Compare commits

...

778 Commits

Author SHA1 Message Date
jinchen62
3002793301 Unload clip on demand and workaround memory leak (#1283) 2023-04-10 16:59:03 -07:00
Phaneesh Barwaria
d25ef5529f Add fix for vae fp32 Upscalar (#1284)
- fixes size mismatch error for upscalar vae
2023-04-07 14:36:40 -05:00
Ean Garvey
308856a947 Touch unet if base cfg needed for SD pipeline init (#1281) 2023-04-05 03:02:29 -05:00
m68k-fr
151b4e142f [SD] Fix encoder error for model_max_length not beeing 77 (#1278)
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-04-04 22:39:29 -07:00
Ean Garvey
e5a69a7c36 pin diffusers to e47459c (#1279) 2023-04-04 18:29:21 -07:00
m68k-fr
450b6cafc4 [SD] Add weight emphasis to prompts encoder (#1276) 2023-04-04 09:47:04 -07:00
Daniel Garvey
237d26baa2 update model db to reflect changes (#1277)
* remove 1/1 tqdm progress bar

* update model_db to reflect changes
2023-04-04 11:46:55 -05:00
Daniel Garvey
67d6ee1104 remove 1/1 tqdm progress bar (#1274) 2023-04-03 22:30:09 -05:00
Ean Garvey
98b069488e Add tank_version.json (#1272) 2023-04-03 18:36:23 -07:00
jinchen62
e0f227643a Fix webui circular import issue (#1271) 2023-04-03 16:00:10 -07:00
jinchen62
a0af3bb0cb xload and unload models (#1242) 2023-04-03 14:42:18 -07:00
powderluv
2cd61a5b96 strip source map (#1270) 2023-04-03 14:41:32 -07:00
Gaurav Shukla
f49d41a807 [SD] Add Stable diffusion text2image rest API (#1265)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-04-03 12:02:24 -07:00
Ean Garvey
2191fc8952 Separate pytest benchmark modes and fix model updates for SHARK downloader / pytest. (#1264)
* Only xfail windows models in CI

* downloader: make model updates more robust.

* Separate baseline and native benchmarks in pytest.

* Fix native benchmarks

* Fix torchvision model utils.
2023-04-03 08:24:21 -07:00
PhaneeshB
aea7796e60 add gradio client to spec 2023-04-03 18:57:19 +05:30
Abhishek Varma
a376619f1e [SD] Improve vmfb caching algo and retry mechanism (#1248)
-- This commit gets rid of the all-or-nothing vmfb caching mechanism
   and improves the retry mechanism by providing lower-level granularity
   for compiling each model units.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com>
2023-03-31 09:38:14 -07:00
powderluv
02d52bb626 Add Intel ARC A770 target triple (#1263)
This just enables the plumbing. It generates black images.
2023-03-29 14:49:05 -07:00
Abhishek Varma
3b63645f79 [SD] Fix custom model path for WebUI (#1260)
-- This commit fixes custom model path for WebUI.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-03-29 09:48:11 -07:00
Ean Garvey
d6f740b998 allow pytest to retry getting model artifacts + disable autotuning for pytorch benchmarks (#1257)
* Adds a few xfails to enable macOS builder

* Convert string batch sizes to ints where needed.

* allow pytest to retry getting model artifacts

* Reduce attempts and add assert msg.
2023-03-28 23:38:45 -05:00
Daniel Garvey
594c6b8ea2 fix ckpt dir (#1258) 2023-03-28 14:31:01 -07:00
Ean Garvey
96b1560da5 Make batch size configurable via pytest and fix sharktank generation. (#1227)
* Fix sharktank generation and add batch_size pytest option for torch.

* Disable torch dynamo until py3.11 supported

* Compile torchmodel without dynamo if torch.compile fails

* Use release versions of TF/Keras for importer.

* Pin torchvision and remove debug prints.

* Remove duplicates from torch model list.

* Update generate_sharktank.py

* xfail a few models that fail sharktank generation/ numerics
2023-03-28 14:33:39 -05:00
Abhishek Varma
0ef6a0e234 [SD] Fix Stencil scribble crash by updating image resize (#1255)
-- This commit updates Stencil resize feature to cap the size of
   images within [128,768] as supported by the SD pipeline.
-- This solves the issue of scribble crashing on larger image.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-03-28 10:13:11 -07:00
Gaurav Shukla
641d535f44 [SD] Fix device path issue for cpu (#1256)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-28 10:09:49 -07:00
Daniel Garvey
5bb7846227 single entry point exe for all cli apps (#1158)
usage:
add --app="img2img" (or "inpaint" "outpaint" "txt2img")
2023-03-28 11:15:21 -05:00
yzhang93
8f84258fb8 Fix check for use_tuned conditions (#1252) 2023-03-27 11:21:25 -07:00
Ean Garvey
7619e76bbd Disable and xfail some models that fail validation/compilation. (#1251)
* Rollback T5 models for torch as the inputs give some issues that aren't trivial to resolve
* xfail efficientnet-b0 on torch+cuda -- see CUDA requesting shared memory size larger than allowed size openxla/iree#12771
2023-03-27 12:42:53 -05:00
Daniel Garvey
9267eadbfa disable openjourney gen for nightly (#1249) 2023-03-27 11:55:34 -05:00
Phaneesh Barwaria
431132b8ee Fix img2img mode switch (#1247)
* add updated scheduler value in global config

* clear scheduler global variable with others
2023-03-27 07:01:22 -07:00
cstueckrath
fb35e13e7a fix Python version detection bug (#1246)
* fix Python version detection bug

* Update setup_venv.ps1
2023-03-27 07:00:40 -07:00
yzhang93
17a67897d1 Add SD v2.1 768x768 tuned model (#1244)
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-03-24 10:39:15 -07:00
Gaurav Shukla
da449b73aa [SD] Disable lora training tab for now (#1241)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-24 09:16:24 -07:00
Kyle Herndon
0b0526699a Fix incorrect device argument initialization for LoRA training by extracting the device type and number and formatting it for pytorch (#1237)
Co-authored-by: Kyle Herndon <kyle@nod-labs.com>
2023-03-24 01:10:50 -07:00
Boian Petkantchin
4fac46f7bb In models testing fix paths to be relative to the script dir not cwd (#1128)
authored-by: Boian Petkantchin <boian@nod-labs.com>
2023-03-22 15:26:52 -05:00
Daniel Garvey
49925950f1 fix false positives (#1193) 2023-03-22 15:25:39 -05:00
Thomas
807947c0c8 Remove deprecated cli option iree-hal-cuda-disable-loop-nounroll-wa (#1235) 2023-03-22 12:05:15 -05:00
Abhishek Varma
593428bda4 [SD] Fix for transformers/__init__.py issue in PyInstaller (#1233)
-- This commit fixes the transformers/__init__.py issue in PyInstaller.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-03-22 08:43:53 -07:00
Abhishek Varma
cede9b4fec [SD] Fix custom_vae as a required parameter in inpaint (#1232) 2023-03-22 04:30:17 -07:00
Prashant Kumar
c2360303f0 Add the int8 quantized model. 2023-03-22 16:28:13 +05:30
jinchen62
420366c1b8 Move schedulers to global obj (#1225) 2023-03-21 22:40:43 -07:00
Ean Garvey
d31bae488c Set iree-input-type to tm_tensor for SD (#1228) 2023-03-21 19:07:31 -07:00
Kyle Herndon
c23fcf3748 Fix incorrect device argument initialization for LoRA training (#1231)
Co-authored-by: Kyle Herndon <kyle@nod-labs.com>
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-03-21 19:07:18 -07:00
jinchen62
7dbbb1726a Fix SD obj not defined if fail to get models from pretrained (#1222) 2023-03-21 07:55:17 -07:00
Abhishek Varma
8b8cc7fd33 [SD] Update LoRA inference to handle various checkpoints (#1215) 2023-03-21 06:52:20 -07:00
Ean Garvey
e3c96a2b9d Move sentencepiece to importer requirements. (#1218) 2023-03-21 00:39:57 -05:00
Ean Garvey
5e3f50647d Set --vulkan_large_heap_block_size default to 2gb. (#1220) 2023-03-20 21:07:09 -07:00
gpetters94
7899e1803a Add fix for attention slicing fp16 (#1217) 2023-03-20 19:11:29 -07:00
mariecwhite
d105246b9c Fix t5 models 2023-03-21 10:39:59 +11:00
mariecwhite
90c958bca2 Add T5-base and T5-large Torch and TF Models (#1116) 2023-03-20 17:32:50 -05:00
mariecwhite
f99903e023 Add EfficientNet B0 and B7 Torch and TF models 2023-03-21 09:22:05 +11:00
mariecwhite
c6f44ef1b3 Add EfficientNet B0 and B7 Torch and TF models 2023-03-21 09:14:45 +11:00
mariecwhite
8dcd4d5aeb Make batch size configurable 2023-03-20 18:03:17 -04:00
Phoenix Meadowlark
d319f4684e Add peak memory reporting for IREE, TF and PyTorch (#1216) 2023-03-20 15:40:49 -05:00
Ean Garvey
54d7b6d83e Generate model artifacts in pytests if they don't exist in the cloud. (#1121)
* Add gen_shark_files fn to shark_downloader for OTF artifact generation

* add generate_sharktank as a tank/ python module.

* Fix some paths in tank generation.
2023-03-20 12:13:19 -05:00
m68k-fr
4a622532e5 [Web] Stop images (#1212) 2023-03-19 14:37:30 -07:00
cstueckrath
650b2ada58 add pytorch_lightning to requirements (#1211)
* add pytorch_lightning to requirements

this will additionally add lightning-utilities and torchmetrics

* Update shark_sd.spec

* Update shark_sd_cli.spec
2023-03-19 12:29:54 -07:00
m68k-fr
f87f8949f3 [Web] CSS fix for gradio V3.22.1 (#1210) 2023-03-19 06:13:59 -07:00
m68k-fr
7dc9bf8148 [Web] Move "stop Batch" button to "Advanced Options" toggle (#1209) 2023-03-18 20:54:42 -07:00
Kyle Herndon
ba48ff8d25 Implement LoRA training and UI for training and UI for inference in img2img, inpaint, outpaint (#1200)
txt2img inference UI is already committed.

Co-authored-by: Kyle Herndon <kyle@nod-labs.com>
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-03-17 12:54:56 -07:00
Gaurav Shukla
638840925c [SD] Add support for larger size upscaling (#1204)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-17 10:20:48 -07:00
m68k-fr
b661656c03 [Web] Fix custom model path for upscaler (#1199) 2023-03-16 15:57:23 -07:00
Gaurav Shukla
0225434389 [SD] Add sendTo Upscaler
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-16 20:49:19 +05:30
Gaurav Shukla
7ffe20b1c2 [SD] Release memory used by upscaler when not in use
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-16 20:49:19 +05:30
Gaurav Shukla
d8f0c4655d [SD] Add Upscaler web
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-16 20:49:19 +05:30
Gaurav Shukla
7e8d3ec0df [SD] Add upscalar pipeline
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-16 20:49:19 +05:30
jinchen62
9c08eec565 Clear memory cache when switching model and mode (#1194) 2023-03-15 22:18:26 -07:00
m68k-fr
2d2c523ac5 [Web] Upgrade Gradio to v3.21.0 (#1188)
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-03-15 10:14:49 -07:00
Abhishek Varma
f17b3128c0 [SD] Add LoRA inference to SD pipeline (#1189)
-- This commit adds LoRA inference to SD pipeline.
-- It also modifies txt2img to incorporate the new feature.
   img2img, inpaint, outpaint, etc using Unet can also be extended in a
   similar way.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-03-15 10:13:45 -07:00
Abhishek Varma
7c7e630099 [SD] Add fix for using latest diffusers + add scribble variant to Stencil (#1191)
* [SD] Add Scribble variant in Stencil

-- This commit adds scribble variant in Stencil.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>

* [SD] Use latest diffusers

-- This commit points back to the latest diffusers and updates the
   processing script to tackle the Pix2Pix import issue.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>

---------

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-03-15 10:13:20 -07:00
m68k-fr
2dd1491ec1 [Web] Add clear queue button (#1192) 2023-03-15 10:12:59 -07:00
Daniel Garvey
236357fb61 add missing import for shark_sd.spec (#1190)
L
2023-03-15 09:23:29 -05:00
Phoenix Meadowlark
7bc38719de Add benchmark artifacts to .gitignore (#1186) 2023-03-14 15:19:06 -07:00
Daniel Garvey
bdbe992769 Add IREE_SAVE_TEMPS for import_debug command (#1184)
based on hf_model_id. Works on windows
2023-03-14 11:40:23 -07:00
Abhishek Varma
e6b925e012 [SD] Add Openpose to Stencil + image size issue fix (#1181)
-- This commit adds openpose model variant to stencil.
-- Fixes image size issue.
-- Also includes fix for the .exe bug introduced by https://github.com/nod-ai/SHARK/pull/1175

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-03-14 10:30:52 -07:00
cstueckrath
771120b76c workaround Gradio issue (#1183)
https://discord.com/channels/973663919757492264/975522729564446740/1085109774758191164
2023-03-14 01:27:24 -07:00
Boian Petkantchin
a8ce7680db Add flag to augment the device allocator (#1182)
Example:
$ python my_app.py --device_allocator caching debug
This will wrap the device allocator with first caching allocator then
debug allocator.

$ python my_app.py --device_allocator caching
Only wrap with caching allocator.

Co-authored-by: Boian Petkantchin <boian@nod-labs.com>
2023-03-13 15:49:26 -07:00
Phaneesh Barwaria
b6dcf2401b Stencil perf improvement (#1179)
* remove conditioning strength multiplier

* mod diffusers lib to v0.14.0
2023-03-13 14:37:38 -07:00
Daniel Garvey
62b5a9fd49 generate sharktank for apps dir (#966)
* merge confix resolution

* add support to other scripts

---------

Co-authored-by: dan <dan@nod-labs.com>
2023-03-13 10:54:15 -07:00
m68k-fr
2f133e9d5c Fix png metadata (#1178) 2023-03-12 22:43:39 -07:00
powderluv
f898a1d332 Update README.md 2023-03-12 16:54:42 -07:00
m68k-fr
b94266d2b9 [Web] Randomize seed to -1 (#1176) 2023-03-12 12:42:31 -07:00
m68k-fr
1b08242aaa [Web] Improve dropdowns ux (#1175) 2023-03-12 12:41:51 -07:00
Abhishek Varma
691030fbab [SD] Improve Stencil feature to handle general image sizes
-- Currently stencil feature works with 512x512 images only.
-- This commit relaxes this constraint and adds support for various
   image sizes.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-03-11 21:48:31 +05:30
m68k-fr
16ad7d57a3 [WebUi] txt2img_ui: Import png metadata (#1147) 2023-03-10 16:26:34 -08:00
Anush Elangovan
c561ebf43c Drop the torch-mlir pin
Seems to work now with top of master
2023-03-10 15:39:04 -08:00
Prashant Kumar
97fdff7f19 Add instructions how to run the LLaMA model. (#1168)
* Add instructions how to run the LLaMA model.

* Update README.md
2023-03-10 12:36:37 -08:00
Anush Elangovan
ce6d82eab2 Fix bloom lint 2023-03-10 11:53:08 -08:00
Abhishek Varma
b8f4b18951 [SD] Use dynamic stencil HF repo id
-- This commit removes the hardcoded HF ID for Stencil and instead
   utilizes a dynamic instantiation of HF model.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-03-10 23:31:45 +05:30
Eliasj42
b23d3aa584 added more memory efficient method to run large bloom models with sharded blooms (#1165)
Co-authored-by: Elias Joseph <elias@nod-labs.com>
2023-03-10 09:32:56 -08:00
Vivek Khandelwal
495670d9b6 Fix SD fine tuning script device arg usage 2023-03-10 18:37:53 +05:30
Boian Petkantchin
815e23a0b8 Update iree-compile flags --iree-llvm-xxx -> --iree-llvmcpu-xxx (#1164) 2023-03-09 11:31:50 -08:00
Boian Petkantchin
783538fe11 Move linting opts from github workflow to config files
This helps development where you can be sure that running locally

black .
flake8 .

will do the same as in the github job.
2023-03-09 10:46:30 -08:00
Boian Petkantchin
996c645f6a In SD don't include device path in vmfb filename
Include only the driver name instead.
2023-03-09 10:45:32 -08:00
m68k-fr
1f7d249a62 Use utf-8 format for imgs_details.csv 2023-03-09 16:15:58 +05:30
jinchen62
7f6c9a2dc2 Add an inpainting option for only masked area (#1154) 2023-03-07 09:46:05 -08:00
Eliasj42
93891984f3 made sharded bloom example more user friendly (#1153)
Co-authored-by: Elias Joseph <elias@nod-labs.com>
2023-03-06 10:23:48 -08:00
Vivek Khandelwal
cc0ef54e0e Fix Stable diffusion fine tuning script 2023-03-06 17:52:16 +05:30
Daniel Garvey
812152485d temporarily xfail tiny convnext macos (#1142) 2023-03-03 13:30:56 -06:00
Vivek Khandelwal
0816fb403a Add Stable diffusion fine tuning script
This commit adds the sd fine tuning script which runs through the
torchdynamo path.
2023-03-03 21:59:00 +05:30
Gaurav Shukla
4f171772be [SD] Fix SD web flags
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-03 21:55:40 +05:30
mariecwhite
a52331d4aa Install IREE pre-releases (#1139) 2023-03-02 23:17:56 -06:00
yzhang93
ad821a1fc8 Use old torch-mlir package to avoid crash on rdna2 (#1137) 2023-03-02 18:16:58 -08:00
Ean Garvey
116b128802 Use nightly shark_tank for test-models (#1133)
* Use nightly shark_tank for test-models

* Update all_models.csv
2023-03-02 12:33:36 -06:00
Gaurav Shukla
b118f183d1 [SD] Fix few things in sendTo feature (#1132) 2023-03-02 09:11:55 -08:00
Gaurav Shukla
911dff16f1 [SD] Add sendTo feature in stable diffusion (#1131)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-03-02 08:42:38 -08:00
Abhishek Varma
de59a66ae4 [SD] Update diffusers to point to the fix for Stencil + add opencv-python (#1130) 2023-03-02 08:19:29 -08:00
Daniel Garvey
23f1468cc6 disable most models on windows pytest (#1125) 2023-03-02 01:37:50 -06:00
jinchen62
080350d311 Make loading custom inpainting models general (#1126) 2023-03-01 22:14:04 -08:00
Phaneesh Barwaria
7f3f92b9d5 remove extra return arg (#1123)
* remove extra return arg

txt2img expects only 3 mlirs

* add venv reqs for stencils
2023-03-01 11:45:24 -08:00
Abhishek Varma
be3cdec290 [SD] Add Stencil feature to SD pipeline (#1111)
* [WIP] Add ControlNet to SD pipeline

-- This commit adds ControlNet to SD pipeline.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>

* [SD] Add ControlNet to img2img + fix bug for img2img scheduler

-- This commit adds ControlNet execution to img2img.
-- It restructures the addition of ControlNet variants.
-- It also fixes scheduler selecting bug for img2img pipeline.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>

* add shark models for stencilSD

* Add Stencil controlled SD in img2img pipeline (#1106)

* use shark stencil modules

* adjust diffusers change

* modify to use pipeline

* remove control from unet

* pump stencils through unet

* complete integration in img2img

* fix lint and comments

* [SD] Add ControlNet pipeline + integrate with WebUI + add compiled flow execution

-- This commit creates a dedicated SD pipeline for ControlNet.
-- Integrates it with img2img WebUI.
-- Integrates the compiled execution flow for ControlNet.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>

* [SD] Stencil execution

* Remove integration setup

* [SD] Fix args.use_stencil overriding bug + vmfb caching issue

-- This commit fixes args.use_stencil overriding issue which caused
   img2img pipeline to pick wrong set of modules.
-- It also fixes vmfb caching issue to speed up the loading time
   and pick right set of modules based on a mask.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>

---------

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: PhaneeshB <b.phaneesh@gmail.com>
2023-03-01 10:44:40 -08:00
m68k-fr
f09574538c [WebUi] Remove unsupported full_width parameter, Reactivate gallery nav while multiple images are generated 2023-03-01 23:17:12 +05:30
Daniel Garvey
b1113ab551 disable benchmark on windows for pytest (#1100) 2023-02-28 18:10:29 -06:00
powderluv
ef756389e3 Revert "add cv2 and nod diffusers (#1112)" (#1114)
This reverts commit cb17d017df.
2023-02-28 14:31:40 -08:00
Phaneesh Barwaria
cb17d017df add cv2 and nod diffusers (#1112) 2023-03-01 01:33:43 +05:30
Gaurav Shukla
798f231792 [SD] Update metadata info and canvas size (#1109)
* [SD] Save missing metadata in case of img2img and outpaint

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

* [SD] Update the canvas size for inpaint/outpaint

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

* [SD] Update output gallery on each inference

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

---------

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-28 11:25:30 -08:00
m68k-fr
7136890da3 [Fix] Unsupported width and height argument error 2023-02-28 23:32:58 +05:30
mariecwhite
d567192fd3 Fix call to Torch Inductor 2023-02-28 00:35:57 -08:00
jinchen62
dcc4025c78 Fix loading custom inpainting models (#1103) 2023-02-27 17:06:09 -08:00
yzhang93
c6c8ec36a1 Enable tuned models for inpainting (#1102) 2023-02-27 16:46:57 -08:00
Quinn Dawkins
1344c0659a Add doc on profiling with Shark (#1101)
* Add doc on profiling with Shark

* Rename doc
2023-02-27 11:31:27 -08:00
powderluv
973f6d20f4 Try pre-pix2pix 2023-02-25 00:09:05 -08:00
powderluv
8b5c9c51e7 Revert "Update diffusers (#1094)" (#1096)
This reverts commit 0064cc2a6e.
2023-02-24 19:27:56 -08:00
jinchen62
bae208bcc4 Fix outpainting params (#1089) 2023-02-24 14:41:32 -08:00
Daniel Garvey
b6c14ad468 Make sd tests output performance metrics into csv (#1085)
* make some paths windows friendly (#1066)

* add csv output to builder script

and reduce number of models tested
2023-02-24 16:27:52 -06:00
powderluv
0064cc2a6e Update diffusers (#1094) 2023-02-24 14:09:19 -08:00
Gaurav Shukla
0a0567e944 [SD] Avoid unnecessary temp file creations (#1092)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-24 10:53:34 -08:00
gpetters94
694b1d43a8 Add attention slicing support (#1087) 2023-02-24 02:43:02 -08:00
Ean Garvey
e7eb116bd2 use tf-nightly for importer (#1077) 2023-02-23 23:14:48 -06:00
yzhang93
596499a08c Disable tuned configs on all inpainting models (#1086) 2023-02-23 13:15:22 -08:00
naveen raj
2a2e460df2 Add DEISMultistep scheduler #1076 (#1084)
* Add DEISMultistep scheduler #1076

* line lenght lint fix
2023-02-23 10:15:05 -08:00
jinchen62
a9039b35ed Add outpainting web UI (#1083) 2023-02-23 01:02:25 -08:00
jinchen62
a01154a507 Add SD outpainting (#1072)
python apps/stable_diffusion/scripts/outpaint.py --prompt="Face of a yellow cat, high resolution, sitting on a park bench" --img_path=test_imgs/overture-creations-5sI6fQgYIuo.png --import_mlir --hf_model_id="stabilityai/stable-diffusion-2-inpainting" --pixels=128 --mask_blur=8 --left --right --top --bottom --steps=20
2023-02-22 23:16:05 -08:00
powderluv
1d9204282d Update README.md 2023-02-22 23:12:41 -08:00
Eliasj42
5ff40a0d2d added an example to run sharded bloom (#1079)
added ability to compile sharded mlir files from hugingface models

Co-authored-by: Elias Joseph <elias@nod-labs.com>
2023-02-22 22:48:58 -08:00
jinchen62
fab6d2e4e0 Resize input image and mask for SD inpainting (#1082) 2023-02-22 22:46:59 -08:00
powderluv
abab59c25f Update nightly.yml 2023-02-22 18:44:43 -08:00
powderluv
c25840b585 Update nightly.yml 2023-02-22 18:34:37 -08:00
powderluv
1b3f9125bb Update nightly.yml 2023-02-22 18:23:44 -08:00
powderluv
b5d9f5ba49 Update nightly.yml 2023-02-22 18:20:31 -08:00
powderluv
1c22aa9c8f Resolve __init__.py issues (#1080)
Also drop torchvision. The test passed and didn't fail but
we can't be sure it fixes the __init__.py issue yet.
2023-02-22 18:17:00 -08:00
Daniel Garvey
e1d7fb879c make some paths windows friendly (#1066) 2023-02-22 14:44:55 -06:00
powderluv
e912c42bf0 update the openxla links 2023-02-22 12:10:23 -08:00
powderluv
e6841acf36 Publish nightlies as pre-releases
So stable versions can be marked on the Releases page
2023-02-22 12:05:28 -08:00
Gaurav Shukla
bc4459b6f4 [SD] Add inpainting web UI (#1069)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-22 11:01:18 -08:00
cstueckrath
9b544491e0 Update setup_venv.ps1 (#1073)
* Update setup_venv.ps1

fix a bug that occurs, when Python is installed but no py.exe is available

* Update setup_venv.ps1
2023-02-22 07:52:59 -08:00
m68k-fr
9c5415b598 [WebUi] css fix for Gradio v3.19.0 (#1059)
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-02-21 23:50:54 -08:00
powderluv
040dbc317f unpin diffuser to latest (#1071)
Currently 0.13.x
2023-02-21 23:47:19 -08:00
powderluv
65775046d8 update IREE pip links 2023-02-21 19:31:23 -08:00
Daniel Garvey
b18bc36127 force creation of workdir (#1070) 2023-02-21 18:10:36 -08:00
cstueckrath
f01c526efd Update setup_venv.ps1 (#1064) 2023-02-21 14:13:04 -05:00
Gaurav Shukla
16168ab6b3 [SD] Update need_vae_encode correctly
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-21 20:26:06 +05:30
Gaurav Shukla
4233218629 [SD] Reset args.img_path to None in txt2img to avoid vae_encode
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-21 18:46:15 +05:30
RaINi_
b63fb36dc0 Use path.join for the winograd config directory (#1065) 2023-02-20 22:04:25 -06:00
Daniel Garvey
4e92304b89 remove annoying accelerate warning (#1056)
disables usage of low_cpu_mem_usage=True in from_pretrained() calls.
Can be re-enabled by using flag --low_cpu_mem_usage
defaults to False to avoid spam as we don't include accelerate in our
requirements.txt
2023-02-20 14:46:26 -06:00
Ean Garvey
2ae047f1a8 Update importer/benchmark setup for python3.11 (#1043) 2023-02-20 11:29:00 -06:00
Ean Garvey
6d2a485264 Add --benchmark_dispatches option to pytest. (#800)
* Add --benchmark_dispatches option to pytest.

* Update README.md and fix filepath for dispatch benchmarks
2023-02-19 12:16:18 -06:00
Daniel Garvey
4f045db024 disable anythingv3 until issue is resolved (#1053) 2023-02-18 23:47:21 -05:00
yzhang93
5b33597b6d Enable v1.5 to use tuned configs (#1049) 2023-02-18 16:54:26 -05:00
m68k-fr
962470f610 [WebUi] Minor interface cleanup and Ui cosmetics 2023-02-17 22:00:47 +05:30
cstueckrath
ba8c116380 add KDPM2Discrete and a force flag for setup_venv (#1044)
* add KDPM2Discrete and a force flag for setup_venv

* add KDPM2Discrete and a force flag for setup_venv
also made sure that Python 3.11 is used for the venv as 3.10
doesn't work anymore

* add KDPM2Discrete and a force flag for setup_venv
also made sure that Python 3.11 is used for the venv as 3.10
doesn't work anymore
2023-02-17 07:19:56 -05:00
jinchen62
ad7330eae4 Add inpainting test (#1011) 2023-02-16 22:17:10 -06:00
yzhang93
cf126e4839 Use tuned configs on custom models with ckpt_loc (#1038) 2023-02-16 17:06:21 -08:00
powderluv
c96d25c3e2 Delete stable_diffusion_amd.md
All instructions are common now and on the main page.
2023-02-16 14:57:32 -08:00
powderluv
006aa0dae2 Update README.md 2023-02-16 14:54:00 -08:00
Daniel Garvey
5b204bee86 temporarily xfail microsoft resnet50 (#1037)
Co-authored-by: dan <dan@nod-labs.com>
2023-02-16 16:14:51 -06:00
Phaneesh Barwaria
d98b2afbe9 img2img denoise strength (#1040) 2023-02-16 13:40:20 -08:00
Daniel Garvey
681332ef32 fix tests after default flag changes (#1009)
* fix tests after default flag changes

also adds support for import-mlir

* Update setup_venv.ps1

---------
2023-02-16 12:57:50 -06:00
mariecwhite
c3a4fdcbfc Add bert-large-uncased TF model 2023-02-15 21:42:44 -08:00
mariecwhite
aac5de5b02 Add bert-large-uncased Torch model 2023-02-15 21:25:32 -08:00
powderluv
13a255afad Update nightly.yml 2023-02-15 17:11:38 -08:00
powderluv
3bffda52f9 Pin to latest diffusers (#1031) 2023-02-15 14:23:10 -08:00
Daniel Garvey
d4e62ce557 add an import-mlir fallback in case of failure (#1030)
may not cover all cases. will observet

Co-authored-by: dan <dan@nod-labs.com>
2023-02-15 16:15:23 -06:00
yzhang93
9738483b18 [SD] Map v2_1 to v2_1_base until fix (#1029) 2023-02-15 13:44:41 -08:00
Abhishek Varma
143492fe94 [SD] Add support for standalone Vae checkpoints (#1020)
-- This commit adds support for standalone Vae checkpoints.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-02-15 12:17:32 -08:00
Gaurav Shukla
ecc5c662c4 [SD] Save output images to different loc every day (#1027)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-15 12:16:36 -08:00
yzhang93
d973ba191d Add conditions to force use --import_mlir (#1028) 2023-02-15 10:37:09 -08:00
Gaurav Shukla
0198b183a2 [SD] Img2Img works for limited schedulers.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-15 23:06:28 +05:30
Gaurav Shukla
0d44a3527b [SD][web] Add strength UI for img2img
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-15 22:47:41 +05:30
Gaurav Shukla
2147b6a397 [SD] Move some common code to utility
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-15 22:47:41 +05:30
Gaurav Shukla
6b5b4ba27b [SD] Add batch count in Image2Image
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-15 22:47:41 +05:30
Gaurav Shukla
67005bf57c [SD] Update iree-vulkan-target-triple after device switch
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-15 22:47:41 +05:30
PhaneeshB
0430c741c6 add strength param 2023-02-15 20:59:03 +05:30
powderluv
1ce02e365d Update README.md 2023-02-15 01:22:28 -08:00
m68k-fr
eae862adc2 Fix lint and path for gradio_tmp_imgs_folder 2023-02-15 14:27:29 +05:30
drumicube
dffa89524a Save gradio tmp images to shark_tmp folder and clean it at launch 2023-02-15 14:27:29 +05:30
yzhang93
2af1102441 [SD] Merge configs of different max lengthes from the same variant to one config file (#1019) 2023-02-15 00:25:29 -08:00
powderluv
c4b472842a Update stable_diffusion_amd.md 2023-02-14 19:02:20 -08:00
powderluv
750a7d806f update docs to 3.11 2023-02-14 17:12:09 -08:00
powderluv
bc7333f1e5 Remove forcing LLPC setting (#1018)
also fix logo paths
2023-02-14 17:09:03 -08:00
powderluv
55ae50f991 Update inpaint.py 2023-02-14 14:12:05 -08:00
powderluv
a590c331ef Update img2img.py 2023-02-14 14:11:50 -08:00
powderluv
8c241b06cb Update txt2img.py 2023-02-14 14:11:36 -08:00
powderluv
9c072c8068 Update index.py 2023-02-14 14:11:20 -08:00
powderluv
ebd8b5122a Update stable_diffusion_amd.md 2023-02-14 14:09:34 -08:00
powderluv
055e484a40 Update README.md 2023-02-14 14:06:46 -08:00
powderluv
912c4a1d12 Update shark_sd.spec 2023-02-14 13:21:29 -08:00
Abhishek Varma
c203b65bf1 Fix __file__ AttributeError + Remove --enable_stack_trace (#1015) 2023-02-14 07:55:02 -08:00
powderluv
307f0334ee Drop im2col for VAE since it crashes the driver (#1010)
This is for untuned models.
2023-02-13 19:02:51 -05:00
yzhang93
5167df08b9 [SD] Fix cuda OTF annotation (#1008) 2023-02-13 12:32:50 -08:00
Gaurav Shukla
dd2e482214 [SD] Fix multiple call to device check (#1007)
- Also makes the dark theme default.
- Fix custom_vae parameter in img2img.

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-13 11:57:52 -08:00
Eliasj42
87fd13d8eb added an example to run sharded bloom (#1003)
Co-authored-by: Elias Joseph <elias@nod-labs.com>
2023-02-13 10:37:47 -08:00
yzhang93
dd423bc6de [SD] Using --compile-to to dump mlir for OTF annotation (#1004)
* [SD] Using --compile-to to dumpmlir for preprocessing

* Use python api for dumping process
2023-02-13 09:17:59 -08:00
powderluv
899cb9cc1f Temporarily disable signing of exe 2023-02-12 20:37:42 -08:00
drumicube
0464c7e558 Add support for command arguments to the WebUi (#1000)
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-02-11 19:20:21 -08:00
powderluv
f64e1fb926 Fix dark theme again for exe builds (#1001) 2023-02-11 19:08:17 -08:00
powderluv
ef7d31293d Update tests to 3.11 2023-02-11 15:38:27 -08:00
powderluv
6d54eb68dc update to support 3.11 2023-02-11 15:23:18 -08:00
powderluv
30eb10c990 Update to 3.11 2023-02-11 03:47:14 -08:00
Abhishek Varma
591bbcd058 [SD] Fix vmfb locating bug
-- This commit fixes a bug in vmfb caching due to vae_encoder and also
   involves a minor NFC change in the code.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-02-10 23:33:47 +05:30
Abhishek Varma
99aa77d036 [SD] Add a common way to name vmfbs including custom_vae
-- This commit adds a common way to name vmfbs and adds to it `custom_vae`
   support as well.
-- This was required to make a common place to change vmfbs name
   without breaking any feature support AND also tackle the caching
   of vmfbs gracefully.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-02-10 23:33:47 +05:30
Abhishek Varma
9c13f1e635 Add custom vae support using --custom_vae flag
-- This commit adds custom vae support to SD wherein the user can
   point to a model's checkpoint file whose Vae needs to be plugged
   into the main model.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-02-10 23:33:47 +05:30
Gaurav Shukla
24af983cfb [SD] Fix input image type
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-10 23:27:52 +05:30
Gaurav Shukla
67842a7525 [SD] Fix parameters in img2img
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-10 22:03:33 +05:30
PhaneeshB
3159a6f3e1 add support for img1img 2023-02-10 21:29:02 +05:30
Gaurav Shukla
b2f3c96835 [SD][web] Add Img2Img UI
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-10 21:27:31 +05:30
jinchen62
6582475955 Add SD inpainting
python apps/stable_diffusion/scripts/inpaint.py --prompt="prompt" --img_path=path/to/img --mask_path=path/to/mask --import_mlir --max_length=77 --hf_model_id="stabilityai/stable-diffusion-2-inpainting"
2023-02-10 15:33:20 +05:30
Anush Elangovan
41ee65b377 Revert "Enable --device_allocator=caching"
This reverts commit 83fe477066.
2023-02-09 23:00:06 -08:00
Anush Elangovan
83fe477066 Enable --device_allocator=caching 2023-02-09 22:58:46 -08:00
yzhang93
4ca84ee4ee Revert "Delete unnecessary arg setting (#978)" (#985)
This reverts commit 83c69ecd49.
2023-02-09 16:44:26 -08:00
Ean Garvey
c28cc4c919 Fix local_tank_cache handling in shark_downloader. (#981) 2023-02-09 14:52:03 -06:00
yzhang93
e9864cb3f7 Modify the annotation OTF to return bytecode module (#980) 2023-02-08 14:29:43 -08:00
yzhang93
83c69ecd49 Delete unnecessary arg setting (#978) 2023-02-08 10:30:18 -08:00
Prashant Kumar
3595b4aaff Incorporate latest changes in the shark_dynamo backend. 2023-02-08 20:37:30 +05:30
Abhishek Varma
3a9cfe113a Fix SD restart error in exe file (#975)
-- This commit fixes SD restart error in exe file by creating
   variants.json in CWD instead of a relative path.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-02-08 06:14:08 -08:00
yzhang93
c9966127da Fix iree flags to be able to run on rdna2 (#972) 2023-02-07 16:39:32 -08:00
Ean Garvey
51300d33a7 Remove non-SD args from generate_sharktank.py (#970) 2023-02-07 13:29:55 -06:00
Gaurav Shukla
5af124c5a5 [SD] Add batch count in stable diffusion
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-07 23:26:46 +05:30
Abhishek Varma
eeb20b531a Fix restart SD session error + override args.use_tuned temporarily
-- This commit fixes the session restart error for SD.
-- It also overrides `args.use_tuned` for `import_mlir`, and sets
   `use_tuned` as `False`.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-02-07 19:50:48 +05:30
cstueckrath
9dca842c22 Update .gitignore to exclude models (#967)
the models folder will be stashed along with other changes and most likely kill git doing so.
2023-02-07 01:48:36 -08:00
Ean Garvey
1eb9436836 Fix generate_sharktank args. 2023-02-07 14:06:07 +05:30
Ean Garvey
9604d9ce81 make --update_tank update only if hash mismatch 2023-02-07 14:06:07 +05:30
Ean Garvey
481d0553d8 Remove unnecessary repro_dir / shark_tmp usage 2023-02-07 14:06:07 +05:30
powderluv
60035cd63a Add css in exe (#963)
exe should now default to dark theme too
2023-02-06 15:26:08 -08:00
drumicube
d35f992ace Bring back the --runs options for the cmd command and fix wrong seed/model reported in json, csv and png (#962) 2023-02-06 15:16:50 -06:00
Daniel Garvey
157ae64f9d print to stdout for test visibility (#937)
Co-authored-by: dan <dan@nod-labs.com>
2023-02-06 01:03:27 -08:00
powderluv
ffa17f6057 Update sd_dark_theme.css 2023-02-06 01:01:50 -08:00
drumicube
d695a43e32 Make the dark theme default while launching web server (#954) 2023-02-05 07:25:45 -08:00
powderluv
01f6b4e6f0 Update README.md 2023-02-04 23:40:13 -08:00
yzhang93
7cf31a6ae4 Fix iree-benchmark flag names (#952) 2023-02-04 22:24:18 -08:00
Quinn Dawkins
fbd6224b04 Revert "Revert pipelines (#948)" (#951)
This reverts commit 8115b26079.
Additionally fixes img2col by adding detach elementwise from named op
passes.
2023-02-04 22:44:08 -05:00
powderluv
8115b26079 Revert pipelines (#948)
* Revert "[SD] Modify the flags to use --iree-preprocessing-pass-pipeline (#914)"

This reverts commit a783c089a9.

* Revert "Fix iree flags due to the change in shark-runtime (#944)"

This reverts commit 1d38d49162.
2023-02-04 07:09:51 -08:00
powderluv
820586ac68 Update README.md 2023-02-04 01:01:11 -08:00
powderluv
4a7441ed07 Update profiling_with_iree.md 2023-02-04 00:47:57 -08:00
powderluv
383741f284 Update stable_diffusion_amd.md 2023-02-04 00:40:47 -08:00
powderluv
2bbc4e0e9f Update README.md 2023-02-04 00:35:40 -08:00
powderluv
a7237244b0 Send users to the .exe file first 2023-02-04 00:30:32 -08:00
yzhang93
1d38d49162 Fix iree flags due to the change in shark-runtime (#944) 2023-02-03 21:34:02 -08:00
yzhang93
a783c089a9 [SD] Modify the flags to use --iree-preprocessing-pass-pipeline (#914)
* [SD] Modify the flags to use --iree-preprocessing-pass-pipeline

* Fix flags in sd_annotation
2023-02-03 15:08:02 -08:00
powderluv
e7907dc532 Disable tuned models for sm_89 (#943)
Looks like tuning on A100 doesn't necessarily translate to 40xx.
2023-02-03 14:30:46 -08:00
powderluv
394413679d Fix ckpt_dir (#939) 2023-02-03 12:54:19 -08:00
powderluv
37189f14cb roll to 492 2023-02-03 11:59:18 -08:00
powderluv
0b1ee81901 Minor webui changes (#938) 2023-02-03 11:26:45 -08:00
Gaurav Shukla
00cf73f9b8 [SD] Merge model id dropdown and .ckpt dropdown (#936)
- use_tuned is set to False for custom checkpoints.

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-03 10:43:33 -08:00
Abhishek Varma
5a5f285493 [apps-SD] Prepone loading of vmfbs + restructure the SD pipeline
-- This commit prepones loading of vmfbs, if present, for all sub-models.
-- It also involves restructuring the SD pipeline to achieve the loading
   of vmfbs smoothly and postpones processing of checkpoint files only when
   required.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-02-03 20:21:24 +05:30
powderluv
7f2ea454b6 revert /base variants as they are different (#929)
sd2_1base is different from VAE base (for older cards)
2023-02-03 01:27:32 -08:00
Daniel Garvey
7c14002118 Map 2_1 to 2_1_base (#927)
* fix broken paths for older models

* adds a mapping from sd_2_1 to sd_2_1_base

we only have models in models_db for 2_1_base.
now that diffusers is fixed we can actually generate
2_1 itself, but until we add support for that in the tank
we should fetch 2_1_base for no-import_mlir

---------

Co-authored-by: dan <dan@nod-labs.com>
2023-02-02 19:03:19 -08:00
powderluv
3e9554f0a1 roll to 487 2023-02-02 19:02:39 -08:00
Daniel Garvey
e11ffec544 fix broken paths for older models (#926)
Co-authored-by: dan <dan@nod-labs.com>
2023-02-02 15:48:19 -08:00
powderluv
8a47ddbe99 Update models/ location in UI (#925)
default to png metadata on
2023-02-02 15:28:39 -08:00
powderluv
821108c7bd Fix models path (#924) 2023-02-02 15:16:00 -08:00
Gaurav Shukla
339738f8a3 [SD][web] Populate checkpoints as dropdown UI (#918)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-02 13:59:50 -08:00
powderluv
9b90672f63 Fix LLPC env var (#920) 2023-02-02 11:45:08 -08:00
Ean Garvey
ba07e94a5e disable Torch Inductor autotuner in benchmarks (#919) 2023-02-02 13:25:43 -06:00
aldesilv
b3fc0f29cc enable additional flags for tank test models (#866)
Co-authored-by: Alex <alexander@nod-labs.com>
2023-02-02 11:19:33 -08:00
Gaurav Shukla
5c7deb3611 [SD] Fix output image location (#917)
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-02-02 09:50:37 -08:00
Daniel Garvey
15604e374f change bytecode model paths (#913)
Co-authored-by: dan <dan@nod-labs.com>
2023-02-02 11:12:13 -06:00
Abhishek Varma
7cfc0fa55b [APPS-SD] Fix a few bugs and bring it up to speed with SD CLI (#908) 2023-02-02 07:12:01 -08:00
Ean Garvey
a90812133b Enable pytests on Windows (#901) 2023-02-01 18:36:41 -06:00
powderluv
e26a70aa4f Drop old cli and webui (#911) 2023-02-01 13:13:46 -08:00
Daniel Garvey
6a32a4e26c move ci sd stuff to apps (#912)
Co-authored-by: dan <dan@nod-labs.com>
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-02-01 12:15:07 -08:00
powderluv
e853abf98b Update stable_diffusion_amd.md 2023-02-01 11:11:58 -08:00
powderluv
51e81e6ef8 update main readme 2023-02-01 11:09:00 -08:00
powderluv
e355000ceb Drop torchvision 2023-02-01 10:26:37 -08:00
Daniel Garvey
e374074013 Windows test (#896)
* add generate_sharktank for stable_diffusion model defaults

* add windows test for sd

---------

Co-authored-by: dan <dan@nod-labs.com>
2023-02-01 12:03:54 -06:00
powderluv
81e3d1c2c6 switch to apps/ 2023-02-01 06:54:20 -08:00
powderluv
ab0cbb4475 Add PyInstaller for apps/ webui and cli (#909)
tested webui, cli and webui exe and cli exe
2023-02-01 06:51:27 -08:00
powderluv
1c64e40722 Add PyInstaller for apps/ (#907)
Build with pyinstaller.exe .\apps\stable_diffusion\web\shark_sd.spec

normal flow works. exe is missing a few json files
2023-02-01 06:04:49 -08:00
Evan Guan
8cafe56eb4 Added flags for metadata information. (#894) 2023-02-01 05:16:11 -08:00
Eliasj42
3eceeb7b23 fixed a bug that would sometimes cause intel-gpu to appear unsupported (#899)
Co-authored-by: Elias Joseph <elias@nod-labs.com>
2023-01-31 22:32:05 -08:00
powderluv
1a37675435 Revert "move beta to release (#898)" (#905)
This reverts commit 7edcaf5a06.
2023-01-31 20:31:41 -08:00
powderluv
198ebede8d Revert "replace new model_db.json (#902)" (#904)
This reverts commit 842adef29c.
2023-01-31 20:29:40 -08:00
Ean Garvey
a504903dd5 Fix formatting issues. (#903) 2023-02-01 09:12:45 +05:30
Daniel Garvey
842adef29c replace new model_db.json (#902) 2023-01-31 18:55:22 -08:00
Daniel Garvey
7edcaf5a06 move beta to release (#898)
Co-authored-by: dan <dan@nod-labs.com>
2023-01-31 17:14:08 -06:00
Gaurav Shukla
c124b76328 [SD] Reorganize the stable diffusion model. (#806)
The stable diffusion codebase has been reorganized to make it more
modular so that the same script can be used for web as well as cli,
instead of duplicating the whole codebase.

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-01-31 14:42:41 -08:00
aldesilv
e9c744ee5d find rocm arch used in rocminfo (#893)
Co-authored-by: Alex <alexander@nod-labs.com>
2023-01-31 10:22:31 -08:00
Ean Garvey
83302930d8 Update generate_sharktank.py (#897) 2023-01-31 10:21:22 -08:00
Daniel Garvey
a4634632ba add generate_sharktank for stable_diffusion model defaults (#742)
Co-authored-by: dan <dan@nod-labs.com>
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-01-31 09:44:54 -08:00
Abhishek Varma
d17e8dc5ad [NFC] Rename SD negative_prompts flag
-- This commit renames SD `negative-prompts` -> `negative_prompts` flag.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-31 21:38:59 +05:30
powderluv
9fe63de4d4 Pin macOS SDK to 216 2023-01-31 01:09:44 -08:00
Eliasj42
8111f8bf35 added ability to select gpu (#891)
Co-authored-by: Elias Joseph <elias@nod-labs.com>
2023-01-30 13:39:12 -08:00
Abhishek Varma
fcd62513cf [SD-CLI] Add support for .safetensors + Use diffusers pipeline to load SD
-- This commit uses `load_pipeline_from_original_stable_diffusion_ckpt`
   as exposed due to [Diffusers PR](https://github.com/huggingface/diffusers/pull/2019).
-- It also adds a support for the end users to use `.safetensors` along
   with `.ckpt` file.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-31 00:00:37 +05:30
Abhishek Varma
c3c701e654 Update requirements.txt + README.md of SD
-- This commit includes two python modules as part of requirements.txt.
-- It also updates README.md to also inclue `--no-use_tuned` for users to
   be able to try `hf_model_id` or `ckpt_loc` without any issue.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-30 14:12:54 +05:30
Daniel Garvey
6bf991edf6 adding more robust main.py testing (#889)
Co-authored-by: dan <dan@nod-labs.com>
2023-01-30 00:14:26 -08:00
yzhang93
9644e78545 Fix CUDA tuned model annotation (#880) 2023-01-27 11:35:18 -08:00
dymil
c911189ef0 Add note about latest RDNA3 driver support (#881)
Also tweak other wording
2023-01-27 09:39:19 -08:00
Abhishek Varma
1118b4b651 [SD-CLI] Clean up vmfbs if a retry method fails
-- This commit cleans up vmfb files generated as a result of retry method.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-27 21:55:36 +05:30
PhaneeshB
4be75d4418 fix seed values in SD json and filename 2023-01-27 18:40:26 +05:30
Ean Garvey
fb6beae27c Adds pytest-forked dependency to fix pytest memory accumulation issues. (#876)
* Minor improvements to test-models workflow

- cleaned up pytest command line args in Validate Models job scripts.
- Removed -s flag to provide more readable logs
- Changed shark_cache location to within github workspace and removed --update_tank flag from Linux workflows.

* Use pytest-forked for managing pytest memory usage.
2023-01-26 18:20:15 -06:00
yzhang93
fee73b0b63 Add SD model annotation on fly (#869)
* Add SD model annotation on fly

* Move tuned_compile_through_fx to utils

* Fix SD compilation flags
2023-01-26 11:46:36 -08:00
powderluv
9bbffa519e Add an option to respect LLPC env var (#875)
Also add OSX paths
2023-01-25 13:56:55 -08:00
jinchen62
c3a641f0ab Address TODOs for dataset annotator (#872)
- add args usage, pass gs_url by CL flag
- add support for no existing prompts
2023-01-25 09:28:23 -08:00
yzhang93
aafe7c4701 Add more cuda devices to use tuned model (#868) 2023-01-25 06:36:17 -08:00
Abhishek Varma
9a0b082cf8 [SD-CLI] Add batch_size command-line arg + prompt processing
-- This commit adds `batch_size` command-line arg.
-- It also involves replicating the prompt `batch_size` no. of times.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-25 19:21:25 +05:30
powderluv
8265e34a29 Add SHARK SD CLI tool (#870) 2023-01-24 23:14:32 -08:00
powderluv
8ef8ae097f Update to build 469 2023-01-24 22:16:13 -08:00
powderluv
c3d14293c0 Update sample results 2023-01-24 22:14:06 -08:00
powderluv
d55d8be504 Add signing of release builds 2023-01-24 21:32:21 -08:00
powderluv
03543030d3 use pefile 2023-01-24 18:35:51 -08:00
powderluv
fc6b474b92 Add ordlookup to requirements.txt 2023-01-24 18:30:16 -08:00
powderluv
a5db785dd7 checkoutv2 on windows 2023-01-24 18:23:22 -08:00
powderluv
1c1c5cd611 Build Windows nightly on 7950x 2023-01-24 16:21:56 -08:00
Abhishek Varma
6ed02f70ec [SD-CLI] Make using ckpt_loc and hf_model_id easier
-- Currently we require users to specify the base model on which the custom
   model (.ckpt) is tuned on. Even for running a HuggingFace repo-id, we
   require the users to go a tedious way of adding things to variants.json.

-- This commit aims to address the above issues and will be treated as a
   starting point for a series of design changes which makes using SHARK's SD
   easier.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-24 23:03:46 +05:30
Prashant Kumar
cb78cd8ac0 Add the support for the batch size parameter. 2023-01-24 22:33:13 +05:30
Ean Garvey
0c4590b45a Update generate_sharktank.py 2023-01-24 10:18:03 +05:30
jinchen62
d2e2ee6efa Add multiple prompts support for dataset annotator (#862) 2023-01-23 18:40:36 -08:00
powderluv
6a380a0b48 Add more nvidia cards 2023-01-23 17:07:45 -08:00
powderluv
e5d5acbf1f Remove torchvision requirements from web (#860) 2023-01-23 13:48:53 -08:00
powderluv
00e38abbf0 Add 4080 support 2023-01-23 09:56:34 -08:00
Abhishek Varma
e3e4ea5443 Update README.md
-- Make usage of `hf_model_id` clearer.
2023-01-23 23:25:23 +05:30
Prashant Kumar
a3e4ea3228 Remove the dependency of the torchvision. (#858)
Remove the dependency of torchvision library for the conversion
of tensor layout format to what PIL library expects.
2023-01-23 08:49:57 -08:00
powderluv
56f16d6baf Update SD readme 2023-01-23 06:51:54 -08:00
Abhishek Varma
7a55ab900e [SD-CLI] Fix CKPT script + add more variants + update README.md
-- This commit fixes CKPT script to rely on the previous CKPT to Diffusers
   script.
   TODO: Let go of the script once the CKPT is included in next release
         of diffusers.
-- It also adds many variants as part of `variants.json` and updates
   `README.md` to reflect change in default `hf_model_id`.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-23 18:34:24 +05:30
Abhishek Varma
137643fe72 [SD-CLI] Update README.md of custom models to include hf_model_id 2023-01-23 11:37:13 +05:30
Anush Elangovan
d6e59c6241 black format comments 2023-01-22 16:34:40 -08:00
powderluv
458eb5d34c detect RX 7900 better 2023-01-22 16:32:27 -08:00
Erkin Alp Güney
8259f08864 Collapsibles for Win10 and Linux users (#851)
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-01-22 09:50:33 -08:00
Prashant Kumar
b3ab0a1843 Add width and height support for the scheduler. 2023-01-22 23:16:50 +05:30
dependabot[bot]
f09f217478 Bump tensorflow from 2.10 to 2.10.1 (#853)
Bumps [tensorflow](https://github.com/tensorflow/tensorflow) from 2.10 to 2.10.1.
- [Release notes](https://github.com/tensorflow/tensorflow/releases)
- [Changelog](https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorflow/compare/v2.10.0...v2.10.1)

---
updated-dependencies:
- dependency-name: tensorflow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-22 06:40:17 -08:00
Daniel Garvey
e842c8c19b add main.py testing for sdiff (#836)
Co-authored-by: dan <dan@nod-labs.com>
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-01-22 01:16:17 -08:00
powderluv
f6c3112d44 Revert "potential fix to pre-load DLL dir for torch-mlir (#848)" (#852)
This reverts commit 6c470d8131.
2023-01-22 00:09:35 -08:00
yzhang93
7059610632 Modify the default for --hf_model_id flag 2023-01-21 11:21:47 +05:30
powderluv
2d272930d9 Update to signed build 455 2023-01-20 16:50:42 -08:00
powderluv
6c470d8131 potential fix to pre-load DLL dir for torch-mlir (#848)
Doesn't regress the main.py script but system already pre-loaded
the DLL so needs more testing.
2023-01-20 14:48:45 -08:00
jinchen62
30b29ce8cd Add readme for dataset annotator (#847) 2023-01-20 01:03:33 -08:00
jinchen62
1a9933002f Add dataset annotation tool (#835) 2023-01-19 16:56:08 -08:00
stanley
c4a9365aa1 [Shark][Training] Refresh SharkTrainer to latest APIs. 2023-01-19 20:30:15 +00:00
Prashant Kumar
9d3af37104 bugfix related to the height width params. 2023-01-20 00:21:44 +05:30
Prashant Kumar
7b3d57cff7 Add height and width as args. 2023-01-19 23:43:29 +05:30
Abhishek Varma
a802270da9 [SD-CLI] Update README.md about variants.json 2023-01-19 22:46:54 +05:30
Abhishek Varma
dd194a8758 [SD-CLI] Reorder loading of opt_params when needed
-- This commit reorders loading of opt_params when `import_mlir` is not used.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-19 22:02:51 +05:30
Abhishek Varma
6de02de221 [SD-CLI] Make using custom models easier
-- This commit makes using custom models easier using a combination of
   `import_mlir`, `ckpt_loc` and `hf_model_id`.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-19 22:02:36 +05:30
Abhishek Varma
85259750bf [SD-CLI] Fix variants.json mapping
-- This commit fixes variants.json's mapping.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-19 22:02:36 +05:30
Prashant Kumar
1249f0007d Remove args.variant and args.version with args.custom_model. 2023-01-19 19:55:12 +05:30
Abhishek Varma
db0514d3fa [SD-CLI] Fix get_model_configuration to use max_length
-- This commit fixes `get_model_configuration` to use `max_length`.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-19 19:10:04 +05:30
Abhishek Varma
dce42a7fad [SD-CLI] Fix args.max_length range check
This commit fixes args.max_length range check.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-19 18:26:23 +05:30
Prashant Kumar
ec0b380194 Refactor shark_tank models and custom models.
The custom models shouldn't depend on shark_tank in anyway.
2023-01-19 13:56:11 +05:30
Ean Garvey
7f27b61c98 Update setup_venv.sh to install triton if BENCHMARK=1 2023-01-19 00:26:46 -06:00
Guy Nachshon
f0b3557b02 fix: replace malicious and deleted package (#833) 2023-01-18 13:41:05 -08:00
xzuyn
2a1d1c1001 make jpeg optimized and progressive (#820)
* GUI make jpeg optimized and progressive

* CLI make jpeg optimized and progressive
2023-01-17 16:35:36 -08:00
Abhishek Varma
df7eb80e5b [SD-CLI] Make custom_model take highest priority for generating models if present
-- This commit makes `custom_model` take highest priority for generating models if present.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-17 22:50:58 +05:30
Fraser Humphries
b9d947ce6f style: 🎨 Restore whitespace 2023-01-17 17:45:32 +05:30
Fraser Humphries
e6589d2454 fix: 🏗️ Add demo.css to spec file datas 2023-01-17 17:45:32 +05:30
Fraser Humphries
0f5ac6afcf fix: 🐛 resolve css file path relative to __file__
issues-816
2023-01-17 17:45:32 +05:30
Abhishek Varma
bc1bb1d188 [SD-CLI] Fix vmfb naming + update README.md for custom_model
-- This commit introduces a fix for .vmfb naming to strip away any
   non-alphanumeric characters from `custom_model` path.
-- It also updates the README.md to include the `custom_model` arg.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-17 16:27:54 +05:30
Abhishek Varma
3af2dd10ce [SD-CLI] Add CKPT support to update models irrespective of import_mlir flag
-- This commit adds CKPT support to update models irrespective of `import_mlir` flag.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-17 13:24:27 +05:30
yzhang93
dd22c65855 Add CUDA tuned models for SD variants (#814) 2023-01-16 09:38:27 -08:00
PhaneeshB
48137ced19 add png as default format 2023-01-16 18:37:36 +05:30
Phaneesh Barwaria
6eb47c12d1 add multi-run in single execution (#812) 2023-01-13 11:12:43 -08:00
Prashant Kumar
5a1fc6675a This PR adds --import-mlir for f16 tensors without cuda. 2023-01-13 22:19:53 +05:30
Prashant Kumar
6f80825814 Modify import_with_fx to import with dtype=f16. 2023-01-13 22:19:53 +05:30
PhaneeshB
f0dd48ed2a remaining disk space warning 2023-01-13 19:34:05 +05:30
Gaurav Shukla
15e2df0db0 [SD][web] Add a UI textbox to show the output location
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-01-13 19:33:04 +05:30
Fraser Humphries
4ad0109769 fix: 🐛 Extract demo css string to css file
fix: 🐛 Extract demo css string to css file

issues/807

fix: 🐛 Revert background colors
2023-01-13 16:42:05 +05:30
PhaneeshB
ee0009d4b8 pythonize uname for cpu target triple in windows 2023-01-12 22:39:49 +05:30
PhaneeshB
9d851c3346 small fixes 2023-01-12 22:32:24 +05:30
xzuyn
5d117af8ae Increase JPEG output quality & disable subsampling (#801)
* Increase JPEG output quality & disable subsampling

Increased to JPEG95 from the default JPEG75 which is way too compressed. Output image size is now ~100kb. Previously was ~20kb.

* Increase JPEG output quality & disable subsampling

Add jpeg quality increase on cli

* line length changes

* line length changes
2023-01-11 23:06:11 -08:00
yzhang93
bb41c2d15e Add VAE cuda tuned model (#796) 2023-01-11 14:15:03 -08:00
powderluv
eba138ee4a Revert "Change address for connection test (#785)" (#797)
This reverts commit 187f0fa70c.
2023-01-11 12:01:37 -08:00
Gaurav Shukla
3b2bbb74f8 [SD][web] Add support for saving generated images
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-01-11 22:47:32 +05:30
fokin33
dbc0f81211 Add simple telegram bot (#787) 2023-01-11 09:20:23 -06:00
mariecwhite
d0b613d22e Enable Torch-Inductor Part 2 2023-01-10 20:15:29 -08:00
Ean Garvey
72f29b67d5 Add Resnet50 fp16 variant to pytests. (#760) 2023-01-10 16:31:11 -08:00
Quinn Dawkins
9570045cc3 Fix tuned model selection for non-vulkan devices (#792) 2023-01-10 19:04:21 -05:00
Phaneesh Barwaria
e4efdb5cbb add json data for each image (#790)
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2023-01-10 13:13:07 -08:00
calcifer11
187f0fa70c Change address for connection test (#785)
Some ISP's (like mine) reserves 1.1.1.1 for internal testing, meaning _internet_connected(); needlessly retries for a minute until it fails even though my connection is fine.
Propose 8.8.8.8 instead as this is also publically available and not normally blocked by ISPs.
2023-01-10 10:51:30 -08:00
Gaurav Shukla
472185c3e4 [SD][web] Fix device key error
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-01-10 20:51:01 +05:30
Gaurav Shukla
f94a571773 [SD] Update spec file to include model_config.json
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-01-10 20:38:10 +05:30
mariecwhite
183e447d35 Enable Torch Inductor (#784) 2023-01-10 20:57:58 +11:00
xzuyn
12f844d93a Git pull through argument in setup_venv (#623) 2023-01-09 15:42:13 -08:00
yzhang93
47a119a37f [SD] Add CUDA A100 tuned model (#773) 2023-01-09 15:22:27 -08:00
Gaurav Shukla
ee56559b9a [SD][web] Add a json file for model configuration
This cleans model_wrappers.py file.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-01-10 00:05:46 +05:30
Gaurav Shukla
00e594deea [SD][web] Add version number in performance details
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-01-09 21:32:34 +05:30
George Petterson
6ad9b213b9 Add GCN4
(cherry picked from commit 3be072b3c09c9b38bc2d79ad6e6900eefee49a1c)
2023-01-09 21:09:50 +05:30
PhaneeshB
e4375e8195 Add support for vulkan target env 2023-01-09 21:09:50 +05:30
mariecwhite
487bf8e29b Enable TF32 in Torch if specified (#768) 2023-01-09 06:48:57 -08:00
Prashant Kumar
fea1694e74 Delete the cached objects explicitly. 2023-01-06 23:04:52 +05:30
Prashant Kumar
4102c124a9 Add the shark upscaler model. (#759) 2023-01-05 14:07:20 -08:00
yzhang93
135bad3280 [SD] Update v1.4 tuned model (#758) 2023-01-05 11:04:30 -08:00
Gaurav Shukla
b604f36881 [SD][web] Add flags for global URL and server port
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-01-05 15:30:30 +05:30
yzhang93
782b449c71 Add script to auto annotate SD models and variants (#751)
* Add script to auto annotate SD models and variants

* Add model config files

* Add script to auto annotate SD models and variants

* Add model config files

* Move config files to shark_tank
2023-01-04 15:53:10 -08:00
jinchen62
017dcab685 Add target triple support for TITAN RTX (#756) 2023-01-04 15:39:00 -08:00
Abhishek Varma
e60b4568c6 [SharkInference] Make SharkInference compile the entire module (#708)
* [SharkInference] Make SharkInference compile the entire module

-- Previously SharkInference was compiling and providing run APIs
   for a harcoded function with function name "forward".
-- This commit makes the compiling functionality generic and now
   any function being defined within the module can be run.
-- It also creates an API to fetch all the function names defined
   within the compiled module.
-- This commit updates both web and command-line execution of Stable
   Diffusion to use new API of  SharkInference.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-03 23:25:23 +05:30
powderluv
4ee3d95a5a Update to build 423
Post pytorch security breach
2023-01-01 12:10:23 -08:00
Graham
f18725bacc replaced <username> with %username% for easy copy/paste (#744) 2022-12-31 21:29:37 -08:00
jinchen62
f6064a2b84 Add a prototype of the model compilation configs for SD (#734) 2022-12-28 15:14:36 -08:00
Quinn Dawkins
2e90cb7b95 Set default warmup count to 0 (#736) 2022-12-28 12:27:43 -06:00
powderluv
2c09d63cd9 Update to build 417 2022-12-27 14:25:20 -08:00
powderluv
cc6fbdb0c3 Add sm_89 and point to nvcuda.dll (#731) 2022-12-26 10:54:38 -08:00
powderluv
ecfdec12f3 Update requirements.txt 2022-12-25 15:39:20 -08:00
Gaurav Shukla
45af40fd14 [SD][web] Add openjourney and dreamlike in SD web UI
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-26 01:59:36 +05:30
Phaneesh Barwaria
d11cf42501 Add support for dreamlike diffusion (#725)
* Add support for dreamlike diffusion

* model wrapper to support 77 dreamlike

* lint fix
2022-12-26 01:35:17 +05:30
Gaurav Shukla
c3c1e3b055 [SD] Add bucket info in the model_db.json
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-25 20:38:33 +05:30
Gaurav Shukla
7c5e3b1d99 [SD] Fix flags for cuda devices
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-25 19:03:02 +05:30
Gaurav Shukla
ed6cec71e7 [SD] Fix clip inference time
Fix clip inference time by adding default warmup_count to 5.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-25 18:16:53 +05:30
Tobby "GTD-Carthage" Ong
d6bcdd069c - Added missing double linebreak from linting 2022-12-25 12:07:43 +05:30
Tobby "GTD-Carthage" Ong
a26347826d - Revised code to also use get_schedulers function instead 2022-12-25 12:07:43 +05:30
Tobby "GTD-Carthage" Ong
5d1c099b31 [SD] Add Euler Ancestral scheduler as option to WebUI 2022-12-25 12:07:43 +05:30
Gaurav Shukla
220bee1365 [SD][web] Add device support in the SD web UI
1. Now device selection is available through UI.
2. Models reloading will only happen when there will be a change in the
   settings(variant + device).

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-25 01:45:07 +05:30
PhaneeshB
1261074d95 Add tuned models for av3 and ad 2022-12-24 22:56:15 +05:30
Stanley Winata
136021424c [SD] Change default VMA large heap block size for windows perf. (#715)
Windows perform can boost from 2.67s/image to 2.4523s/image.
While Linux stays the same.
2022-12-24 01:40:58 +07:00
PhaneeshB
fee4ba3746 Add openjourney 2022-12-23 23:34:22 +05:30
Gaurav Shukla
a5b70335d4 [SD][web] Add variant support in the web UI
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-23 23:18:27 +05:30
Stanley Winata
5cf4976054 [Vulkan][utils] Add GTX Pascal support. (#709) 2022-12-22 15:24:15 -08:00
PhaneeshB
1aa3255061 Add vaebase for av3 and ad 2022-12-23 04:17:17 +05:30
Daniel Garvey
b01f29f10d add support for clear_all (#691) 2022-12-22 11:25:03 -06:00
Boian Petkantchin
2673abca88 Fix concurrency issue in stress_test for CUDA devices 2022-12-22 08:54:19 -08:00
Gaurav Shukla
7eeb7f0715 [SD] Update all the utilities to make web and CLI codebase closer (#707)
At this point, all the utilities of SD web and CLI are exactly same.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-22 02:49:48 -08:00
powderluv
37262a2479 Remove spurious characters 2022-12-21 19:23:54 -08:00
Gaurav Shukla
de6e304959 [SD] Fix the resource location in shark_sd.spec (#706) 2022-12-21 14:41:56 -08:00
Quinn Dawkins
234475bbc7 Add base_vae entries for variant models (#705) 2022-12-21 14:35:08 -08:00
Quinn Dawkins
abbd9f7cfc [SD] Set unet flags for cuda (#704) 2022-12-21 13:22:04 -08:00
Gaurav Shukla
dfd6ba67b3 [SD] Update SD CLI to use model_db.json
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-22 02:13:04 +05:30
yzhang93
1595254eab Modify model annotation tool to walk through ops by shape (#692) 2022-12-21 10:46:30 -08:00
PhaneeshB
6964c5eeba encapsulate relevant methods in one method 2022-12-21 23:56:17 +05:30
PhaneeshB
2befe771b3 Add support for automatic target triple selection for SD 2022-12-21 22:38:06 +05:30
Prashant Kumar
b133a035a4 Add the download progress bar. 2022-12-21 15:47:33 +05:30
Gaurav Shukla
726c062327 [SD] Update spec files
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-21 14:16:04 +05:30
Gaurav Shukla
9083672de3 [SD][web] Tuned models only for stablediffusion/fp16 and rdna3 cards
Currently tuned models are only available for stablediffusion/fp16 and
rdna3 cards.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-21 14:15:39 +05:30
Quinn Dawkins
cdbaf880af [SD] [web] Add model variants to web 2022-12-21 13:42:22 +05:30
Quinn Dawkins
9434981cdc Add random seed generation for seed = -1 in cli (#689) 2022-12-20 17:15:22 -05:00
Phaneesh Barwaria
8b3706f557 Add Anything v3 and AnalogDiffusion variants of SD (#685)
* base support for anythingv3

* add analogdiffusiont

* Update readme

* keep max len 77 till support for 64 added for variants

* lint fix
2022-12-20 13:08:13 -08:00
Gaurav Shukla
0d5173833d [SD] Add a json file for model names information. (#687)
This commit simplifies the code to identify the model name for a
particular set of flags. This is achieved by introducing a json file
that stores the model names information. The models are uploaded in
gcloud with these names.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-20 11:47:31 -08:00
powderluv
bf1178eb79 roll to build 400 2022-12-20 10:34:31 -08:00
yzhang93
abcd3fa94a [SD] Set model max length 64 as default (#681) 2022-12-19 21:13:04 -08:00
Quinn Dawkins
62aa1614b6 [SD] Add --use_base_vae flag to do conversion to pixel space on cpu (#682) 2022-12-19 21:09:39 -08:00
Quinn Dawkins
7027356126 [SD] Fix warmup for max length 64 (#680) 2022-12-19 21:04:44 -05:00
yzhang93
5ebe13a13d Add Unet len 64 tuned model (#679) 2022-12-19 16:24:08 -08:00
Gaurav Shukla
c3bed9a2b7 [SD][web] Add flag to disable the progress bar animation
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-20 02:50:04 +05:30
yzhang93
f865222882 Update VAE 19dec tuned model (#676) 2022-12-19 12:42:28 -08:00
powderluv
e2fe2e4095 Point to 398 2022-12-19 12:08:30 -08:00
powderluv
0532a95f08 Update stable_diffusion_amd.md 2022-12-19 12:04:42 -08:00
Quinn Dawkins
ff536f6015 [SD] Deduplicate initial noise generation (#677) 2022-12-19 14:38:41 -05:00
Gaurav Shukla
097d0f27bb [SD][web] Add 64 max_length support in SD web
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-20 00:00:58 +05:30
Prashant Kumar
2257f87edf Update opt_params.py 2022-12-19 23:43:30 +05:30
PhaneeshB
a17800da00 Add 64 len f16 untuned mlir 2022-12-19 22:53:17 +05:30
Prashant Kumar
059c1b3a19 Disable vae --use_tuned version. 2022-12-19 22:45:45 +05:30
Stanley Winata
9a36816d27 [SD][CLI] Add a warmup phase (#670) 2022-12-20 00:14:23 +07:00
Gaurav Shukla
7986b9b20b [SD][WEB] Update VAE model and wrapper
This commit updates VAE model which significantly improves performance
by an order of ~300ms.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-19 22:32:05 +05:30
Gaurav Shukla
b2b3a0a62b [SD] Move initial latent generation out of inference time
The initial random latent generation is not taken into account
for total SD inference time.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-19 22:32:05 +05:30
Prashant Kumar
3173b7d1d9 Update VAE model and wrapper. 2022-12-19 19:54:50 +05:30
Gaurav Shukla
9d716d70d6 [SD][web] Fix performance issues on shark scheduler
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-19 17:44:37 +05:30
Stanley Winata
e1901a8608 [SD][CL] Disable print at every iteration. (#664)
Printing might incur extra time to runtime. Hence, we add a flag to hide it. To disable printing please set this flag `--hide_steps`.

Co-authored-by: Stanley <stanley@MacStudio.lan>
2022-12-19 15:39:57 +07:00
Quinn Dawkins
7d0cbd8d90 [SD][web] Set default tuned unet to v2 (#663) 2022-12-19 11:50:08 +07:00
Quinn Dawkins
59358361f9 [SD] Make clip batch 2 for positive and negative prompts (#662)
Combines the forward passes for each input prompt type into a single batched clip pass.
2022-12-18 23:46:21 -05:00
Quinn Dawkins
7fea2d3b68 [SD] update default large heap size for web as well (#661) 2022-12-18 21:50:26 -05:00
Quinn Dawkins
b6d3ff26bd [SD] Change default VMA large heap block size (#660) 2022-12-18 21:41:46 -05:00
Stella Laurenzo
523e63f5c1 Fix NoneType exception if vulkan tuning flags not detected. (#659)
(This goes on to produce compilation errors, but one step at a time)
2022-12-18 16:40:56 -08:00
Stella Laurenzo
10630ab597 Add config stanza for NVIDIA RTX 2080. (#658)
Just happened to have this card on my Windows machine and verified that the SD demo works on it.

```
Average step time: 144.26142692565918ms/it
Clip Inference Avg time (ms) = (205.001 + 44.000) / 2 = 124.501
VAE Inference time (ms): 281.001

Total image generation time: 7.856997728347778sec
```

I'd love to add an API upstream to derive compiler tuning flags from a host device.
2022-12-18 16:40:47 -08:00
Quinn Dawkins
2bc6de650d [SD] Add support for a compiled version of the discrete Euler scheduler (#657)
* Add Shark version of euler scheduler

* Add Shark version of euler scheduler to web ui
2022-12-17 19:25:43 -08:00
powderluv
ffef1681e3 Update stable_diffusion_amd.md 2022-12-17 03:40:08 -08:00
yzhang93
d935006a4a Update Unet tuned model to v2 (#656) 2022-12-16 22:10:15 -08:00
powderluv
660cb5946e Update to 392 release 2022-12-16 16:00:49 -08:00
Gaurav Shukla
10160a066a [SD][WEB] Add vae tuned model in the SD web (#653)
1. Add tuned vae model in the SD web.
2. Use tuned models in case of rdna3 cards.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-16 15:29:48 -08:00
Anush Elangovan
72976a2ece Import env vars first 2022-12-16 15:12:28 -08:00
Phaneesh Barwaria
831f206cd0 Revert "Add target triple selection for multiple cards" (#655)
This reverts commit acb905f0cc.
2022-12-16 15:01:45 -08:00
Gaurav Shukla
72648aa9f2 Revert "[SD][WEB] Deduce vulkan-target-triple in the presence of multiple cards"
This reverts commit 35e623deaf.
2022-12-17 04:28:18 +05:30
Gaurav Shukla
35e623deaf [SD][WEB] Deduce vulkan-target-triple in the presence of multiple cards
1. Get the correct vulkan-target-triple for a specified device in the
   presence of multiple cards.
2. Use tuned unet model for rdna3 cards.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-17 03:04:47 +05:30
Anush Elangovan
6263636738 Fix more lints 2022-12-16 13:26:15 -08:00
Anush Elangovan
535d012ded Fix lint 2022-12-16 13:24:51 -08:00
yzhang93
c73eed2e51 Add VAE winograd tuned model (#647) 2022-12-16 13:01:45 -08:00
Anush Elangovan
30fdc99f37 Set to enable llpc
Use an env var to enable llpc
2022-12-16 12:57:30 -08:00
PhaneeshB
acb905f0cc Add target triple selection for multiple cards 2022-12-17 02:24:37 +05:30
Gaurav Shukla
bba06d0142 [SD][WEB] Avoid passing args to utils APIs
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-17 01:41:33 +05:30
Ean Garvey
a14a47af12 Move most xfails to entries in tank/all_models.csv and temporarily remove multiprocessing and TF gpu support. (#646)
-Adds date variable back to nightly.yml so shark_tank uploads are dated again
-added specification for nightly pytests to not run tests on metal (vulkan is sufficient)
-added some paths/filetypes to be ignored when triggering workflow runs. (no test-models on changes to .md files or anything in the shark/examples/ directory or its subdirectories.
-pytest only picks up tank/test_models.py, so no need to specify which file to run when running pytest from SHARK base directory.
-Cleaned up xfails so that they can be added to models as csv entries. Columns 7-9 in all_models.csv trigger xfails with cpu, cuda, vulkan, respectively, and row 10 can be populated with a reason for the xfails.
-Fixed a few defaults for shark_args and pytest args (defined in conftest.py)
-Fixes --update_tank option in shark_downloader
removes some multiprocessing in pytest / TF+CUDA support because it breaks pytest and false passes, leaving regressions at large.
-Adds xfails for and removes albert torch from gen_sharktank list (tank/torch_model_list.csv).
-Cleans up xfails for cpu, cuda, vulkan (removing old ones)
2022-12-16 12:56:32 +05:30
Phaneesh Barwaria
73457336bc add flag for toggling vulkan validation layers (#624)
* add vulkan_validation_layers flag

* categorize SD flags

* stringify true and false for flag
2022-12-15 20:40:59 -06:00
Ean Garvey
a14c53ad31 Remove albert-base-v2 since it fails torch_mlir.compile() (#644) 2022-12-15 16:05:19 -06:00
Gaurav Shukla
e7e763551a [WEB][SD] Make unet tuned model default for rdna3 devices (#642) 2022-12-15 12:02:03 -08:00
nirvedhmeshram
2928179331 Add more NVIDIA targets (#640) 2022-12-15 11:24:38 -06:00
Stanley Winata
24a16a4cfe [Stable Diffusion] Disable binding fusion to work with moltenVK on mac. (#639)
Co-authored-by: Stanley <stanley@MacStudio.lan>
2022-12-16 00:22:49 +07:00
Phaneesh Barwaria
6aed4423b2 add vulkan lib path (#638) 2022-12-15 19:48:29 +07:00
yzhang93
6508e3fcc9 Update tuned model SD v2.1base (#634) 2022-12-14 16:02:35 -05:00
Gaurav Shukla
a15cb140ae [WEB] Display the 512x512 image size
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-14 22:43:03 +05:30
Prashant Kumar
898bc9e009 Add the stable diffusion v2.1 version. 2022-12-14 20:19:41 +05:30
Gaurav Shukla
e67ea31ee2 [SHARK][SD] Add --local_tank_cache flag in the stable diffusion
This flag can be used to set local shark_tank cache directory.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-14 20:00:25 +05:30
Gaurav Shukla
986c126a5c [SHARK][SD] Add support for negative prompts
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-14 18:20:09 +05:30
Gaurav Shukla
0eee7616b9 [WEB] Launch only one SD version at a time
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-14 17:30:24 +05:30
powderluv
5ddce749b8 lint fix 2022-12-13 22:02:32 -08:00
powderluv
d946cffabc Revert "Move most xfails to entries in tank/all_models.csv and temporarily remove multiprocessing and TF gpu support. (#602)" (#622)
This reverts commit fe618811ee.
2022-12-13 21:49:46 -08:00
Ean Garvey
fe618811ee Move most xfails to entries in tank/all_models.csv and temporarily remove multiprocessing and TF gpu support. (#602)
* Move most xfails to entries in tank/all_models.csv

* enable usage of pytest without specifying tank/test_models.py

* add dict_configs.py to gitignore.

* Pin versions for runtimes and torch-mlir for setup.
2022-12-13 18:11:17 -08:00
powderluv
09c45bfb80 clean up cache printf 2022-12-13 14:11:14 -08:00
Boian Petkantchin
e9e9ccd379 Add stress test 2022-12-13 13:21:51 -08:00
Boian Petkantchin
a9b27c78a3 Return dynamic model if specified when downloading from the tank 2022-12-13 13:21:51 -08:00
Boian Petkantchin
bc17c29b2e In get_iree_runtime_config get the specific device instead of the default 2022-12-13 13:21:51 -08:00
Boian Petkantchin
aaf60bdee6 Simplify iree_device_map 2022-12-13 13:21:51 -08:00
Gaurav Shukla
d913453e57 [WEB] Update models to 8dec and also default values (#620)
1. Update the models to 8 dec.
2. precision is default to `fp16` in CLI.
3. version is default to `v2.1base` in CLI as well as web.
4. The default scheduler is set to `EulerDiscrete` now.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-13 13:08:33 -08:00
powderluv
08e373aef4 Update stable_diffusion_amd.md 2022-12-13 11:47:29 -08:00
Prashant Kumar
4cb50a3d06 Update the models to 8th Dec version. 2022-12-14 00:01:46 +05:30
Gaurav Shukla
b03038222d [SHARK] Update dependencies
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-13 22:12:00 +05:30
Gaurav Shukla
5f5e0766dd [WEB] Add SD2.1 web support
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-13 21:36:01 +05:30
powderluv
48ec11c514 Build wheels (#613)
* Build wheels

* Update nightly.yml

* Update nightly.yml

* Update nightly.yml
2022-12-12 20:53:08 -08:00
Prashant Kumar
8ae76d18b5 Add euler scheduler. Also, make it default for sd2.1. 2022-12-13 00:03:45 +05:30
Prashant Kumar
e5be1790e5 Enable the v2.1 base version with --version="v2.1base". (#611) 2022-12-12 07:02:01 -08:00
powderluv
e64aa40b17 Add Windows nightly builder 2022-12-11 19:31:02 -08:00
mariecwhite
eb8114ece8 Initialize TF models locally (#610) 2022-12-12 11:35:34 +11:00
Ean Garvey
616ee9b824 Don't include baseline benchmarks if setup without IMPORTER=1. (#607) 2022-12-10 14:58:29 -06:00
Stanley Winata
57c94f8f80 [vulkan] Add "radeon" check to the default AMD triple (#604) 2022-12-10 09:05:48 -08:00
powderluv
2a59c4f670 Update stable_diffusion_amd.md 2022-12-09 16:54:47 -08:00
Boian Petkantchin
192ff487c4 Fix wrong path to script in tank readme (#598) 2022-12-09 11:51:17 -06:00
Gaurav Shukla
b62ee3fcb9 [WEB] Add schedulers in the web UI (#594)
1. Add schedulers option in web UI.
2. Remove random seed checkbox as the same functionality can be achieved
   by passing -1(or any negative number) to the seed.

Signed-Off-by: Gaurav Shukla

Signed-off-by: Gaurav Shukla
2022-12-08 13:53:20 -08:00
Ean Garvey
0225292a44 Remove print statements from compile utils (#593) 2022-12-08 13:40:47 -08:00
Ean Garvey
589a7ed02f Print a message when a model is downloaded via shark_downloader. (#595) 2022-12-08 15:27:58 -06:00
Quinn Dawkins
b3a42cd0b1 Don't do nchw-to-nhwc transpose for stable diffusion models (#592) 2022-12-08 12:19:23 -05:00
Gaurav Shukla
e3e1ca7cc6 [WEB] Fix seed when out of uint32 range
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-08 22:46:33 +05:30
Gaurav Shukla
57e417d174 [WEB] Fix web performance
Set the iree flags before compilation.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-08 19:57:20 +05:30
Ean Garvey
1699db79b5 Disable SHARK-Runtime flags if USE_IREE=1 specified during setup. (#588)
* Disable SHARK-Runtime flags if USE_IREE=1 specified during setup.

* Update setup_venv.sh

* Autodetect cpu count for runtime flags.
2022-12-08 02:31:31 -06:00
Quinn Dawkins
dab9403b8f Fix slow conversion to image in SD web gui (#586) 2022-12-08 00:35:51 -05:00
Ean Garvey
9a14298146 Revert changes to multiprocessing (#585) 2022-12-07 19:59:17 -06:00
Ean Garvey
40eea21863 Enable conv nchw-to-nhwc flag by default for most models + minor fixes (#584) 2022-12-07 16:24:02 -08:00
Ean Garvey
d2475ec169 Add mnasnet to torch models and minor fixes. (#577)
* Minor fixes to benchmark runner

* Add Mnasnet to tank.
2022-12-07 22:30:58 +05:30
Ean Garvey
b3bcf4bf44 Update expected failures in pytest suite. (#574) 2022-12-06 23:05:12 -08:00
Stanley Winata
6049f86bc4 [Vulkan][Utils] Automatic platform/OS detection (#569)
To enable AMD gpus on macOS, we need this detection to let the compiler know that we would be needing moltenVK to use this GPU.
2022-12-07 12:05:00 +07:00
mariecwhite
ff649b52ef Add TF EfficientNet Model (#502) 2022-12-06 13:51:59 -06:00
Gaurav Shukla
e9e138c757 [WEB] Add random seed checkbox
When True, it will not use user specified seed, instead will generate a
random seed.

Signed-Off-by: Gaurav Shukla
2022-12-06 21:44:22 +05:30
Phaneesh Barwaria
1096936a15 Enable f32 path for SD (#567) 2022-12-06 19:29:12 +05:30
Gaurav Shukla
29cc478525 [WEB] Add command line args to shark web
1. Now the server can be launched with command line args.
2. The `precision` and `scheduler` parameters are now part of command
   line args instead of UI.
3. Add vae encode model wrapper.

Signed-Off-by: Gaurav Shukla
2022-12-06 17:21:05 +05:30
Stanley Winata
05e9eb40b5 [Misc] Ignore vmfbs from getting tracked by git. (#566) 2022-12-06 00:01:52 -08:00
Stanley Winata
c4444ff695 [vulkan][utils] Add rdna3 detection (#565) 2022-12-05 23:56:06 -08:00
Anush Elangovan
27b34f3929 Add gcs instead of gsutil
Test .exe on AMD hardware.
2022-12-05 22:17:58 -08:00
powderluv
2b8d784660 update latest sd build 2022-12-05 22:16:13 -08:00
Daniel Garvey
18f447d8d8 fix hash comparison (#563)
Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 21:43:05 -08:00
Daniel Garvey
d7e1078d68 remove nodcloud from client (#562)
Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 23:13:19 -06:00
Daniel Garvey
6be592653f remove gsutil_flags and fix download (#559) 2022-12-05 20:29:00 -08:00
Daniel Garvey
8859853b41 Revert "Revert "find gsutil on linux (#557)" (#560)" (#561)
This reverts commit 3c46021102.
2022-12-05 20:27:43 -08:00
Daniel Garvey
3c46021102 Revert "find gsutil on linux (#557)" (#560)
This reverts commit bba8646669.
2022-12-05 21:53:47 -06:00
Daniel Garvey
bba8646669 find gsutil on linux (#557)
* find gsutil on linux

* cleaned up downloader and ditched gsutil

Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 19:03:48 -08:00
Daniel Garvey
b0dc19a910 revert parallel downloads to 1 (#555)
Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 15:42:42 -08:00
Daniel Garvey
df79ebd0f2 replace gsutil with variable path for pyinstaller (#541)
Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 15:08:57 -08:00
Quinn Dawkins
e19a97f316 Don't do a numpy copy on the results from compiled vm (#543) 2022-12-05 14:21:47 -05:00
Harish Anand
482ffd6275 Move discord link from advanced instructions (#542) 2022-12-04 06:15:34 -08:00
Quinn Dawkins
5117e50602 Revert "Enable the clip f16 model." until correctness is fixed 2022-12-04 19:17:34 +05:30
powderluv
83b138208d Add gradio to requirements.txt 2022-12-03 16:06:52 -08:00
Quinn Dawkins
1870cb4557 Add a note to the Stable Diffusion README about clearing vulkan cache (#545) 2022-12-03 15:12:45 -08:00
Prashant Kumar
42ad5b9c5c Enable the clip f16 model.
-- Enabled the clip f16 model.
-- Updated the location of sdv2 model.
2022-12-03 18:50:40 +05:30
yzhang93
333975eb8f Update Unet fp16 tuned model and Vae flag (#539) 2022-12-02 23:21:18 -05:00
Gaurav Shukla
aa0195e4ef [SHARK] Add vae encoder wrapper
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-03 08:42:25 +05:30
Anush Elangovan
56109fe09b Add one click installer
Build with pyinstaller web\shark_sd.spec
2022-12-02 14:07:10 -08:00
powderluv
e74046478b Update stable_diffusion_amd.md 2022-12-02 13:57:03 -08:00
Gaurav Shukla
aa5a60812f [SHARK] Fix space issues in download path
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-03 00:52:10 +05:30
Ean Garvey
ebb60019aa Minor formatting fix. (#538) 2022-12-03 00:17:31 +05:30
mariecwhite
6393dc5d14 Use correct TF device depending on configuration (#492) 2022-12-02 11:33:56 -06:00
Anush Elangovan
8c158f2452 Fix onedir pyinstall
Use relative paths for install

pyinstaller web/shark_sd.spec creates an exe
2022-12-02 07:28:22 -08:00
powderluv
8c3eabdcee Update stable_diffusion_amd.md 2022-12-02 07:13:10 -08:00
powderluv
8aa0ce6a24 Update stable_diffusion_amd.md 2022-12-02 07:10:31 -08:00
Gaurav Shukla
a27ee141b3 [WEB] Fix few warnings and generate seed faster
1. Fix gsutil warnings while copying multiple files.
2. Enhance random seed generation speed.
3. Add support for multiple schedulers.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-02 17:16:19 +05:30
Anush Elangovan
1106456651 Update cuda 11.7 nightly URL and add index.spec 2022-12-01 22:49:23 -08:00
Quinn Dawkins
8856878cbd Add flag for enabling rgp from the main.py SD script (#533) 2022-12-01 19:01:29 -05:00
Gaurav Shukla
a9bac0287d [WEB] Update to latest models.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-01 22:55:31 +05:30
Gaurav Shukla
efbd3dc778 [WEB] Fix debug option and add random seed generation
Signed-Off-by: Gaurav Shukla
2022-12-01 21:08:34 +05:30
Phaneesh Barwaria
a0d0eaa408 add clip and vae timing (#527) 2022-12-01 16:17:40 +05:30
Prashant Kumar
e2bf734b67 Update f32 models. 2022-12-01 14:16:03 +05:30
Prashant Kumar
a333a90441 Update to the latest bytecode. 2022-12-01 12:44:54 +05:30
powderluv
6dc0057d3d Update README.md 2022-11-30 17:02:28 -08:00
powderluv
0f9e69d48c Update README.md 2022-11-30 17:01:23 -08:00
powderluv
e6a7c019ab Update README.md 2022-11-30 16:59:55 -08:00
powderluv
1d32eabd14 Update stable_diffusion_amd.md 2022-11-30 16:52:07 -08:00
powderluv
53d03f06a6 Update stable_diffusion_amd.md 2022-11-30 16:04:53 -08:00
powderluv
a2d8c40455 Update stable_diffusion_amd.md 2022-11-30 15:56:38 -08:00
powderluv
4f7d950c8d Update README.md 2022-11-30 15:54:50 -08:00
Harish Anand
cac54b8c26 Update stable_diffusion_amd.md (#525)
- Mention `git clone` after installing git in Windows
- Remove the extra . in powershell set-executionpolicy
2022-11-30 14:48:10 -08:00
powderluv
cd0e881d7d Update stable_diffusion_amd.md 2022-11-30 13:43:24 -08:00
powderluv
fee406e220 Update README.md 2022-11-30 13:43:02 -08:00
powderluv
128342f47f Update stable_diffusion_amd.md 2022-11-30 13:42:25 -08:00
powderluv
024487c5fe Update stable_diffusion_amd.md 2022-11-30 13:40:00 -08:00
powderluv
879ba27ccb Update stable_diffusion_amd.md 2022-11-30 13:33:04 -08:00
powderluv
6d6d9627e7 Update stable_diffusion_amd.md 2022-11-30 13:31:53 -08:00
powderluv
af4bc82543 Update stable_diffusion_amd.md 2022-11-30 13:30:15 -08:00
powderluv
439a18bcc3 Update README.md 2022-11-30 13:27:13 -08:00
powderluv
e12a1e0444 Update README.md 2022-11-30 13:01:19 -08:00
powderluv
4400b0d3c3 Update README.md 2022-11-30 12:38:02 -08:00
powderluv
5dff28ff99 streamline README.md 2022-11-30 12:23:36 -08:00
powderluv
d5ac841a1a Update requirements.txt
add transformers to base venv
2022-11-30 12:12:28 -08:00
powderluv
232ce12e9b Create stable_diffusion_amd.md 2022-11-30 12:10:34 -08:00
aldesilv
9a8638a6d0 dump all isas with amdllpc (#517)
SHARK/shark/examples/shark_inference/stable_diffusion$ python main.py --precision="fp16" --device="vulkan" --iree-vulkan-target-triple=rdna3-unknown-linux --no-load_vmfb --dispatch_benchmarks="all" --dispatch_benchmarks_dir="SD_dispatches" --dump_isa

Co-authored-by: alexander <alexander@nod-labs.com>
2022-11-30 11:33:30 -08:00
Gaurav Shukla
a5445866b8 [WEB] Update the iree flag
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-30 18:56:48 +05:30
powderluv
e8ded71a7b Default to 50 steps for SD 2022-11-29 16:45:23 -08:00
Prashant Kumar
a14c615def Update with the new flag. (#522) 2022-11-29 09:39:32 -08:00
Gaurav Shukla
3903b6ff0c [WEB] Enable Debug and disable live preview
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-29 22:39:53 +05:30
Ean Garvey
41bf262482 Update SD README.md (#516)
* Update README.md

* Create profiling_with_iree.md
2022-11-29 10:21:28 -06:00
Gaurav Shukla
645b658da0 [WEB] Update model wrappers and scheduler
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-29 21:22:33 +05:30
Prashant Kumar
6ee8f61fbe Add the stable diffusion v2 model.
The f16 version of stable diffusion v2 model is added.
--version="v2" will run the v2 model.
2022-11-29 18:18:04 +05:30
Prashant Kumar
3c4c4231ce Add new args. 2022-11-29 18:18:04 +05:30
Prashant Kumar
d0eef19eba Remove the lms versions as they were redundant.
Tested with the DPM scheduler.
2022-11-29 15:05:05 +05:30
Ean Garvey
6ca2eb3ad7 Update README.md (#515) 2022-11-28 14:09:30 -06:00
Prashant Kumar
74aeb55733 Add support for different schedulers.
Initial support for adding schedulers. This verifies the model running
with the PNDM scheduler too.
2022-11-28 22:12:09 +05:30
Gaurav Shukla
3eb7965ca0 [WEB] Pressing Enter at prompt triggers Image generation
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-28 20:56:20 +05:30
Phaneesh Barwaria
04f20070d1 xfail for cpu models with tensor shape inf error (#512) 2022-11-24 16:12:04 -06:00
Gaurav Shukla
88937fcb2f [WEB] Add vulkan-heap-block-size flag
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-24 16:58:27 +05:30
aldesilv
f80b85f10c dump spv for dispatches (#509) 2022-11-23 22:34:27 -06:00
Quinn Dawkins
32a2ec432d [Stable Diffusion] Revive the tuned model (#506) 2022-11-23 15:42:24 -05:00
Gaurav Shukla
f4821d0d39 [WEB] Update seed calculation and model versions.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-23 19:21:48 +05:30
Prashant Kumar
fdf2aa54ef Update the sd models. 2022-11-22 23:09:04 +05:30
Gaurav Shukla
275c032264 [WEB] Fix set_param prototype
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-22 20:15:45 +05:30
Gaurav Shukla
d88979fe19 [WEB] Enable guidance scale and update seed calculation
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-22 19:32:21 +05:30
Phaneesh Barwaria
e67bcffea7 add vulkan-heap-block-size flag (#498) 2022-11-22 13:30:25 +05:30
Ean Garvey
005ded3c6f Update xfails. (#500)
* Update test_models.py

* Fix formatting.
2022-11-22 01:30:34 +05:30
Gaurav Shukla
d624940e12 Remove unnecessary torch_mlir import
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-21 21:47:21 +05:30
Gaurav Shukla
7763403b0e [WEB] Cache text-encoder and reorganize the codebase
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-21 17:21:12 +05:30
Prashant Kumar
88c58244b9 Update stable diffusion models to point to new location. 2022-11-18 19:39:21 +05:30
yzhang93
0754c6ea20 Update model annotation to take vulkan configs (#495)
Co-authored-by: vivian <vivian@nod-labs.com>
2022-11-17 14:34:17 -08:00
Prashant Kumar
7b1f04d121 Changes incorporating the recent torch_mlir compile api changes. 2022-11-15 15:25:37 +05:30
Phaneesh Barwaria
d8a9bee244 Add internet connection check for re-downloading models (#488) 2022-11-14 13:56:42 -06:00
Phaneesh Barwaria
ac0ea6bd3c xfail albert tf static cpu (#490) 2022-11-14 13:56:26 -06:00
Ean Garvey
45677c1e23 Install torch version required by torch-mlir when setting up importer venv. (#486) 2022-11-14 14:01:01 +05:30
Phaneesh Barwaria
d9f4a9954a modify to get correct target triple (#485) 2022-11-13 20:13:44 -08:00
mariecwhite
ec461a4456 Enable XLA compiler for TF models (#484) 2022-11-13 20:10:47 -08:00
Mehdi Amini
559928e93b Actually print the error message when SharkRunner can't initialize the driver (#482)
Right now it would just terminate the process silently
2022-11-13 19:08:46 -08:00
Mehdi Amini
a526f7d5b8 Fix dispatch saving code after 749a2c2d (#483)
In 749a2c2d iree_device_map and iree_target_map have been made functions
but not all of the uses were updated.
2022-11-14 05:39:01 +05:30
Phaneesh Barwaria
749a2c2dec add support for choosing vulkan device (#439) 2022-11-12 14:00:41 -08:00
Gaurav Shukla
29a317dbb6 [WEB] Update SD styling and prompt loading. (#479)
* [WEB] CSS changes to the web-ui (#465)

This commit updates UI with styling.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>

* [WEB] Update the title (#466)

* [WEB] Add support for long prompts (#467)

* [WEB] fix background color

Signed-Off-by: Gaurav Shukla

* [WEB] Remove long prompts support

It removes support to long prompts due to higher lag in loading long prompts.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs>

* [WEB] Update nod logo and enable debug feature.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
Signed-off-by: Gaurav Shukla
Signed-off-by: Gaurav Shukla <gaurav@nod-labs>
2022-11-10 10:55:22 -08:00
Abhishek Varma
2f36de319a [SHARK_INFERENCE] Add ESRGAN model test file
-- This commit adds ESRGAN model test file to SHARK_INFERENCE.

Signed-off-by: Abhishek Varma <abhishek@nod-ai.com>
2022-11-10 17:12:42 +05:30
Quinn Dawkins
2005bce419 Fix flags for untuned Stable Diffusion FP16 model (#478) 2022-11-09 21:31:10 -05:00
Ean Garvey
8a02d7729d Add a few xfails. (#477) 2022-11-09 09:33:09 -08:00
Prashant Kumar
1cdf301c14 Update the guidance parameter argument and add the int8 version of the
stable diffusion model.
2022-11-08 23:14:44 +05:30
yzhang93
9a86e5c476 Fix dispatch benchmarking tool (#460) 2022-11-08 09:37:12 -08:00
Eliasj42
32d3f4bd5f added ordered benchmarks to dispatch benchmarking tool (#450)
* added ordered benchmarks to dispatch benchmarking tool

* saved changes

* updated readme

Co-authored-by: Elias Joseph <elias@nod-labs.com>
2022-11-07 09:36:21 -08:00
Prashant Kumar
18689afc1a Make separate function for each model. 2022-11-07 20:20:38 +05:30
PhaneeshB
64d6da75c7 Resolve Mac torch-mlir torch setup dependency. Enable MacOS CI 2022-11-07 15:38:37 +05:30
Ean Garvey
1e95e4b502 Change dependency installation order in venv setup script. (#470) 2022-11-04 20:53:54 -05:00
Ean Garvey
c63009a6db Update test_models.py (#464) 2022-11-04 16:59:01 -07:00
Gaurav Shukla
88f8718635 [WEB] Load prompts from json
The prompt examples will now be loaded from a json file `prompts.json`.

Signed-Off-by: Gaurav Shukla
2022-11-02 20:52:34 +05:30
Prashant Kumar
a081733a42 Add the clip text shark_model. (#458) 2022-11-02 00:08:33 -07:00
Gaurav Shukla
06ccfb0533 [WEB] Load vae and unet during server start up
The vae and unet models(both fp16 and fp32 variant) can be loaded at
server startup in order to reduce web response time.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-01 23:11:52 +05:30
Gaurav Shukla
b18d75e3f7 [WEB] Use tuned version of UNET fp16
This commit updates SD script in order to use the tuned version of Unet
fp16 model.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-01 19:00:21 +05:30
Quinn Dawkins
3e7efaa048 Switch stable diffusion to the new tuned model (#455) 2022-10-31 15:15:31 -07:00
Gaurav Shukla
a3fdfc81db [WEB] Minor changes in the shark web (#454)
1. Default steps = 50.
2. Live preview will yield intermediate image at every 5 steps.
3. Add logs to .gitignore

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-31 14:29:00 -07:00
Gaurav Shukla
f4c91df1df [WEB] Add pillow dependency (#453)
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-31 12:57:21 -07:00
Prashant Kumar
32e1ba8c0d Adding batch_size support for stable diffusion. 2022-11-01 00:57:52 +05:30
Gaurav Shukla
1939376d72 [WEB] Cache model parameters (#452)
This commit cache some of the model parameters to reduce the response
time of shark web.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-31 11:55:10 -07:00
Gaurav Shukla
25931d48a3 [WEB] Update stable diffusion UI and enable live preview (#447)
This commit enables live preview feature and also updates stable
diffusion web UI.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-31 04:10:15 -07:00
powderluv
024c5e153a Update Windows in README 2022-10-30 22:27:03 -07:00
powderluv
83f34b645d Add Windows instructions 2022-10-30 22:25:42 -07:00
powderluv
3f9f450e0d Add setup_venv.ps1 for windows (#448)
Powershell users can run ./setup_venv.ps1 to setup the env
2022-10-30 22:17:35 -07:00
powderluv
fd89b06641 Drop RDNA1 for now 2022-10-29 14:29:09 -07:00
Gaurav Shukla
f8dc996004 Update vulkan-target-triple for Radeon devices. (#446)
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-29 14:27:20 -07:00
Phaneesh Barwaria
e6a964088b Add os agnostic vulkan device name check (#445) 2022-10-29 13:19:14 -07:00
Gaurav Shukla
e3e767c7eb [WEB] Remove live preview and disable resnet|albert_maskfill
This commit removes live preview feature for now as it's not functional.
This feature will be added in the next patch.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-30 00:37:59 +05:30
Quinn Dawkins
239c19eb12 Update Stable diffusion script to enable use of tuned models (#443) 2022-10-29 01:42:49 -04:00
Eliasj42
7f37599a60 Added a dispatch benchmarking tool (#441)
To produce benchmarks of individual dispatches, you can add --dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir> to your command line argument.

Co-authored-by: Elias Joseph <elias@nod-labs.com>
2022-10-28 14:31:03 -07:00
Prashant Kumar
77c9a2c5ea Add profiling vulkan_device info and minor changes to reflect upstream
changes.
2022-10-28 18:02:07 +05:30
Ean Garvey
fd7baae548 Serialize torch-mlir CAPI module as bytecode instead of string. (#435)
* Serialize torch-mlir CAPI as bytecode instead of string.

* Minor fixes to MLIR data handling in SHARK python.
2022-10-27 14:37:15 -05:00
Stanley Winata
01fdf5ee16 [example][SD] compile fp16 with iree-spirv-unify-aliased-resources (#436) 2022-10-27 05:12:28 -07:00
Gaurav Shukla
e52f533c16 [WEB] Save vmfb and add live preview
This commit updates SD script to save the compiled module and also adds
live preview of generated images.

Signed-off-by: Gaurav Shukla<gaurav@nod-labs.com>
2022-10-26 23:20:53 +05:30
Quinn Dawkins
fbd77dc936 Enable iterator space fusion for SD (#432) 2022-10-26 01:08:26 -04:00
Quinn Dawkins
cdc6dd19e3 Force stable diffusion fp16 and fp32 to generate images with similar noise (#431) 2022-10-25 17:28:18 -04:00
PhaneeshB
fd578a48a9 add cli args for vulkan target triple 2022-10-25 21:47:26 +05:30
Ean Garvey
9956099516 Add pytest option for updating tank and fix save_mlir function. (#413)
* Use IREE tf tools to save .mlir modules when generating shark_tank.

* Add option to pytest for enabling auto-updates to local shark tank.

* xfail mobilenet torch on cpu, cuda and fix CI macos setup

* Update test-models.yml to disable macos vulkan CI.
2022-10-25 21:29:18 +05:30
powderluv
f97b8fffed Update README.md 2022-10-24 12:51:49 -07:00
Gaurav Shukla
7b9e309724 [WEB] Expose SD parameters in the web ui (#427) 2022-10-24 04:34:35 -07:00
Quinn Dawkins
1d33913d48 Add option to save and load precompiled flatbuffer (#425) 2022-10-23 16:24:09 -07:00
Prashant Kumar
a48eaaed20 Pass the flags to vae. 2022-10-23 23:57:48 +05:30
Prashant Kumar
2741b8be53 Pass the flags to vae. (#422) 2022-10-23 11:23:13 -07:00
Anush Elangovan
4f906a265c Fix lint 2022-10-22 12:43:52 -07:00
Anush Elangovan
0dff8d7af0 Simple download script to prime the hf model cache 2022-10-21 17:42:05 -07:00
Quinn Dawkins
4f0d0d8167 Update vulkan gui README for iree-vulkan-gui + Stable Diffusion (#399) 2022-10-21 14:02:40 -04:00
Vivek Khandelwal
d513060b21 Add params for Stable Diffusion (#420) 2022-10-21 23:11:09 +05:30
Prashant Kumar
d1a25ce4f3 Update stable_args.py 2022-10-21 17:26:31 +05:30
Gaurav Shukla
51c98695b2 [WEB] Update stable diffusion inference
This commit updates the stable diffusion web incorporating the latest
improvements.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-21 01:26:38 +05:30
Quinn Dawkins
b448770ec2 Add ms/iter timing for stable diffusion script (#414) 2022-10-20 13:32:37 -04:00
Prashant Kumar
5fe22a7980 Minor fix. 2022-10-20 22:57:22 +05:30
Prashant Kumar
38ae6b5af4 Add stable_diffusion fp16 and fp32 with args. 2022-10-20 21:47:11 +05:30
Ean Garvey
0bfe30d75d Fix issues with extra_args in benchmarks, pin tf==2.10 (#411) 2022-10-20 06:55:26 -07:00
Quinn Dawkins
7be1d7d0be Add option for extra arguments through SharkInference.compile (#408) 2022-10-19 15:32:48 -05:00
Prashant Kumar
0d74c873f0 Add stable_diff_f16 version. (#407) 2022-10-19 10:04:24 -07:00
powderluv
139aff2938 Update nightly.yml
fix links
2022-10-18 23:42:22 -07:00
anush elangovan
a3f733490c Force update of packages
Pickup tools from upstream IREE
2022-10-19 05:20:53 +00:00
anush elangovan
8a11f138d1 Update SHARK-Runtime releases page 2022-10-19 05:06:36 +00:00
Ean Garvey
3405607917 (TESTING) Fix .whl assets path (#404) 2022-10-14 12:13:14 -05:00
Ean Garvey
7c99a6bd33 Update README.md (#406) 2022-10-13 20:29:49 -05:00
Ean Garvey
3fba8ce0e6 Update README.md (#405) 2022-10-13 12:43:03 -07:00
Ean Garvey
f3bde3c7fc Cleanup tank directory and move instructions to tank/README.md (#401) 2022-10-13 12:20:02 -05:00
Phaneesh Barwaria
21fee8ef33 enable only one workflow job per branch (#402) 2022-10-13 12:15:30 -05:00
Vivek Khandelwal
0e217d6180 Add Stable Diffusion Img2Img model script 2022-10-13 21:56:46 +05:30
Phaneesh Barwaria
00a8ce75d1 Xfail vulkan tests and Enable MacOs test on CI (#383) 2022-10-13 11:14:41 -05:00
Quinn Dawkins
8f3f00cd99 Add iree-run-module like tool for running in a vulkan session (#398) 2022-10-12 20:46:26 -04:00
Ean Garvey
13bae2538a Update URL for IREE compiler/runtime install (#397)
* Update URL for IREE compiler/runtime install

* Update gh-pages-releases.yml

* Update test_models.py

* Update assets path
2022-10-12 15:47:11 -05:00
Ean Garvey
f508c80c23 Add workflow for GH pages releases and release scraping script. (#394)
* Add workflow for GH pages releases and release scraping script.

* Update test_models.py and change tokens for gh pages.
2022-10-11 22:03:33 -05:00
gpetters94
53df0620e3 Add OPT to tank (#214) 2022-10-11 11:03:56 -05:00
powderluv
a63755bc24 Correct spelling 2022-10-11 01:53:55 -07:00
Quinn Dawkins
d93d0783a8 Add script for tensorflow stable diffusion (#391) 2022-10-10 12:01:49 -04:00
Daniel Garvey
d38e37bd99 seperate importer and benchmark deps (#393) 2022-10-08 23:31:20 -05:00
Ean Garvey
3618fb3ada Move old test scripts out of base tank directory and add xfails. (#389) 2022-10-07 16:02:46 -07:00
Vivek Khandelwal
70a29b03e0 Add FP16 Resnet50 script 2022-10-06 21:56:43 +05:30
Ean Garvey
006adf8746 Fix issue with FASTAPI pip install. (#382) 2022-10-01 14:55:24 -05:00
Quinn Dawkins
33b53e7caf Add flag for specifying the vae mlir file location in stable diffusion (#381) 2022-09-30 00:37:58 -04:00
Daniel Garvey
c54815de17 edit assets path (#376) 2022-09-28 16:42:36 -05:00
Gaurav Shukla
0013fb0753 [WEB] Add shark-web logging
1. This commit adds support to display logs in the shark-web.
2. It also adds nod logo in the home page.
3. Stable-diffusion outputs are being saved now.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-29 01:20:42 +05:30
Ean Garvey
56f8a0d85a Update torch-mlir releases page in setup_venv.sh (#374)
* Update README.md

* Update setup_venv.sh
2022-09-28 11:07:44 -07:00
Ean Garvey
9035a2eed3 Add --local_tank_cache flag and update requirements. (#368)
* Add --local_tank_cache flag and update requirements.

* Update requirements-importer.txt
2022-09-28 03:02:59 -05:00
Vivek Khandelwal
28daf410b6 Add instructions to use locally build Torch-MLIR with SHARK 2022-09-28 10:16:38 +05:30
Ean Garvey
cbf3f784aa Add pytest option to specify a URL for shark tank artifacts. (#363)
* Xfail updates.

* Generalize tank SHA option to bucket address and add pytest option.
2022-09-27 02:40:40 -05:00
Anush Elangovan
ef4b306c7b Add diffusers and scipy 2022-09-26 13:35:23 -07:00
powderluv
5316c1e0bf Use latest transformers (#346) 2022-09-26 13:11:41 -07:00
Gaurav Shukla
0228973eef [WEB] Fix the mlir location of stable-diffusion model (#367)
Update the location of stable-diffusion mlir file since there is some
problem with iree-compile.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-26 10:56:36 -07:00
Gaurav Shukla
d4eeff0a5d [WEB] Add Stable-Diffusion in the SHARK web (#366)
1. This commit adds stable-diffusion as a part of shark web.
2. The V-diffusion model has been disabled for now as it's not
   working(will raise a different patch with fix).
3. Add standard output in the web ui.
4. Add instructions to launch the shark-web.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-26 10:42:02 -07:00
Prashant Kumar
c7b2d39ab2 Update stable_diff to contain vae. 2022-09-26 20:11:43 +05:30
Gaurav Shukla
21958cc02a [WEB] Remove unused parameters in the v-diffuison model (#314)
This commit removes unused parameters in the v-diffusion model. It also
updated the server parameters in order to make multiple requests to be
handled sequentially.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-25 10:57:06 -07:00
Ean Garvey
de23e5d9d7 update xfails for PyTorch DistilBERT (#355) 2022-09-24 14:53:20 -05:00
Quinn Dawkins
6438bce023 Add a script to convert a jpg to the correct input for resnet50 with the vulkan gui (#362) 2022-09-23 16:32:52 -07:00
yzhang93
587d74b449 Update model annotation tool (#361)
Usage:
with create_context() as ctx:
  module = model_annotation(ctx, input_contents=..., config_path=..., search_op=...)

Example:
The example is to annotate the minilm model with GPU config files.
python model_annotation.py /nodclouddata/vivian/minilm_model/model.mlir /nodclouddata/vivian/minilm_model/model_config.json
2022-09-23 15:44:51 -07:00
Prashant Kumar
b9c8985047 Add sharkdynamo which combines shark with torchdynamo.
-- Adds graph breaks when necessary.
-- Even for loops are supported.
2022-09-23 22:40:02 +05:30
Vivek Khandelwal
93ebe07d2b Add bert_tosa script 2022-09-23 10:52:06 +05:30
Ean Garvey
d82b305781 Fix issues with loading .vmfb into SharkInference 2022-09-23 09:53:13 +05:30
Quinn Dawkins
1df20fac95 [Lockstep] Hack to avoid aten._reshape_alias (#332)
This enforces the decomposition for aten._reshape_alias used in AOTAutograd to essentially avoid having to deal with problems with strides when running in eager mode.
2022-09-22 18:02:09 -04:00
Prashant Kumar
991e7043d1 Add stable diffusion model. 2022-09-22 13:40:51 +05:30
powderluv
1c4d6c23fa Update CMakeLists.txt 2022-09-21 22:48:56 -07:00
Anush Elangovan
87895446a5 Roll SHARK-Runtime 2022-09-22 00:09:04 -07:00
Ean Garvey
c0f3a09a40 Include SHA in path to failure reproducers. Add --save_fails option. (#352) 2022-09-21 17:55:06 -05:00
Anush Elangovan
e9ad4b9fc4 Update SHARK Runtime 2022-09-21 06:31:48 -07:00
Ean Garvey
c061a8897d Add pytest options to save reproducers. (#350)
* Add pytest options to save and/or upload reproducers.

* pass shark_module to benchmark method.
2022-09-20 20:29:46 -05:00
Ean Garvey
4253551b67 Update README with new testing instructions and filter test cases. (#349) 2022-09-20 15:55:46 -05:00
Vivek Khandelwal
e4991c049e Add Readme file for the bloom model 2022-09-20 20:27:52 +05:30
Daniel Garvey
5df582e7e8 creates abstract test case class (#333) 2022-09-20 07:06:38 -07:00
Ean Garvey
814a6f8295 Modify vulkan target triple substring searches. (#318) 2022-09-20 01:20:20 -05:00
Vivek Khandelwal
7013c3cd4a Add bloom e2e script 2022-09-20 10:56:04 +05:30
powderluv
0ddd65b6f1 Create LICENSE 2022-09-19 15:07:59 -07:00
powderluv
44d8f08bfc Fix Torch-MLIR release page 2022-09-17 00:50:39 -07:00
erman-gurses
fc8aa6ae63 Add ROCM parameters (#335) 2022-09-16 09:12:19 -07:00
Quinn Dawkins
9bd951b083 Clean up the v-diffusion install pipeline (#327) 2022-09-16 11:47:07 -04:00
Vivek Khandelwal
c43448a826 Update compile_utils.py 2022-09-15 18:28:10 +05:30
Vivek Khandelwal
864723a473 add bloom model example 2022-09-15 18:23:09 +05:30
Anush Elangovan
3b0ec8ce4e Update resnet paths 2022-09-14 16:56:20 -07:00
Anush Elangovan
174b171913 Clean up SDL linking 2022-09-14 13:18:55 -07:00
powderluv
cfd9733c2b Delete shark_web directory 2022-09-14 06:38:30 -07:00
Anush Elangovan
8d4d543a49 Update shark runtime 2022-09-14 06:14:02 -07:00
Anush Elangovan
1b9c88a052 Update vulkan gui readme 2022-09-13 19:35:47 -07:00
Anush Elangovan
e212ff2071 Fix resnet50 vulkan_gui to work with tank models 2022-09-13 19:22:41 -07:00
Quinn Dawkins
8d21292d34 Fix input tensors with non-floating point dtype in the lockstep tracer (#328) 2022-09-13 21:14:38 -04:00
Anush Elangovan
e304041574 Remove redundant {} 2022-09-13 16:12:35 -07:00
Anush Elangovan
1776c55e73 Fix torch-mlir download URL 2022-09-13 16:07:25 -07:00
Anush Elangovan
4e4c34c717 fix release downloads 2022-09-13 15:00:47 -07:00
Anush Elangovan
23378b6be8 Add resnet to vulkan-gui 2022-09-13 07:06:47 -07:00
Ean Garvey
6cf5564c84 Remove "gpu" device alias and migrate to using "cuda" for NVIDIA GPU. (#325)
* Replace instances of "gpu" alias for devices with "cuda"
2022-09-13 01:16:56 -05:00
Ean Garvey
7143902a90 Update test-models.yml (#323) 2022-09-12 22:47:40 -05:00
Anush Elangovan
15186db73f Hardcode SDL2 for now (works on linux) 2022-09-12 10:17:41 -07:00
powderluv
ccd7a01ce2 Update README.md 2022-09-12 07:12:57 -07:00
Anush Elangovan
1d7035117d Add cpp inference examples and vulkan_gui 2022-09-12 07:07:33 -07:00
Ean Garvey
1710abd366 Update mobilenet_v3_small_torch_test.py (#322) 2022-09-10 15:22:57 -05:00
Ean Garvey
6aeda3670f Split nightly workflow by backend (IREE / SHARK) (#313)
* Fix validation for nightly builds.

* Add option to generate shark_tank inside SHARK project
Add shark_arg for updating tank on mismatched hash (downloader)

* Fixup CI tank dir option.

* Fixup work directory variable
2022-09-09 22:51:30 +05:30
Prashant Kumar
bb52b224d0 Add sparse architecture and test with torchrec SparseArch.
Features that don't work with current implementation:
    -- embeddingbag config with multiple features.
2022-09-09 21:49:30 +05:30
Stanley Winata
95ec3d7216 [tank][v-diffusion] Polish up v-diffusion UX (#315) 2022-09-08 12:55:51 -07:00
powderluv
18872222d3 Update README.md 2022-09-07 01:14:30 -07:00
Ean Garvey
d453f2e49d Enable CPU benchmarks on test-models workflows. (#299)
* Update test-models.yml

* Update README.md
2022-09-07 01:22:58 -05:00
Ean Garvey
3824d37d27 Add metadata to benchmark results. (#297) 2022-09-06 13:03:48 -05:00
Ean Garvey
d946287723 Update xfails for torchvision models. (#310) 2022-09-01 13:06:12 -05:00
Prashant Kumar
885b0969f5 [WEB] Cache the compiled module.
-- Don't compile the module again and again.
2022-09-01 23:08:08 +05:30
Gaurav Shukla
a886cba655 [WEB] Add v_diffusion model in the shark web (#306)
This commit adds adds `v_diffusion` model web visualization as a part of
shark web.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-01 06:34:51 -07:00
Vivek Khandelwal
4afe2e3adb Add func to save intermediate images in v_diffusion_pytorch 2022-09-01 18:36:58 +05:30
Gaurav Shukla
fe080eaee6 [WEB] Introduce web interface for the SHARK models (#298)
This commit introduces web application for SHARK using gradio platform.
This adds web visualization of `Resnet50` and `Albert_Maskfill` models
as a start.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-08-31 23:17:52 -07:00
Quinn Dawkins
3703f014d9 Add scripts for generating images on ats-m (#305) 2022-08-31 23:07:02 -07:00
Daniel Garvey
d45a496030 adds a flag to enable directory choice (#303)
individual tests will require implementation of the flag
alternatively, simply passing shark_default_sha in your
individual app's download function will allow for this behavior
2022-08-31 22:17:40 -07:00
powderluv
4ee164c66f remove a100 cpu 2022-08-31 12:59:47 -07:00
powderluv
bf84c033bb add icelake 2022-08-31 12:58:40 -07:00
Prashant Kumar
5105f62551 Add the dlrm_model in shark example. (#301)
-- DLRM model is added in the shark example.
-- The model is verified on cpu, gpu and vulkan.

Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2022-08-31 12:54:21 -07:00
Quinn Dawkins
99be837d84 Add lockstep tracer based on TorchMLIR eager mode + examples (#243) 2022-08-31 15:50:24 -04:00
Quinn Dawkins
b7766898ee Add cfg sampling from tank model for v-diffusion and move compilation outside of the sampling loop (#302) 2022-08-31 11:35:04 -07:00
powderluv
57f73dfbc9 Update nightly.yml 2022-08-28 23:59:03 -07:00
powderluv
50b2b9638d Update nightly.yml 2022-08-28 23:43:32 -07:00
Daniel Garvey
1bfd00e2f8 fixes an install issue (#295) 2022-08-25 18:52:00 -05:00
Daniel Garvey
64424877ac No iree instal (#294)
* adds support to default to tuned model

currently setup for tf bert/resnet50
going to refactor test class to avoid having to
add an argument to 50+ files

* adds an option to avoid installing iree

useful when building iree from source
specify env variable NO_BACKEND=1
2022-08-25 15:02:28 -05:00
Phaneesh Barwaria
02d857260c Update ReadMe
-Add gsutil installation for resnet50 example
2022-08-25 20:28:50 +05:30
Phaneesh Barwaria
1322ec5935 Simplified Testing Interface (#289) 2022-08-24 23:54:56 -05:00
Daniel Garvey
48e9818f7e adds support to default to tuned model (#287)
currently setup for tf bert/resnet50
going to refactor test class to avoid having to
add an argument to 50+ files
2022-08-24 16:30:02 -05:00
Ean Garvey
14857770dc Fix local artifact recognition and usage by SHARK downloader. (#286)
* Fix local artifact recognition and usage by SHARK downloader.

* Update generate_sharktank.py

* Update generate_sharktank.py
2022-08-24 14:37:16 -05:00
Vivek Khandelwal
f79a6bf5aa Update setup_v_diffusion_pytorch.sh (#291)
Fix minor issue with v-diffusion PyTorch version
2022-08-24 22:00:02 +05:30
Prashant Kumar
7dc27a7477 Don't remove the latest .whl package from CI. (#290)
Previously, the CI was removing the latest package and pointing to the
stale package.
2022-08-24 09:03:48 -07:00
Chi_Liu
17dba601c8 Add huggingface top5 image classification automodel (#268) 2022-08-22 15:05:38 -07:00
Chi_Liu
064aa3b1f4 Fix tmp dir bug (#285) 2022-08-22 15:00:35 -07:00
Ean Garvey
4960efc686 Update requirements-importer.txt (#284) 2022-08-19 23:21:41 -05:00
277 changed files with 37662 additions and 3990 deletions

5
.flake8 Normal file
View File

@@ -0,0 +1,5 @@
[flake8]
count = 1
show-source = 1
select = E9,F63,F7,F82
exclude = lit.cfg.py

37
.github/workflows/gh-pages-releases.yml vendored Normal file
View File

@@ -0,0 +1,37 @@
# See: https://github.com/llvm/torch-mlir/issues/1374
name: Publish releases page
on:
workflow_dispatch:
jobs:
scrape_and_publish_releases:
name: "Scrape and publish releases"
runs-on: ubuntu-latest
# Don't run this in everyone's forks.
if: github.repository == 'nod-ai/SHARK'
steps:
- name: Checking out repository
uses: actions/checkout@v2
with:
token: ${{ secrets.NODAI_INVOCATION_TOKEN }}
- name: Run scrape releases script
run: python ./build_tools/scrape_releases.py nod-ai SHARK > /tmp/index.html
shell: bash
- run: git fetch --all
- run: git switch github-pages
- run: git config --global user.email "none@none.com"
- run: git config --global user.name "nod-ai"
- run: mv /tmp/index.html package-index/index.html
- run: git add package-index/index.html
# Only try to make a commit if the file has changed.
- run: git diff --cached --exit-code || git commit -m "Update releases."
- name: GitHub Push
uses: ad-m/github-push-action@v0.6.0
with:
github_token: ${{ secrets.NODAI_INVOCATION_TOKEN }}
branch: github-pages

View File

@@ -9,13 +9,94 @@ on:
workflow_dispatch:
jobs:
build:
windows-build:
runs-on: 7950X
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Compute version
shell: powershell
run: |
$package_version = $(Get-Date -UFormat "%Y%m%d")+"."+${{ github.run_number }}
$package_version_ = $(Get-Date -UFormat "%Y%m%d")+"_"+${{ github.run_number }}
$tag_name=$package_version
echo "package_version=$package_version" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
echo "package_version_=$package_version_" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
echo "tag_name=$tag_name" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
tag_name: ${{ env.tag_name }}
release_name: nod.ai SHARK ${{ env.tag_name }}
body: |
Automatic snapshot release of nod.ai SHARK.
draft: true
prerelease: true
- name: Build Package
shell: powershell
run: |
./setup_venv.ps1
python process_skipfiles.py
pyinstaller .\apps\stable_diffusion\shark_sd.spec
mv ./dist/shark_sd.exe ./dist/shark_sd_${{ env.package_version_ }}.exe
signtool sign /f c:\g\shark_02152023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_${{ env.package_version_ }}.exe
pyinstaller .\apps\stable_diffusion\shark_sd_cli.spec
python process_skipfiles.py
mv ./dist/shark_sd_cli.exe ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
signtool sign /f c:\g\shark_02152023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
# GHA windows VM OOMs so disable for now
#- name: Build and validate the SHARK Runtime package
# shell: powershell
# run: |
# $env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
# pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
#- uses: actions/upload-artifact@v2
# with:
# path: dist/*
- name: Upload Release Assets
id: upload-release-assets
uses: dwenegar/upload-release-assets@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
assets_path: ./dist/*
#asset_content_type: application/vnd.microsoft.portable-executable
- name: Publish Release
id: publish_release
uses: eregon/publish-release@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
linux-build:
runs-on: a100
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
python-version: ["3.11"]
backend: [IREE, SHARK]
steps:
- uses: actions/checkout@v3
@@ -31,30 +112,13 @@ jobs:
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: |
${{ runner.os }}-pip-
- name: Compute version
run: |
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
tag_name="${package_version}"
echo "package_version=${package_version}" >> $GITHUB_ENV
echo "tag_name=${tag_name}" >> $GITHUB_ENV
- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
tag_name: ${{ env.tag_name }}
release_name: nod.ai SHARK ${{ env.tag_name }}
body: |
Automatic snapshot release of nod.ai SHARK.
draft: true
prerelease: false
- name: Install dependencies
run: |
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
python -m pip install --upgrade pip
python -m pip install flake8 pytest toml
if [ -f requirements.txt ]; then pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/SHARK-Runtime/releases; fi
if [ -f requirements.txt ]; then pip install -r requirements.txt -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html; fi
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
@@ -62,71 +126,42 @@ jobs:
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude shark.venv,lit.cfg.py
- name: Build and validate the IREE package
if: ${{ matrix.backend == 'IREE' }}
continue-on-error: true
run: |
cd $GITHUB_WORKSPACE
USE_IREE=1 VENV_DIR=iree.venv ./setup_venv.sh
source iree.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://github.com/llvm/torch-mlir/releases -f https://github.com/iree-org/iree/releases
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://openxla.github.io/iree/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
/bin/bash "$GITHUB_WORKSPACE/build_tools/populate_sharktank_ci.sh"
pytest -k 'cpu' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
tail -n 1 |
tee -a pytest_results.txt
pytest -k 'gpu' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
tail -n 1 |
tee -a pytest_results.txt
pytest -k 'vulkan' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" -k "not metal" |
tail -n 1 |
tee -a pytest_results.txt
if !(grep -Fxq " failed" pytest_results.txt)
then
export SHA=$(git log -1 --format='%h')
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/${DATE}_$SHA
gsutil -m cp -r gs://shark_tank/${DATE}_$SHA/* gs://shark_tank/nightly/
fi
rm -rf ./wheelhouse/nodai*
- name: Build and validate the SHARK Runtime package
if: ${{ matrix.backend == 'SHARK' }}
run: |
cd $GITHUB_WORKSPACE
./setup_venv.sh
source shark.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/SHARK-Runtime/releases
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
pytest -k 'cpu' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
pytest --ci --ci_sha=${SHORT_SHA} -k "not metal" |
tail -n 1 |
tee -a pytest_results.txt
pytest -k 'gpu' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
tail -n 1 |
tee -a pytest_results.txt
pytest -k 'vulkan' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
tail -n 1 |
tee -a pytest_results.txt
if !(grep -Fxq " failed" pytest_results.txt)
then
export SHA=$(git log -1 --format='%h')
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/$SHA
gsutil -m cp -r gs://shark_tank/$SHA/* gs://shark_tank/latest/
fi
rm pytest_results.txt
rm -rf ./wheelhouse/nodai*
- name: Upload Release Assets
id: upload-release-assets
uses: dwenegar/upload-release-assets@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
assets_path: ./wheelhouse/nodai_*.whl
- name: Publish Release
id: publish_release
uses: eregon/publish-release@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}

View File

@@ -6,18 +6,32 @@ name: Validate Models on Shark Runtime
on:
push:
branches: [ main ]
paths-ignore:
- '**.md'
- 'shark/examples/**'
pull_request:
branches: [ main ]
paths-ignore:
- '**.md'
- 'shark/examples/**'
workflow_dispatch:
# Ensure that only a single job or workflow using the same
# concurrency group will run at a time. This would cancel
# any in-progress jobs in the same github workflow and github
# ref (e.g. refs/heads/main or refs/pull/<pr_number>/merge).
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
build-validate:
strategy:
fail-fast: true
matrix:
os: [a100, MacStudio, ubuntu-latest]
suite: [cpu,gpu,vulkan]
python-version: ["3.10"]
os: [7950x, icelake, a100, MacStudio, ubuntu-latest]
suite: [cpu,cuda,vulkan]
python-version: ["3.11"]
include:
- os: ubuntu-latest
suite: lint
@@ -25,34 +39,44 @@ jobs:
- os: ubuntu-latest
suite: vulkan
- os: ubuntu-latest
suite: gpu
suite: cuda
- os: ubuntu-latest
suite: cpu
- os: MacStudio
suite: gpu
suite: cuda
- os: MacStudio
suite: cpu
- os: MacStudio
- os: icelake
suite: vulkan
- os: icelake
suite: cuda
- os: a100
suite: cpu
- os: 7950x
suite: cpu
- os: 7950x
suite: cuda
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
if: matrix.os != '7950x'
- name: Set Environment Variables
if: matrix.os != '7950x'
run: |
echo "SHORT_SHA=`git rev-parse --short=4 HEAD`" >> $GITHUB_ENV
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
- name: Set up Python Version File ${{ matrix.python-version }}
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest'
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest' || matrix.os == 'icelake'
run: |
# See https://github.com/actions/setup-python/issues/433
echo ${{ matrix.python-version }} >> $GITHUB_WORKSPACE/.python-version
- name: Set up Python ${{ matrix.python-version }}
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest'
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest' || matrix.os == 'icelake'
uses: actions/setup-python@v4
with:
python-version: '${{ matrix.python-version }}'
@@ -60,6 +84,9 @@ jobs:
#cache-dependency-path: |
# **/requirements-importer.txt
# **/requirements.txt
- uses: actions/checkout@v2
if: matrix.os == '7950x'
- name: Install dependencies
if: matrix.suite == 'lint'
@@ -72,33 +99,65 @@ jobs:
run: |
# black format check
black --version
black --line-length 79 --check .
black --check .
# stop the build if there are Python syntax errors or undefined names
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --exclude lit.cfg.py
flake8 . --statistics
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude lit.cfg.py
flake8 . --isolated --count --exit-zero --max-complexity=10 --max-line-length=127 \
--statistics --exclude lit.cfg.py
- name: Validate CPU Models
- name: Validate Models on CPU
if: matrix.suite == 'cpu'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest -k 'cpu' --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
pytest --forked --benchmark=native --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k cpu
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cpu_latest.csv
- name: Validate GPU Models
if: matrix.suite == 'gpu'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest --benchmark -k "gpu" --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_gpu_${SHORT_SHA}.csv
- name: Validate Vulkan Models
if: matrix.suite == 'vulkan'
- name: Validate Models on NVIDIA GPU
if: matrix.suite == 'cuda'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
source shark.venv/bin/activate
pytest -k 'vulkan' --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
pytest --forked --benchmark=native --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k cuda
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cuda_latest.csv
# Disabled due to black image bug
# python build_tools/stable_diffusion_testing.py --device=cuda
- name: Validate Vulkan Models (MacOS)
if: matrix.suite == 'vulkan' && matrix.os == 'MacStudio'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
source shark.venv/bin/activate
export DYLD_LIBRARY_PATH=/usr/local/lib/
echo $PATH
pip list | grep -E "torch|iree"
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/Volumes/builder/anush/shark_cache" --tank_url="gs://shark_tank/nightly/" -k vulkan --update_tank
- name: Validate Vulkan Models (a100)
if: matrix.suite == 'vulkan' && matrix.os == 'a100'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
source shark.venv/bin/activate
pytest --forked --benchmark="native" --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k vulkan
python build_tools/stable_diffusion_testing.py --device=vulkan
- name: Validate Vulkan Models (Windows)
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
run: |
./setup_venv.ps1
pytest -k vulkan -s --ci
- name: Validate Stable Diffusion Models (Windows)
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
run: |
./setup_venv.ps1
python process_skipfiles.py
pyinstaller .\apps\stable_diffusion\shark_sd.spec
python build_tools/stable_diffusion_testing.py --device=vulkan

22
.gitignore vendored
View File

@@ -31,7 +31,6 @@ MANIFEST
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
@@ -160,10 +159,31 @@ cython_debug/
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# vscode related
.vscode
# Shark related artefacts
*venv/
shark_tmp/
*.vmfb
.use-iree
tank/dict_configs.py
*.csv
reproducers/
# ORT related artefacts
cache_models/
onnx_models/
# Generated images
generated_imgs/
# Custom model related artefacts
variants.json
models/
# models folder
apps/stable_diffusion/web/models/
# Stencil annotators.
stencil_annotator/

View File

@@ -1,3 +0,0 @@
[style]
based_on_style = google
column_limit = 80

218
LICENSE Normal file
View File

@@ -0,0 +1,218 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
---- LLVM Exceptions to the Apache 2.0 License ----
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into an Object form of such source code, you
may redistribute such embedded portions in such Object form without complying
with the conditions of Sections 4(a), 4(b) and 4(d) of the License.
In addition, if you combine or link compiled forms of this Software with
software that is licensed under the GPLv2 ("Combined Software") and if a
court of competent jurisdiction determines that the patent provision (Section
3), the indemnity provision (Section 9) or other Section of the License
conflicts with the conditions of the GPLv2, you may retroactively and
prospectively choose to deem waived or otherwise exclude such Section(s) of
the License, but only in their entirety and only with respect to the Combined
Software.

480
README.md
View File

@@ -1,29 +1,161 @@
# SHARK
High Performance Machine Learning and Data Analytics for CPUs, GPUs, Accelerators and Heterogeneous Clusters
High Performance Machine Learning Distribution
[![Nightly Release](https://github.com/nod-ai/SHARK/actions/workflows/nightly.yml/badge.svg)](https://github.com/nod-ai/SHARK/actions/workflows/nightly.yml)
[![Validate torch-models on Shark Runtime](https://github.com/nod-ai/SHARK/actions/workflows/test-models.yml/badge.svg)](https://github.com/nod-ai/SHARK/actions/workflows/test-models.yml)
## Communication Channels
* [SHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the SHARK team and other users
* [GitHub issues](https://github.com/nod-ai/SHARK/issues): Feature requests, bugs etc
## Installation
<details>
<summary>Installation (Linux and macOS)</summary>
<summary>Prerequisites - Drivers </summary>
#### Install your Windows hardware drivers
* [AMD RDNA Users] Download the latest driver [here](https://www.amd.com/en/support/kb/release-notes/rn-rad-win-23-2-1).
* [macOS Users] Download and install the 1.3.216 Vulkan SDK from [here](https://sdk.lunarg.com/sdk/download/1.3.216.0/mac/vulkansdk-macos-1.3.216.0.dmg). Newer versions of the SDK will not work.
* [Nvidia Users] Download and install the latest CUDA / Vulkan drivers from [here](https://developer.nvidia.com/cuda-downloads)
#### Linux Drivers
* MESA / RADV drivers wont work with FP16. Please use the latest AMGPU-PRO drivers (non-pro OSS drivers also wont work) or the latest NVidia Linux Drivers.
Other users please ensure you have your latest vendor drivers and Vulkan SDK from [here](https://vulkan.lunarg.com/sdk/home) and if you are using vulkan check `vulkaninfo` works in a terminal window
</details>
### Quick Start for SHARK Stable Diffusion for Windows 10/11 Users
Install the Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
Download the [stable release](https://github.com/nod-ai/shark/releases/latest)
Double click the .exe and you should have the [UI](http://localhost:8080/) in the browser.
If you have custom models put them in a `models/` directory where the .exe is.
Enjoy.
<details>
<summary>More installation notes</summary>
* We recommend that you download EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files with `rm *.vmfb`. You can also use `--clear_all` flag once to clean all the old files.
* If you recently updated the driver or this binary (EXE file), we recommend you clear all the local artifacts with `--clear_all`
## Running
* Open a Command Prompt or Powershell terminal, change folder (`cd`) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE)
* The first run may take few minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
* You will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/.
## Stopping
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment or close the terminal.
</details>
<details>
<summary>Advanced Installation (Only for developers)</summary>
## Advanced Installation (Windows, Linux and macOS) for developers
## Check out the code
```shell
git clone https://github.com/nod-ai/SHARK.git
cd SHARK
```
## Setup your Python VirtualEnvironment and Dependencies
### Windows 10/11 Users
* Install the latest Python 3.11.x version from [here](https://www.python.org/downloads/windows/)
* Install Git for Windows from [here](https://git-scm.com/download/win)
#### Allow the install script to run in Powershell
```powershell
set-executionpolicy remotesigned
```
#### Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...)
```powershell
./setup_venv.ps1 #You can re-run this script to get the latest version
```
### Linux / macOS Users
```shell
./setup_venv.sh
source shark.venv/bin/activate
```
### Run Stable Diffusion on your device - WebUI
#### Windows 10/11 Users
```powershell
(shark.venv) PS C:\g\shark> cd .\apps\stable_diffusion\web\
(shark.venv) PS C:\g\shark\apps\stable_diffusion\web> python .\index.py
```
#### Linux / macOS Users
```shell
(shark.venv) > cd apps/stable_diffusion/web
(shark.venv) > python index.py
```
#### Access Stable Diffusion on http://localhost:8080/?__theme=dark
<img width="1607" alt="webui" src="https://user-images.githubusercontent.com/74956/204939260-b8308bc2-8dc4-47f6-9ac0-f60b66edab99.png">
### Run Stable Diffusion on your device - Commandline
#### Windows 10/11 Users
```powershell
(shark.venv) PS C:\g\shark> python .\apps\stable_diffusion\scripts\main.py --app="txt2img" --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
```
#### Linux / macOS Users
```shell
python3.11 apps/stable_diffusion/scripts/main.py --app=txt2img --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
```
You can replace `vulkan` with `cpu` to run on your CPU or with `cuda` to run on CUDA devices. If you have multiple vulkan devices you can address them with `--device=vulkan://1` etc
</details>
The output on a AMD 7900XTX would look something like:
```shell
Average step time: 47.19188690185547ms/it
Clip Inference time (ms) = 109.531
VAE Inference time (ms): 78.590
Total image generation time: 2.5788655281066895sec
```
Here are some samples generated:
![tajmahal, snow, sunflowers, oil on canvas_0](https://user-images.githubusercontent.com/74956/204934186-141f7e43-6eb2-4e89-a99c-4704d20444b3.jpg)
![a photo of a crab playing a trumpet](https://user-images.githubusercontent.com/74956/204933258-252e7240-8548-45f7-8253-97647d38313d.jpg)
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
<details>
<summary>Binary Installation</summary>
### Setup a new pip Virtual Environment
This step sets up a new VirtualEnv for Python
```shell
python --version #Check you have 3.7->3.10 on Linux or 3.10 on macOS
python --version #Check you have 3.11 on Linux, macOS or Windows Powershell
python -m venv shark_venv
source shark_venv/bin/activate
source shark_venv/bin/activate # Use shark_venv/Scripts/activate on Windows
# If you are using conda create and activate a new conda env
@@ -35,19 +167,24 @@ python -m pip install --upgrade pip
### Install SHARK
This step pip installs SHARK and related packages on Linux Python 3.7, 3.8, 3.9, 3.10 and macOS Python 3.10
This step pip installs SHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11
```shell
pip install nodai-shark -f https://github.com/nod-ai/SHARK/releases -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/shark-runtime/releases --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
```
If you are on an Intel macOS machine you need this [workaround](https://github.com/nod-ai/SHARK/issues/102) for an upstream issue.
### Run shark tank model tests.
```shell
pytest tank/test_models.py
```
See tank/README.md for a more detailed walkthrough of our pytest suite and CLI.
### Download and run Resnet50 sample
```shell
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/resnet50_script.py
#Install deps for test script
pip install --pre torch torchvision torchaudio tqdm pillow --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install --pre torch torchvision torchaudio tqdm pillow gsutil --extra-index-url https://download.pytorch.org/whl/nightly/cpu
python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
```
@@ -61,103 +198,84 @@ python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
</details>
<details>
<summary>Source Installation</summary>
<summary>Development, Testing and Benchmarks</summary>
## Check out the code
```shell
git clone https://github.com/nod-ai/SHARK.git
If you want to use Python3.11 and with TF Import tools you can use the environment variables like:
Set `USE_IREE=1` to use upstream IREE
```
# PYTHON=python3.11 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
```
## Setup your Python VirtualEnvironment and Dependencies
```shell
# Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...).
./setup_venv.sh
source shark.venv/bin/activate
```
For example if you want to use Python3.10 and upstream IREE with TF Import tools you can use the environment variables like:
```
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 USE_IREE=1 ./setup_venv.sh
```
If you are a Torch-mlir developer or an IREE developer and want to test local changes you can uninstall
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
with Python bindings and set your PYTHONPATH as mentioned [here](https://google.github.io/iree/bindings/python/)
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
for Torch-MLIR.
### Run a demo script
### Run any of the hundreds of SHARK tank models via the test framework
```shell
python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
# Or a pytest
pytest tank/tf/hf_masked_lm/albert-base-v2_test.py::AlbertBaseModuleTest::test_module_static_cpu
pytest tank/test_models.py -k "MiniLM"
```
### How to use your locally built IREE / Torch-MLIR with SHARK
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
with Python bindings and set your PYTHONPATH as mentioned [here](https://github.com/iree-org/iree/tree/main/docs/api_docs/python#install-iree-binaries)
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
for Torch-MLIR.
How to use your locally built Torch-MLIR with SHARK:
```shell
1.) Run `./setup_venv.sh in SHARK` and activate `shark.venv` virtual env.
2.) Run `pip uninstall torch-mlir`.
3.) Go to your local Torch-MLIR directory.
4.) Activate mlir_venv virtual envirnoment.
5.) Run `pip uninstall -r requirements.txt`.
6.) Run `pip install -r requirements.txt`.
7.) Build Torch-MLIR.
8.) Activate shark.venv virtual environment from the Torch-MLIR directory.
8.) Run `export PYTHONPATH=`pwd`/build/tools/torch-mlir/python_packages/torch_mlir:`pwd`/examples` in the Torch-MLIR directory.
9.) Go to the SHARK directory.
```
Now the SHARK will use your locally build Torch-MLIR repo.
## Benchmarking Dispatches
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your pytest command line argument.
If you only want to compile specific dispatches, you can specify them with a space seperated string instead of `"All"`. E.G. `--dispatch_benchmarks="0 1 2 10"`
For example, to generate and run dispatch benchmarks for MiniLM on CUDA:
```
pytest -k "MiniLM and torch and static and cuda" --benchmark_dispatches=All -s --dispatch_benchmarks_dir=./my_dispatch_benchmarks
```
The given command will populate `<dispatch_benchmarks_dir>/<model_name>/` with an `ordered_dispatches.txt` that lists and orders the dispatches and their latencies, as well as folders for each dispatch that contain .mlir, .vmfb, and results of the benchmark for that dispatch.
if you want to instead incorporate this into a python script, you can pass the `dispatch_benchmarks` and `dispatch_benchmarks_dir` commands when initializing `SharkInference`, and the benchmarks will be generated when compiled. E.G:
```
shark_module = SharkInference(
mlir_model,
func_name,
device=args.device,
mlir_dialect="tm_tensor",
dispatch_benchmarks="all",
dispatch_benchmarks_dir="results"
)
```
Output will include:
- An ordered list ordered-dispatches.txt of all the dispatches with their runtime
- Inside the specified directory, there will be a directory for each dispatch (there will be mlir files for all dispatches, but only compiled binaries and benchmark data for the specified dispatches)
- An .mlir file containing the dispatch benchmark
- A compiled .vmfb file containing the dispatch benchmark
- An .mlir file containing just the hal executable
- A compiled .vmfb file of the hal executable
- A .txt file containing benchmark output
See tank/README.md for further instructions on how to run model tests and benchmarks from the SHARK tank.
</details>
<details>
<summary>Testing</summary>
### Run all model tests on CPU/GPU/VULKAN/Metal
```shell
pytest tank
# If on Linux for multithreading on CPU (faster results):
pytest tank -n auto
```
### Running specific tests
```shell
# Run tests for a specific model:
pytest tank/<MODEL_NAME> #i.e., pytest tank/bert-base-uncased
# Run tests for a specific case:
pytest tank/<MODEL_NAME> -k "keyword"
# i.e., pytest tank/bert-base-uncased/bert-base-uncased_test.py -k "static_gpu"
```
### Run benchmarks on SHARK tank pytests and generate bench_results.csv with results.
(requires source installation with `IMPORTER=1 ./setup_venv.sh`)
```shell
pytest --benchmark tank
# Just do static GPU benchmarks for PyTorch tests:
pytest --benchmark tank --ignore-glob="_tf*" -k "static_gpu"
```
### Benchmark Resnet50, MiniLM on CPU
(requires source installation with `IMPORTER=1 ./setup_venv.sh`)
```shell
# We suggest running the following commands as root before running benchmarks on CPU:
cat /sys/devices/system/cpu/cpu*/topology/thread_siblings_list | awk -F, '{print $2}' | sort -n | uniq | ( while read X ; do echo $X ; echo 0 > /sys/devices/system/cpu/cpu$X/online ; done )
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
# Benchmark canonical Resnet50 on CPU via pytest
pytest --benchmark tank/resnet50/ -k "cpu"
# Benchmark canonical MiniLM on CPU via pytest
pytest --benchmark tank/MiniLM-L12-H384-uncased/ -k "cpu"
# Benchmark MiniLM on CPU via transformer-benchmarks:
git clone --recursive https://github.com/nod-ai/transformer-benchmarks.git
cd transformer-benchmarks
./perf-ci.sh -n
# Check detail.csv for MLIR/IREE results.
```
</details>
<details>
<summary>API Reference</summary>
@@ -208,160 +326,26 @@ result = shark_module.forward((arg0, arg1))
```
</details>
## Supported and Validated Models
<details>
<summary>PyTorch Models</summary>
SHARK is maintained to support the latest innovations in ML Models:
### Huggingface PyTorch Models
| TF HuggingFace Models | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------|----------|-------------|
| BERT | :green_heart: | :green_heart: | :green_heart: |
| DistilBERT | :green_heart: | :green_heart: | :green_heart: |
| GPT2 | :green_heart: | :green_heart: | :green_heart: |
| BLOOM | :green_heart: | :green_heart: | :green_heart: |
| Stable Diffusion | :green_heart: | :green_heart: | :green_heart: |
| Vision Transformer | :green_heart: | :green_heart: | :green_heart: |
| ResNet50 | :green_heart: | :green_heart: | :green_heart: |
| Hugging Face Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| Albert | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| BigBird | :green_heart: (AOT) | | | |
| DistilBERT | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| GPT2 | :broken_heart: (AOT) | | | |
| MobileBert | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
For a complete list of the models supported in SHARK, please refer to [tank/README.md](https://github.com/nod-ai/SHARK/blob/main/tank/README.md).
### Torchvision Models
## Communication Channels
| TORCHVISION Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|--------------------|----------------------|----------|----------|-------------|
| AlexNet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| DenseNet121 | :green_heart: (Script) | | | |
| MNasNet1_0 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| MobileNetV2 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| MobileNetV3 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Unet | :broken_heart: (Script) | | | |
| Resnet18 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnet50 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnet101 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnext50_32x4d | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| ShuffleNet_v2 | :broken_heart: (Script) | | | |
| SqueezeNet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| EfficientNet | :green_heart: (Script) | | | |
| Regnet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnest | :broken_heart: (Script) | | | |
| Vision Transformer | :green_heart: (Script) | | | |
| VGG 16 | :green_heart: (Script) | :green_heart: | :green_heart: | |
| Wide Resnet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| RAFT | :broken_heart: (JIT) | | | |
For more information refer to [MODEL TRACKING SHEET](https://docs.google.com/spreadsheets/d/15PcjKeHZIrB5LfDyuw7DGEEE8XnQEX2aX8lm8qbxV8A/edit#gid=0)
### PyTorch Training Models
| Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :broken_heart: | :broken_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
</details>
<details>
<summary>JAX Models</summary>
### JAX Models
| Models | JAX-MHLO lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| DALL-E | :broken_heart: | :broken_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
</details>
<details>
<summary>TFLite Models</summary>
### TFLite Models
| Models | TOSA/LinAlg | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :broken_heart: | :broken_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
| albert | :green_heart: | :green_heart: | | |
| asr_conformer | :green_heart: | :green_heart: | | |
| bird_classifier | :green_heart: | :green_heart: | | |
| cartoon_gan | :green_heart: | :green_heart: | | |
| craft_text | :green_heart: | :green_heart: | | |
| deeplab_v3 | :green_heart: | :green_heart: | | |
| densenet | :green_heart: | :green_heart: | | |
| east_text_detector | :green_heart: | :green_heart: | | |
| efficientnet_lite0_int8 | :green_heart: | :green_heart: | | |
| efficientnet | :green_heart: | :green_heart: | | |
| gpt2 | :green_heart: | :green_heart: | | |
| image_stylization | :green_heart: | :green_heart: | | |
| inception_v4 | :green_heart: | :green_heart: | | |
| inception_v4_uint8 | :green_heart: | :green_heart: | | |
| lightning_fp16 | :green_heart: | :green_heart: | | |
| lightning_i8 | :green_heart: | :green_heart: | | |
| lightning | :green_heart: | :green_heart: | | |
| magenta | :green_heart: | :green_heart: | | |
| midas | :green_heart: | :green_heart: | | |
| mirnet | :green_heart: | :green_heart: | | |
| mnasnet | :green_heart: | :green_heart: | | |
| mobilebert_edgetpu_s_float | :green_heart: | :green_heart: | | |
| mobilebert_edgetpu_s_quant | :green_heart: | :green_heart: | | |
| mobilebert | :green_heart: | :green_heart: | | |
| mobilebert_tf2_float | :green_heart: | :green_heart: | | |
| mobilebert_tf2_quant | :green_heart: | :green_heart: | | |
| mobilenet_ssd_quant | :green_heart: | :green_heart: | | |
| mobilenet_v1 | :green_heart: | :green_heart: | | |
| mobilenet_v1_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v2_int8 | :green_heart: | :green_heart: | | |
| mobilenet_v2 | :green_heart: | :green_heart: | | |
| mobilenet_v2_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v3-large | :green_heart: | :green_heart: | | |
| mobilenet_v3-large_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v35-int8 | :green_heart: | :green_heart: | | |
| nasnet | :green_heart: | :green_heart: | | |
| person_detect | :green_heart: | :green_heart: | | |
| posenet | :green_heart: | :green_heart: | | |
| resnet_50_int8 | :green_heart: | :green_heart: | | |
| rosetta | :green_heart: | :green_heart: | | |
| spice | :green_heart: | :green_heart: | | |
| squeezenet | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v1 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v1_uint8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_fpnlite | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_fpnlite_uint8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_int8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2 | :green_heart: | :green_heart: | | |
| ssd_spaghettinet_large | :green_heart: | :green_heart: | | |
| ssd_spaghettinet_large_uint8 | :green_heart: | :green_heart: | | |
| visual_wake_words_i8 | :green_heart: | :green_heart: | | |
</details>
<details>
<summary>TF Models</summary>
### Tensorflow Models (Inference)
| Hugging Face Models | tf-mhlo lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| albert-base-v2 | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| DistilBERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| CamemBert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| ConvBert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| Deberta | | | | |
| electra | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| funnel | | | | |
| layoutlm | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| longformer | | | | |
| mobile-bert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| remembert | | | | |
| tapas | | | | |
| flaubert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| roberta | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| xlm-roberta | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| mpnet | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
</details>
* [SHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the SHARK team and other users
* [GitHub issues](https://github.com/nod-ai/SHARK/issues): Feature requests, bugs etc
## Related Projects

0
apps/__init__.py Normal file
View File

View File

View File

@@ -0,0 +1,87 @@
Compile / Run Instructions:
To compile .vmfb for SD (vae, unet, CLIP), run the following commands with the .mlir in your local shark_tank cache (default location for Linux users is `~/.local/shark_tank`). These will be available once the script from [this README](https://github.com/nod-ai/SHARK/blob/main/shark/examples/shark_inference/stable_diffusion/README.md) is run once.
Running the script mentioned above with the `--save_vmfb` flag will also save the .vmfb in your SHARK base directory if you want to skip straight to benchmarks.
Compile Commands FP32/FP16:
```shell
Vulkan AMD:
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
# add --mlir-print-debuginfo --mlir-print-op-on-diagnostic=true for debug
# use iree-input-type=mhlo for tf models
CUDA NVIDIA:
iree-compile --iree-input-type=none --iree-hal-target-backends=cuda --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
CPU:
iree-compile --iree-input-type=none --iree-hal-target-backends=llvm-cpu --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
```
Run / Benchmark Command (FP32 - NCHW):
(NEED to use BS=2 since we do two forward passes to unet as a result of classifier free guidance.)
```shell
## Vulkan AMD:
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --device=vulkan --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
## CUDA:
iree-benchmark-module --module=/path/to/vmfb --function=forward --device=cuda --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
## CPU:
iree-benchmark-module --module=/path/to/vmfb --function=forward --device=local-task --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
```
Run via vulkan_gui for RGP Profiling:
To build the vulkan app for profiling UNet follow the instructions [here](https://github.com/nod-ai/SHARK/tree/main/cpp) and then run the following command from the cpp directory with your compiled stable_diff.vmfb
```shell
./build/vulkan_gui/iree-vulkan-gui --module=/path/to/unet.vmfb --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
```
</details>
<details>
<summary>Debug Commands</summary>
## Debug commands and other advanced usage follows.
```shell
python txt2img.py --precision="fp32"|"fp16" --device="cpu"|"cuda"|"vulkan" --import_mlir|--no-import_mlir --prompt "enter the text"
```
## dump all dispatch .spv and isa using amdllpc
```shell
python txt2img.py --precision="fp16" --device="vulkan" --iree-vulkan-target-triple=rdna3-unknown-linux --no-load_vmfb --dispatch_benchmarks="all" --dispatch_benchmarks_dir="SD_dispatches" --dump_isa
```
## Compile and save the .vmfb (using vulkan fp16 as an example):
```shell
python txt2img.py --precision=fp16 --device=vulkan --steps=50 --save_vmfb
```
## Capture an RGP trace
```shell
python txt2img.py --precision=fp16 --device=vulkan --steps=50 --save_vmfb --enable_rgp
```
## Run the vae module with iree-benchmark-module (NCHW, fp16, vulkan, for example):
```shell
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --device=vulkan --input=1x4x64x64xf16
```
## Run the unet module with iree-benchmark-module (same config as above):
```shell
##if you want to use .npz inputs:
unzip ~/.local/shark_tank/<your unet>/inputs.npz
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --input=@arr_0.npy --input=1xf16 --input=@arr_2.npy --input=@arr_3.npy --input=@arr_4.npy
```
</details>

View File

@@ -0,0 +1,5 @@
from apps.stable_diffusion.scripts.img2img import img2img_inf
from apps.stable_diffusion.scripts.inpaint import inpaint_inf
from apps.stable_diffusion.scripts.outpaint import outpaint_inf
from apps.stable_diffusion.scripts.upscaler import upscaler_inf
from apps.stable_diffusion.scripts.train_lora_word import lora_train

View File

@@ -0,0 +1,399 @@
import sys
import torch
import time
from PIL import Image
import transformers
from apps.stable_diffusion.src import (
args,
Image2ImagePipeline,
StencilPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# For stencil, the input image can be of any size but we need to ensure that
# it conforms with our model contraints :-
# Both width and height should be in the range of [128, 768] and multiple of 8.
# This utility function performs the transformation on the input image while
# also maintaining the aspect ratio before sending it to the stencil pipeline.
def resize_stencil(image: Image.Image):
width, height = image.size
aspect_ratio = width / height
min_size = min(width, height)
if min_size < 128:
n_size = 128
if width == min_size:
width = n_size
height = n_size / aspect_ratio
else:
height = n_size
width = n_size * aspect_ratio
width = int(width)
height = int(height)
n_width = width // 8
n_height = height // 8
n_width *= 8
n_height *= 8
min_size = min(width, height)
if min_size > 768:
n_size = 768
if width == min_size:
height = n_size
width = n_size * aspect_ratio
else:
width = n_size
height = n_size / aspect_ratio
width = int(width)
height = int(height)
n_width = width // 8
n_height = height // 8
n_width *= 8
n_height *= 8
new_image = image.resize((n_width, n_height))
return new_image, n_width, n_height
# Exposed to UI.
def img2img_inf(
prompt: str,
negative_prompt: str,
init_image,
height: int,
width: int,
steps: int,
strength: float,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
use_stencil: str,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
ondemand: bool,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
get_custom_vae_or_lora_weights,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.seed = seed
args.steps = steps
args.strength = strength
args.scheduler = scheduler
args.img_path = "not none"
args.ondemand = ondemand
if init_image is None:
return None, "An Initial Image is required"
image = init_image.convert("RGB")
# set ckpt_loc and hf_model_id.
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
args.use_lora = get_custom_vae_or_lora_weights(
lora_weights, lora_hf_id, "lora"
)
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
use_stencil = None if use_stencil == "None" else use_stencil
args.use_stencil = use_stencil
if use_stencil is not None:
args.scheduler = "DDIM"
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
image, width, height = resize_stencil(image)
elif args.scheduler != "PNDM":
if "Shark" in args.scheduler:
print(
f"SharkEulerDiscrete scheduler not supported. Switching to PNDM scheduler"
)
args.scheduler = "PNDM"
else:
sys.exit(
"Img2Img works best with PNDM scheduler. Other schedulers are not supported yet."
)
cpu_scheduling = not args.scheduler.startswith("Shark")
args.precision = precision
dtype = torch.float32 if precision == "fp32" else torch.half
new_config_obj = Config(
"img2img",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
use_lora=args.use_lora,
use_stencil=use_stencil,
)
if (
args.ondemand
or not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.batch_count = batch_count
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-1-base"
)
global_obj.set_schedulers(get_schedulers(model_id))
scheduler_obj = global_obj.get_scheduler(args.scheduler)
if use_stencil is not None:
args.use_tuned = False
global_obj.set_sd_obj(
StencilPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_stencil=use_stencil,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
)
else:
global_obj.set_sd_obj(
Image2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
)
global_obj.set_sd_scheduler(args.scheduler)
global_obj.set_sd_ondemand(args.ondemand)
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
extra_info = {"STRENGTH": strength}
text_output = ""
for current_batch in range(batch_count):
if current_batch > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
image,
batch_size,
height,
width,
steps,
strength,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
use_stencil=use_stencil,
)
seeds.append(img_seed)
total_time = time.time() - start_time
text_output = get_generation_text_info(seeds, device)
text_output += "\n" + global_obj.get_sd_obj().log
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
if global_obj.get_sd_status() == SD_STATE_CANCEL:
break
else:
save_output_img(out_imgs[0], img_seed, extra_info)
generated_imgs.extend(out_imgs)
yield generated_imgs, text_output
return generated_imgs, text_output
def main():
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
image = Image.open(args.img_path).convert("RGB")
# When the models get uploaded, it should be default to False.
args.import_mlir = True
use_stencil = args.use_stencil
if use_stencil:
args.scheduler = "DDIM"
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
image, args.width, args.height = resize_stencil(image)
elif args.scheduler != "PNDM":
if "Shark" in args.scheduler:
print(
f"SharkEulerDiscrete scheduler not supported. Switching to PNDM scheduler"
)
args.scheduler = "PNDM"
else:
sys.exit(
"Img2Img works best with PNDM scheduler. Other schedulers are not supported yet."
)
cpu_scheduling = not args.scheduler.startswith("Shark")
dtype = torch.float32 if args.precision == "fp32" else torch.half
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = utils.sanitize_seed(args.seed)
# Adjust for height and width based on model
if use_stencil:
img2img_obj = StencilPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_stencil=use_stencil,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
else:
img2img_obj = Image2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
start_time = time.time()
generated_imgs = img2img_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.batch_size,
args.height,
args.width,
args.steps,
args.strength,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
use_stencil=use_stencil,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, strength={args.strength}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += img2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
extra_info = {"STRENGTH": args.strength}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,286 @@
import torch
import time
from PIL import Image
import transformers
from apps.stable_diffusion.src import (
args,
InpaintPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# Exposed to UI.
def inpaint_inf(
prompt: str,
negative_prompt: str,
image_dict,
height: int,
width: int,
inpaint_full_res: bool,
inpaint_full_res_padding: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
ondemand: bool,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
get_custom_vae_or_lora_weights,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.steps = steps
args.scheduler = scheduler
args.img_path = "not none"
args.mask_path = "not none"
args.ondemand = ondemand
# set ckpt_loc and hf_model_id.
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
args.use_lora = get_custom_vae_or_lora_weights(
lora_weights, lora_hf_id, "lora"
)
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
"inpaint",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
use_lora=args.use_lora,
use_stencil=None,
)
if (
args.ondemand
or not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.precision = precision
args.batch_count = batch_count
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
global_obj.set_schedulers(get_schedulers(model_id))
scheduler_obj = global_obj.get_scheduler(scheduler)
global_obj.set_sd_obj(
InpaintPipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
custom_vae=args.custom_vae,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
)
global_obj.set_sd_scheduler(scheduler)
global_obj.set_sd_ondemand(args.ondemand)
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
image = image_dict["image"]
mask_image = image_dict["mask"]
text_output = ""
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
image,
mask_image,
batch_size,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
steps,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
seeds.append(img_seed)
total_time = time.time() - start_time
text_output = get_generation_text_info(seeds, device)
text_output += "\n" + global_obj.get_sd_obj().log
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
if global_obj.get_sd_status() == SD_STATE_CANCEL:
break
else:
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
yield generated_imgs, text_output
return generated_imgs, text_output
def main():
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
if args.mask_path is None:
print("Flag --mask_path is required.")
exit()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
model_id = (
args.hf_model_id
if "inpaint" in args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
image = Image.open(args.img_path)
mask_image = Image.open(args.mask_path)
inpaint_obj = InpaintPipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
custom_vae=args.custom_vae,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
seed = -1
seed = utils.sanitize_seed(seed)
start_time = time.time()
generated_imgs = inpaint_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
mask_image,
args.batch_size,
args.height,
args.width,
args.inpaint_full_res,
args.inpaint_full_res_padding,
args.steps,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += inpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
save_output_img(generated_imgs[0], seed)
print(text_output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,19 @@
from apps.stable_diffusion.src import args
from apps.stable_diffusion.scripts import (
img2img,
txt2img,
# inpaint,
# outpaint,
)
if __name__ == "__main__":
if args.app == "txt2img":
txt2img.main()
elif args.app == "img2img":
img2img.main()
# elif args.app == "inpaint":
# inpaint.main()
# elif args.app == "outpaint":
# outpaint.main()
else:
print(f"args.app value is {args.app} but this isn't supported")

View File

@@ -0,0 +1,312 @@
import torch
import time
from PIL import Image
import transformers
from apps.stable_diffusion.src import (
args,
OutpaintPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# Exposed to UI.
def outpaint_inf(
prompt: str,
negative_prompt: str,
init_image,
pixels: int,
mask_blur: int,
directions: list,
noise_q: float,
color_variation: float,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
ondemand: bool,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
get_custom_vae_or_lora_weights,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.steps = steps
args.scheduler = scheduler
args.img_path = "not none"
if ondemand:
print("Outpainting is not supporting ondemand yet.")
ondemand = False
args.ondemand = ondemand
# set ckpt_loc and hf_model_id.
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
args.use_lora = get_custom_vae_or_lora_weights(
lora_weights, lora_hf_id, "lora"
)
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
"outpaint",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
use_lora=args.use_lora,
use_stencil=None,
)
if (
not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.precision = precision
args.batch_count = batch_count
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
global_obj.set_schedulers(get_schedulers(model_id))
scheduler_obj = global_obj.get_scheduler(scheduler)
global_obj.set_sd_obj(
OutpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
)
global_obj.set_sd_scheduler(scheduler)
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
left = True if "left" in directions else False
right = True if "right" in directions else False
top = True if "up" in directions else False
bottom = True if "down" in directions else False
text_output = ""
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
init_image,
pixels,
mask_blur,
left,
right,
top,
bottom,
noise_q,
color_variation,
batch_size,
height,
width,
steps,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
seeds.append(img_seed)
total_time = time.time() - start_time
text_output = get_generation_text_info(seeds, device)
text_output += "\n" + global_obj.get_sd_obj().log
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
if global_obj.get_sd_status() == SD_STATE_CANCEL:
break
else:
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
yield generated_imgs, text_output
return generated_imgs, text_output
def main():
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
model_id = (
args.hf_model_id
if "inpaint" in args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
image = Image.open(args.img_path)
outpaint_obj = OutpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
seed = -1
seed = utils.sanitize_seed(seed)
start_time = time.time()
generated_imgs = outpaint_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.pixels,
args.mask_blur,
args.left,
args.right,
args.top,
args.bottom,
args.noise_q,
args.color_variation,
args.batch_size,
args.height,
args.width,
args.steps,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += outpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
# save this information as metadata of output generated image.
directions = []
if args.left:
directions.append("left")
if args.right:
directions.append("right")
if args.top:
directions.append("up")
if args.bottom:
directions.append("down")
extra_info = {
"PIXELS": args.pixels,
"MASK_BLUR": args.mask_blur,
"DIRECTIONS": directions,
"NOISE_Q": args.noise_q,
"COLOR_VARIATION": args.color_variation,
}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,240 @@
import logging
import os
from models.stable_diffusion.main import stable_diff_inf
from models.stable_diffusion.utils import get_available_devices
from dotenv import load_dotenv
from telegram import Update, InlineKeyboardButton, InlineKeyboardMarkup
from telegram import BotCommand
from telegram.ext import Application, ApplicationBuilder, CallbackQueryHandler
from telegram.ext import ContextTypes, MessageHandler, CommandHandler, filters
from io import BytesIO
import random
log = logging.getLogger("TG.Bot")
logging.basicConfig()
log.warning("Start")
load_dotenv()
os.environ["AMD_ENABLE_LLPC"] = "0"
TG_TOKEN = os.getenv("TG_TOKEN")
SELECTED_MODEL = "stablediffusion"
SELECTED_SCHEDULER = "EulerAncestralDiscrete"
STEPS = 30
NEGATIVE_PROMPT = (
"Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra"
" limbs,Gross proportions,Missing arms,Mutated hands,Long"
" neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad"
" anatomy,Cloned face,Malformed limbs,Missing legs,Too many"
" fingers,blurry, lowres, text, error, cropped, worst quality, low"
" quality, jpeg artifacts, out of frame, extra fingers, mutated hands,"
" poorly drawn hands, poorly drawn face, bad anatomy, extra limbs, cloned"
" face, malformed limbs, missing arms, missing legs, extra arms, extra"
" legs, fused fingers, too many fingers"
)
GUIDANCE_SCALE = 6
available_devices = get_available_devices()
models_list = [
"stablediffusion",
"anythingv3",
"analogdiffusion",
"openjourney",
"dreamlike",
]
sheds_list = [
"DDIM",
"PNDM",
"LMSDiscrete",
"DPMSolverMultistep",
"EulerDiscrete",
"EulerAncestralDiscrete",
"SharkEulerDiscrete",
]
def image_to_bytes(image):
bio = BytesIO()
bio.name = "image.jpeg"
image.save(bio, "JPEG")
bio.seek(0)
return bio
def get_try_again_markup():
keyboard = [[InlineKeyboardButton("Try again", callback_data="TRYAGAIN")]]
reply_markup = InlineKeyboardMarkup(keyboard)
return reply_markup
def generate_image(prompt):
seed = random.randint(1, 10000)
log.warning(SELECTED_MODEL)
log.warning(STEPS)
image, text = stable_diff_inf(
prompt=prompt,
negative_prompt=NEGATIVE_PROMPT,
steps=STEPS,
guidance_scale=GUIDANCE_SCALE,
seed=seed,
scheduler_key=SELECTED_SCHEDULER,
variant=SELECTED_MODEL,
device_key=available_devices[0],
)
return image, seed
async def generate_and_send_photo(
update: Update, context: ContextTypes.DEFAULT_TYPE
) -> None:
progress_msg = await update.message.reply_text(
"Generating image...", reply_to_message_id=update.message.message_id
)
im, seed = generate_image(prompt=update.message.text)
await context.bot.delete_message(
chat_id=progress_msg.chat_id, message_id=progress_msg.message_id
)
await context.bot.send_photo(
update.effective_user.id,
image_to_bytes(im),
caption=f'"{update.message.text}" (Seed: {seed})',
reply_markup=get_try_again_markup(),
reply_to_message_id=update.message.message_id,
)
async def button(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
query = update.callback_query
if query.data in models_list:
global SELECTED_MODEL
SELECTED_MODEL = query.data
await query.answer()
await query.edit_message_text(text=f"Selected model: {query.data}")
return
if query.data in sheds_list:
global SELECTED_SCHEDULER
SELECTED_SCHEDULER = query.data
await query.answer()
await query.edit_message_text(text=f"Selected scheduler: {query.data}")
return
replied_message = query.message.reply_to_message
await query.answer()
progress_msg = await query.message.reply_text(
"Generating image...", reply_to_message_id=replied_message.message_id
)
if query.data == "TRYAGAIN":
prompt = replied_message.text
im, seed = generate_image(prompt)
await context.bot.delete_message(
chat_id=progress_msg.chat_id, message_id=progress_msg.message_id
)
await context.bot.send_photo(
update.effective_user.id,
image_to_bytes(im),
caption=f'"{prompt}" (Seed: {seed})',
reply_markup=get_try_again_markup(),
reply_to_message_id=replied_message.message_id,
)
async def select_model_handler(update, context):
text = "Select model"
keyboard = []
for model in models_list:
keyboard.append(
[
InlineKeyboardButton(text=model, callback_data=model),
]
)
markup = InlineKeyboardMarkup(keyboard)
await update.message.reply_text(text=text, reply_markup=markup)
async def select_scheduler_handler(update, context):
text = "Select schedule"
keyboard = []
for shed in sheds_list:
keyboard.append(
[
InlineKeyboardButton(text=shed, callback_data=shed),
]
)
markup = InlineKeyboardMarkup(keyboard)
await update.message.reply_text(text=text, reply_markup=markup)
async def set_steps_handler(update, context):
input_mex = update.message.text
log.warning(input_mex)
try:
input_args = input_mex.split("/set_steps ")[1]
global STEPS
STEPS = int(input_args)
except Exception:
input_args = (
"Invalid parameter for command. Correct command looks like\n"
" /set_steps 30"
)
await update.message.reply_text(input_args)
async def set_negative_prompt_handler(update, context):
input_mex = update.message.text
log.warning(input_mex)
try:
input_args = input_mex.split("/set_negative_prompt ")[1]
global NEGATIVE_PROMPT
NEGATIVE_PROMPT = input_args
except Exception:
input_args = (
"Invalid parameter for command. Correct command looks like\n"
" /set_negative_prompt ugly, bad art, mutated"
)
await update.message.reply_text(input_args)
async def set_guidance_scale_handler(update, context):
input_mex = update.message.text
log.warning(input_mex)
try:
input_args = input_mex.split("/set_guidance_scale ")[1]
global GUIDANCE_SCALE
GUIDANCE_SCALE = int(input_args)
except Exception:
input_args = (
"Invalid parameter for command. Correct command looks like\n"
" /set_guidance_scale 7"
)
await update.message.reply_text(input_args)
async def setup_bot_commands(application: Application) -> None:
await application.bot.set_my_commands(
[
BotCommand("select_model", "to select model"),
BotCommand("select_scheduler", "to select scheduler"),
BotCommand("set_steps", "to set steps"),
BotCommand("set_guidance_scale", "to set guidance scale"),
BotCommand("set_negative_prompt", "to set negative prompt"),
]
)
app = (
ApplicationBuilder().token(TG_TOKEN).post_init(setup_bot_commands).build()
)
app.add_handler(CommandHandler("select_model", select_model_handler))
app.add_handler(CommandHandler("select_scheduler", select_scheduler_handler))
app.add_handler(CommandHandler("set_steps", set_steps_handler))
app.add_handler(
CommandHandler("set_guidance_scale", set_guidance_scale_handler)
)
app.add_handler(
CommandHandler("set_negative_prompt", set_negative_prompt_handler)
)
app.add_handler(
MessageHandler(filters.TEXT & ~filters.COMMAND, generate_and_send_photo)
)
app.add_handler(CallbackQueryHandler(button))
log.warning("Start bot")
app.run_polling()

View File

@@ -0,0 +1,674 @@
# Install the required libs
# pip install -U git+https://github.com/huggingface/diffusers.git
# pip install accelerate transformers ftfy
# HuggingFace Token
# YOUR_TOKEN = "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"
# Import required libraries
import itertools
import math
import os
from typing import List
import random
import torch_mlir
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
import logging
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.loaders import AttnProcsLayers
from diffusers.models.cross_attention import LoRACrossAttnProcessor
import torch_mlir
from torch_mlir.dynamo import make_simple_dynamo_backend
import torch._dynamo as dynamo
from torch.fx.experimental.proxy_tensor import make_fx
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
from shark.shark_inference import SharkInference
torch._dynamo.config.verbose = True
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import (
StableDiffusionSafetyChecker,
)
from PIL import Image
from tqdm.auto import tqdm
from transformers import (
CLIPFeatureExtractor,
CLIPTextModel,
CLIPTokenizer,
)
from io import BytesIO
from dataclasses import dataclass
from apps.stable_diffusion.src import (
args,
get_schedulers,
set_init_device_flags,
clear_all,
)
# Setup the dataset
class LoraDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
size=512,
repeats=100,
interpolation="bicubic",
set="train",
prompt="myloraprompt",
center_crop=False,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.size = size
self.center_crop = center_crop
self.prompt = prompt
self.image_paths = [
os.path.join(self.data_root, file_path)
for file_path in os.listdir(self.data_root)
]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
example["input_ids"] = self.tokenizer(
self.prompt,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2,
(w - crop) // 2 : (w + crop) // 2,
]
image = Image.fromarray(img)
image = image.resize(
(self.size, self.size), resample=self.interpolation
)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
########## Setting up the model ##########
def lora_train(
prompt: str,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
training_images_dir: str,
lora_save_dir: str,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
print(
"Note LoRA training is not compatible with the latest torch-mlir branch"
)
print(
"To run LoRA training you'll need this to follow this guide for the torch-mlir branch: https://github.com/nod-ai/SHARK/tree/main/shark/examples/shark_training/stable_diffusion"
)
torch.manual_seed(seed)
args.prompts = [prompt]
args.steps = steps
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = custom_model
else:
args.hf_model_id = custom_model
args.training_images_dir = training_images_dir
args.lora_save_dir = lora_save_dir
args.precision = precision
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
device_str = device.split("=>", 1)[1].strip().split("://")
if len(device_str) > 1:
device_str = device_str[0] + ":" + device_str[1]
else:
device_str = device_str[0]
args.device = device_str
# Load the Stable Diffusion model
text_encoder = CLIPTextModel.from_pretrained(
args.hf_model_id, subfolder="text_encoder"
)
vae = AutoencoderKL.from_pretrained(args.hf_model_id, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(
args.hf_model_id, subfolder="unet"
)
def freeze_params(params):
for param in params:
param.requires_grad = False
# Freeze everything but LoRA
freeze_params(vae.parameters())
freeze_params(unet.parameters())
freeze_params(text_encoder.parameters())
# Move vae and unet to device
vae.to(args.device)
unet.to(args.device)
text_encoder.to(args.device)
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[
block_id
]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRACrossAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
)
unet.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(unet.attn_processors)
class VaeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.vae = vae
def forward(self, input):
x = self.vae.encode(input, return_dict=False)[0]
return x
class UnetModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.unet = unet
def forward(self, x, y, z):
return self.unet.forward(x, y, z, return_dict=False)[0]
shark_vae = VaeModel()
shark_unet = UnetModel()
####### Creating our training data ########
tokenizer = CLIPTokenizer.from_pretrained(
args.hf_model_id,
subfolder="tokenizer",
)
# Let's create the Dataset and Dataloader
train_dataset = LoraDataset(
data_root=args.training_images_dir,
tokenizer=tokenizer,
size=vae.sample_size,
prompt=args.prompts[0],
repeats=100,
center_crop=False,
set="train",
)
def create_dataloader(train_batch_size=1):
return torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True
)
# Create noise_scheduler for training
noise_scheduler = DDPMScheduler.from_config(
args.hf_model_id, subfolder="scheduler"
)
######## Training ###########
# Define hyperparameters for our training. If you are not happy with your results,
# you can tune the `learning_rate` and the `max_train_steps`
# Setting up all training args
hyperparameters = {
"learning_rate": 5e-04,
"scale_lr": True,
"max_train_steps": steps,
"train_batch_size": batch_size,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True,
"mixed_precision": "fp16",
"seed": 42,
"output_dir": "sd-concept-output",
}
# creating output directory
cwd = os.getcwd()
out_dir = os.path.join(cwd, hyperparameters["output_dir"])
while not os.path.exists(str(out_dir)):
try:
os.mkdir(out_dir)
except OSError as error:
print("Output directory not created")
###### Torch-MLIR Compilation ######
def _remove_nones(fx_g: torch.fx.GraphModule) -> List[int]:
removed_indexes = []
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, (list, tuple)):
node_arg = list(node_arg)
node_args_len = len(node_arg)
for i in range(node_args_len):
curr_index = node_args_len - (i + 1)
if node_arg[curr_index] is None:
removed_indexes.append(curr_index)
node_arg.pop(curr_index)
node.args = (tuple(node_arg),)
break
if len(removed_indexes) > 0:
fx_g.graph.lint()
fx_g.graph.eliminate_dead_code()
fx_g.recompile()
removed_indexes.sort()
return removed_indexes
def _unwrap_single_tuple_return(fx_g: torch.fx.GraphModule) -> bool:
"""
Replace tuple with tuple element in functions that return one-element tuples.
Returns true if an unwrapping took place, and false otherwise.
"""
unwrapped_tuple = False
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
if len(node_arg) == 1:
node.args = (node_arg[0],)
unwrapped_tuple = True
break
if unwrapped_tuple:
fx_g.graph.lint()
fx_g.recompile()
return unwrapped_tuple
def _returns_nothing(fx_g: torch.fx.GraphModule) -> bool:
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
return len(node_arg) == 0
return False
def transform_fx(fx_g):
for node in fx_g.graph.nodes:
if node.op == "call_function":
if node.target in [
torch.ops.aten.empty,
]:
# aten.empty should be filled with zeros.
if node.target in [torch.ops.aten.empty]:
with fx_g.graph.inserting_after(node):
new_node = fx_g.graph.call_function(
torch.ops.aten.zero_,
args=(node,),
)
node.append(new_node)
node.replace_all_uses_with(new_node)
new_node.args = (node,)
fx_g.graph.lint()
@make_simple_dynamo_backend
def refbackend_torchdynamo_backend(
fx_graph: torch.fx.GraphModule, example_inputs: List[torch.Tensor]
):
# handling usage of empty tensor without initializing
transform_fx(fx_graph)
fx_graph.recompile()
if _returns_nothing(fx_graph):
return fx_graph
removed_none_indexes = _remove_nones(fx_graph)
was_unwrapped = _unwrap_single_tuple_return(fx_graph)
mlir_module = torch_mlir.compile(
fx_graph, example_inputs, output_type="linalg-on-tensors"
)
bytecode_stream = BytesIO()
mlir_module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
shark_module = SharkInference(
mlir_module=bytecode, device=args.device, mlir_dialect="tm_tensor"
)
shark_module.compile()
def compiled_callable(*inputs):
inputs = [x.numpy() for x in inputs]
result = shark_module("forward", inputs)
if was_unwrapped:
result = [
result,
]
if not isinstance(result, list):
result = torch.from_numpy(result)
else:
result = tuple(torch.from_numpy(x) for x in result)
result = list(result)
for removed_index in removed_none_indexes:
result.insert(removed_index, None)
result = tuple(result)
return result
return compiled_callable
def predictions(torch_func, jit_func, batchA, batchB):
res = jit_func(batchA.numpy(), batchB.numpy())
if res is not None:
# prediction = torch.from_numpy(res)
prediction = res
else:
prediction = None
return prediction
logger = logging.getLogger(__name__)
train_batch_size = hyperparameters["train_batch_size"]
gradient_accumulation_steps = hyperparameters[
"gradient_accumulation_steps"
]
learning_rate = hyperparameters["learning_rate"]
if hyperparameters["scale_lr"]:
learning_rate = (
learning_rate
* gradient_accumulation_steps
* train_batch_size
# * accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
lora_layers.parameters(), # only optimize the embeddings
lr=learning_rate,
)
# Training function
def train_func(batch_pixel_values, batch_input_ids):
# Convert images to latent space
latents = shark_vae(batch_pixel_values).sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch_input_ids)[0]
# Predict the noise residual
noise_pred = shark_unet(
noisy_latents,
timesteps,
encoder_hidden_states,
)
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
loss = (
F.mse_loss(noise_pred, target, reduction="none")
.mean([1, 2, 3])
.mean()
)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return loss
def training_function():
max_train_steps = hyperparameters["max_train_steps"]
output_dir = hyperparameters["output_dir"]
gradient_checkpointing = hyperparameters["gradient_checkpointing"]
train_dataloader = create_dataloader(train_batch_size)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
num_train_epochs = math.ceil(
max_train_steps / num_update_steps_per_epoch
)
# Train!
total_batch_size = (
train_batch_size
* gradient_accumulation_steps
# train_batch_size * accelerator.num_processes * gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(
f" Instantaneous batch size per device = {train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
# range(max_train_steps), disable=not accelerator.is_local_main_process
range(max_train_steps)
)
progress_bar.set_description("Steps")
global_step = 0
params__ = [
i for i in text_encoder.get_input_embeddings().parameters()
]
for epoch in range(num_train_epochs):
unet.train()
for step, batch in enumerate(train_dataloader):
dynamo_callable = dynamo.optimize(
refbackend_torchdynamo_backend
)(train_func)
lam_func = lambda x, y: dynamo_callable(
torch.from_numpy(x), torch.from_numpy(y)
)
loss = predictions(
train_func,
lam_func,
batch["pixel_values"],
batch["input_ids"],
)
# Checks if the accelerator has performed an optimization step behind the scenes
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
training_function()
# Save the lora weights
unet.save_attn_procs(args.lora_save_dir)
for param in itertools.chain(unet.parameters(), text_encoder.parameters()):
if param.grad is not None:
del param.grad # free some memory
torch.cuda.empty_cache()
if __name__ == "__main__":
if args.clear_all:
clear_all()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
if len(args.prompts) != 1:
print("Need exactly one prompt for the LoRA word")
lora_train(
args.prompts[0],
args.height,
args.width,
args.training_steps,
args.guidance_scale,
args.seed,
args.batch_count,
args.batch_size,
args.scheduler,
"None",
args.hf_model_id,
args.precision,
args.device,
args.max_length,
args.training_images_dir,
args.lora_save_dir,
)

View File

@@ -0,0 +1,85 @@
import torch
import transformers
import time
from apps.stable_diffusion.src import (
args,
Text2ImagePipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
def main():
if args.clear_all:
clear_all()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
txt2img_obj = Text2ImagePipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
use_quantize=args.use_quantize,
ondemand=args.ondemand,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
seed = -1
seed = utils.sanitize_seed(seed)
start_time = time.time()
generated_imgs = txt2img_obj.generate_images(
args.prompts,
args.negative_prompts,
args.batch_size,
args.height,
args.width,
args.steps,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
# TODO: if using --batch_count=x txt2img_obj.log will output on each display every iteration infos from the start
text_output += txt2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
save_output_img(generated_imgs[0], seed)
print(text_output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,279 @@
import torch
import time
from PIL import Image
import transformers
from apps.stable_diffusion.src import (
args,
UpscalerPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# Exposed to UI.
def upscaler_inf(
prompt: str,
negative_prompt: str,
init_image,
height: int,
width: int,
steps: int,
noise_level: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
ondemand: bool,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
get_custom_vae_or_lora_weights,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.seed = seed
args.steps = steps
args.scheduler = scheduler
args.ondemand = ondemand
if init_image is None:
return None, "An Initial Image is required"
image = init_image.convert("RGB").resize((height, width))
# set ckpt_loc and hf_model_id.
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
args.use_lora = get_custom_vae_or_lora_weights(
lora_weights, lora_hf_id, "lora"
)
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
args.height = 128
args.width = 128
new_config_obj = Config(
"upscaler",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
args.height,
args.width,
device,
use_lora=args.use_lora,
use_stencil=None,
)
if (
args.ondemand
or not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.batch_size = batch_size
args.max_length = max_length
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-1-base"
)
global_obj.set_schedulers(get_schedulers(model_id))
scheduler_obj = global_obj.get_scheduler(scheduler)
global_obj.set_sd_obj(
UpscalerPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
)
global_obj.set_sd_scheduler(scheduler)
global_obj.get_sd_obj().low_res_scheduler = global_obj.get_scheduler(
"DDPM"
)
global_obj.set_sd_ondemand(args.ondemand)
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
extra_info = {"NOISE LEVEL": noise_level}
for current_batch in range(batch_count):
if current_batch > 0:
img_seed = utils.sanitize_seed(-1)
low_res_img = image
high_res_img = Image.new("RGB", (height * 4, width * 4))
for i in range(0, width, 128):
for j in range(0, height, 128):
box = (j, i, j + 128, i + 128)
upscaled_image = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
low_res_img.crop(box),
batch_size,
args.height,
args.width,
steps,
noise_level,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
high_res_img.paste(upscaled_image[0], (j * 4, i * 4))
save_output_img(high_res_img, img_seed, extra_info)
generated_imgs.append(high_res_img)
seeds.append(img_seed)
global_obj.get_sd_obj().log += "\n"
yield generated_imgs, global_obj.get_sd_obj().log
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={steps}, noise_level={noise_level}, guidance_scale={guidance_scale}, seed={seeds}"
text_output += f"\nsize={height}x{width}, batch_count={batch_count}, batch_size={batch_size}, max_length={args.max_length}"
text_output += global_obj.get_sd_obj().log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
yield generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
# When the models get uploaded, it should be default to False.
args.import_mlir = True
cpu_scheduling = not args.scheduler.startswith("Shark")
dtype = torch.float32 if args.precision == "fp32" else torch.half
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
image = (
Image.open(args.img_path)
.convert("RGB")
.resize((args.height, args.width))
)
seed = utils.sanitize_seed(args.seed)
# Adjust for height and width based on model
upscaler_obj = UpscalerPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_lora=args.use_lora,
ddpm_scheduler=schedulers["DDPM"],
ondemand=args.ondemand,
)
start_time = time.time()
generated_imgs = upscaler_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.batch_size,
args.height,
args.width,
args.steps,
args.noise_level,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, noise_level={args.noise_level}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += upscaler_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
extra_info = {"NOISE LEVEL": args.noise_level}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)

View File

@@ -0,0 +1,85 @@
# -*- mode: python ; coding: utf-8 -*-
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import copy_metadata
from PyInstaller.utils.hooks import collect_submodules
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
datas = []
datas += collect_data_files('torch')
datas += copy_metadata('torch')
datas += copy_metadata('tqdm')
datas += copy_metadata('regex')
datas += copy_metadata('requests')
datas += copy_metadata('packaging')
datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += collect_data_files('diffusers')
datas += collect_data_files('transformers')
datas += collect_data_files('pytorch_lightning')
datas += collect_data_files('opencv-python')
datas += collect_data_files('skimage')
datas += collect_data_files('gradio')
datas += collect_data_files('gradio_client')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
datas += collect_data_files('shark')
datas += [
( 'src/utils/resources/prompts.json', 'resources' ),
( 'src/utils/resources/model_db.json', 'resources' ),
( 'src/utils/resources/opt_flags.json', 'resources' ),
( 'src/utils/resources/base_model.json', 'resources' ),
( 'web/ui/css/*', 'ui/css' ),
( 'web/ui/logos/*', 'logos' )
]
binaries = []
block_cipher = None
hiddenimports = ['shark', 'shark.shark_inference', 'apps']
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
a = Analysis(
['web/index.py'],
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hookspath=[],
hooksconfig={},
runtime_hooks=[],
excludes=[],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False,
)
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
exe = EXE(
pyz,
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
[],
name='shark_sd',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=True,
upx_exclude=[],
runtime_tmpdir=None,
console=True,
disable_windowed_traceback=False,
argv_emulation=False,
target_arch=None,
codesign_identity=None,
entitlements_file=None,
)

View File

@@ -0,0 +1,83 @@
# -*- mode: python ; coding: utf-8 -*-
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import collect_submodules
from PyInstaller.utils.hooks import copy_metadata
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
datas = []
datas += collect_data_files('torch')
datas += copy_metadata('torch')
datas += copy_metadata('tqdm')
datas += copy_metadata('regex')
datas += copy_metadata('requests')
datas += copy_metadata('packaging')
datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += collect_data_files('diffusers')
datas += collect_data_files('transformers')
datas += collect_data_files('opencv-python')
datas += collect_data_files('pytorch_lightning')
datas += collect_data_files('skimage')
datas += collect_data_files('gradio')
datas += collect_data_files('gradio_client')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
datas += collect_data_files('shark')
datas += [
( 'src/utils/resources/prompts.json', 'resources' ),
( 'src/utils/resources/model_db.json', 'resources' ),
( 'src/utils/resources/opt_flags.json', 'resources' ),
( 'src/utils/resources/base_model.json', 'resources' ),
]
binaries = []
block_cipher = None
hiddenimports = ['shark', 'shark.shark_inference', 'apps']
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
a = Analysis(
['scripts/main.py'],
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hookspath=[],
hooksconfig={},
runtime_hooks=[],
excludes=[],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False,
)
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
exe = EXE(
pyz,
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
[],
name='shark_sd_cli',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=True,
upx_exclude=[],
runtime_tmpdir=None,
console=True,
disable_windowed_traceback=False,
argv_emulation=False,
target_arch=None,
codesign_identity=None,
entitlements_file=None,
)

View File

@@ -0,0 +1,17 @@
from apps.stable_diffusion.src.utils import (
args,
set_init_device_flags,
prompt_examples,
get_available_devices,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.pipelines import (
Text2ImagePipeline,
Image2ImagePipeline,
InpaintPipeline,
OutpaintPipeline,
StencilPipeline,
UpscalerPipeline,
)
from apps.stable_diffusion.src.schedulers import get_schedulers

View File

@@ -0,0 +1,12 @@
from apps.stable_diffusion.src.models.model_wrappers import (
SharkifyStableDiffusionModel,
)
from apps.stable_diffusion.src.models.opt_params import (
get_vae_encode,
get_vae,
get_unet,
get_clip,
get_tokenizer,
get_params,
get_variant_version,
)

View File

@@ -0,0 +1,657 @@
from diffusers import AutoencoderKL, UNet2DConditionModel, ControlNetModel
from transformers import CLIPTextModel
from collections import defaultdict
import torch
import safetensors.torch
import traceback
import sys
import os
from apps.stable_diffusion.src.utils import (
compile_through_fx,
get_opt_flags,
base_models,
args,
fetch_vmfb,
preprocessCKPT,
get_path_to_diffusers_checkpoint,
fetch_and_update_base_model_id,
get_path_stem,
get_extended_name,
get_stencil_model_id,
update_lora_weight,
)
# These shapes are parameter dependent.
def replace_shape_str(shape, max_len, width, height, batch_size):
new_shape = []
for i in range(len(shape)):
if shape[i] == "max_len":
new_shape.append(max_len)
elif shape[i] == "height":
new_shape.append(height)
elif shape[i] == "width":
new_shape.append(width)
elif isinstance(shape[i], str):
if "*" in shape[i]:
mul_val = int(shape[i].split("*")[0])
if "batch_size" in shape[i]:
new_shape.append(batch_size * mul_val)
elif "height" in shape[i]:
new_shape.append(height * mul_val)
elif "width" in shape[i]:
new_shape.append(width * mul_val)
elif "/" in shape[i]:
import math
div_val = int(shape[i].split("/")[1])
if "batch_size" in shape[i]:
new_shape.append(math.ceil(batch_size / div_val))
elif "height" in shape[i]:
new_shape.append(math.ceil(height / div_val))
elif "width" in shape[i]:
new_shape.append(math.ceil(width / div_val))
else:
new_shape.append(shape[i])
return new_shape
def check_compilation(model, model_name):
if not model:
raise Exception(f"Could not compile {model_name}. Please create an issue with the detailed log at https://github.com/nod-ai/SHARK/issues")
class SharkifyStableDiffusionModel:
def __init__(
self,
model_id: str,
custom_weights: str,
custom_vae: str,
precision: str,
max_len: int = 64,
width: int = 512,
height: int = 512,
batch_size: int = 1,
use_base_vae: bool = False,
use_tuned: bool = False,
low_cpu_mem_usage: bool = False,
debug: bool = False,
sharktank_dir: str = "",
generate_vmfb: bool = True,
is_inpaint: bool = False,
is_upscaler: bool = False,
use_stencil: str = None,
use_lora: str = "",
use_quantize: str = None,
):
self.check_params(max_len, width, height)
self.max_len = max_len
self.height = height // 8
self.width = width // 8
self.batch_size = batch_size
self.custom_weights = custom_weights
self.use_quantize = use_quantize
if custom_weights != "":
assert custom_weights.lower().endswith(
(".ckpt", ".safetensors")
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
custom_weights = get_path_to_diffusers_checkpoint(custom_weights)
self.model_id = model_id if custom_weights == "" else custom_weights
# TODO: remove the following line when stable-diffusion-2-1 works
if self.model_id == "stabilityai/stable-diffusion-2-1":
self.model_id = "stabilityai/stable-diffusion-2-1-base"
self.custom_vae = custom_vae
self.precision = precision
self.base_vae = use_base_vae
self.model_name = (
"_"
+ str(batch_size)
+ "_"
+ str(max_len)
+ "_"
+ str(height)
+ "_"
+ str(width)
+ "_"
+ precision
)
print(f'use_tuned? sharkify: {use_tuned}')
self.use_tuned = use_tuned
if use_tuned:
self.model_name = self.model_name + "_tuned"
self.model_name = self.model_name + "_" + get_path_stem(self.model_id)
self.low_cpu_mem_usage = low_cpu_mem_usage
self.is_inpaint = is_inpaint
self.is_upscaler = is_upscaler
self.use_stencil = get_stencil_model_id(use_stencil)
if use_lora != "":
self.model_name = self.model_name + "_" + get_path_stem(use_lora)
self.use_lora = use_lora
print(self.model_name)
self.model_name = self.get_extended_name_for_all_model()
self.debug = debug
self.sharktank_dir = sharktank_dir
self.generate_vmfb = generate_vmfb
self.inputs = dict()
self.model_to_run = ""
if self.custom_weights != "":
self.model_to_run = self.custom_weights
assert self.custom_weights.lower().endswith(
(".ckpt", ".safetensors")
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
preprocessCKPT(self.custom_weights, self.is_inpaint)
else:
self.model_to_run = args.hf_model_id
self.custom_vae = self.process_custom_vae()
self.base_model_id = fetch_and_update_base_model_id(self.model_to_run)
if self.base_model_id != "" and args.ckpt_loc != "":
args.hf_model_id = self.base_model_id
def get_extended_name_for_all_model(self):
model_name = {}
sub_model_list = ["clip", "unet", "stencil_unet", "vae", "vae_encode", "stencil_adaptor"]
index = 0
for model in sub_model_list:
sub_model = model
model_config = self.model_name
if "vae" == model:
if self.custom_vae != "":
model_config = model_config + get_path_stem(self.custom_vae)
if self.base_vae:
sub_model = "base_vae"
model_name[model] = get_extended_name(sub_model + model_config)
index += 1
return model_name
def check_params(self, max_len, width, height):
if not (max_len >= 32 and max_len <= 77):
sys.exit("please specify max_len in the range [32, 77].")
if not (width % 8 == 0 and width >= 128):
sys.exit("width should be greater than 128 and multiple of 8")
if not (height % 8 == 0 and height >= 128):
sys.exit("height should be greater than 128 and multiple of 8")
# Get the input info for a model i.e. "unet", "clip", "vae", etc.
def get_input_info_for(self, model_info):
dtype_config = {"f32": torch.float32, "i64": torch.int64}
input_map = []
for inp in model_info:
shape = model_info[inp]["shape"]
dtype = dtype_config[model_info[inp]["dtype"]]
tensor = None
if isinstance(shape, list):
clean_shape = replace_shape_str(
shape, self.max_len, self.width, self.height, self.batch_size
)
if dtype == torch.int64:
tensor = torch.randint(1, 3, tuple(clean_shape))
else:
tensor = torch.randn(*clean_shape).to(dtype)
elif isinstance(shape, int):
tensor = torch.tensor(shape).to(dtype)
else:
sys.exit("shape isn't specified correctly.")
input_map.append(tensor)
return input_map
def get_vae_encode(self):
class VaeEncodeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
super().__init__()
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
def forward(self, input):
latents = self.vae.encode(input).latent_dist.sample()
return 0.18215 * latents
vae_encode = VaeEncodeModel()
inputs = tuple(self.inputs["vae_encode"])
is_f16 = True if not self.is_upscaler and self.precision == "fp16" else False
shark_vae_encode = compile_through_fx(
vae_encode,
inputs,
is_f16=is_f16,
use_tuned=self.use_tuned,
model_name=self.model_name["vae_encode"],
extra_args=get_opt_flags("vae", precision=self.precision),
base_model_id=self.base_model_id,
)
return shark_vae_encode
def get_vae(self):
class VaeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, base_vae=self.base_vae, custom_vae=self.custom_vae, low_cpu_mem_usage=False):
super().__init__()
self.vae = None
if custom_vae == "":
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
elif not isinstance(custom_vae, dict):
self.vae = AutoencoderKL.from_pretrained(
custom_vae,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
else:
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.vae.load_state_dict(custom_vae)
self.base_vae = base_vae
def forward(self, input):
if not self.base_vae:
input = 1 / 0.18215 * input
x = self.vae.decode(input, return_dict=False)[0]
x = (x / 2 + 0.5).clamp(0, 1)
if self.base_vae:
return x
x = x * 255.0
return x.round()
vae = VaeModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
inputs = tuple(self.inputs["vae"])
is_f16 = True if self.precision == "fp16" else False
save_dir = os.path.join(self.sharktank_dir, self.model_name["vae"])
if self.debug:
os.makedirs(save_dir, exist_ok=True)
shark_vae = compile_through_fx(
vae,
inputs,
is_f16=is_f16,
use_tuned=self.use_tuned,
model_name=self.model_name["vae"],
debug=self.debug,
generate_vmfb=self.generate_vmfb,
save_dir=save_dir,
extra_args=get_opt_flags("vae", precision=self.precision),
base_model_id=self.base_model_id,
)
return shark_vae
def get_controlled_unet(self):
class ControlledUnetModel(torch.nn.Module):
def __init__(
self, model_id=self.model_id, low_cpu_mem_usage=False, use_lora=self.use_lora
):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
if use_lora != "":
update_lora_weight(self.unet, use_lora, "unet")
self.in_channels = self.unet.in_channels
self.train(False)
def forward( self, latent, timestep, text_embedding, guidance_scale, control1,
control2, control3, control4, control5, control6, control7,
control8, control9, control10, control11, control12, control13,
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
db_res_samples = tuple([ control1, control2, control3, control4, control5, control6, control7, control8, control9, control10, control11, control12,])
mb_res_samples = control13
latents = torch.cat([latent] * 2)
unet_out = self.unet.forward(
latents,
timestep,
encoder_hidden_states=text_embedding,
down_block_additional_residuals=db_res_samples,
mid_block_additional_residual=mb_res_samples,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = unet_out.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
unet = ControlledUnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["unet"])
input_mask = [True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True,]
shark_controlled_unet = compile_through_fx(
unet,
inputs,
model_name=self.model_name["stencil_unet"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
extra_args=get_opt_flags("unet", precision=self.precision),
base_model_id=self.base_model_id,
)
return shark_controlled_unet
def get_control_net(self):
class StencilControlNetModel(torch.nn.Module):
def __init__(
self, model_id=self.use_stencil, low_cpu_mem_usage=False
):
super().__init__()
self.cnet = ControlNetModel.from_pretrained(
model_id,
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.in_channels = self.cnet.in_channels
self.train(False)
def forward(
self,
latent,
timestep,
text_embedding,
stencil_image_input,
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
# TODO: guidance NOT NEEDED change in `get_input_info` later
latents = torch.cat(
[latent] * 2
) # needs to be same as controlledUNET latents
stencil_image = torch.cat(
[stencil_image_input] * 2
) # needs to be same as controlledUNET latents
down_block_res_samples, mid_block_res_sample = self.cnet.forward(
latents,
timestep,
encoder_hidden_states=text_embedding,
controlnet_cond=stencil_image,
return_dict=False,
)
return tuple(list(down_block_res_samples) + [mid_block_res_sample])
scnet = StencilControlNetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["stencil_adaptor"])
input_mask = [True, True, True, True]
shark_cnet = compile_through_fx(
scnet,
inputs,
model_name=self.model_name["stencil_adaptor"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
extra_args=get_opt_flags("unet", precision=self.precision),
base_model_id=self.base_model_id,
)
return shark_cnet
def get_unet(self):
class UnetModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False, use_lora=self.use_lora):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
if use_lora != "":
update_lora_weight(self.unet, use_lora, "unet")
self.in_channels = self.unet.in_channels
self.train(False)
if(args.attention_slicing is not None and args.attention_slicing != "none"):
if(args.attention_slicing.isdigit()):
self.unet.set_attention_slice(int(args.attention_slicing))
else:
self.unet.set_attention_slice(args.attention_slicing)
# TODO: Instead of flattening the `control` try to use the list.
def forward(
self, latent, timestep, text_embedding, guidance_scale,
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latents = torch.cat([latent] * 2)
unet_out = self.unet.forward(
latents, timestep, text_embedding, return_dict=False
)[0]
noise_pred_uncond, noise_pred_text = unet_out.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
unet = UnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["unet"])
input_mask = [True, True, True, False]
save_dir = os.path.join(self.sharktank_dir, self.model_name["unet"])
if self.debug:
os.makedirs(
save_dir,
exist_ok=True,
)
shark_unet = compile_through_fx(
unet,
inputs,
model_name=self.model_name["unet"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
debug=self.debug,
generate_vmfb=self.generate_vmfb,
save_dir=save_dir,
extra_args=get_opt_flags("unet", precision=self.precision),
base_model_id=self.base_model_id,
)
return shark_unet
def get_unet_upscaler(self):
class UnetModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.in_channels = self.unet.in_channels
self.train(False)
def forward(self, latent, timestep, text_embedding, noise_level):
unet_out = self.unet.forward(
latent,
timestep,
text_embedding,
noise_level,
return_dict=False,
)[0]
return unet_out
unet = UnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["unet"])
input_mask = [True, True, True, False]
shark_unet = compile_through_fx(
unet,
inputs,
model_name=self.model_name["unet"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
extra_args=get_opt_flags("unet", precision=self.precision),
base_model_id=self.base_model_id,
)
return shark_unet
def get_clip(self):
class CLIPText(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False, use_lora=self.use_lora):
super().__init__()
self.text_encoder = CLIPTextModel.from_pretrained(
model_id,
subfolder="text_encoder",
low_cpu_mem_usage=low_cpu_mem_usage,
)
if use_lora != "":
update_lora_weight(self.text_encoder, use_lora, "text_encoder")
def forward(self, input):
return self.text_encoder(input)[0]
clip_model = CLIPText(low_cpu_mem_usage=self.low_cpu_mem_usage)
save_dir = os.path.join(self.sharktank_dir, self.model_name["clip"])
if self.debug:
os.makedirs(
save_dir,
exist_ok=True,
)
shark_clip = compile_through_fx(
clip_model,
tuple(self.inputs["clip"]),
model_name=self.model_name["clip"],
debug=self.debug,
generate_vmfb=self.generate_vmfb,
save_dir=save_dir,
extra_args=get_opt_flags("clip", precision="fp32"),
base_model_id=self.base_model_id,
)
return shark_clip
def process_custom_vae(self):
custom_vae = self.custom_vae.lower()
if not custom_vae.endswith((".ckpt", ".safetensors")):
return self.custom_vae
try:
preprocessCKPT(self.custom_vae)
return get_path_to_diffusers_checkpoint(self.custom_vae)
except:
print("Processing standalone Vae checkpoint")
vae_checkpoint = None
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
if custom_vae.endswith(".ckpt"):
vae_checkpoint = torch.load(self.custom_vae, map_location="cpu")
else:
vae_checkpoint = safetensors.torch.load_file(self.custom_vae, device="cpu")
if "state_dict" in vae_checkpoint:
vae_checkpoint = vae_checkpoint["state_dict"]
vae_dict = {k: v for k, v in vae_checkpoint.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
return vae_dict
def compile_unet_variants(self, model):
if model == "unet":
if self.is_upscaler:
return self.get_unet_upscaler()
# TODO: Plug the experimental "int8" support at right place.
elif self.use_quantize == "int8":
from apps.stable_diffusion.src.models.opt_params import get_unet
return get_unet()
else:
return self.get_unet()
else:
return self.get_controlled_unet()
def vae_encode(self):
# Fetch vmfb for the model if present
vmfb = fetch_vmfb("vae_encode", self.model_name["vae_encode"], self.precision)
if vmfb:
return vmfb
try:
self.inputs["vae_encode"] = self.get_input_info_for(base_models["vae_encode"])
compiled_vae_encode = self.get_vae_encode()
check_compilation(compiled_vae_encode, "Vae Encode")
return compiled_vae_encode
except Exception as e:
sys.exit(e)
def clip(self):
vmfb = fetch_vmfb("clip", self.model_name["clip"], self.precision)
if vmfb:
return vmfb
try:
self.inputs["clip"] = self.get_input_info_for(base_models["clip"])
compiled_clip = self.get_clip()
check_compilation(compiled_clip, "Clip")
return compiled_clip
except Exception as e:
sys.exit(e)
def unet(self):
model = "stencil_unet" if self.use_stencil is not None else "unet"
vmfb = fetch_vmfb(model, self.model_name[model], self.precision)
if vmfb:
return vmfb
try:
compiled_unet = None
unet_inputs = base_models[model]
if self.base_model_id != "":
self.inputs["unet"] = self.get_input_info_for(unet_inputs[self.base_model_id])
compiled_unet = self.compile_unet_variants(model)
else:
for model_id in unet_inputs:
self.base_model_id = model_id
self.inputs["unet"] = self.get_input_info_for(unet_inputs[model_id])
try:
compiled_unet = self.compile_unet_variants(model)
except Exception as e:
print(e)
print("Retrying with a different base model configuration")
continue
# -- Once a successful compilation has taken place we'd want to store
# the base model's configuration inferred.
fetch_and_update_base_model_id(self.model_to_run, model_id)
# This is done just because in main.py we are basing the choice of tokenizer and scheduler
# on `args.hf_model_id`. Since now, we don't maintain 1:1 mapping of variants and the base
# model and rely on retrying method to find the input configuration, we should also update
# the knowledge of base model id accordingly into `args.hf_model_id`.
if args.ckpt_loc != "":
args.hf_model_id = model_id
break
check_compilation(compiled_unet, "Unet")
return compiled_unet
except Exception as e:
sys.exit(e)
def vae(self):
vmfb = fetch_vmfb("vae", self.model_name["vae"], self.precision)
if vmfb:
return vmfb
try:
vae_input = base_models["vae"]["vae_upscaler"] if self.is_upscaler else base_models["vae"]["vae"]
self.inputs["vae"] = self.get_input_info_for(vae_input)
is_base_vae = self.base_vae
if self.is_upscaler:
self.base_vae = True
compiled_vae = self.get_vae()
self.base_vae = is_base_vae
check_compilation(compiled_vae, "Vae")
return compiled_vae
except Exception as e:
sys.exit(e)
def controlnet(self):
vmfb = fetch_vmfb("stencil_adaptor", self.model_name["stencil_adaptor"], self.precision)
if vmfb:
return vmfb
try:
self.inputs["stencil_adaptor"] = self.get_input_info_for(base_models["stencil_adaptor"])
compiled_stencil_adaptor = self.get_control_net()
check_compilation(compiled_stencil_adaptor, "Stencil")
return compiled_stencil_adaptor
except Exception as e:
sys.exit(e)

View File

@@ -0,0 +1,123 @@
import sys
from transformers import CLIPTokenizer
from apps.stable_diffusion.src.utils import (
models_db,
args,
get_shark_model,
get_opt_flags,
)
hf_model_variant_map = {
"Linaqruf/anything-v3.0": ["anythingv3", "v1_4"],
"dreamlike-art/dreamlike-diffusion-1.0": ["dreamlike", "v1_4"],
"prompthero/openjourney": ["openjourney", "v1_4"],
"wavymulder/Analog-Diffusion": ["analogdiffusion", "v1_4"],
"stabilityai/stable-diffusion-2-1": ["stablediffusion", "v2_1base"],
"stabilityai/stable-diffusion-2-1-base": ["stablediffusion", "v2_1base"],
"CompVis/stable-diffusion-v1-4": ["stablediffusion", "v1_4"],
"runwayml/stable-diffusion-inpainting": ["stablediffusion", "inpaint_v1"],
"stabilityai/stable-diffusion-2-inpainting": ["stablediffusion", "inpaint_v2"],
}
# TODO: Add the quantized model as a part model_db.json.
# This is currently in experimental phase.
def get_quantize_model():
bucket_key = "gs://shark_tank/prashant_nod"
model_key = "unet_int8"
iree_flags = get_opt_flags("unet", precision="fp16")
if args.height != 512 and args.width != 512 and args.max_length != 77:
sys.exit("The int8 quantized model currently requires the height and width to be 512, and max_length to be 77")
return bucket_key, model_key, iree_flags
def get_variant_version(hf_model_id):
return hf_model_variant_map[hf_model_id]
def get_params(bucket_key, model_key, model, is_tuned, precision):
try:
bucket = models_db[0][bucket_key]
model_name = models_db[1][model_key]
except KeyError:
raise Exception(
f"{bucket_key}/{model_key} is not present in the models database"
)
iree_flags = get_opt_flags(model, precision="fp16")
return bucket, model_name, iree_flags
def get_unet():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.
is_tuned = "tuned" if args.use_tuned else "untuned"
# TODO: Get the quantize model from model_db.json
if args.use_quantize == "int8":
bk, mk, flags = get_quantize_model()
return get_shark_model(bk, mk, flags)
if "vulkan" not in args.device and args.use_tuned:
bucket_key = f"{variant}/{is_tuned}/{args.device}"
model_key = f"{variant}/{version}/unet/{args.precision}/length_{args.max_length}/{is_tuned}/{args.device}"
else:
bucket_key = f"{variant}/{is_tuned}"
model_key = f"{variant}/{version}/unet/{args.precision}/length_{args.max_length}/{is_tuned}"
bucket, model_name, iree_flags = get_params(
bucket_key, model_key, "unet", is_tuned, args.precision
)
return get_shark_model(bucket, model_name, iree_flags)
def get_vae_encode():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.
is_tuned = "tuned" if args.use_tuned else "untuned"
if "vulkan" not in args.device and args.use_tuned:
bucket_key = f"{variant}/{is_tuned}/{args.device}"
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}/{args.device}"
else:
bucket_key = f"{variant}/{is_tuned}"
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}"
bucket, model_name, iree_flags = get_params(
bucket_key, model_key, "vae", is_tuned, args.precision
)
return get_shark_model(bucket, model_name, iree_flags)
def get_vae():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.
is_tuned = "tuned" if args.use_tuned else "untuned"
is_base = "/base" if args.use_base_vae else ""
if "vulkan" not in args.device and args.use_tuned:
bucket_key = f"{variant}/{is_tuned}/{args.device}"
model_key = f"{variant}/{version}/vae/{args.precision}/length_77/{is_tuned}{is_base}/{args.device}"
else:
bucket_key = f"{variant}/{is_tuned}"
model_key = f"{variant}/{version}/vae/{args.precision}/length_77/{is_tuned}{is_base}"
bucket, model_name, iree_flags = get_params(
bucket_key, model_key, "vae", is_tuned, args.precision
)
return get_shark_model(bucket, model_name, iree_flags)
def get_clip():
variant, version = get_variant_version(args.hf_model_id)
bucket_key = f"{variant}/untuned"
model_key = (
f"{variant}/{version}/clip/fp32/length_{args.max_length}/untuned"
)
bucket, model_name, iree_flags = get_params(
bucket_key, model_key, "clip", "untuned", "fp32"
)
return get_shark_model(bucket, model_name, iree_flags)
def get_tokenizer():
tokenizer = CLIPTokenizer.from_pretrained(
args.hf_model_id, subfolder="tokenizer"
)
return tokenizer

View File

@@ -0,0 +1,18 @@
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_txt2img import (
Text2ImagePipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_img2img import (
Image2ImagePipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_inpaint import (
InpaintPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_outpaint import (
OutpaintPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_stencil import (
StencilPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_upscaler import (
UpscalerPipeline,
)

View File

@@ -0,0 +1,200 @@
import torch
import time
import numpy as np
from tqdm.auto import tqdm
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae_encode,
)
class Image2ImagePipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.vae_encode = None
def load_vae_encode(self):
if self.vae_encode is not None:
return
if self.import_mlir or self.use_lora:
self.vae_encode = self.sd_model.vae_encode()
else:
try:
self.vae_encode = get_vae_encode()
except:
print("download pipeline failed, falling back to import_mlir")
self.vae_encode = self.sd_model.vae_encode()
def unload_vae_encode(self):
del self.vae_encode
self.vae_encode = None
def prepare_image_latents(
self,
image,
batch_size,
height,
width,
generator,
num_inference_steps,
strength,
dtype,
):
# Pre process image -> get image encoded -> process latents
# TODO: process with variable HxW combos
# Pre process image
image = image.resize((width, height))
image_arr = np.stack([np.array(i) for i in (image,)], axis=0)
image_arr = image_arr / 255.0
image_arr = torch.from_numpy(image_arr).permute(0, 3, 1, 2).to(dtype)
image_arr = 2 * (image_arr - 0.5)
# set scheduler steps
self.scheduler.set_timesteps(num_inference_steps)
init_timestep = min(
int(num_inference_steps * strength), num_inference_steps
)
t_start = max(num_inference_steps - init_timestep, 0)
# timesteps reduced as per strength
timesteps = self.scheduler.timesteps[t_start:]
# new number of steps to be used as per strength will be
# num_inference_steps = num_inference_steps - t_start
# image encode
latents = self.encode_image((image_arr,))
latents = torch.from_numpy(latents).to(dtype)
# add noise to data
noise = torch.randn(latents.shape, generator=generator, dtype=dtype)
latents = self.scheduler.add_noise(
latents, noise, timesteps[0].repeat(1)
)
return latents, timesteps
def encode_image(self, input_image):
self.load_vae_encode()
vae_encode_start = time.time()
latents = self.vae_encode("forward", input_image)
vae_inf_time = (time.time() - vae_encode_start) * 1000
if self.ondemand:
self.unload_vae_encode()
self.log += f"\nVAE Encode Inference time (ms): {vae_inf_time:.3f}"
return latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
strength,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
use_stencil,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts, neg_prompts, max_length
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Prepare input image latent
image_latents, final_timesteps = self.prepare_image_latents(
image=image,
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
strength=strength,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=image_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=final_timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
return all_imgs

View File

@@ -0,0 +1,473 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from PIL import Image, ImageOps
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae_encode,
)
class InpaintPipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.vae_encode = None
def load_vae_encode(self):
if self.vae_encode is not None:
return
if self.import_mlir or self.use_lora:
self.vae_encode = self.sd_model.vae_encode()
else:
try:
self.vae_encode = get_vae_encode()
except:
print("download pipeline failed, falling back to import_mlir")
self.vae_encode = self.sd_model.vae_encode()
def unload_vae_encode(self):
del self.vae_encode
self.vae_encode = None
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
latents = latents * self.scheduler.init_noise_sigma
return latents
def get_crop_region(self, mask, pad=0):
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
return (
int(max(crop_left - pad, 0)),
int(max(crop_top - pad, 0)),
int(min(w - crop_right + pad, w)),
int(min(h - crop_bottom + pad, h)),
)
def expand_crop_region(
self,
crop_region,
processing_width,
processing_height,
image_width,
image_height,
):
x1, y1, x2, y2 = crop_region
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2 - y1))
y1 -= desired_height_diff // 2
y2 += desired_height_diff - desired_height_diff // 2
if y2 >= image_height:
diff = y2 - image_height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= image_height:
y2 = image_height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2 - x1))
x1 -= desired_width_diff // 2
x2 += desired_width_diff - desired_width_diff // 2
if x2 >= image_width:
diff = x2 - image_width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= image_width:
x2 = image_width
return x1, y1, x2, y2
def resize_image(self, resize_mode, im, width, height):
"""
resize_mode:
0: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
1: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
"""
if resize_mode == 0:
ratio = width / height
src_ratio = im.width / im.height
src_w = (
width if ratio > src_ratio else im.width * height // im.height
)
src_h = (
height if ratio <= src_ratio else im.height * width // im.width
)
resized = im.resize((src_w, src_h), resample=Image.LANCZOS)
res = Image.new("RGB", (width, height))
res.paste(
resized,
box=(width // 2 - src_w // 2, height // 2 - src_h // 2),
)
else:
ratio = width / height
src_ratio = im.width / im.height
src_w = (
width if ratio < src_ratio else im.width * height // im.height
)
src_h = (
height if ratio >= src_ratio else im.height * width // im.width
)
resized = im.resize((src_w, src_h), resample=Image.LANCZOS)
res = Image.new("RGB", (width, height))
res.paste(
resized,
box=(width // 2 - src_w // 2, height // 2 - src_h // 2),
)
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
res.paste(
resized.resize((width, fill_height), box=(0, 0, width, 0)),
box=(0, 0),
)
res.paste(
resized.resize(
(width, fill_height),
box=(0, resized.height, width, resized.height),
),
box=(0, fill_height + src_h),
)
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
res.paste(
resized.resize(
(fill_width, height), box=(0, 0, 0, height)
),
box=(0, 0),
)
res.paste(
resized.resize(
(fill_width, height),
box=(resized.width, 0, resized.width, height),
),
box=(fill_width + src_w, 0),
)
return res
def prepare_mask_and_masked_image(
self,
image,
mask,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
):
# preprocess image
image = image.resize((width, height))
mask = mask.resize((width, height))
paste_to = ()
overlay_image = None
if inpaint_full_res:
# prepare overlay image
overlay_image = Image.new("RGB", (image.width, image.height))
overlay_image.paste(
image.convert("RGB"),
mask=ImageOps.invert(mask.convert("L")),
)
# prepare mask
mask = mask.convert("L")
crop_region = self.get_crop_region(
np.array(mask), inpaint_full_res_padding
)
crop_region = self.expand_crop_region(
crop_region, width, height, mask.width, mask.height
)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
mask = self.resize_image(1, mask, width, height)
paste_to = (x1, y1, x2 - x1, y2 - y1)
# prepare image
image = image.crop(crop_region)
image = self.resize_image(1, image, width, height)
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image, paste_to, overlay_image
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
):
mask = torch.nn.functional.interpolate(
mask, size=(height // 8, width // 8)
)
mask = mask.to(dtype)
self.load_vae_encode()
masked_image = masked_image.to(dtype)
masked_image_latents = self.vae_encode("forward", (masked_image,))
masked_image_latents = torch.from_numpy(masked_image_latents)
if self.ondemand:
self.unload_vae_encode()
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
return mask, masked_image_latents
def apply_overlay(self, image, paste_loc, overlay):
x, y, w, h = paste_loc
image = self.resize_image(0, image, w, h)
overlay.paste(image, (x, y))
return overlay
def generate_images(
self,
prompts,
neg_prompts,
image,
mask_image,
batch_size,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts, neg_prompts, max_length
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Preprocess mask and image
(
mask,
masked_image,
paste_to,
overlay_image,
) = self.prepare_mask_and_masked_image(
image,
mask_image,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
)
# Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size,
height=height,
width=width,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
mask=mask,
masked_image_latents=masked_image_latents,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
if inpaint_full_res:
output_image = self.apply_overlay(
all_imgs[0], paste_to, overlay_image
)
return [output_image]
return all_imgs

View File

@@ -0,0 +1,567 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from PIL import Image, ImageDraw, ImageFilter
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
import math
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae_encode,
)
class OutpaintPipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.vae_encode = None
def load_vae_encode(self):
if self.vae_encode is not None:
return
if self.import_mlir or self.use_lora:
self.vae_encode = self.sd_model.vae_encode()
else:
try:
self.vae_encode = get_vae_encode()
except:
print("download pipeline failed, falling back to import_mlir")
self.vae_encode = self.sd_model.vae_encode()
def unload_vae_encode(self):
del self.vae_encode
self.vae_encode = None
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_and_masked_image(
self, image, mask, mask_blur, width, height
):
if mask_blur > 0:
mask = mask.filter(ImageFilter.GaussianBlur(mask_blur))
image = image.resize((width, height))
mask = mask.resize((width, height))
# preprocess image
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
):
mask = torch.nn.functional.interpolate(
mask, size=(height // 8, width // 8)
)
mask = mask.to(dtype)
self.load_vae_encode()
masked_image = masked_image.to(dtype)
masked_image_latents = self.vae_encode("forward", (masked_image,))
masked_image_latents = torch.from_numpy(masked_image_latents)
if self.ondemand:
self.unload_vae_encode()
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
return mask, masked_image_latents
def get_matched_noise(
self, _np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05
):
# helper fft routines that keep ortho normalization and auto-shift before and after fft
def _fft2(data):
if data.ndim > 2: # has channels
out_fft = np.zeros(
(data.shape[0], data.shape[1], data.shape[2]),
dtype=np.complex128,
)
for c in range(data.shape[2]):
c_data = data[:, :, c]
out_fft[:, :, c] = np.fft.fft2(
np.fft.fftshift(c_data), norm="ortho"
)
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
else: # one channel
out_fft = np.zeros(
(data.shape[0], data.shape[1]), dtype=np.complex128
)
out_fft[:, :] = np.fft.fft2(
np.fft.fftshift(data), norm="ortho"
)
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
return out_fft
def _ifft2(data):
if data.ndim > 2: # has channels
out_ifft = np.zeros(
(data.shape[0], data.shape[1], data.shape[2]),
dtype=np.complex128,
)
for c in range(data.shape[2]):
c_data = data[:, :, c]
out_ifft[:, :, c] = np.fft.ifft2(
np.fft.fftshift(c_data), norm="ortho"
)
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
else: # one channel
out_ifft = np.zeros(
(data.shape[0], data.shape[1]), dtype=np.complex128
)
out_ifft[:, :] = np.fft.ifft2(
np.fft.fftshift(data), norm="ortho"
)
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
return out_ifft
def _get_gaussian_window(width, height, std=3.14, mode=0):
window_scale_x = float(width / min(width, height))
window_scale_y = float(height / min(width, height))
window = np.zeros((width, height))
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x
for y in range(height):
fy = (y / height * 2.0 - 1.0) * window_scale_y
if mode == 0:
window[:, y] = np.exp(-(x**2 + fy**2) * std)
else:
window[:, y] = (
1 / ((x**2 + 1.0) * (fy**2 + 1.0))
) ** (std / 3.14)
return window
def _get_masked_window_rgb(np_mask_grey, hardness=1.0):
np_mask_rgb = np.zeros(
(np_mask_grey.shape[0], np_mask_grey.shape[1], 3)
)
if hardness != 1.0:
hardened = np_mask_grey[:] ** hardness
else:
hardened = np_mask_grey[:]
for c in range(3):
np_mask_rgb[:, :, c] = hardened[:]
return np_mask_rgb
def _match_cumulative_cdf(source, template):
src_values, src_unique_indices, src_counts = np.unique(
source.ravel(), return_inverse=True, return_counts=True
)
tmpl_values, tmpl_counts = np.unique(
template.ravel(), return_counts=True
)
# calculate normalized quantiles for each array
src_quantiles = np.cumsum(src_counts) / source.size
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
interp_a_values = np.interp(
src_quantiles, tmpl_quantiles, tmpl_values
)
return interp_a_values[src_unique_indices].reshape(source.shape)
def _match_histograms(image, reference):
if image.ndim != reference.ndim:
raise ValueError(
"Image and reference must have the same number of channels."
)
if image.shape[-1] != reference.shape[-1]:
raise ValueError(
"Number of channels in the input image and reference image must match!"
)
matched = np.empty(image.shape, dtype=image.dtype)
for channel in range(image.shape[-1]):
matched_channel = _match_cumulative_cdf(
image[..., channel], reference[..., channel]
)
matched[..., channel] = matched_channel
matched = matched.astype(np.float64, copy=False)
return matched
width = _np_src_image.shape[0]
height = _np_src_image.shape[1]
num_channels = _np_src_image.shape[2]
np_src_image = _np_src_image[:] * (1.0 - np_mask_rgb)
np_mask_grey = np.sum(np_mask_rgb, axis=2) / 3.0
img_mask = np_mask_grey > 1e-6
ref_mask = np_mask_grey < 1e-3
# rather than leave the masked area black, we get better results from fft by filling the average unmasked color
windowed_image = _np_src_image * (
1.0 - _get_masked_window_rgb(np_mask_grey)
)
windowed_image /= np.max(windowed_image)
windowed_image += np.average(_np_src_image) * np_mask_rgb
src_fft = _fft2(
windowed_image
) # get feature statistics from masked src img
src_dist = np.absolute(src_fft)
src_phase = src_fft / src_dist
# create a generator with a static seed to make outpainting deterministic / only follow global seed
rng = np.random.default_rng(0)
noise_window = _get_gaussian_window(
width, height, mode=1
) # start with simple gaussian noise
noise_rgb = rng.random((width, height, num_channels))
noise_grey = np.sum(noise_rgb, axis=2) / 3.0
# the colorfulness of the starting noise is blended to greyscale with a parameter
noise_rgb *= color_variation
for c in range(num_channels):
noise_rgb[:, :, c] += (1.0 - color_variation) * noise_grey
noise_fft = _fft2(noise_rgb)
for c in range(num_channels):
noise_fft[:, :, c] *= noise_window
noise_rgb = np.real(_ifft2(noise_fft))
shaped_noise_fft = _fft2(noise_rgb)
shaped_noise_fft[:, :, :] = (
np.absolute(shaped_noise_fft[:, :, :]) ** 2
* (src_dist**noise_q)
* src_phase
) # perform the actual shaping
# color_variation
brightness_variation = 0.0
contrast_adjusted_np_src = (
_np_src_image[:] * (brightness_variation + 1.0)
- brightness_variation * 2.0
)
shaped_noise = np.real(_ifft2(shaped_noise_fft))
shaped_noise -= np.min(shaped_noise)
shaped_noise /= np.max(shaped_noise)
shaped_noise[img_mask, :] = _match_histograms(
shaped_noise[img_mask, :] ** 1.0,
contrast_adjusted_np_src[ref_mask, :],
)
shaped_noise = (
_np_src_image[:] * (1.0 - np_mask_rgb) + shaped_noise * np_mask_rgb
)
matched_noise = shaped_noise[:]
return np.clip(matched_noise, 0.0, 1.0)
def generate_images(
self,
prompts,
neg_prompts,
image,
pixels,
mask_blur,
is_left,
is_right,
is_top,
is_bottom,
noise_q,
color_variation,
batch_size,
height,
width,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts, neg_prompts, max_length
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
process_width = width
process_height = height
left = pixels if is_left else 0
right = pixels if is_right else 0
up = pixels if is_top else 0
down = pixels if is_bottom else 0
target_w = math.ceil((image.width + left + right) / 64) * 64
target_h = math.ceil((image.height + up + down) / 64) * 64
if left > 0:
left = left * (target_w - image.width) // (left + right)
if right > 0:
right = target_w - image.width - left
if up > 0:
up = up * (target_h - image.height) // (up + down)
if down > 0:
down = target_h - image.height - up
def expand(
init_img,
expand_pixels,
is_left=False,
is_right=False,
is_top=False,
is_bottom=False,
):
is_horiz = is_left or is_right
is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0
res_w = init_img.width + pixels_horiz
res_h = init_img.height + pixels_vert
process_res_w = math.ceil(res_w / 64) * 64
process_res_h = math.ceil(res_h / 64) * 64
img = Image.new("RGB", (process_res_w, process_res_h))
img.paste(
init_img,
(pixels_horiz if is_left else 0, pixels_vert if is_top else 0),
)
msk = Image.new("RGB", (process_res_w, process_res_h), "white")
draw = ImageDraw.Draw(msk)
draw.rectangle(
(
expand_pixels + mask_blur if is_left else 0,
expand_pixels + mask_blur if is_top else 0,
msk.width - expand_pixels - mask_blur
if is_right
else res_w,
msk.height - expand_pixels - mask_blur
if is_bottom
else res_h,
),
fill="black",
)
np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(msk) / 255.0).astype(np.float64)
noised = self.get_matched_noise(
np_image, np_mask, noise_q, color_variation
)
output_image = Image.fromarray(
np.clip(noised * 255.0, 0.0, 255.0).astype(np.uint8),
mode="RGB",
)
target_width = (
min(width, init_img.width + pixels_horiz)
if is_horiz
else img.width
)
target_height = (
min(height, init_img.height + pixels_vert)
if is_vert
else img.height
)
crop_region = (
0 if is_left else output_image.width - target_width,
0 if is_top else output_image.height - target_height,
target_width if is_left else output_image.width,
target_height if is_top else output_image.height,
)
mask_to_process = msk.crop(crop_region)
image_to_process = output_image.crop(crop_region)
# Preprocess mask and image
mask, masked_image = self.prepare_mask_and_masked_image(
image_to_process, mask_to_process, mask_blur, width, height
)
# Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size,
height=height,
width=width,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
mask=mask,
masked_image_latents=masked_image_latents,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
res_img = all_imgs[0].resize(
(image_to_process.width, image_to_process.height)
)
output_image.paste(
res_img,
(
0 if is_left else output_image.width - res_img.width,
0 if is_top else output_image.height - res_img.height,
),
)
output_image = output_image.crop((0, 0, res_w, res_h))
return output_image
img = image.resize((width, height))
if left > 0:
img = expand(img, left, is_left=True)
if right > 0:
img = expand(img, right, is_right=True)
if up > 0:
img = expand(img, up, is_top=True)
if down > 0:
img = expand(img, down, is_bottom=True)
return [img]

View File

@@ -0,0 +1,274 @@
import torch
import time
import numpy as np
from tqdm.auto import tqdm
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.utils import controlnet_hint_conversion
from apps.stable_diffusion.src.utils import (
start_profiling,
end_profiling,
)
from apps.stable_diffusion.src.models import SharkifyStableDiffusionModel
class StencilPipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.controlnet = None
def load_controlnet(self):
if self.controlnet is not None:
return
self.controlnet = self.sd_model.controlnet()
def unload_controlnet(self):
del self.controlnet
self.controlnet = None
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def produce_stencil_latents(
self,
latents,
text_embeddings,
guidance_scale,
total_timesteps,
dtype,
cpu_scheduling,
controlnet_hint=None,
controlnet_conditioning_scale: float = 1.0,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
self.load_unet()
self.load_controlnet()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype)
latent_model_input = self.scheduler.scale_model_input(latents, t)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
if not torch.is_tensor(latent_model_input):
latent_model_input_1 = torch.from_numpy(
np.asarray(latent_model_input)
).to(dtype)
else:
latent_model_input_1 = latent_model_input
control = self.controlnet(
"forward",
(
latent_model_input_1,
timestep,
text_embeddings,
controlnet_hint,
),
send_to_host=False,
)
timestep = timestep.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
# TODO: Pass `control` as it is to Unet. Same as TODO mentioned in model_wrappers.py.
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
control[0],
control[1],
control[2],
control[3],
control[4],
control[5],
control[6],
control[7],
control[8],
control[9],
control[10],
control[11],
control[12],
),
send_to_host=False,
)
end_profiling(profile_device)
if cpu_scheduling:
noise_pred = torch.from_numpy(noise_pred.to_host())
latents = self.scheduler.step(
noise_pred, t, latents
).prev_sample
else:
latents = self.scheduler.step(noise_pred, t, latents)
latent_history.append(latents)
step_time = (time.time() - step_start_time) * 1000
# self.log += (
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
# )
step_time_sum += step_time
if self.ondemand:
self.unload_unet()
self.unload_controlnet()
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
if not return_all_latents:
return latents
all_latents = torch.cat(latent_history, dim=0)
return all_latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
strength,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
use_stencil,
):
# Control Embedding check & conversion
# TODO: 1. Change `num_images_per_prompt`.
controlnet_hint = controlnet_hint_conversion(
image, use_stencil, height, width, dtype, num_images_per_prompt=1
)
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts, neg_prompts, max_length
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Prepare initial latent.
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
final_timesteps = self.scheduler.timesteps
# Get Image latents
latents = self.produce_stencil_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=final_timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
controlnet_hint=controlnet_hint,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
return all_imgs

View File

@@ -0,0 +1,144 @@
import torch
import numpy as np
from random import randint
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.models import SharkifyStableDiffusionModel
class Text2ImagePipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def generate_images(
self,
prompts,
neg_prompts,
batch_size,
height,
width,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
# TODO: Wouldn't it be preferable to just report an error instead of modifying the seed on the fly?
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts, neg_prompts, max_length
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in range(0, latents.shape[0], batch_size):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
return all_imgs

View File

@@ -0,0 +1,319 @@
import inspect
import torch
import time
from tqdm.auto import tqdm
import numpy as np
from random import randint
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.utils import (
start_profiling,
end_profiling,
)
from PIL import Image
from apps.stable_diffusion.src.models import SharkifyStableDiffusionModel
def preprocess(image):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, Image.Image):
image = [image]
if isinstance(image[0], Image.Image):
w, h = image[0].size
w, h = map(
lambda x: x - x % 64, (w, h)
) # resize to integer multiple of 64
image = [np.array(i.resize((w, h)))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
class UpscalerPipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
low_res_scheduler: Union[
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.low_res_scheduler = low_res_scheduler
def prepare_extra_step_kwargs(self, generator, eta):
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def decode_latents(self, latents, use_base_vae, cpu_scheduling):
latents = 1 / 0.08333 * (latents.float())
latents_numpy = latents
if cpu_scheduling:
latents_numpy = latents.detach().numpy()
profile_device = start_profiling(file_path="vae.rdc")
vae_start = time.time()
images = self.vae("forward", (latents_numpy,))
vae_inf_time = (time.time() - vae_start) * 1000
end_profiling(profile_device)
self.log += f"\nVAE Inference time (ms): {vae_inf_time:.3f}"
images = torch.from_numpy(images)
images = (images.detach().cpu() * 255.0).numpy()
images = images.round()
images = torch.from_numpy(images).to(torch.uint8).permute(0, 2, 3, 1)
pil_images = [Image.fromarray(image) for image in images.numpy()]
return pil_images
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height,
width,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def produce_img_latents(
self,
latents,
image,
text_embeddings,
guidance_scale,
noise_level,
total_timesteps,
dtype,
cpu_scheduling,
extra_step_kwargs,
return_all_latents=False,
):
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
self.load_unet()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
latent_model_input = torch.cat([latent_model_input, image], dim=1)
timestep = torch.tensor([t]).to(dtype).detach().numpy()
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
noise_level,
),
)
end_profiling(profile_device)
noise_pred = torch.from_numpy(noise_pred)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if cpu_scheduling:
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
else:
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
)
latent_history.append(latents)
step_time = (time.time() - step_start_time) * 1000
# self.log += (
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
# )
step_time_sum += step_time
if self.ondemand:
self.unload_unet()
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
if not return_all_latents:
return latents
all_latents = torch.cat(latent_history, dim=0)
return all_latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
noise_level,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
# TODO: Wouldn't it be preferable to just report an error instead of modifying the seed on the fly?
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts, neg_prompts, max_length
)
# 4. Preprocess image
image = preprocess(image).to(dtype)
# 5. Add noise to image
noise_level = torch.tensor([noise_level], dtype=torch.long)
noise = torch.randn(
image.shape,
generator=generator,
).to(dtype)
image = self.low_res_scheduler.add_noise(image, noise, noise_level)
image = torch.cat([image] * 2)
noise_level = torch.cat([noise_level] * image.shape[0])
height, width = image.shape[2:]
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
eta = 0.0
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# guidance scale as a float32 tensor.
# guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
image=image,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
noise_level=noise_level,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
extra_step_kwargs=extra_step_kwargs,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
return all_imgs

View File

@@ -0,0 +1,839 @@
import torch
import numpy as np
from transformers import CLIPTokenizer
from PIL import Image
from tqdm.auto import tqdm
import time
from typing import Union
from diffusers import (
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from shark.shark_inference import SharkInference
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae,
get_clip,
get_unet,
get_tokenizer,
)
from apps.stable_diffusion.src.utils import (
start_profiling,
end_profiling,
)
import sys
SD_STATE_IDLE = "idle"
SD_STATE_CANCEL = "cancel"
class StableDiffusionPipeline:
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
self.vae = None
self.text_encoder = None
self.unet = None
self.model_max_length = 77
self.scheduler = scheduler
# TODO: Implement using logging python utility.
self.log = ""
self.status = SD_STATE_IDLE
self.sd_model = sd_model
self.import_mlir = import_mlir
self.use_lora = use_lora
self.ondemand = ondemand
# TODO: Find a better workaround for fetching base_model_id early enough for CLIPTokenizer.
try:
self.tokenizer = get_tokenizer()
except:
self.load_unet()
self.unload_unet()
self.tokenizer = get_tokenizer()
def load_clip(self):
if self.text_encoder is not None:
return
if self.import_mlir or self.use_lora:
if not self.import_mlir:
print(
"Warning: LoRA provided but import_mlir not specified. Importing MLIR anyways."
)
self.text_encoder = self.sd_model.clip()
else:
try:
self.text_encoder = get_clip()
except:
print("download pipeline failed, falling back to import_mlir")
self.text_encoder = self.sd_model.clip()
def unload_clip(self):
del self.text_encoder
self.text_encoder = None
def load_unet(self):
if self.unet is not None:
return
if self.import_mlir or self.use_lora:
self.unet = self.sd_model.unet()
else:
try:
self.unet = get_unet()
except:
print("download pipeline failed, falling back to import_mlir")
self.unet = self.sd_model.unet()
def unload_unet(self):
del self.unet
self.unet = None
def load_vae(self):
if self.vae is not None:
return
if self.import_mlir or self.use_lora:
self.vae = self.sd_model.vae()
else:
try:
self.vae = get_vae()
except:
print("download pipeline failed, falling back to import_mlir")
self.vae = self.sd_model.vae()
def unload_vae(self):
del self.vae
self.vae = None
def encode_prompts(self, prompts, neg_prompts, max_length):
# Tokenize text and get embeddings
text_input = self.tokenizer(
prompts,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
# Get unconditional embeddings as well
uncond_input = self.tokenizer(
neg_prompts,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
text_input = torch.cat([uncond_input.input_ids, text_input.input_ids])
self.load_clip()
clip_inf_start = time.time()
text_embeddings = self.text_encoder("forward", (text_input,))
clip_inf_time = (time.time() - clip_inf_start) * 1000
if self.ondemand:
self.unload_clip()
self.log += f"\nClip Inference time (ms) = {clip_inf_time:.3f}"
return text_embeddings
def decode_latents(self, latents, use_base_vae, cpu_scheduling):
if use_base_vae:
latents = 1 / 0.18215 * latents
latents_numpy = latents
if cpu_scheduling:
latents_numpy = latents.detach().numpy()
profile_device = start_profiling(file_path="vae.rdc")
vae_start = time.time()
images = self.vae("forward", (latents_numpy,))
vae_inf_time = (time.time() - vae_start) * 1000
end_profiling(profile_device)
self.log += f"\nVAE Inference time (ms): {vae_inf_time:.3f}"
if use_base_vae:
images = torch.from_numpy(images)
images = (images.detach().cpu() * 255.0).numpy()
images = images.round()
images = torch.from_numpy(images).to(torch.uint8).permute(0, 2, 3, 1)
pil_images = [Image.fromarray(image) for image in images.numpy()]
return pil_images
def produce_img_latents(
self,
latents,
text_embeddings,
guidance_scale,
total_timesteps,
dtype,
cpu_scheduling,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
self.status = SD_STATE_IDLE
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
self.load_unet()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype).detach().numpy()
latent_model_input = self.scheduler.scale_model_input(latents, t)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
),
send_to_host=False,
)
end_profiling(profile_device)
if cpu_scheduling:
noise_pred = torch.from_numpy(noise_pred.to_host())
latents = self.scheduler.step(
noise_pred, t, latents
).prev_sample
else:
latents = self.scheduler.step(noise_pred, t, latents)
latent_history.append(latents)
step_time = (time.time() - step_start_time) * 1000
# self.log += (
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
# )
step_time_sum += step_time
if self.status == SD_STATE_CANCEL:
break
if self.ondemand:
self.unload_unet()
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
if not return_all_latents:
return latents
all_latents = torch.cat(latent_history, dim=0)
return all_latents
@classmethod
def from_pretrained(
cls,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
import_mlir: bool,
model_id: str,
ckpt_loc: str,
custom_vae: str,
precision: str,
max_length: int,
batch_size: int,
height: int,
width: int,
use_base_vae: bool,
use_tuned: bool,
ondemand: bool,
low_cpu_mem_usage: bool = False,
debug: bool = False,
use_stencil: str = None,
use_lora: str = "",
ddpm_scheduler: DDPMScheduler = None,
use_quantize=None,
):
if (
not import_mlir
and not use_lora
and cls.__name__ == "StencilPipeline"
):
sys.exit("StencilPipeline not supported with SharkTank currently.")
is_inpaint = cls.__name__ in [
"InpaintPipeline",
"OutpaintPipeline",
]
is_upscaler = cls.__name__ in ["UpscalerPipeline"]
sd_model = SharkifyStableDiffusionModel(
model_id,
ckpt_loc,
custom_vae,
precision,
max_len=max_length,
batch_size=batch_size,
height=height,
width=width,
use_base_vae=use_base_vae,
use_tuned=use_tuned,
low_cpu_mem_usage=low_cpu_mem_usage,
debug=debug,
is_inpaint=is_inpaint,
is_upscaler=is_upscaler,
use_stencil=use_stencil,
use_lora=use_lora,
use_quantize=use_quantize,
)
if cls.__name__ in ["UpscalerPipeline"]:
return cls(
scheduler,
ddpm_scheduler,
sd_model,
import_mlir,
use_lora,
ondemand,
)
return cls(scheduler, sd_model, import_mlir, use_lora, ondemand)
# #####################################################
# Implements text embeddings with weights from prompts
# https://huggingface.co/AlanB/lpw_stable_diffusion_mod
# #####################################################
def encode_prompts_weight(
self,
prompt,
negative_prompt,
model_max_length,
do_classifier_free_guidance=True,
max_embeddings_multiples=1,
num_images_per_prompt=1,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `list(int)`):
prompt to be encoded
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
model_max_length (int):
SHARK: pass the max length instead of relying on pipe.tokenizer.model_max_length
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not,
SHARK: must be set to True as we always expect neg embeddings (defaulted to True)
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
SHARK: max_embeddings_multiples>1 produce a tensor shape error (defaulted to 1)
num_images_per_prompt (`int`):
number of images that should be generated per prompt
SHARK: num_images_per_prompt is not used (defaulted to 1)
"""
# SHARK: Save model_max_length, load the clip and init inference time
self.model_max_length = model_max_length
self.load_clip()
clip_inf_start = time.time()
batch_size = len(prompt) if isinstance(prompt, list) else 1
if negative_prompt is None:
negative_prompt = [""] * batch_size
elif isinstance(negative_prompt, str):
negative_prompt = [negative_prompt] * batch_size
if batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
pipe=self,
prompt=prompt,
uncond_prompt=negative_prompt
if do_classifier_free_guidance
else None,
max_embeddings_multiples=max_embeddings_multiples,
)
# SHARK: we are not using num_images_per_prompt
# bs_embed, seq_len, _ = text_embeddings.shape
# text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
# text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
# SHARK: we are not using num_images_per_prompt
# bs_embed, seq_len, _ = uncond_embeddings.shape
# uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
# uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# SHARK: Report clip inference time
clip_inf_time = (time.time() - clip_inf_start) * 1000
if self.ondemand:
self.unload_clip()
self.log += f"\nClip Inference time (ms) = {clip_inf_time:.3f}"
return text_embeddings.numpy()
from typing import List, Optional, Union
import re
re_attention = re.compile(
r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
re.X,
)
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\( - literal character '('
\[ - literal character '['
\) - literal character ')'
\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\(literal\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
res.append([text, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_with_weights(
pipe: StableDiffusionPipeline, prompt: List[str], max_length: int
):
r"""
Tokenize a list of prompts and return its tokens with weights of each token.
No padding, starting or ending token is included.
"""
tokens = []
weights = []
truncated = False
for text in prompt:
texts_and_weights = parse_prompt_attention(text)
text_token = []
text_weight = []
for word, weight in texts_and_weights:
# tokenize and discard the starting and the ending token
token = pipe.tokenizer(word).input_ids[1:-1]
text_token += token
# copy the weight by length of token
text_weight += [weight] * len(token)
# stop if the text is too long (longer than truncation limit)
if len(text_token) > max_length:
truncated = True
break
# truncate
if len(text_token) > max_length:
truncated = True
text_token = text_token[:max_length]
text_weight = text_weight[:max_length]
tokens.append(text_token)
weights.append(text_weight)
if truncated:
print(
"Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples"
)
return tokens, weights
def pad_tokens_and_weights(
tokens,
weights,
max_length,
bos,
eos,
no_boseos_middle=True,
chunk_length=77,
):
r"""
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
"""
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
weights_length = (
max_length
if no_boseos_middle
else max_embeddings_multiples * chunk_length
)
for i in range(len(tokens)):
tokens[i] = (
[bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
)
if no_boseos_middle:
weights[i] = (
[1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
)
else:
w = []
if len(weights[i]) == 0:
w = [1.0] * weights_length
else:
for j in range(max_embeddings_multiples):
w.append(1.0) # weight for starting token in this chunk
w += weights[i][
j
* (chunk_length - 2) : min(
len(weights[i]), (j + 1) * (chunk_length - 2)
)
]
w.append(1.0) # weight for ending token in this chunk
w += [1.0] * (weights_length - len(w))
weights[i] = w[:]
return tokens, weights
def get_unweighted_text_embeddings(
pipe: StableDiffusionPipeline,
text_input: torch.Tensor,
chunk_length: int,
no_boseos_middle: Optional[bool] = True,
):
"""
When the length of tokens is a multiple of the capacity of the text encoder,
it should be split into chunks and sent to the text encoder individually.
"""
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
if max_embeddings_multiples > 1:
text_embeddings = []
for i in range(max_embeddings_multiples):
# extract the i-th chunk
text_input_chunk = text_input[
:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2
].clone()
# cover the head and the tail by the starting and the ending tokens
text_input_chunk[:, 0] = text_input[0, 0]
text_input_chunk[:, -1] = text_input[0, -1]
# text_embedding = pipe.text_encoder(text_input_chunk)[0]
# SHARK: deplicate the text_input as Shark runner expects tokens and neg tokens
formatted_text_input_chunk = torch.cat(
[text_input_chunk, text_input_chunk]
)
text_embedding = pipe.text_encoder(
"forward", (formatted_text_input_chunk,)
)[0]
if no_boseos_middle:
if i == 0:
# discard the ending token
text_embedding = text_embedding[:, :-1]
elif i == max_embeddings_multiples - 1:
# discard the starting token
text_embedding = text_embedding[:, 1:]
else:
# discard both starting and ending tokens
text_embedding = text_embedding[:, 1:-1]
text_embeddings.append(text_embedding)
# SHARK: Convert the result to tensor
# text_embeddings = torch.concat(text_embeddings, axis=1)
text_embeddings_np = np.concatenate(np.array(text_embeddings))
text_embeddings = torch.from_numpy(text_embeddings_np)[None, :]
else:
# SHARK: deplicate the text_input as Shark runner expects tokens and neg tokens
# Convert the result to tensor
# text_embeddings = pipe.text_encoder(text_input)[0]
formatted_text_input = torch.cat([text_input, text_input])
text_embeddings = pipe.text_encoder(
"forward", (formatted_text_input,)
)[0]
text_embeddings = torch.from_numpy(text_embeddings)[None, :]
return text_embeddings
def get_weighted_text_embeddings(
pipe: StableDiffusionPipeline,
prompt: Union[str, List[str]],
uncond_prompt: Optional[Union[str, List[str]]] = None,
max_embeddings_multiples: Optional[int] = 3,
no_boseos_middle: Optional[bool] = False,
skip_parsing: Optional[bool] = False,
skip_weighting: Optional[bool] = False,
):
r"""
Prompts can be assigned with local weights using brackets. For example,
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
Args:
pipe (`StableDiffusionPipeline`):
Pipe to provide access to the tokenizer and the text encoder.
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
uncond_prompt (`str` or `List[str]`):
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
is provided, the embeddings of prompt and uncond_prompt are concatenated.
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
no_boseos_middle (`bool`, *optional*, defaults to `False`):
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
ending token in each of the chunk in the middle.
skip_parsing (`bool`, *optional*, defaults to `False`):
Skip the parsing of brackets.
skip_weighting (`bool`, *optional*, defaults to `False`):
Skip the weighting. When the parsing is skipped, it is forced True.
"""
max_length = (pipe.model_max_length - 2) * max_embeddings_multiples + 2
if isinstance(prompt, str):
prompt = [prompt]
if not skip_parsing:
prompt_tokens, prompt_weights = get_prompts_with_weights(
pipe, prompt, max_length - 2
)
if uncond_prompt is not None:
if isinstance(uncond_prompt, str):
uncond_prompt = [uncond_prompt]
uncond_tokens, uncond_weights = get_prompts_with_weights(
pipe, uncond_prompt, max_length - 2
)
else:
prompt_tokens = [
token[1:-1]
for token in pipe.tokenizer(
prompt, max_length=max_length, truncation=True
).input_ids
]
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
if uncond_prompt is not None:
if isinstance(uncond_prompt, str):
uncond_prompt = [uncond_prompt]
uncond_tokens = [
token[1:-1]
for token in pipe.tokenizer(
uncond_prompt, max_length=max_length, truncation=True
).input_ids
]
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
# round up the longest length of tokens to a multiple of (model_max_length - 2)
max_length = max([len(token) for token in prompt_tokens])
if uncond_prompt is not None:
max_length = max(
max_length, max([len(token) for token in uncond_tokens])
)
max_embeddings_multiples = min(
max_embeddings_multiples,
(max_length - 1) // (pipe.model_max_length - 2) + 1,
)
max_embeddings_multiples = max(1, max_embeddings_multiples)
max_length = (pipe.model_max_length - 2) * max_embeddings_multiples + 2
# pad the length of tokens and weights
bos = pipe.tokenizer.bos_token_id
eos = pipe.tokenizer.eos_token_id
prompt_tokens, prompt_weights = pad_tokens_and_weights(
prompt_tokens,
prompt_weights,
max_length,
bos,
eos,
no_boseos_middle=no_boseos_middle,
chunk_length=pipe.model_max_length,
)
# prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device="cpu")
if uncond_prompt is not None:
uncond_tokens, uncond_weights = pad_tokens_and_weights(
uncond_tokens,
uncond_weights,
max_length,
bos,
eos,
no_boseos_middle=no_boseos_middle,
chunk_length=pipe.model_max_length,
)
# uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)
uncond_tokens = torch.tensor(
uncond_tokens, dtype=torch.long, device="cpu"
)
# get the embeddings
text_embeddings = get_unweighted_text_embeddings(
pipe,
prompt_tokens,
pipe.model_max_length,
no_boseos_middle=no_boseos_middle,
)
# prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device)
prompt_weights = torch.tensor(
prompt_weights, dtype=torch.float, device="cpu"
)
if uncond_prompt is not None:
uncond_embeddings = get_unweighted_text_embeddings(
pipe,
uncond_tokens,
pipe.model_max_length,
no_boseos_middle=no_boseos_middle,
)
# uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device)
uncond_weights = torch.tensor(
uncond_weights, dtype=torch.float, device="cpu"
)
# assign weights to the prompts and normalize in the sense of mean
# TODO: should we normalize by chunk or in a whole (current implementation)?
if (not skip_parsing) and (not skip_weighting):
previous_mean = (
text_embeddings.float()
.mean(axis=[-2, -1])
.to(text_embeddings.dtype)
)
text_embeddings *= prompt_weights.unsqueeze(-1)
current_mean = (
text_embeddings.float()
.mean(axis=[-2, -1])
.to(text_embeddings.dtype)
)
text_embeddings *= (
(previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
)
if uncond_prompt is not None:
previous_mean = (
uncond_embeddings.float()
.mean(axis=[-2, -1])
.to(uncond_embeddings.dtype)
)
uncond_embeddings *= uncond_weights.unsqueeze(-1)
current_mean = (
uncond_embeddings.float()
.mean(axis=[-2, -1])
.to(uncond_embeddings.dtype)
)
uncond_embeddings *= (
(previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
)
if uncond_prompt is not None:
return text_embeddings, uncond_embeddings
return text_embeddings, None

View File

@@ -0,0 +1,4 @@
from apps.stable_diffusion.src.schedulers.sd_schedulers import get_schedulers
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
SharkEulerDiscreteScheduler,
)

View File

@@ -0,0 +1,66 @@
from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
DDPMScheduler,
DDIMScheduler,
DPMSolverMultistepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
SharkEulerDiscreteScheduler,
)
def get_schedulers(model_id):
schedulers = dict()
schedulers["PNDM"] = PNDMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["DDPM"] = DDPMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["KDPM2Discrete"] = KDPM2DiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["LMSDiscrete"] = LMSDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["DDIM"] = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"DPMSolverMultistep"
] = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["EulerDiscrete"] = EulerDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"EulerAncestralDiscrete"
] = EulerAncestralDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["DEISMultistep"] = DEISMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"SharkEulerDiscrete"
] = SharkEulerDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["SharkEulerDiscrete"].compile()
return schedulers

View File

@@ -0,0 +1,156 @@
import sys
import numpy as np
from typing import List, Optional, Tuple, Union
from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
)
from diffusers.configuration_utils import register_to_config
from apps.stable_diffusion.src.utils import (
compile_through_fx,
get_shark_model,
args,
)
import torch
class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
):
super().__init__(
num_train_timesteps,
beta_start,
beta_end,
beta_schedule,
trained_betas,
prediction_type,
)
def compile(self):
SCHEDULER_BUCKET = "gs://shark_tank/stable_diffusion/schedulers"
BATCH_SIZE = args.batch_size
model_input = {
"euler": {
"latent": torch.randn(
BATCH_SIZE, 4, args.height // 8, args.width // 8
),
"output": torch.randn(
BATCH_SIZE, 4, args.height // 8, args.width // 8
),
"sigma": torch.tensor(1).to(torch.float32),
"dt": torch.tensor(1).to(torch.float32),
},
}
example_latent = model_input["euler"]["latent"]
example_output = model_input["euler"]["output"]
if args.precision == "fp16":
example_latent = example_latent.half()
example_output = example_output.half()
example_sigma = model_input["euler"]["sigma"]
example_dt = model_input["euler"]["dt"]
class ScalingModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, latent, sigma):
return latent / ((sigma**2 + 1) ** 0.5)
class SchedulerStepModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, noise_pred, sigma, latent, dt):
pred_original_sample = latent - sigma * noise_pred
derivative = (latent - pred_original_sample) / sigma
return latent + derivative * dt
iree_flags = []
if len(args.iree_vulkan_target_triple) > 0:
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
# Disable bindings fusion to work with moltenVK.
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
def _import(self):
scaling_model = ScalingModel()
self.scaling_model = compile_through_fx(
model=scaling_model,
inputs=(example_latent, example_sigma),
model_name=f"euler_scale_model_input_{BATCH_SIZE}_{args.height}_{args.width}"
+ args.precision,
extra_args=iree_flags,
)
step_model = SchedulerStepModel()
self.step_model = compile_through_fx(
step_model,
(example_output, example_sigma, example_latent, example_dt),
model_name=f"euler_step_{BATCH_SIZE}_{args.height}_{args.width}"
+ args.precision,
extra_args=iree_flags,
)
if args.import_mlir:
_import(self)
else:
try:
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_step_" + args.precision,
iree_flags,
)
except:
print(
"failed to download model, falling back and using import_mlir"
)
args.import_mlir = True
_import(self)
def scale_model_input(self, sample, timestep):
step_index = (self.timesteps == timestep).nonzero().item()
sigma = self.sigmas[step_index]
return self.scaling_model(
"forward",
(
sample,
sigma,
),
send_to_host=False,
)
def step(self, noise_pred, timestep, latent):
step_index = (self.timesteps == timestep).nonzero().item()
sigma = self.sigmas[step_index]
dt = self.sigmas[step_index + 1] - sigma
return self.step_model(
"forward",
(
noise_pred,
sigma,
latent,
dt,
),
send_to_host=False,
)

View File

@@ -0,0 +1,37 @@
from apps.stable_diffusion.src.utils.profiler import (
start_profiling,
end_profiling,
)
from apps.stable_diffusion.src.utils.resources import (
prompt_examples,
models_db,
base_models,
opt_flags,
resource_path,
)
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.stencils.stencil_utils import (
controlnet_hint_conversion,
get_stencil_model_id,
)
from apps.stable_diffusion.src.utils.utils import (
get_shark_model,
compile_through_fx,
set_iree_runtime_flags,
map_device_to_name_path,
set_init_device_flags,
get_available_devices,
get_opt_flags,
preprocessCKPT,
fetch_vmfb,
fetch_and_update_base_model_id,
get_path_to_diffusers_checkpoint,
sanitize_seed,
get_path_stem,
get_extended_name,
clear_all,
save_output_img,
get_generation_text_info,
update_lora_weight,
)

View File

@@ -0,0 +1,18 @@
from apps.stable_diffusion.src.utils.stable_args import args
# Helper function to profile the vulkan device.
def start_profiling(file_path="foo.rdc", profiling_mode="queue"):
if args.vulkan_debug_utils and "vulkan" in args.device:
import iree
print(f"Profiling and saving to {file_path}.")
vulkan_device = iree.runtime.get_device(args.device)
vulkan_device.begin_profiling(mode=profiling_mode, file_path=file_path)
return vulkan_device
return None
def end_profiling(device):
if device:
return device.end_profiling()

View File

@@ -0,0 +1,37 @@
import os
import json
import sys
def resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
base_path = getattr(
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
)
return os.path.join(base_path, relative_path)
def get_json_file(path):
json_var = []
loc_json = resource_path(path)
if os.path.exists(loc_json):
with open(loc_json, encoding="utf-8") as fopen:
json_var = json.load(fopen)
if not json_var:
print(f"Unable to fetch {path}")
return json_var
# TODO: This shouldn't be called from here, every time the file imports
# it will run all the global vars.
prompt_examples = get_json_file("resources/prompts.json")
models_db = get_json_file("resources/model_db.json")
# The base_model contains the input configuration for the different
# models and also helps in providing information for the variants.
base_models = get_json_file("resources/base_model.json")
# Contains optimization flags for different models.
opt_flags = get_json_file("resources/opt_flags.json")

View File

@@ -0,0 +1,296 @@
{
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len"
],
"dtype":"i64"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"vae": {
"latents" : {
"shape" : [
"1*batch_size",4,"height","width"
],
"dtype":"f32"
}
},
"vae_upscaler": {
"latents" : {
"shape" : [
"1*batch_size",4,"8*height","8*width"
],
"dtype":"f32"
}
}
},
"unet": {
"stabilityai/stable-diffusion-2-1": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"CompVis/stable-diffusion-v1-4": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"stabilityai/stable-diffusion-2-inpainting": {
"latents": {
"shape": [
"1*batch_size",
9,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"runwayml/stable-diffusion-inpainting": {
"latents": {
"shape": [
"1*batch_size",
9,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"stabilityai/stable-diffusion-x4-upscaler": {
"latents": {
"shape": [
"2*batch_size",
7,
"8*height",
"8*width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"noise_level": {
"shape": [2],
"dtype": "i64"
}
}
},
"stencil_adaptor": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"controlnet_hint": {
"shape": [1, 3, "8*height", "8*width"],
"dtype": "f32"
}
},
"stencil_unet": {
"CompVis/stable-diffusion-v1-4": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
},
"control1": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control2": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control3": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control4": {
"shape": [2, 320, "height/2", "width/2"],
"dtype": "f32"
},
"control5": {
"shape": [2, 640, "height/2", "width/2"],
"dtype": "f32"
},
"control6": {
"shape": [2, 640, "height/2", "width/2"],
"dtype": "f32"
},
"control7": {
"shape": [2, 640, "height/4", "width/4"],
"dtype": "f32"
},
"control8": {
"shape": [2, 1280, "height/4", "width/4"],
"dtype": "f32"
},
"control9": {
"shape": [2, 1280, "height/4", "width/4"],
"dtype": "f32"
},
"control10": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control11": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control12": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control13": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
}
}
}
}

View File

@@ -0,0 +1,23 @@
[
{
"stablediffusion/v1_4":"CompVis/stable-diffusion-v1-4",
"stablediffusion/v2_1base":"stabilityai/stable-diffusion-2-1-base",
"stablediffusion/v2_1":"stabilityai/stable-diffusion-2-1",
"stablediffusion/inpaint_v1":"runwayml/stable-diffusion-inpainting",
"stablediffusion/inpaint_v2":"stabilityai/stable-diffusion-2-inpainting",
"anythingv3/v1_4":"Linaqruf/anything-v3.0",
"analogdiffusion/v1_4":"wavymulder/Analog-Diffusion",
"openjourney/v1_4":"prompthero/openjourney",
"dreamlike/v1_4":"dreamlike-art/dreamlike-diffusion-1.0"
},
{
"stablediffusion/fp16":"fp16",
"stablediffusion/fp32":"main",
"anythingv3/fp16":"diffusers",
"anythingv3/fp32":"diffusers",
"analogdiffusion/fp16":"main",
"analogdiffusion/fp32":"main",
"openjourney/fp16":"main",
"openjourney/fp32":"main"
}
]

View File

@@ -0,0 +1,19 @@
[
{
"stablediffusion/untuned":"gs://shark_tank/nightly"
},
{
"stablediffusion/v1_4/unet/fp16/length_64/untuned":"unet_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v1_4/vae/fp16/length_77/untuned":"vae_1_64_512_512_fp16_stable-diffusion-v1-4_vulkan",
"stablediffusion/v1_4/vae/fp16/length_64/untuned":"vae_1_64_512_512_fp16_stable-diffusion-v1-4_vulkan",
"stablediffusion/v1_4/clip/fp32/length_64/untuned":"clip_1_64_512_512_fp16_stable-diffusion-v1-4_vulkan",
"stablediffusion/v2_1base/unet/fp16/length_77/untuned":"unet_1_77_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1base/unet/fp16/length_64/untuned":"unet_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1base/vae/fp16/length_77/untuned":"vae_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1base/clip/fp32/length_77/untuned":"clip_1_77_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1base/clip/fp32/length_64/untuned":"clip_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1/unet/fp16/length_77/untuned":"unet_1_77_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1/vae/fp16/length_77/untuned":"vae_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1/clip/fp32/length_77/untuned":"clip_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan"
}
]

View File

@@ -0,0 +1,84 @@
{
"unet": {
"tuned": {
"fp16": {
"default_compilation_flags": []
},
"fp32": {
"default_compilation_flags": []
}
},
"untuned": {
"fp16": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
]
},
"fp32": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
}
}
},
"vae": {
"tuned": {
"fp16": {
"default_compilation_flags": [],
"specified_compilation_flags": {
"cuda": [],
"default_device": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))"
]
}
},
"fp32": {
"default_compilation_flags": [],
"specified_compilation_flags": {
"cuda": [],
"default_device": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=16},iree-linalg-ext-convert-conv2d-to-winograd))"
]
}
}
},
"untuned": {
"fp16": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
]
},
"fp32": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
}
}
},
"clip": {
"tuned": {
"fp16": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
},
"fp32": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
}
},
"untuned": {
"fp16": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
},
"fp32": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
}
}
}
}

View File

@@ -0,0 +1,8 @@
[["A high tech solarpunk utopia in the Amazon rainforest"],
["A pikachu fine dining with a view to the Eiffel Tower"],
["A mecha robot in a favela in expressionist style"],
["an insect robot preparing a delicious meal"],
["A digital Illustration of the Babel tower, 4k, detailed, trending in artstation, fantasy vivid colors"],
["Cluttered house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k"],
["A beautiful mansion beside a waterfall in the woods, by josef thoma, matte painting, trending on artstation HQ"],
["portrait photo of a asia old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes"]]

View File

@@ -0,0 +1,252 @@
import os
import io
from shark.model_annotation import model_annotation, create_context
from shark.iree_utils._common import iree_target_map, run_cmd
from shark.shark_downloader import (
download_model,
download_public_file,
WORKDIR,
)
from shark.parser import shark_args
from apps.stable_diffusion.src.utils.stable_args import args
def get_device():
device = (
args.device
if "://" not in args.device
else args.device.split("://")[0]
)
return device
def get_device_args():
device = get_device()
device_spec_args = []
if device == "cuda":
from shark.iree_utils.gpu_utils import get_iree_gpu_args
gpu_flags = get_iree_gpu_args()
for flag in gpu_flags:
device_spec_args.append(flag)
elif device == "vulkan":
device_spec_args.append(
f"--iree-vulkan-target-triple={args.iree_vulkan_target_triple} "
)
return device, device_spec_args
# Download the model (Unet or VAE fp16) from shark_tank
def load_model_from_tank():
from apps.stable_diffusion.src.models import (
get_params,
get_variant_version,
)
variant, version = get_variant_version(args.hf_model_id)
shark_args.local_tank_cache = args.local_tank_cache
bucket_key = f"{variant}/untuned"
if args.annotation_model == "unet":
model_key = f"{variant}/{version}/unet/{args.precision}/length_{args.max_length}/untuned"
elif args.annotation_model == "vae":
is_base = "/base" if args.use_base_vae else ""
model_key = f"{variant}/{version}/vae/{args.precision}/length_77/untuned{is_base}"
bucket, model_name, iree_flags = get_params(
bucket_key, model_key, args.annotation_model, "untuned", args.precision
)
mlir_model, func_name, inputs, golden_out = download_model(
model_name,
tank_url=bucket,
frontend="torch",
)
return mlir_model, model_name
# Download the tuned config files from shark_tank
def load_winograd_configs():
device = get_device()
config_bucket = "gs://shark_tank/sd_tuned/configs/"
config_name = f"{args.annotation_model}_winograd_{device}.json"
full_gs_url = config_bucket + config_name
winograd_config_dir = os.path.join(WORKDIR, "configs", config_name)
print("Loading Winograd config file from ", winograd_config_dir)
download_public_file(full_gs_url, winograd_config_dir, True)
return winograd_config_dir
def load_lower_configs(base_model_id=None):
from apps.stable_diffusion.src.models import get_variant_version
from apps.stable_diffusion.src.utils.utils import (
fetch_and_update_base_model_id,
)
if not base_model_id:
if args.ckpt_loc != "":
base_model_id = fetch_and_update_base_model_id(args.ckpt_loc)
else:
base_model_id = fetch_and_update_base_model_id(args.hf_model_id)
if base_model_id == "":
base_model_id = args.hf_model_id
variant, version = get_variant_version(base_model_id)
if version == "inpaint_v1":
version = "v1_4"
elif version == "inpaint_v2":
version = "v2_1base"
config_bucket = "gs://shark_tank/sd_tuned_configs/"
device, device_spec_args = get_device_args()
spec = ""
if device_spec_args:
spec = device_spec_args[-1].split("=")[-1].strip()
if device == "vulkan":
spec = spec.split("-")[0]
if args.annotation_model == "vae":
if not spec or spec in ["rdna3", "sm_80"]:
config_name = (
f"{args.annotation_model}_{args.precision}_{device}.json"
)
else:
config_name = f"{args.annotation_model}_{args.precision}_{device}_{spec}.json"
else:
if not spec or spec in ["rdna3", "sm_80"]:
if (
version in ["v2_1", "v2_1base"]
and args.height == 768
and args.width == 768
):
config_name = f"{args.annotation_model}_v2_1_768_{args.precision}_{device}.json"
else:
config_name = f"{args.annotation_model}_{version}_{args.precision}_{device}.json"
else:
config_name = f"{args.annotation_model}_{version}_{args.precision}_{device}_{spec}.json"
full_gs_url = config_bucket + config_name
lowering_config_dir = os.path.join(WORKDIR, "configs", config_name)
print("Loading lowering config file from ", lowering_config_dir)
download_public_file(full_gs_url, lowering_config_dir, True)
return lowering_config_dir
# Annotate the model with Winograd attribute on selected conv ops
def annotate_with_winograd(input_mlir, winograd_config_dir, model_name):
with create_context() as ctx:
winograd_model = model_annotation(
ctx,
input_contents=input_mlir,
config_path=winograd_config_dir,
search_op="conv",
winograd=True,
)
bytecode_stream = io.BytesIO()
winograd_model.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
if args.save_annotation:
if model_name.split("_")[-1] != "tuned":
out_file_path = os.path.join(
args.annotation_output, model_name + "_tuned_torch.mlir"
)
else:
out_file_path = os.path.join(
args.annotation_output, model_name + "_torch.mlir"
)
with open(out_file_path, "w") as f:
f.write(str(winograd_model))
f.close()
return bytecode
def dump_after_mlir(input_mlir, use_winograd):
import iree.compiler as ireec
device, device_spec_args = get_device_args()
if use_winograd:
preprocess_flag = "--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))"
else:
preprocess_flag = "--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
dump_module = ireec.compile_str(
input_mlir,
target_backends=[iree_target_map(device)],
extra_args=device_spec_args
+ [
preprocess_flag,
"--compile-to=preprocessing",
],
)
return dump_module
# For Unet annotate the model with tuned lowering configs
def annotate_with_lower_configs(
input_mlir, lowering_config_dir, model_name, use_winograd
):
# Dump IR after padding/img2col/winograd passes
dump_module = dump_after_mlir(input_mlir, use_winograd)
print("Applying tuned configs on", model_name)
# Annotate the model with lowering configs in the config file
with create_context() as ctx:
tuned_model = model_annotation(
ctx,
input_contents=dump_module,
config_path=lowering_config_dir,
search_op="all",
)
bytecode_stream = io.BytesIO()
tuned_model.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
if args.save_annotation:
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
with open(out_file_path, "w") as f:
f.write(str(tuned_model))
f.close()
return bytecode
def sd_model_annotation(mlir_model, model_name, base_model_id=None):
device = get_device()
if args.annotation_model == "unet" and device == "vulkan":
use_winograd = True
winograd_config_dir = load_winograd_configs()
winograd_model = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
lowering_config_dir = load_lower_configs(base_model_id)
tuned_model = annotate_with_lower_configs(
winograd_model, lowering_config_dir, model_name, use_winograd
)
elif args.annotation_model == "vae" and device == "vulkan":
use_winograd = True
winograd_config_dir = load_winograd_configs()
tuned_model = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
else:
use_winograd = False
lowering_config_dir = load_lower_configs(base_model_id)
tuned_model = annotate_with_lower_configs(
mlir_model, lowering_config_dir, model_name, use_winograd
)
return tuned_model
if __name__ == "__main__":
mlir_model, model_name = load_model_from_tank()
sd_model_annotation(mlir_model, model_name)

View File

@@ -0,0 +1,547 @@
import argparse
import os
from pathlib import Path
def path_expand(s):
return Path(s).expanduser().resolve()
def is_valid_file(arg):
if not os.path.exists(arg):
return None
else:
return arg
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
##############################################################################
### Stable Diffusion Params
##############################################################################
p.add_argument(
"-a",
"--app",
default="txt2img",
help="which app to use, one of: txt2img, img2img, outpaint, inpaint",
)
p.add_argument(
"-p",
"--prompts",
nargs="+",
default=["cyberpunk forest by Salvador Dali"],
help="text of which images to be generated.",
)
p.add_argument(
"--negative_prompts",
nargs="+",
default=["trees, green"],
help="text you don't want to see in the generated image.",
)
p.add_argument(
"--img_path",
type=str,
help="Path to the image input for img2img/inpainting",
)
p.add_argument(
"--steps",
type=int,
default=50,
help="the no. of steps to do the sampling.",
)
p.add_argument(
"--seed",
type=int,
default=-1,
help="the seed to use. -1 for a random one.",
)
p.add_argument(
"--batch_size",
type=int,
default=1,
choices=range(1, 4),
help="the number of inferences to be made in a single `batch_count`.",
)
p.add_argument(
"--height",
type=int,
default=512,
choices=range(128, 769, 8),
help="the height of the output image.",
)
p.add_argument(
"--width",
type=int,
default=512,
choices=range(128, 769, 8),
help="the width of the output image.",
)
p.add_argument(
"--guidance_scale",
type=float,
default=7.5,
help="the value to be used for guidance scaling.",
)
p.add_argument(
"--noise_level",
type=int,
default=20,
help="the value to be used for noise level of upscaler.",
)
p.add_argument(
"--max_length",
type=int,
default=64,
help="max length of the tokenizer output, options are 64 and 77.",
)
p.add_argument(
"--strength",
type=float,
default=0.8,
help="the strength of change applied on the given input image for img2img",
)
##############################################################################
### Stable Diffusion Training Params
##############################################################################
p.add_argument(
"--lora_save_dir",
type=str,
default="models/lora/",
help="Directory to save the lora fine tuned model",
)
p.add_argument(
"--training_images_dir",
type=str,
default="models/lora/training_images/",
help="Directory containing images that are an example of the prompt",
)
p.add_argument(
"--training_steps",
type=int,
default=2000,
help="The no. of steps to train",
)
##############################################################################
### Inpainting and Outpainting Params
##############################################################################
p.add_argument(
"--mask_path",
type=str,
help="Path to the mask image input for inpainting",
)
p.add_argument(
"--inpaint_full_res",
default=False,
action=argparse.BooleanOptionalAction,
help="If inpaint only masked area or whole picture",
)
p.add_argument(
"--inpaint_full_res_padding",
type=int,
default=32,
choices=range(0, 257, 4),
help="Number of pixels for only masked padding",
)
p.add_argument(
"--pixels",
type=int,
default=128,
choices=range(8, 257, 8),
help="Number of expended pixels for one direction for outpainting",
)
p.add_argument(
"--mask_blur",
type=int,
default=8,
choices=range(0, 65),
help="Number of blur pixels for outpainting",
)
p.add_argument(
"--left",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend left for outpainting",
)
p.add_argument(
"--right",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend right for outpainting",
)
p.add_argument(
"--top",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend top for outpainting",
)
p.add_argument(
"--bottom",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend bottom for outpainting",
)
p.add_argument(
"--noise_q",
type=float,
default=1.0,
help="Fall-off exponent for outpainting (lower=higher detail) (min=0.0, max=4.0)",
)
p.add_argument(
"--color_variation",
type=float,
default=0.05,
help="Color variation for outpainting (min=0.0, max=1.0)",
)
##############################################################################
### Model Config and Usage Params
##############################################################################
p.add_argument(
"--device", type=str, default="vulkan", help="device to run the model."
)
p.add_argument(
"--precision", type=str, default="fp16", help="precision to run the model."
)
p.add_argument(
"--import_mlir",
default=False,
action=argparse.BooleanOptionalAction,
help="imports the model from torch module to shark_module otherwise downloads the model from shark_tank.",
)
p.add_argument(
"--load_vmfb",
default=True,
action=argparse.BooleanOptionalAction,
help="attempts to load the model from a precompiled flatbuffer and compiles + saves it if not found.",
)
p.add_argument(
"--save_vmfb",
default=False,
action=argparse.BooleanOptionalAction,
help="saves the compiled flatbuffer to the local directory",
)
p.add_argument(
"--use_tuned",
default=True,
action=argparse.BooleanOptionalAction,
help="Download and use the tuned version of the model if available",
)
p.add_argument(
"--use_base_vae",
default=False,
action=argparse.BooleanOptionalAction,
help="Do conversion from the VAE output to pixel space on cpu.",
)
p.add_argument(
"--scheduler",
type=str,
default="SharkEulerDiscrete",
help="other supported schedulers are [PNDM, DDIM, LMSDiscrete, EulerDiscrete, DPMSolverMultistep]",
)
p.add_argument(
"--output_img_format",
type=str,
default="png",
help="specify the format in which output image is save. Supported options: jpg / png",
)
p.add_argument(
"--output_dir",
type=str,
default=None,
help="Directory path to save the output images and json",
)
p.add_argument(
"--batch_count",
type=int,
default=1,
help="number of batch to be generated with random seeds in single execution",
)
p.add_argument(
"--ckpt_loc",
type=str,
default="",
help="Path to SD's .ckpt file.",
)
p.add_argument(
"--custom_vae",
type=str,
default="",
help="HuggingFace repo-id or path to SD model's checkpoint whose Vae needs to be plugged in.",
)
p.add_argument(
"--hf_model_id",
type=str,
default="stabilityai/stable-diffusion-2-1-base",
help="The repo-id of hugging face.",
)
p.add_argument(
"--low_cpu_mem_usage",
default=False,
action=argparse.BooleanOptionalAction,
help="Use the accelerate package to reduce cpu memory consumption",
)
p.add_argument(
"--attention_slicing",
type=str,
default="none",
help="Amount of attention slicing to use (one of 'max', 'auto', 'none', or an integer)",
)
p.add_argument(
"--use_stencil",
choices=["canny", "openpose", "scribble"],
help="Enable the stencil feature.",
)
p.add_argument(
"--use_lora",
type=str,
default="",
help="Use standalone LoRA weight using a HF ID or a checkpoint file (~3 MB)",
)
p.add_argument(
"--use_quantize",
type=str,
default="none",
help="""Runs the quantized version of stable diffusion model. This is currently in experimental phase.
Currently, only runs the stable-diffusion-2-1-base model in int8 quantization.""",
)
p.add_argument(
"--ondemand",
default=False,
action=argparse.BooleanOptionalAction,
help="Load and unload models for low VRAM",
)
##############################################################################
### IREE - Vulkan supported flags
##############################################################################
p.add_argument(
"--iree_vulkan_target_triple",
type=str,
default="",
help="Specify target triple for vulkan",
)
p.add_argument(
"--vulkan_debug_utils",
default=False,
action=argparse.BooleanOptionalAction,
help="Profiles vulkan device and collects the .rdc info",
)
p.add_argument(
"--vulkan_large_heap_block_size",
default="2073741824",
help="flag for setting VMA preferredLargeHeapBlockSize for vulkan device, default is 4G",
)
p.add_argument(
"--vulkan_validation_layers",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for disabling vulkan validation layers when benchmarking",
)
##############################################################################
### Misc. Debug and Optimization flags
##############################################################################
p.add_argument(
"--use_compiled_scheduler",
default=True,
action=argparse.BooleanOptionalAction,
help="use the default scheduler precompiled into the model if available",
)
p.add_argument(
"--local_tank_cache",
default="",
help="Specify where to save downloaded shark_tank artifacts. If this is not set, the default is ~/.local/shark_tank/.",
)
p.add_argument(
"--dump_isa",
default=False,
action="store_true",
help="When enabled call amdllpc to get ISA dumps. use with dispatch benchmarks.",
)
p.add_argument(
"--dispatch_benchmarks",
default=None,
help='dispatches to return benchamrk data on. use "All" for all, and None for none.',
)
p.add_argument(
"--dispatch_benchmarks_dir",
default="temp_dispatch_benchmarks",
help='directory where you want to store dispatch data generated with "--dispatch_benchmarks"',
)
p.add_argument(
"--enable_rgp",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for inserting debug frames between iterations for use with rgp.",
)
p.add_argument(
"--hide_steps",
default=True,
action=argparse.BooleanOptionalAction,
help="flag for hiding the details of iteration/sec for each step.",
)
p.add_argument(
"--warmup_count",
type=int,
default=0,
help="flag setting warmup count for clip and vae [>= 0].",
)
p.add_argument(
"--clear_all",
default=False,
action=argparse.BooleanOptionalAction,
help="flag to clear all mlir and vmfb from common locations. Recompiling will take several minutes",
)
p.add_argument(
"--save_metadata_to_json",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for whether or not to save a generation information json file with the image.",
)
p.add_argument(
"--write_metadata_to_png",
default=True,
action=argparse.BooleanOptionalAction,
help="flag for whether or not to save generation information in PNG chunk text to generated images.",
)
p.add_argument(
"--import_debug",
default=False,
action=argparse.BooleanOptionalAction,
help="if import_mlir is True, saves mlir via the debug option in shark importer. Does nothing if import_mlir is false (the default)",
)
##############################################################################
### Web UI flags
##############################################################################
p.add_argument(
"--progress_bar",
default=True,
action=argparse.BooleanOptionalAction,
help="flag for removing the progress bar animation during image generation",
)
p.add_argument(
"--ckpt_dir",
type=str,
default="",
help="Path to directory where all .ckpts are stored in order to populate them in the web UI",
)
p.add_argument(
"--share",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for generating a public URL",
)
p.add_argument(
"--server_port",
type=int,
default=8080,
help="flag for setting server port",
)
p.add_argument(
"--api",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for enabling rest API",
)
##############################################################################
### SD model auto-annotation flags
##############################################################################
p.add_argument(
"--annotation_output",
type=path_expand,
default="./",
help="Directory to save the annotated mlir file",
)
p.add_argument(
"--annotation_model",
type=str,
default="unet",
help="Options are unet and vae.",
)
p.add_argument(
"--save_annotation",
default=False,
action=argparse.BooleanOptionalAction,
help="Save annotated mlir file",
)
args, unknown = p.parse_known_args()
if args.import_debug:
os.environ["IREE_SAVE_TEMPS"] = os.path.join(
os.getcwd(), args.hf_model_id.replace("/", "_")
)

View File

@@ -0,0 +1,2 @@
from apps.stable_diffusion.src.utils.stencils.canny import CannyDetector
from apps.stable_diffusion.src.utils.stencils.openpose import OpenposeDetector

View File

@@ -0,0 +1,6 @@
import cv2
class CannyDetector:
def __call__(self, img, low_threshold, high_threshold):
return cv2.Canny(img, low_threshold, high_threshold)

View File

@@ -0,0 +1,62 @@
import requests
from pathlib import Path
import torch
import numpy as np
# from annotator.util import annotator_ckpts_path
from apps.stable_diffusion.src.utils.stencils.openpose.body import Body
from apps.stable_diffusion.src.utils.stencils.openpose.hand import Hand
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
draw_bodypose,
draw_handpose,
handDetect,
)
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth"
class OpenposeDetector:
def __init__(self):
cwd = Path.cwd()
ckpt_path = Path(cwd, "stencil_annotator")
ckpt_path.mkdir(parents=True, exist_ok=True)
body_modelpath = ckpt_path / "body_pose_model.pth"
hand_modelpath = ckpt_path / "hand_pose_model.pth"
if not body_modelpath.is_file():
r = requests.get(body_model_path, allow_redirects=True)
open(body_modelpath, "wb").write(r.content)
if not hand_modelpath.is_file():
r = requests.get(hand_model_path, allow_redirects=True)
open(hand_modelpath, "wb").write(r.content)
self.body_estimation = Body(body_modelpath)
self.hand_estimation = Hand(hand_modelpath)
def __call__(self, oriImg, hand=False):
oriImg = oriImg[:, :, ::-1].copy()
with torch.no_grad():
candidate, subset = self.body_estimation(oriImg)
canvas = np.zeros_like(oriImg)
canvas = draw_bodypose(canvas, candidate, subset)
if hand:
hands_list = handDetect(candidate, subset, oriImg)
all_hand_peaks = []
for x, y, w, is_left in hands_list:
peaks = self.hand_estimation(
oriImg[y : y + w, x : x + w, :]
)
peaks[:, 0] = np.where(
peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x
)
peaks[:, 1] = np.where(
peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y
)
all_hand_peaks.append(peaks)
canvas = draw_handpose(canvas, all_hand_peaks)
return canvas, dict(
candidate=candidate.tolist(), subset=subset.tolist()
)

View File

@@ -0,0 +1,499 @@
import cv2
import numpy as np
import math
from scipy.ndimage.filters import gaussian_filter
import torch
import torch.nn as nn
from collections import OrderedDict
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
make_layers,
transfer,
padRightDownCorner,
)
class BodyPoseModel(nn.Module):
def __init__(self):
super(BodyPoseModel, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv5_5_CPM_L1",
"conv5_5_CPM_L2",
"Mconv7_stage2_L1",
"Mconv7_stage2_L2",
"Mconv7_stage3_L1",
"Mconv7_stage3_L2",
"Mconv7_stage4_L1",
"Mconv7_stage4_L2",
"Mconv7_stage5_L1",
"Mconv7_stage5_L2",
"Mconv7_stage6_L1",
"Mconv7_stage6_L1",
]
blocks = {}
block0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3_CPM", [512, 256, 3, 1, 1]),
("conv4_4_CPM", [256, 128, 3, 1, 1]),
]
)
# Stage 1
block1_1 = OrderedDict(
[
("conv5_1_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L1", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L1", [512, 38, 1, 1, 0]),
]
)
block1_2 = OrderedDict(
[
("conv5_1_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L2", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L2", [512, 19, 1, 1, 0]),
]
)
blocks["block1_1"] = block1_1
blocks["block1_2"] = block1_2
self.model0 = make_layers(block0, no_relu_layers)
# Stages 2 - 6
for i in range(2, 7):
blocks["block%d_1" % i] = OrderedDict(
[
("Mconv1_stage%d_L1" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L1" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L1" % i, [128, 38, 1, 1, 0]),
]
)
blocks["block%d_2" % i] = OrderedDict(
[
("Mconv1_stage%d_L2" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L2" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L2" % i, [128, 19, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_1 = blocks["block1_1"]
self.model2_1 = blocks["block2_1"]
self.model3_1 = blocks["block3_1"]
self.model4_1 = blocks["block4_1"]
self.model5_1 = blocks["block5_1"]
self.model6_1 = blocks["block6_1"]
self.model1_2 = blocks["block1_2"]
self.model2_2 = blocks["block2_2"]
self.model3_2 = blocks["block3_2"]
self.model4_2 = blocks["block4_2"]
self.model5_2 = blocks["block5_2"]
self.model6_2 = blocks["block6_2"]
def forward(self, x):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
class Body(object):
def __init__(self, model_path):
self.model = BodyPoseModel()
if torch.cuda.is_available():
self.model = self.model.cuda()
model_dict = transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def __call__(self, oriImg):
scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre1 = 0.1
thre2 = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(
oriImg,
(0, 0),
fx=scale,
fy=scale,
interpolation=cv2.INTER_CUBIC,
)
imageToTest_padded, pad = padRightDownCorner(
imageToTest, stride, padValue
)
im = (
np.transpose(
np.float32(imageToTest_padded[:, :, :, np.newaxis]),
(3, 2, 0, 1),
)
/ 256
- 0.5
)
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
if torch.cuda.is_available():
data = data.cuda()
with torch.no_grad():
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
# extract outputs, resize, and remove padding
heatmap = np.transpose(
np.squeeze(Mconv7_stage6_L2), (1, 2, 0)
) # output 1 is heatmaps
heatmap = cv2.resize(
heatmap,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
heatmap = heatmap[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
heatmap = cv2.resize(
heatmap,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
paf = np.transpose(
np.squeeze(Mconv7_stage6_L1), (1, 2, 0)
) # output 0 is PAFs
paf = cv2.resize(
paf,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
paf = paf[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
paf = cv2.resize(
paf,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
paf_avg += +paf / len(multiplier)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(one_heatmap.shape)
map_left[1:, :] = one_heatmap[:-1, :]
map_right = np.zeros(one_heatmap.shape)
map_right[:-1, :] = one_heatmap[1:, :]
map_up = np.zeros(one_heatmap.shape)
map_up[:, 1:] = one_heatmap[:, :-1]
map_down = np.zeros(one_heatmap.shape)
map_down[:, :-1] = one_heatmap[:, 1:]
peaks_binary = np.logical_and.reduce(
(
one_heatmap >= map_left,
one_heatmap >= map_right,
one_heatmap >= map_up,
one_heatmap >= map_down,
one_heatmap > thre1,
)
)
peaks = list(
zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])
) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
peak_id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [
peaks_with_score[i] + (peak_id[i],)
for i in range(len(peak_id))
]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
# the middle joints heatmap correpondence
mapIdx = [
[31, 32],
[39, 40],
[33, 34],
[35, 36],
[41, 42],
[43, 44],
[19, 20],
[21, 22],
[23, 24],
[25, 26],
[27, 28],
[29, 30],
[47, 48],
[49, 50],
[53, 54],
[51, 52],
[55, 56],
[37, 38],
[45, 46],
]
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if nA != 0 and nB != 0:
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
norm = max(0.001, norm)
vec = np.divide(vec, norm)
startend = list(
zip(
np.linspace(
candA[i][0], candB[j][0], num=mid_num
),
np.linspace(
candA[i][1], candB[j][1], num=mid_num
),
)
)
vec_x = np.array(
[
score_mid[
int(round(startend[I][1])),
int(round(startend[I][0])),
0,
]
for I in range(len(startend))
]
)
vec_y = np.array(
[
score_mid[
int(round(startend[I][1])),
int(round(startend[I][0])),
1,
]
for I in range(len(startend))
]
)
score_midpts = np.multiply(
vec_x, vec[0]
) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(
score_midpts
) + min(0.5 * oriImg.shape[0] / norm - 1, 0)
criterion1 = len(
np.nonzero(score_midpts > thre2)[0]
) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[
i,
j,
score_with_dist_prior,
score_with_dist_prior
+ candA[i][2]
+ candB[j][2],
]
)
connection_candidate = sorted(
connection_candidate, key=lambda x: x[2], reverse=True
)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack(
[connection, [candA[i][3], candB[j][3], s, i, j]]
)
if len(connection) >= min(nA, nB):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array(
[item for sublist in all_peaks for item in sublist]
)
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if (
subset[j][indexA] == partAs[i]
or subset[j][indexB] == partBs[i]
):
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][indexB] != partBs[i]:
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += (
candidate[partBs[i].astype(int), 2]
+ connection_all[k][i][2]
)
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = (
(subset[j1] >= 0).astype(int)
+ (subset[j2] >= 0).astype(int)
)[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += subset[j2][:-2] + 1
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += (
candidate[partBs[i].astype(int), 2]
+ connection_all[k][i][2]
)
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = (
sum(
candidate[
connection_all[k][i, :2].astype(int), 2
]
)
+ connection_all[k][i][2]
)
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
# candidate: x, y, score, id
return candidate, subset

View File

@@ -0,0 +1,205 @@
import cv2
import numpy as np
from scipy.ndimage.filters import gaussian_filter
import torch
import torch.nn as nn
from skimage.measure import label
from collections import OrderedDict
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
make_layers,
transfer,
padRightDownCorner,
npmax,
)
class HandPoseModel(nn.Module):
def __init__(self):
super(HandPoseModel, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv6_2_CPM",
"Mconv7_stage2",
"Mconv7_stage3",
"Mconv7_stage4",
"Mconv7_stage5",
"Mconv7_stage6",
]
# stage 1
block1_0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3", [512, 512, 3, 1, 1]),
("conv4_4", [512, 512, 3, 1, 1]),
("conv5_1", [512, 512, 3, 1, 1]),
("conv5_2", [512, 512, 3, 1, 1]),
("conv5_3_CPM", [512, 128, 3, 1, 1]),
]
)
block1_1 = OrderedDict(
[
("conv6_1_CPM", [128, 512, 1, 1, 0]),
("conv6_2_CPM", [512, 22, 1, 1, 0]),
]
)
blocks = {}
blocks["block1_0"] = block1_0
blocks["block1_1"] = block1_1
# stage 2-6
for i in range(2, 7):
blocks["block%d" % i] = OrderedDict(
[
("Mconv1_stage%d" % i, [150, 128, 7, 1, 3]),
("Mconv2_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d" % i, [128, 22, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_0 = blocks["block1_0"]
self.model1_1 = blocks["block1_1"]
self.model2 = blocks["block2"]
self.model3 = blocks["block3"]
self.model4 = blocks["block4"]
self.model5 = blocks["block5"]
self.model6 = blocks["block6"]
def forward(self, x):
out1_0 = self.model1_0(x)
out1_1 = self.model1_1(out1_0)
concat_stage2 = torch.cat([out1_1, out1_0], 1)
out_stage2 = self.model2(concat_stage2)
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
out_stage3 = self.model3(concat_stage3)
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
out_stage4 = self.model4(concat_stage4)
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
out_stage5 = self.model5(concat_stage5)
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
out_stage6 = self.model6(concat_stage6)
return out_stage6
class Hand(object):
def __init__(self, model_path):
self.model = HandPoseModel()
if torch.cuda.is_available():
self.model = self.model.cuda()
model_dict = transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def __call__(self, oriImg):
scale_search = [0.5, 1.0, 1.5, 2.0]
# scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(
oriImg,
(0, 0),
fx=scale,
fy=scale,
interpolation=cv2.INTER_CUBIC,
)
imageToTest_padded, pad = padRightDownCorner(
imageToTest, stride, padValue
)
im = (
np.transpose(
np.float32(imageToTest_padded[:, :, :, np.newaxis]),
(3, 2, 0, 1),
)
/ 256
- 0.5
)
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
if torch.cuda.is_available():
data = data.cuda()
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
with torch.no_grad():
output = self.model(data).cpu().numpy()
# output = self.model(data).numpy()q
# extract outputs, resize, and remove padding
heatmap = np.transpose(
np.squeeze(output), (1, 2, 0)
) # output 1 is heatmaps
heatmap = cv2.resize(
heatmap,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
heatmap = heatmap[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
heatmap = cv2.resize(
heatmap,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
heatmap_avg += heatmap / len(multiplier)
all_peaks = []
for part in range(21):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
# 全部小于阈值
if np.sum(binary) == 0:
all_peaks.append([0, 0])
continue
label_img, label_numbers = label(
binary, return_num=True, connectivity=binary.ndim
)
max_index = (
np.argmax(
[
np.sum(map_ori[label_img == i])
for i in range(1, label_numbers + 1)
]
)
+ 1
)
label_img[label_img != max_index] = 0
map_ori[label_img == 0] = 0
y, x = npmax(map_ori)
all_peaks.append([x, y])
return np.array(all_peaks)

View File

@@ -0,0 +1,272 @@
import math
import numpy as np
import matplotlib
import cv2
from collections import OrderedDict
import torch.nn as nn
def make_layers(block, no_relu_layers):
layers = []
for layer_name, v in block.items():
if "pool" in layer_name:
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
else:
conv2d = nn.Conv2d(
in_channels=v[0],
out_channels=v[1],
kernel_size=v[2],
stride=v[3],
padding=v[4],
)
layers.append((layer_name, conv2d))
if layer_name not in no_relu_layers:
layers.append(("relu_" + layer_name, nn.ReLU(inplace=True)))
return nn.Sequential(OrderedDict(layers))
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
# transfer caffe model to pytorch which will match the layer name
def transfer(model, model_weights):
transfered_model_weights = {}
for weights_name in model.state_dict().keys():
transfered_model_weights[weights_name] = model_weights[
".".join(weights_name.split(".")[1:])
]
return transfered_model_weights
# draw the body keypoint and lims
def draw_bodypose(canvas, candidate, subset):
stickwidth = 4
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
colors = [
[255, 0, 0],
[255, 85, 0],
[255, 170, 0],
[255, 255, 0],
[170, 255, 0],
[85, 255, 0],
[0, 255, 0],
[0, 255, 85],
[0, 255, 170],
[0, 255, 255],
[0, 170, 255],
[0, 85, 255],
[0, 0, 255],
[85, 0, 255],
[170, 0, 255],
[255, 0, 255],
[255, 0, 170],
[255, 0, 85],
]
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly(
(int(mY), int(mX)),
(int(length / 2), stickwidth),
int(angle),
0,
360,
1,
)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas
# image drawed by opencv is not good.
def draw_handpose(canvas, all_hand_peaks, show_number=False):
edges = [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 5],
[5, 6],
[6, 7],
[7, 8],
[0, 9],
[9, 10],
[10, 11],
[11, 12],
[0, 13],
[13, 14],
[14, 15],
[15, 16],
[0, 17],
[17, 18],
[18, 19],
[19, 20],
]
for peaks in all_hand_peaks:
for ie, e in enumerate(edges):
if np.sum(np.all(peaks[e], axis=1) == 0) == 0:
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
cv2.line(
canvas,
(x1, y1),
(x2, y2),
matplotlib.colors.hsv_to_rgb(
[ie / float(len(edges)), 1.0, 1.0]
)
* 255,
thickness=2,
)
for i, keyponit in enumerate(peaks):
x, y = keyponit
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
if show_number:
cv2.putText(
canvas,
str(i),
(x, y),
cv2.FONT_HERSHEY_SIMPLEX,
0.3,
(0, 0, 0),
lineType=cv2.LINE_AA,
)
return canvas
# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(candidate, subset, oriImg):
# right hand: wrist 4, elbow 3, shoulder 2
# left hand: wrist 7, elbow 6, shoulder 5
ratioWristElbow = 0.33
detect_result = []
image_height, image_width = oriImg.shape[0:2]
for person in subset.astype(int):
# if any of three not detected
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
if not (has_left or has_right):
continue
hands = []
# left hand
if has_left:
left_shoulder_index, left_elbow_index, left_wrist_index = person[
[5, 6, 7]
]
x1, y1 = candidate[left_shoulder_index][:2]
x2, y2 = candidate[left_elbow_index][:2]
x3, y3 = candidate[left_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, True])
# right hand
if has_right:
(
right_shoulder_index,
right_elbow_index,
right_wrist_index,
) = person[[2, 3, 4]]
x1, y1 = candidate[right_shoulder_index][:2]
x2, y2 = candidate[right_elbow_index][:2]
x3, y3 = candidate[right_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, False])
for x1, y1, x2, y2, x3, y3, is_left in hands:
x = x3 + ratioWristElbow * (x3 - x2)
y = y3 + ratioWristElbow * (y3 - y2)
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
# x-y refers to the center --> offset to topLeft point
x -= width / 2
y -= width / 2 # width = height
# overflow the image
if x < 0:
x = 0
if y < 0:
y = 0
width1 = width
width2 = width
if x + width > image_width:
width1 = image_width - x
if y + width > image_height:
width2 = image_height - y
width = min(width1, width2)
# the max hand box value is 20 pixels
if width >= 20:
detect_result.append([int(x), int(y), int(width), is_left])
"""
return value: [[x, y, w, True if left hand else False]].
width=height since the network require squared input.
x, y is the coordinate of top left
"""
return detect_result
# get max index of 2d array
def npmax(array):
arrayindex = array.argmax(1)
arrayvalue = array.max(1)
i = arrayvalue.argmax()
j = arrayindex[i]
return (i,)

View File

@@ -0,0 +1,186 @@
import numpy as np
from PIL import Image
import torch
from apps.stable_diffusion.src.utils.stencils import (
CannyDetector,
OpenposeDetector,
)
stencil = {}
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def controlnet_hint_shaping(
controlnet_hint, height, width, dtype, num_images_per_prompt=1
):
channels = 3
if isinstance(controlnet_hint, torch.Tensor):
# torch.Tensor: acceptble shape are any of chw, bchw(b==1) or bchw(b==num_images_per_prompt)
shape_chw = (channels, height, width)
shape_bchw = (1, channels, height, width)
shape_nchw = (num_images_per_prompt, channels, height, width)
if controlnet_hint.shape in [shape_chw, shape_bchw, shape_nchw]:
controlnet_hint = controlnet_hint.to(
dtype=dtype, device=torch.device("cpu")
)
if controlnet_hint.shape != shape_nchw:
controlnet_hint = controlnet_hint.repeat(
num_images_per_prompt, 1, 1, 1
)
return controlnet_hint
else:
raise ValueError(
f"Acceptble shape of `stencil` are any of ({channels}, {height}, {width}),"
+ f" (1, {channels}, {height}, {width}) or ({num_images_per_prompt}, "
+ f"{channels}, {height}, {width}) but is {controlnet_hint.shape}"
)
elif isinstance(controlnet_hint, np.ndarray):
# np.ndarray: acceptable shape is any of hw, hwc, bhwc(b==1) or bhwc(b==num_images_per_promot)
# hwc is opencv compatible image format. Color channel must be BGR Format.
if controlnet_hint.shape == (height, width):
controlnet_hint = np.repeat(
controlnet_hint[:, :, np.newaxis], channels, axis=2
) # hw -> hwc(c==3)
shape_hwc = (height, width, channels)
shape_bhwc = (1, height, width, channels)
shape_nhwc = (num_images_per_prompt, height, width, channels)
if controlnet_hint.shape in [shape_hwc, shape_bhwc, shape_nhwc]:
controlnet_hint = torch.from_numpy(controlnet_hint.copy())
controlnet_hint = controlnet_hint.to(
dtype=dtype, device=torch.device("cpu")
)
controlnet_hint /= 255.0
if controlnet_hint.shape != shape_nhwc:
controlnet_hint = controlnet_hint.repeat(
num_images_per_prompt, 1, 1, 1
)
controlnet_hint = controlnet_hint.permute(
0, 3, 1, 2
) # b h w c -> b c h w
return controlnet_hint
else:
raise ValueError(
f"Acceptble shape of `stencil` are any of ({width}, {channels}), "
+ f"({height}, {width}, {channels}), "
+ f"(1, {height}, {width}, {channels}) or "
+ f"({num_images_per_prompt}, {channels}, {height}, {width}) but is {controlnet_hint.shape}"
)
elif isinstance(controlnet_hint, Image.Image):
if controlnet_hint.size == (width, height):
controlnet_hint = controlnet_hint.convert(
"RGB"
) # make sure 3 channel RGB format
controlnet_hint = np.array(controlnet_hint) # to numpy
controlnet_hint = controlnet_hint[:, :, ::-1] # RGB -> BGR
return controlnet_hint_shaping(
controlnet_hint, height, width, num_images_per_prompt
)
else:
raise ValueError(
f"Acceptable image size of `stencil` is ({width}, {height}) but is {controlnet_hint.size}"
)
else:
raise ValueError(
f"Acceptable type of `stencil` are any of torch.Tensor, np.ndarray, PIL.Image.Image but is {type(controlnet_hint)}"
)
def controlnet_hint_conversion(
image, use_stencil, height, width, dtype, num_images_per_prompt=1
):
controlnet_hint = None
match use_stencil:
case "canny":
print("Detecting edge with canny")
controlnet_hint = hint_canny(image)
case "openpose":
print("Detecting human pose")
controlnet_hint = hint_openpose(image)
case "scribble":
print("Working with scribble")
controlnet_hint = hint_scribble(image)
case _:
return None
controlnet_hint = controlnet_hint_shaping(
controlnet_hint, height, width, dtype, num_images_per_prompt
)
return controlnet_hint
stencil_to_model_id_map = {
"canny": "lllyasviel/sd-controlnet-canny",
"depth": "lllyasviel/sd-controlnet-depth",
"hed": "lllyasviel/sd-controlnet-hed",
"mlsd": "lllyasviel/sd-controlnet-mlsd",
"normal": "lllyasviel/sd-controlnet-normal",
"openpose": "lllyasviel/sd-controlnet-openpose",
"scribble": "lllyasviel/sd-controlnet-scribble",
"seg": "lllyasviel/sd-controlnet-seg",
}
def get_stencil_model_id(use_stencil):
if use_stencil in stencil_to_model_id_map:
return stencil_to_model_id_map[use_stencil]
return None
# Stencil 1. Canny
def hint_canny(
image: Image.Image,
low_threshold=100,
high_threshold=200,
):
with torch.no_grad():
input_image = np.array(image)
if not "canny" in stencil:
stencil["canny"] = CannyDetector()
detected_map = stencil["canny"](
input_image, low_threshold, high_threshold
)
detected_map = HWC3(detected_map)
return detected_map
# Stencil 2. OpenPose.
def hint_openpose(
image: Image.Image,
):
with torch.no_grad():
input_image = np.array(image)
if not "openpose" in stencil:
stencil["openpose"] = OpenposeDetector()
detected_map, _ = stencil["openpose"](input_image)
detected_map = HWC3(detected_map)
return detected_map
# Stencil 3. Scribble.
def hint_scribble(image: Image.Image):
with torch.no_grad():
input_image = np.array(image)
detected_map = np.zeros_like(input_image, dtype=np.uint8)
detected_map[np.min(input_image, axis=2) < 127] = 255
return detected_map

View File

@@ -0,0 +1,751 @@
import os
import gc
import json
import re
from PIL import PngImagePlugin
from datetime import datetime as dt
from csv import DictWriter
from pathlib import Path
import numpy as np
from random import randint
import tempfile
import torch
from safetensors.torch import load_file
from shark.shark_inference import SharkInference
from shark.shark_importer import import_with_fx
from shark.iree_utils.vulkan_utils import (
set_iree_vulkan_runtime_flags,
get_vulkan_target_triple,
)
from shark.iree_utils.gpu_utils import get_cuda_sm_cc
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.resources import opt_flags
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
import sys
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
download_from_original_stable_diffusion_ckpt,
)
def get_extended_name(model_name):
device = args.device.split("://", 1)[0]
extended_name = "{}_{}".format(model_name, device)
return extended_name
def get_vmfb_path_name(model_name):
vmfb_path = os.path.join(os.getcwd(), model_name + ".vmfb")
return vmfb_path
def _compile_module(shark_module, model_name, extra_args=[]):
if args.load_vmfb or args.save_vmfb:
vmfb_path = get_vmfb_path_name(model_name)
if args.load_vmfb and os.path.isfile(vmfb_path) and not args.save_vmfb:
print(f"loading existing vmfb from: {vmfb_path}")
shark_module.load_module(vmfb_path, extra_args=extra_args)
else:
if args.save_vmfb:
print("Saving to {}".format(vmfb_path))
else:
print(
"No vmfb found. Compiling and saving to {}".format(
vmfb_path
)
)
path = shark_module.save_module(
os.getcwd(), model_name, extra_args
)
shark_module.load_module(path, extra_args=extra_args)
else:
shark_module.compile(extra_args)
return shark_module
# Downloads the model from shark_tank and returns the shark_module.
def get_shark_model(tank_url, model_name, extra_args=[]):
from shark.parser import shark_args
# Set local shark_tank cache directory.
shark_args.local_tank_cache = args.local_tank_cache
from shark.shark_downloader import download_model
if "cuda" in args.device:
shark_args.enable_tf32 = True
mlir_model, func_name, inputs, golden_out = download_model(
model_name,
tank_url=tank_url,
frontend="torch",
)
shark_module = SharkInference(
mlir_model, device=args.device, mlir_dialect="tm_tensor"
)
return _compile_module(shark_module, model_name, extra_args)
# Converts the torch-module into a shark_module.
def compile_through_fx(
model,
inputs,
model_name,
is_f16=False,
f16_input_mask=None,
use_tuned=False,
save_dir=tempfile.gettempdir(),
debug=False,
generate_vmfb=True,
extra_args=[],
base_model_id=None,
):
from shark.parser import shark_args
if "cuda" in args.device:
shark_args.enable_tf32 = True
(
mlir_module,
func_name,
) = import_with_fx(
model=model,
inputs=inputs,
is_f16=is_f16,
f16_input_mask=f16_input_mask,
debug=debug,
model_name=model_name,
save_dir=save_dir,
)
if use_tuned:
if "vae" in model_name.split("_")[0]:
args.annotation_model = "vae"
mlir_module = sd_model_annotation(
mlir_module, model_name, base_model_id
)
shark_module = SharkInference(
mlir_module,
device=args.device,
mlir_dialect="tm_tensor",
)
if generate_vmfb:
shark_module = SharkInference(
mlir_module,
device=args.device,
mlir_dialect="tm_tensor",
)
del mlir_module
gc.collect()
return _compile_module(shark_module, model_name, extra_args)
del mlir_module
gc.collect()
def set_iree_runtime_flags():
vulkan_runtime_flags = [
f"--vulkan_large_heap_block_size={args.vulkan_large_heap_block_size}",
f"--vulkan_validation_layers={'true' if args.vulkan_validation_layers else 'false'}",
]
if args.enable_rgp:
vulkan_runtime_flags += [
f"--enable_rgp=true",
f"--vulkan_debug_utils=true",
]
set_iree_vulkan_runtime_flags(flags=vulkan_runtime_flags)
def get_all_devices(driver_name):
"""
Inputs: driver_name
Returns a list of all the available devices for a given driver sorted by
the iree path names of the device as in --list_devices option in iree.
"""
from iree.runtime import get_driver
driver = get_driver(driver_name)
device_list_src = driver.query_available_devices()
device_list_src.sort(key=lambda d: d["path"])
return device_list_src
def get_device_mapping(driver, key_combination=3):
"""This method ensures consistent device ordering when choosing
specific devices for execution
Args:
driver (str): execution driver (vulkan, cuda, rocm, etc)
key_combination (int, optional): choice for mapping value for device name.
1 : path
2 : name
3 : (name, path)
Defaults to 3.
Returns:
dict: map to possible device names user can input mapped to desired combination of name/path.
"""
from shark.iree_utils._common import iree_device_map
driver = iree_device_map(driver)
device_list = get_all_devices(driver)
device_map = dict()
def get_output_value(dev_dict):
if key_combination == 1:
return f"{driver}://{dev_dict['path']}"
if key_combination == 2:
return dev_dict["name"]
if key_combination == 3:
return (dev_dict["name"], f"{driver}://{dev_dict['path']}")
# mapping driver name to default device (driver://0)
device_map[f"{driver}"] = get_output_value(device_list[0])
for i, device in enumerate(device_list):
# mapping with index
device_map[f"{driver}://{i}"] = get_output_value(device)
# mapping with full path
device_map[f"{driver}://{device['path']}"] = get_output_value(device)
return device_map
def map_device_to_name_path(device, key_combination=3):
"""Gives the appropriate device data (supported name/path) for user selected execution device
Args:
device (str): user
key_combination (int, optional): choice for mapping value for device name.
1 : path
2 : name
3 : (name, path)
Defaults to 3.
Raises:
ValueError:
Returns:
str / tuple: returns the mapping str or tuple of mapping str for the device depending on key_combination value
"""
driver = device.split("://")[0]
device_map = get_device_mapping(driver, key_combination)
try:
device_mapping = device_map[device]
except KeyError:
raise ValueError(f"Device '{device}' is not a valid device.")
return device_mapping
def set_init_device_flags():
if "vulkan" in args.device:
# set runtime flags for vulkan.
set_iree_runtime_flags()
# set triple flag to avoid multiple calls to get_vulkan_triple_flag
device_name, args.device = map_device_to_name_path(args.device)
if not args.iree_vulkan_target_triple:
triple = get_vulkan_target_triple(device_name)
if triple is not None:
args.iree_vulkan_target_triple = triple
print(
f"Found device {device_name}. Using target triple {args.iree_vulkan_target_triple}."
)
elif "cuda" in args.device:
args.device = "cuda"
elif "cpu" in args.device:
args.device = "cpu"
# set max_length based on availability.
if args.hf_model_id in [
"Linaqruf/anything-v3.0",
"wavymulder/Analog-Diffusion",
"dreamlike-art/dreamlike-diffusion-1.0",
]:
args.max_length = 77
elif args.hf_model_id == "prompthero/openjourney":
args.max_length = 64
# Use tuned models in the case of fp16, vulkan rdna3 or cuda sm devices.
if args.ckpt_loc != "":
base_model_id = fetch_and_update_base_model_id(args.ckpt_loc)
else:
base_model_id = fetch_and_update_base_model_id(args.hf_model_id)
if base_model_id == "":
base_model_id = args.hf_model_id
if (
args.precision != "fp16"
or args.height not in [512, 768]
or (args.height == 512 and args.width != 512)
or (args.height == 768 and args.width != 768)
or args.batch_size != 1
or ("vulkan" not in args.device and "cuda" not in args.device)
):
args.use_tuned = False
elif base_model_id not in [
"Linaqruf/anything-v3.0",
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
"runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-2-inpainting",
]:
args.use_tuned = False
elif "vulkan" in args.device and not any(
x in args.iree_vulkan_target_triple for x in ["rdna2", "rdna3"]
):
args.use_tuned = False
elif "cuda" in args.device and get_cuda_sm_cc() not in ["sm_80", "sm_89"]:
args.use_tuned = False
elif args.use_base_vae and args.hf_model_id not in [
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
]:
args.use_tuned = False
elif (
args.height == 768
and args.width == 768
and (
base_model_id
not in [
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
]
or "rdna3" not in args.iree_vulkan_target_triple
)
):
args.use_tuned = False
if args.use_tuned:
print(f"Using tuned models for {base_model_id}/fp16/{args.device}.")
else:
print("Tuned models are currently not supported for this setting.")
# set import_mlir to True for unuploaded models.
if args.ckpt_loc != "":
args.import_mlir = True
elif args.hf_model_id not in [
"Linaqruf/anything-v3.0",
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
]:
args.import_mlir = True
elif args.height != 512 or args.width != 512 or args.batch_size != 1:
args.import_mlir = True
elif args.use_tuned and args.hf_model_id in [
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"stabilityai/stable-diffusion-2-1",
]:
args.import_mlir = True
elif (
args.use_tuned
and "vulkan" in args.device
and "rdna2" in args.iree_vulkan_target_triple
):
args.import_mlir = True
elif (
args.use_tuned
and "cuda" in args.device
and get_cuda_sm_cc() == "sm_89"
):
args.import_mlir = True
# Utility to get list of devices available.
def get_available_devices():
def get_devices_by_name(driver_name):
from shark.iree_utils._common import iree_device_map
device_list = []
try:
driver_name = iree_device_map(driver_name)
device_list_dict = get_all_devices(driver_name)
print(f"{driver_name} devices are available.")
except:
print(f"{driver_name} devices are not available.")
else:
for i, device in enumerate(device_list_dict):
device_list.append(f"{device['name']} => {driver_name}://{i}")
return device_list
set_iree_runtime_flags()
available_devices = []
vulkan_devices = get_devices_by_name("vulkan")
available_devices.extend(vulkan_devices)
cuda_devices = get_devices_by_name("cuda")
available_devices.extend(cuda_devices)
available_devices.append("device => cpu")
return available_devices
def disk_space_check(path, lim=20):
from shutil import disk_usage
du = disk_usage(path)
free = du.free / (1024 * 1024 * 1024)
if free <= lim:
print(f"[WARNING] Only {free:.2f}GB space available in {path}.")
def get_opt_flags(model, precision="fp16"):
iree_flags = []
is_tuned = "tuned" if args.use_tuned else "untuned"
if len(args.iree_vulkan_target_triple) > 0:
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
# Disable bindings fusion to work with moltenVK.
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
if "default_compilation_flags" in opt_flags[model][is_tuned][precision]:
iree_flags += opt_flags[model][is_tuned][precision][
"default_compilation_flags"
]
if "specified_compilation_flags" in opt_flags[model][is_tuned][precision]:
device = (
args.device
if "://" not in args.device
else args.device.split("://")[0]
)
if (
device
not in opt_flags[model][is_tuned][precision][
"specified_compilation_flags"
]
):
device = "default_device"
iree_flags += opt_flags[model][is_tuned][precision][
"specified_compilation_flags"
][device]
return iree_flags
def get_path_stem(path):
path = Path(path)
return path.stem
def get_path_to_diffusers_checkpoint(custom_weights):
path = Path(custom_weights)
diffusers_path = path.parent.absolute()
diffusers_directory_name = path.stem
complete_path_to_diffusers = diffusers_path / diffusers_directory_name
complete_path_to_diffusers.mkdir(parents=True, exist_ok=True)
path_to_diffusers = complete_path_to_diffusers.as_posix()
return path_to_diffusers
def preprocessCKPT(custom_weights, is_inpaint=False):
path_to_diffusers = get_path_to_diffusers_checkpoint(custom_weights)
if next(Path(path_to_diffusers).iterdir(), None):
print("Checkpoint already loaded at : ", path_to_diffusers)
return
else:
print(
"Diffusers' checkpoint will be identified here : ",
path_to_diffusers,
)
from_safetensors = (
True if custom_weights.lower().endswith(".safetensors") else False
)
# EMA weights usually yield higher quality images for inference but non-EMA weights have
# been yielding better results in our case.
# TODO: Add an option `--ema` (`--no-ema`) for users to specify if they want to go for EMA
# weight extraction or not.
extract_ema = False
print(
"Loading diffusers' pipeline from original stable diffusion checkpoint"
)
num_in_channels = 9 if is_inpaint else 4
pipe = download_from_original_stable_diffusion_ckpt(
checkpoint_path=custom_weights,
extract_ema=extract_ema,
from_safetensors=from_safetensors,
num_in_channels=num_in_channels,
)
pipe.save_pretrained(path_to_diffusers)
print("Loading complete")
def processLoRA(model, use_lora, splitting_prefix):
state_dict = ""
if ".safetensors" in use_lora:
state_dict = load_file(use_lora)
else:
state_dict = torch.load(use_lora)
alpha = 0.75
visited = []
# directly update weight in model
process_unet = "te" not in splitting_prefix
for key in state_dict:
if ".alpha" in key or key in visited:
continue
curr_layer = model
if ("text" not in key and process_unet) or (
"text" in key and not process_unet
):
layer_infos = (
key.split(".")[0].split(splitting_prefix)[-1].split("_")
)
else:
continue
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
pair_keys = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = (
state_dict[pair_keys[0]]
.squeeze(3)
.squeeze(2)
.to(torch.float32)
)
weight_down = (
state_dict[pair_keys[1]]
.squeeze(3)
.squeeze(2)
.to(torch.float32)
)
curr_layer.weight.data += alpha * torch.mm(
weight_up, weight_down
).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
return model
def update_lora_weight_for_unet(unet, use_lora):
extensions = [".bin", ".safetensors", ".pt"]
if not any([extension in use_lora for extension in extensions]):
# We assume if it is a HF ID with standalone LoRA weights.
unet.load_attn_procs(use_lora)
return unet
main_file_name = get_path_stem(use_lora)
if ".bin" in use_lora:
main_file_name += ".bin"
elif ".safetensors" in use_lora:
main_file_name += ".safetensors"
elif ".pt" in use_lora:
main_file_name += ".pt"
else:
sys.exit("Only .bin and .safetensors format for LoRA is supported")
try:
dir_name = os.path.dirname(use_lora)
unet.load_attn_procs(dir_name, weight_name=main_file_name)
return unet
except:
return processLoRA(unet, use_lora, "lora_unet_")
def update_lora_weight(model, use_lora, model_name):
if "unet" in model_name:
return update_lora_weight_for_unet(model, use_lora)
try:
return processLoRA(model, use_lora, "lora_te_")
except:
return None
def load_vmfb(vmfb_path, model, precision):
model = "vae" if "base_vae" in model or "vae_encode" in model else model
model = "unet" if "stencil" in model else model
precision = "fp32" if "clip" in model else precision
extra_args = get_opt_flags(model, precision)
shark_module = SharkInference(mlir_module=None, device=args.device)
shark_module.load_module(vmfb_path, extra_args=extra_args)
return shark_module
# This utility returns vmfb of sub-model of the SD pipeline, if present.
def fetch_vmfb(model, extended_model_name, precision="fp32"):
vmfb_path = get_vmfb_path_name(extended_model_name)
vmfb_present = os.path.isfile(vmfb_path)
compiled_model = (
load_vmfb(vmfb_path, model, precision) if vmfb_present else None
)
return compiled_model
# `fetch_and_update_base_model_id` is a resource utility function which
# helps maintaining mapping of the model to run with its base model.
# If `base_model` is "", then this function tries to fetch the base model
# info for the `model_to_run`.
def fetch_and_update_base_model_id(model_to_run, base_model=""):
variants_path = os.path.join(os.getcwd(), "variants.json")
data = {model_to_run: base_model}
json_data = {}
if os.path.exists(variants_path):
with open(variants_path, "r", encoding="utf-8") as jsonFile:
json_data = json.load(jsonFile)
# Return with base_model's info if base_model is "".
if base_model == "":
if model_to_run in json_data:
base_model = json_data[model_to_run]
return base_model
elif base_model == "":
return base_model
# Update JSON data to contain an entry mapping model_to_run with base_model.
json_data.update(data)
with open(variants_path, "w", encoding="utf-8") as jsonFile:
json.dump(json_data, jsonFile)
# Generate and return a new seed if the provided one is not in the supported range (including -1)
def sanitize_seed(seed):
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
return seed
# clear all the cached objects to recompile cleanly.
def clear_all():
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
from glob import glob
import shutil
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
for vmfb in vmfbs:
if os.path.exists(vmfb):
os.remove(vmfb)
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
# TODO: Remove this once we have better weight updation logic.
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
for yaml in inference_yaml:
if os.path.exists(yaml):
os.remove(yaml)
home = os.path.expanduser("~")
if os.name == "nt": # Windows
appdata = os.getenv("LOCALAPPDATA")
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
elif os.name == "unix":
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
# save output images and the inputs corresponding to it.
def save_output_img(output_img, img_seed, extra_info={}):
output_path = args.output_dir if args.output_dir else Path.cwd()
generated_imgs_path = Path(
output_path, "generated_imgs", dt.now().strftime("%Y%m%d")
)
generated_imgs_path.mkdir(parents=True, exist_ok=True)
csv_path = Path(generated_imgs_path, "imgs_details.csv")
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
out_img_name = (
f"{prompt_slice}_{img_seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
)
img_model = args.hf_model_id
if args.ckpt_loc:
img_model = Path(os.path.basename(args.ckpt_loc)).stem
if args.output_img_format == "jpg":
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
output_img.save(out_img_path, quality=95, subsampling=0)
else:
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
pngInfo = PngImagePlugin.PngInfo()
if args.write_metadata_to_png:
pngInfo.add_text(
"parameters",
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {img_seed}, Size: {args.width}x{args.height}, Model: {img_model}",
)
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
if args.output_img_format not in ["png", "jpg"]:
print(
f"[ERROR] Format {args.output_img_format} is not supported yet."
"Image saved as png instead. Supported formats: png / jpg"
)
new_entry = {
"VARIANT": img_model,
"SCHEDULER": args.scheduler,
"PROMPT": args.prompts[0],
"NEG_PROMPT": args.negative_prompts[0],
"SEED": img_seed,
"CFG_SCALE": args.guidance_scale,
"PRECISION": args.precision,
"STEPS": args.steps,
"HEIGHT": args.height,
"WIDTH": args.width,
"MAX_LENGTH": args.max_length,
"OUTPUT": out_img_path,
}
new_entry.update(extra_info)
with open(csv_path, "a", encoding="utf-8") as csv_obj:
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
dictwriter_obj.writerow(new_entry)
csv_obj.close()
if args.save_metadata_to_json:
del new_entry["OUTPUT"]
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
with open(json_path, "w") as f:
json.dump(new_entry, f, indent=4)
def get_generation_text_info(seeds, device):
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
text_output += f"\nsize={args.height}x{args.width}, batch_count={args.batch_count}, batch_size={args.batch_size}, max_length={args.max_length}"
return text_output

View File

@@ -0,0 +1,15 @@
You need to pre-create your bot (https://core.telegram.org/bots#how-do-i-create-a-bot)
Then create in the directory web file .env
In it the record:
TG_TOKEN="your_token"
specifying your bot's token from previous step.
Then run telegram_bot.py with the same parameters that you use when running index.py, for example:
python telegram_bot.py --max_length=77 --vulkan_large_heap_block_size=0 --use_base_vae --local_tank_cache h:\shark\TEMP
Bot commands:
/select_model
/select_scheduler
/set_steps "integer number of steps"
/set_guidance_scale "integer number"
/set_negative_prompt "negative text"
Any other text triggers the creation of an image based on it.

View File

@@ -0,0 +1,215 @@
import os
import sys
import transformers
from apps.stable_diffusion.src import args, clear_all
if sys.platform == "darwin":
os.environ["DYLD_LIBRARY_PATH"] = "/usr/local/lib"
if args.clear_all:
clear_all()
if __name__ == "__main__":
if args.api:
from apps.stable_diffusion.web.ui import txt2img_inf
from fastapi import FastAPI, APIRouter
import uvicorn
app = FastAPI()
app.add_api_route("/sdapi/txt2img", txt2img_inf, methods=["post"])
app.include_router(APIRouter())
uvicorn.run(app, host="0.0.0.0", port=args.server_port)
sys.exit(0)
import gradio as gr
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.web.utils.gradio_configs import (
clear_gradio_tmp_imgs_folder,
)
from apps.stable_diffusion.web.ui.utils import get_custom_model_path
# Clear all gradio tmp images from the last session
clear_gradio_tmp_imgs_folder()
# Create the custom model folder if it doesn't already exist
dir = ["models", "vae", "lora"]
for root in dir:
get_custom_model_path(root).mkdir(parents=True, exist_ok=True)
def resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
base_path = getattr(
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
)
return os.path.join(base_path, relative_path)
dark_theme = resource_path("ui/css/sd_dark_theme.css")
from apps.stable_diffusion.web.ui import (
txt2img_web,
txt2img_gallery,
txt2img_sendto_img2img,
txt2img_sendto_inpaint,
txt2img_sendto_outpaint,
txt2img_sendto_upscaler,
img2img_web,
img2img_gallery,
img2img_init_image,
img2img_sendto_inpaint,
img2img_sendto_outpaint,
img2img_sendto_upscaler,
inpaint_web,
inpaint_gallery,
inpaint_init_image,
inpaint_sendto_img2img,
inpaint_sendto_outpaint,
inpaint_sendto_upscaler,
outpaint_web,
outpaint_gallery,
outpaint_init_image,
outpaint_sendto_img2img,
outpaint_sendto_inpaint,
outpaint_sendto_upscaler,
upscaler_web,
upscaler_gallery,
upscaler_init_image,
upscaler_sendto_img2img,
upscaler_sendto_inpaint,
upscaler_sendto_outpaint,
lora_train_web,
)
# init global sd pipeline and config
global_obj._init()
def register_button_click(button, selectedid, inputs, outputs):
button.click(
lambda x: (
x[0]["name"] if len(x) != 0 else None,
gr.Tabs.update(selected=selectedid),
),
inputs,
outputs,
)
with gr.Blocks(
css=dark_theme, analytics_enabled=False, title="Stable Diffusion"
) as sd_web:
with gr.Tabs() as tabs:
with gr.TabItem(label="Text-to-Image", id=0):
txt2img_web.render()
with gr.TabItem(label="Image-to-Image", id=1):
img2img_web.render()
with gr.TabItem(label="Inpainting", id=2):
inpaint_web.render()
with gr.TabItem(label="Outpainting", id=3):
outpaint_web.render()
with gr.TabItem(label="Upscaler", id=4):
upscaler_web.render()
with gr.Tabs(visible=False) as experimental_tabs:
with gr.TabItem(label="LoRA Training", id=5):
lora_train_web.render()
register_button_click(
txt2img_sendto_img2img,
1,
[txt2img_gallery],
[img2img_init_image, tabs],
)
register_button_click(
txt2img_sendto_inpaint,
2,
[txt2img_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
txt2img_sendto_outpaint,
3,
[txt2img_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
txt2img_sendto_upscaler,
4,
[txt2img_gallery],
[upscaler_init_image, tabs],
)
register_button_click(
img2img_sendto_inpaint,
2,
[img2img_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
img2img_sendto_outpaint,
3,
[img2img_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
img2img_sendto_upscaler,
4,
[img2img_gallery],
[upscaler_init_image, tabs],
)
register_button_click(
inpaint_sendto_img2img,
1,
[inpaint_gallery],
[img2img_init_image, tabs],
)
register_button_click(
inpaint_sendto_outpaint,
3,
[inpaint_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
inpaint_sendto_upscaler,
4,
[inpaint_gallery],
[upscaler_init_image, tabs],
)
register_button_click(
outpaint_sendto_img2img,
1,
[outpaint_gallery],
[img2img_init_image, tabs],
)
register_button_click(
outpaint_sendto_inpaint,
2,
[outpaint_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
outpaint_sendto_upscaler,
4,
[outpaint_gallery],
[upscaler_init_image, tabs],
)
register_button_click(
upscaler_sendto_img2img,
1,
[upscaler_gallery],
[img2img_init_image, tabs],
)
register_button_click(
upscaler_sendto_inpaint,
2,
[upscaler_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
upscaler_sendto_outpaint,
3,
[upscaler_gallery],
[outpaint_init_image, tabs],
)
sd_web.queue()
sd_web.launch(
share=args.share,
inbrowser=True,
server_name="0.0.0.0",
server_port=args.server_port,
)

View File

@@ -0,0 +1,42 @@
from apps.stable_diffusion.web.ui.txt2img_ui import (
txt2img_inf,
txt2img_web,
txt2img_gallery,
txt2img_sendto_img2img,
txt2img_sendto_inpaint,
txt2img_sendto_outpaint,
txt2img_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.img2img_ui import (
img2img_web,
img2img_gallery,
img2img_init_image,
img2img_sendto_inpaint,
img2img_sendto_outpaint,
img2img_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.inpaint_ui import (
inpaint_web,
inpaint_gallery,
inpaint_init_image,
inpaint_sendto_img2img,
inpaint_sendto_outpaint,
inpaint_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.outpaint_ui import (
outpaint_web,
outpaint_gallery,
outpaint_init_image,
outpaint_sendto_img2img,
outpaint_sendto_inpaint,
outpaint_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.upscaler_ui import (
upscaler_web,
upscaler_gallery,
upscaler_init_image,
upscaler_sendto_img2img,
upscaler_sendto_inpaint,
upscaler_sendto_outpaint,
)
from apps.stable_diffusion.web.ui.lora_train_ui import lora_train_web

View File

@@ -0,0 +1,199 @@
/*
Apply Gradio dark theme to the default Gradio theme.
Procedure to upgrade the dark theme:
- Using your browser, visit http://localhost:8080/?__theme=dark
- Open your browser inspector, search for the .dark css class
- Copy .dark class declarations, apply them here into :root
*/
:root {
--body-background-fill: var(--background-fill-primary);
--body-text-color: var(--neutral-100);
--color-accent-soft: var(--neutral-700);
--background-fill-primary: var(--neutral-950);
--background-fill-secondary: var(--neutral-900);
--border-color-accent: var(--neutral-600);
--border-color-primary: var(--neutral-700);
--link-text-color-active: var(--secondary-500);
--link-text-color: var(--secondary-500);
--link-text-color-hover: var(--secondary-400);
--link-text-color-visited: var(--secondary-600);
--body-text-color-subdued: var(--neutral-400);
--shadow-spread: 1px;
--block-background-fill: var(--neutral-800);
--block-border-color: var(--border-color-primary);
--block_border_width: None;
--block-info-text-color: var(--body-text-color-subdued);
--block-label-background-fill: var(--background-fill-secondary);
--block-label-border-color: var(--border-color-primary);
--block_label_border_width: None;
--block-label-text-color: var(--neutral-200);
--block_shadow: None;
--block_title_background_fill: None;
--block_title_border_color: None;
--block_title_border_width: None;
--block-title-text-color: var(--neutral-200);
--panel-background-fill: var(--background-fill-secondary);
--panel-border-color: var(--border-color-primary);
--panel_border_width: None;
--checkbox-background-color: var(--neutral-800);
--checkbox-background-color-focus: var(--checkbox-background-color);
--checkbox-background-color-hover: var(--checkbox-background-color);
--checkbox-background-color-selected: var(--secondary-600);
--checkbox-border-color: var(--neutral-700);
--checkbox-border-color-focus: var(--secondary-500);
--checkbox-border-color-hover: var(--neutral-600);
--checkbox-border-color-selected: var(--secondary-600);
--checkbox-border-width: var(--input-border-width);
--checkbox-label-background-fill: linear-gradient(to top, var(--neutral-900), var(--neutral-800));
--checkbox-label-background-fill-hover: linear-gradient(to top, var(--neutral-900), var(--neutral-800));
--checkbox-label-background-fill-selected: var(--checkbox-label-background-fill);
--checkbox-label-border-color: var(--border-color-primary);
--checkbox-label-border-color-hover: var(--checkbox-label-border-color);
--checkbox-label-border-width: var(--input-border-width);
--checkbox-label-text-color: var(--body-text-color);
--checkbox-label-text-color-selected: var(--checkbox-label-text-color);
--error-background-fill: var(--background-fill-primary);
--error-border-color: var(--border-color-primary);
--error_border_width: None;
--error-text-color: #ef4444;
--input-background-fill: var(--neutral-800);
--input-background-fill-focus: var(--secondary-600);
--input-background-fill-hover: var(--input-background-fill);
--input-border-color: var(--border-color-primary);
--input-border-color-focus: var(--neutral-700);
--input-border-color-hover: var(--input-border-color);
--input_border_width: None;
--input-placeholder-color: var(--neutral-500);
--input_shadow: None;
--input-shadow-focus: 0 0 0 var(--shadow-spread) var(--neutral-700), var(--shadow-inset);
--loader_color: None;
--slider_color: None;
--stat-background-fill: linear-gradient(to right, var(--primary-400), var(--primary-600));
--table-border-color: var(--neutral-700);
--table-even-background-fill: var(--neutral-950);
--table-odd-background-fill: var(--neutral-900);
--table-row-focus: var(--color-accent-soft);
--button-border-width: var(--input-border-width);
--button-cancel-background-fill: linear-gradient(to bottom right, #dc2626, #b91c1c);
--button-cancel-background-fill-hover: linear-gradient(to bottom right, #dc2626, #dc2626);
--button-cancel-border-color: #dc2626;
--button-cancel-border-color-hover: var(--button-cancel-border-color);
--button-cancel-text-color: white;
--button-cancel-text-color-hover: var(--button-cancel-text-color);
--button-primary-background-fill: linear-gradient(to bottom right, var(--primary-500), var(--primary-600));
--button-primary-background-fill-hover: linear-gradient(to bottom right, var(--primary-500), var(--primary-500));
--button-primary-border-color: var(--primary-500);
--button-primary-border-color-hover: var(--button-primary-border-color);
--button-primary-text-color: white;
--button-primary-text-color-hover: var(--button-primary-text-color);
--button-secondary-background-fill: linear-gradient(to bottom right, var(--neutral-600), var(--neutral-700));
--button-secondary-background-fill-hover: linear-gradient(to bottom right, var(--neutral-600), var(--neutral-600));
--button-secondary-border-color: var(--neutral-600);
--button-secondary-border-color-hover: var(--button-secondary-border-color);
--button-secondary-text-color: white;
--button-secondary-text-color-hover: var(--button-secondary-text-color);
--block-border-width: 1px;
--block-label-border-width: 1px;
--form-gap-width: 1px;
--error-border-width: 1px;
--input-border-width: 1px;
}
/* SHARK theme */
/* display in full width for desktop devices */
@media (min-width: 1536px)
{
.gradio-container {
max-width: var(--size-full) !important;
}
}
.gradio-container .contain {
padding: 0 var(--size-4) !important;
}
.container {
background-color: black !important;
padding-top: var(--size-5) !important;
}
#ui_title {
padding: var(--size-2) 0 0 var(--size-1);
}
#top_logo {
background-color: transparent;
border-radius: 0 !important;
border: 0;
}
#demo_title_outer {
border-radius: 0;
}
#prompt_box_outer div:first-child {
border-radius: 0 !important
}
#prompt_box textarea, #negative_prompt_box textarea {
background-color: var(--background-fill-primary) !important;
}
#prompt_examples {
margin: 0 !important;
}
#prompt_examples svg {
display: none !important;
}
#ui_body {
padding: var(--size-2) !important;
border-radius: 0.5em !important;
}
#img_result+div {
display: none !important;
}
footer {
display: none !important;
}
#gallery + div {
border-radius: 0 !important;
}
/* Prevent progress bar to block gallery navigation while building images (Gradio V3.19.0) */
#gallery .wrap.default {
pointer-events: none;
}
/* Import Png info box */
#txt2img_prompt_image .fixed-height {
height: var(--size-32);
}
/* Hide "remove buttons" from ui dropdowns */
#custom_model .token-remove.remove-all,
#lora_weights .token-remove.remove-all,
#scheduler .token-remove.remove-all,
#device .token-remove.remove-all,
#stencil_model .token-remove.remove-all {
display: none;
}
/* Hide selected items from ui dropdowns */
#custom_model .options .item .inner-item,
#scheduler .options .item .inner-item,
#device .options .item .inner-item,
#stencil_model .options .item .inner-item {
display:none;
}
/* Hide the download icon from the nod logo */
#top_logo .download {
display: none;
}

View File

@@ -0,0 +1,267 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import img2img_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_models,
cancel_sd,
)
with gr.Blocks(title="Image-to-Image") as img2img_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
img2img_init_image = gr.Image(
label="Input Image", type="pil"
).style(height=300)
with gr.Accordion(label="Stencil Options", open=False):
with gr.Row():
use_stencil = gr.Dropdown(
elem_id="stencil_model",
label="Stencil model",
value="None",
choices=["None", "canny", "openpose", "scribble"],
)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path('lora')})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files("lora"),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="PNDM",
choices=scheduler_list,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=True,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
strength = gr.Slider(
0,
1,
value=args.strength,
step=0.01,
label="Denoising Strength",
)
ondemand = gr.Checkbox(
value=args.ondemand,
label="Low VRAM",
interactive=True,
)
with gr.Row():
with gr.Column(scale=3):
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
img2img_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
img2img_sendto_inpaint = gr.Button(value="SendTo Inpaint")
img2img_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
img2img_sendto_upscaler = gr.Button(
value="SendTo Upscaler"
)
kwargs = dict(
fn=img2img_inf,
inputs=[
prompt,
negative_prompt,
img2img_init_image,
height,
width,
steps,
strength,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
use_stencil,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
ondemand,
],
outputs=[img2img_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)

View File

@@ -0,0 +1,269 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import inpaint_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_paint_models,
cancel_sd,
)
with gr.Blocks(title="Inpainting") as inpaint_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_paint_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: ghunkins/stable-diffusion-liberty-inpainting",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
inpaint_init_image = gr.Image(
label="Masked Image",
source="upload",
tool="sketch",
type="pil",
).style(height=350)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path('lora')})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files("lora"),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="PNDM",
choices=scheduler_list,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
inpaint_full_res = gr.Radio(
choices=["Whole picture", "Only masked"],
type="index",
value="Whole picture",
label="Inpaint area",
)
inpaint_full_res_padding = gr.Slider(
minimum=0,
maximum=256,
step=4,
value=32,
label="Only masked padding, pixels",
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
ondemand = gr.Checkbox(
value=args.ondemand,
label="Low VRAM",
interactive=True,
)
with gr.Row():
with gr.Column(scale=3):
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
inpaint_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
inpaint_sendto_img2img = gr.Button(value="SendTo Img2Img")
inpaint_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
inpaint_sendto_upscaler = gr.Button(
value="SendTo Upscaler"
)
kwargs = dict(
fn=inpaint_inf,
inputs=[
prompt,
negative_prompt,
inpaint_init_image,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
ondemand,
],
outputs=[inpaint_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -0,0 +1,205 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import lora_train
from apps.stable_diffusion.src import prompt_examples, args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list_txt2img,
predefined_models,
)
with gr.Blocks(title="Lora Training") as lora_train_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="image_dir_box_outer"):
training_images_dir = gr.Textbox(
label="ImageDirectory",
value=args.training_images_dir,
lines=1,
elem_id="prompt_box",
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value=args.scheduler,
choices=scheduler_list_txt2img,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1,
2000,
value=args.training_steps,
step=1,
label="Training Steps",
)
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Row():
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
with gr.Column(scale=3):
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=True,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
train_lora = gr.Button("Train LoRA")
with gr.Accordion(label="Prompt Examples!", open=False):
ex = gr.Examples(
examples=prompt_examples,
inputs=prompt,
cache_examples=False,
elem_id="prompt_examples",
)
with gr.Column(scale=1, min_width=600):
with gr.Group():
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
lora_save_dir = (
args.lora_save_dir if args.lora_save_dir else Path.cwd()
)
lora_save_dir = Path(lora_save_dir, "lora")
output_loc = gr.Textbox(
label="Saving Lora at",
value=lora_save_dir,
)
kwargs = dict(
fn=lora_train,
inputs=[
prompt,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
training_images_dir,
output_loc,
],
outputs=[std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
train_click = train_lora.click(**kwargs)
stop_batch.click(fn=None, cancels=[prompt_submit, train_click])

View File

@@ -0,0 +1,289 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import outpaint_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_paint_models,
cancel_sd,
)
with gr.Blocks(title="Outpainting") as outpaint_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_paint_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: ghunkins/stable-diffusion-liberty-inpainting",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
outpaint_init_image = gr.Image(
label="Input Image", type="pil"
).style(height=300)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path('lora')})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files("lora"),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="PNDM",
choices=scheduler_list,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
pixels = gr.Slider(
8,
256,
value=args.pixels,
step=8,
label="Pixels to expand",
)
mask_blur = gr.Slider(
0,
64,
value=args.mask_blur,
step=1,
label="Mask blur",
)
with gr.Row():
directions = gr.CheckboxGroup(
label="Outpainting direction",
choices=["left", "right", "up", "down"],
value=["left", "right", "up", "down"],
)
with gr.Row():
noise_q = gr.Slider(
0.0,
4.0,
value=1.0,
step=0.01,
label="Fall-off exponent (lower=higher detail)",
)
color_variation = gr.Slider(
0.0,
1.0,
value=0.05,
step=0.01,
label="Color variation",
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=20, step=1, label="Steps"
)
ondemand = gr.Checkbox(
value=args.ondemand,
label="Low VRAM",
interactive=True,
)
with gr.Row():
with gr.Column(scale=3):
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
outpaint_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
outpaint_sendto_img2img = gr.Button(value="SendTo Img2Img")
outpaint_sendto_inpaint = gr.Button(value="SendTo Inpaint")
outpaint_sendto_upscaler = gr.Button(
value="SendTo Upscaler"
)
kwargs = dict(
fn=outpaint_inf,
inputs=[
prompt,
negative_prompt,
outpaint_init_image,
pixels,
mask_blur,
directions,
noise_q,
color_variation,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
ondemand,
],
outputs=[outpaint_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)

View File

@@ -0,0 +1,474 @@
from pathlib import Path
import os
import torch
import time
import gradio as gr
from PIL import Image
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list_txt2img,
predefined_models,
cancel_sd,
)
from apps.stable_diffusion.src import (
args,
Text2ImagePipeline,
get_schedulers,
set_init_device_flags,
utils,
save_output_img,
prompt_examples,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
def txt2img_inf(
prompt: str,
negative_prompt: str,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
ondemand: bool,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
get_custom_vae_or_lora_weights,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.steps = steps
args.scheduler = scheduler
args.ondemand = ondemand
# set ckpt_loc and hf_model_id.
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
args.use_lora = get_custom_vae_or_lora_weights(
lora_weights, lora_hf_id, "lora"
)
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
"txt2img",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
use_lora=args.use_lora,
use_stencil=None,
)
if (
args.ondemand
or not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.precision = precision
args.batch_count = batch_count
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
args.img_path = None
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-1-base"
)
global_obj.set_schedulers(get_schedulers(model_id))
scheduler_obj = global_obj.get_scheduler(scheduler)
global_obj.set_sd_obj(
Text2ImagePipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
)
global_obj.set_sd_scheduler(scheduler)
global_obj.set_sd_ondemand(args.ondemand)
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
text_output = ""
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
batch_size,
height,
width,
steps,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
seeds.append(img_seed)
total_time = time.time() - start_time
text_output = get_generation_text_info(seeds, device)
text_output += "\n" + global_obj.get_sd_obj().log
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
if global_obj.get_sd_status() == SD_STATE_CANCEL:
break
else:
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
yield generated_imgs, text_output
return generated_imgs, text_output
with gr.Blocks(title="Text-to-Image") as txt2img_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Column(scale=1, min_width=170):
png_info_img = gr.Image(
label="Import PNG info",
elem_id="txt2img_prompt_image",
type="pil",
tool="None",
visible=True,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path('lora')})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files("lora"),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value=args.scheduler,
choices=scheduler_list_txt2img,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384,
768,
value=args.height,
step=8,
label="Height",
)
width = gr.Slider(
384,
768,
value=args.width,
step=8,
label="Width",
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
ondemand = gr.Checkbox(
value=args.ondemand,
label="Low VRAM",
interactive=True,
)
with gr.Row():
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
with gr.Column(scale=3):
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=True,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Accordion(label="Prompt Examples!", open=False):
ex = gr.Examples(
examples=prompt_examples,
inputs=prompt,
cache_examples=False,
elem_id="prompt_examples",
)
with gr.Column(scale=1, min_width=600):
with gr.Group():
txt2img_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
txt2img_sendto_img2img = gr.Button(value="SendTo Img2Img")
txt2img_sendto_inpaint = gr.Button(value="SendTo Inpaint")
txt2img_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
txt2img_sendto_upscaler = gr.Button(
value="SendTo Upscaler"
)
kwargs = dict(
fn=txt2img_inf,
inputs=[
prompt,
negative_prompt,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
ondemand,
],
outputs=[txt2img_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)
from apps.stable_diffusion.web.utils.png_metadata import (
import_png_metadata,
)
png_info_img.change(
fn=import_png_metadata,
inputs=[
png_info_img,
],
outputs=[
png_info_img,
prompt,
negative_prompt,
steps,
scheduler,
guidance_scale,
seed,
width,
height,
custom_model,
hf_model_id,
],
)

View File

@@ -0,0 +1,262 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import upscaler_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_upscaler_models,
)
with gr.Blocks(title="Upscaler") as upscaler_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_upscaler_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
upscaler_init_image = gr.Image(
label="Input Image", type="pil"
).style(height=300)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path('lora')})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files("lora"),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="DDIM",
choices=scheduler_list,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
128,
512,
value=args.height,
step=128,
label="Height",
)
width = gr.Slider(
128,
512,
value=args.width,
step=128,
label="Width",
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=True,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
noise_level = gr.Slider(
0,
100,
value=args.noise_level,
step=1,
label="Noise Level",
)
ondemand = gr.Checkbox(
value=args.ondemand,
label="Low VRAM",
interactive=True,
)
with gr.Row():
with gr.Column(scale=3):
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
upscaler_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
upscaler_sendto_img2img = gr.Button(value="SendTo Img2Img")
upscaler_sendto_inpaint = gr.Button(value="SendTo Inpaint")
upscaler_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
kwargs = dict(
fn=upscaler_inf,
inputs=[
prompt,
negative_prompt,
upscaler_init_image,
height,
width,
steps,
noise_level,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
ondemand,
],
outputs=[upscaler_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=None, cancels=[prompt_submit, neg_prompt_submit, generate_click]
)

View File

@@ -0,0 +1,136 @@
import os
import sys
from apps.stable_diffusion.src import get_available_devices
import glob
from pathlib import Path
from apps.stable_diffusion.src import args
from dataclasses import dataclass
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
@dataclass
class Config:
mode: str
model_id: str
ckpt_loc: str
precision: str
batch_size: int
max_length: int
height: int
width: int
device: str
use_lora: str
use_stencil: str
custom_model_filetypes = (
"*.ckpt",
"*.safetensors",
) # the tuple of file types
scheduler_list = [
"DDIM",
"PNDM",
"DPMSolverMultistep",
"EulerAncestralDiscrete",
]
scheduler_list_txt2img = [
"DDIM",
"PNDM",
"LMSDiscrete",
"KDPM2Discrete",
"DPMSolverMultistep",
"EulerDiscrete",
"EulerAncestralDiscrete",
"SharkEulerDiscrete",
]
predefined_models = [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
]
predefined_paint_models = [
"runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-2-inpainting",
]
predefined_upscaler_models = [
"stabilityai/stable-diffusion-x4-upscaler",
]
def resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
base_path = getattr(
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
)
return os.path.join(base_path, relative_path)
def get_custom_model_path(model="models"):
# If `--ckpt_dir` is provided it'd override the heirarchical folder
# structure in WebUI :-
# model
# |___lora
# |___vae
if args.ckpt_dir:
return Path(args.ckpt_dir)
match model:
case "models":
return Path(Path.cwd(), "models")
case "vae":
return Path(Path.cwd(), "models/vae")
case "lora":
return Path(Path.cwd(), "models/lora")
case _:
return ""
def get_custom_model_pathfile(custom_model_name, model="models"):
return os.path.join(get_custom_model_path(model), custom_model_name)
def get_custom_model_files(model="models"):
ckpt_files = []
file_types = custom_model_filetypes
if model == "lora":
file_types = custom_model_filetypes + ("*.pt", "*.bin")
for extn in file_types:
files = [
os.path.basename(x)
for x in glob.glob(
os.path.join(get_custom_model_path(model), extn)
)
]
ckpt_files.extend(files)
return sorted(ckpt_files, key=str.casefold)
def get_custom_vae_or_lora_weights(weights, hf_id, model):
use_weight = ""
if weights == "None" and not hf_id:
use_weight = ""
elif not hf_id:
use_weight = get_custom_model_pathfile(weights, model)
else:
use_weight = hf_id
return use_weight
def cancel_sd():
# Try catch it, as gc can delete global_obj.sd_obj while switching model
try:
global_obj.set_sd_status(SD_STATE_CANCEL)
except Exception:
pass
nodlogo_loc = resource_path("logos/nod-logo.png")
available_devices = get_available_devices()

View File

@@ -0,0 +1,76 @@
import gc
"""
The global objects include SD pipeline and config.
Maintaining the global objects would avoid creating extra pipeline objects when switching modes.
Also we could avoid memory leak when switching models by clearing the cache.
"""
def _init():
global _sd_obj
global _config_obj
global _schedulers
_sd_obj = None
_config_obj = None
_schedulers = None
def set_sd_obj(value):
global _sd_obj
_sd_obj = value
def set_sd_scheduler(key):
global _sd_obj
_sd_obj.scheduler = _schedulers[key]
def set_sd_status(value):
global _sd_obj
_sd_obj.status = value
def set_sd_ondemand(value):
global _sd_obj
_sd_obj.ondemand = value
def set_cfg_obj(value):
global _config_obj
_config_obj = value
def set_schedulers(value):
global _schedulers
_schedulers = value
def get_sd_obj():
return _sd_obj
def get_sd_status():
return _sd_obj.status
def get_cfg_obj():
return _config_obj
def get_scheduler(key):
return _schedulers[key]
def clear_cache():
global _sd_obj
global _config_obj
global _schedulers
del _sd_obj
del _config_obj
del _schedulers
gc.collect()
_sd_obj = None
_config_obj = None
_schedulers = None

View File

@@ -0,0 +1,31 @@
import os
import tempfile
import gradio
from os import listdir
gradio_tmp_imgs_folder = os.path.join(os.getcwd(), "shark_tmp/")
# Clear all gradio tmp images
def clear_gradio_tmp_imgs_folder():
if not os.path.exists(gradio_tmp_imgs_folder):
return
for fileName in listdir(gradio_tmp_imgs_folder):
# Delete tmp png files
if fileName.startswith("tmp") and fileName.endswith(".png"):
os.remove(gradio_tmp_imgs_folder + fileName)
# Overwrite save_pil_to_file from gradio to save tmp images generated by gradio into our own tmp folder
def save_pil_to_file(pil_image, dir=None):
if not os.path.exists(gradio_tmp_imgs_folder):
os.mkdir(gradio_tmp_imgs_folder)
file_obj = tempfile.NamedTemporaryFile(
delete=False, suffix=".png", dir=gradio_tmp_imgs_folder
)
pil_image.save(file_obj)
return file_obj
# Register save_pil_to_file override
gradio.processing_utils.save_pil_to_file = save_pil_to_file

View File

@@ -0,0 +1,148 @@
import re
from pathlib import Path
from apps.stable_diffusion.web.ui.txt2img_ui import (
png_info_img,
prompt,
negative_prompt,
steps,
scheduler,
guidance_scale,
seed,
width,
height,
custom_model,
hf_model_id,
)
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
scheduler_list_txt2img,
predefined_models,
)
re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
def parse_generation_parameters(x: str):
res = {}
prompt = ""
negative_prompt = ""
done_with_prompt = False
*lines, lastline = x.strip().split("\n")
if len(re_param.findall(lastline)) < 3:
lines.append(lastline)
lastline = ""
for i, line in enumerate(lines):
line = line.strip()
if line.startswith("Negative prompt:"):
done_with_prompt = True
line = line[16:].strip()
if done_with_prompt:
negative_prompt += ("" if negative_prompt == "" else "\n") + line
else:
prompt += ("" if prompt == "" else "\n") + line
res["Prompt"] = prompt
res["Negative prompt"] = negative_prompt
for k, v in re_param.findall(lastline):
v = v[1:-1] if v[0] == '"' and v[-1] == '"' else v
m = re_imagesize.match(v)
if m is not None:
res[k + "-1"] = m.group(1)
res[k + "-2"] = m.group(2)
else:
res[k] = v
# Missing CLIP skip means it was set to 1 (the default)
if "Clip skip" not in res:
res["Clip skip"] = "1"
hypernet = res.get("Hypernet", None)
if hypernet is not None:
res[
"Prompt"
] += f"""<hypernet:{hypernet}:{res.get("Hypernet strength", "1.0")}>"""
if "Hires resize-1" not in res:
res["Hires resize-1"] = 0
res["Hires resize-2"] = 0
return res
def import_png_metadata(pil_data):
try:
png_info = pil_data.info["parameters"]
metadata = parse_generation_parameters(png_info)
png_hf_model_id = ""
png_custom_model = ""
if "Model" in metadata:
# Remove extension from model info
if metadata["Model"].endswith(".safetensors") or metadata[
"Model"
].endswith(".ckpt"):
metadata["Model"] = Path(metadata["Model"]).stem
# Check for the model name match with one of the local ckpt or safetensors files
if Path(
get_custom_model_pathfile(metadata["Model"] + ".ckpt")
).is_file():
png_custom_model = metadata["Model"] + ".ckpt"
if Path(
get_custom_model_pathfile(metadata["Model"] + ".safetensors")
).is_file():
png_custom_model = metadata["Model"] + ".safetensors"
# Check for a model match with one of the default model list (ex: "Linaqruf/anything-v3.0")
if metadata["Model"] in predefined_models:
png_custom_model = metadata["Model"]
# If nothing had matched, check vendor/hf_model_id
if not png_custom_model and metadata["Model"].count("/"):
png_hf_model_id = metadata["Model"]
# No matching model was found
if not png_custom_model and not png_hf_model_id:
print(
"Import PNG info: Unable to find a matching model for %s"
% metadata["Model"]
)
outputs = {
png_info_img: None,
negative_prompt: metadata["Negative prompt"],
steps: int(metadata["Steps"]),
guidance_scale: float(metadata["CFG scale"]),
seed: int(metadata["Seed"]),
width: float(metadata["Size-1"]),
height: float(metadata["Size-2"]),
}
if "Model" in metadata and png_custom_model:
outputs[custom_model] = png_custom_model
outputs[hf_model_id] = ""
if "Model" in metadata and png_hf_model_id:
outputs[custom_model] = "None"
outputs[hf_model_id] = png_hf_model_id
if "Prompt" in metadata:
outputs[prompt] = metadata["Prompt"]
if "Sampler" in metadata:
if metadata["Sampler"] in scheduler_list_txt2img:
outputs[scheduler] = metadata["Sampler"]
else:
print(
"Import PNG info: Unable to find a scheduler for %s"
% metadata["Sampler"]
)
return outputs
except Exception as ex:
if pil_data and pil_data.info.get("parameters"):
print("import_png_metadata failed with %s" % ex)
pass
return {
png_info_img: None,
}

View File

@@ -42,7 +42,7 @@ class TFHuggingFaceLanguage(tf.Module):
input_ids=x, attention_mask=y, token_type_ids=z, training=False
)
@tf.function(input_signature=tf_bert_input)
@tf.function(input_signature=tf_bert_input, jit_compile=True)
def forward(self, input_ids, attention_mask, token_type_ids):
return self.m.predict(input_ids, attention_mask, token_type_ids)

View File

@@ -0,0 +1,51 @@
import argparse
from PIL import Image
import numpy as np
import requests
import shutil
import os
import subprocess
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--newfile")
parser.add_argument(
"-g",
"--golden_url",
default="https://storage.googleapis.com/shark_tank/testdata/cyberpunk_fores_42_0_230119_021148.png",
)
def get_image(url, local_filename):
res = requests.get(url, stream=True)
if res.status_code == 200:
with open(local_filename, "wb") as f:
shutil.copyfileobj(res.raw, f)
def compare_images(new_filename, golden_filename):
new = np.array(Image.open(new_filename)) / 255.0
golden = np.array(Image.open(golden_filename)) / 255.0
diff = np.abs(new - golden)
mean = np.mean(diff)
if mean > 0.1:
if os.name != "nt":
subprocess.run(
[
"gsutil",
"cp",
new_filename,
"gs://shark_tank/testdata/builder/",
]
)
raise SystemExit("new and golden not close")
else:
print("SUCCESS")
if __name__ == "__main__":
args = parser.parse_args()
tempfile_name = os.path.join(os.getcwd(), "golden.png")
get_image(args.golden_url, tempfile_name)
compare_images(args.newfile, tempfile_name)

View File

@@ -1,5 +1,5 @@
#!/bin/bash
IMPORTER=1 ./setup_venv.sh
IMPORTER=1 BENCHMARK=1 ./setup_venv.sh
source $GITHUB_WORKSPACE/shark.venv/bin/activate
python generate_sharktank.py --upload=False
python tank/generate_sharktank.py

View File

@@ -0,0 +1,37 @@
"""Scrapes the github releases API to generate a static pip-install-able releases page.
See https://github.com/llvm/torch-mlir/issues/1374
"""
import argparse
import json
import requests
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("owner", type=str)
parser.add_argument("repo", type=str)
args = parser.parse_args()
# Get releases
response = requests.get(
f"https://api.github.com/repos/{args.owner}/{args.repo}/releases"
)
body = json.loads(response.content)
# Parse releases
releases = []
for row in body:
for asset in row["assets"]:
releases.append((asset["name"], asset["browser_download_url"]))
# Output HTML
html = """<!DOCTYPE html>
<html>
<body>
"""
for name, url in releases:
html += f" <a href='{url}'>{name}</a><br />\n"
html += """ </body>
</html>"""
print(html)

View File

@@ -0,0 +1,232 @@
import os
from sys import executable
import subprocess
from apps.stable_diffusion.src.utils.resources import (
get_json_file,
)
from datetime import datetime as dt
from shark.shark_downloader import download_public_file
from image_comparison import compare_images
import argparse
from glob import glob
import shutil
import requests
model_config_dicts = get_json_file(
os.path.join(
os.getcwd(),
"apps/stable_diffusion/src/utils/resources/model_config.json",
)
)
def parse_sd_out(filename, command, device, use_tune, model_name, import_mlir):
with open(filename, "r+") as f:
lines = f.readlines()
metrics = {}
vals_to_read = [
"Clip Inference time",
"Average step",
"VAE Inference time",
"Total image generation",
]
for line in lines:
for val in vals_to_read:
if val in line:
metrics[val] = line.split(" ")[-1].strip("\n")
metrics["Average step"] = metrics["Average step"].strip("ms/it")
metrics["Total image generation"] = metrics[
"Total image generation"
].strip("sec")
metrics["device"] = device
metrics["use_tune"] = use_tune
metrics["model_name"] = model_name
metrics["import_mlir"] = import_mlir
metrics["command"] = command
return metrics
def get_inpaint_inputs():
os.mkdir("./test_images/inputs")
img_url = (
"https://huggingface.co/datasets/diffusers/test-arrays/resolve"
"/main/stable_diffusion_inpaint/input_bench_image.png"
)
mask_url = (
"https://huggingface.co/datasets/diffusers/test-arrays/resolve"
"/main/stable_diffusion_inpaint/input_bench_mask.png"
)
img = requests.get(img_url)
mask = requests.get(mask_url)
open("./test_images/inputs/image.png", "wb").write(img.content)
open("./test_images/inputs/mask.png", "wb").write(mask.content)
def test_loop(device="vulkan", beta=False, extra_flags=[]):
# Get golden values from tank
shutil.rmtree("./test_images", ignore_errors=True)
model_metrics = []
os.mkdir("./test_images")
os.mkdir("./test_images/golden")
get_inpaint_inputs()
hf_model_names = model_config_dicts[0].values()
tuned_options = ["--no-use_tuned", "--use_tuned"]
import_options = ["--import_mlir", "--no-import_mlir"]
prompt_text = "--prompt=cyberpunk forest by Salvador Dali"
inpaint_prompt_text = "--prompt=Face of a yellow cat, high resolution, sitting on a park bench"
if os.name == "nt":
prompt_text = '--prompt="cyberpunk forest by Salvador Dali"'
inpaint_prompt_text = '--prompt="Face of a yellow cat, high resolution, sitting on a park bench"'
if beta:
extra_flags.append("--beta_models=True")
extra_flags.append("--no-progress_bar")
to_skip = [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"dreamlike-art/dreamlike-diffusion-1.0",
]
counter = 0
for import_opt in import_options:
for model_name in hf_model_names:
if model_name in to_skip:
continue
for use_tune in tuned_options:
if (
model_name == "stabilityai/stable-diffusion-2-1"
and use_tune == tuned_options[0]
):
continue
elif (
model_name == "stabilityai/stable-diffusion-2-1-base"
and use_tune == tuned_options[1]
):
continue
command = (
[
executable, # executable is the python from the venv used to run this
"apps/stable_diffusion/scripts/txt2img.py",
"--device=" + device,
prompt_text,
"--negative_prompts=" + '""',
"--seed=42",
import_opt,
"--output_dir="
+ os.path.join(os.getcwd(), "test_images", model_name),
"--hf_model_id=" + model_name,
use_tune,
]
if "inpainting" not in model_name
else [
executable,
"apps/stable_diffusion/scripts/inpaint.py",
"--device=" + device,
inpaint_prompt_text,
"--negative_prompts=" + '""',
"--img_path=./test_images/inputs/image.png",
"--mask_path=./test_images/inputs/mask.png",
"--seed=42",
"--import_mlir",
"--output_dir="
+ os.path.join(os.getcwd(), "test_images", model_name),
"--hf_model_id=" + model_name,
use_tune,
]
)
command += extra_flags
if os.name == "nt":
command = " ".join(command)
dumpfile_name = "_".join(model_name.split("/")) + ".txt"
dumpfile_name = os.path.join(os.getcwd(), dumpfile_name)
with open(dumpfile_name, "w+") as f:
generated_image = not subprocess.call(
command,
stdout=f,
stderr=f,
)
if os.name != "nt":
command = " ".join(command)
if generated_image:
model_metrics.append(
parse_sd_out(
dumpfile_name,
command,
device,
use_tune,
model_name,
import_opt,
)
)
print(command)
print("Successfully generated image")
os.makedirs(
"./test_images/golden/" + model_name, exist_ok=True
)
download_public_file(
"gs://shark_tank/testdata/golden/" + model_name,
"./test_images/golden/" + model_name,
)
test_file_path = os.path.join(
os.getcwd(),
"test_images",
model_name,
"generated_imgs",
dt.now().strftime("%Y%m%d"),
"*.png",
)
test_file = glob(test_file_path)[0]
golden_path = (
"./test_images/golden/" + model_name + "/*.png"
)
golden_file = glob(golden_path)[0]
compare_images(test_file, golden_file)
else:
print(command)
print("failed to generate image for this configuration")
with open(dumpfile_name, "r+") as f:
output = f.readlines()
print("\n".join(output))
exit(1)
if os.name == "nt":
counter += 1
if counter % 2 == 0:
extra_flags.append(
"--iree_vulkan_target_triple=rdna2-unknown-windows"
)
else:
if counter != 1:
extra_flags.remove(
"--iree_vulkan_target_triple=rdna2-unknown-windows"
)
with open(os.path.join(os.getcwd(), "sd_testing_metrics.csv"), "w+") as f:
header = "model_name;device;use_tune;import_opt;Clip Inference time(ms);Average Step (ms/it);VAE Inference time(ms);total image generation(s);command\n"
f.write(header)
for metric in model_metrics:
output = [
metric["model_name"],
metric["device"],
metric["use_tune"],
metric["import_mlir"],
metric["Clip Inference time"],
metric["Average step"],
metric["VAE Inference time"],
metric["Total image generation"],
metric["command"],
]
f.write(";".join(output) + "\n")
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--device", default="vulkan")
parser.add_argument(
"-b", "--beta", action=argparse.BooleanOptionalAction, default=False
)
if __name__ == "__main__":
args = parser.parse_args()
print(args)
test_loop(args.device, args.beta, [])

View File

@@ -2,9 +2,11 @@ def pytest_addoption(parser):
# Attaches SHARK command-line arguments to the pytest machinery.
parser.addoption(
"--benchmark",
action="store_true",
default="False",
help="Pass option to benchmark and write results.csv",
action="store",
type=str,
default=None,
choices=("baseline", "native", "all"),
help="Benchmarks specified engine(s) and writes bench_results.csv.",
)
parser.addoption(
"--onnx_bench",
@@ -12,22 +14,79 @@ def pytest_addoption(parser):
default="False",
help="Add ONNX benchmark results to pytest benchmarks.",
)
# The following options are deprecated and pending removal.
parser.addoption(
"--save_mlir",
"--tf32",
action="store_true",
default="False",
help="Pass option to save input MLIR",
help="Use TensorFloat-32 calculations.",
)
parser.addoption(
"--save_vmfb",
"--save_repro",
action="store_true",
default="False",
help="Pass option to save IREE output .vmfb",
help="Pass option to save reproduction artifacts to SHARK/shark_tmp/test_case/",
)
parser.addoption(
"--save_temps",
"--save_fails",
action="store_true",
default="False",
help="Saves IREE reproduction artifacts for filing upstream issues.",
help="Save reproduction artifacts for a test case only if it fails. Default is False.",
)
parser.addoption(
"--ci",
action="store_true",
default="False",
help="Enables uploading of reproduction artifacts upon test case failure during iree-compile or validation. Must be passed with --ci_sha option ",
)
parser.addoption(
"--update_tank",
action="store_true",
default="False",
help="Update local shark tank with latest artifacts if model artifact hash mismatched.",
)
parser.addoption(
"--force_update_tank",
action="store_true",
default="False",
help="Force-update local shark tank with artifacts from specified shark_tank URL (defaults to nightly).",
)
parser.addoption(
"--ci_sha",
action="store",
default="None",
help="Passes the github SHA of the CI workflow to include in google storage directory for reproduction artifacts.",
)
parser.addoption(
"--local_tank_cache",
action="store",
default=None,
help="Specify the directory in which all downloaded shark_tank artifacts will be cached.",
)
parser.addoption(
"--tank_url",
type=str,
default="gs://shark_tank/nightly",
help="URL to bucket from which to download SHARK tank artifacts. Default is gs://shark_tank/latest",
)
parser.addoption(
"--tank_prefix",
type=str,
default=None,
help="Prefix to gs://shark_tank/ model directories from which to download SHARK tank artifacts. Default is nightly.",
)
parser.addoption(
"--benchmark_dispatches",
default=None,
help="Benchmark individual dispatch kernels produced by IREE compiler. Use 'All' for all, or specific dispatches e.g. '0 1 2 10'",
)
parser.addoption(
"--dispatch_benchmarks_dir",
default="./temp_dispatch_benchmarks",
help="Directory in which dispatch benchmarks are saved.",
)
parser.addoption(
"--batchsize",
default=1,
type=int,
help="Batch size for the tested model.",
)

3
cpp/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
*.mlir
*.vmfb
*.ini

52
cpp/CMakeLists.txt Normal file
View File

@@ -0,0 +1,52 @@
# Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
cmake_minimum_required(VERSION 3.21...3.23)
#-------------------------------------------------------------------------------
# Project configuration
#-------------------------------------------------------------------------------
project(iree-samples C CXX)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
#-------------------------------------------------------------------------------
# Core project dependency
#-------------------------------------------------------------------------------
message(STATUS "Fetching core IREE repo (this may take a few minutes)...")
# Note: for log output, set -DFETCHCONTENT_QUIET=OFF,
# see https://gitlab.kitware.com/cmake/cmake/-/issues/18238#note_440475
include(FetchContent)
FetchContent_Declare(
iree
GIT_REPOSITORY https://github.com/nod-ai/shark-runtime.git
GIT_TAG shark
GIT_SUBMODULES_RECURSE OFF
GIT_SHALLOW OFF
GIT_PROGRESS ON
USES_TERMINAL_DOWNLOAD ON
)
# Extend module path to find MLIR CMake modules.
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_BINARY_DIR}/lib/cmake/mlir")
# Disable core project features not needed for these out of tree samples.
set(IREE_BUILD_TESTS OFF CACHE BOOL "" FORCE)
set(IREE_BUILD_SAMPLES OFF CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(iree)
FetchContent_GetProperties(iree SOURCE_DIR IREE_SOURCE_DIR)
#-------------------------------------------------------------------------------
# Individual samples
#-------------------------------------------------------------------------------
add_subdirectory(vulkan_gui)

82
cpp/README.md Normal file
View File

@@ -0,0 +1,82 @@
# SHARK C/C++ Samples
These C/C++ samples can be built using CMake. The samples depend on the main
SHARK-Runtime project's C/C++ sources, including both the runtime and the compiler.
Individual samples may require additional dependencies. Watch CMake's output
for information about which you are missing for individual samples.
On Windows we recommend using https://github.com/microsoft/vcpkg to download packages for
your system. The general setup flow looks like
*Install and activate SHARK*
```bash
source shark.venv/bin/activate #follow main repo instructions to setup your venv
```
*Install Dependencies*
```bash
vcpkg install [library] --triplet [your platform]
vcpkg integrate install
# Then pass `-DCMAKE_TOOLCHAIN_FILE=[check logs for path]` when configuring CMake
```
In Ubuntu Linux you can install
```bash
sudo apt install libsdl2-dev
```
*Build*
```bash
cd cpp
cmake -GNinja -B build/
cmake --build build/
```
*Prepare the model*
```bash
wget https://storage.googleapis.com/shark_tank/latest/resnet50_tf/resnet50_tf.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --iree-llvmcpu-embedded-linker-path=`python3 -c 'import sysconfig; print(sysconfig.get_paths()["purelib"])'`/iree/compiler/tools/../_mlir_libs/iree-lld --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --mlir-pass-pipeline-crash-reproducer=ist/core-reproducer.mlir --iree-llvmcpu-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 resnet50_tf.mlir -o resnet50_tf.vmfb
```
*Prepare the input*
```bash
python save_img.py
```
Note that this requires tensorflow, e.g.
```bash
python -m pip install tensorflow
```
*Run the vulkan_gui*
```bash
./build/vulkan_gui/iree-samples-resnet-vulkan-gui
```
## Other models
A tool for benchmarking other models is built and can be invoked with a command like the following
```bash
./build/vulkan_gui/iree-vulkan-gui --module-file=path/to/.vmfb --function_input=...
```
see `./build/vulkan_gui/iree-vulkan-gui --help` for an explanation on the function input. For example, stable diffusion unet can be tested with the following commands:
```bash
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/stable_diff_tf.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvmcpu-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 stable_diff_tf.mlir -o stable_diff_tf.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=2x4x64x64xf32 --function_input=1xf32 --function_input=2x77x768xf32
```
VAE and Autoencoder are also available
```bash
# VAE
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/vae_tf/vae.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvmcpu-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 vae.mlir -o vae.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=1x4x64x64xf32
# CLIP Autoencoder
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/clip_tf/clip_autoencoder.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvmcpu-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 clip_autoencoder.mlir -o clip_autoencoder.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=1x77xi32 --function_input=1x77xi32
```

BIN
cpp/dog_imagenet.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

18
cpp/save_img.py Normal file
View File

@@ -0,0 +1,18 @@
import numpy as np
import tensorflow as tf
from shark.shark_inference import SharkInference
def load_and_preprocess_image(fname: str):
image = tf.io.read_file(fname)
image = tf.image.decode_image(image, channels=3)
image = tf.image.resize(image, (224, 224))
image = image[tf.newaxis, :]
# preprocessing pipeline
input_tensor = tf.keras.applications.resnet50.preprocess_input(image)
return input_tensor
data = load_and_preprocess_image("dog_imagenet.jpg").numpy()
data.tofile("dog.bin")

View File

@@ -0,0 +1,84 @@
# Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
if(NOT IREE_TARGET_BACKEND_LLVM_CPU OR
NOT IREE_HAL_EXECUTABLE_LOADER_EMBEDDED_ELF)
message(STATUS "Missing LLVM backend and/or embeddded elf loader, skipping vision_inference sample")
return()
endif()
# vcpkg install stb
# tested with version 2021-09-10
find_package(Stb)
if(NOT Stb_FOUND)
message(STATUS "Could not find Stb, skipping vision inference sample")
return()
endif()
# Compile mnist.mlir to mnist.vmfb.
set(_COMPILE_TOOL_EXECUTABLE $<TARGET_FILE:iree-compile>)
set(_COMPILE_ARGS)
list(APPEND _COMPILE_ARGS "--iree-input-type=mhlo")
list(APPEND _COMPILE_ARGS "--iree-hal-target-backends=llvm-cpu")
list(APPEND _COMPILE_ARGS "${IREE_SOURCE_DIR}/samples/models/mnist.mlir")
list(APPEND _COMPILE_ARGS "-o")
list(APPEND _COMPILE_ARGS "mnist.vmfb")
add_custom_command(
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb
COMMAND ${_COMPILE_TOOL_EXECUTABLE} ${_COMPILE_ARGS}
DEPENDS ${_COMPILE_TOOL_EXECUTABLE} "${IREE_SOURCE_DIR}/samples/models/mnist.mlir"
)
# Embed mnist.vmfb into a C file as mnist_bytecode_module_c.[h/c]
set(_EMBED_DATA_EXECUTABLE $<TARGET_FILE:generate_embed_data>)
set(_EMBED_ARGS)
list(APPEND _EMBED_ARGS "--output_header=mnist_bytecode_module_c.h")
list(APPEND _EMBED_ARGS "--output_impl=mnist_bytecode_module_c.c")
list(APPEND _EMBED_ARGS "--identifier=iree_samples_vision_inference_mnist_bytecode_module")
list(APPEND _EMBED_ARGS "--flatten")
list(APPEND _EMBED_ARGS "${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb")
add_custom_command(
OUTPUT "mnist_bytecode_module_c.h" "mnist_bytecode_module_c.c"
COMMAND ${_EMBED_DATA_EXECUTABLE} ${_EMBED_ARGS}
DEPENDS ${_EMBED_DATA_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb
)
# Define a library target for mnist_bytecode_module_c.
add_library(iree_samples_vision_inference_mnist_bytecode_module_c OBJECT)
target_sources(iree_samples_vision_inference_mnist_bytecode_module_c
PRIVATE
mnist_bytecode_module_c.h
mnist_bytecode_module_c.c
)
# Define the sample executable.
set(_NAME "iree-run-mnist-module")
add_executable(${_NAME} "")
target_sources(${_NAME}
PRIVATE
"image_util.h"
"image_util.c"
"iree-run-mnist-module.c"
)
set_target_properties(${_NAME} PROPERTIES OUTPUT_NAME "iree-run-mnist-module")
target_include_directories(${_NAME} PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
)
target_include_directories(${_NAME} PRIVATE
${Stb_INCLUDE_DIR}
)
target_link_libraries(${_NAME}
iree_base_base
iree_base_tracing
iree_hal_hal
iree_runtime_runtime
iree_samples_vision_inference_mnist_bytecode_module_c
)
# Define a target that copies the test image into the build directory.
add_custom_target(iree_samples_vision_inference_test_image
COMMAND ${CMAKE_COMMAND} -E copy "${CMAKE_CURRENT_SOURCE_DIR}/mnist_test.png" "${CMAKE_CURRENT_BINARY_DIR}/mnist_test.png")
add_dependencies(${_NAME} iree_samples_vision_inference_test_image)
message(STATUS "Configured vision_inference sample successfully")

View File

@@ -0,0 +1,8 @@
# Vision Inference Sample (C code)
This sample demonstrates how to run a MNIST handwritten digit detection vision
model on an image using IREE's C API.
A similar sample is implemented using a Python script and IREE's command line
tools over in the primary iree repository at
https://github.com/iree-org/iree/tree/main/samples/vision_inference

View File

@@ -0,0 +1,224 @@
// Copyright 2021 The IREE Authors
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "image_util.h"
#include <math.h>
#include "iree/base/internal/flags.h"
#include "iree/base/tracing.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
iree_status_t iree_tools_utils_pixel_rescaled_to_buffer(
const uint8_t* pixel_data, iree_host_size_t buffer_length,
const float* input_range, iree_host_size_t range_length,
float* out_buffer) {
IREE_TRACE_ZONE_BEGIN(z0);
if (range_length != 2) {
IREE_TRACE_ZONE_END(z0);
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"range defined as 2-element [min, max] array.");
}
float input_scale = fabsf(input_range[1] - input_range[0]) / 2.0f;
float input_offset = (input_range[0] + input_range[1]) / 2.0f;
const float kUint8Mean = 127.5f;
for (int i = 0; i < buffer_length; ++i) {
out_buffer[i] =
(((float)(pixel_data[i])) - kUint8Mean) / kUint8Mean * input_scale +
input_offset;
}
IREE_TRACE_ZONE_END(z0);
return iree_ok_status();
}
iree_status_t iree_tools_utils_load_pixel_data_impl(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length) {
int img_dims[3];
if (stbi_info(filename.data, img_dims, &(img_dims[1]), &(img_dims[2])) == 0) {
return iree_make_status(IREE_STATUS_NOT_FOUND, "can't load image %.*s",
(int)filename.size, filename.data);
}
if (!(element_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32 ||
element_type == IREE_HAL_ELEMENT_TYPE_SINT_8 ||
element_type == IREE_HAL_ELEMENT_TYPE_UINT_8)) {
char element_type_str[16];
IREE_RETURN_IF_ERROR(iree_hal_format_element_type(
element_type, sizeof(element_type_str), element_type_str, NULL));
return iree_make_status(IREE_STATUS_UNIMPLEMENTED,
"element type %s not supported", element_type_str);
}
switch (shape_rank) {
case 2: { // Assume tensor <height x width>
if (img_dims[2] != 1 || (shape[0] != img_dims[1]) ||
(shape[1] != img_dims[0])) {
return iree_make_status(
IREE_STATUS_INVALID_ARGUMENT,
"image size: %dx%dx%d, expected: %" PRIdim "x%" PRIdim, img_dims[0],
img_dims[1], img_dims[2], shape[1], shape[0]);
}
break;
}
case 3: { // Assume tensor <height x width x channel>
if (shape[0] != img_dims[1] || shape[1] != img_dims[0] ||
shape[2] != img_dims[2]) {
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"image size: %dx%dx%d, expected: %" PRIdim
"x%" PRIdim "x%" PRIdim,
img_dims[0], img_dims[1], img_dims[2], shape[1],
shape[0], shape[2]);
}
break;
}
case 4: { // Assume tensor <batch x height x width x channel>
if (shape[1] != img_dims[1] || shape[2] != img_dims[0] ||
shape[3] != img_dims[2]) {
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"image size: %dx%dx%d, expected: %" PRIdim
"x%" PRIdim "x%" PRIdim,
img_dims[0], img_dims[1], img_dims[2], shape[2],
shape[1], shape[3]);
}
break;
}
default:
return iree_make_status(
IREE_STATUS_INVALID_ARGUMENT,
"Input buffer shape rank %" PRIhsz " not supported", shape_rank);
}
// Drop the alpha channel if present.
int req_ch = (img_dims[2] >= 3) ? 3 : 0;
*out_pixel_data = stbi_load(filename.data, img_dims, &(img_dims[1]),
&(img_dims[2]), req_ch);
if (*out_pixel_data == NULL) {
return iree_make_status(IREE_STATUS_NOT_FOUND, "can't load image %.*s",
(int)filename.size, filename.data);
}
*out_buffer_length =
img_dims[0] * img_dims[1] * (img_dims[2] > 3 ? 3 : img_dims[2]);
return iree_ok_status();
}
iree_status_t iree_tools_utils_load_pixel_data(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length) {
IREE_TRACE_ZONE_BEGIN(z0);
iree_status_t result = iree_tools_utils_load_pixel_data_impl(
filename, shape, shape_rank, element_type, out_pixel_data,
out_buffer_length);
IREE_TRACE_ZONE_END(z0);
return result;
}
iree_status_t iree_tools_utils_buffer_view_from_image(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
iree_hal_allocator_t* allocator, iree_hal_buffer_view_t** out_buffer_view) {
IREE_TRACE_ZONE_BEGIN(z0);
*out_buffer_view = NULL;
if (element_type != IREE_HAL_ELEMENT_TYPE_SINT_8 &&
element_type != IREE_HAL_ELEMENT_TYPE_UINT_8) {
IREE_TRACE_ZONE_END(z0);
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"element type should be i8 or u8");
}
iree_status_t result;
uint8_t* pixel_data = NULL;
iree_host_size_t buffer_length;
result = iree_tools_utils_load_pixel_data(
filename, shape, shape_rank, element_type, &pixel_data, &buffer_length);
if (iree_status_is_ok(result)) {
iree_host_size_t element_byte =
iree_hal_element_dense_byte_count(element_type);
// SINT_8 and UINT_8 perform direct buffer wrap.
result = iree_hal_buffer_view_allocate_buffer(
allocator, shape_rank, shape, element_type,
IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR,
(iree_hal_buffer_params_t){
.type = IREE_HAL_MEMORY_TYPE_DEVICE_LOCAL,
.access = IREE_HAL_MEMORY_ACCESS_READ,
.usage = IREE_HAL_BUFFER_USAGE_DISPATCH_STORAGE |
IREE_HAL_BUFFER_USAGE_TRANSFER,
},
iree_make_const_byte_span(pixel_data, element_byte * buffer_length),
out_buffer_view);
}
stbi_image_free(pixel_data);
IREE_TRACE_ZONE_END(z0);
return result;
}
typedef struct iree_tools_utils_buffer_view_load_params_t {
const uint8_t* pixel_data;
iree_host_size_t pixel_data_length;
const float* input_range;
iree_host_size_t input_range_length;
} iree_tools_utils_buffer_view_load_params_t;
static iree_status_t iree_tools_utils_buffer_view_load_image_rescaled(
iree_hal_buffer_mapping_t* mapping, void* user_data) {
iree_tools_utils_buffer_view_load_params_t* params =
(iree_tools_utils_buffer_view_load_params_t*)user_data;
return iree_tools_utils_pixel_rescaled_to_buffer(
params->pixel_data, params->pixel_data_length, params->input_range,
params->input_range_length, (float*)mapping->contents.data);
}
iree_status_t iree_tools_utils_buffer_view_from_image_rescaled(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
iree_hal_allocator_t* allocator, const float* input_range,
iree_host_size_t input_range_length,
iree_hal_buffer_view_t** out_buffer_view) {
IREE_TRACE_ZONE_BEGIN(z0);
*out_buffer_view = NULL;
if (element_type != IREE_HAL_ELEMENT_TYPE_FLOAT_32) {
IREE_TRACE_ZONE_END(z0);
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"element type should be f32");
}
// Classic row-major image layout.
iree_hal_encoding_type_t encoding_type =
IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR;
// Load pixel data from the file into a new host memory allocation (the only
// interface stb_image provides). A real application would want to use the
// generation callback to directly decode the image into the target mapped
// device buffer.
uint8_t* pixel_data = NULL;
iree_host_size_t buffer_length = 0;
IREE_RETURN_AND_END_ZONE_IF_ERROR(
z0, iree_tools_utils_load_pixel_data(filename, shape, shape_rank,
element_type, &pixel_data,
&buffer_length));
iree_tools_utils_buffer_view_load_params_t params = {
.pixel_data = pixel_data,
.pixel_data_length = buffer_length,
.input_range = input_range,
.input_range_length = input_range_length,
};
iree_status_t status = iree_hal_buffer_view_generate_buffer(
allocator, shape_rank, shape, element_type, encoding_type,
(iree_hal_buffer_params_t){
.type = IREE_HAL_MEMORY_TYPE_DEVICE_LOCAL |
IREE_HAL_MEMORY_TYPE_HOST_VISIBLE,
.usage = IREE_HAL_BUFFER_USAGE_DISPATCH_STORAGE |
IREE_HAL_BUFFER_USAGE_TRANSFER |
IREE_HAL_BUFFER_USAGE_MAPPING,
},
iree_tools_utils_buffer_view_load_image_rescaled, &params,
out_buffer_view);
stbi_image_free(pixel_data);
IREE_TRACE_ZONE_END(z0);
return status;
}

View File

@@ -0,0 +1,77 @@
// Copyright 2021 The IREE Authors
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#ifndef IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_
#define IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_
#include "iree/base/api.h"
#include "iree/hal/api.h"
#include "iree/hal/buffer_view.h"
#if __cplusplus
extern "C" {
#endif // __cplusplus
// Loads the image at |filename| into |out_pixel_data| and sets
// |out_buffer_length| to its length.
//
// The image dimension must match the width, height, and channel in|shape|,
// while 2 <= |shape_rank| <= 4 to match the image tensor format.
//
// The file must be in a format supported by stb_image.h.
// The returned |out_pixel_data| buffer must be released by the caller.
iree_status_t iree_tools_utils_load_pixel_data(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length);
// Parse the content in an image file in |filename| into a HAL buffer view
// |out_buffer_view|. |out_buffer_view| properties are defined by |shape|,
// |shape_rank|, and |element_type|, while being allocated by |allocator|.
//
// The |element_type| has to be SINT_8 or UINT_8. For FLOAT_32, use
// |iree_tools_utils_buffer_view_from_image_rescaled| instead.
//
// The returned |out_buffer_view| must be released by the caller.
iree_status_t iree_tools_utils_buffer_view_from_image(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
iree_hal_allocator_t* allocator, iree_hal_buffer_view_t** out_buffer_view);
// Parse the content in an image file in |filename| into a HAL buffer view
// |out_buffer_view|. |out_buffer_view| properties are defined by |shape|,
// |shape_rank|, and |element_type|, while being allocated by |allocator|.
// The value in |out_buffer_view| is rescaled with |input_range|.
//
// The |element_type| has to be FLOAT_32, For SINT_8 or UINT_8, use
// |iree_tools_utils_buffer_view_from_image| instead.
//
// The returned |out_buffer_view| must be released by the caller.
iree_status_t iree_tools_utils_buffer_view_from_image_rescaled(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
iree_hal_allocator_t* allocator, const float* input_range,
iree_host_size_t input_range_length,
iree_hal_buffer_view_t** out_buffer_view);
// Normalize uint8_t |pixel_data| of the size |buffer_length| to float buffer
// |out_buffer| with the range |input_range|.
//
// float32_x = (uint8_x - 127.5) / 127.5 * input_scale + input_offset, where
// input_scale = abs(|input_range[0]| - |input_range[1]| / 2
// input_offset = |input_range[0]| + |input_range[1]| / 2
//
// |out_buffer| needs to be allocated before the call.
iree_status_t iree_tools_utils_pixel_rescaled_to_buffer(
const uint8_t* pixel_data, iree_host_size_t pixel_count,
const float* input_range, iree_host_size_t input_range_length,
float* out_buffer);
#if __cplusplus
}
#endif // __cplusplus
#endif // IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_

View File

@@ -0,0 +1,121 @@
// Copyright 2021 The IREE Authors
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// This sample uses image_util to load a hand-written image as an
// iree_hal_buffer_view_t then passes it to the bytecode module built from
// mnist.mlir on the CPU backend with the local-task driver.
#include <float.h>
#include "image_util.h"
#include "iree/runtime/api.h"
#include "mnist_bytecode_module_c.h"
iree_status_t Run(const iree_string_view_t image_path) {
iree_runtime_instance_options_t instance_options;
iree_runtime_instance_options_initialize(IREE_API_VERSION_LATEST,
&instance_options);
iree_runtime_instance_options_use_all_available_drivers(&instance_options);
iree_runtime_instance_t* instance = NULL;
IREE_RETURN_IF_ERROR(iree_runtime_instance_create(
&instance_options, iree_allocator_system(), &instance));
// TODO(#5724): move device selection into the compiled modules.
iree_hal_device_t* device = NULL;
IREE_RETURN_IF_ERROR(iree_runtime_instance_try_create_default_device(
instance, iree_make_cstring_view("local-task"), &device));
// Create one session per loaded module to hold the module state.
iree_runtime_session_options_t session_options;
iree_runtime_session_options_initialize(&session_options);
iree_runtime_session_t* session = NULL;
IREE_RETURN_IF_ERROR(iree_runtime_session_create_with_device(
instance, &session_options, device,
iree_runtime_instance_host_allocator(instance), &session));
iree_hal_device_release(device);
const struct iree_file_toc_t* module_file =
iree_samples_vision_inference_mnist_bytecode_module_create();
IREE_RETURN_IF_ERROR(iree_runtime_session_append_bytecode_module_from_memory(
session, iree_make_const_byte_span(module_file->data, module_file->size),
iree_allocator_null()));
iree_runtime_call_t call;
IREE_RETURN_IF_ERROR(iree_runtime_call_initialize_by_name(
session, iree_make_cstring_view("module.predict"), &call));
// Prepare the input hal buffer view with image_util library.
// The input of the mmist model is single 28x28 pixel image as a
// tensor<1x28x28x1xf32>, with pixels in [0.0, 1.0].
iree_hal_buffer_view_t* buffer_view = NULL;
iree_hal_dim_t buffer_shape[] = {1, 28, 28, 1};
iree_hal_element_type_t hal_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32;
float input_range[2] = {0.0f, 1.0f};
IREE_RETURN_IF_ERROR(
iree_tools_utils_buffer_view_from_image_rescaled(
image_path, buffer_shape, IREE_ARRAYSIZE(buffer_shape),
hal_element_type, iree_hal_device_allocator(device), input_range,
IREE_ARRAYSIZE(input_range), &buffer_view),
"load image");
IREE_RETURN_IF_ERROR(
iree_runtime_call_inputs_push_back_buffer_view(&call, buffer_view));
iree_hal_buffer_view_release(buffer_view);
IREE_RETURN_IF_ERROR(iree_runtime_call_invoke(&call, /*flags=*/0));
// Get the result buffers from the invocation.
iree_hal_buffer_view_t* ret_buffer_view = NULL;
IREE_RETURN_IF_ERROR(
iree_runtime_call_outputs_pop_front_buffer_view(&call, &ret_buffer_view));
// Read back the results. The output of the mnist model is a 1x10 prediction
// confidence values for each digit in [0, 9].
float predictions[1 * 10] = {0.0f};
IREE_RETURN_IF_ERROR(iree_hal_device_transfer_d2h(
iree_runtime_session_device(session),
iree_hal_buffer_view_buffer(ret_buffer_view), 0, predictions,
sizeof(predictions), IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT,
iree_infinite_timeout()));
iree_hal_buffer_view_release(ret_buffer_view);
// Get the highest index from the output.
float result_val = FLT_MIN;
int result_idx = 0;
for (iree_host_size_t i = 0; i < IREE_ARRAYSIZE(predictions); ++i) {
if (predictions[i] > result_val) {
result_val = predictions[i];
result_idx = i;
}
}
fprintf(stdout, "Detected number: %d\n", result_idx);
iree_runtime_call_deinitialize(&call);
iree_runtime_session_release(session);
iree_runtime_instance_release(instance);
return iree_ok_status();
}
int main(int argc, char** argv) {
if (argc > 2) {
fprintf(stderr, "Usage: iree-run-mnist-module <image file>\n");
return -1;
}
iree_string_view_t image_path;
if (argc == 1) {
image_path = iree_make_cstring_view("mnist_test.png");
} else {
image_path = iree_make_cstring_view(argv[1]);
}
iree_status_t result = Run(image_path);
if (!iree_status_is_ok(result)) {
iree_status_fprint(stderr, result);
iree_status_ignore(result);
return -1;
}
iree_status_ignore(result);
return 0;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 261 B

View File

@@ -0,0 +1,116 @@
# Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
if(NOT IREE_TARGET_BACKEND_VULKAN_SPIRV OR
NOT IREE_HAL_DRIVER_VULKAN)
message(STATUS "Missing Vulkan backend and/or driver, skipping vulkan_gui sample")
return()
endif()
# This target statically links against Vulkan.
# One way to achieve this is by installing the Vulkan SDK from
# https://vulkan.lunarg.com/.
include(FindVulkan)
if(NOT Vulkan_FOUND)
message(STATUS "Could not find Vulkan, skipping vulkan_gui sample")
return()
endif()
# vcpkg install sdl2[vulkan]
# tested with versions 2.0.14#4 - 2.0.22#1
find_package(SDL2)
if(NOT SDL2_FOUND)
message(STATUS "Could not find SDL2, skipping vulkan_gui sample")
return()
endif()
FetchContent_Declare(
imgui
GIT_REPOSITORY https://github.com/ocornut/imgui
GIT_TAG master
)
FetchContent_MakeAvailable(imgui)
# Dear ImGui
set(IMGUI_DIR ${CMAKE_BINARY_DIR}/_deps/imgui-src)
message("Looking for Imgui in ${IMGUI_DIR}")
include_directories(${IMGUI_DIR} ${IMGUI_DIR}/backends ..)
function(iree_vulkan_sample)
cmake_parse_arguments(
_RULE
""
"NAME"
"SRCS"
${ARGN}
)
# Define the sample executable.
set(_NAME "${_RULE_NAME}")
set(SRCS "${_RULE_SRCS}")
add_executable(${_NAME} "")
target_sources(${_NAME}
PRIVATE
${SRCS}
"${IMGUI_DIR}/backends/imgui_impl_sdl.cpp"
"${IMGUI_DIR}/backends/imgui_impl_vulkan.cpp"
"${IMGUI_DIR}/imgui.cpp"
"${IMGUI_DIR}/imgui_draw.cpp"
"${IMGUI_DIR}/imgui_demo.cpp"
"${IMGUI_DIR}/imgui_tables.cpp"
"${IMGUI_DIR}/imgui_widgets.cpp"
)
set_target_properties(${_NAME} PROPERTIES OUTPUT_NAME "${_NAME}")
target_include_directories(${_NAME} PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
)
target_link_libraries(${_NAME}
SDL2::SDL2
Vulkan::Vulkan
iree_runtime_runtime
iree_base_internal_main
iree_hal_drivers_vulkan_registration_registration
iree_modules_hal_hal
iree_vm_vm
iree_vm_bytecode_module
iree_vm_cc
iree_tooling_vm_util_cc
iree_tooling_context_util
)
if(${CMAKE_SYSTEM_NAME} STREQUAL "Windows")
set(_GUI_LINKOPTS "-SUBSYSTEM:CONSOLE")
else()
set(_GUI_LINKOPTS "")
endif()
target_link_options(${_NAME}
PRIVATE
${_GUI_LINKOPTS}
)
endfunction()
iree_vulkan_sample(
NAME
iree-samples-resnet-vulkan-gui
SRCS
vulkan_resnet_inference_gui.cc
)
iree_vulkan_sample(
NAME
iree-vulkan-gui
SRCS
vulkan_inference_gui.cc
)
message(STATUS "Configured vulkan_gui sample successfully")

View File

@@ -0,0 +1,4 @@
func.func @simple_mul(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
%0 = "arith.mulf"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32>
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

7897
cpp/vulkan_gui/stb_image.h Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,957 @@
// Copyright 2019 The IREE Authors
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Vulkan Graphics + IREE API Integration Sample.
#include <SDL.h>
#include <SDL_vulkan.h>
#include <imgui.h>
#include <imgui_impl_sdl.h>
#include <imgui_impl_vulkan.h>
#include <vulkan/vulkan.h>
#include <cstring>
#include <set>
#include <vector>
#include <fstream>
#include <array>
#include <cstdio>
#include <cstdlib>
#include <iterator>
#include <string>
#include <utility>
#include "iree/hal/drivers/vulkan/api.h"
// IREE's C API:
#include "iree/base/api.h"
#include "iree/hal/api.h"
#include "iree/hal/drivers/vulkan/registration/driver_module.h"
#include "iree/modules/hal/module.h"
#include "iree/vm/api.h"
#include "iree/vm/bytecode_module.h"
#include "iree/vm/ref_cc.h"
// iree-run-module
#include "iree/base/internal/flags.h"
#include "iree/base/status_cc.h"
#include "iree/base/tracing.h"
#include "iree/modules/hal/types.h"
#include "iree/tooling/comparison.h"
#include "iree/tooling/context_util.h"
#include "iree/tooling/vm_util_cc.h"
// Other dependencies (helpers, etc.)
#include "iree/base/internal/main.h"
#define IMGUI_UNLIMITED_FRAME_RATE
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
IREE_FLAG(string, entry_function, "",
"Name of a function contained in the module specified by module_file "
"to run.");
// TODO(benvanik): move --function_input= flag into a util.
static iree_status_t parse_function_io(iree_string_view_t flag_name,
void* storage,
iree_string_view_t value) {
auto* list = (std::vector<std::string>*)storage;
list->push_back(std::string(value.data, value.size));
return iree_ok_status();
}
static void print_function_io(iree_string_view_t flag_name, void* storage,
FILE* file) {
auto* list = (std::vector<std::string>*)storage;
if (list->empty()) {
fprintf(file, "# --%.*s=\n", (int)flag_name.size, flag_name.data);
} else {
for (size_t i = 0; i < list->size(); ++i) {
fprintf(file, "--%.*s=\"%s\"\n", (int)flag_name.size, flag_name.data,
list->at(i).c_str());
}
}
}
static std::vector<std::string> FLAG_function_inputs;
IREE_FLAG_CALLBACK(
parse_function_io, print_function_io, &FLAG_function_inputs, function_input,
"An input (a) value or (b) buffer of the format:\n"
" (a) scalar value\n"
" value\n"
" e.g.: --function_input=\"3.14\"\n"
" (b) buffer:\n"
" [shape]xtype=[value]\n"
" e.g.: --function_input=\"2x2xi32=1 2 3 4\"\n"
"Optionally, brackets may be used to separate the element values:\n"
" 2x2xi32=[[1 2][3 4]]\n"
"Raw binary files can be read to provide buffer contents:\n"
" 2x2xi32=@some/file.bin\n"
"numpy npy files (from numpy.save) can be read to provide 1+ values:\n"
" @some.npy\n"
"Each occurrence of the flag indicates an input in the order they were\n"
"specified on the command line.");
typedef struct iree_file_toc_t {
const char* name; // the file's original name
char* data; // beginning of the file
size_t size; // length of the file
} iree_file_toc_t;
bool load_file(const char* filename, char** pOut, size_t* pSize)
{
FILE* f = fopen(filename, "rb");
if (f == NULL)
{
fprintf(stderr, "Can't open %s\n", filename);
return false;
}
fseek(f, 0L, SEEK_END);
*pSize = ftell(f);
fseek(f, 0L, SEEK_SET);
*pOut = (char*)malloc(*pSize);
size_t size = fread(*pOut, *pSize, 1, f);
fclose(f);
return size != 0;
}
static VkAllocationCallbacks* g_Allocator = NULL;
static VkInstance g_Instance = VK_NULL_HANDLE;
static VkPhysicalDevice g_PhysicalDevice = VK_NULL_HANDLE;
static VkDevice g_Device = VK_NULL_HANDLE;
static uint32_t g_QueueFamily = (uint32_t)-1;
static VkQueue g_Queue = VK_NULL_HANDLE;
static VkPipelineCache g_PipelineCache = VK_NULL_HANDLE;
static VkDescriptorPool g_DescriptorPool = VK_NULL_HANDLE;
static ImGui_ImplVulkanH_Window g_MainWindowData;
static uint32_t g_MinImageCount = 2;
static bool g_SwapChainRebuild = false;
static int g_SwapChainResizeWidth = 0;
static int g_SwapChainResizeHeight = 0;
static void check_vk_result(VkResult err) {
if (err == 0) return;
fprintf(stderr, "VkResult: %d\n", err);
abort();
}
// Returns the names of the Vulkan layers used for the given IREE
// |extensibility_set| and |features|.
std::vector<const char*> GetIreeLayers(
iree_hal_vulkan_extensibility_set_t extensibility_set,
iree_hal_vulkan_features_t features) {
iree_host_size_t required_count;
iree_hal_vulkan_query_extensibility_set(
features, extensibility_set, /*string_capacity=*/0, &required_count,
/*out_string_values=*/NULL);
std::vector<const char*> layers(required_count);
iree_hal_vulkan_query_extensibility_set(features, extensibility_set,
layers.size(), &required_count,
layers.data());
return layers;
}
// Returns the names of the Vulkan extensions used for the given IREE
// |extensibility_set| and |features|.
std::vector<const char*> GetIreeExtensions(
iree_hal_vulkan_extensibility_set_t extensibility_set,
iree_hal_vulkan_features_t features) {
iree_host_size_t required_count;
iree_hal_vulkan_query_extensibility_set(
features, extensibility_set, /*string_capacity=*/0, &required_count,
/*out_string_values=*/NULL);
std::vector<const char*> extensions(required_count);
iree_hal_vulkan_query_extensibility_set(features, extensibility_set,
extensions.size(), &required_count,
extensions.data());
return extensions;
}
// Returns the names of the Vulkan extensions used for the given IREE
// |vulkan_features|.
std::vector<const char*> GetDeviceExtensions(
VkPhysicalDevice physical_device,
iree_hal_vulkan_features_t vulkan_features) {
std::vector<const char*> iree_required_extensions = GetIreeExtensions(
IREE_HAL_VULKAN_EXTENSIBILITY_DEVICE_EXTENSIONS_REQUIRED,
vulkan_features);
std::vector<const char*> iree_optional_extensions = GetIreeExtensions(
IREE_HAL_VULKAN_EXTENSIBILITY_DEVICE_EXTENSIONS_OPTIONAL,
vulkan_features);
uint32_t extension_count = 0;
check_vk_result(vkEnumerateDeviceExtensionProperties(
physical_device, nullptr, &extension_count, nullptr));
std::vector<VkExtensionProperties> extension_properties(extension_count);
check_vk_result(vkEnumerateDeviceExtensionProperties(
physical_device, nullptr, &extension_count, extension_properties.data()));
// Merge extensions lists, including optional and required for simplicity.
std::set<const char*> ext_set;
ext_set.insert("VK_KHR_swapchain");
ext_set.insert(iree_required_extensions.begin(),
iree_required_extensions.end());
for (int i = 0; i < iree_optional_extensions.size(); ++i) {
const char* optional_extension = iree_optional_extensions[i];
for (int j = 0; j < extension_count; ++j) {
if (strcmp(optional_extension, extension_properties[j].extensionName) ==
0) {
ext_set.insert(optional_extension);
break;
}
}
}
std::vector<const char*> extensions(ext_set.begin(), ext_set.end());
return extensions;
}
std::vector<const char*> GetInstanceLayers(
iree_hal_vulkan_features_t vulkan_features) {
// Query the layers that IREE wants / needs.
std::vector<const char*> required_layers = GetIreeLayers(
IREE_HAL_VULKAN_EXTENSIBILITY_INSTANCE_LAYERS_REQUIRED, vulkan_features);
std::vector<const char*> optional_layers = GetIreeLayers(
IREE_HAL_VULKAN_EXTENSIBILITY_INSTANCE_LAYERS_OPTIONAL, vulkan_features);
// Query the layers that are available on the Vulkan ICD.
uint32_t layer_property_count = 0;
check_vk_result(
vkEnumerateInstanceLayerProperties(&layer_property_count, NULL));
std::vector<VkLayerProperties> layer_properties(layer_property_count);
check_vk_result(vkEnumerateInstanceLayerProperties(&layer_property_count,
layer_properties.data()));
// Match between optional/required and available layers.
std::vector<const char*> layers;
for (const char* layer_name : required_layers) {
bool found = false;
for (const auto& layer_property : layer_properties) {
if (std::strcmp(layer_name, layer_property.layerName) == 0) {
found = true;
layers.push_back(layer_name);
break;
}
}
if (!found) {
fprintf(stderr, "Required layer %s not available\n", layer_name);
abort();
}
}
for (const char* layer_name : optional_layers) {
for (const auto& layer_property : layer_properties) {
if (std::strcmp(layer_name, layer_property.layerName) == 0) {
layers.push_back(layer_name);
break;
}
}
}
return layers;
}
std::vector<const char*> GetInstanceExtensions(
SDL_Window* window, iree_hal_vulkan_features_t vulkan_features) {
// Ask SDL for its list of required instance extensions.
uint32_t sdl_extensions_count = 0;
SDL_Vulkan_GetInstanceExtensions(window, &sdl_extensions_count, NULL);
std::vector<const char*> sdl_extensions(sdl_extensions_count);
SDL_Vulkan_GetInstanceExtensions(window, &sdl_extensions_count,
sdl_extensions.data());
std::vector<const char*> iree_required_extensions = GetIreeExtensions(
IREE_HAL_VULKAN_EXTENSIBILITY_INSTANCE_EXTENSIONS_REQUIRED,
vulkan_features);
std::vector<const char*> iree_optional_extensions = GetIreeExtensions(
IREE_HAL_VULKAN_EXTENSIBILITY_INSTANCE_EXTENSIONS_OPTIONAL,
vulkan_features);
// Merge extensions lists, including optional and required for simplicity.
std::set<const char*> ext_set;
ext_set.insert(sdl_extensions.begin(), sdl_extensions.end());
ext_set.insert(iree_required_extensions.begin(),
iree_required_extensions.end());
ext_set.insert(iree_optional_extensions.begin(),
iree_optional_extensions.end());
std::vector<const char*> extensions(ext_set.begin(), ext_set.end());
return extensions;
}
void SetupVulkan(iree_hal_vulkan_features_t vulkan_features,
const char** instance_layers, uint32_t instance_layers_count,
const char** instance_extensions,
uint32_t instance_extensions_count,
const VkAllocationCallbacks* allocator, VkInstance* instance,
uint32_t* queue_family_index,
VkPhysicalDevice* physical_device, VkQueue* queue,
VkDevice* device, VkDescriptorPool* descriptor_pool) {
VkResult err;
// Create Vulkan Instance
{
VkInstanceCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
create_info.enabledLayerCount = instance_layers_count;
create_info.ppEnabledLayerNames = instance_layers;
create_info.enabledExtensionCount = instance_extensions_count;
create_info.ppEnabledExtensionNames = instance_extensions;
err = vkCreateInstance(&create_info, allocator, instance);
check_vk_result(err);
}
// Select GPU
{
uint32_t gpu_count;
err = vkEnumeratePhysicalDevices(*instance, &gpu_count, NULL);
check_vk_result(err);
IM_ASSERT(gpu_count > 0);
VkPhysicalDevice* gpus =
(VkPhysicalDevice*)malloc(sizeof(VkPhysicalDevice) * gpu_count);
err = vkEnumeratePhysicalDevices(*instance, &gpu_count, gpus);
check_vk_result(err);
// Use the first reported GPU for simplicity.
*physical_device = gpus[0];
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(*physical_device, &properties);
fprintf(stdout, "Selected Vulkan device: '%s'\n", properties.deviceName);
free(gpus);
}
// Select queue family. We want a single queue with graphics and compute for
// simplicity, but we could also discover and use separate queues for each.
{
uint32_t count;
vkGetPhysicalDeviceQueueFamilyProperties(*physical_device, &count, NULL);
VkQueueFamilyProperties* queues = (VkQueueFamilyProperties*)malloc(
sizeof(VkQueueFamilyProperties) * count);
vkGetPhysicalDeviceQueueFamilyProperties(*physical_device, &count, queues);
for (uint32_t i = 0; i < count; i++) {
if (queues[i].queueFlags &
(VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT)) {
*queue_family_index = i;
break;
}
}
free(queues);
IM_ASSERT(*queue_family_index != (uint32_t)-1);
}
// Create Logical Device (with 1 queue)
{
std::vector<const char*> device_extensions =
GetDeviceExtensions(*physical_device, vulkan_features);
const float queue_priority[] = {1.0f};
VkDeviceQueueCreateInfo queue_info = {};
queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue_info.queueFamilyIndex = *queue_family_index;
queue_info.queueCount = 1;
queue_info.pQueuePriorities = queue_priority;
VkDeviceCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
create_info.queueCreateInfoCount = 1;
create_info.pQueueCreateInfos = &queue_info;
create_info.enabledExtensionCount =
static_cast<uint32_t>(device_extensions.size());
create_info.ppEnabledExtensionNames = device_extensions.data();
// Enable timeline semaphores.
VkPhysicalDeviceFeatures2 features2;
memset(&features2, 0, sizeof(features2));
features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
create_info.pNext = &features2;
VkPhysicalDeviceTimelineSemaphoreFeatures semaphore_features;
memset(&semaphore_features, 0, sizeof(semaphore_features));
semaphore_features.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES;
semaphore_features.pNext = features2.pNext;
features2.pNext = &semaphore_features;
semaphore_features.timelineSemaphore = VK_TRUE;
err = vkCreateDevice(*physical_device, &create_info, allocator, device);
check_vk_result(err);
vkGetDeviceQueue(*device, *queue_family_index, 0, queue);
}
// Create Descriptor Pool
{
VkDescriptorPoolSize pool_sizes[] = {
{VK_DESCRIPTOR_TYPE_SAMPLER, 1000},
{VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1000},
{VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1000},
{VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1000},
{VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1000},
{VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, 1000},
{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1000},
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1000},
{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1000},
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, 1000},
{VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1000}};
VkDescriptorPoolCreateInfo pool_info = {};
pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
pool_info.maxSets = 1000 * IREE_ARRAYSIZE(pool_sizes);
pool_info.poolSizeCount = (uint32_t)IREE_ARRAYSIZE(pool_sizes);
pool_info.pPoolSizes = pool_sizes;
err =
vkCreateDescriptorPool(*device, &pool_info, allocator, descriptor_pool);
check_vk_result(err);
}
}
void SetupVulkanWindow(ImGui_ImplVulkanH_Window* wd,
const VkAllocationCallbacks* allocator,
VkInstance instance, uint32_t queue_family_index,
VkPhysicalDevice physical_device, VkDevice device,
VkSurfaceKHR surface, int width, int height,
uint32_t min_image_count) {
wd->Surface = surface;
// Check for WSI support
VkBool32 res;
vkGetPhysicalDeviceSurfaceSupportKHR(physical_device, queue_family_index,
wd->Surface, &res);
if (res != VK_TRUE) {
fprintf(stderr, "Error no WSI support on physical device 0\n");
exit(-1);
}
// Select Surface Format
const VkFormat requestSurfaceImageFormat[] = {
VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_B8G8R8_UNORM, VK_FORMAT_R8G8B8_UNORM};
const VkColorSpaceKHR requestSurfaceColorSpace =
VK_COLORSPACE_SRGB_NONLINEAR_KHR;
wd->SurfaceFormat = ImGui_ImplVulkanH_SelectSurfaceFormat(
physical_device, wd->Surface, requestSurfaceImageFormat,
(size_t)IREE_ARRAYSIZE(requestSurfaceImageFormat),
requestSurfaceColorSpace);
// Select Present Mode
#ifdef IMGUI_UNLIMITED_FRAME_RATE
VkPresentModeKHR present_modes[] = {VK_PRESENT_MODE_MAILBOX_KHR,
VK_PRESENT_MODE_IMMEDIATE_KHR,
VK_PRESENT_MODE_FIFO_KHR};
#else
VkPresentModeKHR present_modes[] = {VK_PRESENT_MODE_FIFO_KHR};
#endif
wd->PresentMode = ImGui_ImplVulkanH_SelectPresentMode(
physical_device, wd->Surface, &present_modes[0],
IREE_ARRAYSIZE(present_modes));
// Create SwapChain, RenderPass, Framebuffer, etc.
IM_ASSERT(min_image_count >= 2);
ImGui_ImplVulkanH_CreateOrResizeWindow(instance, physical_device, device, wd,
queue_family_index, allocator, width,
height, min_image_count);
// Set clear color.
ImVec4 clear_color = ImVec4(0.45f, 0.55f, 0.60f, 1.00f);
memcpy(&wd->ClearValue.color.float32[0], &clear_color, 4 * sizeof(float));
}
void RenderFrame(ImGui_ImplVulkanH_Window* wd, VkDevice device, VkQueue queue) {
VkResult err;
VkSemaphore image_acquired_semaphore =
wd->FrameSemaphores[wd->SemaphoreIndex].ImageAcquiredSemaphore;
VkSemaphore render_complete_semaphore =
wd->FrameSemaphores[wd->SemaphoreIndex].RenderCompleteSemaphore;
err = vkAcquireNextImageKHR(device, wd->Swapchain, UINT64_MAX,
image_acquired_semaphore, VK_NULL_HANDLE,
&wd->FrameIndex);
check_vk_result(err);
ImGui_ImplVulkanH_Frame* fd = &wd->Frames[wd->FrameIndex];
{
err = vkWaitForFences(
device, 1, &fd->Fence, VK_TRUE,
UINT64_MAX); // wait indefinitely instead of periodically checking
check_vk_result(err);
err = vkResetFences(device, 1, &fd->Fence);
check_vk_result(err);
}
{
err = vkResetCommandPool(device, fd->CommandPool, 0);
check_vk_result(err);
VkCommandBufferBeginInfo info = {};
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags |= VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
err = vkBeginCommandBuffer(fd->CommandBuffer, &info);
check_vk_result(err);
}
{
VkRenderPassBeginInfo info = {};
info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
info.renderPass = wd->RenderPass;
info.framebuffer = fd->Framebuffer;
info.renderArea.extent.width = wd->Width;
info.renderArea.extent.height = wd->Height;
info.clearValueCount = 1;
info.pClearValues = &wd->ClearValue;
vkCmdBeginRenderPass(fd->CommandBuffer, &info, VK_SUBPASS_CONTENTS_INLINE);
}
// Record Imgui Draw Data and draw funcs into command buffer
ImGui_ImplVulkan_RenderDrawData(ImGui::GetDrawData(), fd->CommandBuffer);
// Submit command buffer
vkCmdEndRenderPass(fd->CommandBuffer);
{
VkPipelineStageFlags wait_stage =
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkSubmitInfo info = {};
info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
info.waitSemaphoreCount = 1;
info.pWaitSemaphores = &image_acquired_semaphore;
info.pWaitDstStageMask = &wait_stage;
info.commandBufferCount = 1;
info.pCommandBuffers = &fd->CommandBuffer;
info.signalSemaphoreCount = 1;
info.pSignalSemaphores = &render_complete_semaphore;
err = vkEndCommandBuffer(fd->CommandBuffer);
check_vk_result(err);
err = vkQueueSubmit(queue, 1, &info, fd->Fence);
check_vk_result(err);
}
}
void PresentFrame(ImGui_ImplVulkanH_Window* wd, VkQueue queue) {
VkSemaphore render_complete_semaphore =
wd->FrameSemaphores[wd->SemaphoreIndex].RenderCompleteSemaphore;
VkPresentInfoKHR info = {};
info.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
info.waitSemaphoreCount = 1;
info.pWaitSemaphores = &render_complete_semaphore;
info.swapchainCount = 1;
info.pSwapchains = &wd->Swapchain;
info.pImageIndices = &wd->FrameIndex;
VkResult err = vkQueuePresentKHR(queue, &info);
check_vk_result(err);
wd->SemaphoreIndex =
(wd->SemaphoreIndex + 1) %
wd->ImageCount; // Now we can use the next set of semaphores
}
static void CleanupVulkan() {
vkDestroyDescriptorPool(g_Device, g_DescriptorPool, g_Allocator);
vkDestroyDevice(g_Device, g_Allocator);
vkDestroyInstance(g_Instance, g_Allocator);
}
static void CleanupVulkanWindow() {
ImGui_ImplVulkanH_DestroyWindow(g_Instance, g_Device, &g_MainWindowData,
g_Allocator);
}
namespace iree {
extern "C" int iree_main(int argc, char** argv) {
iree_flags_parse_checked(IREE_FLAGS_PARSE_MODE_DEFAULT, &argc, &argv);
if (argc > 1) {
// Avoid iree-run-module spinning endlessly on stdin if the user uses single
// dashes for flags.
printf(
"[ERROR] unexpected positional argument (expected none)."
" Did you use pass a flag with a single dash ('-')?"
" Use '--' instead.\n");
return 1;
}
// --------------------------------------------------------------------------
// Create a window.
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER) != 0) {
fprintf(stderr, "Failed to initialize SDL\n");
abort();
return 1;
}
// Setup window
// clang-format off
SDL_WindowFlags window_flags = (SDL_WindowFlags)(
SDL_WINDOW_VULKAN | SDL_WINDOW_RESIZABLE | SDL_WINDOW_ALLOW_HIGHDPI);
// clang-format on
SDL_Window* window = SDL_CreateWindow(
"IREE Samples - Vulkan Inference GUI", SDL_WINDOWPOS_CENTERED,
SDL_WINDOWPOS_CENTERED, 1280, 720, window_flags);
if (window == nullptr)
{
const char* sdl_err = SDL_GetError();
fprintf(stderr, "Error, SDL_CreateWindow returned: %s\n", sdl_err);
abort();
return 1;
}
// Setup Vulkan
iree_hal_vulkan_features_t iree_vulkan_features =
static_cast<iree_hal_vulkan_features_t>(
IREE_HAL_VULKAN_FEATURE_ENABLE_VALIDATION_LAYERS |
IREE_HAL_VULKAN_FEATURE_ENABLE_DEBUG_UTILS);
std::vector<const char*> layers = GetInstanceLayers(iree_vulkan_features);
std::vector<const char*> extensions =
GetInstanceExtensions(window, iree_vulkan_features);
SetupVulkan(iree_vulkan_features, layers.data(),
static_cast<uint32_t>(layers.size()), extensions.data(),
static_cast<uint32_t>(extensions.size()), g_Allocator,
&g_Instance, &g_QueueFamily, &g_PhysicalDevice, &g_Queue,
&g_Device, &g_DescriptorPool);
// Create Window Surface
VkSurfaceKHR surface;
VkResult err;
if (SDL_Vulkan_CreateSurface(window, g_Instance, &surface) == 0) {
fprintf(stderr, "Failed to create Vulkan surface.\n");
abort();
return 1;
}
// Create Framebuffers
int w, h;
SDL_GetWindowSize(window, &w, &h);
ImGui_ImplVulkanH_Window* wd = &g_MainWindowData;
SetupVulkanWindow(wd, g_Allocator, g_Instance, g_QueueFamily,
g_PhysicalDevice, g_Device, surface, w, h, g_MinImageCount);
// Setup Dear ImGui context
IMGUI_CHECKVERSION();
ImGui::CreateContext();
ImGuiIO& io = ImGui::GetIO();
(void)io;
ImGui::StyleColorsDark();
// Setup Platform/Renderer bindings
ImGui_ImplSDL2_InitForVulkan(window);
ImGui_ImplVulkan_InitInfo init_info = {};
init_info.Instance = g_Instance;
init_info.PhysicalDevice = g_PhysicalDevice;
init_info.Device = g_Device;
init_info.QueueFamily = g_QueueFamily;
init_info.Queue = g_Queue;
init_info.PipelineCache = g_PipelineCache;
init_info.DescriptorPool = g_DescriptorPool;
init_info.Allocator = g_Allocator;
init_info.MinImageCount = g_MinImageCount;
init_info.ImageCount = wd->ImageCount;
init_info.CheckVkResultFn = check_vk_result;
ImGui_ImplVulkan_Init(&init_info, wd->RenderPass);
// Upload Fonts
{
// Use any command queue
VkCommandPool command_pool = wd->Frames[wd->FrameIndex].CommandPool;
VkCommandBuffer command_buffer = wd->Frames[wd->FrameIndex].CommandBuffer;
err = vkResetCommandPool(g_Device, command_pool, 0);
check_vk_result(err);
VkCommandBufferBeginInfo begin_info = {};
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_info.flags |= VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
err = vkBeginCommandBuffer(command_buffer, &begin_info);
check_vk_result(err);
ImGui_ImplVulkan_CreateFontsTexture(command_buffer);
VkSubmitInfo end_info = {};
end_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
end_info.commandBufferCount = 1;
end_info.pCommandBuffers = &command_buffer;
err = vkEndCommandBuffer(command_buffer);
check_vk_result(err);
err = vkQueueSubmit(g_Queue, 1, &end_info, VK_NULL_HANDLE);
check_vk_result(err);
err = vkDeviceWaitIdle(g_Device);
check_vk_result(err);
ImGui_ImplVulkan_DestroyFontUploadObjects();
}
// Demo state.
bool show_iree_window = true;
// --------------------------------------------------------------------------
// Setup IREE.
// Check API version.
iree_api_version_t actual_version;
iree_status_t status =
iree_api_version_check(IREE_API_VERSION_LATEST, &actual_version);
if (iree_status_is_ok(status)) {
fprintf(stdout, "IREE runtime API version: %d\n", actual_version);
} else {
fprintf(stderr, "Unsupported runtime API version: %d\n", actual_version);
abort();
}
// Create a runtime Instance.
iree_vm_instance_t* iree_instance = nullptr;
IREE_CHECK_OK(
iree_vm_instance_create(iree_allocator_system(), &iree_instance));
// Register HAL drivers and VM module types.
IREE_CHECK_OK(iree_hal_vulkan_driver_module_register(
iree_hal_driver_registry_default()));
IREE_CHECK_OK(iree_hal_module_register_all_types(iree_instance));
// Create IREE Vulkan Driver and Device, sharing our VkInstance/VkDevice.
fprintf(stdout, "Creating Vulkan driver/device\n");
// Load symbols from our static `vkGetInstanceProcAddr` for IREE to use.
iree_hal_vulkan_syms_t* iree_vk_syms = nullptr;
IREE_CHECK_OK(iree_hal_vulkan_syms_create(
reinterpret_cast<void*>(&vkGetInstanceProcAddr), iree_allocator_system(),
&iree_vk_syms));
// Create the driver sharing our VkInstance.
iree_hal_driver_t* iree_vk_driver = nullptr;
iree_string_view_t driver_identifier = iree_make_cstring_view("vulkan");
iree_hal_vulkan_driver_options_t driver_options;
driver_options.api_version = VK_API_VERSION_1_0;
driver_options.requested_features = static_cast<iree_hal_vulkan_features_t>(
IREE_HAL_VULKAN_FEATURE_ENABLE_DEBUG_UTILS);
IREE_CHECK_OK(iree_hal_vulkan_driver_create_using_instance(
driver_identifier, &driver_options, iree_vk_syms, g_Instance,
iree_allocator_system(), &iree_vk_driver));
// Create a device sharing our VkDevice and queue.
// We could also create a separate (possibly low priority) compute queue for
// IREE, and/or provide a dedicated transfer queue.
iree_string_view_t device_identifier = iree_make_cstring_view("vulkan");
iree_hal_vulkan_queue_set_t compute_queue_set;
compute_queue_set.queue_family_index = g_QueueFamily;
compute_queue_set.queue_indices = 1 << 0;
iree_hal_vulkan_queue_set_t transfer_queue_set;
transfer_queue_set.queue_indices = 0;
iree_hal_device_t* iree_vk_device = nullptr;
IREE_CHECK_OK(iree_hal_vulkan_wrap_device(
device_identifier, &driver_options.device_options, iree_vk_syms,
g_Instance, g_PhysicalDevice, g_Device, &compute_queue_set,
&transfer_queue_set, iree_allocator_system(), &iree_vk_device));
// Create a HAL module using the HAL device.
iree_vm_module_t* hal_module = nullptr;
IREE_CHECK_OK(iree_hal_module_create(iree_instance, iree_vk_device,
IREE_HAL_MODULE_FLAG_NONE,
iree_allocator_system(), &hal_module));
// Load bytecode module
//iree_file_toc_t module_file_toc;
//const char network_model[] = "resnet50_tf.vmfb";
//fprintf(stdout, "Loading: %s\n", network_model);
//if (load_file(network_model, &module_file_toc.data, &module_file_toc.size) == false)
//{
// abort();
// return 1;
//}
//fprintf(stdout, "module size: %zu\n", module_file_toc.size);
iree_vm_module_t* bytecode_module = nullptr;
iree_status_t module_status = iree_tooling_load_module_from_flags(
iree_instance, iree_allocator_system(), &bytecode_module);
if (!iree_status_is_ok(module_status))
return -1;
//IREE_CHECK_OK(iree_vm_bytecode_module_create(
// iree_instance,
// iree_const_byte_span_t{
// reinterpret_cast<const uint8_t*>(module_file_toc.data),
// module_file_toc.size},
// iree_allocator_null(), iree_allocator_system(), &bytecode_module));
//// Query for details about what is in the loaded module.
//iree_vm_module_signature_t bytecode_module_signature =
// iree_vm_module_signature(bytecode_module);
//fprintf(stdout, "Module loaded, have <%" PRIhsz "> exported functions:\n",
// bytecode_module_signature.export_function_count);
//for (int i = 0; i < bytecode_module_signature.export_function_count; ++i) {
// iree_vm_function_t function;
// IREE_CHECK_OK(iree_vm_module_lookup_function_by_ordinal(
// bytecode_module, IREE_VM_FUNCTION_LINKAGE_EXPORT, i, &function));
// auto function_name = iree_vm_function_name(&function);
// auto function_signature = iree_vm_function_signature(&function);
// fprintf(stdout, " %d: '%.*s' with calling convention '%.*s'\n", i,
// (int)function_name.size, function_name.data,
// (int)function_signature.calling_convention.size,
// function_signature.calling_convention.data);
//}
// Allocate a context that will hold the module state across invocations.
iree_vm_context_t* iree_context = nullptr;
std::vector<iree_vm_module_t*> modules = {hal_module, bytecode_module};
IREE_CHECK_OK(iree_vm_context_create_with_modules(
iree_instance, IREE_VM_CONTEXT_FLAG_NONE, modules.size(), modules.data(),
iree_allocator_system(), &iree_context));
fprintf(stdout, "Context with modules is ready for use\n");
// Lookup the entry point function.
iree_vm_function_t main_function;
const char kMainFunctionName[] = "module.forward";
IREE_CHECK_OK(iree_vm_context_resolve_function(
iree_context,
iree_string_view_t{kMainFunctionName, sizeof(kMainFunctionName) - 1},
&main_function));
iree_string_view_t main_function_name = iree_vm_function_name(&main_function);
fprintf(stdout, "Resolved main function named '%.*s'\n",
(int)main_function_name.size, main_function_name.data);
// --------------------------------------------------------------------------
// Write inputs into mappable buffers.
iree_hal_allocator_t* allocator =
iree_hal_device_allocator(iree_vk_device);
//iree_hal_memory_type_t input_memory_type =
// static_cast<iree_hal_memory_type_t>(
// IREE_HAL_MEMORY_TYPE_HOST_LOCAL |
// IREE_HAL_MEMORY_TYPE_DEVICE_VISIBLE);
//iree_hal_buffer_usage_t input_buffer_usage =
// static_cast<iree_hal_buffer_usage_t>(IREE_HAL_BUFFER_USAGE_DEFAULT);
//iree_hal_buffer_params_t buffer_params;
//buffer_params.type = input_memory_type;
//buffer_params.usage = input_buffer_usage;
//buffer_params.access = IREE_HAL_MEMORY_ACCESS_READ | IREE_HAL_MEMORY_ACCESS_WRITE;
// Wrap input buffers in buffer views.
vm::ref<iree_vm_list_t> inputs;
iree_status_t input_status = ParseToVariantList(
allocator,
iree::span<const std::string>{FLAG_function_inputs.data(),
FLAG_function_inputs.size()},
iree_allocator_system(), &inputs);
if (!iree_status_is_ok(input_status))
return -1;
//vm::ref<iree_vm_list_t> inputs;
//IREE_CHECK_OK(iree_vm_list_create(/*element_type=*/nullptr, 6, iree_allocator_system(), &inputs));
//iree_hal_buffer_view_t* input0_buffer_view = nullptr;
//constexpr iree_hal_dim_t input_buffer_shape[] = {1, 224, 224, 3};
//IREE_CHECK_OK(iree_hal_buffer_view_allocate_buffer(
// allocator,
// /*shape_rank=*/4, /*shape=*/input_buffer_shape,
// IREE_HAL_ELEMENT_TYPE_FLOAT_32,
// IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR, buffer_params,
// iree_make_const_byte_span(&input_res50, sizeof(input_res50)),
// &input0_buffer_view));
//auto input0_buffer_view_ref = iree_hal_buffer_view_move_ref(input0_buffer_view);
//IREE_CHECK_OK(iree_vm_list_push_ref_move(inputs.get(), &input0_buffer_view_ref));
// Prepare outputs list to accept results from the invocation.
vm::ref<iree_vm_list_t> outputs;
constexpr iree_hal_dim_t kOutputCount = 1000;
IREE_CHECK_OK(iree_vm_list_create(/*element_type=*/nullptr, kOutputCount * sizeof(float), iree_allocator_system(), &outputs));
// --------------------------------------------------------------------------
// Main loop.
bool done = false;
while (!done) {
SDL_Event event;
while (SDL_PollEvent(&event)) {
if (event.type == SDL_QUIT) {
done = true;
}
ImGui_ImplSDL2_ProcessEvent(&event);
if (event.type == SDL_QUIT) done = true;
if (event.type == SDL_WINDOWEVENT &&
event.window.event == SDL_WINDOWEVENT_RESIZED &&
event.window.windowID == SDL_GetWindowID(window)) {
g_SwapChainResizeWidth = (int)event.window.data1;
g_SwapChainResizeHeight = (int)event.window.data2;
g_SwapChainRebuild = true;
}
}
if (g_SwapChainRebuild) {
g_SwapChainRebuild = false;
ImGui_ImplVulkan_SetMinImageCount(g_MinImageCount);
ImGui_ImplVulkanH_CreateOrResizeWindow(
g_Instance, g_PhysicalDevice, g_Device, &g_MainWindowData,
g_QueueFamily, g_Allocator, g_SwapChainResizeWidth,
g_SwapChainResizeHeight, g_MinImageCount);
g_MainWindowData.FrameIndex = 0;
}
// Start the Dear ImGui frame
ImGui_ImplVulkan_NewFrame();
ImGui_ImplSDL2_NewFrame(window);
ImGui::NewFrame();
// Custom window.
{
ImGui::Begin("IREE Vulkan Integration Demo", &show_iree_window);
ImGui::Separator();
// ImGui Inputs for two input tensors.
// Run computation whenever any of the values changes.
static bool dirty = true;
if (dirty) {
// Synchronously invoke the function.
IREE_CHECK_OK(iree_vm_invoke(iree_context, main_function,
IREE_VM_INVOCATION_FLAG_NONE,
/*policy=*/nullptr, inputs.get(),
outputs.get(), iree_allocator_system()));
// we want to run continuously so we can use tools like RenderDoc, RGP, etc...
dirty = true;
}
// Framerate counter.
ImGui::Text("Application average %.3f ms/frame (%.1f FPS)",
1000.0f / ImGui::GetIO().Framerate, ImGui::GetIO().Framerate);
ImGui::End();
}
// Rendering
ImGui::Render();
RenderFrame(wd, g_Device, g_Queue);
PresentFrame(wd, g_Queue);
}
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
// Cleanup
iree_vm_module_release(hal_module);
iree_vm_module_release(bytecode_module);
iree_vm_context_release(iree_context);
iree_hal_device_release(iree_vk_device);
iree_hal_allocator_release(allocator);
iree_hal_driver_release(iree_vk_driver);
iree_hal_vulkan_syms_release(iree_vk_syms);
iree_vm_instance_release(iree_instance);
err = vkDeviceWaitIdle(g_Device);
check_vk_result(err);
ImGui_ImplVulkan_Shutdown();
ImGui_ImplSDL2_Shutdown();
ImGui::DestroyContext();
CleanupVulkanWindow();
CleanupVulkan();
SDL_DestroyWindow(window);
SDL_Quit();
// --------------------------------------------------------------------------
return 0;
}
} // namespace iree

File diff suppressed because it is too large Load Diff

27
dataset/README.md Normal file
View File

@@ -0,0 +1,27 @@
# Dataset annotation tool
SHARK annotator for adding or modifying prompts of dataset images
## Set up
Activate SHARK Python virtual environment and install additional packages
```shell
source ../shark.venv/bin/activate
pip install -r requirements.txt
```
## Run annotator
```shell
python annotation_tool.py
```
<img width="1280" alt="annotator" src="https://user-images.githubusercontent.com/49575973/214521137-7ef6ae10-7cd8-46e6-b270-b6c0445157f1.png">
* Select a dataset from `Dataset` dropdown list
* Select an image from `Image` dropdown list
* Image and the existing prompt will be loaded
* Select a prompt from `Prompt` dropdown list to modify or "Add new" to add a prompt
* Click `Save` to save changes, click `Delete` to delete prompt
* Click `Back` or `Next` to switch image, you could also select other images from `Image`
* Click `Finish` when finishing annotation or before switching dataset

247
dataset/annotation_tool.py Normal file
View File

@@ -0,0 +1,247 @@
import gradio as gr
import json
import jsonlines
import os
from args import args
from pathlib import Path
from PIL import Image
from utils import get_datasets
shark_root = Path(__file__).parent.parent
demo_css = shark_root.joinpath("web/demo.css").resolve()
nodlogo_loc = shark_root.joinpath(
"web/models/stable_diffusion/logos/nod-logo.png"
)
with gr.Blocks(title="Dataset Annotation Tool", css=demo_css) as shark_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=100)
datasets, images, ds_w_prompts = get_datasets(args.gs_url)
prompt_data = dict()
with gr.Row(elem_id="ui_body"):
# TODO: add multiselect dataset, there is a gradio version conflict
dataset = gr.Dropdown(label="Dataset", choices=datasets)
image_name = gr.Dropdown(label="Image", choices=[])
with gr.Row(elem_id="ui_body"):
# TODO: add ability to search image by typing
with gr.Column(scale=1, min_width=600):
image = gr.Image(type="filepath").style(height=512)
with gr.Column(scale=1, min_width=600):
prompts = gr.Dropdown(
label="Prompts",
choices=[],
)
prompt = gr.Textbox(
label="Editor",
lines=3,
)
with gr.Row():
save = gr.Button("Save")
delete = gr.Button("Delete")
with gr.Row():
back_image = gr.Button("Back")
next_image = gr.Button("Next")
finish = gr.Button("Finish")
def filter_datasets(dataset):
if dataset is None:
return gr.Dropdown.update(value=None, choices=[])
# create the dataset dir if doesn't exist and download prompt file
dataset_path = str(shark_root) + "/dataset/" + dataset
if not os.path.exists(dataset_path):
os.mkdir(dataset_path)
# read prompt jsonlines file
prompt_data.clear()
if dataset in ds_w_prompts:
prompt_gs_path = args.gs_url + "/" + dataset + "/metadata.jsonl"
os.system(f'gsutil cp "{prompt_gs_path}" "{dataset_path}"/')
with jsonlines.open(dataset_path + "/metadata.jsonl") as reader:
for line in reader.iter(type=dict, skip_invalid=True):
prompt_data[line["file_name"]] = (
[line["text"]]
if type(line["text"]) is str
else line["text"]
)
return gr.Dropdown.update(choices=images[dataset])
dataset.change(fn=filter_datasets, inputs=dataset, outputs=image_name)
def display_image(dataset, image_name):
if dataset is None or image_name is None:
return gr.Image.update(value=None), gr.Dropdown.update(value=None)
# download and load the image
img_gs_path = args.gs_url + "/" + dataset + "/" + image_name
img_sub_path = "/".join(image_name.split("/")[:-1])
img_dst_path = (
str(shark_root) + "/dataset/" + dataset + "/" + img_sub_path + "/"
)
if not os.path.exists(img_dst_path):
os.mkdir(img_dst_path)
os.system(f'gsutil cp "{img_gs_path}" "{img_dst_path}"')
img = Image.open(img_dst_path + image_name.split("/")[-1])
if image_name not in prompt_data.keys():
prompt_data[image_name] = []
prompt_choices = ["Add new"]
prompt_choices += prompt_data[image_name]
return gr.Image.update(value=img), gr.Dropdown.update(
choices=prompt_choices
)
image_name.change(
fn=display_image,
inputs=[dataset, image_name],
outputs=[image, prompts],
)
def edit_prompt(prompts):
if prompts == "Add new":
return gr.Textbox.update(value=None)
return gr.Textbox.update(value=prompts)
prompts.change(fn=edit_prompt, inputs=prompts, outputs=prompt)
def save_prompt(dataset, image_name, prompts, prompt):
if (
dataset is None
or image_name is None
or prompts is None
or prompt is None
):
return
if prompts == "Add new":
prompt_data[image_name].append(prompt)
else:
idx = prompt_data[image_name].index(prompts)
prompt_data[image_name][idx] = prompt
prompt_path = (
str(shark_root) + "/dataset/" + dataset + "/metadata.jsonl"
)
# write prompt jsonlines file
with open(prompt_path, "w") as f:
for key, value in prompt_data.items():
if not value:
continue
v = value if len(value) > 1 else value[0]
f.write(json.dumps({"file_name": key, "text": v}))
f.write("\n")
prompt_choices = ["Add new"]
prompt_choices += prompt_data[image_name]
return gr.Dropdown.update(choices=prompt_choices, value=None)
save.click(
fn=save_prompt,
inputs=[dataset, image_name, prompts, prompt],
outputs=prompts,
)
def delete_prompt(dataset, image_name, prompts):
if dataset is None or image_name is None or prompts is None:
return
if prompts == "Add new":
return
prompt_data[image_name].remove(prompts)
prompt_path = (
str(shark_root) + "/dataset/" + dataset + "/metadata.jsonl"
)
# write prompt jsonlines file
with open(prompt_path, "w") as f:
for key, value in prompt_data.items():
if not value:
continue
v = value if len(value) > 1 else value[0]
f.write(json.dumps({"file_name": key, "text": v}))
f.write("\n")
prompt_choices = ["Add new"]
prompt_choices += prompt_data[image_name]
return gr.Dropdown.update(choices=prompt_choices, value=None)
delete.click(
fn=delete_prompt,
inputs=[dataset, image_name, prompts],
outputs=prompts,
)
def get_back_image(dataset, image_name):
if dataset is None or image_name is None:
return
# remove local image
img_path = str(shark_root) + "/dataset/" + dataset + "/" + image_name
os.system(f'rm "{img_path}"')
# get the index for the back image
idx = images[dataset].index(image_name)
if idx == 0:
return gr.Dropdown.update(value=None)
return gr.Dropdown.update(value=images[dataset][idx - 1])
back_image.click(
fn=get_back_image, inputs=[dataset, image_name], outputs=image_name
)
def get_next_image(dataset, image_name):
if dataset is None or image_name is None:
return
# remove local image
img_path = str(shark_root) + "/dataset/" + dataset + "/" + image_name
os.system(f'rm "{img_path}"')
# get the index for the next image
idx = images[dataset].index(image_name)
if idx == len(images[dataset]) - 1:
return gr.Dropdown.update(value=None)
return gr.Dropdown.update(value=images[dataset][idx + 1])
next_image.click(
fn=get_next_image, inputs=[dataset, image_name], outputs=image_name
)
def finish_annotation(dataset):
if dataset is None:
return
# upload prompt and remove local data
dataset_path = str(shark_root) + "/dataset/" + dataset
dataset_gs_path = args.gs_url + "/" + dataset + "/"
os.system(
f'gsutil cp "{dataset_path}/metadata.jsonl" "{dataset_gs_path}"'
)
os.system(f'rm -rf "{dataset_path}"')
return gr.Dropdown.update(value=None)
finish.click(fn=finish_annotation, inputs=dataset, outputs=dataset)
if __name__ == "__main__":
shark_web.launch(
share=args.share,
inbrowser=True,
server_name="0.0.0.0",
server_port=args.server_port,
)

34
dataset/args.py Normal file
View File

@@ -0,0 +1,34 @@
import argparse
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
##############################################################################
### Dataset Annotator flags
##############################################################################
p.add_argument(
"--gs_url",
type=str,
required=True,
help="URL to datasets in GS bucket",
)
p.add_argument(
"--share",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for generating a public URL",
)
p.add_argument(
"--server_port",
type=int,
default=8080,
help="flag for setting server port",
)
##############################################################################
args = p.parse_args()

3
dataset/requirements.txt Normal file
View File

@@ -0,0 +1,3 @@
# SHARK Annotator
gradio==3.15.0
jsonlines

29
dataset/utils.py Normal file
View File

@@ -0,0 +1,29 @@
from google.cloud import storage
def get_datasets(gs_url):
datasets = set()
images = dict()
ds_w_prompts = []
storage_client = storage.Client()
bucket_name = gs_url.split("/")[2]
source_blob_name = "/".join(gs_url.split("/")[3:])
blobs = storage_client.list_blobs(bucket_name, prefix=source_blob_name)
for blob in blobs:
dataset_name = blob.name.split("/")[1]
if dataset_name == "":
continue
datasets.add(dataset_name)
if dataset_name not in images.keys():
images[dataset_name] = []
# check if image or jsonl
file_sub_path = "/".join(blob.name.split("/")[2:])
if "/" in file_sub_path:
images[dataset_name] += [file_sub_path]
elif "metadata.jsonl" in file_sub_path:
ds_w_prompts.append(dataset_name)
return list(datasets), images, ds_w_prompts

View File

@@ -0,0 +1,118 @@
# Overview
This document is intended to provide a starting point for profiling with SHARK/IREE. At it's core
[SHARK](https://github.com/nod-ai/SHARK/tree/main/tank) is a python API that links the MLIR lowerings from various
frameworks + frontends (e.g. PyTorch -> Torch-MLIR) with the compiler + runtime offered by IREE. More information
on model coverage and framework support can be found [here](https://github.com/nod-ai/SHARK/tree/main/tank). The intended
use case for SHARK is for compilation and deployment of performant state of the art AI models.
![image](https://user-images.githubusercontent.com/22101546/217151219-9bb184a3-cfb9-4788-bb7e-5b502953525c.png)
## Benchmarking with SHARK
TODO: Expand this section.
SHARK offers native benchmarking support, although because it is model focused, fine grain profiling is
hidden when compared against the common "model benchmarking suite" use case SHARK is good at.
### SharkBenchmarkRunner
SharkBenchmarkRunner is a class designed for benchmarking models against other runtimes.
TODO: List supported runtimes for comparison + example on how to benchmark with it.
## Directly profiling IREE
A number of excellent developer resources on profiling with IREE can be
found [here](https://github.com/iree-org/iree/tree/main/docs/developers/developing_iree). As a result this section will
focus on the bridging the gap between the two.
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_with_tracy.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_vulkan_gpu.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_cpu_events.md
Internally, SHARK builds a pair of IREE commands to compile + run a model. At a high level the flow starts with the
model represented with a high level dialect (commonly Linalg) and is compiled to a flatbuffer (.vmfb) that
the runtime is capable of ingesting. At this point (with potentially a few runtime flags) the compiled model is then run
through the IREE runtime. This is all facilitated with the IREE python bindings, which offers a convenient method
to capture the compile command SHARK comes up with. This is done by setting the environment variable
`IREE_SAVE_TEMPS` to point to a directory of choice, e.g. for stable diffusion
```
# Linux
$ export IREE_SAVE_TEMPS=/path/to/some/directory
# Windows
$ $env:IREE_SAVE_TEMPS="C:\path\to\some\directory"
$ python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse" --save_vmfb
```
NOTE: Currently this will only save the compile command + input MLIR for a single model if run in a pipeline.
In the case of stable diffusion this (should) be UNet so to get examples for other models in the pipeline they
need to be extracted and tested individually.
The save temps directory should contain three files: `core-command-line.txt`, `core-input.mlir`, and `core-output.bin`.
The command line for compilation will start something like this, where the `-` needs to be replaced with the path to `core-input.mlir`.
```
/home/quinn/nod/iree-build/compiler/bindings/python/iree/compiler/tools/../_mlir_libs/iree-compile - --iree-input-type=none ...
```
The `-o output_filename.vmfb` flag can be used to specify the location to save the compiled vmfb. Note that a dump of the
dispatches that can be compiled + run in isolation can be generated by adding `--iree-hal-dump-executable-benchmarks-to=/some/directory`. Say, if they are in the `benchmarks` directory, the following compile/run commands would work for Vulkan on RDNA3.
```
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna3-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.mlir -o benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.vmfb
iree-benchmark-module --module=benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.vmfb --function=forward --device=vulkan
```
Where `${NUM}` is the dispatch number that you want to benchmark/profile in isolation.
### Enabling Tracy for Vulkan profiling
To begin profiling with Tracy, a build of IREE runtime with tracing enabled is needed. SHARK-Runtime builds an
instrumented version alongside the normal version nightly (.whls typically found [here](https://github.com/nod-ai/SHARK-Runtime/releases)), however this is only available for Linux. For Windows, tracing can be enabled by enabling a CMake flag.
```
$env:IREE_ENABLE_RUNTIME_TRACING="ON"
```
Getting a trace can then be done by setting environment variable `TRACY_NO_EXIT=1` and running the program that is to be
traced. Then, to actually capture the trace, use the `iree-tracy-capture` tool in a different terminal. Note that to get
the capture and profiler tools the `IREE_BUILD_TRACY=ON` CMake flag needs to be set.
```
TRACY_NO_EXIT=1 python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse"
# (in another terminal, either on the same machine or through ssh with a tunnel through port 8086)
iree-tracy-capture -o trace_filename.tracy
```
To do it over ssh, the flow looks like this
```
# From terminal 1 on local machine
ssh -L 8086:localhost:8086 <remote_server_name>
TRACY_NO_EXIT=1 python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse"
# From terminal 2 on local machine. Requires having built IREE with the CMake flag `IREE_BUILD_TRACY=ON` to build the required tooling.
iree-tracy-capture -o /path/to/trace.tracy
```
The trace can then be viewed with
```
iree-tracy-profiler /path/to/trace.tracy
```
Capturing a runtime trace will work with any IREE tooling that uses the runtime. For example, `iree-benchmark-module`
can be used for benchmarking an individual module. Importantly this means that any SHARK script can be profiled with tracy.
NOTE: Not all backends have the same tracy support. This writeup is focused on CPU/Vulkan backends but there is recently added support for tracing on CUDA (requires the `--cuda_tracing` flag).
## Experimental RGP support
TODO: This section is temporary until proper RGP support is added.
Currently, for stable diffusion there is a flag for enabling UNet to be visible to RGP with `--enable_rgp`. To get a proper capture though, the `DevModeSqttPrepareFrameCount=1` flag needs to be set for the driver (done with `VkPanel` on Windows).
With these two settings, a single iteration of UNet can be captured.
(AMD only) To get a dump of the pipelines (result of compiled SPIR-V) the `EnablePipelineDump=1` driver flag can be set. The
files will typically be dumped to a directory called `spvPipeline` (on Linux `/var/tmp/spvPipeline`. The dumped files will
include header information that can be used to map back to the source dispatch/SPIR-V, e.g.
```
[Version]
version = 57
[CsSpvFile]
fileName = Shader_0x946C08DFD0C10D9A.spv
[CsInfo]
entryPoint = forward_dispatch_193_matmul_256x65536x2304
```

View File

@@ -1,235 +0,0 @@
# Lint as: python3
"""SHARK Tank"""
# python generate_sharktank.py, you have to give a csv tile with [model_name, model_download_url]
# will generate local shark tank folder like this:
# /SHARK
# /gen_shark_tank
# /albert_lite_base
# /...model_name...
#
import os
import csv
import argparse
from shark.shark_importer import SharkImporter
import tensorflow as tf
import subprocess as sp
import hashlib
import numpy as np
visible_default = tf.config.list_physical_devices("GPU")
try:
tf.config.set_visible_devices([], "GPU")
visible_devices = tf.config.get_visible_devices()
for device in visible_devices:
assert device.device_type != "GPU"
except:
# Invalid device or cannot modify virtual devices once initialized.
pass
# All generated models and metadata will be saved under this directory.
WORKDIR = os.path.join(os.path.dirname(__file__), "gen_shark_tank")
def create_hash(file_name):
with open(file_name, "rb") as f:
file_hash = hashlib.blake2b()
while chunk := f.read(2**20):
file_hash.update(chunk)
return file_hash.hexdigest()
def save_torch_model(torch_model_list):
from tank.model_utils import get_hf_model
from tank.model_utils import get_vision_model
with open(torch_model_list) as csvfile:
torch_reader = csv.reader(csvfile, delimiter=",")
fields = next(torch_reader)
for row in torch_reader:
torch_model_name = row[0]
tracing_required = row[1]
model_type = row[2]
tracing_required = False if tracing_required == "False" else True
model = None
input = None
if model_type == "vision":
model, input, _ = get_vision_model(torch_model_name)
elif model_type == "hf":
model, input, _ = get_hf_model(torch_model_name)
torch_model_name = torch_model_name.replace("/", "_")
torch_model_dir = os.path.join(
WORKDIR, str(torch_model_name) + "_torch"
)
os.makedirs(torch_model_dir, exist_ok=True)
mlir_importer = SharkImporter(
model,
(input,),
frontend="torch",
)
mlir_importer.import_debug(
is_dynamic=False,
tracing_required=tracing_required,
dir=torch_model_dir,
model_name=torch_model_name,
)
mlir_hash = create_hash(
os.path.join(
torch_model_dir, torch_model_name + "_torch" + ".mlir"
)
)
np.save(os.path.join(torch_model_dir, "hash"), np.array(mlir_hash))
# Generate torch dynamic models.
mlir_importer.import_debug(
is_dynamic=True,
tracing_required=tracing_required,
dir=torch_model_dir,
model_name=torch_model_name + "_dynamic",
)
def save_tf_model(tf_model_list):
from tank.model_utils_tf import (
get_causal_image_model,
get_causal_lm_model,
get_keras_model,
get_TFhf_model,
)
with open(tf_model_list) as csvfile:
tf_reader = csv.reader(csvfile, delimiter=",")
fields = next(tf_reader)
for row in tf_reader:
tf_model_name = row[0]
model_type = row[1]
model = None
input = None
print(f"Generating artifacts for model {tf_model_name}")
if model_type == "hf":
model, input, _ = get_causal_lm_model(tf_model_name)
if model_type == "img":
model, input, _ = get_causal_image_model(tf_model_name)
if model_type == "keras":
model, input, _ = get_keras_model(tf_model_name)
if model_type == "TFhf":
model, input, _ = get_TFhf_model(tf_model_name)
tf_model_name = tf_model_name.replace("/", "_")
tf_model_dir = os.path.join(WORKDIR, str(tf_model_name) + "_tf")
os.makedirs(tf_model_dir, exist_ok=True)
mlir_importer = SharkImporter(
model,
input,
frontend="tf",
)
mlir_importer.import_debug(
dir=tf_model_dir,
model_name=tf_model_name,
)
mlir_hash = create_hash(
os.path.join(tf_model_dir, tf_model_name + "_tf" + ".mlir")
)
np.save(os.path.join(tf_model_dir, "hash"), np.array(mlir_hash))
def save_tflite_model(tflite_model_list):
from shark.tflite_utils import TFLitePreprocessor
with open(tflite_model_list) as csvfile:
tflite_reader = csv.reader(csvfile, delimiter=",")
for row in tflite_reader:
print("\n")
tflite_model_name = row[0]
tflite_model_link = row[1]
print("tflite_model_name", tflite_model_name)
print("tflite_model_link", tflite_model_link)
tflite_model_name_dir = os.path.join(
WORKDIR, str(tflite_model_name) + "_tflite"
)
os.makedirs(tflite_model_name_dir, exist_ok=True)
print(f"TMP_TFLITE_MODELNAME_DIR = {tflite_model_name_dir}")
# Preprocess to get SharkImporter input args
tflite_preprocessor = TFLitePreprocessor(str(tflite_model_name))
raw_model_file_path = tflite_preprocessor.get_raw_model_file()
inputs = tflite_preprocessor.get_inputs()
tflite_interpreter = tflite_preprocessor.get_interpreter()
# Use SharkImporter to get SharkInference input args
my_shark_importer = SharkImporter(
module=tflite_interpreter,
inputs=inputs,
frontend="tflite",
raw_model_file=raw_model_file_path,
)
my_shark_importer.import_debug(
dir=tflite_model_name_dir,
model_name=tflite_model_name,
func_name="main",
)
mlir_hash = create_hash(
os.path.join(
tflite_model_name_dir,
tflite_model_name + "_tflite" + ".mlir",
)
)
np.save(
os.path.join(tflite_model_name_dir, "hash"),
np.array(mlir_hash),
)
# Validates whether the file is present or not.
def is_valid_file(arg):
if not os.path.exists(arg):
return None
else:
return arg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--torch_model_csv",
type=lambda x: is_valid_file(x),
default="./tank/pytorch/torch_model_list.csv",
help="""Contains the file with torch_model name and args.
Please see: https://github.com/nod-ai/SHARK/blob/main/tank/pytorch/torch_model_list.csv""",
)
parser.add_argument(
"--tf_model_csv",
type=lambda x: is_valid_file(x),
default="./tank/tf/tf_model_list.csv",
help="Contains the file with tf model name and args.",
)
parser.add_argument(
"--tflite_model_csv",
type=lambda x: is_valid_file(x),
default="./tank/tflite/tflite_model_list.csv",
help="Contains the file with tf model name and args.",
)
parser.add_argument("--upload", type=bool, default=False)
args = parser.parse_args()
if args.torch_model_csv:
save_torch_model(args.torch_model_csv)
if args.tf_model_csv:
save_tf_model(args.tf_model_csv)
if args.tflite_model_csv:
save_tflite_model(args.tflite_model_csv)
if args.upload:
git_hash = sp.getoutput("git log -1 --format='%h'") + "/"
print("uploading files to gs://shark_tank/" + git_hash)
os.system(
"gsutil cp -r ./gen_shark_tank/* gs://shark_tank/" + git_hash
)

Some files were not shown because too many files have changed in this diff Show More