.gz | tar xzf -
cmake -H$lapack_srcdir -B$lapack_blddir -DCMAKE_BUILD_TYPE=Release -DCMAKE_Fortran_FLAGS=-fno-optimize-sibling-calls -DBUILD_TESTING=OFF -DCBLAS=ON -DLAPACKE=OFF
make -j$(nproc) -C "$lapack_blddir"
make -C "$lapack_blddir" install
cd $lapack_blddir
cp -r ./include/* /usr/local/include/
cp -r ./lib/* /usr/local/lib
cd /
rm -rf /tmp/lapack
## rocSOLVER Pre-requisites
## FMT(7.1.3v)
## Reference https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/install.sh#L152
fmt_version=7.1.3
fmt_srcdir=fmt-$fmt_version
fmt_blddir=fmt-$fmt_version-bld
mkdir -p /tmp/fmt
cd /tmp/fmt
rm -rf "$fmt_srcdir" "$fmt_blddir"
wget -O - https://github.com/fmtlib/fmt/archive/refs/tags/7.1.3.tar.gz | tar xzf -
cmake -H$fmt_srcdir -B$fmt_blddir -DCMAKE_BUILD_TYPE=Release -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=OFF -DCMAKE_CXX_STANDARD_REQUIRED=ON -DFMT_DOC=OFF -DFMT_TEST=OFF
make -j$(nproc) -C "$fmt_blddir"
make -C "$fmt_blddir" install
# Build and install libjpeg-turbo
mkdir -p /tmp/libjpeg-turbo
cd /tmp/libjpeg-turbo
wget -nv https://github.com/rrawther/libjpeg-turbo/archive/refs/heads/2.0.6.2.zip -O libjpeg-turbo-2.0.6.2.zip
unzip libjpeg-turbo-2.0.6.2.zip
cd libjpeg-turbo-2.0.6.2
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_BUILD_TYPE=RELEASE -DENABLE_STATIC=FALSE -DCMAKE_INSTALL_DEFAULT_LIBDIR=lib ..
make -j$(nproc) install
rm -rf /tmp/libjpeg-turbo
# Get released ninja from source
mkdir -p /tmp/ninja
cd /tmp/ninja
wget -nv https://codeload.github.com/Kitware/ninja/zip/refs/tags/v1.11.1.g95dee.kitware.jobserver-1 -O ninja.zip
unzip ninja.zip
cd ninja-1.11.1.g95dee.kitware.jobserver-1
./configure.py --bootstrap
cp ninja /usr/local/bin/
rm -rf /tmp/ninja
# Install FFmpeg and dependencies
# Build NASM
mkdir -p /tmp/nasm-2.15.05
cd /tmp
wget -qO- "https://distfiles.macports.org/nasm/nasm-2.15.05.tar.bz2" | tar -xvj
cd nasm-2.15.05
./autogen.sh
./configure --prefix="/usr/local"
make -j$(nproc) install
rm -rf /tmp/nasm-2.15.05
# Build YASM
mkdir -p /tmp/yasm-1.3.0
cd /tmp
wget -qO- "http://www.tortall.net/projects/yasm/releases/yasm-1.3.0.tar.gz" | tar -xvz
cd yasm-1.3.0
./configure --prefix="/usr/local"
make -j$(nproc) install
rm -rf /tmp/yasm-1.3.0
# Build x264
mkdir -p /tmp/x264-snapshot-20191217-2245-stable
cd /tmp
wget -qO- "https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-20191217-2245-stable.tar.bz2" | tar -xvj
cd /tmp/x264-snapshot-20191217-2245-stable
PKG_CONFIG_PATH="/usr/local/lib/pkgconfig" ./configure --prefix="/usr/local" --enable-shared
make -j$(nproc) install
rm -rf /tmp/x264-snapshot-20191217-2245-stable
# Build x265
mkdir -p /tmp/x265_2.7
cd /tmp
wget -qO- "https://get.videolan.org/x265/x265_2.7.tar.gz" | tar -xvz
cd /tmp/x265_2.7/build/linux
cmake -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX="/usr/local" -DENABLE_SHARED:bool=on ../../source
make -j$(nproc) install
rm -rf /tmp/x265_2.7
# Build fdk-aac
mkdir -p /tmp/fdk-aac-2.0.2
cd /tmp
wget -qO- "https://sourceforge.net/projects/opencore-amr/files/fdk-aac/fdk-aac-2.0.2.tar.gz" | tar -xvz
cd /tmp/fdk-aac-2.0.2
autoreconf -fiv
./configure --prefix="/usr/local" --enable-shared --disable-static
make -j$(nproc) install
rm -rf /tmp/fdk-aac-2.0.2
# Build FFmpeg
cd /tmp
git clone -b release/4.4 https://git.ffmpeg.org/ffmpeg.git ffmpeg
cd ffmpeg
PKG_CONFIG_PATH="/usr/local/lib/pkgconfig"
./configure --prefix="/usr/local" --extra-cflags="-I/usr/local/include" --extra-ldflags="-L/usr/local/lib" --extra-libs=-lpthread --extra-libs=-lm --enable-shared --disable-static --enable-libx264 --enable-libx265 --enable-libfdk-aac --enable-gpl --enable-nonfree
make -j$(nproc) install
rm -rf /tmp/ffmpeg
cp /tmp/local-pin-600 /etc/apt/preferences.d
command -v lbzip2
ln -sf $(command -v lbzip2) /usr/local/bin/compressor || ln -sf $(command -v bzip2) /usr/local/bin/compressor
# Install Google Benchmark
mkdir -p /tmp/Gbenchmark
cd /tmp/Gbenchmark
wget -qO- https://github.com/google/benchmark/archive/refs/tags/v1.6.1.tar.gz | tar xz
cmake -Sbenchmark-1.6.1 -Bbuild -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF -DBENCHMARK_ENABLE_TESTING=OFF -DCMAKE_CXX_STANDARD=14
make -j -C build
cd /tmp/Gbenchmark/build
make install
# Build boost-1.85.0 from source for RPP
# Installing in a non-standard location since the test packages of hipFFT and rocFFT pick up the version of
# the installed Boost library and declare a package dependency on that specific version of Boost.
# For example, if this was installed in the standard location it would declare a dependency on libboost-dev(el)1.85.0
# which is not available as a package in any distro.
# Once this is fixed, we can remove the Boost package from the requirements list and install this
# in the standard location
mkdir -p /tmp/boost-1.85.0
cd /tmp/boost-1.85.0
wget -nv https://sourceforge.net/projects/boost/files/boost/1.85.0/boost_1_85_0.tar.bz2 -O ./boost_1_85_0.tar.bz2
tar -xf boost_1_85_0.tar.bz2 --use-compress-program="/usr/local/bin/compressor"
cd boost_1_85_0
./bootstrap.sh --prefix=${RPP_DEPS_LOCATION} --with-python=python3
./b2 stage -j$(nproc) threading=multi link=shared cxxflags="-std=c++11"
./b2 install threading=multi link=shared --with-system --with-filesystem
./b2 stage -j$(nproc) threading=multi link=static cxxflags="-std=c++11 -fpic" cflags="-fpic"
./b2 install threading=multi link=static --with-system --with-filesystem
rm -rf /tmp/boost-1.85.0

View File

@@ -7,7 +7,6 @@ bison
bridge-utils
build-essential
bzip2
ccache
check
chrpath
cifs-utils