Compare commits

...

22 Commits

Author SHA1 Message Date
Adel Johar
cd85ccd539 Docs: use custom directive to reference library versions 2025-03-05 10:24:22 +01:00
alexxu-amd
de4ac7a5a3 Merge pull request #4438 from ROCm/alexxu12/md-file-fix
Fix important block from CONTRIBUTING.md
2025-03-04 13:08:51 -05:00
Peter Park
fa0e212906 Fix applies to linux tag for training benchmark docker pages (#4446) 2025-03-04 12:06:55 -05:00
Daniel Su
84001e176e Ex CI: increase hipBLASLt test timeout to 2 hours (#4445) 2025-03-04 10:53:05 -05:00
Joseph Macaranas
9cd2706fdb External CI: Set hipSPARSELt Fortran compiler to f95 (#4441)
- Explicitly set Fortran compiler to account for recent llvm-project changes that were meant to help with aomp issues.
2025-03-03 16:43:37 -05:00
Alex Xu
13be0b6a51 fix important block 2025-03-03 14:35:33 -05:00
Alex Xu
efefa0f43e fix important block 2025-03-03 14:12:05 -05:00
Daniel Su
4d15adf284 Ex CI: fix rocm-cmake tests, update component branch names (#4433) 2025-02-28 13:57:06 -05:00
Peter Park
1fb42c2591 Update LLM inference performance validation on AMD Instinct MI300X guide to filter by desired model (#4424)
* WIP

(cherry picked from commit a06a5b5b959a9425e7384fb58b88c3716f380e48)

rm unneeded files

(cherry picked from commit f1d0c00056a83299bdea74a43cd17454999cf2d8)

* add sphinxcontrib.datatemplates

(cherry picked from commit d056b93a325d87b81f54f70c6eb4ae78f4fb0bc1)

* add template

(cherry picked from commit 0691d59f0a1efbda7908762b7a906e30a65c0ee1)

fix template

(cherry picked from commit 01e4bea5522aa5deeaade58c105ff850f449df8b)

WIPO

(cherry picked from commit 4d8daf7445e7be92cd9ee1d39dff564bd8de41f4)

WIP

(cherry picked from commit 9eefd1f5833bc4dc8de9d777ff65a5fe5f826dbd)

update models yaml schema

(cherry picked from commit a5f0fc1e6cc51104dc2d42029bfcf3eea276d270)

add model groups functionality

(cherry picked from commit 13f49f96dd3e5a160d37c52e48a4fbcccdcf4f9e)

add selector headings and fix template

(cherry picked from commit 35f7f2314bcf74b4fd0a8ca10aaabf0de7063bb0)

update template

(cherry picked from commit 9e2dcfe0c7f6e7c2c685866ea83375fbacbc5032)

fix

(cherry picked from commit be51e32791550ddc21785effccb889228394b242)

use classes instead of data tags

(cherry picked from commit cd52d68c504f7e7435d156ae70cf4bde1dfe703e)

update template

(cherry picked from commit 9ed89fee6874b39ee3535fbde54a0a59f346ea2b)

clean up extra wip files

(cherry picked from commit a9f965a104baa966c184054638e935b011526278)

update wordlist

(cherry picked from commit f783656814e896aedd21acd1c8c87b4700c14469)

remove unused template

(cherry picked from commit cac894bd9c2b1262c9c006e5fddbcb742dc6d882)

improve script

(cherry picked from commit ca20ffd4922916616e0924d625652a815f27c35f)

fix template

(cherry picked from commit 752c61fda856fd5b244734636c036c8877e823b9)

fix standalone benchmark output path in template

(cherry picked from commit d8c04203b5ec0f6c2e2307f7890304a3dc5687be)

fix toc

(cherry picked from commit 8df42faf53488ef29f5a263d25032f3d35cd58ed)

update script to prevent flash of unstyled content

import a11y

(cherry picked from commit 46c852717f223a1d8744fab035807cebab4c5404)

add tabindex to wordlist

(cherry picked from commit 11492593f9692f5453045e7ec52c8f8ae9624ae9)

text

update script

* remove unused config option

* reorganize assets

* fix linting warning

* move js from data/ to extension/
2025-02-28 12:39:02 -05:00
Joseph Macaranas
e984954088 External CI: llvm-project updates (#4423)
- Add flang to built projects.
- Upgrade build VM to account for additional project.
- Temporarily ignore a test case for debug info, which is not a high priority in External CI.
2025-02-27 16:14:04 -05:00
Istvan Kiss
cd57bc8186 Fix white paper links 2025-02-27 15:29:06 +01:00
Gulsum Gudukbay Akbulut
d7d3d02cd0 Corrected typo in README.md (#4387)
* Corrected typo

Corrected typo in line 119 prerequisities -> prerequisites

* Corrected typo in README.md

Corrected typo in line 119 prerequisities -> prerequisites
2025-02-26 19:24:27 -05:00
Joseph Macaranas
dd7164cada External CI: Add libdrm_amdgpu to roctracer dependencies (#4418) 2025-02-26 13:52:56 -05:00
Joseph Macaranas
bf3a437cd5 External CI: Resume building for gfx90a (#4416)
- Remove undefined gpuTarget references in docker step of some build jobs.
- Remove deprecated/renamed repo's pipeline yaml file.
2025-02-26 11:11:36 -05:00
Adel Johar
4be8096109 Merge pull request #4393 from ROCm/docs_fix_arch
Docs: Fix gpu-arch-spec.rst
2025-02-26 14:19:38 +01:00
Peter Park
934767322b Update PT and TF docker inventories in compatibility docs (#4415)
* update PyTorch docker inventories in compatibility doc

* update TF docker inventories in compatibility doc

* update text to rocm 6.3.3
2025-02-25 12:32:34 -05:00
Peter Park
1ea1c5c6e0 fix tab sync and nested tab Megatron-LM doc (#4409) 2025-02-21 17:19:48 -05:00
Peter Park
389fa7071b Update docs on Megatron-LM and PyTorch training Dockers (#4407)
* Update Megatron-LM and PyTorch Training Docker docs

Also restructure TOC

* Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update "start training" text

Apply suggestions from code review

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

update conf.py

fix spacing

fix branding issue

add disable numa

reorg

remove extra text
2025-02-21 13:07:18 -05:00
Daniel Su
91e0cf5ecd Ex CI: change rocprof-compute default branch to develop (#4398)
* Ex CI: change rocprof-compute default branch to develop

* add pkg-config to rocmsmi
2025-02-20 16:04:20 -05:00
Daniel Su
1de89ef590 Ex CI: update to 6.3.3 (#4404) 2025-02-20 16:01:35 -05:00
dependabot[bot]
27cb8ea927 Build(deps): Bump rocm-docs-core from 1.15.0 to 1.17.0 in /docs/sphinx (#4402)
Bumps [rocm-docs-core](https://github.com/ROCm/rocm-docs-core) from 1.15.0 to 1.17.0.
- [Release notes](https://github.com/ROCm/rocm-docs-core/releases)
- [Changelog](https://github.com/ROCm/rocm-docs-core/blob/develop/CHANGELOG.md)
- [Commits](https://github.com/ROCm/rocm-docs-core/compare/v1.15.0...v1.17.0)

---
updated-dependencies:
- dependency-name: rocm-docs-core
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-20 11:22:49 -07:00
Adel Johar
0c6f660d59 Docs: Fix gpu-arch-spec.rst 2025-02-19 17:05:01 +01:00
71 changed files with 2282 additions and 1219 deletions

View File

@@ -84,6 +84,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -67,6 +67,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -77,6 +77,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -67,6 +67,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -87,7 +87,6 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: $(JOB_GPU_TARGET)
- job: Tensile_testing
timeoutInMinutes: 90

View File

@@ -42,6 +42,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -48,6 +48,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -52,6 +52,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -63,6 +63,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -72,6 +72,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
@@ -156,6 +158,7 @@ jobs:
- deps
- job: hipBLASLt_testing
timeoutInMinutes: 120
dependsOn: hipBLASLt
condition: and(succeeded(), eq(variables.ENABLE_GFX942_TESTS, 'true'), not(containsValue(split(variables.DISABLED_GFX942_TESTS, ','), variables['Build.DefinitionName'])))
variables:

View File

@@ -43,6 +43,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -54,6 +54,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -45,6 +45,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -52,6 +52,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -105,6 +105,7 @@ jobs:
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
-DCMAKE_Fortran_COMPILER=f95
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
-DTensile_LOGIC=
-DTensile_CPU_THREADS=

View File

@@ -42,6 +42,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -51,6 +51,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -29,7 +29,7 @@ jobs:
value: '$(Build.BinariesDirectory)/amdgcn/bitcode'
- name: HIP_PATH
value: '$(Agent.BuildDirectory)/rocm'
pool: ${{ variables.MEDIUM_BUILD_POOL }}
pool: ${{ variables.ULTRA_BUILD_POOL }}
workspace:
clean: all
steps:
@@ -51,7 +51,7 @@ jobs:
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH="$(Build.BinariesDirectory)/llvm;$(Build.BinariesDirectory)"
-DCMAKE_BUILD_TYPE=Release
-DLLVM_ENABLE_PROJECTS=clang;lld;clang-tools-extra;mlir
-DLLVM_ENABLE_PROJECTS=clang;lld;clang-tools-extra;mlir;flang
-DLLVM_ENABLE_RUNTIMES=compiler-rt;libunwind;libcxx;libcxxabi
-DCLANG_ENABLE_AMDCLANG=ON
-DLLVM_TARGETS_TO_BUILD=AMDGPU;X86
@@ -85,7 +85,7 @@ jobs:
componentName: check-llvm
testDir: 'llvm/build'
testExecutable: './bin/llvm-lit'
testParameters: '-q --xunit-xml-output=llvm_test_output.xml ./test'
testParameters: '-q --xunit-xml-output=llvm_test_output.xml --filter-out="live-debug-values-spill-tracking" ./test'
testOutputFile: llvm_test_output.xml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:

View File

@@ -1,140 +0,0 @@
# largely referenced from: https://github.com/ROCm/omnitrace/blob/main/.github/workflows/ubuntu-jammy.yml
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: aptPackages
type: object
default:
- autoconf
- autotools-dev
- bison
- build-essential
- bzip2
- clang
- cmake
- environment-modules
- g++-12
- libdrm-dev
- libfabric-dev
- libiberty-dev
- libpapi-dev
- libpfm4-dev
- libtool
- libopenmpi-dev
- m4
- openmpi-bin
- software-properties-common
- python3-pip
- texinfo
- zlib1g-dev
- name: pipModules
type: object
default:
- numpy
- perfetto
- dataclasses
- name: rocmDependencies
type: object
default:
- aomp
- clr
- llvm-project
- rccl
- rocm-core
- rocm_smi_lib
- rocminfo
- ROCR-Runtime
- rocprofiler
- rocprofiler-register
- roctracer
jobs:
- job: omnitrace
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
strategy:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: $(JOB_GPU_TARGET)
- task: Bash@3
displayName: ROCm symbolic link
inputs:
targetType: inline
script: |
sudo rm -rf /opt/rocm
sudo ln -s $(Agent.BuildDirectory)/rocm /opt/rocm
- task: Bash@3
displayName: Add ROCm binaries to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
- task: Bash@3
displayName: Add ROCm compilers to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
# build flags reference: https://rocm.docs.amd.com/projects/omnitrace/en/latest/install/install.html
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DOMNITRACE_BUILD_TESTING=ON
-DOMNITRACE_BUILD_DYNINST=ON
-DOMNITRACE_BUILD_LIBUNWIND=ON
-DDYNINST_BUILD_TBB=ON
-DDYNINST_BUILD_ELFUTILS=ON
-DDYNINST_BUILD_LIBIBERTY=ON
-DDYNINST_BUILD_BOOST=ON
-DOMNITRACE_USE_PAPI=ON
-DOMNITRACE_USE_MPI=ON
-DAMDGPU_TARGETS=$(JOB_GPU_TARGET)
multithreadFlag: -- -j32
- task: Bash@3
displayName: Set up omnitrace env
inputs:
targetType: inline
script: source share/omnitrace/setup-env.sh
workingDirectory: build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: omnitrace
- task: Bash@3
displayName: Remove ROCm binaries from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- task: Bash@3
displayName: Remove ROCm compilers from PATH
condition: always()
inputs:
targetType: inline
script: echo "##vso[task.setvariable variable=PATH]$(echo $PATH | sed -e 's;:$(Agent.BuildDirectory)/rocm/llvm/bin;;' -e 's;^/;;' -e 's;/$;;')"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
gpuTarget: $(JOB_GPU_TARGET)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
gpuTarget: $(JOB_GPU_TARGET)

View File

@@ -64,6 +64,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -65,6 +65,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -73,6 +73,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- task: Bash@3
displayName: 'Register libjpeg-turbo packages'

View File

@@ -60,6 +60,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -75,6 +75,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -55,6 +55,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -47,6 +47,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -42,6 +42,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -48,6 +48,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -45,6 +45,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -58,6 +58,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -56,6 +56,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -47,6 +47,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -8,7 +8,6 @@ parameters:
- name: aptPackages
type: object
default:
- cmake
- doxygen
- doxygen-doc
- ninja-build
@@ -18,7 +17,9 @@ parameters:
type: object
default:
- cget
- cmake==3.20.5
- ninja
- rocm-docs-core
jobs:
- job: rocm_cmake
@@ -33,21 +34,29 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- task: Bash@3
displayName: Add CMake to PATH
inputs:
targetType: inline
script: echo "##vso[task.prependpath]$(python3 -m site --user-base)/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
# extra steps for ctest suite
- script: |
python -m pip install -r $(Build.SourcesDirectory)/docs/requirements.txt
python -m pip install -r $(Build.SourcesDirectory)/test/docsphinx/docs/.sphinx/requirements.txt
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
displayName: "ctest setup"
- task: Bash@3
displayName: CTest setup
inputs:
targetType: inline
script: |
python -m pip install -r $(Build.SourcesDirectory)/docs/requirements.txt
python -m pip install -r $(Build.SourcesDirectory)/test/docsphinx/docs/.sphinx/requirements.txt
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: rocm-cmake
testParameters: '-E "pass-version-parent" -VV --output-on-failure --force-new-ctest-process --output-junit test_output.xml'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
@@ -56,4 +65,3 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
environment: combined
gpuTarget: $(JOB_GPU_TARGET)

View File

@@ -75,6 +75,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -10,6 +10,7 @@ parameters:
default:
- cmake
- libdrm-dev
- pkg-config
- python3-pip
jobs:
@@ -39,7 +40,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: $(JOB_GPU_TARGET)
- job: rocm_smi_lib_testing
dependsOn: rocm_smi_lib

View File

@@ -59,6 +59,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -72,6 +72,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -69,7 +69,6 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: $(JOB_GPU_TARGET)
- job: rocr_debug_agent_testing
dependsOn: rocr_debug_agent

View File

@@ -11,6 +11,7 @@ parameters:
- cmake
- doxygen
- graphviz
- libdrm-amdgpu-dev
- ninja-build
- python3-pip
- name: pipModules
@@ -49,11 +50,14 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -85,6 +89,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
gpuTarget: $(JOB_GPU_TARGET)
registerROCmPackages: true
- job: roctracer_testing
dependsOn: roctracer
@@ -104,6 +109,8 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
@@ -128,3 +135,4 @@ jobs:
pipModules: ${{ parameters.pipModules }}
environment: test
gpuTarget: $(JOB_GPU_TARGET)
registerROCmPackages: true

View File

@@ -57,6 +57,8 @@ jobs:
matrix:
gfx942:
JOB_GPU_TARGET: gfx942
gfx90a:
JOB_GPU_TARGET: gfx90a
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:

View File

@@ -222,13 +222,13 @@ parameters:
hasGpuTarget: false
rocm-examples:
pipelineId: $(ROCM_EXAMPLES_PIPELINE_ID)
stagingBranch: develop
mainlineBranch: develop
stagingBranch: amd-staging
mainlineBranch: amd-mainline
hasGpuTarget: true
rocminfo:
pipelineId: $(ROCMINFO_PIPELINE_ID)
stagingBranch: amd-staging
mainlineBranch: amd-master
mainlineBranch: amd-mainline
hasGpuTarget: false
rocMLIR:
pipelineId: $(ROCMLIR_PIPELINE_ID)
@@ -262,7 +262,7 @@ parameters:
hasGpuTarget: true
rocprofiler-compute:
pipelineId: $(ROCPROFILER_COMPUTE_PIPELINE_ID)
stagingBranch: amd-staging
stagingBranch: develop
mainlineBranch: amd-mainline
hasGpuTarget: true
rocprofiler-register:

View File

@@ -33,7 +33,6 @@ parameters:
- aomp
- HIPIFY
- MIVisionX
- rocm-cmake
- rocm_smi_lib
- rocprofiler-sdk
- roctracer

View File

@@ -28,13 +28,13 @@ variables:
- name: GFX942_TEST_POOL
value: gfx942_test_pool
- name: LATEST_RELEASE_VERSION
value: 6.3.2
value: 6.3.3
- name: REPO_RADEON_VERSION
value: 6.3.2
value: 6.3.3
- name: NEXT_RELEASE_VERSION
value: 6.4.0
- name: LATEST_RELEASE_TAG
value: rocm-6.3.2
value: rocm-6.3.3
- name: AMDMIGRAPHX_GFX942_TEST_PIPELINE_ID
value: 197
- name: AMDMIGRAPHX_PIPELINE_ID

1
.gitignore vendored
View File

@@ -11,6 +11,7 @@ _toc.yml
docBin/
_doxygen/
_readthedocs/
__pycache__/
# avoid duplicating contributing.md due to conf.py
docs/CHANGELOG.md

View File

@@ -117,6 +117,7 @@ FX
Filesystem
FindDb
Flang
FluxBenchmark
Fortran
Fuyu
GALB
@@ -131,6 +132,7 @@ GDS
GEMM
GEMMs
GFortran
GFXIP
Gemma
GiB
GIM
@@ -316,6 +318,7 @@ PipelineParallel
PnP
PowerEdge
PowerShell
Pretraining
Profiler's
PyPi
Pytest
@@ -478,6 +481,7 @@ ZenDNN
accuracies
activations
addr
ai
alloc
allocatable
allocator
@@ -543,6 +547,7 @@ cTDP
dataset
datasets
dataspace
datatemplate
datatype
datatypes
dbgapi
@@ -571,6 +576,7 @@ el
embeddings
enablement
encodings
endfor
endpgm
enqueue
env
@@ -691,6 +697,7 @@ pageable
pallas
parallelization
parallelizing
param
parameterization
passthrough
perfcounter
@@ -715,6 +722,7 @@ preprocessing
preprocessor
prequantized
prerequisites
pretraining
profiler
profilers
protobuf
@@ -807,6 +815,7 @@ supercomputing
symlink
symlinks
sys
tabindex
td
tensorfloat
th
@@ -852,6 +861,7 @@ vectorizes
virtualize
virtualized
vjxb
vllm
voxel
walkthrough
walkthroughs

View File

@@ -66,11 +66,10 @@ project-specific steps. Refer to each repository's PR process for any additional
during our release cycle, as coordinated by the maintainer
* We'll inform you once your change is committed
:::{important}
By creating a PR, you agree to allow your contribution to be licensed under the
terms of the LICENSE.txt file in the corresponding repository. Different repositories may use different
licenses.
:::
> [!IMPORTANT]
> By creating a PR, you agree to allow your contribution to be licensed under the
> terms of the LICENSE.txt file in the corresponding repository. Different repositories may use different
> licenses.
You can look up each license on the [ROCm licensing](https://rocm.docs.amd.com/en/latest/about/license.html) page.

View File

@@ -116,7 +116,7 @@ bash install-prerequisites.sh
# For ubuntu22.04 system
cd ROCm/tools/rocm-build/docker/ubuntu22
cp * /tmp && cd /tmp
bash install-prerequisities.sh
bash install-prerequisites.sh
# For ubuntu24.04 system
cd ROCm/tools/rocm-build/docker/ubuntu24
cp * /tmp && cd /tmp

View File

@@ -4,6 +4,8 @@
:description: JAX compatibility
:keywords: GPU, JAX compatibility
.. version-set:: rocm_version latest
*******************************************************************************
JAX compatibility
*******************************************************************************
@@ -119,7 +121,8 @@ Critical ROCm libraries for JAX
The functionality of JAX with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
.. list-table::
:header-rows: 1
@@ -129,7 +132,7 @@ performance, and feature set available to developers.
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Matrix multiplication in ``jax.numpy.matmul``, ``jax.lax.dot`` and
@@ -138,7 +141,7 @@ performance, and feature set available to developers.
``jax.numpy.einsum`` with matrix-multiplication patterns algebra
operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of hipBLAS, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
@@ -147,7 +150,7 @@ performance, and feature set available to developers.
operations, mixed-precision support, and hardware-specific
optimizations.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Reduction functions (``jax.numpy.sum``, ``jax.numpy.mean``,
@@ -155,23 +158,23 @@ performance, and feature set available to developers.
(``jax.numpy.cumsum``, ``jax.numpy.cumprod``) and sorting
(``jax.numpy.sort``, ``jax.numpy.argsort``).
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like ``jax.numpy.fft``.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 2.11.0
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``jax.random.uniform``, ``jax.random.normal``,
``jax.random.randint`` and ``jax.random.split``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Solving linear systems (``jax.numpy.linalg.solve``), matrix
factorizations, SVD (``jax.numpy.linalg.svd``) and eigenvalue problems
(``jax.numpy.linalg.eig``).
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
@@ -179,28 +182,28 @@ performance, and feature set available to developers.
(``jax.experimental.sparse.dot``), sparse linear system solvers and
sparse data handling.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.2
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse matrix multiplication (``jax.numpy.matmul``), sparse
matrix-vector and matrix-matrix products
(``jax.experimental.sparse.dot``) and sparse linear system solvers.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- :version-ref:`MIOpen rocm_version`
- Optimized for deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``jax.nn.conv``, ``jax.nn.relu``, and ``jax.nn.batch_norm``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- :version-ref:`RCCL rocm_version`
- Optimized for multi-GPU communication for operations like all-reduce,
broadcast, and scatter.
- Distribute computations across multiple GPU with ``pmap`` and
``jax.distributed``. XLA automatically uses rccl when executing
operations across multiple GPUs on AMD hardware.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``jax.numpy.sum``, ``jax.pmap`` for

View File

@@ -4,6 +4,8 @@
:description: PyTorch compatibility
:keywords: GPU, PyTorch compatibility
.. version-set:: rocm_version latest
********************************************************************************
PyTorch compatibility
********************************************************************************
@@ -56,7 +58,7 @@ Docker image compatibility
AMD validates and publishes ready-made `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are validated for `ROCm 6.3.0 <https://repo.radeon.com/rocm/apt/6.3/>`_.
associated inventories are validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_.
Click the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
@@ -77,26 +79,26 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-98ddf20333bd01ff749b8092b1190ee369a75d3b8c71c2fac80ffdcb1a98d529?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu24.04_py3.12_pytorch_release_2.4.0/images/sha256-6c798857b2c9526b44ba535710b93a1737546acea79b53a93c646195c272f1d5"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3128/>`_
- `3.12.9 <https://www.python.org/downloads/release/python-3129/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.10.0 <https://github.com/openucx/ucx/tree/v1.10.0>`_
- `4.0.7 <https://github.com/open-mpi/ompi/tree/v4.0.7>`_
- `4.0.3 <https://github.com/open-mpi/ompi/tree/v4.0.3>`_
- `5.3-1.0.5.0 <https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-402c9b4f1a6b5a81c634a1932b56cbe01abb699cfcc7463d226276997c6cf8ea?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.4.0/images/sha256-a09b21248133876fc8912a5ff4e6ee2c8d62b14120313e426b3dadda5702713d"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -107,11 +109,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-e0608b55d408c3bfe5c19fdd57a4ced3e0eb3a495b74c309980b60b156c526dd?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_2.4.0/images/sha256-963187534467f0f9da77996762fc1d112a6faa5372277c348a505533e7876ec8"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.0 <https://github.com/ROCm/pytorch/tree/release/2.4>`_
- 22.04
- `3.9.18 <https://www.python.org/downloads/release/python-3918/>`_
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`_
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -122,11 +124,11 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-652cf25263d05b1de548222970aeb76e60b12de101de66751264709c0d0ff9d8?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.3.0/images/sha256-952f2621bd2bf3078bef19061e05b209105a82a7908e7e6cdf85014938a4d93a"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`_
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31016/>`_
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`_
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`_
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13.0>`_
@@ -137,7 +139,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-051976f26beab8f9aa65d999e3ad546c027b39240a0cc3ee81b114a9024f2912?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.10_pytorch_release_2.2.1/images/sha256-a2fe20e170feb9e05da3e5728bb98e40d08567e137be8e6ba797962ed2852608"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 22.04
@@ -152,7 +154,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-88c839a364d109d3748c100385bfa100d28090d25118cc723fd0406390ab2f7e?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_2.2.1/images/sha256-7f231937c897cca5f89e360be33c70a2017d60f62d1fbe81292be48c15fe345b"><i class="fab fa-docker fa-lg"></i></a>
- `2.2.1 <https://github.com/ROCm/pytorch/tree/release/2.2>`_
- 20.04
@@ -167,14 +169,14 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-994424ed07a63113f79dd9aa72159124c00f5fbfe18127151e6658f7d0b6f821?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu22.04_py3.9_pytorch_release_1.13.1/images/sha256-616a47758004f91951e2da6c1fe291f903de65a7b2318d4b18359b48fe3032f4"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 22.04
- `3.9.21 <https://www.python.org/downloads/release/python-3921/>`_
- `1.0.0 <https://github.com/ROCm/apex/tree/release/1.0.0>`_
- `0.14.0 <https://github.com/pytorch/vision/tree/v0.14.0>`_
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18>`_
- `2.19.0 <https://github.com/tensorflow/tensorboard/tree/2.19>`_
- `master <https://bitbucket.org/icl/magma/src/master/>`_
- `1.14.1 <https://github.com/openucx/ucx/tree/v1.14.1>`_
- `4.1.5 <https://github.com/open-mpi/ompi/tree/v4.1.5>`_
@@ -182,7 +184,7 @@ Click the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-7b8139fe40a9aeb4bca3aecd15c22c1fa96e867d93479fa3a24fdeeeeafa1219?context=explore"><i class="fab fa-docker fa-lg"></i></a>
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.3.3_ubuntu20.04_py3.9_pytorch_release_1.13.1/images/sha256-a2cfb365aea58b84595e241ffdb0d5ef3e6566e98c10b5499f4aa29983a74ea2"><i class="fab fa-docker fa-lg"></i></a>
- `1.13.1 <https://github.com/ROCm/pytorch/tree/release/1.13>`_
- 20.04
@@ -200,7 +202,8 @@ Critical ROCm libraries for PyTorch
The functionality of PyTorch with ROCm is determined by its underlying library
dependencies. These critical ROCm components affect the capabilities,
performance, and feature set available to developers.
performance, and feature set available to developers. The versions described
are available in ROCm :version:`rocm_version`.
.. list-table::
:header-rows: 1
@@ -210,28 +213,28 @@ performance, and feature set available to developers.
- Purpose
- Used in
* - `Composable Kernel <https://github.com/ROCm/composable_kernel>`_
- 1.1.0
- :version-ref:`"Composable Kernel" rocm_version`
- Enables faster execution of core operations like matrix multiplication
(GEMM), convolutions and transformations.
- Speeds up ``torch.permute``, ``torch.view``, ``torch.matmul``,
``torch.mm``, ``torch.bmm``, ``torch.nn.Conv2d``, ``torch.nn.Conv3d``
and ``torch.nn.MultiheadAttention``.
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations like matrix multiplication, matrix-vector products,
and tensor contractions. Utilized in both dense and batched linear
algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- It accelerates operations like ``torch.matmul``, ``torch.mm``, and the
matrix multiplications used in convolutional and linear layers.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``torch.sum``, ``torch.cumsum``, ``torch.sort``
@@ -239,93 +242,93 @@ performance, and feature set available to developers.
irregular shapes often involve scanning, sorting, and filtering, which
hipCUB handles efficiently.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- :version-ref:`hipFFT rocm_version`
- Provides GPU-accelerated Fast Fourier Transform (FFT) operations.
- Used in functions like the ``torch.fft`` module.
* - `hipRAND <https://github.com/ROCm/hipRAND>`_
- 2.11.0
- :version-ref:`hipRAND rocm_version`
- Provides fast random number generation for GPUs.
- The ``torch.rand``, ``torch.randn`` and stochastic layers like
``torch.nn.Dropout``.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated solvers for linear systems, eigenvalues, and
singular value decompositions (SVD).
- Supports functions like ``torch.linalg.solve``,
``torch.linalg.eig``, and ``torch.linalg.svd``.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- :version-ref:`hipSPARSE rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipSPARSELt <https://github.com/ROCm/hipSPARSELt>`_
- 0.2.2
- :version-ref:`hipSPARSELt rocm_version`
- Accelerates operations on sparse matrices, such as sparse matrix-vector
or matrix-matrix products.
- Sparse tensor operations ``torch.sparse``.
* - `hipTensor <https://github.com/ROCm/hipTensor>`_
- 1.4.0
- :version-ref:`hipTensor rocm_version`
- Optimizes for high-performance tensor operations, such as contractions.
- Accelerates tensor algebra, especially in deep learning and scientific
computing.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- :version-ref:`MIOpen rocm_version`
- Optimizes deep learning primitives such as convolutions, pooling,
normalization, and activation functions.
- Speeds up convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other layers. Used in operations like
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIGraphX <https://github.com/ROCm/AMDMIGraphX>`_
- 2.11.0
- :version-ref:`MIGraphX rocm_version`
- Adds graph-level optimizations, ONNX models and mixed precision support
and enable Ahead-of-Time (AOT) Compilation.
- Speeds up inference models and executes ONNX models for
compatibility with other frameworks.
``torch.nn.Conv2d``, ``torch.nn.ReLU``, and ``torch.nn.LSTM``.
* - `MIVisionX <https://github.com/ROCm/MIVisionX>`_
- 3.1.0
- :version-ref:`MIVisionX rocm_version`
- Optimizes acceleration for computer vision and AI workloads like
preprocessing, augmentation, and inferencing.
- Faster data preprocessing and augmentation pipelines for datasets like
ImageNet or COCO and easy to integrate into PyTorch's ``torch.utils.data``
and ``torchvision`` workflows.
* - `rocAL <https://github.com/ROCm/rocAL>`_
- 2.1.0
- :version-ref:`rocAL rocm_version`
- Accelerates the data pipeline by offloading intensive preprocessing and
augmentation tasks. rocAL is part of MIVisionX.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- :version-ref:`RCCL rocm_version`
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``torch.nn.parallel.DistributedDataParallel``).
Handles communication in multi-GPU setups.
* - `rocDecode <https://github.com/ROCm/rocDecode>`_
- 0.8.0
- :version-ref:`rocDecode rocm_version`
- Provides hardware-accelerated data decoding capabilities, particularly
for image, video, and other dataset formats.
- Can be integrated in ``torch.utils.data``, ``torchvision.transforms``
and ``torch.distributed``.
* - `rocJPEG <https://github.com/ROCm/rocJPEG>`_
- 0.6.0
- :version-ref:`rocJPEG rocm_version`
- Provides hardware-accelerated JPEG image decoding and encoding.
- GPU accelerated ``torchvision.io.decode_jpeg`` and
``torchvision.io.encode_jpeg`` and can be integrated in
``torch.utils.data`` and ``torchvision``.
* - `RPP <https://github.com/ROCm/RPP>`_
- 1.9.1
- :version-ref:`RPP rocm_version`
- Speeds up data augmentation, transformation, and other preprocessing steps.
- Easy to integrate into PyTorch's ``torch.utils.data`` and
``torchvision`` data load workloads.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Utilized in backend operations for tensor computations requiring
parallel processing.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`_
- 1.6.0
- :version-ref:`rocWMMA rocm_version`
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.

View File

@@ -4,6 +4,8 @@
:description: TensorFlow compatibility
:keywords: GPU, TensorFlow compatibility
.. version-set:: rocm_version latest
*******************************************************************************
TensorFlow compatibility
*******************************************************************************
@@ -54,7 +56,7 @@ Docker image compatibility
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`_ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.3.1 <https://repo.radeon.com/rocm/apt/6.3.1/>`_. Click
validated for `ROCm 6.3.3 <https://repo.radeon.com/rocm/apt/6.3.3/>`_. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
@@ -68,47 +70,47 @@ the |docker-icon| icon to view the image on Docker Hub.
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.17.0-dev/images/sha256-804121ee4985718277ba7dcec53c57bdade130a1ef42f544b6c48090ad379c17"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.17-dev/images/sha256-fd2653f436880366cc874aa24264ca9dabd892d76ccb63fb807debba459bcaaf"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.17.0-dev/images/sha256-776837ffa945913f6c466bfe477810a11453d21d5b6afb200be1c36e48fbc08e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.17-dev/images/sha256-8a5eb7443798935dd269575e2abae847b702e1dfb06766ab84f081a6314d8b95"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.0 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.17.0-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `TensorBoard 2.17.0 <https://github.com/tensorflow/tensorboard/tree/2.17.0>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.12-tf2.16.2-dev/images/sha256-c793e1483e30809c3c28fc5d7805bedc033c73da224f839fff370717cb100944"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.12-tf2.16-dev/images/sha256-8fc939b10cdd6d2b11407474880d4c8ab2b52ab6e2d1743c921fc2adbfd0422f"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.12 <https://www.python.org/downloads/release/python-3124/>`_
- `Python 3.12.4 <https://www.python.org/downloads/release/python-3124/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.16.0-dev/images/sha256-263e78414ae85d7bcd52a025a94131d0a279872a45ed632b9165336dfdcd4443"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.16-dev/images/sha256-a4cc6ab23d59fdf5459ceac1f0a603e6c16ae7f885d30e42c0c2b3ac60c2ad10"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.1-py3.10-tf2.15.0-dev/images/sha256-479046a8477ca701a9494a813ab17e8ab4f6baa54641e65dc8d07629f1e6a880"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.3.3-py3.10-tf2.15-dev/images/sha256-60887c488421184adcb60b9ed4f72a8bd7bdb64d238e50943ca7cbde38e4aa48"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.15.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3/tensorflow_rocm-2.15.1-cp310-cp310-manylinux_2_28_x86_64.whl>`_
- dev
- `Python 3.10 <https://www.python.org/downloads/release/python-31012/>`_
- `Python 3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
- `TensorBoard 2.15.2 <https://github.com/tensorflow/tensorboard/tree/2.15.2>`_
Critical ROCm libraries for TensorFlow
@@ -117,7 +119,8 @@ Critical ROCm libraries for TensorFlow
TensorFlow depends on multiple components and the supported features of those
components can affect the TensorFlow ROCm supported feature set. The versions
in the following table refer to the first TensorFlow version where the ROCm
library was introduced as a dependency.
library was introduced as a dependency. The versions described
are available in ROCm :version:`rocm_version`.
.. list-table::
:widths: 25, 10, 35, 30
@@ -128,43 +131,43 @@ library was introduced as a dependency.
- Purpose
- Used in
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`_
- 2.3.0
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Accelerates operations like ``tf.matmul``, ``tf.linalg.matmul``, and
other matrix multiplications commonly used in neural network layers.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`_
- 0.10.0
- :version-ref:`hipBLASLt rocm_version`
- Extends hipBLAS with additional optimizations like fused kernels and
integer tensor cores.
- Optimizes matrix multiplications and linear algebra operations used in
layers like dense, convolutional, and RNNs in TensorFlow.
* - `hipCUB <https://github.com/ROCm/hipCUB>`_
- 3.3.0
- :version-ref:`hipCUB rocm_version`
- Provides a C++ template library for parallel algorithms for reduction,
scan, sort and select.
- Supports operations like ``tf.reduce_sum``, ``tf.cumsum``, ``tf.sort``
and other tensor operations in TensorFlow, especially those involving
scanning, sorting, and filtering.
* - `hipFFT <https://github.com/ROCm/hipFFT>`_
- 1.0.17
- :version-ref:`hipFFT rocm_version`
- Accelerates Fast Fourier Transforms (FFT) for signal processing tasks.
- Used for operations like signal processing, image filtering, and
certain types of neural networks requiring FFT-based transformations.
* - `hipSOLVER <https://github.com/ROCm/hipSOLVER>`_
- 2.3.0
- :version-ref:`hipSOLVER rocm_version`
- Provides GPU-accelerated direct linear solvers for dense and sparse
systems.
- Optimizes linear algebra functions such as solving systems of linear
equations, often used in optimization and training tasks.
* - `hipSPARSE <https://github.com/ROCm/hipSPARSE>`_
- 3.1.2
- :version-ref:`hipSPARSE rocm_version`
- Optimizes sparse matrix operations for efficient computations on sparse
data.
- Accelerates sparse matrix operations in models with sparse weight
matrices or activations, commonly used in neural networks.
* - `MIOpen <https://github.com/ROCm/MIOpen>`_
- 3.3.0
- :version-ref:`MIOpen rocm_version`
- Provides optimized deep learning primitives such as convolutions,
pooling,
normalization, and activation functions.
@@ -172,13 +175,13 @@ library was introduced as a dependency.
in TensorFlow for layers like ``tf.nn.conv2d``, ``tf.nn.relu``, and
``tf.nn.lstm_cell``.
* - `RCCL <https://github.com/ROCm/rccl>`_
- 2.21.5
- :version-ref:`RCCL rocm_version`
- Optimizes for multi-GPU communication for operations like AllReduce and
Broadcast.
- Distributed data parallel training (``tf.distribute.MirroredStrategy``).
Handles communication in multi-GPU setups.
* - `rocThrust <https://github.com/ROCm/rocThrust>`_
- 3.3.0
- :version-ref:`rocThrust rocm_version`
- Provides a C++ template library for parallel algorithms like sorting,
reduction, and scanning.
- Reduction operations like ``tf.reduce_sum``, ``tf.cumsum`` for computing

View File

@@ -32,7 +32,7 @@ architecture.
* [AMD Instinct™ MI250 microarchitecture](./gpu-arch/mi250.md)
* [AMD Instinct MI200/CDNA2 ISA](https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf)
* [White paper](https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf)
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf)
* [Performance counters](./gpu-arch/mi300-mi200-performance-counters.rst)
:::
@@ -45,7 +45,7 @@ architecture.
* [AMD Instinct™ MI100 microarchitecture](./gpu-arch/mi100.md)
* [AMD Instinct MI100/CDNA1 ISA](https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf)
* [White paper](https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf)
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf)
:::
@@ -55,7 +55,6 @@ architecture.
* [AMD RDNA3 ISA](https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf)
* [AMD RDNA2 ISA](https://www.amd.com/system/files/TechDocs/rdna2-shader-instruction-set-architecture.pdf)
* [AMD RDNA ISA](https://www.amd.com/system/files/TechDocs/rdna-shader-instruction-set-architecture.pdf)
* [AMD RDNA Architecture White Paper](https://www.amd.com/system/files/documents/rdna-whitepaper.pdf)
:::

View File

@@ -6,6 +6,8 @@
import os
import shutil
import sys
from pathlib import Path
shutil.copy2("../RELEASE.md", "./about/release-notes.md")
@@ -49,6 +51,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
@@ -63,7 +68,7 @@ article_pages = [
{"file": "how-to/rocm-for-ai/inference/llm-inference-frameworks", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/vllm-benchmark", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference/deploy-your-model", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/model-quantization", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/inference-optimization/model-acceleration-libraries", "os": ["linux"]},
@@ -86,11 +91,16 @@ article_pages = [
external_toc_path = "./sphinx/_toc.yml"
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap"]
# Add the _extensions directory to Python's search path
sys.path.append(str(Path(__file__).parent / 'extension'))
extensions = ["rocm_docs", "sphinx_reredirects", "sphinx_sitemap", "sphinxcontrib.datatemplates", "version-ref"]
compatibility_matrix_file = str(Path(__file__).parent / 'compatibility/compatibility-matrix-historical-6.0.csv')
external_projects_current_project = "rocm"
# Uncomment if facing rate limit exceed issue with local build
# Uncomment if facing rate limit exceed issue with local build
# external_projects_remote_repository = ""
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "https://rocm-stg.amd.com/")
@@ -101,8 +111,9 @@ if os.environ.get("READTHEDOCS", "") == "True":
html_theme = "rocm_docs_theme"
html_theme_options = {"flavor": "rocm-docs-home"}
html_static_path = ["sphinx/static/css"]
html_css_files = ["rocm_custom.css", "rocm_rn.css"]
html_static_path = ["sphinx/static/css", "extension/how-to/rocm-for-ai/inference"]
html_css_files = ["rocm_custom.css", "rocm_rn.css", "vllm-benchmark.css"]
html_js_files = ["vllm-benchmark.js"]
html_title = "ROCm Documentation"

View File

@@ -0,0 +1,153 @@
vllm_benchmark:
unified_docker:
latest:
pull_tag: rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9
rocm_version: 6.3.1
vllm_version: 0.6.6
pytorch_version: 2.7.0 (2.7.0a0+git3a58512)
model_groups:
- group: Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
- model: Llama 3.2 11B Vision
mad_tag: pyt_vllm_llama-3.2-11b-vision-instruct
model_repo: meta-llama/Llama-3.2-11B-Vision-Instruct
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
precision: float16
- model: Llama 2 7B
mad_tag: pyt_vllm_llama-2-7b
model_repo: meta-llama/Llama-2-7b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
precision: float16
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
- group: Mistral
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
- model: Mistral 7B
mad_tag: pyt_vllm_mistral-7b
model_repo: mistralai/Mistral-7B-Instruct-v0.3
url: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
precision: float16
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
- model: Mistral 7B FP8
mad_tag: pyt_vllm_mistral-7b_fp8
model_repo: amd/Mistral-7B-v0.1-FP8-KV
url: https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV
precision: float8
- group: Qwen
tag: qwen
models:
- model: Qwen2 7B
mad_tag: pyt_vllm_qwen2-7b
model_repo: Qwen/Qwen2-7B-Instruct
url: https://huggingface.co/Qwen/Qwen2-7B-Instruct
precision: float16
- model: Qwen2 72B
mad_tag: pyt_vllm_qwen2-72b
model_repo: Qwen/Qwen2-72B-Instruct
url: https://huggingface.co/Qwen/Qwen2-72B-Instruct
precision: float16
- group: JAIS
tag: jais
models:
- model: JAIS 13B
mad_tag: pyt_vllm_jais-13b
model_repo: core42/jais-13b-chat
url: https://huggingface.co/core42/jais-13b-chat
precision: float16
- model: JAIS 30B
mad_tag: pyt_vllm_jais-30b
model_repo: core42/jais-30b-chat-v3
url: https://huggingface.co/core42/jais-30b-chat-v3
precision: float16
- group: DBRX
tag: dbrx
models:
- model: DBRX Instruct
mad_tag: pyt_vllm_dbrx-instruct
model_repo: databricks/dbrx-instruct
url: https://huggingface.co/databricks/dbrx-instruct
precision: float16
- model: DBRX Instruct FP8
mad_tag: pyt_vllm_dbrx_fp8
model_repo: amd/dbrx-instruct-FP8-KV
url: https://huggingface.co/amd/dbrx-instruct-FP8-KV
precision: float8
- group: Gemma
tag: gemma
models:
- model: Gemma 2 27B
mad_tag: pyt_vllm_gemma-2-27b
model_repo: google/gemma-2-27b
url: https://huggingface.co/google/gemma-2-27b
precision: float16
- group: Cohere
tag: cohere
models:
- model: C4AI Command R+ 08-2024
mad_tag: pyt_vllm_c4ai-command-r-plus-08-2024
model_repo: CohereForAI/c4ai-command-r-plus-08-2024
url: https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
precision: float16
- model: C4AI Command R+ 08-2024 FP8
mad_tag: pyt_vllm_command-r-plus_fp8
model_repo: amd/c4ai-command-r-plus-FP8-KV
url: https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV
precision: float8
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek MoE 16B
mad_tag: pyt_vllm_deepseek-moe-16b-chat
model_repo: deepseek-ai/deepseek-moe-16b-chat
url: https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat
precision: float16

View File

View File

@@ -0,0 +1,212 @@
function ready(proc) {
// Check if page is loaded. If so, init.
if (document.readyState !== "loading") {
proc();
} else {
// Otherwise, wait for DOMContentLoaded event.
document.addEventListener("DOMContentLoaded", proc);
}
}
ready(() => {
const ModelPicker = {
// Selector strings for DOM elements
SELECTORS: {
CONTAINER: "#vllm-benchmark-ud-params-picker",
MODEL_GROUP_BTN: 'div[data-param-k="model-group"][data-param-v]',
MODEL_PARAM_BTN: 'div[data-param-k="model"][data-param-v]',
MODEL_DOC: "div.model-doc",
},
CSS_CLASSES: {
HIDDEN: "hidden",
},
ATTRIBUTES: {
PARAM_KEY: "data-param-k", // URL search parameter key (i.e., "model")
PARAM_VALUE: "data-param-v", // URL search param value (e.g., "pyt_vllm_llama-3.1-8b", "pyt_vllm_llama-3.1-70b") -- these are MAD model tags
PARAM_GROUP: "data-param-group", // Model group (e.g., "llama", "mistral")
PARAM_STATE: "data-param-state", // Selection state
},
// Cache DOM elements
elements: {
container: null,
modelGroups: null,
modelParams: null,
modelDocs: null,
},
data: {
availableModels: new Set(),
modelsByGroup: new Map(),
modelToGroupMap: new Map(),
formattedModelClassMap: new Map(), //TODO
},
init() {
this.elements.container = document.querySelector(
this.SELECTORS.CONTAINER,
);
if (!this.elements.container) return;
this.cacheDOMElements();
if (!this.validateElements()) return;
this.buildModelData();
this.bindEvents();
this.initializeState();
},
cacheDOMElements() {
const { CONTAINER, MODEL_GROUP_BTN, MODEL_PARAM_BTN, MODEL_DOC } =
this.SELECTORS;
this.elements = {
container: document.querySelector(CONTAINER),
modelGroups: document.querySelectorAll(MODEL_GROUP_BTN),
modelParams: document.querySelectorAll(MODEL_PARAM_BTN),
modelDocs: document.querySelectorAll(MODEL_DOC),
};
},
validateElements() {
const { modelGroups, modelParams } = this.elements;
if (!modelGroups.length || !modelParams.length) {
console.warn("Model picker is missing required elements");
return false;
}
return true;
},
buildModelData() {
const { PARAM_VALUE, PARAM_GROUP } = this.ATTRIBUTES;
this.elements.modelParams.forEach((model) => {
const modelTag = model.getAttribute(PARAM_VALUE);
const groupTag = model.getAttribute(PARAM_GROUP);
if (!modelTag || !groupTag) return;
this.data.availableModels.add(modelTag);
this.data.modelToGroupMap.set(modelTag, groupTag);
// FIXME: this is because Sphinx auto-formats class names to use dashes
this.data.formattedModelClassMap.set(
modelTag,
modelTag.replace(/[^a-zA-Z0-9]/g, "-"),
);
if (!this.data.modelsByGroup.has(groupTag)) {
this.data.modelsByGroup.set(groupTag, []);
}
this.data.modelsByGroup.get(groupTag).push(modelTag);
});
},
// Event listeners for user interactions
bindEvents() {
const handleInteraction = (event) => {
const target = event.target.closest(`[${this.ATTRIBUTES.PARAM_KEY}]`);
if (!target) return;
const paramType = target.getAttribute(this.ATTRIBUTES.PARAM_KEY);
const paramValue = target.getAttribute(this.ATTRIBUTES.PARAM_VALUE);
if (paramType === "model") {
const groupTag = target.getAttribute(this.ATTRIBUTES.PARAM_GROUP);
if (groupTag) this.updateUI(paramValue, groupTag);
} else if (paramType === "model-group") {
const firstModelInGroup = this.data.modelsByGroup.get(paramValue)
?.[0];
if (firstModelInGroup) this.updateUI(firstModelInGroup, paramValue);
}
};
this.elements.container.addEventListener("click", handleInteraction);
this.elements.container.addEventListener("keydown", (event) => {
if (event.key === "Enter" || event.key === " ") {
event.preventDefault();
handleInteraction(event);
}
});
},
// Update the page based on the selected model
updateUI(modelTag, groupTag) {
const validModel = this.setModelSearchParam(modelTag);
// Update model group buttons
this.elements.modelGroups.forEach((group) => {
const isSelected =
group.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === groupTag;
group.setAttribute(
this.ATTRIBUTES.PARAM_STATE,
isSelected ? "selected" : "",
);
group.setAttribute("aria-selected", isSelected.toString());
});
// Update model buttons
this.elements.modelParams.forEach((model) => {
const isInSelectedGroup =
model.getAttribute(this.ATTRIBUTES.PARAM_GROUP) === groupTag;
const isSelectedModel =
model.getAttribute(this.ATTRIBUTES.PARAM_VALUE) === validModel;
model.classList.toggle(this.CSS_CLASSES.HIDDEN, !isInSelectedGroup);
model.setAttribute(
this.ATTRIBUTES.PARAM_STATE,
isSelectedModel ? "selected" : "",
);
model.setAttribute("aria-selected", isSelectedModel.toString());
});
// Update visibility of doc sections
const formattedClass = this.data.formattedModelClassMap.get(validModel);
if (formattedClass) {
this.elements.modelDocs.forEach((doc) => {
doc.classList.toggle(
this.CSS_CLASSES.HIDDEN,
!doc.classList.contains(formattedClass),
);
});
}
},
// Get the current model from the URL search parameters.
getModelSearchParam() {
return new URLSearchParams(location.search).get("model");
},
// Set the model in the URL search parameters, or fallback to the first available one.
setModelSearchParam(modelTag) {
const defaultModel = [...this.data.availableModels][0];
const model = this.data.availableModels.has(modelTag)
? modelTag
: defaultModel;
const searchParams = new URLSearchParams(location.search);
searchParams.set("model", model);
history.replaceState(
{},
"",
`${location.pathname}?${searchParams.toString()}`,
);
return model;
},
// Initialize the UI state based on the current URL search parameter or default values.
initializeState() {
const currentModel = this.getModelSearchParam();
const validModel = this.setModelSearchParam(currentModel);
const initialGroup = this.data.modelToGroupMap.get(validModel) ??
[...this.data.modelsByGroup.keys()][0];
if (initialGroup) {
this.updateUI(validModel, initialGroup);
}
},
};
ModelPicker.init();
});

View File

@@ -0,0 +1,266 @@
from docutils import nodes
from docutils.parsers.rst import Directive
from sphinx.util import logging
import csv
from io import StringIO
import re
import shlex
logger = logging.getLogger(__name__)
class VersionReference(nodes.Inline, nodes.TextElement):
"""Represents an inline version reference."""
pass
class VersionSetDirective(Directive):
"""Directive for setting version references within a page scope."""
required_arguments = 2 # name and value
optional_arguments = 0
def run(self):
env = self.state.document.settings.env
if not hasattr(env, 'doc_version_refs'):
env.doc_version_refs = {}
current_doc = env.docname
if current_doc not in env.doc_version_refs:
env.doc_version_refs[current_doc] = {}
name, value = self.arguments
if name.lower() == 'latest':
logger.warning('Cannot override the "latest" keyword with version-set')
return []
# Handle 'latest' value by getting the actual version
if value.lower() == 'latest':
data = getattr(env, 'compatibility_matrix', None)
if data:
latest_version = get_latest_rocm_version(data)
if latest_version:
value = latest_version
env.doc_version_refs[current_doc][name] = value
return []
def clean_library_name(name):
"""Extract library name from RST formatting."""
# Handle :doc: format
doc_match = re.search(r':doc:`([^<]+)(?:\s+<[^>]+>)?`', name)
if doc_match:
return doc_match.group(1).strip()
# Handle other link formats
link_match = re.search(r'`([^<]+)(?:\s+<[^>]+>)?`_?', name)
if link_match:
return link_match.group(1).strip()
return name.strip()
def get_latest_rocm_version(data):
"""Get the latest ROCm version from the matrix headers."""
if not data or len(data) == 0:
return None
# Get all column names except 'ROCm Version'
columns = [col for col in data[0].keys() if col != 'ROCm Version']
# Return the first column name (assumed to be the latest version)
return columns[0] if columns else None
def version_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
"""
Role function to print version value.
Usage: :version:`version_name`
"""
try:
version_name = text.strip()
env = inliner.document.settings.env
if hasattr(env, 'doc_version_refs'):
current_doc = env.docname
if current_doc in env.doc_version_refs:
doc_refs = env.doc_version_refs[current_doc]
if version_name in doc_refs:
version = doc_refs[version_name]
node = nodes.Text(version)
return [node], []
msg = inliner.reporter.warning(
f'No version defined for name {version_name}',
line=lineno
)
return [], [msg]
except Exception as e:
msg = inliner.reporter.error(
f'Error looking up version: {str(e)}',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
def version_ref_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
"""
Role function for version references.
Usage: :version-ref:`library_name release`
:version-ref:`"library name" release`
:version-ref:`library_name latest`
:version-ref:`rocm latest`
"""
try:
# Parse the text - handle both quoted and unquoted formats
if '"' in text:
parts = shlex.split(text)
else:
parts = text.split()
if len(parts) != 2:
msg = inliner.reporter.error(
'Version reference must be in format "library_name release" or "\\"library name\\" release"',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
library_name, release = parts
env = inliner.document.settings.env
# Check if release is a version reference in current document
if hasattr(env, 'doc_version_refs'):
current_doc = env.docname
if current_doc in env.doc_version_refs:
doc_refs = env.doc_version_refs[current_doc]
if release in doc_refs:
release = doc_refs[release]
# Handle special case for "rocm latest"
if library_name.lower() == 'rocm' and release.lower() == 'latest':
data = getattr(env, 'compatibility_matrix', None)
if not data:
raise ValueError("Compatibility matrix not found in environment")
latest_version = get_latest_rocm_version(data)
if latest_version:
node = VersionReference()
node += nodes.Text(latest_version)
return [node], []
else:
msg = inliner.reporter.warning(
'No ROCm versions found in compatibility matrix',
line=lineno
)
return [], [msg]
version = lookup_version(inliner, library_name, release)
if version:
node = VersionReference()
node += nodes.Text(version)
return [node], []
else:
msg = inliner.reporter.warning(
f'No version found for library {library_name} in release {release}',
line=lineno
)
return [], [msg]
except Exception as e:
msg = inliner.reporter.error(
f'Error looking up version: {str(e)}',
line=lineno
)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
def lookup_version(inliner, library_name, release):
"""Look up the version in the compatibility matrix."""
env = inliner.document.settings.env
data = getattr(env, 'compatibility_matrix', None)
if not data:
raise ValueError("Compatibility matrix not found in environment")
# Handle the 'latest' keyword
if release.lower() == 'latest':
latest_version = get_latest_rocm_version(data)
if not latest_version:
return None
release = latest_version
# For ROCm, check if the version exists in column headers
if library_name.lower() == 'rocm':
columns = [col for col in data[0].keys() if col != 'ROCm Version']
if release in columns:
return release
return None
# Find the library version
for row in data:
row_lib_name = clean_library_name(row['ROCm Version'])
if row_lib_name == library_name:
# Get the version, removing any whitespace
version = row.get(release, '').strip()
if version:
return version
# If not found, try a case-insensitive search
for row in data:
row_lib_name = clean_library_name(row['ROCm Version'])
if row_lib_name.lower() == library_name.lower():
version = row.get(release, '').strip()
if version:
return version
return None
def visit_version_reference(self, node):
self.body.append(f'<span class="version-reference">')
def depart_version_reference(self, node):
self.body.append('</span>')
def load_compatibility_matrix(app):
"""Load the compatibility matrix content from CSV."""
if not app.config.compatibility_matrix_file:
logger.warning('No compatibility matrix file configured')
return
try:
with open(app.config.compatibility_matrix_file, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
app.env.compatibility_matrix = list(reader)
logger.info('Successfully loaded compatibility matrix')
# Debug: print first few rows with their library names
for row in list(app.env.compatibility_matrix)[:5]:
if 'ROCm Version' in row:
lib_name = clean_library_name(row['ROCm Version'])
logger.debug(f"Loaded library: {lib_name}")
except Exception as e:
logger.error(f'Error loading compatibility matrix: {str(e)}')
def purge_version_refs(app, env, docname):
"""Remove version references for a document when it is purged"""
if hasattr(env, 'doc_version_refs'):
if docname in env.doc_version_refs:
del env.doc_version_refs[docname]
def setup(app):
app.add_node(VersionReference,
html=(visit_version_reference, depart_version_reference))
app.add_role('version-ref', version_ref_role)
app.add_role('version', version_role)
app.add_directive('version-set', VersionSetDirective)
# Add a config value for the compatibility matrix file path
app.add_config_value('compatibility_matrix_file', None, 'env')
# Connect to the builder-inited event to load the matrix
app.connect('builder-inited', load_compatibility_matrix)
# Connect to env-purge-doc event to clean up document-specific version refs
app.connect('env-purge-doc', purge_version_refs)
return {
'parallel_read_safe': True,
'parallel_write_safe': True,
}

View File

@@ -9,422 +9,266 @@ LLM inference performance validation on AMD Instinct MI300X
.. _vllm-benchmark-unified-docker:
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
{% set unified_docker = data.vllm_benchmark.unified_docker.latest %}
{% set model_groups = data.vllm_benchmark.model_groups %}
* `vLLM 0.6.6 <https://docs.vllm.ai/en/latest>`_
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-options>`.
* `vLLM {{ unified_docker.vllm_version }} <https://docs.vllm.ai/en/latest>`_
.. _vllm-benchmark-vllm:
* `PyTorch {{ unified_docker.pytorch_version }} <https://github.com/pytorch/pytorch>`_
.. note::
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
optimizing performance with popular AI models.
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
.. _vllm-benchmark-available-models:
Getting started
===============
Available models
================
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
.. raw:: html
.. _vllm-benchmark-get-started:
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row">
<div class="col-2 me-2 model-param-head">Model</div>
<div class="row col-10">
{% for model_group in model_groups %}
<div class="col-3 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
1. Disable NUMA auto-balancing.
<div class="row mt-1">
<div class="col-2 me-2 model-param-head">Model variant</div>
<div class="row col-10">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
.. _vllm-benchmark-vllm:
.. code-block:: shell
{% for model_group in model_groups %}
{% for model in model_group.models %}
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. container:: model-doc {{model.mad_tag}}
2. Download the :ref:`ROCm vLLM Docker image <vllm-benchmark-unified-docker>`.
.. note::
Use the following command to pull the Docker image from Docker Hub.
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
.. code-block:: shell
{% endfor %}
{% endfor %}
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. note::
- :ref:`MAD-integrated benchmarking <vllm-benchmark-mad>`
vLLM is a toolkit and library for LLM inference and serving. AMD implements
high-performance custom kernels and modules in vLLM to enhance performance.
See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
more information.
- :ref:`Standalone benchmarking <vllm-benchmark-standalone>`
Getting started
===============
.. _vllm-benchmark-mad:
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
MAD-integrated benchmarking
===========================
.. _vllm-benchmark-get-started:
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
1. Disable NUMA auto-balancing.
.. code-block:: shell
To optimize performance, disable automatic NUMA balancing. Otherwise, the GPU
might hang until the periodic balancing is finalized. For more information,
see :ref:`AMD Instinct MI300X system optimization <mi300x-disable-numa>`.
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
.. code-block:: shell
Use this command to run a performance benchmark test of the Llama 3.1 8B model
on one GPU with ``float16`` data type in the host machine.
# disable automatic NUMA balancing
sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
# check if NUMA balancing is disabled (returns 0 if disabled)
cat /proc/sys/kernel/numa_balancing
0
.. code-block:: shell
2. Download the `ROCm vLLM Docker image <{{ unified_docker.docker_hub_url }}>`_.
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags pyt_vllm_llama-3.1-8b --keep-model-dir --live-output --timeout 28800
Use the following command to pull the Docker image from Docker Hub.
ROCm MAD launches a Docker container with the name
``container_ci-pyt_vllm_llama-3.1-8b``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_float16/``.
.. code-block:: shell
Although the following models are preconfigured to collect latency and
throughput performance data, you can also change the benchmarking parameters.
Refer to the :ref:`Standalone benchmarking <vllm-benchmark-standalone>` section.
docker pull {{ unified_docker.pull_tag }}
.. _vllm-benchmark-mad-models:
Benchmarking
============
Available models
----------------
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. list-table::
:header-rows: 1
:widths: 2, 3
.. _vllm-benchmark-mad:
* - Model name
- Tag
{% for model_group in model_groups %}
{% for model in model_group.models %}
* - `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
- ``pyt_vllm_llama-3.1-8b``
.. container:: model-doc {{model.mad_tag}}
* - `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
- ``pyt_vllm_llama-3.1-70b``
.. tab-set::
* - `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
- ``pyt_vllm_llama-3.1-405b``
.. tab-item:: MAD-integrated benchmarking
* - `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
- ``pyt_vllm_llama-3.2-11b-vision-instruct``
Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
* - `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
- ``pyt_vllm_llama-2-7b``
.. code-block:: shell
* - `Llama 2 70B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
- ``pyt_vllm_llama-2-70b``
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
* - `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x7b``
Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the ``{{model.precision}}`` data type on the host machine.
* - `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
- ``pyt_vllm_mixtral-8x22b``
.. code-block:: shell
* - `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
- ``pyt_vllm_mistral-7b``
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
python3 tools/run_models.py --tags {{model.mad_tag}} --keep-model-dir --live-output --timeout 28800
* - `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
- ``pyt_vllm_qwen2-7b``
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The latency and throughput reports of the
model are collected in the following path: ``~/MAD/reports_{{model.precision}}/``.
* - `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
- ``pyt_vllm_qwen2-72b``
Although the :ref:`available models <vllm-benchmark-available-models>` are preconfigured
to collect latency and throughput performance data, you can also change the benchmarking
parameters. See the standalone benchmarking tab for more information.
* - `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
- ``pyt_vllm_jais-13b``
.. tab-item:: Standalone benchmarking
* - `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
- ``pyt_vllm_jais-30b``
Run the vLLM benchmark tool independently by starting the
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
as shown in the following snippet.
* - `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
- ``pyt_vllm_dbrx-instruct``
.. code-block::
* - `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
- ``pyt_vllm_gemma-2-27b``
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
* - `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
- ``pyt_vllm_c4ai-command-r-plus-08-2024``
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
* - `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
- ``pyt_vllm_deepseek-moe-16b-chat``
.. code-block::
* - `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-70b_fp8``
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
* - `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
- ``pyt_vllm_llama-3.1-405b_fp8``
To start the benchmark, use the following command with the appropriate options.
* - `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x7b_fp8``
.. code-block::
* - `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
- ``pyt_vllm_mixtral-8x22b_fp8``
./vllm_benchmark_report.sh -s $test_option -m {{model.model_repo}} -g $num_gpu -d {{model.precision}}
* - `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
- ``pyt_vllm_mistral-7b_fp8``
.. list-table::
:header-rows: 1
:align: center
* - `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
- ``pyt_vllm_dbrx_fp8``
* - Name
- Options
- Description
* - `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
- ``pyt_vllm_command-r-plus_fp8``
* - ``$test_option``
- latency
- Measure decoding token latency
.. _vllm-benchmark-standalone:
* -
- throughput
- Measure token generation throughput
Standalone benchmarking
=======================
* -
- all
- Measure both throughput and latency
You can run the vLLM benchmark tool independently by starting the
`Docker container <https://hub.docker.com/layers/rocm/vllm/rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6/images/sha256-9a12ef62bbbeb5a4c30a01f702c8e025061f575aa129f291a49fbd02d6b4d6c9>`_
as shown in the following snippet.
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
.. code-block::
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
docker pull rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
docker run -it --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --security-opt seccomp=unconfined --security-opt apparmor=unconfined --cap-add=SYS_PTRACE -v $(pwd):/workspace --env HUGGINGFACE_HUB_CACHE=/workspace --name vllm_v0.6.6 rocm/vllm:rocm6.3.1_mi300_ubuntu22.04_py3.12_vllm_0.6.6
.. note::
In the Docker container, clone the ROCm MAD repository and navigate to the
benchmark scripts directory at ``~/MAD/scripts/vllm``.
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. code-block::
.. note::
git clone https://github.com/ROCm/MAD
cd MAD/scripts/vllm
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
Command
-------
.. code-block::
To start the benchmark, use the following command with the appropriate options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
OSError: You are trying to access a gated repo.
.. code-block:: shell
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
./vllm_benchmark_report.sh -s $test_option -m $model_repo -g $num_gpu -d $datatype
Here are some examples of running the benchmark with various options.
See the :ref:`examples <vllm-benchmark-run-benchmark>` for more information.
* Latency benchmark
.. note::
Use this command to benchmark the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
The input sequence length, output sequence length, and tensor parallel (TP) are
already configured. You don't need to specify them with this script.
.. code-block::
.. note::
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
Find the latency report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_latency_report.csv``.
.. code-block:: shell
* Throughput benchmark
OSError: You are trying to access a gated repo.
Use this command to throughput the latency of the {{model.model}} model on eight GPUs with the ``{{model.precision}}`` data type.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. code-block:: shell
.. _vllm-benchmark-standalone-options:
./vllm_benchmark_report.sh -s latency -m {{model.model_repo}} -g 8 -d {{model.precision}}
Options and available models
----------------------------
Find the throughput report at ``./reports_{{model.precision}}_vllm_rocm{{unified_docker.rocm_version}}/summary/{{model.model_repo.split('/', 1)[1] if '/' in model.model_repo else model.model_repo}}_throughput_report.csv``.
.. list-table::
:header-rows: 1
:align: center
.. raw:: html
* - Name
- Options
- Description
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
* - ``$test_option``
- latency
- Measure decoding token latency
.. note::
* -
- throughput
- Measure token generation throughput
Throughput is calculated as:
* -
- all
- Measure both throughput and latency
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
* - ``$model_repo``
- ``meta-llama/Llama-3.1-8B-Instruct``
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B>`_
* - (``float16``)
- ``meta-llama/Llama-3.1-70B-Instruct``
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- ``meta-llama/Llama-3.1-405B-Instruct``
- `Llama 3.1 405B <https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct>`_
* -
- ``meta-llama/Llama-3.2-11B-Vision-Instruct``
- `Llama 3.2 11B Vision <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>`_
* -
- ``meta-llama/Llama-2-7b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>`_
* -
- ``meta-llama/Llama-2-70b-chat-hf``
- `Llama 2 7B <https://huggingface.co/meta-llama/Llama-2-70b-chat-hf>`_
* -
- ``mistralai/Mixtral-8x7B-Instruct-v0.1``
- `Mixtral MoE 8x7B <https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1>`_
* -
- ``mistralai/Mixtral-8x22B-Instruct-v0.1``
- `Mixtral MoE 8x22B <https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1>`_
* -
- ``mistralai/Mistral-7B-Instruct-v0.3``
- `Mistral 7B <https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>`_
* -
- ``Qwen/Qwen2-7B-Instruct``
- `Qwen2 7B <https://huggingface.co/Qwen/Qwen2-7B-Instruct>`_
* -
- ``Qwen/Qwen2-72B-Instruct``
- `Qwen2 72B <https://huggingface.co/Qwen/Qwen2-72B-Instruct>`_
* -
- ``core42/jais-13b-chat``
- `JAIS 13B <https://huggingface.co/core42/jais-13b-chat>`_
* -
- ``core42/jais-30b-chat-v3``
- `JAIS 30B <https://huggingface.co/core42/jais-30b-chat-v3>`_
* -
- ``databricks/dbrx-instruct``
- `DBRX Instruct <https://huggingface.co/databricks/dbrx-instruct>`_
* -
- ``google/gemma-2-27b``
- `Gemma 2 27B <https://huggingface.co/google/gemma-2-27b>`_
* -
- ``CohereForAI/c4ai-command-r-plus-08-2024``
- `C4AI Command R+ 08-2024 <https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024>`_
* -
- ``deepseek-ai/deepseek-moe-16b-chat``
- `DeepSeek MoE 16B <https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat>`_
* - ``$model_repo``
- ``amd/Llama-3.1-70B-Instruct-FP8-KV``
- `Llama 3.1 70B FP8 <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`_
* - (``float8``)
- ``amd/Llama-3.1-405B-Instruct-FP8-KV``
- `Llama 3.1 405B FP8 <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`_
* -
- ``amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x7B FP8 <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV``
- `Mixtral MoE 8x22B FP8 <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`_
* -
- ``amd/Mistral-7B-v0.1-FP8-KV``
- `Mistral 7B FP8 <https://huggingface.co/amd/Mistral-7B-v0.1-FP8-KV>`_
* -
- ``amd/dbrx-instruct-FP8-KV``
- `DBRX Instruct FP8 <https://huggingface.co/amd/dbrx-instruct-FP8-KV>`_
* -
- ``amd/c4ai-command-r-plus-FP8-KV``
- `C4AI Command R+ 08-2024 FP8 <https://huggingface.co/amd/c4ai-command-r-plus-FP8-KV>`_
* - ``$num_gpu``
- 1 or 8
- Number of GPUs
* - ``$datatype``
- ``float16`` or ``float8``
- Data type
.. _vllm-benchmark-run-benchmark:
Running the benchmark on the MI300X accelerator
-----------------------------------------------
Here are some examples of running the benchmark with various options.
See :ref:`Options <vllm-benchmark-standalone-options>` for the list of
options and their descriptions.
Example 1: latency benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the latency of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block::
./vllm_benchmark_report.sh -s latency -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s latency -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the latency reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_latency_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_latency_report.csv``
Example 2: throughput benchmark
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use this command to benchmark the throughput of the Llama 3.1 70B model on eight GPUs with the ``float16`` and ``float8`` data types.
.. code-block:: shell
./vllm_benchmark_report.sh -s throughput -m meta-llama/Llama-3.1-70B-Instruct -g 8 -d float16
./vllm_benchmark_report.sh -s throughput -m amd/Llama-3.1-70B-Instruct-FP8-KV -g 8 -d float8
Find the throughput reports at:
- ``./reports_float16/summary/Llama-3.1-70B-Instruct_throughput_report.csv``
- ``./reports_float8/summary/Llama-3.1-70B-Instruct-FP8-KV_throughput_report.csv``
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Further reading
===============
@@ -446,33 +290,3 @@ Further reading
- To learn how to fine-tune LLMs, see
:doc:`Fine-tuning LLMs <../fine-tuning/index>`.
Previous versions
=================
This table lists previous versions of the ROCm vLLM Docker image for inference
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- vLLM version
- PyTorch version
- Resources
* - 6.2.1
- 0.6.4
- 2.5.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4/images/sha256-ccbb74cc9e7adecb8f7bdab9555f7ac6fc73adb580836c2a35ca96ff471890d8>`_
* - 6.2.0
- 0.4.3
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.2.0/how-to/performance-validation/mi300x/vllm-benchmark.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.2_mi300_ubuntu22.04_py3.9_vllm_7c5fd50/images/sha256-9e4dd4788a794c3d346d7d0ba452ae5e92d39b8dfac438b2af8efdc7f15d22c0>`_

View File

@@ -0,0 +1,547 @@
:orphan:
.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
******************************************
Training a model with Megatron-LM for ROCm
******************************************
The Megatron-LM framework for ROCm is a specialized fork of the robust Megatron-LM,
designed to enable efficient training of large-scale language models on AMD
GPUs. By leveraging AMD Instinct™ MI300X series accelerators, Megatron-LM delivers
enhanced scalability, performance, and resource utilization for AI workloads.
It is purpose-built to support models like Llama 2, Llama 3, Llama 3.1, and
DeepSeek, enabling developers to train next-generation AI models more
efficiently. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
AMD provides a ready-to-use Docker image for MI300X accelerators containing
essential components, including PyTorch, ROCm libraries, and Megatron-LM
utilities. It contains the following software components to accelerate training
workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 3
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
* DeepSeek-V2-Lite
.. note::
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
.. _mi300x-amd-megatron-lm-training:
Environment setup
=================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 3.1, Llama 2, and DeepSeek V2.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:v25.3
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name megatron_training_env rocm/megatron-lm:v25.3
3. Use these commands if you exit the ``megatron_training_env`` container and need to return to it.
.. code-block:: shell
docker start megatron_training_env
docker exec -it megatron_training_env bash
The Docker container includes a pre-installed, verified version of Megatron-LM from the `release branch <https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3>`_.
.. _amd-megatron-lm-environment-setup:
Configuration scripts
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're working with Llama 2 7B or Llama 2 70 B, use the ``train_llama2.sh`` configuration
script in the ``examples/llama`` directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/llama>`__.
Likewise, if you're working with Llama 3 or Llama 3.1, then use ``train_llama3.sh`` and update
the configuration script accordingly.
.. tab-item:: DeepSeek V2
:sync: deepseek
Use the ``train_deepseek_v2.sh`` configuration script in the ``examples/deepseek_v2``
directory of
`<https://github.com/ROCm/Megatron-LM/tree/megatron_release_v25.3/examples/deepseek_v2>`__
and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
To avoid connectivity issues in multi-node deployments, ensure the correct network interface
is set in your training scripts.
1. Run the following command (outside the container) to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_PATH=${DATA_PATH:-"/data/bookcorpus_text_sentence"} # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
.. tab-item:: DeepSeek V2
:sync: deepseek
If you don't already have the dataset, download the DeepSeek dataset using the following
commands:
.. code-block:: shell
mkdir deepseek-datasets
cd deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``MOCK_DATA`` variable to toggle between mock and real data. The default
value is ``1`` for enabled.
.. code-block:: bash
MOCK_DATA=1
* If you're using a real dataset, update the ``DATA_DIR`` variable to point to the location of your dataset.
.. code-block:: bash
MOCK_DATA=0
DATA_DIR="/root/data/deepseek-datasets" # Change to where your dataset is stored
Ensure that the files are accessible inside the Docker container.
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
.. tab-set::
.. tab-item:: Llama
:sync: llama
To train any of the Llama 2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
.. tab-item:: DeepSeek V2
:sync: deepseek
To train any of the DeepSeek V2 models that :ref:`this Docker image supports <amd-megatron-lm-model-support>`, use the ``DeepSeekV2Tokenizer``.
Multi-node training
^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Llama
:sync: llama
If you're running multi-node training, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Set ``DATA_CACHE_PATH`` to a common directory accessible by all the nodes (for example, an
NFS directory) for multi-node runs:
.. code-block:: shell
DATA_CACHE_PATH=/root/cache # Set to a common directory for multi-node runs
* For multi-node runs, make sure the correct network drivers are installed on the nodes. If
inside a Docker, either install the drivers inside the Docker container or pass the network
drivers from the host while creating the Docker container.
Start training on AMD Instinct accelerators
===========================================
The prebuilt Megatron-LM with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD Megatron-LM Docker image.
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
To run training on a single node, navigate to the Megatron-LM folder and use the
following command:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=128 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 bash examples/llama/train_llama3.sh
.. tab-item:: Multi-node training
:sync: multi-node
To run training on multiple nodes, launch the Docker container on each node. For example, for a two node setup (``NODE0`` as the master node), use these commands.
* On the master node ``NODE0``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=0 bash examples/llama/train_llama3.sh
* On the worker node ``NODE1``:
.. code-block:: shell
TEE_OUTPUT=1 MBS=2 BS=256 TP=1 TE_FP8=1 SEQ_LENGTH=8192 MODEL_SIZE=8 MASTER_ADDR=IP_NODE0 NNODES=2 NODE_RANK=1 bash examples/llama/train_llama3.sh
.. tab-item:: DeepSeek V2
:sync: deepseek
To run the training on a single node, go to ``/Megatron-LM`` folder and use the following command:
.. code-block:: shell
cd /workspace/Megatron-LM
GEMM_TUNING=1 PR=bf16 MBS=4 AC=none bash examples/deepseek_v2/train_deepseekv2.sh
Key options
-----------
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the following sets of variables:
.. tab-set::
.. tab-item:: Llama
:sync: llama
``TEE_OUTPUT``
``1`` to enable training logs or ``0`` to disable.
``TE_FP8``
``0`` for BP16 (default) or ``1`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``USE_FLASH_ATTN``
``1`` to enable Flash Attention.
``ENABLE_PROFILING``
``1`` to enable PyTorch profiling for performance analysis.
``transformer-impl``
``transformer_engine`` to use the Transformer Engine (TE) or ``local`` to disable TE.
``MODEL_SIZE``
``8B`` or ``70B`` for Llama 3 and 3.1. ``7B`` or ``70B`` for Llama 2.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``BS``
Global batch size.
``TP``
Tensor parallel (``1``, ``2``, ``4``, ``8``).
``SEQ_LENGTH``
Input sequence length.
.. tab-item:: DeepSeek V2
:sync: deepseek
``PR``
Precision for training. ``bf16`` for BF16 (default) or ``fp8`` for FP8 GEMMs.
``GEMM_TUNING``
``1`` to enable GEMM tuning, which boosts performance by using the best GEMM kernels.
``TOTAL_ITERS``
The total number of iterations -- ``10`` by default.
``MOCK_DATA``
``1`` to use mock data or ``0`` to use real data provided by you.
``MBS``
Micro batch size.
``GBS``
Global batch size.
Benchmarking examples
---------------------
.. tab-set::
.. tab-item:: Llama
:sync: llama
.. tab-set::
.. tab-item:: Single node training
:sync: single-node
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi-node training
:sync: multi-node
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800
Previous versions
=================
This table lists previous versions of the ROCm Megatron-LM Docker image for training
performance validation. For detailed information about available models for
benchmarking, see the version-specific documentation.
.. list-table::
:header-rows: 1
:stub-columns: 1
* - ROCm version
- Megatron-LM version
- PyTorch version
- Resources
* - 6.1
- 24.12-dev
- 2.4.0
-
* `Documentation <https://rocm.docs.amd.com/en/docs-6.3.0/how-to/rocm-for-ai/train-a-model.html>`_
* `Docker Hub <https://hub.docker.com/layers/rocm/megatron-lm/24.12-dev/images/sha256-5818c50334ce3d69deeeb8f589d83ec29003817da34158ebc9e2d112b929bf2e>`_

View File

@@ -0,0 +1,341 @@
:orphan:
.. meta::
:description: How to train a model using PyTorch for ROCm.
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
**************************************
Training a model with PyTorch for ROCm
**************************************
PyTorch is an open-source machine learning framework that is widely used for
model training with GPU-optimized components for transformer-based models.
The PyTorch for ROCm training Docker (``rocm/pytorch-training:v25.3``) image
provides a prebuilt optimized environment for fine-tuning and pretraining a
model on AMD Instinct MI325X and MI300X accelerators. It includes the following
software components to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.3.0 |
+--------------------------+--------------------------------+
| PyTorch | 2.7.0a0+git637433 |
+--------------------------+--------------------------------+
| Python | 3.10 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.11 |
+--------------------------+--------------------------------+
| Flash Attention | 3.0.0 |
+--------------------------+--------------------------------+
| hipBLASLt | git258a2162 |
+--------------------------+--------------------------------+
| Triton | 3.1 |
+--------------------------+--------------------------------+
.. _amd-pytorch-training-model-support:
Supported models
================
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 3.1 8B
* Llama 3.1 70B
* FLUX.1-dev
.. note::
Only these models are supported in the following steps.
Some models, such as Llama 3, require an external license agreement through
a third party (for example, Meta).
System validation
=================
If you have already validated your system settings, skip this step. Otherwise,
complete the :ref:`system validation and optimization steps <train-a-model-system-validation>`
to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Environment setup
=================
This Docker image is optimized for specific model configurations outlined
below. Performance can vary for other training workloads, as AMD
doesnt validate configurations and run conditions outside those described.
Download the Docker image
-------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/pytorch-training:v25.3
2. Run the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $HOME:$HOME -v $HOME/.ssh:/root/.ssh --shm-size 64G --name training_env rocm/pytorch-training:v25.3
3. Use these commands if you exit the ``training_env`` container and need to return to it.
.. code-block:: shell
docker start training_env
docker exec -it training_env bash
4. In the Docker container, clone the `<https://github.com/ROCm/MAD>`__ repository and navigate to the benchmark scripts directory.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD/scripts/pytorch-train
Prepare training datasets and dependencies
------------------------------------------
The following benchmarking examples may require downloading models and datasets
from Hugging Face. To ensure successful access to gated repos, set your
``HF_TOKEN``.
Run the setup script to install libraries and datasets needed for benchmarking.
.. code-block:: shell
./pytorch_benchmark_setup.sh
``pytorch_benchmark_setup.sh`` installs the following libraries:
.. list-table::
:header-rows: 1
* - Library
- Benchmark model
- Reference
* - ``accelerate``
- Llama 3.1 8B, FLUX
- `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_
* - ``datasets``
- Llama 3.1 8B, 70B, FLUX
- `Hugging Face Datasets <https://huggingface.co/docs/datasets/v3.2.0/en/index>`_ 3.2.0
* - ``torchdata``
- Llama 3.1 70B
- `TorchData <https://pytorch.org/data/beta/index.html>`_
* - ``tomli``
- Llama 3.1 70B
- `Tomli <https://pypi.org/project/tomli/>`_
* - ``tiktoken``
- Llama 3.1 70B
- `tiktoken <https://github.com/openai/tiktoken>`_
* - ``blobfile``
- Llama 3.1 70B
- `blobfile <https://pypi.org/project/blobfile/>`_
* - ``tabulate``
- Llama 3.1 70B
- `tabulate <https://pypi.org/project/tabulate/>`_
* - ``wandb``
- Llama 3.1 70B
- `Weights & Biases <https://github.com/wandb/wandb>`_
* - ``sentencepiece``
- Llama 3.1 70B, FLUX
- `SentencePiece <https://github.com/google/sentencepiece>`_ 0.2.0
* - ``tensorboard``
- Llama 3.1 70 B, FLUX
- `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.18.0
* - ``csvkit``
- FLUX
- `csvkit <https://csvkit.readthedocs.io/en/latest/>`_ 2.0.1
* - ``deepspeed``
- FLUX
- `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_ 0.16.2
* - ``diffusers``
- FLUX
- `Hugging Face Diffusers <https://huggingface.co/docs/diffusers/en/index>`_ 0.31.0
* - ``GitPython``
- FLUX
- `GitPython <https://github.com/gitpython-developers/GitPython>`_ 3.1.44
* - ``opencv-python-headless``
- FLUX
- `opencv-python-headless <https://pypi.org/project/opencv-python-headless/>`_ 4.10.0.84
* - ``peft``
- FLUX
- `PEFT <https://huggingface.co/docs/peft/en/index>`_ 0.14.0
* - ``protobuf``
- FLUX
- `Protocol Buffers <https://github.com/protocolbuffers/protobuf>`_ 5.29.2
* - ``pytest``
- FLUX
- `PyTest <https://docs.pytest.org/en/stable/>`_ 8.3.4
* - ``python-dotenv``
- FLUX
- `python-dotenv <https://pypi.org/project/python-dotenv/>`_ 1.0.1
* - ``seaborn``
- FLUX
- `Seaborn <https://seaborn.pydata.org/>`_ 0.13.2
* - ``transformers``
- FLUX
- `Transformers <https://huggingface.co/docs/transformers/en/index>`_ 4.47.0
``pytorch_benchmark_setup.sh`` downloads the following models from Hugging Face:
* `meta-llama/Llama-3.1-70B-Instruct <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* `black-forest-labs/FLUX.1-dev <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Along with the following datasets:
* `WikiText <https://huggingface.co/datasets/Salesforce/wikitext>`_
* `bghira/pseudo-camera-10k <https://huggingface.co/datasets/bghira/pseudo-camera-10k>`_
Start training on AMD Instinct accelerators
===========================================
The prebuilt PyTorch with ROCm training environment allows users to quickly validate
system performance, conduct training benchmarks, and achieve superior
performance for models like Llama 3.1 and Llama 2. This container should not be
expected to provide generalized performance across all training workloads. You
can expect the container to perform in the model configurations described in
the following section, but other configurations are not validated by AMD.
Use the following instructions to set up the environment, configure the script
to train models, and reproduce the benchmark results on MI300X series
accelerators with the AMD PyTorch training Docker image.
Once your environment is set up, use the following commands and examples to start benchmarking.
Pretraining
-----------
To start the pretraining benchmark, use the following command with the
appropriate options. See the following list of options and their descriptions.
.. code-block:: shell
./pytorch_benchmark_report.sh -t $training_mode -m $model_repo -p $datatype -s $sequence_length
Options and available models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:header-rows: 1
* - Name
- Options
- Description
* - ``$training_mode``
- ``pretrain``
- Benchmark pretraining
* -
- ``finetune_fw``
- Benchmark full weight fine-tuning (Llama 3.1 70B with BF16)
* -
- ``finetune_lora``
- Benchmark LoRA fine-tuning (Llama 3.1 70B with BF16)
* - ``$datatype``
- FP8 or BF16
- Only Llama 3.1 8B supports FP8 precision.
* - ``$model_repo``
- Llama-3.1-8B
- `Llama 3.1 8B <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>`_
* -
- Llama-3.1-70B
- `Llama 3.1 70B <https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct>`_
* -
- Flux
- `FLUX.1 [dev] <https://huggingface.co/black-forest-labs/FLUX.1-dev>`_
Fine-tuning
-----------
To start the fine-tuning benchmark, use the following command. It will run the benchmarking example of Llama 2 70B
with the WikiText dataset using the AMD fork of `torchtune <https://github.com/AMD-AIG-AIMA/torchtune>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t {finetune_fw, finetune_lora} -p BF16 -m Llama-3.1-70B
Benchmarking examples
---------------------
Here are some examples of how to use the command.
* Example 1: Llama 3.1 70B with BF16 precision with `torchtitan <https://github.com/ROCm/torchtitan>`_.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Llama-3.1-70B -s 8192
* Example 2: Llama 3.1 8B with FP8 precision using Transformer Engine (TE) and Hugging Face Accelerator.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p FP8 -m Llama-3.1-70B -s 8192
* Example 3: FLUX.1-dev with BF16 precision with FluxBenchmark.
.. code-block:: shell
./pytorch_benchmark_report.sh -t pretrain -p BF16 -m Flux
* Example 4: Torchtune full weight fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_fw -p BF16 -m Llama-3.1-70B
* Example 5: Torchtune LoRA fine-tuning with Llama 3.1 70B
.. code-block:: shell
./pytorch_benchmark_report.sh -t finetune_lora -p BF16 -m Llama-3.1-70B

View File

@@ -19,6 +19,10 @@ training, fine-tuning, and inference. It leverages popular machine learning fram
In this guide, you'll learn about:
- :doc:`Training a model <train-a-model>`
- Training a model
- :doc:`Scale model training <scale-model-training>`
- :doc:`Train a model with Megatron-LM <benchmark-docker/megatron-lm>`
- :doc:`Train a model with PyTorch <benchmark-docker/pytorch-training>`
- :doc:`Scaling model training <scale-model-training>`

View File

@@ -0,0 +1,130 @@
:orphan:
.. meta::
:description: Prerequisite system validation before using ROCm for AI.
:keywords: ROCm, AI, LLM, train, megatron, Llama, tutorial, docker, torch, pytorch, jax
.. _train-a-model-system-validation:
**********************************************
Prerequisite system validation before training
**********************************************
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test for multi-node setups
-----------------------------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pretraining, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800

View File

@@ -1,503 +0,0 @@
.. meta::
:description: How to train a model using ROCm Megatron-LM
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
**************************************
Training a model with ROCm Megatron-LM
**************************************
.. _amd-megatron-lm:
The ROCm Megatron-LM framework is a specialized fork of the robust Megatron-LM, designed to
enable efficient training of large-scale language models on AMD GPUs. By leveraging AMD Instinct™ MI300X
accelerators, AMD Megatron-LM delivers enhanced scalability, performance, and resource utilization for AI
workloads. It is purpose-built to :ref:`support models <amd-megatron-lm-model-support>`
like Meta's Llama 2, Llama 3, and Llama 3.1, enabling developers to train next-generation AI models with greater
efficiency. See the GitHub repository at `<https://github.com/ROCm/Megatron-LM>`__.
For ease of use, AMD provides a ready-to-use Docker image for MI300X accelerators containing essential
components, including PyTorch, PyTorch Lightning, ROCm libraries, and Megatron-LM utilities. It contains the
following software to accelerate training workloads:
+--------------------------+--------------------------------+
| Software component | Version |
+==========================+================================+
| ROCm | 6.1 |
+--------------------------+--------------------------------+
| PyTorch | 2.4.0 |
+--------------------------+--------------------------------+
| PyTorch Lightning | 2.4.0 |
+--------------------------+--------------------------------+
| Megatron Core | 0.9.0 |
+--------------------------+--------------------------------+
| Transformer Engine | 1.5.0 |
+--------------------------+--------------------------------+
| Flash Attention | v2.6 |
+--------------------------+--------------------------------+
| Transformers | 4.44.0 |
+--------------------------+--------------------------------+
Supported features and models
=============================
Megatron-LM provides the following key features to train large language models efficiently:
- Transformer Engine (TE)
- APEX
- GEMM tuning
- Torch.compile
- 3D parallelism: TP + SP + CP
- Distributed optimizer
- Flash Attention (FA) 2
- Fused kernels
- Pre-training
.. _amd-megatron-lm-model-support:
The following models are pre-optimized for performance on the AMD Instinct MI300X accelerator.
* Llama 2 7B
* Llama 2 70B
* Llama 3 8B
* Llama 3 70B
* Llama 3.1 8B
* Llama 3.1 70B
Prerequisite system validation steps
====================================
Complete the following system validation and optimization steps to set up your system before starting training.
Disable NUMA auto-balancing
---------------------------
Generally, application performance can benefit from disabling NUMA auto-balancing. However,
it might be detrimental to performance with certain types of workloads.
Run the command ``cat /proc/sys/kernel/numa_balancing`` to check your current NUMA (Non-Uniform
Memory Access) settings. Output ``0`` indicates this setting is disabled. If there is no output or
the output is ``1``, run the following command to disable NUMA auto-balancing.
.. code-block:: shell
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
See :ref:`mi300x-disable-numa` for more information.
Hardware verification with ROCm
-------------------------------
Use the command ``rocm-smi --setperfdeterminism 1900`` to set the max clock speed up to 1900 MHz
instead of the default 2100 MHz. This can reduce the chance of a PCC event lowering the attainable
GPU clocks. This setting will not be required for new IFWI releases with the production PRC feature.
You can restore this setting to its default value with the ``rocm-smi -r`` command.
Run the command:
.. code-block:: shell
rocm-smi --setperfdeterminism 1900
See :ref:`mi300x-hardware-verification-with-rocm` for more information.
RCCL Bandwidth Test
-------------------
ROCm Collective Communications Library (RCCL) is a standalone library of standard collective communication
routines for GPUs. See the :doc:`RCCL documentation <rccl:index>` for more information. Before starting
pre-training, running a RCCL bandwidth test helps ensure that the multi-GPU or multi-node setup is optimized
for efficient distributed training.
Running the RCCL bandwidth test helps verify that:
- The GPUs can communicate across nodes or within a single node.
- The interconnect (such as InfiniBand, Ethernet, or Infinite fabric) is functioning as expected and
provides adequate bandwidth for communication.
- No hardware setup or cabling issues could affect the communication between GPUs
Tuning and optimizing hyperparameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In distributed training, specific hyperparameters related to distributed communication can be tuned based on
the results of the RCCL bandwidth test. These variables are already set in the Docker image:
.. code-block:: shell
# force all RCCL streams to be high priority
export TORCH_NCCL_HIGH_PRIORITY=1
# specify which RDMA interfaces to use for communication
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# define the Global ID index used in RoCE mode
export NCCL_IB_GID_INDEX=3
# avoid data corruption/mismatch issue that existed in past releases
export RCCL_MSCCL_ENABLE=0
Running the RCCL Bandwidth Test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It's recommended you run the RCCL bandwidth test before launching training. It ensures system
performance is sufficient to launch training. RCCL is not included in the AMD Megatron-LM Docker
image; follow the instructions in `<https://github.com/ROCm/rccl-tests>`__ to get started.
See :ref:`mi300x-rccl` for more information.
Run on 8 GPUs (``-g 8``), scanning from 8 bytes to 10 GB:
.. code-block:: shell
./build/all_reduce_perf -b 8 -e 10G -f 2 -g 8
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-8-gpu.png
:width: 800
Using one MPI process per GPU and ``-g 1`` for performance-oriented runs on both single-node and multi-node is
recommended. So, a run on 8 GPUs looks something like:
.. code-block:: shell
mpirun -np 8 --bind-to numa ./build/all_reduce_perf -b 8 -e 10G -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-1-mpi-process-per-gpu.png
:width: 800
Running with one MPI process per GPU ensures a one-to-one mapping for CPUs and GPUs, which can be beneficial
for smaller message sizes. This better represents the real-world use of RCCL in deep learning frameworks like
PyTorch and TensorFlow.
Use the following script to run the RCCL test for four MI300X GPU nodes. Modify paths and node addresses as needed.
.. code-block::
/home/$USER/ompi_for_gpu/ompi/bin/mpirun -np 32 -H tw022:8,tw024:8,tw010:8, tw015:8 \
--mca pml ucx \
--mca btl ^openib \
-x NCCL_SOCKET_IFNAME=ens50f0np0 \
-x NCCL_IB_HCA=rdma0:1,rdma1:1,rdma2:1,rdma3:1,rdma4:1,rdma5:1,rdma6:1,rdma7:1 \
-x NCCL_IB_GID_INDEX=3 \
-x NCCL_MIN_NCHANNELS=40 \
-x NCCL_DEBUG=version \
$HOME/rccl-tests/build/all_reduce_perf -b 8 -e 8g -f 2 -g 1
.. image:: ../../../data/how-to/rocm-for-ai/rccl-tests-4-mi300x-gpu-nodes.png
:width: 800
.. _mi300x-amd-megatron-lm-training:
Start training on MI300X accelerators
=====================================
The pre-built ROCm Megatron-LM environment allows users to quickly validate system performance, conduct
training benchmarks, and achieve superior performance for models like Llama 2 and Llama 3.1.
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on the MI300X accelerators with the AMD Megatron-LM Docker
image.
.. _amd-megatron-lm-requirements:
Download the Docker image and required packages
-----------------------------------------------
1. Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull rocm/megatron-lm:24.12-dev
2. Launch the Docker container.
.. code-block:: shell
docker run -it --device /dev/dri --device /dev/kfd --network host --ipc host --group-add video --cap-add SYS_PTRACE --security-opt seccomp=unconfined --privileged -v $CACHE_DIR:/root/.cache --name megatron-dev-env rocm/megatron-lm:24.12-dev /bin/bash
3. Clone the ROCm Megatron-LM repository to a local directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/Megatron-LM
cd Megatron-LM
.. note::
This release is validated with ``ROCm/Megatron-LM`` commit `bb93ccb <https://github.com/ROCm/Megatron-LM/tree/bb93ccbfeae6363c67b361a97a27c74ab86e7e92>`_.
Checking out this specific commit is recommended for a stable and reproducible environment.
.. code-block:: shell
git checkout bb93ccbfeae6363c67b361a97a27c74ab86e7e92
Prepare training datasets
-------------------------
If you already have the preprocessed data, you can skip this section.
Use the following command to process datasets. We use GPT data as an example. You may change the merge table, use an
end-of-document token, remove sentence splitting, and use the tokenizer type.
.. code-block:: shell
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-gpt2 \
--vocab-file gpt2-vocab.json \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--append-eod
In this case, the automatically generated output files are named ``my-gpt2_text_document.bin`` and
``my-gpt2_text_document.idx``.
.. image:: ../../../data/how-to/rocm-for-ai/prep-training-datasets-my-gpt2-text-document.png
:width: 800
.. _amd-megatron-lm-environment-setup:
Environment setup
-----------------
In the ``examples/llama`` directory of Megatron-LM, if you're working with Llama 2 7B or Llama 2 70 B, use the
``train_llama2.sh`` configuration script. Likewise, if you're working with Llama 3 or Llama 3.1, then use
``train_llama3.sh`` and update the configuration script accordingly.
Network interface
^^^^^^^^^^^^^^^^^
To avoid connectivity issues, ensure the correct network interface is set in your training scripts.
1. Run the following command to find the active network interface on your system.
.. code-block:: shell
ip a
2. Update the ``NCCL_SOCKET_IFNAME`` and ``GLOO_SOCKET_IFNAME`` variables with your systems network interface. For
example:
.. code-block:: shell
export NCCL_SOCKET_IFNAME=ens50f0np0
export GLOO_SOCKET_IFNAME=ens50f0np0
Dataset options
^^^^^^^^^^^^^^^
You can use either mock data or real data for training.
* If you're using a real dataset, update the ``DATA_PATH`` variable to point to the location of your dataset.
.. code-block:: shell
DATA_DIR="/root/.cache/data" # Change to where your dataset is stored
DATA_PATH=${DATA_DIR}/bookcorpus_text_sentence
.. code-block:: shell
--data-path $DATA_PATH
Ensure that the files are accessible inside the Docker container.
* Mock data can be useful for testing and validation. If you're using mock data, replace ``--data-path $DATA_PATH`` with the ``--mock-data`` option.
.. code-block:: shell
--mock-data
Tokenizer
^^^^^^^^^
Tokenization is the process of converting raw text into tokens that can be processed by the model. For Llama
models, this typically involves sub-word tokenization, where words are broken down into smaller units based on
a fixed vocabulary. The tokenizer is trained along with the model on a large corpus of text, and it learns a
fixed vocabulary that can represent a wide range of text from different domains. This allows Llama models to
handle a variety of input sequences, including unseen words or domain-specific terms.
To train any of the Llama 2 models that this Docker image supports, use the ``Llama2Tokenizer``.
To train any of Llama 3 and Llama 3.1 models that this Docker image supports, use the ``HuggingFaceTokenizer``.
Set the Hugging Face model link in the ``TOKENIZER_MODEL`` variable.
For example, if you're using the Llama 3.1 8B model:
.. code-block:: shell
TOKENIZER_MODEL=meta-llama/Llama-3.1-8B
Run benchmark tests
-------------------
.. note::
If you're running **multi node training**, update the following environment variables. They can
also be passed as command line arguments.
* Change ``localhost`` to the master node's hostname:
.. code-block:: shell
MASTER_ADDR="${MASTER_ADDR:-localhost}"
* Set the number of nodes you want to train on (for instance, ``2``, ``4``, ``8``):
.. code-block:: shell
NNODES="${NNODES:-1}"
* Set the rank of each node (0 for master, 1 for the first worker node, and so on):
.. code-block:: shell
NODE_RANK="${NODE_RANK:-0}"
* Use this command to run a performance benchmark test of any of the Llama 2 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama2.sh
* Use this command to run a performance benchmark test of any of the Llama 3 and Llama 3.1 models that this Docker image supports (see :ref:`variables <amd-megatron-lm-benchmark-test-vars>`).
.. code-block:: shell
{variables} bash examples/llama/train_llama3.sh
.. _amd-megatron-lm-benchmark-test-vars:
The benchmark tests support the same set of variables:
+--------------------------+-----------------------+-----------------------+
| Name | Options | Description |
+==========================+=======================+=======================+
| ``TEE_OUTPUT`` | 0 or 1 | 0: disable training |
| | | log |
| | | |
| | | 1: enable training |
| | | log |
+--------------------------+-----------------------+-----------------------+
| ``MBS`` | | Micro batch size |
+--------------------------+-----------------------+-----------------------+
| ``BS`` | | Batch size |
+--------------------------+-----------------------+-----------------------+
| ``TP`` | 1, 2, 4, 8 | Tensor parallel |
+--------------------------+-----------------------+-----------------------+
| ``TE_FP8`` | 0 or 1 | Datatype. |
| | | If it is set to 1, |
| | | FP8. |
| | | |
| | | If it is set to 0. |
| | | BP16 |
+--------------------------+-----------------------+-----------------------+
| ``NO_TORCH_COMPILE`` | 0 or 1 | If it is set to 1, |
| | | enable torch.compile. |
| | | |
| | | If it is set to 0. |
| | | Disable torch.compile |
| | | (default) |
+--------------------------+-----------------------+-----------------------+
| ``SEQ_LENGTH`` | | Input sequence length |
+--------------------------+-----------------------+-----------------------+
| ``GEMM_TUNING`` | 0 or 1 | If it is set to 1, |
| | | enable gemm tuning. |
| | | |
| | | If it is set to 0, |
| | | disable gemm tuning |
+--------------------------+-----------------------+-----------------------+
| ``USE_FLASH_ATTN`` | 0 or 1 | 0: disable flash |
| | | attention |
| | | |
| | | 1: enable flash |
| | | attention |
+--------------------------+-----------------------+-----------------------+
| ``ENABLE_PROFILING`` | 0 or 1 | 0: disable torch |
| | | profiling |
| | | |
| | | 1: enable torch |
| | | profiling |
+--------------------------+-----------------------+-----------------------+
| ``MODEL_SIZE`` | | The size of the mode: |
| | | 7B/70B, etc. |
+--------------------------+-----------------------+-----------------------+
| ``TOTAL_ITERS`` | | Total number of |
| | | iterations |
+--------------------------+-----------------------+-----------------------+
| ``transformer-impl`` | transformer_engine or | Enable transformer |
| | local | engine by default |
+--------------------------+-----------------------+-----------------------+
Benchmarking examples
^^^^^^^^^^^^^^^^^^^^^
.. tab-set::
.. tab-item:: Single node training
:sync: single
Use this command to run training with Llama 2 7B model on a single node. You can specify MBS, BS, FP,
datatype, and so on.
.. code-block:: bash
TEE_OUTPUT=1 MBS=5 BS=120 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
See the sample output:
.. image:: ../../../data/how-to/rocm-for-ai/llama2-7b-training-log-sample.png
:width: 800
.. tab-item:: Multi node training
:sync: multi
Launch the Docker container on each node.
In this example, run training with Llama 2 7B model on 2 nodes with specific MBS, BS, FP, datatype, and
so on.
On the master node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
On the worker node:
.. code-block:: bash
TEE_OUTPUT=1 MBS=4 BS=64 TP=8 TE_FP8=0 NO_TORCH_COMPILE=1
SEQ_LENGTH=4096 bash examples/llama/train_llama2.sh
You can find the training logs at the location defined in ``$TRAIN_LOG`` in the :ref:`configuration script <amd-megatron-lm-environment-setup>`.
Sample output for 2-node training:
Master node:
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-master.png
:width: 800
Worker node:
.. image:: ../../../data/how-to/rocm-for-ai/2-node-training-worker.png
:width: 800

View File

@@ -21,8 +21,6 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- Model
- Architecture
- LLVM target name
- Device Major version
- Device Minor version
- VRAM (GiB)
- Compute Units
- Wavefront Size
@@ -34,12 +32,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L1 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- MI325X
- CDNA3
- gfx942
- 9
- 4
- 256
- 304 (38 per XCD)
- 64
@@ -51,12 +49,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI300X
- CDNA3
- gfx942
- 9
- 4
- 192
- 304 (38 per XCD)
- 64
@@ -68,12 +66,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI300A
- CDNA3
- gfx942
- 9
- 4
- 128
- 228 (38 per XCD)
- 64
@@ -85,12 +83,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 64 per 2 CUs
- 512
- 12.5
- 9
- 4
*
- MI250X
- CDNA2
- gfx90a
- 9
- 0
- 128
- 220 (110 per GCD)
- 64
@@ -102,12 +100,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI250
- CDNA2
- gfx90a
- 9
- 0
- 128
- 208 (104 per GCD)
- 64
@@ -119,12 +117,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI210
- CDNA2
- gfx90a
- 9
- 0
- 64
- 104
- 64
@@ -136,12 +134,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 2 CUs
- 512
- 12.5
- 9
- 0
*
- MI100
- CDNA
- gfx908
- 9
- 0
- 32
- 120
- 64
@@ -153,12 +151,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256 VGPR and 256 AccVGPR
- 12.5
- 9
- 0
*
- MI60
- GCN5.1
- gfx906
- 9
- 0
- 32
- 64
- 64
@@ -170,12 +168,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI50 (32GB)
- GCN5.1
- gfx906
- 9
- 0
- 32
- 60
- 64
@@ -187,12 +185,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI50 (16GB)
- GCN5.1
- gfx906
- 9
- 0
- 16
- 60
- 64
@@ -204,12 +202,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI25
- GCN5.0
- gfx900
- 9
- 0
- 16 
- 64
- 64
@@ -221,12 +219,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
*
- MI8
- GCN3.0
- gfx803
- 8
- 0
- 4
- 64
- 64
@@ -238,12 +236,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 4 CUs
- 256
- 12.5
- 8
- 0
*
- MI6
- GCN4.0
- gfx803
- 8
- 0
- 16
- 36
- 64
@@ -255,6 +253,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 4 CUs
- 256
- 12.5
- 8
- 0
.. tab-item:: AMD Radeon PRO GPUs
@@ -266,8 +266,7 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- Model
- Architecture
- LLVM target name
- Device Major version
- Device Minor version
- VRAM (GiB)
- Compute Units
- Wavefront Size
@@ -280,12 +279,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L0 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon PRO V710
- RDNA3
- gfx1101
- 11
- 0
- 28
- 54
- 32
@@ -298,12 +297,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7900 Dual Slot
- RDNA3
- gfx1100
- 11
- 0
- 48
- 96
- 32
@@ -316,12 +315,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7900
- RDNA3
- gfx1100
- 11
- 0
- 48
- 96
- 32
@@ -334,12 +333,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7800
- RDNA3
- gfx1100
- 11
- 0
- 32
- 70
- 32
@@ -352,12 +351,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W7700
- RDNA3
- gfx1101
- 11
- 0
- 16
- 48
- 32
@@ -370,12 +369,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon PRO W6800
- RDNA2
- gfx1030
- 10
- 3
- 32
- 60
- 32
@@ -388,12 +387,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon PRO W6600
- RDNA2
- gfx1032
- 10
- 3
- 8
- 28
- 32
@@ -406,12 +405,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon PRO V620
- RDNA2
- gfx1030
- 10
- 3
- 32
- 72
- 32
@@ -424,12 +423,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon Pro W5500
- RDNA
- gfx1012
- 10
- 1
- 8
- 22
- 32
@@ -442,12 +441,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 20
- 10
- 1
*
- Radeon Pro VII
- GCN5.1
- gfx906
- 9
- 0
- 16
- 60
- 64
@@ -460,6 +459,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
.. tab-item:: AMD Radeon GPUs
@@ -471,8 +472,6 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- Model
- Architecture
- LLVM target name
- Device Major version
- Device Minor version
- VRAM (GiB)
- Compute Units
- Wavefront Size
@@ -485,12 +484,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- L0 Instruction Cache (KiB)
- VGPR File (KiB)
- SGPR File (KiB)
- GFXIP Major version
- GFXIP Minor version
*
- Radeon RX 7900 XTX
- RDNA3
- gfx1100
- 11
- 0
- 24
- 96
- 32
@@ -503,12 +502,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7900 XT
- RDNA3
- gfx1100
- 11
- 0
- 20
- 84
- 32
@@ -521,12 +520,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7900 GRE
- RDNA3
- gfx1100
- 11
- 0
- 16
- 80
- 32
@@ -539,12 +538,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7800 XT
- RDNA3
- gfx1101
- 11
- 0
- 16
- 60
- 32
@@ -557,12 +556,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7700 XT
- RDNA3
- gfx1101
- 11
- 0
- 12
- 54
- 32
@@ -575,12 +574,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 768
- 16
- 11
- 0
*
- Radeon RX 7600
- RDNA3
- gfx1102
- 11
- 0
- 8
- 32
- 32
@@ -593,12 +592,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 11
- 0
*
- Radeon RX 6950 XT
- RDNA2
- gfx1030
- 10
- 3
- 16
- 80
- 32
@@ -611,12 +610,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6900 XT
- RDNA2
- gfx1030
- 10
- 3
- 16
- 80
- 32
@@ -629,12 +628,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6800 XT
- RDNA2
- gfx1030
- 10
- 3
- 16
- 72
- 32
@@ -647,12 +646,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6800
- RDNA2
- gfx1030
- 10
- 3
- 16
- 60
- 32
@@ -665,12 +664,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6750 XT
- RDNA2
- gfx1031
- 10
- 3
- 12
- 40
- 32
@@ -683,12 +682,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6700 XT
- RDNA2
- gfx1031
- 10
- 3
- 12
- 40
- 32
@@ -701,13 +700,13 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6700
- RDNA2
- gfx1031
- 10
- 3
- 10
- 36
- 32
- 128
@@ -719,12 +718,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6650 XT
- RDNA2
- gfx1032
- 10
- 3
- 8
- 32
- 32
@@ -737,12 +736,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6600 XT
- RDNA2
- gfx1032
- 10
- 3
- 8
- 32
- 32
@@ -755,12 +754,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon RX 6600
- RDNA2
- gfx1032
- 10
- 3
- 8
- 28
- 32
@@ -773,12 +772,12 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32
- 512
- 16
- 10
- 3
*
- Radeon VII
- GCN5.1
- gfx906
- 9
- 0
- 16
- 60
- 64
@@ -791,6 +790,8 @@ For more information about ROCm hardware compatibility, see the ROCm `Compatibil
- 32 per 3 CUs
- 256
- 12.5
- 9
- 0
Glossary
========
@@ -804,18 +805,6 @@ For more information about the terms used, see the
Argument to pass to clang in ``--offload-arch`` to compile code for the given
architecture.
**Device major version**
Indicates the core instruction set of the GPU architecture. For example, a value
of 11 would correspond to Navi III (RDNA3).
**Device minor version**
Indicates a particular configuration, feature set, or variation within the group
represented by the device compute version. For example, different models within
the same major version might have varying levels of support for certain features
or optimizations.
**VRAM**
Amount of memory available on the GPU.
@@ -898,6 +887,26 @@ Purpose Vector Registers, used specifically in matrix instructions.
Size of the Scalar General Purpose Register (SGPR) file. Holds data used in
scalar instructions.
**GFXIP**
GFXIP (Graphics IP) is a versioning system used by AMD to identify the GPU
architecture and its instruction set. It helps categorize different generations
of GPUs and their feature sets.
**GFXIP major version**
Defines the GPU's core instruction set and architecture, which determines
compatibility with software stacks such as HIP and OpenCL. For example, a GFXIP
11 major version corresponds to the RDNA 3 (Navi 3x) architecture, influencing
driver support and available compute features.
**GFXIP minor version**
Represents specific variations within a GFXIP major version and affects feature sets,
optimizations, and driver behavior in software stacks such as HIP and OpenCL. Different
GPU models within the same major version can have unique capabilities, impacting
performance and supported instructions.
**GCD**
Graphics Compute Die.

View File

@@ -40,11 +40,13 @@ subtrees:
title: Training
subtrees:
- entries:
- file: how-to/rocm-for-ai/training/train-a-model.rst
title: Train a model
- file: how-to/rocm-for-ai/training/benchmark-docker/megatron-lm
title: Train a model with Megatron-LM
- file: how-to/rocm-for-ai/training/benchmark-docker/pytorch-training
title: Train a model with PyTorch
- file: how-to/rocm-for-ai/training/scale-model-training.rst
title: Scale model training
- file: how-to/rocm-for-ai/fine-tuning/index.rst
title: Fine-tuning LLMs
subtrees:
@@ -152,7 +154,7 @@ subtrees:
- entries:
- url: https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
title: AMD Instinct MI200/CDNA2 ISA
- url: https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
- url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
title: White paper
- file: conceptual/gpu-arch/mi100.md
title: MI100 microarchitecture
@@ -160,7 +162,7 @@ subtrees:
- entries:
- url: https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
title: AMD Instinct MI100/CDNA1 ISA
- url: https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
- url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
title: White paper
- file: conceptual/iommu.rst
title: Input-Output Memory Management Unit (IOMMU)

View File

@@ -1,3 +1,4 @@
rocm-docs-core==1.15.0
rocm-docs-core==1.17.0
sphinx-reredirects
sphinx-sitemap
sphinxcontrib.datatemplates==0.11.0

View File

@@ -2,7 +2,7 @@
# This file is autogenerated by pip-compile with Python 3.10
# by the following command:
#
# pip-compile requirements.in
# pip-compile docs/sphinx/requirements.in
#
accessible-pygments==0.0.5
# via pydata-sphinx-theme
@@ -43,6 +43,8 @@ debugpy==1.8.12
# via ipykernel
decorator==5.1.1
# via ipython
defusedxml==0.7.1
# via sphinxcontrib-datatemplates
deprecated==1.2.15
# via pygithub
docutils==0.21.2
@@ -175,6 +177,7 @@ pyyaml==6.0.2
# myst-parser
# rocm-docs-core
# sphinx-external-toc
# sphinxcontrib-datatemplates
pyzmq==26.2.0
# via
# ipykernel
@@ -187,7 +190,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.15.0
rocm-docs-core==1.17.0
# via -r requirements.in
rpds-py==0.22.3
# via
@@ -215,6 +218,8 @@ sphinx==8.1.3
# sphinx-notfound-page
# sphinx-reredirects
# sphinx-sitemap
# sphinxcontrib-datatemplates
# sphinxcontrib-runcmd
sphinx-book-theme==1.1.3
# via rocm-docs-core
sphinx-copybutton==0.5.2
@@ -226,11 +231,13 @@ sphinx-external-toc==1.0.1
sphinx-notfound-page==1.0.4
# via rocm-docs-core
sphinx-reredirects==0.1.5
# via -r requirements.in
# via -r docs/sphinx/requirements.in
sphinx-sitemap==2.6.0
# via -r requirements.in
# via -r docs/sphinx/requirements.in
sphinxcontrib-applehelp==2.0.0
# via sphinx
sphinxcontrib-datatemplates==0.11.0
# via -r docs/sphinx/requirements.in
sphinxcontrib-devhelp==2.0.0
# via sphinx
sphinxcontrib-htmlhelp==2.1.0
@@ -239,6 +246,8 @@ sphinxcontrib-jsmath==1.0.1
# via sphinx
sphinxcontrib-qthelp==2.0.0
# via sphinx
sphinxcontrib-runcmd==0.2.0
# via sphinxcontrib-datatemplates
sphinxcontrib-serializinghtml==2.0.0
# via sphinx
sqlalchemy==2.0.37

View File

@@ -0,0 +1,102 @@
/* ------------------ Compatibility options grid ------------------ */
html {
--compat-border-radius: 2px;
--compat-accent-color: var(--pst-color-primary);
--compat-bg-color: var(--pst-color-on-background);
--compat-fg-color: var(--pst-color-primary-text);
--compat-head-color: var(--pst-color-surface);
--compat-param-hover-color: var(--pst-color-link-hover);
--compat-param-selected-color: var(--pst-color-primary);
}
html[data-theme="light"] {
--compat-border-color: var(--pst-gray-500);
--compat-param-disabled-color: var(--pst-gray-300);
}
html[data-theme="dark"] {
--compat-border-color: var(--pst-gray-600);
--compat-param-disabled-color: var(--pst-gray-600);
}
div#vllm-benchmark-ud-params-picker.container-fluid {
padding: 0 0 1rem 0;
}
div[data-param-k="model"] {
background-color: var(--compat-bg-color);
padding: 2px;
border: solid 1px var(--compat-border-color);
font-weight: 500;
cursor: pointer;
}
div[data-param-k="model"][data-param-state="selected"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model"][data-param-state="latest-version"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model"][data-param-state="disabled"] {
background-color: var(--compat-param-disabled-color);
text-decoration: line-through;
/* text-decoration-color: var(--pst-color-danger); */
cursor: auto;
}
div[data-param-k="model"]:not([data-param-state]):hover {
background-color: var(--compat-param-hover-color);
}
div[data-param-k="model-group"] {
background-color: var(--compat-bg-color);
padding: 2px;
border: solid 1px var(--compat-border-color);
font-weight: 500;
cursor: pointer;
}
div[data-param-k="model-group"][data-param-state="selected"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model-group"][data-param-state="latest-version"] {
background-color: var(--compat-param-selected-color);
color: var(--compat-fg-color);
}
div[data-param-k="model-group"][data-param-state="disabled"] {
background-color: var(--compat-param-disabled-color);
text-decoration: line-through;
/* text-decoration-color: var(--pst-color-danger); */
cursor: auto;
}
div[data-param-k="model-group"]:not([data-param-state]):hover {
background-color: var(--compat-param-hover-color);
}
.model-param-head {
background-color: var(--compat-head-color);
padding: 0.15rem 0.15rem 0.15rem 0.67rem;
/* margin: 2px; */
border-right: solid 2px var(--compat-accent-color);
font-weight: 600;
}
.model-param {
/* padding: 2px; */
/* margin: 0 2px 0 2px; */
/* margin: 2px; */
border: solid 1px var(--compat-border-color);
font-weight: 500;
}
.hidden {
display: none !important;
}