mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-09 14:48:06 -05:00
Compare commits
24 Commits
rocm-7.1.1
...
revert-533
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2e89f254ba | ||
|
|
ffc9b918fa | ||
|
|
28742033e6 | ||
|
|
24dec07aef | ||
|
|
9e1871a01b | ||
|
|
b0fdab6c8c | ||
|
|
4e45bf7838 | ||
|
|
ef75f43c5e | ||
|
|
9f703e27bb | ||
|
|
1214bd84ed | ||
|
|
f8cb05fd07 | ||
|
|
22a9ab4626 | ||
|
|
63d8f852da | ||
|
|
72127d21d3 | ||
|
|
ecbcc9b11f | ||
|
|
76571df432 | ||
|
|
40ffdeb995 | ||
|
|
681f31fbb2 | ||
|
|
ceae5bc124 | ||
|
|
5f516799fe | ||
|
|
d6e4bb6ff6 | ||
|
|
25ec3eec87 | ||
|
|
6048413d0d | ||
|
|
94a4e655a7 |
@@ -72,6 +72,7 @@ CU
|
||||
CUDA
|
||||
CUs
|
||||
CXX
|
||||
CX
|
||||
Cavium
|
||||
CentOS
|
||||
ChatGPT
|
||||
@@ -118,6 +119,8 @@ Dependabot
|
||||
Deprecations
|
||||
DevCap
|
||||
DirectX
|
||||
Disaggregated
|
||||
disaggregated
|
||||
Dockerfile
|
||||
Dockerized
|
||||
Doxygen
|
||||
@@ -127,6 +130,7 @@ ENDPGM
|
||||
EPYC
|
||||
ESXi
|
||||
EoS
|
||||
etcd
|
||||
fas
|
||||
FBGEMM
|
||||
FIFOs
|
||||
@@ -178,6 +182,7 @@ GPUs
|
||||
Graphbolt
|
||||
GraphSage
|
||||
GRBM
|
||||
GRE
|
||||
GenAI
|
||||
GenZ
|
||||
GitHub
|
||||
@@ -301,6 +306,7 @@ MirroredStrategy
|
||||
Mixtral
|
||||
MosaicML
|
||||
MoEs
|
||||
Mooncake
|
||||
Mpops
|
||||
Multicore
|
||||
Multithreaded
|
||||
@@ -445,6 +451,7 @@ SKU
|
||||
SKUs
|
||||
SLES
|
||||
SLURM
|
||||
Slurm
|
||||
SMEM
|
||||
SMFMA
|
||||
SMI
|
||||
|
||||
58
RELEASE.md
58
RELEASE.md
@@ -61,7 +61,7 @@ for more information about operating system and hardware compatibility.
|
||||
|
||||
ROCm 7.0.0 introduces support for KVM Passthrough for AMD Instinct MI350X and MI355X GPUs.
|
||||
|
||||
All KVM-based SR-IOV supported configurations require the GIM SR-IOV driver version 8.4.0.K. Refer to [GIM Release note](https://github.com/amd/MxGPU-Virtualization/releases) for more details. In addition, support for VMware ESXi 8 has been introduced for AMD Instinct MI300X GPUs. For more information, see [Virtualization Support](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html#virtualization-support).
|
||||
All KVM-based SR-IOV supported configurations require the GIM SR-IOV driver version [8.4.0.K](https://github.com/amd/MxGPU-Virtualization/releases/tag/mainline%2F8.4.0.K). In addition, support for VMware ESXi 8 has been introduced for AMD Instinct MI300X GPUs. For more information, see [Virtualization Support](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html#virtualization-support).
|
||||
|
||||
### Deep learning and AI framework updates
|
||||
|
||||
@@ -172,7 +172,7 @@ Key compiler enhancements include:
|
||||
* Comgr:
|
||||
* Added support for an in-memory virtual file system (VFS) for storing temporary files generated during intermediate compilation steps. This is designed to improve performance by reducing on-disk file I/O. Currently, VFS is supported only for the device library link step, with plans for expanded support in future releases.
|
||||
* SPIR-V:
|
||||
* Improved [target-specific extensions](https://github.com/ROCm/llvm-project/blob/c2535466c6e40acd5ecf6ba1676a4e069c6245cc/clang/docs/LanguageExtensions.rst):
|
||||
* Improved [target-specific extensions](https://github.com/ROCm/llvm-project/blob/c2535466c6e40acd5ecf6ba1676a4e069c6245cc/clang/docs/LanguageExtensions.rst#target-specific-extensions):
|
||||
* Added a new target-specific builtin ``__builtin_amdgcn_processor_is`` for late or deferred queries of the current target processor.
|
||||
* Added a new target-specific builtin ``__builtin_amdgcn_is_invocable``, enabling fine-grained, per-builtin feature availability.
|
||||
* The compiler driver now uses parallel code generation by default when compiling using full LTO (including when using the `-fgpu-rdc` option) for HIP. This divides the optimized LLVM IR module into roughly equal partitions before instruction selection and lowering, which can help improve build times.
|
||||
@@ -224,7 +224,7 @@ For more information about MIGraphX changes, see the [MIGraphX changelog](migrap
|
||||
|
||||
#### rocSHMEM Reverse Offload conduit inter-node support
|
||||
|
||||
The rocSHMEM communications library has added the RO (Reverse Offload) inter-node communication backend which enables communication between GPUs on different nodes through a NIC, using a host-based CPU proxy to forward communication orders to and from the GPU. Inter-node communication requires MPI, and is tested with Open MPI and CX7 IB NICs. For more information, see [available network backends](https://rocm.docs.amd.com/projects/rocSHMEM/en/develop/install.html#available-network-backends) for installting rocSHMEM.
|
||||
The rocSHMEM communications library has added the RO (Reverse Offload) inter-node communication backend which enables communication between GPUs on different nodes through a NIC, using a host-based CPU proxy to forward communication orders to and from the GPU. Inter-node communication requires MPI, and is tested with Open MPI and CX7 IB NICs. For more information, see [available network backends](https://rocm.docs.amd.com/projects/rocSHMEM/en/docs-7.0.0/install.html#available-network-backends) for installing rocSHMEM.
|
||||
|
||||
See the [rocSHMEM changelog](#rocshmem-3-0-0) for more details.
|
||||
|
||||
@@ -364,14 +364,14 @@ ROCm documentation continues to be updated to provide clearer and more comprehen
|
||||
:margin: auto 0 auto auto
|
||||
:::{grid}
|
||||
:margin: auto 0 auto auto
|
||||
* [hipBLAS](https://rocm.docs.amd.com/projects/hipBLAS/en/develop/reference/data-type-support.html)
|
||||
* [hipBLASLt](https://rocm.docs.amd.com/projects/hipBLASLt/en/develop/reference/data-type-support.html)
|
||||
* [hipSPARSE](https://rocm.docs.amd.com/projects/hipSPARSE/en/develop/reference/precision.html)
|
||||
* [hipBLAS](https://rocm.docs.amd.com/projects/hipBLAS/en/docs-7.0.0/reference/data-type-support.html)
|
||||
* [hipBLASLt](https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-7.0.0/reference/data-type-support.html)
|
||||
* [hipSPARSE](https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-7.0.0/reference/precision.html)
|
||||
:::
|
||||
:::{grid}
|
||||
:margin: auto 0 auto auto
|
||||
* [rocSPARSE](https://rocm.docs.amd.com/projects/rocSPARSE/en/develop/reference/precision.html)
|
||||
* [Tensile](https://rocm.docs.amd.com/projects/Tensile/en/develop/src/reference/precision-support.html#precision-support)
|
||||
* [rocSPARSE](https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-7.0.0/reference/precision.html)
|
||||
* [Tensile](https://rocm.docs.amd.com/projects/Tensile/en/docs-7.0.0/src/reference/precision-support.html#precision-support)
|
||||
:::
|
||||
::::
|
||||
|
||||
@@ -392,15 +392,15 @@ ROCm documentation continues to be updated to provide clearer and more comprehen
|
||||
:margin: auto 0 auto auto
|
||||
:::{grid-item}
|
||||
:margin: auto 0 auto auto
|
||||
* [hipBLASLt](https://rocm.docs.amd.com/projects/hipBLASLt/en/develop/reference/env-variables.html)
|
||||
* [hipSPARSELt](https://rocm.docs.amd.com/projects/hipSPARSELt/en/develop/reference/env-variables.html)
|
||||
* [ROCm Performance Primitives (RPP)](https://rocm.docs.amd.com/projects/rpp/en/develop/reference/rpp-env-variables.html)
|
||||
* [hipBLASLt](https://rocm.docs.amd.com/projects/hipBLASLt/en/docs-7.0.0/reference/env-variables.html)
|
||||
* [hipSPARSELt](https://rocm.docs.amd.com/projects/hipSPARSELt/en/docs-7.0.0/reference/env-variables.html)
|
||||
* [ROCm Performance Primitives (RPP)](https://rocm.docs.amd.com/projects/rpp/en/docs-7.0.0/reference/rpp-env-variables.html)
|
||||
:::
|
||||
:::{grid-item}
|
||||
:margin: auto 0 auto auto
|
||||
* [rocSOLVER](https://rocm.docs.amd.com/projects/rocSOLVER/en/develop/reference/env_variables.html)
|
||||
* [rocSPARSE](https://rocm.docs.amd.com/projects/rocSPARSE/en/develop/reference/env_variables.html)
|
||||
* [Tensile](https://rocm.docs.amd.com/projects/Tensile/en/develop/src/reference/environment-variables.html)
|
||||
* [rocSOLVER](https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-7.0.0/reference/env_variables.html)
|
||||
* [rocSPARSE](https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-7.0.0/reference/env_variables.html)
|
||||
* [Tensile](https://rocm.docs.amd.com/projects/Tensile/en/docs-7.0.0/src/reference/environment-variables.html)
|
||||
:::
|
||||
::::
|
||||
|
||||
@@ -408,9 +408,19 @@ ROCm documentation continues to be updated to provide clearer and more comprehen
|
||||
|
||||
## User space, driver, and firmware dependent changes
|
||||
|
||||
GPU Software for AMD datacenter GPU products requires you to maintain a hardware and software stack with interdependencies between the GPU and baseboard firmware, AMD GPU drivers, and the ROCm user space software. Starting ROCm 7.0.0 release, we are publicly documenting these interdependencies. Note that while AMD publishes drivers and ROCm user space, your server or infrastructure provider publishes the GPU and baseboard firmware by bundling AMD’s firmware releases via AMD's Platform Level Data Model (PLDM) bundle (Firmware), which includes Integrated Firmware Image (IFWI).
|
||||
The software for AMD Datacenter GPU products requires maintaining a hardware
|
||||
and software stack with interdependencies between the GPU and baseboard
|
||||
firmware, AMD GPU drivers, and the ROCm user space software.
|
||||
|
||||
The GPU and baseboard firmware releases numbering may vary by GPU family. Note that, ROCm 7.0.0 release is the first release where the AMD GPU Driver (amdgpu) is versioned independently of ROCm.
|
||||
As of the ROCm 7.0.0 release, these interdependencies are publicly documented.
|
||||
Note that while AMD publishes drivers and ROCm user space, your server or
|
||||
infrastructure provider publishes the GPU and baseboard firmware by bundling
|
||||
AMD’s firmware releases via AMD’s Platform Level Data Model (PLDM) bundle,
|
||||
which includes Integrated Firmware Image (IFWI).
|
||||
|
||||
GPU and baseboard firmware versioning might differ across GPU families. With the
|
||||
ROCm 7.0.0 release, the AMD GPU driver (amdgpu) is now versioned separately
|
||||
from ROCm. See [AMD GPU Driver/ROCm packaging separation](#amd-gpu-driver-rocm-packaging-separation).
|
||||
|
||||
<div class="pst-scrollable-table-container">
|
||||
<table class="table" align="left" valign="middle">
|
||||
@@ -495,7 +505,7 @@ The GPU and baseboard firmware releases numbering may vary by GPU family. Note t
|
||||
</tr>
|
||||
<tr>
|
||||
<td>MI210</td>
|
||||
<td>MU5 w/ IFWI 75</td>
|
||||
<td>MU5 w/ IFWI 75 (or later)</td>
|
||||
<td>8.4.0.K</td>
|
||||
</tr>
|
||||
<tr>
|
||||
@@ -2542,31 +2552,31 @@ issues related to individual components, review the [Detailed component changes]
|
||||
|
||||
### A memory error in the kernel might lead to applications using the ROCr library becoming unresponsive
|
||||
|
||||
Applications using the ROCr library might become unresponsive if a memory error occurs in the launched kernel when the queue from which it was launched is destroyed. The application is unable to receive further signal, resulting in the stall condition. The issue will be fixed in a future ROCm release.
|
||||
Applications using the ROCr library might become unresponsive if a memory error occurs in the launched kernel when the queue from which it was launched is destroyed. The application is unable to receive further signal, resulting in the stall condition. The issue will be fixed in a future ROCm release. See [GitHub issue #5334](https://github.com/ROCm/ROCm/issues/5334).
|
||||
|
||||
### Applications using stream capture APIs might fail during stream capture
|
||||
|
||||
Applications using ``hipLaunchHostFunc`` with stream capture APIs might fail to capture graphs during stream capture, and return `hipErrorStreamCaptureUnsupported`. This issue resulted from an update in ``hipStreamAddCallback``. This issue will be fixed in a future ROCm release.
|
||||
Applications using ``hipLaunchHostFunc`` with stream capture APIs might fail to capture graphs during stream capture, and return `hipErrorStreamCaptureUnsupported`. This issue resulted from an update in ``hipStreamAddCallback``. This issue will be fixed in a future ROCm release. See [GitHub issue #5337](https://github.com/ROCm/ROCm/issues/5337).
|
||||
|
||||
### Compilation failure via hipRTC when compiling with std=c++11
|
||||
|
||||
Applications compiling kernels using `hipRTC` might fail while passing the `std=c++11` compiler option. This issue will be fixed in a future ROCm release.
|
||||
Applications compiling kernels using `hipRTC` might fail while passing the `std=c++11` compiler option. This issue will be fixed in a future ROCm release. See [GitHub issue #5341](https://github.com/ROCm/ROCm/issues/5341).
|
||||
|
||||
### Compilation failure when referencing std::array if _GLIBCXX_ASSERTIONS is defined
|
||||
|
||||
Compiling from a device kernel or function results in failure when attempting to reference `std::array` if `_GLIBCXX_ASSERTIONS` is defined. The issue occurs because there's no device definition for `std::__glibcxx_asert_fail()`. This issue will be resolved in a future ROCm release with the implementation of `std::__glibcxx_assert_fail()`.
|
||||
Compiling from a device kernel or function results in failure when attempting to reference `std::array` if `_GLIBCXX_ASSERTIONS` is defined. The issue occurs because there's no device definition for `std::__glibcxx_asert_fail()`. This issue will be resolved in a future ROCm release with the implementation of `std::__glibcxx_assert_fail()`. See [GitHub issue #5342](https://github.com/ROCm/ROCm/issues/5342).
|
||||
|
||||
### Segmentation fault in ROCprofiler-SDK due to ABI mismatch affecting std::regex
|
||||
|
||||
Starting with GCC 5.1, GNU `libstdc++` introduced a dual Application Binary Interface (ABI) to adopt `C++11`, primarily affecting the `std::string` and its dependencies, including `std::regex`. If your code is compiled against headers expecting one ABI but linked or run with the other, it can cause problems with `std::string` and `std::regex`, leading to a segmentation fault in ROCprofiler-SDK, which uses `std::regex`. This issue is resolved in the [ROCm Systems `develop` branch](https://github.com/ROCm/rocm-systems) and will be part of a future ROCm release.
|
||||
Starting with GCC 5.1, GNU `libstdc++` introduced a dual Application Binary Interface (ABI) to adopt `C++11`, primarily affecting the `std::string` and its dependencies, including `std::regex`. If your code is compiled against headers expecting one ABI but linked or run with the other, it can cause problems with `std::string` and `std::regex`, leading to a segmentation fault in ROCprofiler-SDK, which uses `std::regex`. This issue is resolved in the [ROCm Systems `develop` branch](https://github.com/ROCm/rocm-systems) and will be part of a future ROCm release. See [GitHub issue #5343](https://github.com/ROCm/ROCm/issues/5343).
|
||||
|
||||
### Decline in performance of batched GEMM operation for applications using hipBLASLT kernels
|
||||
|
||||
Default batched General Matrix Multiplications (GEMM) operations for rocBLAS and hipBLAS on gfx1200 and gfx1201 may have a decline in performance in comparison with non-batched and strided_batched GEMM operations. By default, the batched GEMM uses hipBLASLT kernels, and switching to the Tensile kernel resolves the performance decline issue. The issue will be fixed in a future ROCm release. As a workaround, you can set the environment variable `ROCBLAS_USE_HIPBLASLT=0` before the batched GEMM operation is performed on gfx1200 and gfx1201. After completing the batched operation, reset the variable to `ROCBLAS_USE_HIPBLASLT=1` before calling non-batched or strided_batched operations.
|
||||
Default batched General Matrix Multiplications (GEMM) operations for rocBLAS and hipBLAS on gfx1200 and gfx1201 may have a decline in performance in comparison with non-batched and strided_batched GEMM operations. By default, the batched GEMM uses hipBLASLT kernels, and switching to the Tensile kernel resolves the performance decline issue. The issue will be fixed in a future ROCm release. As a workaround, you can set the environment variable `ROCBLAS_USE_HIPBLASLT=0` before the batched GEMM operation is performed on gfx1200 and gfx1201. After completing the batched operation, reset the variable to `ROCBLAS_USE_HIPBLASLT=1` before calling non-batched or strided_batched operations. See [GitHub issue #5344](https://github.com/ROCm/ROCm/issues/5344).
|
||||
|
||||
### Failure to declare out-of-bound CPERs for bad memory page
|
||||
|
||||
Exceeding bad memory page threshold fails to declare Out-Of-Band Common Platform Error Records (CPERs). This issue affects all AMD Instinct MI300 Series and MI350 Series GPUs, and will be fixed in a future AMD GPU Driver release.
|
||||
Exceeding bad memory page threshold fails to declare Out-Of-Band Common Platform Error Records (CPERs). This issue affects all AMD Instinct MI300 Series and MI350 Series GPUs, and will be fixed in a future AMD GPU Driver release. See [GitHub issue #5345](https://github.com/ROCm/ROCm/issues/5345).
|
||||
|
||||
## ROCm resolved issues
|
||||
|
||||
|
||||
@@ -3,8 +3,8 @@ ROCm Version,7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6
|
||||
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
|
||||
,,,,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
|
||||
,"RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
|
||||
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
|
||||
,SLES 15 SP7,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
|
||||
,RHEL 8.10 [#rhel-700]_,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
|
||||
,SLES 15 SP7 [#sles-db-700]_,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
|
||||
,,,,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
|
||||
,"Oracle Linux 9, 8 [#ol-700-mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
|
||||
,Debian 12,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
|
||||
@@ -33,11 +33,13 @@ ROCm Version,7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6
|
||||
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.7, 2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.19.1, 2.18.1","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
|
||||
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.6.0,0.4.35,0.4.35,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
|
||||
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A,
|
||||
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`,N/A,N/A,N/A,N/A,N/A,85f95ae,85f95ae,85f95ae,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
|
||||
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
|
||||
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>`,N/A,N/A,N/A,N/A,N/A,0.7.0,0.7.0,0.7.0,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
|
||||
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,1.8.0b1,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
|
||||
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`,N/A,N/A,N/A,N/A,N/A,85f95ae,85f95ae,85f95ae,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>`,N/A,N/A,N/A,N/A,N/A,0.7.0,0.7.0,0.7.0,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,1.8.0b1,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat]_,N/A,N/A,N/A,2.48.0.post0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_,N/A,N/A,N/A,N/A,b5997,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.20.0,1.20.0,1.20.0,1.20.0,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
|
||||
,,,,,,,,,,,,,,,,,,,
|
||||
,,,,,,,,,,,,,,,,,,,
|
||||
@@ -50,7 +52,7 @@ ROCm Version,7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6
|
||||
CUB,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
|
||||
,,,,,,,,,,,,,,,,,,,
|
||||
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
|
||||
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
|
||||
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10, 6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
|
||||
,,,,,,,,,,,,,,,,,,,
|
||||
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
|
||||
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
|
||||
|
||||
|
@@ -29,10 +29,10 @@ compatibility and system requirements.
|
||||
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.3,Ubuntu 24.04.2,Ubuntu 24.04.2
|
||||
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5
|
||||
,"RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.5, 9.4"
|
||||
,RHEL 8.10 [#rhel-700]_,RHEL 8.10 [#rhel-700],RHEL 8.10 [#rhel-700]
|
||||
,SLES 15 SP7,"SLES 15 SP7, SP6","SLES 15 SP6, SP5"
|
||||
,RHEL 8.10 [#rhel-700]_,RHEL 8.10,RHEL 8.10
|
||||
,SLES 15 SP7 [#sles-db-700]_,"SLES 15 SP7, SP6","SLES 15 SP6, SP5"
|
||||
,"Oracle Linux 9, 8 [#ol-700-mi300x]_","Oracle Linux 9, 8 [#ol-mi300x]_",Oracle Linux 8.10 [#ol-mi300x]_
|
||||
,Debian 12,Debian 12 [#single-node]_,
|
||||
,Debian 12 [#sles-db-700]_,Debian 12 [#single-node]_,
|
||||
,Azure Linux 3.0 [#az-mi300x]_,Azure Linux 3.0 [#az-mi300x]_,
|
||||
,Rocky Linux 9 [#rl-700]_,,
|
||||
,.. _architecture-support-compatibility-matrix:,,
|
||||
@@ -44,25 +44,22 @@ compatibility and system requirements.
|
||||
,RDNA3,RDNA3,RDNA3
|
||||
,RDNA2,RDNA2,RDNA2
|
||||
,.. _gpu-support-compatibility-matrix:,,
|
||||
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx950,,
|
||||
,gfx1201 [#RDNA-OS]_,gfx1201 [#RDNA-OS]_,
|
||||
,gfx1200 [#RDNA-OS]_,gfx1200 [#RDNA-OS]_,
|
||||
,gfx1101 [#RDNA-OS]_ [#7700XT-OS]_,gfx1101 [#RDNA-OS]_ [#7700XT-OS]_,
|
||||
,gfx1100,gfx1100,gfx1100
|
||||
,gfx1030,gfx1030,gfx1030
|
||||
,gfx942,gfx942,gfx942
|
||||
,gfx90a,gfx90a,gfx90a
|
||||
,gfx908,gfx908,gfx908
|
||||
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx950 [#mi350x-os]_,,
|
||||
,gfx1201 [#RDNA-OS-700]_,gfx1201 [#RDNA-OS]_,
|
||||
,gfx1200 [#RDNA-OS-700]_,gfx1200 [#RDNA-OS]_,
|
||||
,gfx1101 [#RDNA-OS-700]_ [#rd-v710]_,gfx1101 [#RDNA-OS]_ [#7700XT-OS]_,
|
||||
,gfx1100 [#RDNA-OS-700]_,gfx1100,gfx1100
|
||||
,gfx1030 [#RDNA-OS-700]_ [#rd-v620]_,gfx1030,gfx1030
|
||||
,gfx942 [#mi325x-os]_ [#mi300x-os]_ [#mi300A-os]_,gfx942,gfx942
|
||||
,gfx90a [#mi200x-os]_,gfx90a,gfx90a
|
||||
,gfx908 [#mi100-os]_,gfx908,gfx908
|
||||
,,,
|
||||
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
|
||||
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.7, 2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 2.1, 2.0, 1.13"
|
||||
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.19.1, 2.18.1","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1"
|
||||
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.6.0,0.4.35,0.4.31
|
||||
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_,N/A,N/A,N/A
|
||||
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`,N/A,N/A,85f95ae
|
||||
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,N/A
|
||||
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>`,N/A,N/A,0.7.0
|
||||
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_,N/A,N/A,N/A
|
||||
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat]_,N/A,N/A,85f95ae
|
||||
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat]_,N/A,N/A,0.7.0
|
||||
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.20.0,1.17.3
|
||||
,,,
|
||||
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix:,,
|
||||
@@ -74,7 +71,7 @@ compatibility and system requirements.
|
||||
CUB,2.6.0,2.5.0,2.3.2
|
||||
,,,
|
||||
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
|
||||
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
|
||||
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10, 6.4.x, 6.3.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
|
||||
,,,
|
||||
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
|
||||
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
|
||||
@@ -159,14 +156,22 @@ compatibility and system requirements.
|
||||
.. rubric:: Footnotes
|
||||
|
||||
.. [#rhel-700] RHEL 8.10 is only supported on AMD Instinct MI300X, MI300A, MI250X, MI250, MI210, and MI100 GPUs.
|
||||
.. [#ol-700-mi300x] **For ROCm 7.0** - Oracle Linux 9 is supported only on AMD Instinct MI300X, MI350X, and MI355X. Oracle Linux 8 is only supported on AMD Instinct MI300X.
|
||||
.. [#ol-mi300x] **Prior ROCm 7.0** - Oracle Linux is supported only on AMD Instinct MI300X.
|
||||
.. [#sles-db-700] SLES 15 SP7 and Debian 12 are only supported on AMD Instinct MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
|
||||
.. [#ol-700-mi300x] **For ROCm 7.0.0** - Oracle Linux 9 is supported only on AMD Instinct MI355X, MI350X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPUs.
|
||||
.. [#ol-mi300x] **Prior ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X GPUs.
|
||||
.. [#sles-db-700] **For ROCm 7.0.0** - SLES 15 SP7 and Debian 12 are only supported on AMD Instinct MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
|
||||
.. [#az-mi300x] Starting ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710.
|
||||
.. [#rl-700] Rocky Linux 9 is only supported on AMD Instinct MI300X and MI300A GPUs.
|
||||
.. [#single-node] **Prior to ROCm 7.0.0** - Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
|
||||
.. [#az-mi300x] Starting from ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710.
|
||||
.. [#mi350x-os] AMD Instinct MI355X (gfx950) and MI350X(gfx950) GPUs are only supported on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.4, and Oracle Linux 9.
|
||||
.. [#RDNA-OS-700] **For ROCm 7.0.0** AMD Radeon PRO AI PRO R9700 (gfx1201), AMD Radeon RX 9070 XT (gfx1201), AMD Radeon RX 9070 GRE (gfx1201), AMD Radeon RX 9070 (gfx1201), AMD Radeon RX 9060 XT (gfx1200), AMD Radeon RX 7800 XT (gfx1101), AMD Radeon RX 7700 XT (gfx1101), AMD Radeon PRO W7700 (gfx1101), AMD Radeon PRO W6800 (gfx1030) are only supported on Ubuntu 24.04.3, Ubuntu 22.04.5, and RHEL 9.6.
|
||||
.. [#RDNA-OS] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
|
||||
.. [#rd-v710] AMD Radeon PRO V710 (gfx1101) is only supported on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, and Azure Linux 3.0.
|
||||
.. [#rd-v620] AMD Radeon PRO V620 (gfx1030) is only supported on Ubuntu 24.04.3 and Ubuntu 22.04.5.
|
||||
.. [#mi325x-os] AMD Instinct MI325X GPU (gfx942) is only supported on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
|
||||
.. [#mi300x-os] AMD Instinct MI300X GPU (gfx942) is supported on all listed :ref:`supported_distributions`.
|
||||
.. [#mi300A-os] AMD Instinct MI300A GPU (gfx942) is supported only on Ubuntu 24.04, Ubuntu 22.04, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, Debian 12, and Rocky Linux 9.
|
||||
.. [#mi200x-os] AMD Instinct MI200 Series GPUs (gfx90a) are supported only on Ubuntu 24.04, Ubuntu 22.04, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, and Debian 12.
|
||||
.. [#mi100-os] AMD Instinct MI100 GPU (gfx908) is only supported on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.4, and RHEL 8.10.
|
||||
.. [#7700XT-OS] Radeon RX 7700 XT (gfx1101) is supported only on Ubuntu 24.04.2 and RHEL 9.6.
|
||||
.. [#kfd_support] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
|
||||
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
|
||||
@@ -242,7 +247,7 @@ Expand for full historical view of:
|
||||
|
||||
.. [#ol-700-mi300x-past-60] **For ROCm 7.0.0** - Oracle Linux 9 is supported only on AMD Instinct MI300X, MI350X, and MI355X. Oracle Linux 8 is only supported on AMD Instinct MI300X.
|
||||
.. [#mi300x-past-60] **Prior to ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X.
|
||||
.. [#single-node-past-60] **Prior to ROCm 7.0.0 ** - Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
|
||||
.. [#single-node-past-60] **Prior to ROCm 7.0.0** - Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
|
||||
.. [#az-mi300x-past-60] Starting from ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710.
|
||||
.. [#az-mi300x-630-past-60] **Prior ROCm 6.4.0**- Azure Linux 3.0 is supported only on AMD Instinct MI300X.
|
||||
.. [#RDNA-OS-past-60] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
|
||||
@@ -263,6 +268,6 @@ Expand for full historical view of:
|
||||
.. [#taichi_compat] Taichi is only supported on ROCm 6.3.2.
|
||||
.. [#ray_compat] Ray is only supported on ROCm 6.4.1.
|
||||
.. [#llama-cpp_compat] llama.cpp is only supported on ROCm 6.4.0.
|
||||
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
|
||||
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
|
||||
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
|
||||
|
||||
|
||||
@@ -135,6 +135,9 @@ article_pages = [
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.4", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.5", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.6", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.7", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/primus-pytorch", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-history", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-v25.4", "os": ["linux"]},
|
||||
|
||||
@@ -0,0 +1,32 @@
|
||||
dockers:
|
||||
- pull_tag: lmsysorg/sglang:v0.5.2rc1-rocm700-mi30x
|
||||
docker_hub_url: https://hub.docker.com/layers/lmsysorg/sglang/v0.5.2rc1-rocm700-mi30x/images/sha256-10c4ee502ddba44dd8c13325e6e03868bfe7f43d23d0a44780a8ee8b393f4729
|
||||
components:
|
||||
ROCm: 7.0.0
|
||||
SGLang: v0.5.2rc1
|
||||
pytorch-triton-rocm: 3.4.0+rocm7.0.0.gitf9e5bf54
|
||||
model_groups:
|
||||
- group: Dense models
|
||||
tag: dense-models
|
||||
models:
|
||||
- model: Llama 3.1 8B Instruct
|
||||
model_repo: Llama-3.1-8B-Instruct
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
|
||||
- model: Llama 3.1 405B FP8 KV
|
||||
model_repo: Llama-3.1-405B-Instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
|
||||
- model: Llama 3.3 70B FP8 KV
|
||||
model_repo: amd-Llama-3.3-70B-Instruct-FP8-KV
|
||||
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
|
||||
- model: Qwen3 32B
|
||||
model_repo: Qwen3-32B
|
||||
url: https://huggingface.co/Qwen/Qwen3-32B
|
||||
- group: Small experts models
|
||||
tag: small-experts-models
|
||||
models:
|
||||
- model: DeepSeek V3
|
||||
model_repo: DeepSeek-V3
|
||||
url: https://huggingface.co/deepseek-ai/DeepSeek-V3
|
||||
- model: Mixtral 8x7B v0.1
|
||||
model_repo: Mixtral-8x7B-v0.1
|
||||
url: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
|
||||
@@ -0,0 +1,162 @@
|
||||
dockers:
|
||||
- pull_tag: rocm/pytorch-training:v25.7
|
||||
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.7/images/sha256-cc6fd840ab89cb81d926fc29eca6d075aee9875a55a522675a4b9231c9a0a712
|
||||
components:
|
||||
ROCm: 6.4.2
|
||||
PyTorch: 2.8.0a0+gitd06a406
|
||||
Python: 3.10.18
|
||||
Transformer Engine: 2.2.0.dev0+94e53dd8
|
||||
Flash Attention: 3.0.0.post1
|
||||
hipBLASLt: 1.1.0-4b9a52edfc
|
||||
Triton: 3.3.0
|
||||
model_groups:
|
||||
- group: Meta Llama
|
||||
tag: llama
|
||||
models:
|
||||
- model: Llama 4 Scout 17B-16E
|
||||
mad_tag: pyt_train_llama-4-scout-17b-16e
|
||||
model_repo: Llama-4-17B_16E
|
||||
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- model: Llama 3.3 70B
|
||||
mad_tag: pyt_train_llama-3.3-70b
|
||||
model_repo: Llama-3.3-70B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
|
||||
- model: Llama 3.2 1B
|
||||
mad_tag: pyt_train_llama-3.2-1b
|
||||
model_repo: Llama-3.2-1B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.2-1B
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- model: Llama 3.2 3B
|
||||
mad_tag: pyt_train_llama-3.2-3b
|
||||
model_repo: Llama-3.2-3B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.2-3B
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- model: Llama 3.2 Vision 11B
|
||||
mad_tag: pyt_train_llama-3.2-vision-11b
|
||||
model_repo: Llama-3.2-Vision-11B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw]
|
||||
- model: Llama 3.2 Vision 90B
|
||||
mad_tag: pyt_train_llama-3.2-vision-90b
|
||||
model_repo: Llama-3.2-Vision-90B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw]
|
||||
- model: Llama 3.1 8B
|
||||
mad_tag: pyt_train_llama-3.1-8b
|
||||
model_repo: Llama-3.1-8B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-8B
|
||||
precision: BF16
|
||||
training_modes: [pretrain, finetune_fw, finetune_lora, HF_pretrain]
|
||||
- model: Llama 3.1 70B
|
||||
mad_tag: pyt_train_llama-3.1-70b
|
||||
model_repo: Llama-3.1-70B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
|
||||
precision: BF16
|
||||
training_modes: [pretrain, finetune_fw, finetune_lora]
|
||||
- model: Llama 3.1 405B
|
||||
mad_tag: pyt_train_llama-3.1-405b
|
||||
model_repo: Llama-3.1-405B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-405B
|
||||
precision: BF16
|
||||
training_modes: [finetune_qlora]
|
||||
- model: Llama 3 8B
|
||||
mad_tag: pyt_train_llama-3-8b
|
||||
model_repo: Llama-3-8B
|
||||
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- model: Llama 3 70B
|
||||
mad_tag: pyt_train_llama-3-70b
|
||||
model_repo: Llama-3-70B
|
||||
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- model: Llama 2 7B
|
||||
mad_tag: pyt_train_llama-2-7b
|
||||
model_repo: Llama-2-7B
|
||||
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
|
||||
- model: Llama 2 13B
|
||||
mad_tag: pyt_train_llama-2-13b
|
||||
model_repo: Llama-2-13B
|
||||
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- model: Llama 2 70B
|
||||
mad_tag: pyt_train_llama-2-70b
|
||||
model_repo: Llama-2-70B
|
||||
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
|
||||
precision: BF16
|
||||
training_modes: [finetune_lora, finetune_qlora]
|
||||
- group: OpenAI
|
||||
tag: openai
|
||||
models:
|
||||
- model: GPT OSS 20B
|
||||
mad_tag: pyt_train_gpt_oss_20b
|
||||
model_repo: GPT-OSS-20B
|
||||
url: https://huggingface.co/openai/gpt-oss-20b
|
||||
precision: BF16
|
||||
training_modes: [HF_finetune_lora]
|
||||
- model: GPT OSS 120B
|
||||
mad_tag: pyt_train_gpt_oss_120b
|
||||
model_repo: GPT-OSS-120B
|
||||
url: https://huggingface.co/openai/gpt-oss-120b
|
||||
precision: BF16
|
||||
training_modes: [HF_finetune_lora]
|
||||
- group: Qwen
|
||||
tag: qwen
|
||||
models:
|
||||
- model: Qwen 3 8B
|
||||
mad_tag: pyt_train_qwen3-8b
|
||||
model_repo: Qwen3-8B
|
||||
url: https://huggingface.co/Qwen/Qwen3-8B
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- model: Qwen 3 32B
|
||||
mad_tag: pyt_train_qwen3-32b
|
||||
model_repo: Qwen3-32
|
||||
url: https://huggingface.co/Qwen/Qwen3-32B
|
||||
precision: BF16
|
||||
training_modes: [finetune_lora]
|
||||
- model: Qwen 2.5 32B
|
||||
mad_tag: pyt_train_qwen2.5-32b
|
||||
model_repo: Qwen2.5-32B
|
||||
url: https://huggingface.co/Qwen/Qwen2.5-32B
|
||||
precision: BF16
|
||||
training_modes: [finetune_lora]
|
||||
- model: Qwen 2.5 72B
|
||||
mad_tag: pyt_train_qwen2.5-72b
|
||||
model_repo: Qwen2.5-72B
|
||||
url: https://huggingface.co/Qwen/Qwen2.5-72B
|
||||
precision: BF16
|
||||
training_modes: [finetune_lora]
|
||||
- model: Qwen 2 1.5B
|
||||
mad_tag: pyt_train_qwen2-1.5b
|
||||
model_repo: Qwen2-1.5B
|
||||
url: https://huggingface.co/Qwen/Qwen2-1.5B
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- model: Qwen 2 7B
|
||||
mad_tag: pyt_train_qwen2-7b
|
||||
model_repo: Qwen2-7B
|
||||
url: https://huggingface.co/Qwen/Qwen2-7B
|
||||
precision: BF16
|
||||
training_modes: [finetune_fw, finetune_lora]
|
||||
- group: Flux
|
||||
tag: flux
|
||||
models:
|
||||
- model: FLUX.1-dev
|
||||
mad_tag: pyt_train_flux
|
||||
model_repo: Flux
|
||||
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
|
||||
precision: BF16
|
||||
training_modes: [pretrain]
|
||||
@@ -0,0 +1,24 @@
|
||||
dockers:
|
||||
- pull_tag: rocm/pytorch-training:v25.8
|
||||
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.8/images/sha256-5082ae01d73fec6972b0d84e5dad78c0926820dcf3c19f301d6c8eb892e573c5
|
||||
components:
|
||||
ROCm: 6.4.3
|
||||
PyTorch: 2.8.0a0+gitd06a406
|
||||
Python: 3.10.18
|
||||
Transformer Engine: 2.2.0.dev0+a1e66aae
|
||||
Flash Attention: 3.0.0.post1
|
||||
hipBLASLt: 1.1.0-d1b517fc7a
|
||||
model_groups:
|
||||
- group: Meta Llama
|
||||
tag: llama
|
||||
models:
|
||||
- model: Llama 3.1 8B
|
||||
mad_tag: primus_pyt_train_llama-3.1-8b
|
||||
model_repo: Llama-3.1-8B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-8B
|
||||
precision: BF16
|
||||
- model: Llama 3.1 70B
|
||||
mad_tag: primus_pyt_train_llama-3.1-70b
|
||||
model_repo: Llama-3.1-70B
|
||||
url: https://huggingface.co/meta-llama/Llama-3.1-70B
|
||||
precision: BF16
|
||||
@@ -1,14 +1,13 @@
|
||||
dockers:
|
||||
- pull_tag: rocm/pytorch-training:v25.7
|
||||
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.7/images/sha256-cc6fd840ab89cb81d926fc29eca6d075aee9875a55a522675a4b9231c9a0a712
|
||||
- pull_tag: rocm/pytorch-training:v25.8
|
||||
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.8/images/sha256-5082ae01d73fec6972b0d84e5dad78c0926820dcf3c19f301d6c8eb892e573c5
|
||||
components:
|
||||
ROCm: 6.4.2
|
||||
ROCm: 6.4.3
|
||||
PyTorch: 2.8.0a0+gitd06a406
|
||||
Python: 3.10.18
|
||||
Transformer Engine: 2.2.0.dev0+94e53dd8
|
||||
Transformer Engine: 2.2.0.dev0+a1e66aae
|
||||
Flash Attention: 3.0.0.post1
|
||||
hipBLASLt: 1.1.0-4b9a52edfc
|
||||
Triton: 3.3.0
|
||||
hipBLASLt: 1.1.0-d1b517fc7a
|
||||
model_groups:
|
||||
- group: Meta Llama
|
||||
tag: llama
|
||||
@@ -160,3 +159,11 @@ model_groups:
|
||||
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
|
||||
precision: BF16
|
||||
training_modes: [pretrain]
|
||||
- group: NCF
|
||||
tag: ncf
|
||||
models:
|
||||
- model: NCF
|
||||
mad_tag: pyt_ncf_training
|
||||
model_repo:
|
||||
url: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
|
||||
precision: FP32
|
||||
|
||||
@@ -0,0 +1,257 @@
|
||||
.. meta::
|
||||
:description: SGLang multi-node disaggregated distributed inference using Mooncake
|
||||
:keywords: model, sglang, mooncake, disagg, disaggregated, distributed, multi-node, docker
|
||||
|
||||
******************************************
|
||||
SGLang distributed inference with Mooncake
|
||||
******************************************
|
||||
|
||||
As LLM inference increasingly demands handling massive models and dynamic workloads, efficient
|
||||
distributed inference becomes essential. Traditional co-located architectures face bottlenecks due
|
||||
to tightly coupled memory and compute resources, which limits scalability and flexibility.
|
||||
Disaggregated inference refers to the process of splitting the inference of LLMs into distinct
|
||||
phases. This architecture, facilitated by libraries like Mooncake, uses high-bandwidth
|
||||
RDMA to transfer the Key-Value (KV) cache between prefill and decode nodes.
|
||||
This allows for independent resource scaling and optimization, resulting in
|
||||
improved efficiency and throughput.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/sglang-distributed-benchmark-models.yaml
|
||||
|
||||
{% set docker = data.dockers[0] %}
|
||||
|
||||
`SGLang <https://docs.sglang.ai>`__ is a high-performance inference and
|
||||
serving engine for large language models (LLMs) and vision models. The
|
||||
ROCm-enabled `SGLang base Docker image <{{ docker.docker_hub_url }}>`__
|
||||
bundles SGLang with PyTorch, which is optimized for AMD Instinct MI300X series
|
||||
accelerators. It includes the following software components:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Software component
|
||||
- Version
|
||||
|
||||
{% for component_name, component_version in docker.components.items() %}
|
||||
* - {{ component_name }}
|
||||
- {{ component_version }}
|
||||
{% endfor %}
|
||||
|
||||
The following guides on setting up and running SGLang and Mooncake for disaggregated
|
||||
distributed inference on a Slurm cluster using AMD Instinct MI300X series accelerators backed by
|
||||
Mellanox CX-7 NICs.
|
||||
|
||||
Prerequisites
|
||||
=============
|
||||
|
||||
Before starting, ensure you have:
|
||||
|
||||
* A Slurm cluster with at least three nodes: one for the proxy, one for prefill (``xP``), and one for decode (``yD``).
|
||||
|
||||
``Nodes -> xP + yD + 1``
|
||||
|
||||
* A Dockerized environment with SGLang, Mooncake, etcd, and NIC drivers built in. See :ref:`sglang-disagg-inf-build-docker-image` for instructions.
|
||||
|
||||
* A shared filesystem for storing models, scripts, and logs (cluster-specific).
|
||||
|
||||
Supported models
|
||||
================
|
||||
|
||||
The following models are supported for SGLang disaggregated prefill/decode
|
||||
inference. Some instructions, commands, and recommendations in this
|
||||
documentation might vary by selected model.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/sglang-distributed-benchmark-models.yaml
|
||||
|
||||
{% set model_groups = data.model_groups %}
|
||||
.. raw:: html
|
||||
|
||||
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
|
||||
<div class="row gx-0">
|
||||
<div class="col-2 me-1 px-2 model-param-head">Model type</div>
|
||||
<div class="row col-10 pe-0">
|
||||
{% for model_group in model_groups %}
|
||||
<div class="col-6 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="row gx-0 pt-1">
|
||||
<div class="col-2 me-1 px-2 model-param-head">Model</div>
|
||||
<div class="row col-10 pe-0">
|
||||
{% for model_group in model_groups %}
|
||||
{% set models = model_group.models %}
|
||||
{% for model in models %}
|
||||
{% if models|length % 3 == 0 %}
|
||||
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.model_repo | lower }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% else %}
|
||||
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.model_repo | lower }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
.. container:: model-doc {{ model.model_repo }}
|
||||
|
||||
.. note::
|
||||
|
||||
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`__ to learn more about this model.
|
||||
Some models require access authorization prior to use through an external license agreement with a third party.
|
||||
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
.. _sglang-disagg-inf-build-docker-image:
|
||||
|
||||
Build the Docker image
|
||||
----------------------
|
||||
|
||||
Get the Dockerfile located in
|
||||
`<https://github.com/ROCm/MAD/blob/develop/docker/sglang_dissag_inference.ubuntu.amd.Dockerfile>`__.
|
||||
It uses `lmsysorg/sglang:v0.5.2rc1-rocm700-mi30x
|
||||
<https://hub.docker.com/layers/lmsysorg/sglang/v0.4.9.post1-rocm630/images/sha256-2f6b1748e4bcc70717875a7da76c87795fd8aa46a9646e08d38aa7232fc78538>`__
|
||||
as the base Docker image and installs the necessary components for Mooncake, etcd, and Mellanox network
|
||||
drivers.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD.git
|
||||
cd MAD/docker
|
||||
docker build \
|
||||
-t sglang_dissag_pd_image \
|
||||
-f sglang_dissag_inference.ubuntu.amd.Dockerfile .
|
||||
|
||||
Benchmarking
|
||||
============
|
||||
|
||||
The `<https://github.com/ROCm/MAD/tree/develop/scripts/sglang_dissag>`__
|
||||
repository contains scripts to launch SGLang inference with prefill/decode
|
||||
disaggregation via Mooncake for supported models.
|
||||
|
||||
* `scripts/sglang_dissag/run_xPyD_models.slurm <https://github.com/ROCm/MAD/blob/develop/scripts/sglang_dissag/run_xPyD_models.slurm>`__
|
||||
-- the main Slurm batch script to launch Docker containers on all nodes using ``sbatch`` or ``salloc``.
|
||||
|
||||
* `scripts/sglang_dissag/sglang_disagg_server.sh <https://github.com/ROCm/MAD/blob/develop/scripts/sglang_dissag/sglang_disagg_server.sh>`__
|
||||
-- the entrypoint script that runs inside each container to start the correct service -- proxy, prefill, or decode.
|
||||
|
||||
* `scripts/sglang_dissag/benchmark_xPyD.sh <https://github.com/ROCm/MAD/blob/develop/scripts/sglang_dissag/benchmark_xPyD.sh>`__
|
||||
-- the benchmark script to run the GSM8K accuracy benchmark and the SGLang benchmarking tool for performance measurement.
|
||||
|
||||
* `scripts/sglang_dissag/benchmark_parser.py <https://github.com/ROCm/MAD/blob/develop/scripts/sglang_dissag/benchmark_parser.py>`__
|
||||
-- the log parser script to be run on the concurrency benchmark log file to generate tabulated data.
|
||||
|
||||
Launch the service
|
||||
------------------
|
||||
|
||||
The service is deployed using a Slurm batch script that orchestrates the containers across the
|
||||
allocated nodes.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/sglang-distributed-benchmark-models.yaml
|
||||
|
||||
{% set model_groups = data.model_groups %}
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
.. container:: model-doc {{ model.model_repo }}
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
# Clone the MAD repo if you haven't already and
|
||||
# navigate to the scripts directory
|
||||
git clone https://github.com/ROCm/MAD.git
|
||||
cd MAD/scripts/sglang_dissag/
|
||||
|
||||
# Slurm sbatch run command
|
||||
export DOCKER_IMAGE_NAME=sglang_dissag_pd_image
|
||||
export xP=<num_prefill_nodes>
|
||||
export yD=<num_decode_nodes>
|
||||
export MODEL_NAME={{ model.model_repo }}
|
||||
# num_nodes = xP + yD + 1
|
||||
sbatch -N <num_nodes> -n <num_nodes> --nodelist=<Nodes> run_xPyD_models.slurm
|
||||
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
Post-run logs and testing
|
||||
-------------------------
|
||||
|
||||
Logs are stored in your shared filesystem in the directory specified by the ``LOG_PATH`` variable in the Slurm script.
|
||||
A new directory named after the Slurm job ID is created for each run.
|
||||
|
||||
Inside that directory, you can access various logs:
|
||||
|
||||
* ``pd_sglang_bench_serving.sh_NODE<...>.log`` -- the main log for each server node.
|
||||
|
||||
* ``etcd_NODE<...>.log`` -- logs for etcd services.
|
||||
|
||||
* ``prefill_NODE<...>.log`` -- logs for the prefill services.
|
||||
|
||||
* ``decode_NODE<...>.log`` -- logs for the decode services.
|
||||
|
||||
Use the benchmark parser script for concurrency logs to tabulate different data.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
python3 benchmark_parser.py <log_path/benchmark_XXX_CONCURRENCY.log>
|
||||
|
||||
To verify the service is responsive, you can try sending a ``curl`` request to test the launched
|
||||
server from the Docker container on the proxy node. For example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
curl -X POST http://127.0.0.1:30000/generate \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{ "text": "Let me tell you a story ", "sampling_params": { "temperature": 0.3 } }'
|
||||
|
||||
Known issues
|
||||
============
|
||||
|
||||
When running larger models, such as DeepSeek-V3 and Llama-3.1-405B-Instruct-FP8-KV, at
|
||||
higher concurrency levels (512+), the following error might occur:
|
||||
|
||||
.. code-block:: shell-session
|
||||
|
||||
<TransferEncodingError: 400, message:
|
||||
Not enough data to satisfy transfer length header.
|
||||
|
||||
The above exception was the direct cause of the following exception:
|
||||
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
|
||||
This leads to dropping requests and lower throughput.
|
||||
|
||||
Further reading
|
||||
===============
|
||||
|
||||
- To learn about Mooncake, see `Welcome to Mooncake <https://kvcache-ai.github.io/Mooncake/>`__.
|
||||
|
||||
- To learn more about the options for latency and throughput benchmark scripts,
|
||||
see `<https://github.com/sgl-project/sglang/tree/main/benchmark/blog_v0_2>`__.
|
||||
|
||||
- See the base upstream Docker image on `Docker Hub <https://hub.docker.com/layers/lmsysorg/sglang/v0.5.2rc1-rocm700-mi30x/images/sha256-10c4ee502ddba44dd8c13325e6e03868bfe7f43d23d0a44780a8ee8b393f4729>`__.
|
||||
|
||||
- To learn more about system settings and management practices to configure your system for
|
||||
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__.
|
||||
|
||||
- For application performance optimization strategies for HPC and AI workloads,
|
||||
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
|
||||
|
||||
- To learn how to run community models from Hugging Face on AMD GPUs, see
|
||||
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
|
||||
|
||||
- To learn how to fine-tune LLMs and optimize inference, see
|
||||
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
|
||||
|
||||
- For a list of other ready-made Docker images for AI with ROCm, see
|
||||
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
|
||||
|
||||
Previous versions
|
||||
=================
|
||||
|
||||
See :doc:`previous-versions/sglang-history` to find documentation for previous releases
|
||||
of SGLang inference performance testing.
|
||||
@@ -3,7 +3,7 @@
|
||||
:keywords: ROCm, AI, LLM, train, jax, torch, Llama, flux, tutorial, docker
|
||||
|
||||
******************************************
|
||||
Training a model with JAX MaxText for ROCm
|
||||
Training a model with JAX MaxText on ROCm
|
||||
******************************************
|
||||
|
||||
MaxText is a high-performance, open-source framework built on the Google JAX
|
||||
|
||||
@@ -5,15 +5,13 @@
|
||||
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
|
||||
|
||||
******************************************
|
||||
Training a model with Megatron-LM for ROCm
|
||||
Training a model with Megatron-LM on ROCm
|
||||
******************************************
|
||||
|
||||
.. caution::
|
||||
|
||||
The ROCm Megatron-LM framework now has limited support with this Docker
|
||||
environment; it now focuses on Primus with Megatron-Core. See :doc:`primus-megatron`.
|
||||
|
||||
To learn how to migrate your existing workloads to Primus with Megatron-Core,
|
||||
Primus with Megatron supersedes this ROCm Megatron-LM training workflow.
|
||||
To learn how to migrate workloads from Megatron-LM to Primus with Megatron,
|
||||
see :doc:`previous-versions/megatron-lm-primus-migration-guide`.
|
||||
|
||||
The `Megatron-LM framework for ROCm <https://github.com/ROCm/Megatron-LM>`_ is
|
||||
@@ -807,9 +805,16 @@ Single node training
|
||||
AC=none \
|
||||
SEQ_LEN=4096 \
|
||||
PAD_LEN=4096 \
|
||||
TRAIN_ITERS=50 \
|
||||
TRAIN_ITERS=20 \
|
||||
bash examples/deepseek_v2/train_deepseekv2.sh
|
||||
|
||||
.. note::
|
||||
|
||||
Note that DeepSeek-V2-Lite is experiencing instability due to GPU memory access fault
|
||||
for large iterations.
|
||||
For stability, it's recommended to use Primus for this workload.
|
||||
See :doc:`primus-megatron`.
|
||||
|
||||
.. container:: model-doc pyt_megatron_lm_train_mixtral-8x7b
|
||||
|
||||
To run training on a single node for Mixtral 8x7B (MoE with expert parallel),
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
|
||||
|
||||
******************************************
|
||||
Training MPT-30B with LLM Foundry and ROCm
|
||||
Training MPT-30B with LLM Foundry on ROCm
|
||||
******************************************
|
||||
|
||||
MPT-30B is a 30-billion parameter decoder-style transformer-based model from
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
PyTorch training performance testing version history
|
||||
****************************************************
|
||||
|
||||
This table lists previous versions of the ROCm Megatron-LM training Docker image for
|
||||
This table lists previous versions of the ROCm PyTorch training Docker image for
|
||||
inference performance testing. For detailed information about available models
|
||||
for benchmarking, see the version-specific documentation. You can find tagged
|
||||
previous releases of the ``ROCm/pytorch-training`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/pytorch-training/tags>`_.
|
||||
@@ -16,12 +16,21 @@ previous releases of the ``ROCm/pytorch-training`` Docker image on `Docker Hub <
|
||||
- Components
|
||||
- Resources
|
||||
|
||||
* - v25.8 (latest)
|
||||
-
|
||||
* ROCm 6.4.3
|
||||
* PyTorch 2.8.0a0+gitd06a406
|
||||
-
|
||||
* :doc:`Primus PyTorch Training documentation <../primus-pytorch>`
|
||||
* :doc:`PyTorch training (legacy) documentation <../pytorch-training>`
|
||||
* `Docker Hub <https://hub.docker.com/r/rocm/pytorch-training/tags>`__
|
||||
|
||||
* - v25.7
|
||||
-
|
||||
* ROCm 6.4.2
|
||||
* PyTorch 2.8.0a0+gitd06a406
|
||||
-
|
||||
* :doc:`Documentation <../pytorch-training>`
|
||||
* :doc:`Documentation <pytorch-training-v25.7>`
|
||||
* `Docker Hub <https://hub.docker.com/layers/rocm/pytorch-training/v25.7/images/sha256-cc6fd840ab89cb81d926fc29eca6d075aee9875a55a522675a4b9231c9a0a712>`__
|
||||
|
||||
* - v25.6
|
||||
|
||||
@@ -0,0 +1,567 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: How to train a model using PyTorch for ROCm.
|
||||
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
|
||||
|
||||
**************************************
|
||||
Training a model with PyTorch for ROCm
|
||||
**************************************
|
||||
|
||||
.. caution::
|
||||
|
||||
This documentation does not reflect the latest version of ROCm vLLM
|
||||
performance benchmark documentation. See :doc:`../pytorch-training` for the latest version.
|
||||
|
||||
PyTorch is an open-source machine learning framework that is widely used for
|
||||
model training with GPU-optimized components for transformer-based models.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/pytorch-training-v25.7-benchmark-models.yaml
|
||||
|
||||
{% set dockers = data.dockers %}
|
||||
{% set docker = dockers[0] %}
|
||||
The `PyTorch for ROCm training Docker <{{ docker.docker_hub_url }}>`__
|
||||
(``{{ docker.pull_tag }}``) image provides a prebuilt optimized environment for fine-tuning and pretraining a
|
||||
model on AMD Instinct MI325X and MI300X accelerators. It includes the following software components to accelerate
|
||||
training workloads:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Software component
|
||||
- Version
|
||||
|
||||
{% for component_name, component_version in docker.components.items() %}
|
||||
* - {{ component_name }}
|
||||
- {{ component_version }}
|
||||
{% endfor %}
|
||||
|
||||
.. _amd-pytorch-training-model-support-v257:
|
||||
|
||||
Supported models
|
||||
================
|
||||
|
||||
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
|
||||
Some instructions, commands, and training recommendations in this documentation might
|
||||
vary by model -- select one to get started.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/pytorch-training-v25.7-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
.. raw:: html
|
||||
|
||||
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
|
||||
<div class="row gx-0">
|
||||
<div class="col-2 me-1 px-2 model-param-head">Model</div>
|
||||
<div class="row col-10 pe-0">
|
||||
{% for model_group in model_groups %}
|
||||
<div class="col-3 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="row gx-0 pt-1">
|
||||
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
|
||||
<div class="row col-10 pe-0">
|
||||
{% for model_group in model_groups %}
|
||||
{% set models = model_group.models %}
|
||||
{% for model in models %}
|
||||
{% if models|length % 3 == 0 %}
|
||||
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% else %}
|
||||
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
.. _amd-pytorch-training-supported-training-modes-v257:
|
||||
|
||||
The following table lists supported training modes per model.
|
||||
|
||||
.. dropdown:: Supported training modes
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Model
|
||||
- Supported training modes
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% set models = model_group.models %}
|
||||
{% for model in models %}
|
||||
* - {{ model.model }}
|
||||
- ``{{ model.training_modes | join('``, ``') }}``
|
||||
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
.. note::
|
||||
|
||||
Some model and fine-tuning combinations are not listed. This is
|
||||
because the `upstream torchtune repository <https://github.com/pytorch/torchtune>`__
|
||||
doesn't provide default YAML configurations for them.
|
||||
For advanced usage, you can create a custom configuration to enable
|
||||
unlisted fine-tuning methods by using an existing file in the
|
||||
``/workspace/torchtune/recipes/configs`` directory as a template.
|
||||
|
||||
.. _amd-pytorch-training-performance-measurements-v257:
|
||||
|
||||
Performance measurements
|
||||
========================
|
||||
|
||||
To evaluate performance, the
|
||||
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
|
||||
page provides reference throughput and latency measurements for training
|
||||
popular AI models.
|
||||
|
||||
.. note::
|
||||
|
||||
The performance data presented in
|
||||
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8deaeb413-item-21cea50186-tab>`_
|
||||
should not be interpreted as the peak performance achievable by AMD
|
||||
Instinct MI325X and MI300X accelerators or ROCm software.
|
||||
|
||||
System validation
|
||||
=================
|
||||
|
||||
Before running AI workloads, it's important to validate that your AMD hardware is configured
|
||||
correctly and performing optimally.
|
||||
|
||||
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
|
||||
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
|
||||
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
|
||||
before starting training.
|
||||
|
||||
To test for optimal performance, consult the recommended :ref:`System health benchmarks
|
||||
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
|
||||
system's configuration.
|
||||
|
||||
This Docker image is optimized for specific model configurations outlined
|
||||
below. Performance can vary for other training workloads, as AMD
|
||||
doesn’t test configurations and run conditions outside those described.
|
||||
|
||||
Run training
|
||||
============
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/previous-versions/pytorch-training-v25.7-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
|
||||
Once the setup is complete, choose between two options to start benchmarking training:
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: MAD-integrated benchmarking
|
||||
|
||||
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
|
||||
directory and install the required packages on the host machine.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD
|
||||
pip install -r requirements.txt
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
.. container:: model-doc {{ model.mad_tag }}
|
||||
|
||||
2. For example, use this command to run the performance benchmark test on the {{ model.model }} model
|
||||
using one node with the {{ model.precision }} data type on the host machine.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
|
||||
madengine run \
|
||||
--tags {{ model.mad_tag }} \
|
||||
--keep-model-dir \
|
||||
--live-output \
|
||||
--timeout 28800
|
||||
|
||||
MAD launches a Docker container with the name
|
||||
``container_ci-{{ model.mad_tag }}``. The latency and throughput reports of the
|
||||
model are collected in ``~/MAD/perf.csv``.
|
||||
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
.. tab-item:: Standalone benchmarking
|
||||
|
||||
.. rubric:: Download the Docker image and required packages
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ unified_docker.pull_tag }}
|
||||
|
||||
2. Run the Docker container.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it \
|
||||
--device /dev/dri \
|
||||
--device /dev/kfd \
|
||||
--network host \
|
||||
--ipc host \
|
||||
--group-add video \
|
||||
--cap-add SYS_PTRACE \
|
||||
--security-opt seccomp=unconfined \
|
||||
--privileged \
|
||||
-v $HOME:$HOME \
|
||||
-v $HOME/.ssh:/root/.ssh \
|
||||
--shm-size 64G \
|
||||
--name training_env \
|
||||
{{ unified_docker.pull_tag }}
|
||||
|
||||
Use these commands if you exit the ``training_env`` container and need to return to it.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker start training_env
|
||||
docker exec -it training_env bash
|
||||
|
||||
3. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
|
||||
repository and navigate to the benchmark scripts directory
|
||||
``/workspace/MAD/scripts/pytorch_train``.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD/scripts/pytorch_train
|
||||
|
||||
.. rubric:: Prepare training datasets and dependencies
|
||||
|
||||
1. The following benchmarking examples require downloading models and datasets
|
||||
from Hugging Face. To ensure successful access to gated repos, set your
|
||||
``HF_TOKEN``.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export HF_TOKEN=$your_personal_hugging_face_access_token
|
||||
|
||||
2. Run the setup script to install libraries and datasets needed for benchmarking.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_setup.sh
|
||||
|
||||
.. container:: model-doc pyt_train_llama-3.1-8b
|
||||
|
||||
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 8B:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Library
|
||||
- Reference
|
||||
|
||||
* - ``accelerate``
|
||||
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
|
||||
|
||||
* - ``datasets``
|
||||
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
|
||||
|
||||
.. container:: model-doc pyt_train_llama-3.1-70b
|
||||
|
||||
``pytorch_benchmark_setup.sh`` installs the following libraries for Llama 3.1 70B:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Library
|
||||
- Reference
|
||||
|
||||
* - ``datasets``
|
||||
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
|
||||
|
||||
* - ``torchdata``
|
||||
- `TorchData <https://pytorch.org/data/beta/index.html>`_
|
||||
|
||||
* - ``tomli``
|
||||
- `Tomli <https://pypi.org/project/tomli/>`_
|
||||
|
||||
* - ``tiktoken``
|
||||
- `tiktoken <https://github.com/openai/tiktoken>`_
|
||||
|
||||
* - ``blobfile``
|
||||
- `blobfile <https://pypi.org/project/blobfile/>`_
|
||||
|
||||
* - ``tabulate``
|
||||
- `tabulate <https://pypi.org/project/tabulate/>`_
|
||||
|
||||
* - ``wandb``
|
||||
- `Weights & Biases <https://github.com/wandb/wandb>`_
|
||||
|
||||
* - ``sentencepiece``
|
||||
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
|
||||
|
||||
* - ``tensorboard``
|
||||
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
|
||||
|
||||
.. container:: model-doc pyt_train_flux
|
||||
|
||||
``pytorch_benchmark_setup.sh`` installs the following libraries for FLUX:
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Library
|
||||
- Reference
|
||||
|
||||
* - ``accelerate``
|
||||
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
|
||||
|
||||
* - ``datasets``
|
||||
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
|
||||
|
||||
* - ``sentencepiece``
|
||||
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
|
||||
|
||||
* - ``tensorboard``
|
||||
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
|
||||
|
||||
* - ``csvkit``
|
||||
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
|
||||
|
||||
* - ``deepspeed``
|
||||
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
|
||||
|
||||
* - ``diffusers``
|
||||
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
|
||||
|
||||
* - ``GitPython``
|
||||
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
|
||||
|
||||
* - ``opencv-python-headless``
|
||||
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
|
||||
|
||||
* - ``peft``
|
||||
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
|
||||
|
||||
* - ``protobuf``
|
||||
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
|
||||
|
||||
* - ``pytest``
|
||||
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
|
||||
|
||||
* - ``python-dotenv``
|
||||
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
|
||||
|
||||
* - ``seaborn``
|
||||
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
|
||||
|
||||
* - ``transformers``
|
||||
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
|
||||
|
||||
``pytorch_benchmark_setup.sh`` downloads the following datasets from Hugging Face:
|
||||
|
||||
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
{% set training_modes = model.training_modes %}
|
||||
{% set training_mode_descs = {
|
||||
"pretrain": "Benchmark pre-training.",
|
||||
"HF_pretrain": "Llama 3.1 8B pre-training with FP8 precision."
|
||||
} %}
|
||||
{% set available_modes = training_modes | select("in", ["pretrain", "HF_pretrain"]) | list %}
|
||||
{% if available_modes %}
|
||||
|
||||
.. container:: model-doc {{ model.mad_tag }}
|
||||
|
||||
.. rubric:: Pre-training
|
||||
|
||||
To start the pre-training benchmark, use the following command with the
|
||||
appropriate options. See the following list of options and their descriptions.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t {% if available_modes | length == 1 %}{{ available_modes[0] }}{% else %}$training_mode{% endif %} \
|
||||
-m {{ model.model_repo }} \
|
||||
-p $datatype \
|
||||
-s $sequence_length
|
||||
|
||||
{% if model.mad_tag == "pyt_train_flux" %}
|
||||
.. container:: model-doc {{ model.mad_tag }}
|
||||
|
||||
.. note::
|
||||
|
||||
Currently, FLUX models are not supported out-of-the-box on {{ unified_docker.pull_tag }}.
|
||||
To use FLUX, refer to the previous version of the ``pytorch-training`` Docker: :doc:`pytorch-training-v25.6`
|
||||
|
||||
Occasionally, downloading the Flux dataset might fail. In the event of this
|
||||
error, manually download it from Hugging Face at
|
||||
`black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
|
||||
and save it to `/workspace/FluxBenchmark`. This ensures that the test script can access
|
||||
the required dataset.
|
||||
{% endif %}
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Name
|
||||
- Options
|
||||
- Description
|
||||
|
||||
{% for mode in available_modes %}
|
||||
* - {% if loop.first %}``$training_mode``{% endif %}
|
||||
- ``{{ mode }}``
|
||||
- {{ training_mode_descs[mode] }}
|
||||
{% endfor %}
|
||||
|
||||
* - ``$datatype``
|
||||
- ``BF16``{% if model.mad_tag == "pyt_train_llama-3.1-8b" %} or ``FP8``{% endif %}
|
||||
- Only Llama 3.1 8B supports FP8 precision.
|
||||
|
||||
* - ``$sequence_length``
|
||||
- Sequence length for the language model.
|
||||
- Between 2048 and 8192. 8192 by default.
|
||||
{% endif %}
|
||||
|
||||
{% set training_mode_descs = {
|
||||
"finetune_fw": "Full weight fine-tuning (BF16 and FP8 supported).",
|
||||
"finetune_lora": "LoRA fine-tuning (BF16 supported).",
|
||||
"finetune_qlora": "QLoRA fine-tuning (BF16 supported).",
|
||||
"HF_finetune_lora": "LoRA fine-tuning with Hugging Face PEFT.",
|
||||
} %}
|
||||
{% set available_modes = training_modes | select("in", ["finetune_fw", "finetune_lora", "finetune_qlora", "HF_finetune_lora"]) | list %}
|
||||
{% if available_modes %}
|
||||
.. container:: model-doc {{ model.mad_tag }}
|
||||
|
||||
.. rubric:: Fine-tuning
|
||||
|
||||
To start the fine-tuning benchmark, use the following command with the
|
||||
appropriate options. See the following list of options and their descriptions.
|
||||
See :ref:`supported training modes <amd-pytorch-training-supported-training-modes-v257>`.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t $training_mode \
|
||||
-m {{ model.model_repo }} \
|
||||
-p $datatype \
|
||||
-s $sequence_length
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Name
|
||||
- Options
|
||||
- Description
|
||||
|
||||
{% for mode in available_modes %}
|
||||
* - {% if loop.first %}``$training_mode``{% endif %}
|
||||
- ``{{ mode }}``
|
||||
- {{ training_mode_descs[mode] }}
|
||||
{% endfor %}
|
||||
|
||||
* - ``$datatype``
|
||||
- ``BF16``{% if "finetune_fw" in available_modes %} or ``FP8``{% endif %}
|
||||
- All models support BF16.{% if "finetune_fw" in available_modes %} FP8 is only available for full weight fine-tuning.{% endif %}
|
||||
|
||||
* - ``$sequence_length``
|
||||
- Between 2048 and 16384.
|
||||
- Sequence length for the language model.
|
||||
|
||||
{% if model.mad_tag in ["pyt_train_llama3.2-vision-11b", "pyt_train_llama-3.2-vision-90b"] %}
|
||||
.. note::
|
||||
|
||||
For LoRA and QLoRA support with vision models (Llama 3.2 11B and 90B),
|
||||
use the following torchtune commit for compatibility:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git checkout 48192e23188b1fc524dd6d127725ceb2348e7f0e
|
||||
|
||||
{% elif model.mad_tag in ["pyt_train_llama-2-7b", "pyt_train_llama-2-13b", "pyt_train_llama-2-70b"] %}
|
||||
.. note::
|
||||
|
||||
You might encounter the following error with Llama 2: ``ValueError: seq_len (16384) of
|
||||
input tensor should be smaller than max_seq_len (4096)``.
|
||||
This error indicates that an input sequence is longer than the model's maximum context window.
|
||||
|
||||
Ensure your tokenized input does not exceed the model's ``max_seq_len`` (4096
|
||||
tokens in this case). You can resolve this by truncating the input or splitting
|
||||
it into smaller chunks before passing it to the model.
|
||||
|
||||
Note on reproducibility: The results in this guide are based on
|
||||
commit ``b4c98ac`` from the upstream
|
||||
`<https://github.com/pytorch/torchtune>`__ repository. For the
|
||||
latest updates, you can use the main branch.
|
||||
|
||||
{% endif %}
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
.. rubric:: Benchmarking examples
|
||||
|
||||
For examples of benchmarking commands, see `<https://github.com/ROCm/MAD/tree/develop/benchmark/pytorch_train#benchmarking-examples>`__.
|
||||
|
||||
Multi-node training
|
||||
-------------------
|
||||
|
||||
Pre-training
|
||||
~~~~~~~~~~~~
|
||||
|
||||
Multi-node training with torchtitan is supported. The provided SLURM script is pre-configured for Llama 3 70B.
|
||||
|
||||
To launch the training job on a SLURM cluster for Llama 3 70B, run the following commands from the MAD repository.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
# In the MAD repository
|
||||
cd scripts/pytorch_train
|
||||
sbatch run_slurm_train.sh
|
||||
|
||||
Fine-tuning
|
||||
~~~~~~~~~~~
|
||||
|
||||
Multi-node training with torchtune is supported. The provided SLURM script is pre-configured for Llama 3.3 70B.
|
||||
|
||||
To launch the training job on a SLURM cluster for Llama 3.3 70B, run the following commands from the MAD repository.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
huggingface-cli login # Get access to HF Llama model space
|
||||
huggingface-cli download meta-llama/Llama-3.3-70B-Instruct --local-dir ./models/Llama-3.3-70B-Instruct # Download the Llama 3.3 model locally
|
||||
# In the MAD repository
|
||||
cd scripts/pytorch_train
|
||||
sbatch Torchtune_Multinode.sh
|
||||
|
||||
.. note::
|
||||
|
||||
Information regarding benchmark setup:
|
||||
|
||||
* By default, Llama 3.3 70B is fine-tuned using ``alpaca_dataset``.
|
||||
* You can adjust the torchtune `YAML configuration file
|
||||
<https://github.com/pytorch/torchtune/blob/main/recipes/configs/llama3_3/70B_full_multinode.yaml>`__
|
||||
if you're using a different model.
|
||||
* The number of nodes and other parameters can be tuned in the SLURM script ``Torchtune_Multinode.sh``.
|
||||
* Set the ``mounting_paths`` inside the SLURM script.
|
||||
|
||||
Once the run is finished, you can find the log files in the ``result_torchtune/`` directory.
|
||||
|
||||
Further reading
|
||||
===============
|
||||
|
||||
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
|
||||
|
||||
- To learn more about system settings and management practices to configure your system for
|
||||
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
|
||||
|
||||
- For a list of other ready-made Docker images for AI with ROCm, see
|
||||
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
|
||||
|
||||
Previous versions
|
||||
=================
|
||||
|
||||
See :doc:`pytorch-training-history` to find documentation for previous releases
|
||||
of the ``ROCm/pytorch-training`` Docker image.
|
||||
@@ -0,0 +1,305 @@
|
||||
.. meta::
|
||||
:description: How to train a model using PyTorch for ROCm.
|
||||
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
|
||||
|
||||
****************************************
|
||||
Training a model with Primus and PyTorch
|
||||
****************************************
|
||||
|
||||
`Primus <https://github.com/AMD-AGI/Primus>`__ is a unified and flexible
|
||||
LLM training framework designed to streamline training. It streamlines LLM
|
||||
training on AMD Instinct accelerators using a modular, reproducible configuration paradigm.
|
||||
Primus now supports the PyTorch torchtitan backend.
|
||||
|
||||
.. note::
|
||||
|
||||
Primus with the PyTorch torchtitan backend is intended to supersede the :doc:`ROCm PyTorch training <pytorch-training>` workflow.
|
||||
See :doc:`pytorch-training` to see steps to run workloads without Primus.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
|
||||
|
||||
{% set dockers = data.dockers %}
|
||||
{% set docker = dockers[0] %}
|
||||
For ease of use, AMD provides a ready-to-use Docker image -- ``{{
|
||||
docker.pull_tag }}`` -- for MI300X series accelerators containing essential
|
||||
components for Primus and PyTorch training with
|
||||
Primus Turbo optimizations.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Software component
|
||||
- Version
|
||||
|
||||
{% for component_name, component_version in docker.components.items() %}
|
||||
* - {{ component_name }}
|
||||
- {{ component_version }}
|
||||
{% endfor %}
|
||||
|
||||
.. _amd-primus-pytorch-model-support-v258:
|
||||
|
||||
Supported models
|
||||
================
|
||||
|
||||
The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X accelerators.
|
||||
Some instructions, commands, and training recommendations in this documentation might
|
||||
vary by model -- select one to get started.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
{% set model_groups = data.model_groups %}
|
||||
.. raw:: html
|
||||
|
||||
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
|
||||
<div class="row gx-0" style="display: none;">
|
||||
<div class="col-2 me-1 px-2 model-param-head">Model</div>
|
||||
<div class="row col-10 pe-0">
|
||||
{% for model_group in model_groups %}
|
||||
<div class="col-3 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="row gx-0 pt-1">
|
||||
<div class="col-2 me-1 px-2 model-param-head">Model</div>
|
||||
<div class="row col-10 pe-0">
|
||||
{% for model_group in model_groups %}
|
||||
{% set models = model_group.models %}
|
||||
{% for model in models %}
|
||||
{% if models|length % 3 == 0 %}
|
||||
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% else %}
|
||||
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
.. seealso::
|
||||
|
||||
For additional workloads, including Llama 3.3, Llama 3.2, Llama 2, GPT OSS, Qwen, and Flux models,
|
||||
see the documentation :doc:`pytorch-training` (without Primus)
|
||||
|
||||
.. _amd-primus-pytorch-performance-measurements-v258:
|
||||
|
||||
System validation
|
||||
=================
|
||||
|
||||
Before running AI workloads, it's important to validate that your AMD hardware is configured
|
||||
correctly and performing optimally.
|
||||
|
||||
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
|
||||
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
|
||||
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
|
||||
before starting training.
|
||||
|
||||
To test for optimal performance, consult the recommended :ref:`System health benchmarks
|
||||
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
|
||||
system's configuration.
|
||||
|
||||
This Docker image is optimized for specific model configurations outlined
|
||||
below. Performance can vary for other training workloads, as AMD
|
||||
doesn’t test configurations and run conditions outside those described.
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-pytorch-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
|
||||
Pull the Docker image
|
||||
=====================
|
||||
|
||||
Use the following command to pull the `Docker image <{{ unified_docker.docker_hub_url }}>`_ from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ unified_docker.pull_tag }}
|
||||
|
||||
Run training
|
||||
============
|
||||
|
||||
{% set model_groups = data.model_groups %}
|
||||
|
||||
Once the setup is complete, choose between the following two workflows to start benchmarking training.
|
||||
For fine-tuning workloads and multi-node training examples, see :doc:`pytorch-training` (without Primus).
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: MAD-integrated benchmarking
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
.. container:: model-doc {{ model.mad_tag }}
|
||||
|
||||
The following run command is tailored to {{ model.model }}.
|
||||
See :ref:`amd-primus-pytorch-model-support-v258` to switch to another available model.
|
||||
|
||||
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
|
||||
directory and install the required packages on the host machine.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD
|
||||
pip install -r requirements.txt
|
||||
|
||||
2. For example, use this command to run the performance benchmark test on the {{ model.model }} model
|
||||
using one node with the {{ model.precision }} data type on the host machine.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
|
||||
madengine run \
|
||||
--tags {{ model.mad_tag }} \
|
||||
--keep-model-dir \
|
||||
--live-output \
|
||||
--timeout 28800
|
||||
|
||||
MAD launches a Docker container with the name
|
||||
``container_ci-{{ model.mad_tag }}``. The latency and throughput reports of the
|
||||
model are collected in ``~/MAD/perf.csv``.
|
||||
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
.. tab-item:: Standalone benchmarking
|
||||
|
||||
{% for model_group in model_groups %}
|
||||
{% for model in model_group.models %}
|
||||
|
||||
.. container:: model-doc {{ model.mad_tag }}
|
||||
|
||||
The following run commands are tailored to {{ model.model }}.
|
||||
See :ref:`amd-primus-pytorch-model-support-v258` to switch to another available model.
|
||||
|
||||
.. rubric:: Download the Docker image and required packages
|
||||
|
||||
1. Use the following command to pull the Docker image from Docker Hub.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker pull {{ unified_docker.pull_tag }}
|
||||
|
||||
2. Run the Docker container.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it \
|
||||
--device /dev/dri \
|
||||
--device /dev/kfd \
|
||||
--network host \
|
||||
--ipc host \
|
||||
--group-add video \
|
||||
--cap-add SYS_PTRACE \
|
||||
--security-opt seccomp=unconfined \
|
||||
--privileged \
|
||||
-v $HOME:$HOME \
|
||||
-v $HOME/.ssh:/root/.ssh \
|
||||
--shm-size 64G \
|
||||
--name training_env \
|
||||
{{ unified_docker.pull_tag }}
|
||||
|
||||
Use these commands if you exit the ``training_env`` container and need to return to it.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker start training_env
|
||||
docker exec -it training_env bash
|
||||
|
||||
3. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
|
||||
repository and navigate to the benchmark scripts directory
|
||||
``/workspace/MAD/scripts/pytorch_train``.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD/scripts/pytorch_train
|
||||
|
||||
.. rubric:: Prepare training datasets and dependencies
|
||||
|
||||
1. The following benchmarking examples require downloading models and datasets
|
||||
from Hugging Face. To ensure successful access to gated repos, set your
|
||||
``HF_TOKEN``.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export HF_TOKEN=$your_personal_hugging_face_access_token
|
||||
|
||||
2. Run the setup script to install libraries and datasets needed for benchmarking.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_setup.sh
|
||||
|
||||
.. rubric:: Pretraining
|
||||
|
||||
To start the pretraining benchmark, use the following command with the
|
||||
appropriate options. See the following list of options and their descriptions.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -t pretrain \
|
||||
-m {{ model.model_repo }} \
|
||||
-p $datatype \
|
||||
-s $sequence_length
|
||||
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
|
||||
* - Name
|
||||
- Options
|
||||
- Description
|
||||
|
||||
{% for mode in available_modes %}
|
||||
* - {% if loop.first %}``$training_mode``{% endif %}
|
||||
- ``{{ mode }}``
|
||||
- {{ training_mode_descs[mode] }}
|
||||
{% endfor %}
|
||||
|
||||
* - ``$datatype``
|
||||
- ``BF16``{% if model.mad_tag == "primus_pyt_train_llama-3.1-8b" %} or ``FP8``{% endif %}
|
||||
- Currently, only Llama 3.1 8B supports FP8 precision.
|
||||
|
||||
* - ``$sequence_length``
|
||||
- Sequence length for the language model.
|
||||
- Between 2048 and 8192. 8192 by default.
|
||||
|
||||
.. rubric:: Benchmarking examples
|
||||
|
||||
Use the following command to run train {{ model.model }} with BF16 precision using Primus torchtitan.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -m {{ model.model_repo }}
|
||||
|
||||
To train {{ model.model }} with FP8 precision, use the following command.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
./pytorch_benchmark_report.sh -m {{ model.model_repo }} -p FP8
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
Further reading
|
||||
===============
|
||||
|
||||
- For an introduction to Primus, see `Primus: A Lightweight, Unified Training
|
||||
Framework for Large Models on AMD GPUs <https://rocm.blogs.amd.com/software-tools-optimization/primus/README.html>`__.
|
||||
|
||||
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
|
||||
|
||||
- To learn more about system settings and management practices to configure your system for
|
||||
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
|
||||
|
||||
- For a list of other ready-made Docker images for AI with ROCm, see
|
||||
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
|
||||
|
||||
Previous versions
|
||||
=================
|
||||
|
||||
See :doc:`previous-versions/pytorch-training-history` to find documentation for previous releases
|
||||
of the ``ROCm/pytorch-training`` Docker image.
|
||||
@@ -1,11 +1,18 @@
|
||||
:orphan:
|
||||
|
||||
.. meta::
|
||||
:description: How to train a model using PyTorch for ROCm.
|
||||
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
|
||||
|
||||
**************************************
|
||||
Training a model with PyTorch for ROCm
|
||||
Training a model with PyTorch on ROCm
|
||||
**************************************
|
||||
|
||||
.. note::
|
||||
|
||||
Primus with the PyTorch torchtitan backend is intended to supersede the :doc:`ROCm PyTorch training <pytorch-training>` workflow.
|
||||
See :doc:`primus-pytorch` for details.
|
||||
|
||||
PyTorch is an open-source machine learning framework that is widely used for
|
||||
model training with GPU-optimized components for transformer-based models.
|
||||
|
||||
@@ -87,9 +94,11 @@ vary by model -- select one to get started.
|
||||
{% for model_group in model_groups %}
|
||||
{% set models = model_group.models %}
|
||||
{% for model in models %}
|
||||
{% if model.training_modes %}
|
||||
* - {{ model.model }}
|
||||
- ``{{ model.training_modes | join('``, ``') }}``
|
||||
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
|
||||
@@ -141,6 +150,9 @@ doesn’t test configurations and run conditions outside those described.
|
||||
Run training
|
||||
============
|
||||
|
||||
Run training
|
||||
============
|
||||
|
||||
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/pytorch-training-benchmark-models.yaml
|
||||
|
||||
{% set unified_docker = data.dockers[0] %}
|
||||
@@ -388,7 +400,7 @@ Run training
|
||||
.. note::
|
||||
|
||||
Currently, FLUX models are not supported out-of-the-box on {{ unified_docker.pull_tag }}.
|
||||
To use FLUX, refer to the previous version of the ``pytorch-training`` Docker: :doc:`previous-versions/pytorch-training-v25.6`
|
||||
To use FLUX, refer to ``rocm/pytorch-training`` Docker: :doc:`previous-versions/pytorch-training-v25.6`
|
||||
|
||||
Occasionally, downloading the Flux dataset might fail. In the event of this
|
||||
error, manually download it from Hugging Face at
|
||||
|
||||
@@ -67,9 +67,9 @@ subtrees:
|
||||
subtrees:
|
||||
- entries:
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/primus-megatron.rst
|
||||
title: Train a model with Primus and Megatron-Core
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.rst
|
||||
title: Train a model with PyTorch
|
||||
title: Train a model with Primus and Megatron-LM
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/primus-pytorch.rst
|
||||
title: Train a model with Primus and PyTorch
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.rst
|
||||
title: Train a model with JAX MaxText
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry
|
||||
@@ -106,6 +106,8 @@ subtrees:
|
||||
title: PyTorch inference performance testing
|
||||
- file: how-to/rocm-for-ai/inference/benchmark-docker/sglang.rst
|
||||
title: SGLang inference performance testing
|
||||
- file: how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst
|
||||
title: SGLang distributed inference with Mooncake
|
||||
- file: how-to/rocm-for-ai/inference/deploy-your-model.rst
|
||||
title: Deploy your model
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
rocm-docs-core==1.20.1
|
||||
rocm-docs-core==1.23.0
|
||||
sphinx-reredirects
|
||||
sphinx-sitemap
|
||||
sphinxcontrib.datatemplates==0.11.0
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# This file is autogenerated by pip-compile with Python 3.10
|
||||
# by the following command:
|
||||
#
|
||||
# pip-compile requirements.in
|
||||
# pip-compile /mnt/nonstandard/ROCm/requirements.in
|
||||
#
|
||||
accessible-pygments==0.0.5
|
||||
# via pydata-sphinx-theme
|
||||
@@ -19,34 +19,32 @@ babel==2.17.0
|
||||
# via
|
||||
# pydata-sphinx-theme
|
||||
# sphinx
|
||||
beautifulsoup4==4.13.4
|
||||
beautifulsoup4==4.13.5
|
||||
# via pydata-sphinx-theme
|
||||
breathe==4.36.0
|
||||
# via rocm-docs-core
|
||||
certifi==2025.4.26
|
||||
certifi==2025.8.3
|
||||
# via requests
|
||||
cffi==1.17.1
|
||||
cffi==2.0.0
|
||||
# via
|
||||
# cryptography
|
||||
# pynacl
|
||||
charset-normalizer==3.4.2
|
||||
charset-normalizer==3.4.3
|
||||
# via requests
|
||||
click==8.2.1
|
||||
# via
|
||||
# jupyter-cache
|
||||
# sphinx-external-toc
|
||||
comm==0.2.2
|
||||
comm==0.2.3
|
||||
# via ipykernel
|
||||
cryptography==45.0.3
|
||||
cryptography==45.0.7
|
||||
# via pyjwt
|
||||
debugpy==1.8.14
|
||||
debugpy==1.8.16
|
||||
# via ipykernel
|
||||
decorator==5.2.1
|
||||
# via ipython
|
||||
defusedxml==0.7.1
|
||||
# via sphinxcontrib-datatemplates
|
||||
deprecated==1.2.18
|
||||
# via pygithub
|
||||
docutils==0.21.2
|
||||
# via
|
||||
# myst-parser
|
||||
@@ -54,17 +52,17 @@ docutils==0.21.2
|
||||
# sphinx
|
||||
exceptiongroup==1.3.0
|
||||
# via ipython
|
||||
executing==2.2.0
|
||||
executing==2.2.1
|
||||
# via stack-data
|
||||
fastjsonschema==2.21.1
|
||||
fastjsonschema==2.21.2
|
||||
# via
|
||||
# nbformat
|
||||
# rocm-docs-core
|
||||
gitdb==4.0.12
|
||||
# via gitpython
|
||||
gitpython==3.1.44
|
||||
gitpython==3.1.45
|
||||
# via rocm-docs-core
|
||||
greenlet==3.2.3
|
||||
greenlet==3.2.4
|
||||
# via sqlalchemy
|
||||
idna==3.10
|
||||
# via requests
|
||||
@@ -74,7 +72,7 @@ importlib-metadata==8.7.0
|
||||
# via
|
||||
# jupyter-cache
|
||||
# myst-nb
|
||||
ipykernel==6.29.5
|
||||
ipykernel==6.30.1
|
||||
# via myst-nb
|
||||
ipython==8.37.0
|
||||
# via
|
||||
@@ -86,9 +84,9 @@ jinja2==3.1.6
|
||||
# via
|
||||
# myst-parser
|
||||
# sphinx
|
||||
jsonschema==4.24.0
|
||||
jsonschema==4.25.1
|
||||
# via nbformat
|
||||
jsonschema-specifications==2025.4.1
|
||||
jsonschema-specifications==2025.9.1
|
||||
# via jsonschema
|
||||
jupyter-cache==1.0.1
|
||||
# via myst-nb
|
||||
@@ -112,11 +110,11 @@ matplotlib-inline==0.1.7
|
||||
# via
|
||||
# ipykernel
|
||||
# ipython
|
||||
mdit-py-plugins==0.4.2
|
||||
mdit-py-plugins==0.5.0
|
||||
# via myst-parser
|
||||
mdurl==0.1.2
|
||||
# via markdown-it-py
|
||||
myst-nb==1.2.0
|
||||
myst-nb==1.3.0
|
||||
# via rocm-docs-core
|
||||
myst-parser==4.0.1
|
||||
# via myst-nb
|
||||
@@ -134,15 +132,14 @@ nest-asyncio==1.6.0
|
||||
packaging==25.0
|
||||
# via
|
||||
# ipykernel
|
||||
# pydata-sphinx-theme
|
||||
# sphinx
|
||||
parso==0.8.4
|
||||
parso==0.8.5
|
||||
# via jedi
|
||||
pexpect==4.9.0
|
||||
# via ipython
|
||||
platformdirs==4.3.8
|
||||
platformdirs==4.4.0
|
||||
# via jupyter-core
|
||||
prompt-toolkit==3.0.51
|
||||
prompt-toolkit==3.0.52
|
||||
# via ipython
|
||||
psutil==7.0.0
|
||||
# via ipykernel
|
||||
@@ -150,15 +147,15 @@ ptyprocess==0.7.0
|
||||
# via pexpect
|
||||
pure-eval==0.2.3
|
||||
# via stack-data
|
||||
pycparser==2.22
|
||||
pycparser==2.23
|
||||
# via cffi
|
||||
pydata-sphinx-theme==0.15.4
|
||||
pydata-sphinx-theme==0.16.1
|
||||
# via
|
||||
# rocm-docs-core
|
||||
# sphinx-book-theme
|
||||
pygithub==2.6.1
|
||||
pygithub==2.8.1
|
||||
# via rocm-docs-core
|
||||
pygments==2.19.1
|
||||
pygments==2.19.2
|
||||
# via
|
||||
# accessible-pygments
|
||||
# ipython
|
||||
@@ -166,7 +163,7 @@ pygments==2.19.1
|
||||
# sphinx
|
||||
pyjwt[crypto]==2.10.1
|
||||
# via pygithub
|
||||
pynacl==1.5.0
|
||||
pynacl==1.6.0
|
||||
# via pygithub
|
||||
python-dateutil==2.9.0.post0
|
||||
# via jupyter-client
|
||||
@@ -178,7 +175,7 @@ pyyaml==6.0.2
|
||||
# rocm-docs-core
|
||||
# sphinx-external-toc
|
||||
# sphinxcontrib-datatemplates
|
||||
pyzmq==26.4.0
|
||||
pyzmq==27.1.0
|
||||
# via
|
||||
# ipykernel
|
||||
# jupyter-client
|
||||
@@ -186,13 +183,13 @@ referencing==0.36.2
|
||||
# via
|
||||
# jsonschema
|
||||
# jsonschema-specifications
|
||||
requests==2.32.4
|
||||
requests==2.32.5
|
||||
# via
|
||||
# pygithub
|
||||
# sphinx
|
||||
rocm-docs-core==1.20.1
|
||||
# via -r requirements.in
|
||||
rpds-py==0.25.1
|
||||
rocm-docs-core==1.23.0
|
||||
# via -r /mnt/nonstandard/ROCm/requirements.in
|
||||
rpds-py==0.27.1
|
||||
# via
|
||||
# jsonschema
|
||||
# referencing
|
||||
@@ -202,7 +199,7 @@ smmap==5.0.2
|
||||
# via gitdb
|
||||
snowballstemmer==3.0.1
|
||||
# via sphinx
|
||||
soupsieve==2.7
|
||||
soupsieve==2.8
|
||||
# via beautifulsoup4
|
||||
sphinx==8.1.3
|
||||
# via
|
||||
@@ -220,7 +217,7 @@ sphinx==8.1.3
|
||||
# sphinx-reredirects
|
||||
# sphinxcontrib-datatemplates
|
||||
# sphinxcontrib-runcmd
|
||||
sphinx-book-theme==1.1.4
|
||||
sphinx-book-theme==1.1.3
|
||||
# via rocm-docs-core
|
||||
sphinx-copybutton==0.5.2
|
||||
# via rocm-docs-core
|
||||
@@ -233,13 +230,13 @@ sphinx-last-updated-by-git==0.3.8
|
||||
sphinx-notfound-page==1.1.0
|
||||
# via rocm-docs-core
|
||||
sphinx-reredirects==0.1.6
|
||||
# via -r requirements.in
|
||||
# via -r /mnt/nonstandard/ROCm/requirements.in
|
||||
sphinx-sitemap==2.8.0
|
||||
# via -r requirements.in
|
||||
# via -r /mnt/nonstandard/ROCm/requirements.in
|
||||
sphinxcontrib-applehelp==2.0.0
|
||||
# via sphinx
|
||||
sphinxcontrib-datatemplates==0.11.0
|
||||
# via -r requirements.in
|
||||
# via -r /mnt/nonstandard/ROCm/requirements.in
|
||||
sphinxcontrib-devhelp==2.0.0
|
||||
# via sphinx
|
||||
sphinxcontrib-htmlhelp==2.1.0
|
||||
@@ -252,7 +249,7 @@ sphinxcontrib-runcmd==0.2.0
|
||||
# via sphinxcontrib-datatemplates
|
||||
sphinxcontrib-serializinghtml==2.0.0
|
||||
# via sphinx
|
||||
sqlalchemy==2.0.41
|
||||
sqlalchemy==2.0.43
|
||||
# via jupyter-cache
|
||||
stack-data==0.6.3
|
||||
# via ipython
|
||||
@@ -260,13 +257,12 @@ tabulate==0.9.0
|
||||
# via jupyter-cache
|
||||
tomli==2.2.1
|
||||
# via sphinx
|
||||
tornado==6.5.1
|
||||
tornado==6.5.2
|
||||
# via
|
||||
# ipykernel
|
||||
# jupyter-client
|
||||
traitlets==5.14.3
|
||||
# via
|
||||
# comm
|
||||
# ipykernel
|
||||
# ipython
|
||||
# jupyter-client
|
||||
@@ -274,7 +270,7 @@ traitlets==5.14.3
|
||||
# matplotlib-inline
|
||||
# nbclient
|
||||
# nbformat
|
||||
typing-extensions==4.14.0
|
||||
typing-extensions==4.15.0
|
||||
# via
|
||||
# beautifulsoup4
|
||||
# exceptiongroup
|
||||
@@ -290,7 +286,5 @@ urllib3==2.5.0
|
||||
# requests
|
||||
wcwidth==0.2.13
|
||||
# via prompt-toolkit
|
||||
wrapt==1.17.2
|
||||
# via deprecated
|
||||
zipp==3.23.0
|
||||
# via importlib-metadata
|
||||
|
||||
Reference in New Issue
Block a user