Compare commits

...

6 Commits

Author SHA1 Message Date
Elias Joseph
6cefb450bf added check so quantization is not performed when not necessary 2023-12-06 01:16:11 -08:00
Elias Joseph
0c0329699a added 70b dims 2023-12-05 20:31:59 -08:00
Elias Joseph
65bec26d76 improved performance somewhat 2023-12-05 16:15:49 -08:00
PhaneeshB
7c1981b201 fix device_idx for non-layer vmfbs 2023-12-06 01:03:11 +05:30
PhaneeshB
8f9e837d50 mmap shards + disable sharing of device arrays across devices 2023-12-05 23:52:24 +05:30
Elias Joseph
e43876cff5 improved sharded performance and fixed issue with lmhead on rocm 2023-12-05 23:36:47 +05:30
3 changed files with 151 additions and 82 deletions

View File

@@ -12,6 +12,8 @@ import sys
import time
from dataclasses import dataclass
from os import environ
from dataclasses import dataclass
from os import environ
import torch
import torch_mlir
@@ -510,6 +512,8 @@ class ShardedVicuna(VicunaBase):
n_devices=None,
) -> None:
self.hf_auth_token = hf_auth_token
self.hidden_state_size_dict = {"vicuna": 4096, "llama2_7b": 4096, "llama2_13b" : 5120, "llama2_70b" : 8192}
self.n_layers_dict = {"vicuna": 32, "llama2_7b": 32, "llama2_13b" : 40, "llama2_70b" : 80}
super().__init__(
model_name,
hf_model_path,
@@ -531,6 +535,11 @@ class ShardedVicuna(VicunaBase):
self.dir_path.mkdir(parents=True, exist_ok=True)
self.shark_model = self.compile(device=device)
def check_all_artifacts_present(self):
file_list = [f"{i}_full" for i in range(self.n_layers_dict[self.model_name])] + ["norm", "embedding", "lmhead"]
file_exists_list = [Path(f"{self.dir_name}/{x}.vmfb").exists() or Path(f"{self.dir_name}/{x}.mlir").exists() for x in file_list]
return all(file_exists_list)
def get_tokenizer(self):
kwargs = {}
if "llama2" in self.model_name:
@@ -711,6 +720,27 @@ class ShardedVicuna(VicunaBase):
device_idx = max(idx_votes, key=idx_votes.get)
return device_idx
def write_dynamic_inputs_lmhead(self, ir, sample_input_length):
if self.precision in ["fp16", "int4"]:
precision_str = "f16"
else:
precision_str = "f32"
lines = ir.splitlines()
new_lines = []
for line in lines:
if f"%cst_0 =" in line:
new_lines.append(line)
new_lines.append("%c1 = arith.constant 1 : index")
new_lines.append(f"%dim = tensor.dim %arg0, %c1 : tensor<1x?x{self.hidden_state_size_dict[self.model_name]}x{precision_str}>")
else:
line = re.sub(f"{sample_input_length}x", "?x", line)
if "?x" in line:
line = re.sub("tensor.empty\(\)", "tensor.empty(%dim)", line)
new_lines.append(line)
return "\n".join(new_lines)
def compile_lmhead(
self,
lmh,
@@ -775,14 +805,21 @@ class ShardedVicuna(VicunaBase):
use_tracing=False,
verbose=False,
)
"""
bytecode_stream = BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(mlir_path, "wb")
f_.write(bytecode)
f_.close()
"""
module = str(module)
if self.precision in ["int4", "fp16"]:
module = self.write_dynamic_inputs_lmhead(module, 137)
filepath = Path(f"{self.dir_name}/lmhead.mlir")
f_ = open(mlir_path, "w+")
f_.write(module)
f_.close()
# download_public_file(
# "gs://shark_tank/elias/compressed_sv/lmhead.mlir",
# filepath.absolute(),
@@ -795,7 +832,7 @@ class ShardedVicuna(VicunaBase):
device=device,
mlir_dialect="tm_tensor",
device_idx=device_idx,
mmap=False,
mmap=True,
)
if vmfb_path.exists():
shark_module.load_module(vmfb_path)
@@ -883,7 +920,7 @@ class ShardedVicuna(VicunaBase):
device=device,
mlir_dialect="tm_tensor",
device_idx=device_idx,
mmap=False,
mmap=True,
)
if vmfb_path.exists():
shark_module.load_module(vmfb_path)
@@ -964,7 +1001,7 @@ class ShardedVicuna(VicunaBase):
device=device,
mlir_dialect="tm_tensor",
device_idx=device_idx,
mmap=False,
mmap=True,
)
if vmfb_path.exists():
shark_module.load_module(vmfb_path)
@@ -1160,7 +1197,7 @@ class ShardedVicuna(VicunaBase):
)
if device_idx is None:
if self.n_devices is not None:
device_idx = idx % self.n_devices
device_idx = (idx * self.n_devices) // self.n_layers_dict[self.model_name]
else:
device_idx = None
module = SharkInference(
@@ -1168,7 +1205,7 @@ class ShardedVicuna(VicunaBase):
device=device,
device_idx=device_idx,
mlir_dialect="tm_tensor",
mmap=False,
mmap=True,
)
module.load_module(vmfb_path)
else:
@@ -1178,15 +1215,15 @@ class ShardedVicuna(VicunaBase):
)
if device_idx is None:
if self.n_devices is not None:
device_idx = idx % self.n_devices
device_idx = (idx * self.n_devices) // self.n_layers_dict[self.model_name]
else:
device_idx = 0
device_idx = None
module = SharkInference(
mlirs[idx],
device=device,
device_idx=device_idx,
mlir_dialect="tm_tensor",
mmap=False,
mmap=True,
)
module.save_module(
module_name=f"{self.dir_name}/{idx}_full",
@@ -1238,7 +1275,7 @@ class ShardedVicuna(VicunaBase):
if self.n_devices is not None:
device_idx = idx % self.n_devices
else:
device_idx = 0
device_idx = None
module = SharkInference(
None,
device=device,
@@ -1256,7 +1293,7 @@ class ShardedVicuna(VicunaBase):
if self.n_devices is not None:
device_idx = idx % self.n_devices
else:
device_idx = 0
device_idx = None
module = SharkInference(
mlirs[idx],
device=device,
@@ -1289,72 +1326,79 @@ class ShardedVicuna(VicunaBase):
)
if self.precision in ["int4", "int8"]:
from brevitas_examples.common.generative.quantize import (
quantize_model,
)
from brevitas_examples.llm.llm_quant.run_utils import (
get_model_impl,
)
print("Applying weight quantization..")
weight_bit_width = 4 if self.precision == "int4" else 8
quantize_model(
get_model_impl(vicuna_model).layers,
dtype=torch.float32,
weight_quant_type="asym",
weight_bit_width=weight_bit_width,
weight_param_method="stats",
weight_scale_precision="float_scale",
weight_quant_granularity="per_group",
weight_group_size=self.weight_group_size,
quantize_weight_zero_point=False,
input_bit_width=None,
input_scale_type="float",
input_param_method="stats",
input_quant_type="asym",
input_quant_granularity="per_tensor",
quantize_input_zero_point=False,
seqlen=2048,
)
print("Weight quantization applied.")
if not self.check_all_artifacts_present():
print("Applying weight quantization..")
from brevitas_examples.common.generative.quantize import (
quantize_model,
)
from brevitas_examples.llm.llm_quant.run_utils import (
get_model_impl,
)
weight_bit_width = 4 if self.precision == "int4" else 8
quantize_model(
get_model_impl(vicuna_model).layers,
dtype=torch.float32,
weight_quant_type="asym",
weight_bit_width=weight_bit_width,
weight_param_method="stats",
weight_scale_precision="float_scale",
weight_quant_granularity="per_group",
weight_group_size=self.weight_group_size,
quantize_weight_zero_point=False,
input_bit_width=None,
input_scale_type="float",
input_param_method="stats",
input_quant_type="asym",
input_quant_granularity="per_tensor",
quantize_input_zero_point=False,
seqlen=2048,
)
print("Weight quantization applied.")
else:
print("Skipping quantization, as all required artifacts are present")
placeholder_pkv_segment = tuple(
(
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
)
for _ in range(8)
)
placeholder_pkv_full = tuple(
(
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
)
for _ in range(32)
for _ in range(self.n_layers_dict[self.model_name])
)
placeholder_input0 = (
torch.zeros([1, SAMPLE_INPUT_LEN, 4096]),
torch.zeros([1, SAMPLE_INPUT_LEN, self.hidden_state_size_dict[self.model_name]]),
torch.zeros([1, 1, SAMPLE_INPUT_LEN, SAMPLE_INPUT_LEN]),
torch.zeros([1, SAMPLE_INPUT_LEN], dtype=torch.int64),
)
placeholder_input1 = (
torch.zeros([1, 1, 4096]),
torch.zeros([1, 1, self.hidden_state_size_dict[self.model_name]]),
torch.zeros([1, 1, 1, SAMPLE_INPUT_LEN + 1]),
torch.zeros([1, 1], dtype=torch.int64),
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
)
norm = VicunaNorm(vicuna_model.model.norm)
device_idx = self.get_device_index(
r"vicuna\.model\.model\.norm(?:\.|\s|$)"
)
print(device_idx)
# HC device_idx for non-layer vmfbs
device_idx = 0
norm = self.compile_norm(
norm,
torch.zeros([1, SAMPLE_INPUT_LEN, 4096]),
torch.zeros([1, SAMPLE_INPUT_LEN, self.hidden_state_size_dict[self.model_name]]),
device=self.device,
device_idx=device_idx,
)
@@ -1363,7 +1407,8 @@ class ShardedVicuna(VicunaBase):
device_idx = self.get_device_index(
r"vicuna\.model\.model\.embed_tokens(?:\.|\s|$)"
)
print(device_idx)
# HC device_idx for non-layer vmfbs
device_idx = 0
embeddings = self.compile_embedding(
embeddings,
(torch.zeros([1, SAMPLE_INPUT_LEN], dtype=torch.int64)),
@@ -1375,10 +1420,11 @@ class ShardedVicuna(VicunaBase):
device_idx = self.get_device_index(
r"vicuna\.model\.lm_head(?:\.|\s|$)"
)
print(device_idx)
# HC device_idx for non-layer vmfbs
device_idx = 0
lmhead = self.compile_lmhead(
lmhead,
torch.zeros([1, SAMPLE_INPUT_LEN, 4096]),
torch.zeros([1, SAMPLE_INPUT_LEN, self.hidden_state_size_dict[self.model_name]]),
device=self.device,
device_idx=device_idx,
)
@@ -1412,7 +1458,8 @@ class ShardedVicuna(VicunaBase):
)
if not compressed:
shark_layers = [CompiledVicunaLayer(m) for m in modules]
breakpoints = [x for x in range(0,len(modules),(self.n_devices % 2) + (len(modules)//(self.n_devices)))][1:] + [len(modules)]
shark_layers = [CompiledVicunaLayer(m, i, breakpoints) for (i, m) in enumerate(modules)]
else:
shark_layers = [CompiledEightLayerLayer(m) for m in modules]
vicuna_model.model.compressedlayers = shark_layers
@@ -1667,12 +1714,7 @@ class UnshardedVicuna(VicunaBase):
new_lines = []
# Using a while loop and the pop method to avoid creating a copy of module
if "llama2_13b" in self.model_name:
pkv_tensor_shape = "tensor<1x40x?x128x"
elif "llama2_70b" in self.model_name:
pkv_tensor_shape = "tensor<1x8x?x128x"
else:
pkv_tensor_shape = "tensor<1x32x?x128x"
pkv_tensor_shape = f"tensor<1x{self.n_layers_dict[self.model_name]}x?x128x"
if self.precision in ["fp16", "int4", "int8"]:
pkv_tensor_shape += "f16>"
else:

View File

@@ -1,4 +1,5 @@
import torch
import time
class FirstVicunaLayer(torch.nn.Module):
@@ -110,9 +111,11 @@ class LMHeadCompiled(torch.nn.Module):
self.model = shark_module
def forward(self, hidden_states):
hidden_states = hidden_states.detach()
hidden_states_sample = hidden_states.detach()
output = self.model("forward", (hidden_states,))
output = torch.tensor(output)
return output
@@ -136,8 +139,9 @@ class VicunaNormCompiled(torch.nn.Module):
hidden_states.detach()
except:
pass
output = self.model("forward", (hidden_states,))
output = self.model("forward", (hidden_states,), send_to_host=True)
output = torch.tensor(output)
return output
@@ -158,15 +162,18 @@ class VicunaEmbeddingCompiled(torch.nn.Module):
def forward(self, input_ids):
input_ids.detach()
output = self.model("forward", (input_ids,))
output = self.model("forward", (input_ids,), send_to_host=True)
output = torch.tensor(output)
return output
class CompiledVicunaLayer(torch.nn.Module):
def __init__(self, shark_module):
def __init__(self, shark_module, idx, breakpoints):
super().__init__()
self.model = shark_module
self.idx = idx
self.breakpoints = breakpoints
def forward(
self,
@@ -177,10 +184,12 @@ class CompiledVicunaLayer(torch.nn.Module):
output_attentions=False,
use_cache=True,
):
is_breakpoint = self.idx + 1 in self.breakpoints
if past_key_value is None:
hidden_states = hidden_states.detach()
attention_mask = attention_mask.detach()
position_ids = position_ids.detach()
# hidden_states = hidden_states.detach()
# attention_mask = attention_mask.detach()
# position_ids = position_ids.detach()
output = self.model(
"first_vicuna_forward",
(
@@ -188,11 +197,17 @@ class CompiledVicunaLayer(torch.nn.Module):
attention_mask,
position_ids,
),
send_to_host=is_breakpoint,
)
output0 = torch.tensor(output[0])
output1 = torch.tensor(output[1])
output2 = torch.tensor(output[2])
if is_breakpoint:
output0 = torch.tensor(output[0])
output1 = torch.tensor(output[1])
output2 = torch.tensor(output[2])
else:
output0 = output[0]
output1 = output[1]
output2 = output[2]
return (
output0,
@@ -202,11 +217,12 @@ class CompiledVicunaLayer(torch.nn.Module):
),
)
else:
hidden_states = hidden_states.detach()
attention_mask = attention_mask.detach()
position_ids = position_ids.detach()
pkv0 = past_key_value[0].detach()
pkv1 = past_key_value[1].detach()
# hidden_states = hidden_states.detach()
# attention_mask = attention_mask.detach()
# position_ids = position_ids.detach()
# pkv0 = past_key_value[0].detach()
pkv0 = past_key_value[0]
pkv1 = past_key_value[1]
output = self.model(
"second_vicuna_forward",
(
@@ -216,11 +232,17 @@ class CompiledVicunaLayer(torch.nn.Module):
pkv0,
pkv1,
),
send_to_host=is_breakpoint,
)
output0 = torch.tensor(output[0])
output1 = torch.tensor(output[1])
output2 = torch.tensor(output[2])
if is_breakpoint:
output0 = torch.tensor(output[0])
output1 = torch.tensor(output[1])
output2 = torch.tensor(output[2])
else:
output0 = output[0]
output1 = output[1]
output2 = output[2]
return (
output0,

View File

@@ -355,11 +355,15 @@ def get_iree_module(
device = iree_device_map(device)
print("registering device id: ", device_idx)
haldriver = ireert.get_driver(device)
hal_device_id = haldriver.query_available_devices()[device_idx][
"device_id"
]
haldevice = haldriver.create_device(
haldriver.query_available_devices()[device_idx]["device_id"],
hal_device_id,
allocators=shark_args.device_allocator,
)
config = ireert.Config(device=haldevice)
config.id = hal_device_id
else:
config = get_iree_runtime_config(device)
vm_module = ireert.VmModule.from_buffer(
@@ -398,15 +402,16 @@ def load_vmfb_using_mmap(
haldriver = ireert.get_driver(device)
dl.log(f"ireert.get_driver()")
hal_device_id = haldriver.query_available_devices()[device_idx][
"device_id"
]
haldevice = haldriver.create_device(
haldriver.query_available_devices()[device_idx]["device_id"],
hal_device_id,
allocators=shark_args.device_allocator,
)
dl.log(f"ireert.create_device()")
config = ireert.Config(device=haldevice)
config.id = haldriver.query_available_devices()[device_idx][
"device_id"
]
config.id = hal_device_id
dl.log(f"ireert.Config()")
else:
config = get_iree_runtime_config(device)