Compare commits

...

233 Commits

Author SHA1 Message Date
Quinn Dawkins
7d0cbd8d90 [SD][web] Set default tuned unet to v2 (#663) 2022-12-19 11:50:08 +07:00
Quinn Dawkins
59358361f9 [SD] Make clip batch 2 for positive and negative prompts (#662)
Combines the forward passes for each input prompt type into a single batched clip pass.
2022-12-18 23:46:21 -05:00
Quinn Dawkins
7fea2d3b68 [SD] update default large heap size for web as well (#661) 2022-12-18 21:50:26 -05:00
Quinn Dawkins
b6d3ff26bd [SD] Change default VMA large heap block size (#660) 2022-12-18 21:41:46 -05:00
Stella Laurenzo
523e63f5c1 Fix NoneType exception if vulkan tuning flags not detected. (#659)
(This goes on to produce compilation errors, but one step at a time)
2022-12-18 16:40:56 -08:00
Stella Laurenzo
10630ab597 Add config stanza for NVIDIA RTX 2080. (#658)
Just happened to have this card on my Windows machine and verified that the SD demo works on it.

```
Average step time: 144.26142692565918ms/it
Clip Inference Avg time (ms) = (205.001 + 44.000) / 2 = 124.501
VAE Inference time (ms): 281.001

Total image generation time: 7.856997728347778sec
```

I'd love to add an API upstream to derive compiler tuning flags from a host device.
2022-12-18 16:40:47 -08:00
Quinn Dawkins
2bc6de650d [SD] Add support for a compiled version of the discrete Euler scheduler (#657)
* Add Shark version of euler scheduler

* Add Shark version of euler scheduler to web ui
2022-12-17 19:25:43 -08:00
powderluv
ffef1681e3 Update stable_diffusion_amd.md 2022-12-17 03:40:08 -08:00
yzhang93
d935006a4a Update Unet tuned model to v2 (#656) 2022-12-16 22:10:15 -08:00
powderluv
660cb5946e Update to 392 release 2022-12-16 16:00:49 -08:00
Gaurav Shukla
10160a066a [SD][WEB] Add vae tuned model in the SD web (#653)
1. Add tuned vae model in the SD web.
2. Use tuned models in case of rdna3 cards.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-16 15:29:48 -08:00
Anush Elangovan
72976a2ece Import env vars first 2022-12-16 15:12:28 -08:00
Phaneesh Barwaria
831f206cd0 Revert "Add target triple selection for multiple cards" (#655)
This reverts commit acb905f0cc.
2022-12-16 15:01:45 -08:00
Gaurav Shukla
72648aa9f2 Revert "[SD][WEB] Deduce vulkan-target-triple in the presence of multiple cards"
This reverts commit 35e623deaf.
2022-12-17 04:28:18 +05:30
Gaurav Shukla
35e623deaf [SD][WEB] Deduce vulkan-target-triple in the presence of multiple cards
1. Get the correct vulkan-target-triple for a specified device in the
   presence of multiple cards.
2. Use tuned unet model for rdna3 cards.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-17 03:04:47 +05:30
Anush Elangovan
6263636738 Fix more lints 2022-12-16 13:26:15 -08:00
Anush Elangovan
535d012ded Fix lint 2022-12-16 13:24:51 -08:00
yzhang93
c73eed2e51 Add VAE winograd tuned model (#647) 2022-12-16 13:01:45 -08:00
Anush Elangovan
30fdc99f37 Set to enable llpc
Use an env var to enable llpc
2022-12-16 12:57:30 -08:00
PhaneeshB
acb905f0cc Add target triple selection for multiple cards 2022-12-17 02:24:37 +05:30
Gaurav Shukla
bba06d0142 [SD][WEB] Avoid passing args to utils APIs
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-17 01:41:33 +05:30
Ean Garvey
a14a47af12 Move most xfails to entries in tank/all_models.csv and temporarily remove multiprocessing and TF gpu support. (#646)
-Adds date variable back to nightly.yml so shark_tank uploads are dated again
-added specification for nightly pytests to not run tests on metal (vulkan is sufficient)
-added some paths/filetypes to be ignored when triggering workflow runs. (no test-models on changes to .md files or anything in the shark/examples/ directory or its subdirectories.
-pytest only picks up tank/test_models.py, so no need to specify which file to run when running pytest from SHARK base directory.
-Cleaned up xfails so that they can be added to models as csv entries. Columns 7-9 in all_models.csv trigger xfails with cpu, cuda, vulkan, respectively, and row 10 can be populated with a reason for the xfails.
-Fixed a few defaults for shark_args and pytest args (defined in conftest.py)
-Fixes --update_tank option in shark_downloader
removes some multiprocessing in pytest / TF+CUDA support because it breaks pytest and false passes, leaving regressions at large.
-Adds xfails for and removes albert torch from gen_sharktank list (tank/torch_model_list.csv).
-Cleans up xfails for cpu, cuda, vulkan (removing old ones)
2022-12-16 12:56:32 +05:30
Phaneesh Barwaria
73457336bc add flag for toggling vulkan validation layers (#624)
* add vulkan_validation_layers flag

* categorize SD flags

* stringify true and false for flag
2022-12-15 20:40:59 -06:00
Ean Garvey
a14c53ad31 Remove albert-base-v2 since it fails torch_mlir.compile() (#644) 2022-12-15 16:05:19 -06:00
Gaurav Shukla
e7e763551a [WEB][SD] Make unet tuned model default for rdna3 devices (#642) 2022-12-15 12:02:03 -08:00
nirvedhmeshram
2928179331 Add more NVIDIA targets (#640) 2022-12-15 11:24:38 -06:00
Stanley Winata
24a16a4cfe [Stable Diffusion] Disable binding fusion to work with moltenVK on mac. (#639)
Co-authored-by: Stanley <stanley@MacStudio.lan>
2022-12-16 00:22:49 +07:00
Phaneesh Barwaria
6aed4423b2 add vulkan lib path (#638) 2022-12-15 19:48:29 +07:00
yzhang93
6508e3fcc9 Update tuned model SD v2.1base (#634) 2022-12-14 16:02:35 -05:00
Gaurav Shukla
a15cb140ae [WEB] Display the 512x512 image size
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-14 22:43:03 +05:30
Prashant Kumar
898bc9e009 Add the stable diffusion v2.1 version. 2022-12-14 20:19:41 +05:30
Gaurav Shukla
e67ea31ee2 [SHARK][SD] Add --local_tank_cache flag in the stable diffusion
This flag can be used to set local shark_tank cache directory.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-14 20:00:25 +05:30
Gaurav Shukla
986c126a5c [SHARK][SD] Add support for negative prompts
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-14 18:20:09 +05:30
Gaurav Shukla
0eee7616b9 [WEB] Launch only one SD version at a time
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-14 17:30:24 +05:30
powderluv
5ddce749b8 lint fix 2022-12-13 22:02:32 -08:00
powderluv
d946cffabc Revert "Move most xfails to entries in tank/all_models.csv and temporarily remove multiprocessing and TF gpu support. (#602)" (#622)
This reverts commit fe618811ee.
2022-12-13 21:49:46 -08:00
Ean Garvey
fe618811ee Move most xfails to entries in tank/all_models.csv and temporarily remove multiprocessing and TF gpu support. (#602)
* Move most xfails to entries in tank/all_models.csv

* enable usage of pytest without specifying tank/test_models.py

* add dict_configs.py to gitignore.

* Pin versions for runtimes and torch-mlir for setup.
2022-12-13 18:11:17 -08:00
powderluv
09c45bfb80 clean up cache printf 2022-12-13 14:11:14 -08:00
Boian Petkantchin
e9e9ccd379 Add stress test 2022-12-13 13:21:51 -08:00
Boian Petkantchin
a9b27c78a3 Return dynamic model if specified when downloading from the tank 2022-12-13 13:21:51 -08:00
Boian Petkantchin
bc17c29b2e In get_iree_runtime_config get the specific device instead of the default 2022-12-13 13:21:51 -08:00
Boian Petkantchin
aaf60bdee6 Simplify iree_device_map 2022-12-13 13:21:51 -08:00
Gaurav Shukla
d913453e57 [WEB] Update models to 8dec and also default values (#620)
1. Update the models to 8 dec.
2. precision is default to `fp16` in CLI.
3. version is default to `v2.1base` in CLI as well as web.
4. The default scheduler is set to `EulerDiscrete` now.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-13 13:08:33 -08:00
powderluv
08e373aef4 Update stable_diffusion_amd.md 2022-12-13 11:47:29 -08:00
Prashant Kumar
4cb50a3d06 Update the models to 8th Dec version. 2022-12-14 00:01:46 +05:30
Gaurav Shukla
b03038222d [SHARK] Update dependencies
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-13 22:12:00 +05:30
Gaurav Shukla
5f5e0766dd [WEB] Add SD2.1 web support
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-13 21:36:01 +05:30
powderluv
48ec11c514 Build wheels (#613)
* Build wheels

* Update nightly.yml

* Update nightly.yml

* Update nightly.yml
2022-12-12 20:53:08 -08:00
Prashant Kumar
8ae76d18b5 Add euler scheduler. Also, make it default for sd2.1. 2022-12-13 00:03:45 +05:30
Prashant Kumar
e5be1790e5 Enable the v2.1 base version with --version="v2.1base". (#611) 2022-12-12 07:02:01 -08:00
powderluv
e64aa40b17 Add Windows nightly builder 2022-12-11 19:31:02 -08:00
mariecwhite
eb8114ece8 Initialize TF models locally (#610) 2022-12-12 11:35:34 +11:00
Ean Garvey
616ee9b824 Don't include baseline benchmarks if setup without IMPORTER=1. (#607) 2022-12-10 14:58:29 -06:00
Stanley Winata
57c94f8f80 [vulkan] Add "radeon" check to the default AMD triple (#604) 2022-12-10 09:05:48 -08:00
powderluv
2a59c4f670 Update stable_diffusion_amd.md 2022-12-09 16:54:47 -08:00
Boian Petkantchin
192ff487c4 Fix wrong path to script in tank readme (#598) 2022-12-09 11:51:17 -06:00
Gaurav Shukla
b62ee3fcb9 [WEB] Add schedulers in the web UI (#594)
1. Add schedulers option in web UI.
2. Remove random seed checkbox as the same functionality can be achieved
   by passing -1(or any negative number) to the seed.

Signed-Off-by: Gaurav Shukla

Signed-off-by: Gaurav Shukla
2022-12-08 13:53:20 -08:00
Ean Garvey
0225292a44 Remove print statements from compile utils (#593) 2022-12-08 13:40:47 -08:00
Ean Garvey
589a7ed02f Print a message when a model is downloaded via shark_downloader. (#595) 2022-12-08 15:27:58 -06:00
Quinn Dawkins
b3a42cd0b1 Don't do nchw-to-nhwc transpose for stable diffusion models (#592) 2022-12-08 12:19:23 -05:00
Gaurav Shukla
e3e1ca7cc6 [WEB] Fix seed when out of uint32 range
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-08 22:46:33 +05:30
Gaurav Shukla
57e417d174 [WEB] Fix web performance
Set the iree flags before compilation.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-08 19:57:20 +05:30
Ean Garvey
1699db79b5 Disable SHARK-Runtime flags if USE_IREE=1 specified during setup. (#588)
* Disable SHARK-Runtime flags if USE_IREE=1 specified during setup.

* Update setup_venv.sh

* Autodetect cpu count for runtime flags.
2022-12-08 02:31:31 -06:00
Quinn Dawkins
dab9403b8f Fix slow conversion to image in SD web gui (#586) 2022-12-08 00:35:51 -05:00
Ean Garvey
9a14298146 Revert changes to multiprocessing (#585) 2022-12-07 19:59:17 -06:00
Ean Garvey
40eea21863 Enable conv nchw-to-nhwc flag by default for most models + minor fixes (#584) 2022-12-07 16:24:02 -08:00
Ean Garvey
d2475ec169 Add mnasnet to torch models and minor fixes. (#577)
* Minor fixes to benchmark runner

* Add Mnasnet to tank.
2022-12-07 22:30:58 +05:30
Ean Garvey
b3bcf4bf44 Update expected failures in pytest suite. (#574) 2022-12-06 23:05:12 -08:00
Stanley Winata
6049f86bc4 [Vulkan][Utils] Automatic platform/OS detection (#569)
To enable AMD gpus on macOS, we need this detection to let the compiler know that we would be needing moltenVK to use this GPU.
2022-12-07 12:05:00 +07:00
mariecwhite
ff649b52ef Add TF EfficientNet Model (#502) 2022-12-06 13:51:59 -06:00
Gaurav Shukla
e9e138c757 [WEB] Add random seed checkbox
When True, it will not use user specified seed, instead will generate a
random seed.

Signed-Off-by: Gaurav Shukla
2022-12-06 21:44:22 +05:30
Phaneesh Barwaria
1096936a15 Enable f32 path for SD (#567) 2022-12-06 19:29:12 +05:30
Gaurav Shukla
29cc478525 [WEB] Add command line args to shark web
1. Now the server can be launched with command line args.
2. The `precision` and `scheduler` parameters are now part of command
   line args instead of UI.
3. Add vae encode model wrapper.

Signed-Off-by: Gaurav Shukla
2022-12-06 17:21:05 +05:30
Stanley Winata
05e9eb40b5 [Misc] Ignore vmfbs from getting tracked by git. (#566) 2022-12-06 00:01:52 -08:00
Stanley Winata
c4444ff695 [vulkan][utils] Add rdna3 detection (#565) 2022-12-05 23:56:06 -08:00
Anush Elangovan
27b34f3929 Add gcs instead of gsutil
Test .exe on AMD hardware.
2022-12-05 22:17:58 -08:00
powderluv
2b8d784660 update latest sd build 2022-12-05 22:16:13 -08:00
Daniel Garvey
18f447d8d8 fix hash comparison (#563)
Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 21:43:05 -08:00
Daniel Garvey
d7e1078d68 remove nodcloud from client (#562)
Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 23:13:19 -06:00
Daniel Garvey
6be592653f remove gsutil_flags and fix download (#559) 2022-12-05 20:29:00 -08:00
Daniel Garvey
8859853b41 Revert "Revert "find gsutil on linux (#557)" (#560)" (#561)
This reverts commit 3c46021102.
2022-12-05 20:27:43 -08:00
Daniel Garvey
3c46021102 Revert "find gsutil on linux (#557)" (#560)
This reverts commit bba8646669.
2022-12-05 21:53:47 -06:00
Daniel Garvey
bba8646669 find gsutil on linux (#557)
* find gsutil on linux

* cleaned up downloader and ditched gsutil

Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 19:03:48 -08:00
Daniel Garvey
b0dc19a910 revert parallel downloads to 1 (#555)
Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 15:42:42 -08:00
Daniel Garvey
df79ebd0f2 replace gsutil with variable path for pyinstaller (#541)
Co-authored-by: dan <dan@nod-labs.com>
2022-12-05 15:08:57 -08:00
Quinn Dawkins
e19a97f316 Don't do a numpy copy on the results from compiled vm (#543) 2022-12-05 14:21:47 -05:00
Harish Anand
482ffd6275 Move discord link from advanced instructions (#542) 2022-12-04 06:15:34 -08:00
Quinn Dawkins
5117e50602 Revert "Enable the clip f16 model." until correctness is fixed 2022-12-04 19:17:34 +05:30
powderluv
83b138208d Add gradio to requirements.txt 2022-12-03 16:06:52 -08:00
Quinn Dawkins
1870cb4557 Add a note to the Stable Diffusion README about clearing vulkan cache (#545) 2022-12-03 15:12:45 -08:00
Prashant Kumar
42ad5b9c5c Enable the clip f16 model.
-- Enabled the clip f16 model.
-- Updated the location of sdv2 model.
2022-12-03 18:50:40 +05:30
yzhang93
333975eb8f Update Unet fp16 tuned model and Vae flag (#539) 2022-12-02 23:21:18 -05:00
Gaurav Shukla
aa0195e4ef [SHARK] Add vae encoder wrapper
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-03 08:42:25 +05:30
Anush Elangovan
56109fe09b Add one click installer
Build with pyinstaller web\shark_sd.spec
2022-12-02 14:07:10 -08:00
powderluv
e74046478b Update stable_diffusion_amd.md 2022-12-02 13:57:03 -08:00
Gaurav Shukla
aa5a60812f [SHARK] Fix space issues in download path
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-03 00:52:10 +05:30
Ean Garvey
ebb60019aa Minor formatting fix. (#538) 2022-12-03 00:17:31 +05:30
mariecwhite
6393dc5d14 Use correct TF device depending on configuration (#492) 2022-12-02 11:33:56 -06:00
Anush Elangovan
8c158f2452 Fix onedir pyinstall
Use relative paths for install

pyinstaller web/shark_sd.spec creates an exe
2022-12-02 07:28:22 -08:00
powderluv
8c3eabdcee Update stable_diffusion_amd.md 2022-12-02 07:13:10 -08:00
powderluv
8aa0ce6a24 Update stable_diffusion_amd.md 2022-12-02 07:10:31 -08:00
Gaurav Shukla
a27ee141b3 [WEB] Fix few warnings and generate seed faster
1. Fix gsutil warnings while copying multiple files.
2. Enhance random seed generation speed.
3. Add support for multiple schedulers.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-02 17:16:19 +05:30
Anush Elangovan
1106456651 Update cuda 11.7 nightly URL and add index.spec 2022-12-01 22:49:23 -08:00
Quinn Dawkins
8856878cbd Add flag for enabling rgp from the main.py SD script (#533) 2022-12-01 19:01:29 -05:00
Gaurav Shukla
a9bac0287d [WEB] Update to latest models.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-12-01 22:55:31 +05:30
Gaurav Shukla
efbd3dc778 [WEB] Fix debug option and add random seed generation
Signed-Off-by: Gaurav Shukla
2022-12-01 21:08:34 +05:30
Phaneesh Barwaria
a0d0eaa408 add clip and vae timing (#527) 2022-12-01 16:17:40 +05:30
Prashant Kumar
e2bf734b67 Update f32 models. 2022-12-01 14:16:03 +05:30
Prashant Kumar
a333a90441 Update to the latest bytecode. 2022-12-01 12:44:54 +05:30
powderluv
6dc0057d3d Update README.md 2022-11-30 17:02:28 -08:00
powderluv
0f9e69d48c Update README.md 2022-11-30 17:01:23 -08:00
powderluv
e6a7c019ab Update README.md 2022-11-30 16:59:55 -08:00
powderluv
1d32eabd14 Update stable_diffusion_amd.md 2022-11-30 16:52:07 -08:00
powderluv
53d03f06a6 Update stable_diffusion_amd.md 2022-11-30 16:04:53 -08:00
powderluv
a2d8c40455 Update stable_diffusion_amd.md 2022-11-30 15:56:38 -08:00
powderluv
4f7d950c8d Update README.md 2022-11-30 15:54:50 -08:00
Harish Anand
cac54b8c26 Update stable_diffusion_amd.md (#525)
- Mention `git clone` after installing git in Windows
- Remove the extra . in powershell set-executionpolicy
2022-11-30 14:48:10 -08:00
powderluv
cd0e881d7d Update stable_diffusion_amd.md 2022-11-30 13:43:24 -08:00
powderluv
fee406e220 Update README.md 2022-11-30 13:43:02 -08:00
powderluv
128342f47f Update stable_diffusion_amd.md 2022-11-30 13:42:25 -08:00
powderluv
024487c5fe Update stable_diffusion_amd.md 2022-11-30 13:40:00 -08:00
powderluv
879ba27ccb Update stable_diffusion_amd.md 2022-11-30 13:33:04 -08:00
powderluv
6d6d9627e7 Update stable_diffusion_amd.md 2022-11-30 13:31:53 -08:00
powderluv
af4bc82543 Update stable_diffusion_amd.md 2022-11-30 13:30:15 -08:00
powderluv
439a18bcc3 Update README.md 2022-11-30 13:27:13 -08:00
powderluv
e12a1e0444 Update README.md 2022-11-30 13:01:19 -08:00
powderluv
4400b0d3c3 Update README.md 2022-11-30 12:38:02 -08:00
powderluv
5dff28ff99 streamline README.md 2022-11-30 12:23:36 -08:00
powderluv
d5ac841a1a Update requirements.txt
add transformers to base venv
2022-11-30 12:12:28 -08:00
powderluv
232ce12e9b Create stable_diffusion_amd.md 2022-11-30 12:10:34 -08:00
aldesilv
9a8638a6d0 dump all isas with amdllpc (#517)
SHARK/shark/examples/shark_inference/stable_diffusion$ python main.py --precision="fp16" --device="vulkan" --iree-vulkan-target-triple=rdna3-unknown-linux --no-load_vmfb --dispatch_benchmarks="all" --dispatch_benchmarks_dir="SD_dispatches" --dump_isa

Co-authored-by: alexander <alexander@nod-labs.com>
2022-11-30 11:33:30 -08:00
Gaurav Shukla
a5445866b8 [WEB] Update the iree flag
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-30 18:56:48 +05:30
powderluv
e8ded71a7b Default to 50 steps for SD 2022-11-29 16:45:23 -08:00
Prashant Kumar
a14c615def Update with the new flag. (#522) 2022-11-29 09:39:32 -08:00
Gaurav Shukla
3903b6ff0c [WEB] Enable Debug and disable live preview
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-29 22:39:53 +05:30
Ean Garvey
41bf262482 Update SD README.md (#516)
* Update README.md

* Create profiling_with_iree.md
2022-11-29 10:21:28 -06:00
Gaurav Shukla
645b658da0 [WEB] Update model wrappers and scheduler
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-29 21:22:33 +05:30
Prashant Kumar
6ee8f61fbe Add the stable diffusion v2 model.
The f16 version of stable diffusion v2 model is added.
--version="v2" will run the v2 model.
2022-11-29 18:18:04 +05:30
Prashant Kumar
3c4c4231ce Add new args. 2022-11-29 18:18:04 +05:30
Prashant Kumar
d0eef19eba Remove the lms versions as they were redundant.
Tested with the DPM scheduler.
2022-11-29 15:05:05 +05:30
Ean Garvey
6ca2eb3ad7 Update README.md (#515) 2022-11-28 14:09:30 -06:00
Prashant Kumar
74aeb55733 Add support for different schedulers.
Initial support for adding schedulers. This verifies the model running
with the PNDM scheduler too.
2022-11-28 22:12:09 +05:30
Gaurav Shukla
3eb7965ca0 [WEB] Pressing Enter at prompt triggers Image generation
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-28 20:56:20 +05:30
Phaneesh Barwaria
04f20070d1 xfail for cpu models with tensor shape inf error (#512) 2022-11-24 16:12:04 -06:00
Gaurav Shukla
88937fcb2f [WEB] Add vulkan-heap-block-size flag
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-24 16:58:27 +05:30
aldesilv
f80b85f10c dump spv for dispatches (#509) 2022-11-23 22:34:27 -06:00
Quinn Dawkins
32a2ec432d [Stable Diffusion] Revive the tuned model (#506) 2022-11-23 15:42:24 -05:00
Gaurav Shukla
f4821d0d39 [WEB] Update seed calculation and model versions.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-23 19:21:48 +05:30
Prashant Kumar
fdf2aa54ef Update the sd models. 2022-11-22 23:09:04 +05:30
Gaurav Shukla
275c032264 [WEB] Fix set_param prototype
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-22 20:15:45 +05:30
Gaurav Shukla
d88979fe19 [WEB] Enable guidance scale and update seed calculation
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-22 19:32:21 +05:30
Phaneesh Barwaria
e67bcffea7 add vulkan-heap-block-size flag (#498) 2022-11-22 13:30:25 +05:30
Ean Garvey
005ded3c6f Update xfails. (#500)
* Update test_models.py

* Fix formatting.
2022-11-22 01:30:34 +05:30
Gaurav Shukla
d624940e12 Remove unnecessary torch_mlir import
Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-21 21:47:21 +05:30
Gaurav Shukla
7763403b0e [WEB] Cache text-encoder and reorganize the codebase
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-21 17:21:12 +05:30
Prashant Kumar
88c58244b9 Update stable diffusion models to point to new location. 2022-11-18 19:39:21 +05:30
yzhang93
0754c6ea20 Update model annotation to take vulkan configs (#495)
Co-authored-by: vivian <vivian@nod-labs.com>
2022-11-17 14:34:17 -08:00
Prashant Kumar
7b1f04d121 Changes incorporating the recent torch_mlir compile api changes. 2022-11-15 15:25:37 +05:30
Phaneesh Barwaria
d8a9bee244 Add internet connection check for re-downloading models (#488) 2022-11-14 13:56:42 -06:00
Phaneesh Barwaria
ac0ea6bd3c xfail albert tf static cpu (#490) 2022-11-14 13:56:26 -06:00
Ean Garvey
45677c1e23 Install torch version required by torch-mlir when setting up importer venv. (#486) 2022-11-14 14:01:01 +05:30
Phaneesh Barwaria
d9f4a9954a modify to get correct target triple (#485) 2022-11-13 20:13:44 -08:00
mariecwhite
ec461a4456 Enable XLA compiler for TF models (#484) 2022-11-13 20:10:47 -08:00
Mehdi Amini
559928e93b Actually print the error message when SharkRunner can't initialize the driver (#482)
Right now it would just terminate the process silently
2022-11-13 19:08:46 -08:00
Mehdi Amini
a526f7d5b8 Fix dispatch saving code after 749a2c2d (#483)
In 749a2c2d iree_device_map and iree_target_map have been made functions
but not all of the uses were updated.
2022-11-14 05:39:01 +05:30
Phaneesh Barwaria
749a2c2dec add support for choosing vulkan device (#439) 2022-11-12 14:00:41 -08:00
Gaurav Shukla
29a317dbb6 [WEB] Update SD styling and prompt loading. (#479)
* [WEB] CSS changes to the web-ui (#465)

This commit updates UI with styling.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>

* [WEB] Update the title (#466)

* [WEB] Add support for long prompts (#467)

* [WEB] fix background color

Signed-Off-by: Gaurav Shukla

* [WEB] Remove long prompts support

It removes support to long prompts due to higher lag in loading long prompts.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs>

* [WEB] Update nod logo and enable debug feature.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
Signed-off-by: Gaurav Shukla
Signed-off-by: Gaurav Shukla <gaurav@nod-labs>
2022-11-10 10:55:22 -08:00
Abhishek Varma
2f36de319a [SHARK_INFERENCE] Add ESRGAN model test file
-- This commit adds ESRGAN model test file to SHARK_INFERENCE.

Signed-off-by: Abhishek Varma <abhishek@nod-ai.com>
2022-11-10 17:12:42 +05:30
Quinn Dawkins
2005bce419 Fix flags for untuned Stable Diffusion FP16 model (#478) 2022-11-09 21:31:10 -05:00
Ean Garvey
8a02d7729d Add a few xfails. (#477) 2022-11-09 09:33:09 -08:00
Prashant Kumar
1cdf301c14 Update the guidance parameter argument and add the int8 version of the
stable diffusion model.
2022-11-08 23:14:44 +05:30
yzhang93
9a86e5c476 Fix dispatch benchmarking tool (#460) 2022-11-08 09:37:12 -08:00
Eliasj42
32d3f4bd5f added ordered benchmarks to dispatch benchmarking tool (#450)
* added ordered benchmarks to dispatch benchmarking tool

* saved changes

* updated readme

Co-authored-by: Elias Joseph <elias@nod-labs.com>
2022-11-07 09:36:21 -08:00
Prashant Kumar
18689afc1a Make separate function for each model. 2022-11-07 20:20:38 +05:30
PhaneeshB
64d6da75c7 Resolve Mac torch-mlir torch setup dependency. Enable MacOS CI 2022-11-07 15:38:37 +05:30
Ean Garvey
1e95e4b502 Change dependency installation order in venv setup script. (#470) 2022-11-04 20:53:54 -05:00
Ean Garvey
c63009a6db Update test_models.py (#464) 2022-11-04 16:59:01 -07:00
Gaurav Shukla
88f8718635 [WEB] Load prompts from json
The prompt examples will now be loaded from a json file `prompts.json`.

Signed-Off-by: Gaurav Shukla
2022-11-02 20:52:34 +05:30
Prashant Kumar
a081733a42 Add the clip text shark_model. (#458) 2022-11-02 00:08:33 -07:00
Gaurav Shukla
06ccfb0533 [WEB] Load vae and unet during server start up
The vae and unet models(both fp16 and fp32 variant) can be loaded at
server startup in order to reduce web response time.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-01 23:11:52 +05:30
Gaurav Shukla
b18d75e3f7 [WEB] Use tuned version of UNET fp16
This commit updates SD script in order to use the tuned version of Unet
fp16 model.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-11-01 19:00:21 +05:30
Quinn Dawkins
3e7efaa048 Switch stable diffusion to the new tuned model (#455) 2022-10-31 15:15:31 -07:00
Gaurav Shukla
a3fdfc81db [WEB] Minor changes in the shark web (#454)
1. Default steps = 50.
2. Live preview will yield intermediate image at every 5 steps.
3. Add logs to .gitignore

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-31 14:29:00 -07:00
Gaurav Shukla
f4c91df1df [WEB] Add pillow dependency (#453)
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-31 12:57:21 -07:00
Prashant Kumar
32e1ba8c0d Adding batch_size support for stable diffusion. 2022-11-01 00:57:52 +05:30
Gaurav Shukla
1939376d72 [WEB] Cache model parameters (#452)
This commit cache some of the model parameters to reduce the response
time of shark web.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-31 11:55:10 -07:00
Gaurav Shukla
25931d48a3 [WEB] Update stable diffusion UI and enable live preview (#447)
This commit enables live preview feature and also updates stable
diffusion web UI.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-31 04:10:15 -07:00
powderluv
024c5e153a Update Windows in README 2022-10-30 22:27:03 -07:00
powderluv
83f34b645d Add Windows instructions 2022-10-30 22:25:42 -07:00
powderluv
3f9f450e0d Add setup_venv.ps1 for windows (#448)
Powershell users can run ./setup_venv.ps1 to setup the env
2022-10-30 22:17:35 -07:00
powderluv
fd89b06641 Drop RDNA1 for now 2022-10-29 14:29:09 -07:00
Gaurav Shukla
f8dc996004 Update vulkan-target-triple for Radeon devices. (#446)
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-29 14:27:20 -07:00
Phaneesh Barwaria
e6a964088b Add os agnostic vulkan device name check (#445) 2022-10-29 13:19:14 -07:00
Gaurav Shukla
e3e767c7eb [WEB] Remove live preview and disable resnet|albert_maskfill
This commit removes live preview feature for now as it's not functional.
This feature will be added in the next patch.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-30 00:37:59 +05:30
Quinn Dawkins
239c19eb12 Update Stable diffusion script to enable use of tuned models (#443) 2022-10-29 01:42:49 -04:00
Eliasj42
7f37599a60 Added a dispatch benchmarking tool (#441)
To produce benchmarks of individual dispatches, you can add --dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir> to your command line argument.

Co-authored-by: Elias Joseph <elias@nod-labs.com>
2022-10-28 14:31:03 -07:00
Prashant Kumar
77c9a2c5ea Add profiling vulkan_device info and minor changes to reflect upstream
changes.
2022-10-28 18:02:07 +05:30
Ean Garvey
fd7baae548 Serialize torch-mlir CAPI module as bytecode instead of string. (#435)
* Serialize torch-mlir CAPI as bytecode instead of string.

* Minor fixes to MLIR data handling in SHARK python.
2022-10-27 14:37:15 -05:00
Stanley Winata
01fdf5ee16 [example][SD] compile fp16 with iree-spirv-unify-aliased-resources (#436) 2022-10-27 05:12:28 -07:00
Gaurav Shukla
e52f533c16 [WEB] Save vmfb and add live preview
This commit updates SD script to save the compiled module and also adds
live preview of generated images.

Signed-off-by: Gaurav Shukla<gaurav@nod-labs.com>
2022-10-26 23:20:53 +05:30
Quinn Dawkins
fbd77dc936 Enable iterator space fusion for SD (#432) 2022-10-26 01:08:26 -04:00
Quinn Dawkins
cdc6dd19e3 Force stable diffusion fp16 and fp32 to generate images with similar noise (#431) 2022-10-25 17:28:18 -04:00
PhaneeshB
fd578a48a9 add cli args for vulkan target triple 2022-10-25 21:47:26 +05:30
Ean Garvey
9956099516 Add pytest option for updating tank and fix save_mlir function. (#413)
* Use IREE tf tools to save .mlir modules when generating shark_tank.

* Add option to pytest for enabling auto-updates to local shark tank.

* xfail mobilenet torch on cpu, cuda and fix CI macos setup

* Update test-models.yml to disable macos vulkan CI.
2022-10-25 21:29:18 +05:30
powderluv
f97b8fffed Update README.md 2022-10-24 12:51:49 -07:00
Gaurav Shukla
7b9e309724 [WEB] Expose SD parameters in the web ui (#427) 2022-10-24 04:34:35 -07:00
Quinn Dawkins
1d33913d48 Add option to save and load precompiled flatbuffer (#425) 2022-10-23 16:24:09 -07:00
Prashant Kumar
a48eaaed20 Pass the flags to vae. 2022-10-23 23:57:48 +05:30
Prashant Kumar
2741b8be53 Pass the flags to vae. (#422) 2022-10-23 11:23:13 -07:00
Anush Elangovan
4f906a265c Fix lint 2022-10-22 12:43:52 -07:00
Anush Elangovan
0dff8d7af0 Simple download script to prime the hf model cache 2022-10-21 17:42:05 -07:00
Quinn Dawkins
4f0d0d8167 Update vulkan gui README for iree-vulkan-gui + Stable Diffusion (#399) 2022-10-21 14:02:40 -04:00
Vivek Khandelwal
d513060b21 Add params for Stable Diffusion (#420) 2022-10-21 23:11:09 +05:30
Prashant Kumar
d1a25ce4f3 Update stable_args.py 2022-10-21 17:26:31 +05:30
Gaurav Shukla
51c98695b2 [WEB] Update stable diffusion inference
This commit updates the stable diffusion web incorporating the latest
improvements.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-21 01:26:38 +05:30
Quinn Dawkins
b448770ec2 Add ms/iter timing for stable diffusion script (#414) 2022-10-20 13:32:37 -04:00
Prashant Kumar
5fe22a7980 Minor fix. 2022-10-20 22:57:22 +05:30
Prashant Kumar
38ae6b5af4 Add stable_diffusion fp16 and fp32 with args. 2022-10-20 21:47:11 +05:30
Ean Garvey
0bfe30d75d Fix issues with extra_args in benchmarks, pin tf==2.10 (#411) 2022-10-20 06:55:26 -07:00
Quinn Dawkins
7be1d7d0be Add option for extra arguments through SharkInference.compile (#408) 2022-10-19 15:32:48 -05:00
Prashant Kumar
0d74c873f0 Add stable_diff_f16 version. (#407) 2022-10-19 10:04:24 -07:00
powderluv
139aff2938 Update nightly.yml
fix links
2022-10-18 23:42:22 -07:00
anush elangovan
a3f733490c Force update of packages
Pickup tools from upstream IREE
2022-10-19 05:20:53 +00:00
anush elangovan
8a11f138d1 Update SHARK-Runtime releases page 2022-10-19 05:06:36 +00:00
Ean Garvey
3405607917 (TESTING) Fix .whl assets path (#404) 2022-10-14 12:13:14 -05:00
Ean Garvey
7c99a6bd33 Update README.md (#406) 2022-10-13 20:29:49 -05:00
Ean Garvey
3fba8ce0e6 Update README.md (#405) 2022-10-13 12:43:03 -07:00
Ean Garvey
f3bde3c7fc Cleanup tank directory and move instructions to tank/README.md (#401) 2022-10-13 12:20:02 -05:00
Phaneesh Barwaria
21fee8ef33 enable only one workflow job per branch (#402) 2022-10-13 12:15:30 -05:00
Vivek Khandelwal
0e217d6180 Add Stable Diffusion Img2Img model script 2022-10-13 21:56:46 +05:30
Phaneesh Barwaria
00a8ce75d1 Xfail vulkan tests and Enable MacOs test on CI (#383) 2022-10-13 11:14:41 -05:00
Quinn Dawkins
8f3f00cd99 Add iree-run-module like tool for running in a vulkan session (#398) 2022-10-12 20:46:26 -04:00
Ean Garvey
13bae2538a Update URL for IREE compiler/runtime install (#397)
* Update URL for IREE compiler/runtime install

* Update gh-pages-releases.yml

* Update test_models.py

* Update assets path
2022-10-12 15:47:11 -05:00
128 changed files with 6972 additions and 1516 deletions

View File

@@ -23,7 +23,7 @@ jobs:
- run: git fetch --all
- run: git switch github-pages
- run: git config --global user.email "none@none.com"
- run: git config --global user.name "nod-team"
- run: git config --global user.name "nod-ai"
- run: mv /tmp/index.html package-index/index.html
- run: git add package-index/index.html

View File

@@ -9,7 +9,80 @@ on:
workflow_dispatch:
jobs:
build:
windows-build:
runs-on: windows-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Compute version
shell: powershell
run: |
$package_version = $(Get-Date -UFormat "%Y%m%d")+"."+${{ github.run_number }}
$package_version_ = $(Get-Date -UFormat "%Y%m%d")+"_"+${{ github.run_number }}
$tag_name=$package_version
echo "package_version=$package_version" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
echo "package_version_=$package_version_" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
echo "tag_name=$tag_name" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
tag_name: ${{ env.tag_name }}
release_name: nod.ai SHARK ${{ env.tag_name }}
body: |
Automatic snapshot release of nod.ai SHARK.
draft: true
prerelease: false
- name: Build Package
shell: powershell
run: |
./setup_venv.ps1
pyinstaller web/shark_sd.spec
mv ./dist/shark_sd.exe ./dist/shark_sd_${{ env.package_version_ }}.exe
# GHA windows VM OOMs so disable for now
#- name: Build and validate the SHARK Runtime package
# shell: powershell
# run: |
# $env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
# pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
- uses: actions/upload-artifact@v2
with:
path: dist/*
- name: Upload Release Assets
id: upload-release-assets
uses: dwenegar/upload-release-assets@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
assets_path: ./dist/*
- name: Publish Release
id: publish_release
uses: eregon/publish-release@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
linux-build:
runs-on: a100
strategy:
@@ -32,40 +105,13 @@ jobs:
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: |
${{ runner.os }}-pip-
- name: Compute version
run: |
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
tag_name="${package_version}"
echo "package_version=${package_version}" >> $GITHUB_ENV
echo "tag_name=${tag_name}" >> $GITHUB_ENV
- name: Set Environment Variables
run: |
echo "SHORT_SHA=`git rev-parse --short=4 HEAD`" >> $GITHUB_ENV
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
tag_name: ${{ env.tag_name }}
release_name: nod.ai SHARK ${{ env.tag_name }}
body: |
Automatic snapshot release of nod.ai SHARK.
draft: true
prerelease: false
- name: Find Torch-MLIR Release
run: |
TM_HTML_URL="$(python3 -c "import urllib.request, json, sys; u=json.loads(urllib.request.urlopen('https://api.github.com/repos/llvm/torch-mlir/releases/latest').read().decode()).get('html_url', False); print(u) if u else sys.exit(1);")"
TM_RELEASE_DIR=${TM_HTML_URL/"tag"/"expanded_assets"}
echo "TM_RELEASE_DIR=${TM_RELEASE_DIR}" >> $GITHUB_ENV
- name: Install dependencies
run: |
echo "Torch-MLIR Release DIR is ${{ env.TM_RELEASE_DIR }}"
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
python -m pip install --upgrade pip
python -m pip install flake8 pytest toml
if [ -f requirements.txt ]; then pip install -r requirements.txt -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/nod-ai/SHARK-Runtime/releases; fi
if [ -f requirements.txt ]; then pip install -r requirements.txt -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html; fi
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
@@ -74,25 +120,26 @@ jobs:
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude shark.venv,lit.cfg.py
- name: Build and validate the IREE package
if: ${{ matrix.backend == 'IREE' }}
continue-on-error: true
run: |
cd $GITHUB_WORKSPACE
USE_IREE=1 VENV_DIR=iree.venv ./setup_venv.sh
source iree.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/iree-org/iree/releases
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://iree-org.github.io/iree/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
/bin/bash "$GITHUB_WORKSPACE/build_tools/populate_sharktank_ci.sh"
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" tank/test_models.py |
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" -k "not metal" |
tail -n 1 |
tee -a pytest_results.txt
if !(grep -Fxq " failed" pytest_results.txt)
then
export SHA=$(git log -1 --format='%h')
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/$SHA
gsutil -m cp -r gs://shark_tank/$SHA/* gs://shark_tank/latest/
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/${DATE}_$SHA
gsutil -m cp -r gs://shark_tank/${DATE}_$SHA/* gs://shark_tank/latest/
fi
rm -rf ./wheelhouse/nodai*
@@ -104,29 +151,10 @@ jobs:
source shark.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/nod-ai/SHARK-Runtime/releases
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" tank/test_models.py |
pytest --ci --ci_sha=${SHORT_SHA} -k "not metal" |
tail -n 1 |
tee -a pytest_results.txt
- name: Upload Release Assets
if: ${{ matrix.backend == 'SHARK' }}
id: upload-release-assets
uses: dwenegar/upload-release-assets@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
assets_path: ${GITHUB_WORKSPACE}/wheelhouse/nodai_*.whl
- name: Publish Release
if: ${{ matrix.backend == 'SHARK' }}
id: publish_release
uses: eregon/publish-release@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}

View File

@@ -6,10 +6,24 @@ name: Validate Models on Shark Runtime
on:
push:
branches: [ main ]
paths-ignore:
- '**.md'
- 'shark/examples/**'
pull_request:
branches: [ main ]
paths-ignore:
- '**.md'
- 'shark/examples/**'
workflow_dispatch:
# Ensure that only a single job or workflow using the same
# concurrency group will run at a time. This would cancel
# any in-progress jobs in the same github workflow and github
# ref (e.g. refs/heads/main or refs/pull/<pr_number>/merge).
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
build-validate:
strategy:
@@ -32,8 +46,6 @@ jobs:
suite: cuda
- os: MacStudio
suite: cpu
- os: MacStudio
suite: vulkan
- os: icelake
suite: vulkan
- os: icelake
@@ -90,7 +102,7 @@ jobs:
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest --benchmark --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k cpu
pytest --benchmark --ci --ci_sha=${SHORT_SHA} -s --local_tank_cache="/data/anush/shark_cache" tank/test_models.py -k cpu --update_tank
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cpu_latest.csv
@@ -100,14 +112,25 @@ jobs:
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest --benchmark --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k cuda
pytest --benchmark --ci --ci_sha=${SHORT_SHA} -s --local_tank_cache="/data/anush/shark_cache" tank/test_models.py -k cuda --update_tank
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cuda_latest.csv
- name: Validate Vulkan Models
if: matrix.suite == 'vulkan'
- name: Validate Vulkan Models (MacOS)
if: matrix.suite == 'vulkan' && matrix.os == 'MacStudio'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k vulkan
export DYLD_LIBRARY_PATH=/usr/local/lib/
echo $PATH
pip list | grep -E "torch|iree"
pytest -s --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/Volumes/builder/anush/shark_cache" tank/test_models.py -k vulkan --update_tank
- name: Validate Vulkan Models (a100)
if: matrix.suite == 'vulkan' && matrix.os != 'MacStudio'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
source shark.venv/bin/activate
pytest --benchmark --ci --ci_sha=${SHORT_SHA} -s --local_tank_cache="/data/anush/shark_cache" tank/test_models.py -k vulkan --update_tank

8
.gitignore vendored
View File

@@ -31,7 +31,6 @@ MANIFEST
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
@@ -163,7 +162,14 @@ cython_debug/
# Shark related artefacts
*venv/
shark_tmp/
*.vmfb
.use-iree
tank/dict_configs.py
# ORT related artefacts
cache_models/
onnx_models/
#web logging
web/logs/
web/stored_results/stable_diffusion/

412
README.md
View File

@@ -5,25 +5,123 @@ High Performance Machine Learning and Data Analytics for CPUs, GPUs, Accelerator
[![Nightly Release](https://github.com/nod-ai/SHARK/actions/workflows/nightly.yml/badge.svg)](https://github.com/nod-ai/SHARK/actions/workflows/nightly.yml)
[![Validate torch-models on Shark Runtime](https://github.com/nod-ai/SHARK/actions/workflows/test-models.yml/badge.svg)](https://github.com/nod-ai/SHARK/actions/workflows/test-models.yml)
## Communication Channels
* [SHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the SHARK team and other users
* [GitHub issues](https://github.com/nod-ai/SHARK/issues): Feature requests, bugs etc
## Installation (Windows, Linux and macOS)
## Check out the code
```shell
git clone https://github.com/nod-ai/SHARK.git
cd SHARK
```
## Setup your Python VirtualEnvironment and Dependencies
### Windows 10/11 Users
* Install the latest Python 3.10.x version from [here](https://www.python.org/downloads/windows/)
* Install Git for Windows from [here](https://git-scm.com/download/win)
#### Allow the install script to run in Powershell
```powershell
set-executionpolicy remotesigned
```
#### Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...)
```powershell
./setup_venv.ps1 #You can re-run this script to get the latest version
```
### Linux / macOS Users
```shell
./setup_venv.sh
source shark.venv/bin/activate
```
## Installation
### Run Stable Diffusion on your device - WebUI
#### Windows 10/11 Users
```powershell
(shark.venv) PS C:\Users\nod\SHARK> cd web
(shark.venv) PS C:\Users\nod\SHARK\web> python index.py
```
#### Linux Users
```shell
(shark.venv) > cd web
(shark.venv) > python index.py
```
#### Access Stable Diffusion on http://localhost:8080/?__theme=dark
<img width="1607" alt="webui" src="https://user-images.githubusercontent.com/74956/204939260-b8308bc2-8dc4-47f6-9ac0-f60b66edab99.png">
### Run Stable Diffusion on your device - Commandline
#### Install your hardware drivers
* [AMD RDNA Users] Download the latest driver [here](https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mril-iree)
* [macOS Users] Download and install the latest Vulkan SDK from [here](https://vulkan.lunarg.com/sdk/home)
* [Nvidia Users] Download and install the latest CUDA / Vulkan drivers from [here](https://developer.nvidia.com/cuda-downloads)
Other users please ensure you have your latest vendor drivers and Vulkan SDK from [here](https://vulkan.lunarg.com/sdk/home) and if you are using vulkan check `vulkaninfo` works in a terminal window
#### Windows 10/11 Users
```powershell
(shark.venv) PS C:\g\shark> python .\shark\examples\shark_inference\stable_diffusion\main.py --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
```
#### Linux / macOS Users
```shell
python3.10 shark/examples/shark_inference/stable_diffusion/main.py --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
```
You can replace `vulkan` with `cpu` to run on your CPU or with `cuda` to run on CUDA devices. If you have multiple vulkan devices you can address them with `--device=vulkan://1` etc
The output on a 6900XT would like:
```shell
44it [00:08, 5.14it/s]i = 44 t = 120 (191ms)
45it [00:08, 5.15it/s]i = 45 t = 100 (191ms)
46it [00:08, 5.16it/s]i = 46 t = 80 (191ms)
47it [00:09, 5.16it/s]i = 47 t = 60 (193ms)
48it [00:09, 5.15it/s]i = 48 t = 40 (195ms)
49it [00:09, 5.12it/s]i = 49 t = 20 (196ms)
50it [00:09, 5.14it/s]
Average step time: 192.8154182434082ms/it
Total image generation runtime (s): 10.390909433364868
(shark.venv) PS C:\g\shark>
```
Here are some samples generated:
![tajmahal, snow, sunflowers, oil on canvas_0](https://user-images.githubusercontent.com/74956/204934186-141f7e43-6eb2-4e89-a99c-4704d20444b3.jpg)
![a photo of a crab playing a trumpet](https://user-images.githubusercontent.com/74956/204933258-252e7240-8548-45f7-8253-97647d38313d.jpg)
For more options to the Stable Diffusion model read [this](https://github.com/nod-ai/SHARK/blob/main/shark/examples/shark_inference/stable_diffusion/README.md)
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
<details>
<summary>Installation (Linux and macOS)</summary>
<summary>Binary Installation</summary>
### Setup a new pip Virtual Environment
This step sets up a new VirtualEnv for Python
```shell
python --version #Check you have 3.7->3.10 on Linux or 3.10 on macOS
python --version #Check you have 3.10 on Linux, macOS or Windows Powershell
python -m venv shark_venv
source shark_venv/bin/activate
source shark_venv/bin/activate # Use shark_venv/Scripts/activate on Windows
# If you are using conda create and activate a new conda env
@@ -38,9 +136,14 @@ python -m pip install --upgrade pip
This step pip installs SHARK and related packages on Linux Python 3.7, 3.8, 3.9, 3.10 and macOS Python 3.10
```shell
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://github.com/nod-ai/shark-runtime/releases --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
```
If you are on an Intel macOS machine you need this [workaround](https://github.com/nod-ai/SHARK/issues/102) for an upstream issue.
### Run shark tank model tests.
```shell
pytest tank/test_models.py
```
See tank/README.md for a more detailed walkthrough of our pytest suite and CLI.
### Download and run Resnet50 sample
@@ -61,29 +164,27 @@ python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
</details>
<details>
<summary>Source Installation</summary>
<summary>Development, Testing and Benchmarks</summary>
## Check out the code
If you want to use Python3.10 and with TF Import tools you can use the environment variables like:
Set `USE_IREE=1` to use upstream IREE
```
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
```
### Run any of the hundreds of SHARK tank models via the test framework
```shell
git clone https://github.com/nod-ai/SHARK.git
```
## Setup your Python VirtualEnvironment and Dependencies
```shell
# Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...).
./setup_venv.sh
source shark.venv/bin/activate
```
For example if you want to use Python3.10 and upstream IREE with TF Import tools you can use the environment variables like:
```
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 USE_IREE=1 ./setup_venv.sh
python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
# Or a pytest
pytest tank/test_models.py -k "MiniLM"
```
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
with Python bindings and set your PYTHONPATH as mentioned [here](https://google.github.io/iree/bindings/python/)
with Python bindings and set your PYTHONPATH as mentioned [here](https://github.com/iree-org/iree/tree/main/docs/api_docs/python#install-iree-binaries)
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
for Torch-MLIR.
@@ -102,82 +203,39 @@ for Torch-MLIR.
```
Now the SHARK will use your locally build Torch-MLIR repo.
### Run a demo script
```shell
python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
# Or a pytest
pytest tank/test_models.py -k "MiniLM"
## Benchmarking Dispatches
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your command line argument.
If you only want to compile specific dispatches, you can specify them with a space seperated string instead of `"All"`. E.G. `--dispatch_benchmarks="0 1 2 10"`
if you want to instead incorporate this into a python script, you can pass the `dispatch_benchmarks` and `dispatch_benchmarks_dir` commands when initializing `SharkInference`, and the benchmarks will be generated when compiled. E.G:
```
shark_module = SharkInference(
mlir_model,
func_name,
device=args.device,
mlir_dialect="tm_tensor",
dispatch_benchmarks="all",
dispatch_benchmarks_dir="results"
)
```
Output will include:
- An ordered list ordered-dispatches.txt of all the dispatches with their runtime
- Inside the specified directory, there will be a directory for each dispatch (there will be mlir files for all dispatches, but only compiled binaries and benchmark data for the specified dispatches)
- An .mlir file containing the dispatch benchmark
- A compiled .vmfb file containing the dispatch benchmark
- An .mlir file containing just the hal executable
- A compiled .vmfb file of the hal executable
- A .txt file containing benchmark output
See tank/README.md for instructions on how to run model tests and benchmarks from the SHARK tank.
</details>
<details>
<summary>Testing and Benchmarks</summary>
### Run all model tests on CPU/GPU/VULKAN/Metal
```shell
pytest tank/test_models.py
# If on Linux for multithreading on CPU (faster results):
pytest tank/test_models.py -n auto
```
### Running specific tests
```shell
# Search for test cases by including a keyword that matches all or part of the test case's name;
pytest tank/test_models.py -k "keyword"
# Test cases are named uniformly by format test_module_<model_name_underscores_only>_<torch/tf>_<static/dynamic>_<device>.
# Example: Test all models on nvidia gpu:
pytest tank/test_models.py -k "cuda"
# Example: Test all tensorflow resnet models on Vulkan backend:
pytest tank/test_models.py -k "resnet and tf and vulkan"
# Exclude a test case:
pytest tank/test_models.py -k "not ..."
### Run benchmarks on SHARK tank pytests and generate bench_results.csv with results.
(the following requires source installation with `IMPORTER=1 ./setup_venv.sh`)
```shell
pytest --benchmark tank/test_models.py
# Just do static GPU benchmarks for PyTorch tests:
pytest --benchmark tank/test_models.py -k "pytorch and static and cuda"
```
### Benchmark Resnet50, MiniLM on CPU
(requires source installation with `IMPORTER=1 ./setup_venv.sh`)
```shell
# We suggest running the following commands as root before running benchmarks on CPU:
cat /sys/devices/system/cpu/cpu*/topology/thread_siblings_list | awk -F, '{print $2}' | sort -n | uniq | ( while read X ; do echo $X ; echo 0 > /sys/devices/system/cpu/cpu$X/online ; done )
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
# Benchmark canonical Resnet50 on CPU via pytest
pytest --benchmark tank/test_models -k "resnet50 and tf_static_cpu"
# Benchmark canonical MiniLM on CPU via pytest
pytest --benchmark tank/test_models -k "MiniLM and cpu"
# Benchmark MiniLM on CPU via transformer-benchmarks:
git clone --recursive https://github.com/nod-ai/transformer-benchmarks.git
cd transformer-benchmarks
./perf-ci.sh -n
# Check detail.csv for MLIR/IREE results.
```
</details>
<details>
<summary>API Reference</summary>
@@ -228,160 +286,26 @@ result = shark_module.forward((arg0, arg1))
```
</details>
## Supported and Validated Models
<details>
<summary>PyTorch Models</summary>
SHARK is maintained to support the latest innovations in ML Models:
### Huggingface PyTorch Models
| TF HuggingFace Models | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------|----------|-------------|
| BERT | :green_heart: | :green_heart: | :green_heart: |
| DistilBERT | :green_heart: | :green_heart: | :green_heart: |
| GPT2 | :green_heart: | :green_heart: | :green_heart: |
| BLOOM | :green_heart: | :green_heart: | :green_heart: |
| Stable Diffusion | :green_heart: | :green_heart: | :green_heart: |
| Vision Transformer | :green_heart: | :green_heart: | :green_heart: |
| ResNet50 | :green_heart: | :green_heart: | :green_heart: |
| Hugging Face Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| Albert | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| BigBird | :green_heart: (AOT) | | | |
| DistilBERT | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| GPT2 | :broken_heart: (AOT) | | | |
| MobileBert | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
For a complete list of the models supported in SHARK, please refer to [tank/README.md](https://github.com/nod-ai/SHARK/blob/main/tank/README.md).
### Torchvision Models
## Communication Channels
| TORCHVISION Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|--------------------|----------------------|----------|----------|-------------|
| AlexNet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| DenseNet121 | :green_heart: (Script) | | | |
| MNasNet1_0 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| MobileNetV2 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| MobileNetV3 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Unet | :broken_heart: (Script) | | | |
| Resnet18 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnet50 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnet101 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnext50_32x4d | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| ShuffleNet_v2 | :broken_heart: (Script) | | | |
| SqueezeNet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| EfficientNet | :green_heart: (Script) | | | |
| Regnet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnest | :broken_heart: (Script) | | | |
| Vision Transformer | :green_heart: (Script) | | | |
| VGG 16 | :green_heart: (Script) | :green_heart: | :green_heart: | |
| Wide Resnet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| RAFT | :broken_heart: (JIT) | | | |
For more information refer to [MODEL TRACKING SHEET](https://docs.google.com/spreadsheets/d/15PcjKeHZIrB5LfDyuw7DGEEE8XnQEX2aX8lm8qbxV8A/edit#gid=0)
### PyTorch Training Models
| Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :broken_heart: | :broken_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
</details>
<details>
<summary>JAX Models</summary>
### JAX Models
| Models | JAX-MHLO lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| DALL-E | :broken_heart: | :broken_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
</details>
<details>
<summary>TFLite Models</summary>
### TFLite Models
| Models | TOSA/LinAlg | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :broken_heart: | :broken_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
| albert | :green_heart: | :green_heart: | | |
| asr_conformer | :green_heart: | :green_heart: | | |
| bird_classifier | :green_heart: | :green_heart: | | |
| cartoon_gan | :green_heart: | :green_heart: | | |
| craft_text | :green_heart: | :green_heart: | | |
| deeplab_v3 | :green_heart: | :green_heart: | | |
| densenet | :green_heart: | :green_heart: | | |
| east_text_detector | :green_heart: | :green_heart: | | |
| efficientnet_lite0_int8 | :green_heart: | :green_heart: | | |
| efficientnet | :green_heart: | :green_heart: | | |
| gpt2 | :green_heart: | :green_heart: | | |
| image_stylization | :green_heart: | :green_heart: | | |
| inception_v4 | :green_heart: | :green_heart: | | |
| inception_v4_uint8 | :green_heart: | :green_heart: | | |
| lightning_fp16 | :green_heart: | :green_heart: | | |
| lightning_i8 | :green_heart: | :green_heart: | | |
| lightning | :green_heart: | :green_heart: | | |
| magenta | :green_heart: | :green_heart: | | |
| midas | :green_heart: | :green_heart: | | |
| mirnet | :green_heart: | :green_heart: | | |
| mnasnet | :green_heart: | :green_heart: | | |
| mobilebert_edgetpu_s_float | :green_heart: | :green_heart: | | |
| mobilebert_edgetpu_s_quant | :green_heart: | :green_heart: | | |
| mobilebert | :green_heart: | :green_heart: | | |
| mobilebert_tf2_float | :green_heart: | :green_heart: | | |
| mobilebert_tf2_quant | :green_heart: | :green_heart: | | |
| mobilenet_ssd_quant | :green_heart: | :green_heart: | | |
| mobilenet_v1 | :green_heart: | :green_heart: | | |
| mobilenet_v1_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v2_int8 | :green_heart: | :green_heart: | | |
| mobilenet_v2 | :green_heart: | :green_heart: | | |
| mobilenet_v2_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v3-large | :green_heart: | :green_heart: | | |
| mobilenet_v3-large_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v35-int8 | :green_heart: | :green_heart: | | |
| nasnet | :green_heart: | :green_heart: | | |
| person_detect | :green_heart: | :green_heart: | | |
| posenet | :green_heart: | :green_heart: | | |
| resnet_50_int8 | :green_heart: | :green_heart: | | |
| rosetta | :green_heart: | :green_heart: | | |
| spice | :green_heart: | :green_heart: | | |
| squeezenet | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v1 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v1_uint8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_fpnlite | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_fpnlite_uint8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_int8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2 | :green_heart: | :green_heart: | | |
| ssd_spaghettinet_large | :green_heart: | :green_heart: | | |
| ssd_spaghettinet_large_uint8 | :green_heart: | :green_heart: | | |
| visual_wake_words_i8 | :green_heart: | :green_heart: | | |
</details>
<details>
<summary>TF Models</summary>
### Tensorflow Models (Inference)
| Hugging Face Models | tf-mhlo lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| albert-base-v2 | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| DistilBERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| CamemBert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| ConvBert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| Deberta | | | | |
| electra | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| funnel | | | | |
| layoutlm | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| longformer | | | | |
| mobile-bert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| remembert | | | | |
| tapas | | | | |
| flaubert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| roberta | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| xlm-roberta | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| mpnet | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
</details>
* [SHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the SHARK team and other users
* [GitHub issues](https://github.com/nod-ai/SHARK/issues): Feature requests, bugs etc
## Related Projects

View File

@@ -42,7 +42,7 @@ class TFHuggingFaceLanguage(tf.Module):
input_ids=x, attention_mask=y, token_type_ids=z, training=False
)
@tf.function(input_signature=tf_bert_input)
@tf.function(input_signature=tf_bert_input, jit_compile=True)
def forward(self, input_ids, attention_mask, token_type_ids):
return self.m.predict(input_ids, attention_mask, token_type_ids)

View File

@@ -36,6 +36,12 @@ def pytest_addoption(parser):
default="False",
help="Enables uploading of reproduction artifacts upon test case failure during iree-compile or validation. Must be passed with --ci_sha option ",
)
parser.addoption(
"--update_tank",
action="store_true",
default="False",
help="Update local shark tank with latest artifacts.",
)
parser.addoption(
"--ci_sha",
action="store",

3
cpp/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
*.mlir
*.vmfb
*.ini

View File

@@ -54,5 +54,29 @@ python -m pip install tensorflow
*Run the vulkan_gui*
```bash
./build/vulkan_gui/iree-samples-vulkan-gui
./build/vulkan_gui/iree-samples-resnet-vulkan-gui
```
## Other models
A tool for benchmarking other models is built and can be invoked with a command like the following
```bash
./build/vulkan_gui/iree-vulkan-gui --module-file=path/to/.vmfb --function_input=...
```
see `./build/vulkan_gui/iree-vulkan-gui --help` for an explanation on the function input. For example, stable diffusion unet can be tested with the following commands:
```bash
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/stable_diff_tf.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 stable_diff_tf.mlir -o stable_diff_tf.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=2x4x64x64xf32 --function_input=1xf32 --function_input=2x77x768xf32
```
VAE and Autoencoder are also available
```bash
# VAE
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/vae_tf/vae.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 vae.mlir -o vae.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=1x4x64x64xf32
# CLIP Autoencoder
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/clip_tf/clip_autoencoder.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 clip_autoencoder.mlir -o clip_autoencoder.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=1x77xi32 --function_input=1x77xi32
```

View File

@@ -1,7 +1,6 @@
import numpy as np
import tensorflow as tf
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
def load_and_preprocess_image(fname: str):

View File

@@ -40,45 +40,77 @@ set(IMGUI_DIR ${CMAKE_BINARY_DIR}/_deps/imgui-src)
message("Looking for Imgui in ${IMGUI_DIR}")
include_directories(${IMGUI_DIR} ${IMGUI_DIR}/backends ..)
# Define the sample executable.
set(_NAME "iree-samples-vulkan-gui")
add_executable(${_NAME} "")
target_sources(${_NAME}
PRIVATE
vulkan_inference_gui.cc
"${IMGUI_DIR}/backends/imgui_impl_sdl.cpp"
"${IMGUI_DIR}/backends/imgui_impl_vulkan.cpp"
"${IMGUI_DIR}/imgui.cpp"
"${IMGUI_DIR}/imgui_draw.cpp"
"${IMGUI_DIR}/imgui_demo.cpp"
"${IMGUI_DIR}/imgui_tables.cpp"
"${IMGUI_DIR}/imgui_widgets.cpp"
)
set_target_properties(${_NAME} PROPERTIES OUTPUT_NAME "iree-samples-vulkan-gui")
target_include_directories(${_NAME} PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
)
target_link_libraries(${_NAME}
SDL2::SDL2
Vulkan::Vulkan
iree_runtime_runtime
iree_base_internal_main
iree_hal_drivers_vulkan_registration_registration
iree_modules_hal_hal
iree_vm_vm
iree_vm_bytecode_module
iree_vm_cc
function(iree_vulkan_sample)
cmake_parse_arguments(
_RULE
""
"NAME"
"SRCS"
${ARGN}
)
# Define the sample executable.
set(_NAME "${_RULE_NAME}")
set(SRCS "${_RULE_SRCS}")
add_executable(${_NAME} "")
target_sources(${_NAME}
PRIVATE
${SRCS}
"${IMGUI_DIR}/backends/imgui_impl_sdl.cpp"
"${IMGUI_DIR}/backends/imgui_impl_vulkan.cpp"
"${IMGUI_DIR}/imgui.cpp"
"${IMGUI_DIR}/imgui_draw.cpp"
"${IMGUI_DIR}/imgui_demo.cpp"
"${IMGUI_DIR}/imgui_tables.cpp"
"${IMGUI_DIR}/imgui_widgets.cpp"
)
set_target_properties(${_NAME} PROPERTIES OUTPUT_NAME "${_NAME}")
target_include_directories(${_NAME} PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
)
target_link_libraries(${_NAME}
SDL2::SDL2
Vulkan::Vulkan
iree_runtime_runtime
iree_base_internal_main
iree_hal_drivers_vulkan_registration_registration
iree_modules_hal_hal
iree_vm_vm
iree_vm_bytecode_module
iree_vm_cc
iree_tooling_vm_util_cc
iree_tooling_context_util
)
if(${CMAKE_SYSTEM_NAME} STREQUAL "Windows")
set(_GUI_LINKOPTS "-SUBSYSTEM:CONSOLE")
else()
set(_GUI_LINKOPTS "")
endif()
target_link_options(${_NAME}
PRIVATE
${_GUI_LINKOPTS}
)
endfunction()
iree_vulkan_sample(
NAME
iree-samples-resnet-vulkan-gui
SRCS
vulkan_resnet_inference_gui.cc
)
if(${CMAKE_SYSTEM_NAME} STREQUAL "Windows")
set(_GUI_LINKOPTS "-SUBSYSTEM:CONSOLE")
else()
set(_GUI_LINKOPTS "")
endif()
iree_vulkan_sample(
NAME
iree-vulkan-gui
target_link_options(${_NAME}
PRIVATE
${_GUI_LINKOPTS}
SRCS
vulkan_inference_gui.cc
)
message(STATUS "Configured vulkan_gui sample successfully")

View File

@@ -18,6 +18,12 @@
#include <set>
#include <vector>
#include <fstream>
#include <array>
#include <cstdio>
#include <cstdlib>
#include <iterator>
#include <string>
#include <utility>
#include "iree/hal/drivers/vulkan/api.h"
@@ -30,6 +36,15 @@
#include "iree/vm/bytecode_module.h"
#include "iree/vm/ref_cc.h"
// iree-run-module
#include "iree/base/internal/flags.h"
#include "iree/base/status_cc.h"
#include "iree/base/tracing.h"
#include "iree/modules/hal/types.h"
#include "iree/tooling/comparison.h"
#include "iree/tooling/context_util.h"
#include "iree/tooling/vm_util_cc.h"
// Other dependencies (helpers, etc.)
#include "iree/base/internal/main.h"
@@ -38,6 +53,49 @@
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
IREE_FLAG(string, entry_function, "",
"Name of a function contained in the module specified by module_file "
"to run.");
// TODO(benvanik): move --function_input= flag into a util.
static iree_status_t parse_function_io(iree_string_view_t flag_name,
void* storage,
iree_string_view_t value) {
auto* list = (std::vector<std::string>*)storage;
list->push_back(std::string(value.data, value.size));
return iree_ok_status();
}
static void print_function_io(iree_string_view_t flag_name, void* storage,
FILE* file) {
auto* list = (std::vector<std::string>*)storage;
if (list->empty()) {
fprintf(file, "# --%.*s=\n", (int)flag_name.size, flag_name.data);
} else {
for (size_t i = 0; i < list->size(); ++i) {
fprintf(file, "--%.*s=\"%s\"\n", (int)flag_name.size, flag_name.data,
list->at(i).c_str());
}
}
}
static std::vector<std::string> FLAG_function_inputs;
IREE_FLAG_CALLBACK(
parse_function_io, print_function_io, &FLAG_function_inputs, function_input,
"An input (a) value or (b) buffer of the format:\n"
" (a) scalar value\n"
" value\n"
" e.g.: --function_input=\"3.14\"\n"
" (b) buffer:\n"
" [shape]xtype=[value]\n"
" e.g.: --function_input=\"2x2xi32=1 2 3 4\"\n"
"Optionally, brackets may be used to separate the element values:\n"
" 2x2xi32=[[1 2][3 4]]\n"
"Raw binary files can be read to provide buffer contents:\n"
" 2x2xi32=@some/file.bin\n"
"numpy npy files (from numpy.save) can be read to provide 1+ values:\n"
" @some.npy\n"
"Each occurrence of the flag indicates an input in the order they were\n"
"specified on the command line.");
typedef struct iree_file_toc_t {
const char* name; // the file's original name
char* data; // beginning of the file
@@ -87,225 +145,6 @@ static void check_vk_result(VkResult err) {
abort();
}
// Helper function to find Vulkan memory type bits. See ImGui_ImplVulkan_MemoryType() in imgui_impl_vulkan.cpp
uint32_t findMemoryType(uint32_t type_filter, VkMemoryPropertyFlags properties)
{
VkPhysicalDeviceMemoryProperties mem_properties;
vkGetPhysicalDeviceMemoryProperties(g_PhysicalDevice, &mem_properties);
for (uint32_t i = 0; i < mem_properties.memoryTypeCount; i++)
{
if ((type_filter & (1 << i)) && (mem_properties.memoryTypes[i].propertyFlags & properties) == properties)
{
return i;
}
}
return 0xFFFFFFFF; // Unable to find memoryType
}
// Helper function to load an image with common settings and return a VkDescriptorSet as a sort of Vulkan pointer
bool LoadTextureFromFile(const char* filename, VkDescriptorSet* img_ds, int* image_width, int* image_height)
{
// Specifying 4 channels forces stb to load the image in RGBA which is an easy format for Vulkan
int image_channels = 4;
unsigned char* image_data = stbi_load(filename, image_width, image_height, 0, image_channels);
if (image_data == NULL)
{
return false;
}
// Calculate allocation size (in number of bytes)
size_t image_size = (*image_width)*(*image_height)*image_channels;
VkResult err;
// Create the Vulkan image.
VkImage texture_image;
VkDeviceMemory texture_image_memory;
{
VkImageCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
info.imageType = VK_IMAGE_TYPE_2D;
info.format = VK_FORMAT_R8G8B8A8_UNORM;
info.extent.width = *image_width;
info.extent.height = *image_height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.samples = VK_SAMPLE_COUNT_1_BIT;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
err = vkCreateImage(g_Device, &info, g_Allocator, &texture_image);
check_vk_result(err);
VkMemoryRequirements req;
vkGetImageMemoryRequirements(g_Device, texture_image, &req);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex = findMemoryType(req.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &texture_image_memory);
check_vk_result(err);
err = vkBindImageMemory(g_Device, texture_image, texture_image_memory, 0);
check_vk_result(err);
}
// Create the Image View
VkImageView image_view;
{
VkImageViewCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
info.image = texture_image;
info.viewType = VK_IMAGE_VIEW_TYPE_2D;
info.format = VK_FORMAT_R8G8B8A8_UNORM;
info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
info.subresourceRange.levelCount = 1;
info.subresourceRange.layerCount = 1;
err = vkCreateImageView(g_Device, &info, g_Allocator, &image_view);
check_vk_result(err);
}
// Create Sampler
VkSampler sampler;
{
VkSamplerCreateInfo sampler_info{};
sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler_info.magFilter = VK_FILTER_LINEAR;
sampler_info.minFilter = VK_FILTER_LINEAR;
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; // outside image bounds just use border color
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.minLod = -1000;
sampler_info.maxLod = 1000;
sampler_info.maxAnisotropy = 1.0f;
err = vkCreateSampler(g_Device, &sampler_info, g_Allocator, &sampler);
check_vk_result(err);
}
// Create Descriptor Set using ImGUI's implementation
*img_ds = ImGui_ImplVulkan_AddTexture(sampler, image_view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
// Create Upload Buffer
VkBuffer upload_buffer;
VkDeviceMemory upload_buffer_memory;
{
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = image_size;
buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
err = vkCreateBuffer(g_Device, &buffer_info, g_Allocator, &upload_buffer);
check_vk_result(err);
VkMemoryRequirements req;
vkGetBufferMemoryRequirements(g_Device, upload_buffer, &req);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex = findMemoryType(req.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &upload_buffer_memory);
check_vk_result(err);
err = vkBindBufferMemory(g_Device, upload_buffer, upload_buffer_memory, 0);
check_vk_result(err);
}
// Upload to Buffer:
{
void* map = NULL;
err = vkMapMemory(g_Device, upload_buffer_memory, 0, image_size, 0, &map);
check_vk_result(err);
memcpy(map, image_data, image_size);
VkMappedMemoryRange range[1] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = upload_buffer_memory;
range[0].size = image_size;
err = vkFlushMappedMemoryRanges(g_Device, 1, range);
check_vk_result(err);
vkUnmapMemory(g_Device, upload_buffer_memory);
}
// Release image memory using stb
stbi_image_free(image_data);
// Create a command buffer that will perform following steps when hit in the command queue.
// TODO: this works in the example, but may need input if this is an acceptable way to access the pool/create the command buffer.
VkCommandPool command_pool = g_MainWindowData.Frames[g_MainWindowData.FrameIndex].CommandPool;
VkCommandBuffer command_buffer;
{
VkCommandBufferAllocateInfo alloc_info{};
alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
alloc_info.commandPool = command_pool;
alloc_info.commandBufferCount = 1;
err = vkAllocateCommandBuffers(g_Device, &alloc_info, &command_buffer);
check_vk_result(err);
VkCommandBufferBeginInfo begin_info = {};
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_info.flags |= VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
err = vkBeginCommandBuffer(command_buffer, &begin_info);
check_vk_result(err);
}
// Copy to Image
{
VkImageMemoryBarrier copy_barrier[1] = {};
copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].image = texture_image;
copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_barrier[0].subresourceRange.levelCount = 1;
copy_barrier[0].subresourceRange.layerCount = 1;
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, copy_barrier);
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = *image_width;
region.imageExtent.height = *image_height;
region.imageExtent.depth = 1;
vkCmdCopyBufferToImage(command_buffer, upload_buffer, texture_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
VkImageMemoryBarrier use_barrier[1] = {};
use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].image = texture_image;
use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
use_barrier[0].subresourceRange.levelCount = 1;
use_barrier[0].subresourceRange.layerCount = 1;
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, use_barrier);
}
// End command buffer
{
VkSubmitInfo end_info = {};
end_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
end_info.commandBufferCount = 1;
end_info.pCommandBuffers = &command_buffer;
err = vkEndCommandBuffer(command_buffer);
check_vk_result(err);
err = vkQueueSubmit(g_Queue, 1, &end_info, VK_NULL_HANDLE);
check_vk_result(err);
err = vkDeviceWaitIdle(g_Device);
check_vk_result(err);
}
return true;
}
// Returns the names of the Vulkan layers used for the given IREE
// |extensibility_set| and |features|.
std::vector<const char*> GetIreeLayers(
@@ -723,7 +562,16 @@ namespace iree {
extern "C" int iree_main(int argc, char** argv) {
fprintf(stdout, "starting yo\n");
iree_flags_parse_checked(IREE_FLAGS_PARSE_MODE_DEFAULT, &argc, &argv);
if (argc > 1) {
// Avoid iree-run-module spinning endlessly on stdin if the user uses single
// dashes for flags.
printf(
"[ERROR] unexpected positional argument (expected none)."
" Did you use pass a flag with a single dash ('-')?"
" Use '--' instead.\n");
return 1;
}
// --------------------------------------------------------------------------
// Create a window.
@@ -835,8 +683,6 @@ extern "C" int iree_main(int argc, char** argv) {
// Demo state.
bool show_iree_window = true;
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
// Setup IREE.
@@ -900,69 +746,44 @@ extern "C" int iree_main(int argc, char** argv) {
// Load bytecode module
iree_file_toc_t module_file_toc;
const char network_model[] = "resnet50_tf.vmfb";
fprintf(stdout, "Loading: %s\n", network_model);
if (load_file(network_model, &module_file_toc.data, &module_file_toc.size) == false)
{
abort();
return 1;
}
fprintf(stdout, "module size: %zu\n", module_file_toc.size);
static float input_res50[224*224*3];
static float output_res50[1000];
char filename[] = "dog_imagenet.jpg";
fprintf(stdout, "loading: %s\n", filename);
int x,y,n;
//unsigned char *image_raw = stbi_load(filename, &x, &y, &n, 3);
stbi_load(filename, &x, &y, &n, 3);
fprintf(stdout, "res: %i x %i x %i\n", x, y, n);
/* Preprocessing needs to go here. For now use a buffer preprocessed in python.
//convert image into floating point format
for(int i=0;i<224*224*3;i++)
{
input_res50[i]= ((float)image_raw[i])/255.0f;
}*/
std::ifstream fin("dog.bin", std::ifstream::in | std::ifstream::binary);
fin.read((char*)input_res50, 224*224*3*sizeof(float));
// load image again so imgui can display it
int my_image_width = 0;
int my_image_height = 0;
VkDescriptorSet my_image_texture = 0;
bool ret = LoadTextureFromFile(filename, &my_image_texture, &my_image_width, &my_image_height);
fprintf(stdout, "creating vulkan image: %s\n", ret ?"OK":"FAIL");
IM_ASSERT(ret);
//iree_file_toc_t module_file_toc;
//const char network_model[] = "resnet50_tf.vmfb";
//fprintf(stdout, "Loading: %s\n", network_model);
//if (load_file(network_model, &module_file_toc.data, &module_file_toc.size) == false)
//{
// abort();
// return 1;
//}
//fprintf(stdout, "module size: %zu\n", module_file_toc.size);
iree_vm_module_t* bytecode_module = nullptr;
IREE_CHECK_OK(iree_vm_bytecode_module_create(
iree_instance,
iree_const_byte_span_t{
reinterpret_cast<const uint8_t*>(module_file_toc.data),
module_file_toc.size},
iree_allocator_null(), iree_allocator_system(), &bytecode_module));
// Query for details about what is in the loaded module.
iree_vm_module_signature_t bytecode_module_signature =
iree_vm_module_signature(bytecode_module);
fprintf(stdout, "Module loaded, have <%" PRIhsz "> exported functions:\n",
bytecode_module_signature.export_function_count);
for (int i = 0; i < bytecode_module_signature.export_function_count; ++i) {
iree_vm_function_t function;
IREE_CHECK_OK(iree_vm_module_lookup_function_by_ordinal(
bytecode_module, IREE_VM_FUNCTION_LINKAGE_EXPORT, i, &function));
auto function_name = iree_vm_function_name(&function);
auto function_signature = iree_vm_function_signature(&function);
iree_status_t module_status = iree_tooling_load_module_from_flags(
iree_instance, iree_allocator_system(), &bytecode_module);
if (!iree_status_is_ok(module_status))
return -1;
//IREE_CHECK_OK(iree_vm_bytecode_module_create(
// iree_instance,
// iree_const_byte_span_t{
// reinterpret_cast<const uint8_t*>(module_file_toc.data),
// module_file_toc.size},
// iree_allocator_null(), iree_allocator_system(), &bytecode_module));
//// Query for details about what is in the loaded module.
//iree_vm_module_signature_t bytecode_module_signature =
// iree_vm_module_signature(bytecode_module);
//fprintf(stdout, "Module loaded, have <%" PRIhsz "> exported functions:\n",
// bytecode_module_signature.export_function_count);
//for (int i = 0; i < bytecode_module_signature.export_function_count; ++i) {
// iree_vm_function_t function;
// IREE_CHECK_OK(iree_vm_module_lookup_function_by_ordinal(
// bytecode_module, IREE_VM_FUNCTION_LINKAGE_EXPORT, i, &function));
// auto function_name = iree_vm_function_name(&function);
// auto function_signature = iree_vm_function_signature(&function);
fprintf(stdout, " %d: '%.*s' with calling convention '%.*s'\n", i,
(int)function_name.size, function_name.data,
(int)function_signature.calling_convention.size,
function_signature.calling_convention.data);
}
// fprintf(stdout, " %d: '%.*s' with calling convention '%.*s'\n", i,
// (int)function_name.size, function_name.data,
// (int)function_signature.calling_convention.size,
// function_signature.calling_convention.data);
//}
// Allocate a context that will hold the module state across invocations.
iree_vm_context_t* iree_context = nullptr;
@@ -988,33 +809,42 @@ extern "C" int iree_main(int argc, char** argv) {
// Write inputs into mappable buffers.
iree_hal_allocator_t* allocator =
iree_hal_device_allocator(iree_vk_device);
iree_hal_memory_type_t input_memory_type =
static_cast<iree_hal_memory_type_t>(
IREE_HAL_MEMORY_TYPE_HOST_LOCAL |
IREE_HAL_MEMORY_TYPE_DEVICE_VISIBLE);
iree_hal_buffer_usage_t input_buffer_usage =
static_cast<iree_hal_buffer_usage_t>(IREE_HAL_BUFFER_USAGE_DEFAULT);
iree_hal_buffer_params_t buffer_params;
buffer_params.type = input_memory_type;
buffer_params.usage = input_buffer_usage;
buffer_params.access = IREE_HAL_MEMORY_ACCESS_READ | IREE_HAL_MEMORY_ACCESS_WRITE;
//iree_hal_memory_type_t input_memory_type =
// static_cast<iree_hal_memory_type_t>(
// IREE_HAL_MEMORY_TYPE_HOST_LOCAL |
// IREE_HAL_MEMORY_TYPE_DEVICE_VISIBLE);
//iree_hal_buffer_usage_t input_buffer_usage =
// static_cast<iree_hal_buffer_usage_t>(IREE_HAL_BUFFER_USAGE_DEFAULT);
//iree_hal_buffer_params_t buffer_params;
//buffer_params.type = input_memory_type;
//buffer_params.usage = input_buffer_usage;
//buffer_params.access = IREE_HAL_MEMORY_ACCESS_READ | IREE_HAL_MEMORY_ACCESS_WRITE;
// Wrap input buffers in buffer views.
iree_hal_buffer_view_t* input0_buffer_view = nullptr;
constexpr iree_hal_dim_t input_buffer_shape[] = {1, 224, 224, 3};
IREE_CHECK_OK(iree_hal_buffer_view_allocate_buffer(
allocator,
/*shape_rank=*/4, /*shape=*/input_buffer_shape,
IREE_HAL_ELEMENT_TYPE_FLOAT_32,
IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR, buffer_params,
iree_make_const_byte_span(&input_res50, sizeof(input_res50)),
&input0_buffer_view));
vm::ref<iree_vm_list_t> inputs;
IREE_CHECK_OK(iree_vm_list_create(/*element_type=*/nullptr, 6, iree_allocator_system(), &inputs));
auto input0_buffer_view_ref = iree_hal_buffer_view_move_ref(input0_buffer_view);
IREE_CHECK_OK(iree_vm_list_push_ref_move(inputs.get(), &input0_buffer_view_ref));
iree_status_t input_status = ParseToVariantList(
allocator,
iree::span<const std::string>{FLAG_function_inputs.data(),
FLAG_function_inputs.size()},
iree_allocator_system(), &inputs);
if (!iree_status_is_ok(input_status))
return -1;
//vm::ref<iree_vm_list_t> inputs;
//IREE_CHECK_OK(iree_vm_list_create(/*element_type=*/nullptr, 6, iree_allocator_system(), &inputs));
//iree_hal_buffer_view_t* input0_buffer_view = nullptr;
//constexpr iree_hal_dim_t input_buffer_shape[] = {1, 224, 224, 3};
//IREE_CHECK_OK(iree_hal_buffer_view_allocate_buffer(
// allocator,
// /*shape_rank=*/4, /*shape=*/input_buffer_shape,
// IREE_HAL_ELEMENT_TYPE_FLOAT_32,
// IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR, buffer_params,
// iree_make_const_byte_span(&input_res50, sizeof(input_res50)),
// &input0_buffer_view));
//auto input0_buffer_view_ref = iree_hal_buffer_view_move_ref(input0_buffer_view);
//IREE_CHECK_OK(iree_vm_list_push_ref_move(inputs.get(), &input0_buffer_view_ref));
// Prepare outputs list to accept results from the invocation.
@@ -1023,6 +853,7 @@ extern "C" int iree_main(int argc, char** argv) {
IREE_CHECK_OK(iree_vm_list_create(/*element_type=*/nullptr, kOutputCount * sizeof(float), iree_allocator_system(), &outputs));
// --------------------------------------------------------------------------
// Main loop.
bool done = false;
while (!done) {
@@ -1076,46 +907,11 @@ extern "C" int iree_main(int argc, char** argv) {
/*policy=*/nullptr, inputs.get(),
outputs.get(), iree_allocator_system()));
// Read back the results.
auto* output_buffer_view = reinterpret_cast<iree_hal_buffer_view_t*>(
iree_vm_list_get_ref_deref(outputs.get(),
0,
iree_hal_buffer_view_get_descriptor()));
IREE_CHECK_OK(iree_hal_device_transfer_d2h(
iree_vk_device,
iree_hal_buffer_view_buffer(output_buffer_view),
0,
output_res50, sizeof(output_res50),
IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout()));
// we want to run continuously so we can use tools like RenderDoc, RGP, etc...
dirty = true;
}
// find maxarg from results
float max = 0.0f;
int max_idx = -1;
for(int i=0;i<1000;i++)
{
if (output_res50[i] > max)
{
max = output_res50[i];
max_idx = i;
}
}
ImGui::Text("pointer = %p", my_image_texture);
ImGui::Text("size = %d x %d", my_image_width, my_image_height);
ImGui::Image((ImTextureID)my_image_texture, ImVec2(my_image_width, my_image_height));
// Display the latest computation output.
ImGui::Text("Max idx = [%i]", max_idx);
ImGui::Text("Max value = [%f]", max);
ImGui::Text("Resnet50 categories:");
ImGui::PlotHistogram("Histogram", output_res50, IM_ARRAYSIZE(output_res50), 0, NULL, 0.0f, 1.0f, ImVec2(0,80));
ImGui::Separator();
// Framerate counter.
ImGui::Text("Application average %.3f ms/frame (%.1f FPS)",
1000.0f / ImGui::GetIO().Framerate, ImGui::GetIO().Framerate);
@@ -1137,6 +933,7 @@ extern "C" int iree_main(int argc, char** argv) {
iree_vm_module_release(bytecode_module);
iree_vm_context_release(iree_context);
iree_hal_device_release(iree_vk_device);
iree_hal_allocator_release(allocator);
iree_hal_driver_release(iree_vk_driver);
iree_hal_vulkan_syms_release(iree_vk_syms);
iree_vm_instance_release(iree_instance);

File diff suppressed because it is too large Load Diff

View File

@@ -205,14 +205,14 @@ if __name__ == "__main__":
parser.add_argument(
"--torch_model_csv",
type=lambda x: is_valid_file(x),
default="./tank/pytorch/torch_model_list.csv",
default="./tank/torch_model_list.csv",
help="""Contains the file with torch_model name and args.
Please see: https://github.com/nod-ai/SHARK/blob/main/tank/pytorch/torch_model_list.csv""",
Please see: https://github.com/nod-ai/SHARK/blob/main/tank/torch_model_list.csv""",
)
parser.add_argument(
"--tf_model_csv",
type=lambda x: is_valid_file(x),
default="./tank/tf/tf_model_list.csv",
default="./tank/tf_model_list.csv",
help="Contains the file with tf model name and args.",
)
parser.add_argument(

View File

@@ -4,9 +4,9 @@ requires = [
"wheel",
"packaging",
"numpy==1.22.4",
"torch-mlir>=20220428.420",
"iree-compiler>=20220427.13",
"iree-runtime>=20220427.13",
"numpy>=1.22.4",
"torch-mlir>=20221021.633",
"iree-compiler>=20221022.190",
"iree-runtime>=20221022.190",
]
build-backend = "setuptools.build_meta"

View File

@@ -1,3 +1,3 @@
[pytest]
addopts = --verbose -p no:warnings
norecursedirs = inference tank/tflite
norecursedirs = inference tank/tflite examples benchmarks shark

View File

@@ -1,4 +1,4 @@
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
-f https://download.pytorch.org/whl/nightly/cpu/
--pre
numpy
@@ -28,6 +28,7 @@ Pillow
# web dependecies.
gradio
altair
# Testing and support.
#lit

View File

@@ -2,7 +2,6 @@
--pre
numpy==1.22.4
torch
torchvision
tqdm
@@ -14,7 +13,8 @@ iree-tools-tf
# TensorFlow and JAX.
gin-config
tensorflow
tensorflow==2.10
keras==2.10
#tf-models-nightly
#tensorflow-text-nightly
transformers
@@ -34,6 +34,7 @@ sacremoses
# web dependecies.
gradio
altair
scipy
#ONNX and ORT for benchmarking

View File

@@ -1,14 +1,23 @@
setuptools
wheel
pyinstaller
# SHARK Runner
tqdm
# SHARK Downloader
gsutil
google-cloud-storage
# Testing
pytest
pytest-xdist
Pillow
parameterized
# Add transformers, diffusers and scipy since it most commonly used
transformers
diffusers
scipy
ftfy
gradio
altair

View File

@@ -10,8 +10,8 @@ PACKAGE_VERSION = os.environ.get("SHARK_PACKAGE_VERSION") or "0.0.4"
backend_deps = []
if "NO_BACKEND" in os.environ.keys():
backend_deps = [
"iree-compiler>=20220427.13",
"iree-runtime>=20220427.13",
"iree-compiler>=20221022.190",
"iree-runtime>=20221022.190",
]
setup(
@@ -33,11 +33,11 @@ setup(
"Operating System :: OS Independent",
],
packages=find_packages(exclude=("examples")),
python_requires=">=3.7",
python_requires=">=3.9",
install_requires=[
"numpy",
"PyYAML",
"torch-mlir>=20220428.420",
"torch-mlir>=20221021.633",
]
+ backend_deps,
)

39
setup_venv.ps1 Normal file
View File

@@ -0,0 +1,39 @@
#Write-Host "Installing python"
#Start-Process winget install Python.Python.3.10 '/quiet InstallAllUsers=1 PrependPath=1' -wait -NoNewWindow
#Write-Host "python installation completed successfully"
#Write-Host "Reload environment variables"
#$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
#Write-Host "Reloaded environment variables"
# redirect stderr into stdout
$p = &{python -V} 2>&1
# check if an ErrorRecord was returned
$version = if($p -is [System.Management.Automation.ErrorRecord])
{
# grab the version string from the error message
$p.Exception.Message
}
else
{
# otherwise return as is
$p
}
Write-Host "Python version found is"
Write-Host $p
Write-Host "Installing Build Dependencies"
python -m venv .\shark.venv\
.\shark.venv\Scripts\activate
pip install -r requirements.txt
pip install --pre torch-mlir torch torchvision --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/
pip install --upgrade -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html iree-compiler iree-runtime
Write-Host "Building SHARK..."
pip install -e . -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
Write-Host "Build and installation completed successfully"
Write-Host "Source your venv with ./shark.venv/Scripts/activate"

View File

@@ -76,11 +76,16 @@ fi
$PYTHON -m pip install --upgrade pip || die "Could not upgrade pip"
$PYTHON -m pip install --upgrade -r "$TD/requirements.txt"
if [ "$torch_mlir_bin" = true ]; then
$PYTHON -m pip install --pre torch-mlir -f https://llvm.github.io/torch-mlir/package-index/
if [ $? -eq 0 ];then
echo "Successfully Installed torch-mlir"
if [[ $(uname -s) = 'Darwin' ]]; then
echo "MacOS detected. Installing torch-mlir from .whl, to avoid dependency problems with torch."
$PYTHON -m pip install --pre --no-cache-dir torch-mlir -f https://llvm.github.io/torch-mlir/package-index/ -f https://download.pytorch.org/whl/nightly/torch/
else
echo "Could not install torch-mlir" >&2
$PYTHON -m pip install --pre torch-mlir -f https://llvm.github.io/torch-mlir/package-index/
if [ $? -eq 0 ];then
echo "Successfully Installed torch-mlir"
else
echo "Could not install torch-mlir" >&2
fi
fi
else
echo "${Red}No binaries found for Python $PYTHON_VERSION_X_Y on $(uname -s)"
@@ -89,37 +94,41 @@ else
exit 1
fi
if [[ -z "${USE_IREE}" ]]; then
RUNTIME="nod-ai/SHARK-Runtime"
rm .use-iree
RUNTIME="https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html"
else
RUNTIME="google/iree"
touch ./.use-iree
RUNTIME="https://iree-org.github.io/iree/pip-release-links.html"
fi
if [[ -z "${NO_BACKEND}" ]]; then
echo "Installing ${RUNTIME}..."
$PYTHON -m pip install --find-links https://github.com/${RUNTIME}/releases iree-compiler iree-runtime
$PYTHON -m pip install --upgrade --find-links ${RUNTIME} iree-compiler iree-runtime
else
echo "Not installing a backend, please make sure to add your backend to PYTHONPATH"
fi
if [[ ! -z "${IMPORTER}" ]]; then
echo "${Yellow}Installing importer tools.."
if [[ $(uname -s) = 'Linux' ]]; then
echo "${Yellow}Linux detected.. installing Linux importer tools"
$PYTHON -m pip install --upgrade -r "$TD/requirements-importer.txt" -f https://github.com/${RUNTIME}/releases --extra-index-url https://download.pytorch.org/whl/nightly/cpu
#Always get the importer tools from upstream IREE
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer.txt" -f https://iree-org.github.io/iree/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
elif [[ $(uname -s) = 'Darwin' ]]; then
echo "${Yellow}macOS detected.. installing macOS importer tools"
#Conda seems to have some problems installing these packages and hope they get resolved upstream.
$PYTHON -m pip install --upgrade -r "$TD/requirements-importer-macos.txt" -f https://github.com/${RUNTIME}/releases --extra-index-url https://download.pytorch.org/whl/nightly/cpu
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer-macos.txt" -f ${RUNTIME} --extra-index-url https://download.pytorch.org/whl/nightly/cpu
fi
fi
$PYTHON -m pip install -e . -f https://llvm.github.io/torch-mlir/package-index/ -f https://github.com/${RUNTIME}/releases
$PYTHON -m pip install --no-warn-conflicts -e . -f https://llvm.github.io/torch-mlir/package-index/ -f ${RUNTIME} -f https://download.pytorch.org/whl/nightly/torch/
if [[ $(uname -s) = 'Linux' && ! -z "${BENCHMARK}" ]]; then
$PYTHON -m pip uninstall -y torch torchvision
$PYTHON -m pip install --pre torch torchvision --extra-index-url https://download.pytorch.org/whl/nightly/cu116
$PYTHON -m pip install --pre torch torchvision --extra-index-url https://download.pytorch.org/whl/nightly/cu117
if [ $? -eq 0 ];then
echo "Successfully Installed torch + cu116."
echo "Successfully Installed torch + cu117."
else
echo "Could not install torch + cu116." >&2
echo "Could not install torch + cu117." >&2
fi
fi

View File

@@ -22,7 +22,7 @@ class CLIPModule(tf.Module):
input_ids=x, attention_mask=y, pixel_values=z
)
@tf.function(input_signature=clip_vit_inputs)
@tf.function(input_signature=clip_vit_inputs, jit_compile=True)
def forward(self, input_ids, attention_mask, pixel_values):
return self.m.predict(
input_ids, attention_mask, pixel_values

View File

@@ -0,0 +1,15 @@
## Running ESRGAN
```
1. pip install numpy opencv-python
2. mkdir InputImages
(this is where all the input images will reside in)
3. mkdir OutputImages
(this is where the model will generate all the images)
4. mkdir models
(save the .pth checkpoint file here)
5. python esrgan.py
```
- Download [RRDB_ESRGAN_x4.pth](https://drive.google.com/drive/u/0/folders/17VYV_SoZZesU6mbxz2dMAIccSSlqLecY) and place it in the `models` directory as mentioned above in step 4.
- Credits : [ESRGAN](https://github.com/xinntao/ESRGAN)

View File

@@ -0,0 +1,240 @@
from ast import arg
import os.path as osp
import glob
import cv2
import numpy as np
import torch
from torch.fx.experimental.proxy_tensor import make_fx
from torch._decomp import get_decompositions
from shark.shark_inference import SharkInference
import torch_mlir
import tempfile
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
def make_layer(block, n_layers):
layers = []
for _ in range(n_layers):
layers.append(block())
return nn.Sequential(*layers)
class ResidualDenseBlock_5C(nn.Module):
def __init__(self, nf=64, gc=32, bias=True):
super(ResidualDenseBlock_5C, self).__init__()
# gc: growth channel, i.e. intermediate channels
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
# mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Module):
"""Residual in Residual Dense Block"""
def __init__(self, nf, gc=32):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class RRDBNet(nn.Module):
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
super(RRDBNet, self).__init__()
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
#### upsampling
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
fea = self.conv_first(x)
trunk = self.trunk_conv(self.RRDB_trunk(fea))
fea = fea + trunk
fea = self.lrelu(
self.upconv1(F.interpolate(fea, scale_factor=2, mode="nearest"))
)
fea = self.lrelu(
self.upconv2(F.interpolate(fea, scale_factor=2, mode="nearest"))
)
out = self.conv_last(self.lrelu(self.HRconv(fea)))
return out
############### Parsing args #####################
import argparse
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument("--device", type=str, default="cpu", help="the device to use")
p.add_argument(
"--mlir_loc",
type=str,
default=None,
help="location of the model's mlir file",
)
args = p.parse_args()
###################################################
def inference(input_m):
return model(input_m)
def load_mlir(mlir_loc):
import os
if mlir_loc == None:
return None
print(f"Trying to load the model from {mlir_loc}.")
with open(os.path.join(mlir_loc)) as f:
mlir_module = f.read()
return mlir_module
def compile_through_fx(model, inputs, mlir_loc=None):
module = load_mlir(mlir_loc)
if module == None:
fx_g = make_fx(
model,
decomposition_table=get_decompositions(
[
torch.ops.aten.embedding_dense_backward,
torch.ops.aten.native_layer_norm_backward,
torch.ops.aten.slice_backward,
torch.ops.aten.select_backward,
torch.ops.aten.norm.ScalarOpt_dim,
torch.ops.aten.native_group_norm,
torch.ops.aten.upsample_bilinear2d.vec,
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
]
),
)(inputs)
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
fx_g.recompile()
def strip_overloads(gm):
"""
Modifies the target of graph nodes in :attr:`gm` to strip overloads.
Args:
gm(fx.GraphModule): The input Fx graph module to be modified
"""
for node in gm.graph.nodes:
if isinstance(node.target, torch._ops.OpOverload):
node.target = node.target.overloadpacket
gm.recompile()
strip_overloads(fx_g)
ts_g = torch.jit.script(fx_g)
print("Torchscript graph generated successfully")
module = torch_mlir.compile(
ts_g,
inputs,
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
mlir_model = str(module)
func_name = "forward"
shark_module = SharkInference(
mlir_model, func_name, device=args.device, mlir_dialect="linalg"
)
shark_module.compile()
return shark_module
model_path = "models/RRDB_ESRGAN_x4.pth" # models/RRDB_ESRGAN_x4.pth OR models/RRDB_PSNR_x4.pth
# device = torch.device('cuda') # if you want to run on CPU, change 'cuda' -> cpu
device = torch.device("cpu")
test_img_folder = "InputImages/*"
model = RRDBNet(3, 3, 64, 23, gc=32)
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
model = model.to(device)
print("Model path {:s}. \nTesting...".format(model_path))
if __name__ == "__main__":
idx = 0
for path in glob.glob(test_img_folder):
idx += 1
base = osp.splitext(osp.basename(path))[0]
print(idx, base)
# read images
img = cv2.imread(path, cv2.IMREAD_COLOR)
img = img * 1.0 / 255
img = torch.from_numpy(
np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))
).float()
img_LR = img.unsqueeze(0)
img_LR = img_LR.to(device)
with torch.no_grad():
shark_module = compile_through_fx(inference, img_LR)
shark_output = shark_module.forward((img_LR,))
shark_output = torch.from_numpy(shark_output)
shark_output = (
shark_output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
)
esrgan_output = (
model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
)
# SHARK OUTPUT
shark_output = np.transpose(shark_output[[2, 1, 0], :, :], (1, 2, 0))
shark_output = (shark_output * 255.0).round()
cv2.imwrite(
"OutputImages/{:s}_rlt_shark_output.png".format(base), shark_output
)
print("Generated SHARK's output")
# ESRGAN OUTPUT
esrgan_output = np.transpose(esrgan_output[[2, 1, 0], :, :], (1, 2, 0))
esrgan_output = (esrgan_output * 255.0).round()
cv2.imwrite(
"OutputImages/{:s}_rlt_esrgan_output.png".format(base),
esrgan_output,
)
print("Generated ESRGAN's output")

View File

@@ -28,7 +28,7 @@ class AlbertModule(tf.Module):
self.m = TFAutoModelForMaskedLM.from_pretrained("albert-base-v2")
self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)
@tf.function(input_signature=t5_inputs)
@tf.function(input_signature=t5_inputs, jit_compile=True)
def forward(self, input_ids, attention_mask):
return self.m.predict(input_ids, attention_mask)

View File

@@ -1,7 +1,9 @@
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_torch_model
from shark.shark_downloader import download_model
mlir_model, func_name, inputs, golden_out = download_torch_model("bloom")
mlir_model, func_name, inputs, golden_out = download_model(
"bloom", frontend="torch"
)
shark_module = SharkInference(
mlir_model, func_name, device="cpu", mlir_dialect="tm_tensor"

View File

@@ -19,7 +19,7 @@ class GPT2Module(tf.Module):
self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)
@tf.function(input_signature=gpt2_inputs)
@tf.function(input_signature=gpt2_inputs, jit_compile=True)
def forward(self, input_ids, attention_mask):
return self.m.predict(input_ids, attention_mask)

View File

@@ -26,7 +26,7 @@ class BertModule(tf.Module):
input_ids=x, attention_mask=y, token_type_ids=z, training=False
)
@tf.function(input_signature=bert_input)
@tf.function(input_signature=bert_input, jit_compile=True)
def forward(self, input_ids, attention_mask, token_type_ids):
return self.m.predict(input_ids, attention_mask, token_type_ids)

View File

@@ -1,9 +1,10 @@
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_torch_model
from shark.shark_downloader import download_model
mlir_model, func_name, inputs, golden_out = download_torch_model(
"microsoft/MiniLM-L12-H384-uncased"
mlir_model, func_name, inputs, golden_out = download_model(
"microsoft/MiniLM-L12-H384-uncased",
frontend="torch",
)

View File

@@ -26,7 +26,7 @@ class BertModule(tf.Module):
input_ids=x, attention_mask=y, token_type_ids=z, training=False
)
@tf.function(input_signature=bert_input)
@tf.function(input_signature=bert_input, jit_compile=True)
def forward(self, input_ids, attention_mask, token_type_ids):
return self.m.predict(input_ids, attention_mask, token_type_ids)

View File

@@ -5,7 +5,7 @@ import torchvision.models as models
from torchvision import transforms
import sys
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_torch_model
from shark.shark_downloader import download_model
################################## Preprocessing inputs and model ############
@@ -66,10 +66,12 @@ labels = load_labels()
## Can pass any img or input to the forward module.
mlir_model, func_name, inputs, golden_out = download_torch_model("resnet50")
mlir_model, func_name, inputs, golden_out = download_model(
"resnet50", frontend="torch"
)
shark_module = SharkInference(mlir_model, func_name, mlir_dialect="linalg")
# shark_module.compile()
shark_module.compile()
path = shark_module.save_module()
shark_module.load_module(path)
result = shark_module.forward((img.detach().numpy(),))

View File

@@ -47,7 +47,7 @@ def load_mlir(mlir_loc):
return mlir_module
def compile_through_fx(model, inputs, mlir_loc=None):
def compile_through_fx(model, inputs, mlir_loc=None, extra_args=[]):
module = load_mlir(mlir_loc)
if mlir_loc == None:
@@ -98,9 +98,12 @@ def compile_through_fx(model, inputs, mlir_loc=None):
func_name = "forward"
shark_module = SharkInference(
mlir_model, func_name, device=args.device, mlir_dialect="tm_tensor"
mlir_model,
func_name,
device=args.device,
mlir_dialect="tm_tensor",
)
shark_module.compile()
shark_module.compile(extra_args)
return shark_module
@@ -161,6 +164,7 @@ if __name__ == "__main__":
unet,
(latent_model_input, torch.tensor([1.0]), text_embeddings),
args.mlir_loc,
["--iree-flow-enable-conv-nchw-to-nhwc-transform"],
)
# torch.jit.script(unet)

View File

@@ -10,20 +10,59 @@ from torch._decomp import get_decompositions
import torch_mlir
import tempfile
import numpy as np
import os
##############################################################################
# pip install diffusers
# pip install scipy
############### Parsing args #####################
import argparse
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument(
"--prompt",
type=str,
default="a photograph of an astronaut riding a horse",
help="the text prompt to use",
)
p.add_argument("--device", type=str, default="cpu", help="the device to use")
p.add_argument("--steps", type=int, default=50, help="the device to use")
p.add_argument("--mlir_loc", type=str, default=None, help="the device to use")
p.add_argument("--vae_loc", type=str, default=None, help="the device to use")
args = p.parse_args()
#####################################################
def fp16_unet():
from shark.shark_downloader import download_model
mlir_model, func_name, inputs, golden_out = download_model(
"stable_diff_f16_18_OCT",
tank_url="gs://shark_tank/prashant_nod",
frontend="torch",
)
shark_module = SharkInference(
mlir_model, func_name, device=args.device, mlir_dialect="linalg"
)
shark_module.compile()
return shark_module
def load_mlir(mlir_loc):
import os
if mlir_loc == None:
return None
print(f"Trying to load the model from {mlir_loc}.")
with open(os.path.join(mlir_loc)) as f:
mlir_module = f.read()
return mlir_module
def compile_through_fx(model, inputs, device, mlir_loc=None):
def compile_through_fx(model, inputs, mlir_loc=None):
module = load_mlir(mlir_loc)
if mlir_loc == None:
@@ -74,106 +113,79 @@ def compile_through_fx(model, inputs, device, mlir_loc=None):
func_name = "forward"
shark_module = SharkInference(
mlir_model, func_name, device=device, mlir_dialect="tm_tensor"
mlir_model, func_name, device=args.device, mlir_dialect="linalg"
)
shark_module.compile()
return shark_module
##############################################################################
if __name__ == "__main__":
DEBUG = False
compiled_module = {}
YOUR_TOKEN = "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"
def stable_diff_inf(prompt: str, steps, device: str):
args = {}
args["prompt"] = [prompt]
args["steps"] = steps
args["device"] = device
args["mlir_loc"] = "./stable_diffusion.mlir"
output_loc = (
f"stored_results/stable_diffusion/{prompt}_{int(steps)}_{device}.jpg"
# 1. Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="vae",
use_auth_token=YOUR_TOKEN,
)
global DEBUG
global compiled_module
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14"
)
DEBUG = False
log_write = open(r"logs/stable_diffusion_log.txt", "w")
if log_write:
DEBUG = True
class VaeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="vae",
use_auth_token=YOUR_TOKEN,
)
if args["device"] not in compiled_module.keys():
YOUR_TOKEN = "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"
def forward(self, input):
return self.vae.decode(input, return_dict=False)[0]
# 1. Load the autoencoder model which will be used to decode the latents into image space.
compiled_module["vae"] = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="vae",
use_auth_token=YOUR_TOKEN,
)
vae = VaeModel()
vae_input = torch.rand(1, 4, 64, 64)
shark_vae = compile_through_fx(vae, (vae_input,), args.vae_loc)
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
compiled_module["tokenizer"] = CLIPTokenizer.from_pretrained(
"openai/clip-vit-large-patch14"
)
compiled_module["text_encoder"] = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14"
)
if DEBUG:
log_write.write("Compiling the Unet module.\n")
# Wrap the unet model to return tuples.
class UnetModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="unet",
use_auth_token=YOUR_TOKEN,
)
self.in_channels = self.unet.in_channels
self.train(False)
# Wrap the unet model to return tuples.
class UnetModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="unet",
use_auth_token=YOUR_TOKEN,
)
self.in_channels = self.unet.in_channels
self.train(False)
def forward(self, x, y, z):
return self.unet.forward(x, y, z, return_dict=False)[0]
def forward(self, x, y, z):
return self.unet.forward(x, y, z, return_dict=False)[0]
# # 3. The UNet model for generating the latents.
unet = UnetModel()
# 3. The UNet model for generating the latents.
unet = UnetModel()
latent_model_input = torch.rand([2, 4, 64, 64])
text_embeddings = torch.rand([2, 77, 768])
shark_unet = compile_through_fx(
unet,
(latent_model_input, torch.tensor([1.0]), text_embeddings),
args["device"],
args["mlir_loc"],
)
compiled_module[args["device"]] = shark_unet
if DEBUG:
log_write.write("Compilation successful.\n")
shark_unet = fp16_unet()
compiled_module["unet"] = unet
compiled_module["scheduler"] = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
shark_unet = compiled_module[args["device"]]
vae = compiled_module["vae"]
unet = compiled_module["unet"]
tokenizer = compiled_module["tokenizer"]
text_encoder = compiled_module["text_encoder"]
scheduler = compiled_module["scheduler"]
prompt = [args.prompt]
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = int(args["steps"]) # Number of denoising steps
num_inference_steps = args.steps # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
@@ -181,10 +193,10 @@ def stable_diff_inf(prompt: str, steps, device: str):
42
) # Seed generator to create the inital latent noise
batch_size = len(args["prompt"])
batch_size = len(prompt)
text_input = tokenizer(
args["prompt"],
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
@@ -208,30 +220,41 @@ def stable_diff_inf(prompt: str, steps, device: str):
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
# latents = latents.to(torch_device)
scheduler.set_timesteps(num_inference_steps)
latents = latents * scheduler.sigmas[0]
# print(latents, latents.shape)
for i, t in tqdm(enumerate(scheduler.timesteps)):
if DEBUG:
log_write.write(f"i = {i} t = {t}\n")
print(f"i = {i} t = {t}")
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
latent_model_input_numpy = latent_model_input.detach().numpy()
text_embeddings_numpy = text_embeddings.detach().numpy()
# with torch.no_grad():
# noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)
latent_model_input_numpy = (
latent_model_input.detach().numpy().astype(np.half)
)
text_embeddings_numpy = (
text_embeddings.detach().numpy().astype(np.half)
)
noise_pred = shark_unet.forward(
(
latent_model_input_numpy,
np.array([t]).astype(np.float32),
np.array([t]).astype(np.half),
text_embeddings_numpy,
)
)
noise_pred = torch.from_numpy(noise_pred)
noise_pred = torch.from_numpy(noise_pred).to(torch.float32)
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
@@ -242,21 +265,16 @@ def stable_diff_inf(prompt: str, steps, device: str):
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, i, latents)["prev_sample"]
# print("Latents shape : ", latents.shape)
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
image = vae.decode(latents).sample
latents_numpy = latents.detach().numpy()
image = shark_vae.forward((latents_numpy,))
image = torch.from_numpy(image)
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
output = pil_images[0]
# save the output image with the prompt name.
output.save(os.path.join(output_loc))
log_write.close()
std_output = ""
with open(r"logs/stable_diffusion_log.txt", "r") as log_read:
std_output = log_read.read()
return output, std_output
pil_images[0].save("astro.jpg")

View File

@@ -17,7 +17,7 @@ from keras_cv.models.generative.stable_diffusion.text_encoder import (
)
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
from shark.shark_downloader import download_model
from PIL import Image
# pip install "git+https://github.com/keras-team/keras-cv.git"
@@ -75,8 +75,8 @@ class SharkStableDiffusion:
# Create models
self.text_encoder = TextEncoder(MAX_PROMPT_LENGTH)
mlir_model, func_name, inputs, golden_out = download_tf_model(
"stable_diff", tank_url="gs://shark_tank/quinn"
mlir_model, func_name, inputs, golden_out = download_model(
"stable_diff", tank_url="gs://shark_tank/quinn", frontend="tf"
)
shark_module = SharkInference(
mlir_model, func_name, device=device, mlir_dialect="mhlo"

View File

@@ -0,0 +1,2 @@
*.vmfb
*.jpg

View File

@@ -0,0 +1,44 @@
# STABLE DIFFUSION
## Installation
Follow setup instructions in the main [README.md](https://github.com/nod-ai/SHARK#readme) for regular usage.
## Debug commands and other advanced usage follows.
```shell
python main.py --precision="fp32"|"fp16" --device="cpu"|"cuda"|"vulkan" --import_mlir|--no-import_mlir --prompt "enter the text"
```
## dump all dispatch .spv and isa using amdllpc
```shell
python main.py --precision="fp16" --device="vulkan" --iree-vulkan-target-triple=rdna3-unknown-linux --no-load_vmfb --dispatch_benchmarks="all" --dispatch_benchmarks_dir="SD_dispatches" --dump_isa
```
## Compile and save the .vmfb (using vulkan fp16 as an example):
```shell
python shark/examples/shark_inference/stable_diffusion/main.py --precision=fp16 --device=vulkan --steps=50 --save_vmfb
```
## Capture an RGP trace
```shell
python shark/examples/shark_inference/stable_diffusion/main.py --precision=fp16 --device=vulkan --steps=50 --save_vmfb --enable_rgp
```
## Run the vae module with iree-benchmark-module (NCHW, fp16, vulkan, for example):
```shell
iree-benchmark-module --module_file=/path/to/output/vmfb --entry_function=forward --device=vulkan --function_input=1x4x64x64xf16
```
## Run the unet module with iree-benchmark-module (same config as above):
```shell
##if you want to use .npz inputs:
unzip ~/.local/shark_tank/<your unet>/inputs.npz
iree-benchmark-module --module_file=/path/to/output/vmfb --entry_function=forward --function_input=@arr_0.npy --function_input=1xf16 --function_input=@arr_2.npy --function_input=@arr_3.npy --function_input=@arr_4.npy
```

View File

@@ -0,0 +1,25 @@
from PIL import Image
import requests
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=image,
return_tensors="pt",
padding=True,
)
outputs = model(**inputs)
logits_per_image = (
outputs.logits_per_image
) # this is the image-text similarity score
probs = logits_per_image.softmax(
dim=1
) # we can take the softmax to get the label probabilities

View File

@@ -0,0 +1,209 @@
import os
os.environ["AMD_ENABLE_LLPC"] = "1"
from transformers import CLIPTextModel, CLIPTokenizer
import torch
from PIL import Image
from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
)
from tqdm.auto import tqdm
import numpy as np
from stable_args import args
from utils import get_shark_model, set_iree_runtime_flags
from opt_params import get_unet, get_vae, get_clip
from schedulers import (
SharkEulerDiscreteScheduler,
)
import time
import sys
from shark.iree_utils.compile_utils import dump_isas
# Helper function to profile the vulkan device.
def start_profiling(file_path="foo.rdc", profiling_mode="queue"):
if args.vulkan_debug_utils and "vulkan" in args.device:
import iree
print(f"Profiling and saving to {file_path}.")
vulkan_device = iree.runtime.get_device(args.device)
vulkan_device.begin_profiling(mode=profiling_mode, file_path=file_path)
return vulkan_device
return None
def end_profiling(device):
if device:
return device.end_profiling()
if __name__ == "__main__":
dtype = torch.float32 if args.precision == "fp32" else torch.half
prompt = args.prompts
neg_prompt = args.negative_prompts
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
if args.version == "v2.1":
height = 768
width = 768
num_inference_steps = args.steps # Number of denoising steps
# Scale for classifier-free guidance
guidance_scale = torch.tensor(args.guidance_scale).to(torch.float32)
generator = torch.manual_seed(
args.seed
) # Seed generator to create the inital latent noise
# TODO: Add support for batch_size > 1.
batch_size = len(prompt)
if batch_size != 1:
sys.exit("More than one prompt is not supported yet.")
if batch_size != len(neg_prompt):
sys.exit("prompts and negative prompts must be of same length")
set_iree_runtime_flags()
unet = get_unet()
vae = get_vae()
clip = get_clip()
if args.dump_isa:
dump_isas(args.dispatch_benchmarks_dir)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="scheduler",
)
cpu_scheduling = True
if args.version == "v2.1":
tokenizer = CLIPTokenizer.from_pretrained(
"stabilityai/stable-diffusion-2-1", subfolder="tokenizer"
)
scheduler = DPMSolverMultistepScheduler.from_pretrained(
"stabilityai/stable-diffusion-2-1",
subfolder="scheduler",
)
if args.version == "v2.1base":
tokenizer = CLIPTokenizer.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", subfolder="tokenizer"
)
if args.use_compiled_scheduler:
scheduler = SharkEulerDiscreteScheduler.from_pretrained(
"stabilityai/stable-diffusion-2-1-base",
subfolder="scheduler",
)
scheduler.compile()
cpu_scheduling = False
else:
scheduler = EulerDiscreteScheduler.from_pretrained(
"stabilityai/stable-diffusion-2-1-base",
subfolder="scheduler",
)
start = time.time()
text_input = tokenizer(
prompt,
padding="max_length",
max_length=args.max_length,
truncation=True,
return_tensors="pt",
)
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
neg_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
text_input = torch.cat([uncond_input.input_ids, text_input.input_ids])
clip_inf_start = time.time()
text_embeddings = clip.forward((text_input,))
clip_inf_end = time.time()
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
latents = torch.randn(
(batch_size, 4, height // 8, width // 8),
generator=generator,
dtype=torch.float32,
).to(dtype)
scheduler.set_timesteps(num_inference_steps)
scheduler.is_scale_input_called = True
latents = latents * scheduler.init_noise_sigma
avg_ms = 0
for i, t in tqdm(enumerate(scheduler.timesteps)):
step_start = time.time()
print(f"i = {i} t = {t}", end="")
timestep = torch.tensor([t]).to(dtype).detach().numpy()
latent_model_input = scheduler.scale_model_input(latents, t)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
profile_device = start_profiling(file_path="unet.rdc")
noise_pred = unet.forward(
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
),
send_to_host=False,
)
end_profiling(profile_device)
if cpu_scheduling:
noise_pred = torch.from_numpy(noise_pred.to_host())
latents = scheduler.step(noise_pred, t, latents).prev_sample
else:
latents = scheduler.step(noise_pred, t, latents)
step_time = time.time() - step_start
avg_ms += step_time
step_ms = int((step_time) * 1000)
print(f" ({step_ms}ms)")
avg_ms = 1000 * avg_ms / args.steps
print(f"Average step time: {avg_ms}ms/it")
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
# latents = latents.
latents_numpy = latents
if cpu_scheduling:
latents_numpy = latents.detach().numpy()
profile_device = start_profiling(file_path="vae.rdc")
vae_start = time.time()
image = vae.forward((latents_numpy,))
vae_end = time.time()
end_profiling(profile_device)
image = torch.from_numpy(image)
image = image.detach().cpu().permute(0, 2, 3, 1) * 255.0
images = image.numpy().round().astype("uint8")
total_end = time.time()
clip_inf_time = (clip_inf_end - clip_inf_start) * 1000
vae_inf_time = (vae_end - vae_start) * 1000
print(f"Clip Inference time (ms) = {clip_inf_time:.3f}")
print(f"VAE Inference time (ms): {vae_inf_time:.3f}")
print(f"Total image generation runtime (s): {total_end - start:.4f}")
pil_images = [Image.fromarray(image) for image in images]
for i in range(batch_size):
pil_images[i].save(f"{args.prompts[i]}_{i}.jpg")

View File

@@ -0,0 +1,182 @@
from diffusers import AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel
from utils import compile_through_fx
from stable_args import args
import torch
model_config = {
"v2.1": "stabilityai/stable-diffusion-2-1",
"v2.1base": "stabilityai/stable-diffusion-2-1-base",
"v1.4": "CompVis/stable-diffusion-v1-4",
}
model_input = {
"v2.1": {
"clip": (torch.randint(1, 2, (2, 77)),),
"vae": (torch.randn(1, 4, 96, 96),),
"unet": (
torch.randn(1, 4, 96, 96), # latents
torch.tensor([1]).to(torch.float32), # timestep
torch.randn(2, 77, 1024), # embedding
torch.tensor(1).to(torch.float32), # guidance_scale
),
},
"v2.1base": {
"clip": (torch.randint(1, 2, (2, 77)),),
"vae": (torch.randn(1, 4, 64, 64),),
"unet": (
torch.randn(1, 4, 64, 64), # latents
torch.tensor([1]).to(torch.float32), # timestep
torch.randn(2, 77, 1024), # embedding
torch.tensor(1).to(torch.float32), # guidance_scale
),
},
"v1.4": {
"clip": (torch.randint(1, 2, (2, 77)),),
"vae": (torch.randn(1, 4, 64, 64),),
"unet": (
torch.randn(1, 4, 64, 64),
torch.tensor([1]).to(torch.float32), # timestep
torch.randn(2, 77, 768),
torch.tensor(1).to(torch.float32),
),
},
}
# revision param for from_pretrained defaults to "main" => fp32
model_revision = "fp16" if args.precision == "fp16" else "main"
def get_clip_mlir(model_name="clip_text", extra_args=[]):
text_encoder = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14"
)
if args.version != "v1.4":
text_encoder = CLIPTextModel.from_pretrained(
model_config[args.version], subfolder="text_encoder"
)
class CLIPText(torch.nn.Module):
def __init__(self):
super().__init__()
self.text_encoder = text_encoder
def forward(self, input):
return self.text_encoder(input)[0]
clip_model = CLIPText()
shark_clip = compile_through_fx(
clip_model,
model_input[args.version]["clip"],
model_name=model_name,
extra_args=extra_args,
)
return shark_clip
def get_vae_mlir(model_name="vae", extra_args=[]):
class VaeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.vae = AutoencoderKL.from_pretrained(
model_config[args.version],
subfolder="vae",
revision=model_revision,
)
def forward(self, input):
x = self.vae.decode(input, return_dict=False)[0]
return (x / 2 + 0.5).clamp(0, 1)
vae = VaeModel()
if args.precision == "fp16":
vae = vae.half().cuda()
inputs = tuple(
[
inputs.half().cuda()
for inputs in model_input[args.version]["vae"]
]
)
else:
inputs = model_input[args.version]["vae"]
shark_vae = compile_through_fx(
vae,
inputs,
model_name=model_name,
extra_args=extra_args,
)
return shark_vae
def get_vae_encode_mlir(model_name="vae_encode", extra_args=[]):
class VaeEncodeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.vae = AutoencoderKL.from_pretrained(
model_config[args.version],
subfolder="vae",
revision="fp16",
)
def forward(self, x):
input = 2 * (x - 0.5)
return self.vae.encode(input, return_dict=False)[0]
vae = VaeEncodeModel()
vae = vae.half().cuda()
inputs = tuple(
[inputs.half().cuda() for inputs in model_input[args.version]["vae"]]
)
shark_vae = compile_through_fx(
vae,
inputs,
model_name=model_name,
extra_args=extra_args,
)
return shark_vae
def get_unet_mlir(model_name="unet", extra_args=[]):
class UnetModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_config[args.version],
subfolder="unet",
revision=model_revision,
)
self.in_channels = self.unet.in_channels
self.train(False)
def forward(self, latent, timestep, text_embedding, guidance_scale):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latents = torch.cat([latent] * 2)
unet_out = self.unet.forward(
latents, timestep, text_embedding, return_dict=False
)[0]
noise_pred_uncond, noise_pred_text = unet_out.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
unet = UnetModel()
if args.precision == "fp16":
unet = unet.half().cuda()
inputs = tuple(
[
inputs.half().cuda() if len(inputs.shape) != 0 else inputs
for inputs in model_input[args.version]["unet"]
]
)
else:
inputs = model_input[args.version]["unet"]
shark_unet = compile_through_fx(
unet,
inputs,
model_name=model_name,
extra_args=extra_args,
)
return shark_unet

View File

@@ -0,0 +1,186 @@
import sys
from model_wrappers import (
get_vae_mlir,
get_vae_encode_mlir,
get_unet_mlir,
get_clip_mlir,
)
from stable_args import args
from utils import get_shark_model
BATCH_SIZE = len(args.prompts)
if BATCH_SIZE != 1:
sys.exit("Only batch size 1 is supported.")
if "rdna3" not in args.iree_vulkan_target_triple:
args.use_tuned = False
def get_unet():
iree_flags = []
if len(args.iree_vulkan_target_triple) > 0:
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
# Disable bindings fusion to work with moltenVK.
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
# Tuned model is present for `fp16` precision.
if args.precision == "fp16":
if args.use_tuned:
bucket = "gs://shark_tank/vivian"
if args.version == "v1.4":
model_name = "unet_1dec_fp16_tuned"
if args.version == "v2.1base":
model_name = "unet2base_8dec_fp16_tuned_v2"
return get_shark_model(bucket, model_name, iree_flags)
else:
bucket = "gs://shark_tank/stable_diffusion"
model_name = "unet_8dec_fp16"
if args.version == "v2.1base":
model_name = "unet2base_8dec_fp16"
if args.version == "v2.1":
model_name = "unet2_14dec_fp16"
iree_flags += [
"--iree-flow-enable-padding-linalg-ops",
"--iree-flow-linalg-ops-padding-size=32",
"--iree-flow-enable-conv-img2col-transform",
]
if args.import_mlir:
return get_unet_mlir(model_name, iree_flags)
return get_shark_model(bucket, model_name, iree_flags)
# Tuned model is not present for `fp32` case.
if args.precision == "fp32":
bucket = "gs://shark_tank/stable_diffusion"
model_name = "unet_1dec_fp32"
iree_flags += [
"--iree-flow-enable-conv-nchw-to-nhwc-transform",
"--iree-flow-enable-padding-linalg-ops",
"--iree-flow-linalg-ops-padding-size=16",
]
if args.import_mlir:
return get_unet_mlir(model_name, iree_flags)
return get_shark_model(bucket, model_name, iree_flags)
if args.precision == "int8":
bucket = "gs://shark_tank/prashant_nod"
model_name = "unet_int8"
iree_flags += [
"--iree-flow-enable-padding-linalg-ops",
"--iree-flow-linalg-ops-padding-size=32",
]
sys.exit("int8 model is currently in maintenance.")
# # TODO: Pass iree_flags to the exported model.
# if args.import_mlir:
# sys.exit(
# "--import_mlir is not supported for the int8 model, try --no-import_mlir flag."
# )
# return get_shark_model(bucket, model_name, iree_flags)
def get_vae():
iree_flags = []
if len(args.iree_vulkan_target_triple) > 0:
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
# Disable bindings fusion to work with moltenVK.
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
if args.precision in ["fp16", "int8"]:
if args.use_tuned:
bucket = "gs://shark_tank/vivian"
if args.version == "v2.1base":
model_name = "vae2base_8dec_fp16_tuned"
iree_flags += [
"--iree-flow-enable-padding-linalg-ops",
"--iree-flow-linalg-ops-padding-size=32",
"--iree-flow-enable-conv-img2col-transform",
"--iree-flow-enable-conv-winograd-transform",
]
return get_shark_model(bucket, model_name, iree_flags)
else:
bucket = "gs://shark_tank/stable_diffusion"
model_name = "vae_8dec_fp16"
if args.version == "v2.1base":
model_name = "vae2base_8dec_fp16"
if args.version == "v2.1":
model_name = "vae2_14dec_fp16"
iree_flags += [
"--iree-flow-enable-padding-linalg-ops",
"--iree-flow-linalg-ops-padding-size=32",
"--iree-flow-enable-conv-img2col-transform",
]
if args.import_mlir:
return get_vae_mlir(model_name, iree_flags)
return get_shark_model(bucket, model_name, iree_flags)
if args.precision == "fp32":
bucket = "gs://shark_tank/stable_diffusion"
model_name = "vae_1dec_fp32"
iree_flags += [
"--iree-flow-enable-conv-nchw-to-nhwc-transform",
"--iree-flow-enable-padding-linalg-ops",
"--iree-flow-linalg-ops-padding-size=16",
]
if args.import_mlir:
return get_vae_mlir(model_name, iree_flags)
return get_shark_model(bucket, model_name, iree_flags)
def get_vae_encode():
iree_flags = []
if len(args.iree_vulkan_target_triple) > 0:
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
if args.precision in ["fp16", "int8"]:
bucket = "gs://shark_tank/stable_diffusion"
model_name = "vae_encode_1dec_fp16"
if args.version == "v2":
model_name = "vae2_encode_29nov_fp16"
iree_flags += [
"--iree-flow-enable-conv-nchw-to-nhwc-transform",
"--iree-flow-enable-padding-linalg-ops",
"--iree-flow-linalg-ops-padding-size=32",
]
if args.import_mlir:
return get_vae_encode_mlir(model_name, iree_flags)
return get_shark_model(bucket, model_name, iree_flags)
if args.precision == "fp32":
bucket = "gs://shark_tank/stable_diffusion"
model_name = "vae_encode_1dec_fp32"
iree_flags += [
"--iree-flow-enable-conv-nchw-to-nhwc-transform",
"--iree-flow-enable-padding-linalg-ops",
"--iree-flow-linalg-ops-padding-size=16",
]
if args.import_mlir:
return get_vae_mlir(model_name, iree_flags)
return get_shark_model(bucket, model_name, iree_flags)
def get_clip():
iree_flags = []
if len(args.iree_vulkan_target_triple) > 0:
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
# Disable bindings fusion to work with moltenVK.
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
bucket = "gs://shark_tank/stable_diffusion"
model_name = "clip_18dec_fp32"
if args.version == "v2.1base":
model_name = "clip2base_18dec_fp32"
if args.version == "v2.1":
model_name = "clip2_18dec_fp32"
iree_flags += [
"--iree-flow-linalg-ops-padding-size=16",
"--iree-flow-enable-padding-linalg-ops",
]
if args.import_mlir:
return get_clip_mlir(model_name, iree_flags)
return get_shark_model(bucket, model_name, iree_flags)

View File

@@ -0,0 +1,44 @@
Compile / Run Instructions:
To compile .vmfb for SD (vae, unet, CLIP), run the following commands with the .mlir in your local shark_tank cache (default location for Linux users is `~/.local/shark_tank`). These will be available once the script from [this README](https://github.com/nod-ai/SHARK/blob/main/shark/examples/shark_inference/stable_diffusion/README.md) is run once.
Running the script mentioned above with the `--save_vmfb` flag will also save the .vmfb in your SHARK base directory if you want to skip straight to benchmarks.
Compile Commands FP32/FP16:
```shell
Vulkan AMD:
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
# add --mlir-print-debuginfo --mlir-print-op-on-diagnostic=true for debug
# use iree-input-type=mhlo for tf models
CUDA NVIDIA:
iree-compile --iree-input-type=none --iree-hal-target-backends=cuda --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
CPU:
iree-compile --iree-input-type=none --iree-hal-target-backends=llvm-cpu --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
```
Run / Benchmark Command (FP32 - NCHW):
(NEED to use BS=2 since we do two forward passes to unet as a result of classifier free guidance.)
```shell
## Vulkan AMD:
iree-benchmark-module --module_file=/path/to/output/vmfb --entry_function=forward --device=vulkan --function_input=1x4x64x64xf32 --function_input=1xf32 --function_input=2x77x768xf32 --function_input=f32=1.0 --function_input=f32=1.0
## CUDA:
iree-benchmark-module --module_file=/path/to/vmfb --entry_function=forward --device=cuda --function_input=1x4x64x64xf32 --function_input=1xf32 --function_input=2x77x768xf32 --function_input=f32=1.0 --function_input=f32=1.0
## CPU:
iree-benchmark-module --module_file=/path/to/vmfb --entry_function=forward --device=local-task --function_input=1x4x64x64xf32 --function_input=1xf32 --function_input=2x77x768xf32 --function_input=f32=1.0 --function_input=f32=1.0
```
Run via vulkan_gui for RGP Profiling:
To build the vulkan app for profiling UNet follow the instructions [here](https://github.com/nod-ai/SHARK/tree/main/cpp) and then run the following command from the cpp directory with your compiled stable_diff.vmfb
```shell
./build/vulkan_gui/iree-vulkan-gui --module_file=/path/to/unet.vmfb --function_input=1x4x64x64xf32 --function_input=1xf32 --function_input=2x77x768xf32 --function_input=f32=1.0 --function_input=f32=1.0
```

View File

@@ -0,0 +1,131 @@
import sys
import numpy as np
from typing import List, Optional, Tuple, Union
from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
)
from diffusers.configuration_utils import register_to_config
from utils import compile_through_fx, get_shark_model
from stable_args import args
import torch
SCHEDULER_BUCKET = "gs://shark_tank/stable_diffusion/schedulers"
model_input = {
"euler": {
"latent": torch.randn(1, 4, 64, 64),
"output": torch.randn(1, 4, 64, 64),
"sigma": torch.tensor(1).to(torch.float32),
"dt": torch.tensor(1).to(torch.float32),
},
}
class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
):
super().__init__(
num_train_timesteps,
beta_start,
beta_end,
beta_schedule,
trained_betas,
prediction_type,
)
def compile(self):
example_latent = model_input["euler"]["latent"]
example_output = model_input["euler"]["output"]
if args.precision == "fp16":
example_latent = example_latent.half()
example_output = example_output.half()
example_sigma = model_input["euler"]["sigma"]
example_dt = model_input["euler"]["dt"]
class ScalingModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, latent, sigma):
return latent / ((sigma**2 + 1) ** 0.5)
class SchedulerStepModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, noise_pred, sigma, latent, dt):
pred_original_sample = latent - sigma * noise_pred
derivative = (latent - pred_original_sample) / sigma
return latent + derivative * dt
iree_flags = []
if len(args.iree_vulkan_target_triple) > 0:
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
# Disable bindings fusion to work with moltenVK.
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
if args.import_mlir:
scaling_model = ScalingModel()
self.scaling_model = compile_through_fx(
scaling_model,
(example_latent, example_sigma),
model_name="euler_scale_model_input_" + args.precision,
extra_args=iree_flags,
)
step_model = SchedulerStepModel()
self.step_model = compile_through_fx(
step_model,
(example_output, example_sigma, example_latent, example_dt),
model_name="euler_step_" + args.precision,
extra_args=iree_flags,
)
else:
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET, "euler_step_" + args.precision, iree_flags
)
def scale_model_input(self, sample, timestep):
step_index = (self.timesteps == timestep).nonzero().item()
sigma = self.sigmas[step_index]
return self.scaling_model.forward(
(
sample,
sigma,
),
send_to_host=False,
)
def step(self, noise_pred, timestep, latent):
step_index = (self.timesteps == timestep).nonzero().item()
sigma = self.sigmas[step_index]
dt = self.sigmas[step_index + 1] - sigma
return self.step_model.forward(
(
noise_pred,
sigma,
latent,
dt,
),
send_to_host=False,
)

View File

@@ -0,0 +1,173 @@
import argparse
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
##############################################################################
### Stable Diffusion Params
##############################################################################
p.add_argument(
"--prompts",
nargs="+",
default=["cyberpunk forest by Salvador Dali"],
help="text of which images to be generated.",
)
p.add_argument(
"--negative-prompts",
nargs="+",
default=[""],
help="text you don't want to see in the generated image.",
)
p.add_argument(
"--steps",
type=int,
default=50,
help="the no. of steps to do the sampling.",
)
p.add_argument(
"--seed",
type=int,
default=42,
help="the seed to use.",
)
p.add_argument(
"--guidance_scale",
type=float,
default=7.5,
help="the value to be used for guidance scaling.",
)
p.add_argument(
"--max_length",
type=int,
default=77,
help="max length of the tokenizer output.",
)
##############################################################################
### Model Config and Usage Params
##############################################################################
p.add_argument(
"--device", type=str, default="vulkan", help="device to run the model."
)
p.add_argument(
"--version",
type=str,
default="v2.1base",
help="Specify version of stable diffusion model",
)
p.add_argument(
"--precision", type=str, default="fp16", help="precision to run the model."
)
p.add_argument(
"--import_mlir",
default=False,
action=argparse.BooleanOptionalAction,
help="imports the model from torch module to shark_module otherwise downloads the model from shark_tank.",
)
p.add_argument(
"--load_vmfb",
default=True,
action=argparse.BooleanOptionalAction,
help="attempts to load the model from a precompiled flatbuffer and compiles + saves it if not found.",
)
p.add_argument(
"--save_vmfb",
default=False,
action=argparse.BooleanOptionalAction,
help="saves the compiled flatbuffer to the local directory",
)
p.add_argument(
"--use_tuned",
default=False,
action=argparse.BooleanOptionalAction,
help="Download and use the tuned version of the model if available",
)
##############################################################################
### IREE - Vulkan supported flags
##############################################################################
p.add_argument(
"--iree-vulkan-target-triple",
type=str,
default="",
help="Specify target triple for vulkan",
)
p.add_argument(
"--vulkan_debug_utils",
default=False,
action=argparse.BooleanOptionalAction,
help="Profiles vulkan device and collects the .rdc info",
)
p.add_argument(
"--vulkan_large_heap_block_size",
default="2147483648",
help="flag for setting VMA preferredLargeHeapBlockSize for vulkan device, default is 4G",
)
p.add_argument(
"--vulkan_validation_layers",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for disabling vulkan validation layers when benchmarking",
)
##############################################################################
### Misc. Debug and Optimization flags
##############################################################################
p.add_argument(
"--use_compiled_scheduler",
default=False,
action=argparse.BooleanOptionalAction,
help="use the default scheduler precompiled into the model if available",
)
p.add_argument(
"--local_tank_cache",
default="",
help="Specify where to save downloaded shark_tank artifacts. If this is not set, the default is ~/.local/shark_tank/.",
)
p.add_argument(
"--dump_isa",
default=False,
action="store_true",
help="When enabled call amdllpc to get ISA dumps. use with dispatch benchmarks.",
)
p.add_argument(
"--dispatch_benchmarks",
default=None,
help='dispatches to return benchamrk data on. use "All" for all, and None for none.',
)
p.add_argument(
"--dispatch_benchmarks_dir",
default="temp_dispatch_benchmarks",
help='directory where you want to store dispatch data generated with "--dispatch_benchmarks"',
)
p.add_argument(
"--enable_rgp",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for inserting debug frames between iterations for use with rgp.",
)
args = p.parse_args()

View File

@@ -0,0 +1,115 @@
# Stable Diffusion optimized for AMD RDNA2/RDNA3 GPUs
## Install the latest AMD Drivers
### RDNA2 Drivers:
*AMD Software: Adrenalin Edition 22.11.1 for MLIR/IREE Driver Version 22.20.29.09 for Windows® 10 and Windows® 11 (Windows Driver Store Version 31.0.12029.9003)*
https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mlir-iree
Note that if you previously tried Stable Diffusion with a different driver, it may be necessary to clear vulkan cache after changing drivers.
For Windows users this can be done by clearing the contents of `C:\Users\<username>\AppData\Local\AMD\VkCache\`. On Linux the same cache is typically located at `~/.cache/AMD/VkCache/`.
## Installation
Download the latest Windows SHARK SD binary [here](https://github.com/nod-ai/SHARK/releases/download/20221216.392/shark_sd_20221216_392.exe). Accept if Windows warns of an unsigned .exe.
Notes:
* Your browser may warn you about downloading a exe file
* The first run may take about 10-15 minutes when the models are downloaded and compiled. The download could be about 5GB.
#### Access Stable Diffusion on http://localhost:8080/?__theme=dark
<img width="1607" alt="webui" src="https://user-images.githubusercontent.com/74956/204939260-b8308bc2-8dc4-47f6-9ac0-f60b66edab99.png">
Here are some samples generated:
![tajmahal, snow, sunflowers, oil on canvas_0](https://user-images.githubusercontent.com/74956/204934186-141f7e43-6eb2-4e89-a99c-4704d20444b3.jpg)
![a photo of a crab playing a trumpet](https://user-images.githubusercontent.com/74956/204933258-252e7240-8548-45f7-8253-97647d38313d.jpg)
<details>
<summary>Advanced Installation </summary>
## Setup your Python VirtualEnvironment and Dependencies
### Windows 10/11 Users
* Install the latest Python 3.10.x version from [here](https://www.python.org/downloads/windows/)
* Install Git for Windows from [here](https://git-scm.com/download/win)
#### Allow the install script to run in Powershell
```powershell
set-executionpolicy remotesigned
```
#### Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...)
```powershell
git clone https://github.com/nod-ai/SHARK.git
cd SHARK
./setup_venv.ps1 #You can re-run this script to get the latest version
```
### Linux
```shell
git clone https://github.com/nod-ai/SHARK.git
cd SHARK
./setup_venv.sh
source shark.venv/bin/activate
```
### Run Stable Diffusion on your device - WebUI
#### Windows 10/11 Users
```powershell
(shark.venv) PS C:\Users\nod\SHARK> cd web
(shark.venv) PS C:\Users\nod\SHARK\web> python index.py
```
#### Linux Users
```shell
(shark.venv) > cd web
(shark.venv) > python index.py
```
### Run Stable Diffusion on your device - Commandline
#### Windows 10/11 Users
```powershell
(shark.venv) PS C:\g\shark> python .\shark\examples\shark_inference\stable_diffusion\main.py --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
```
#### Linux
```shell
python3.10 shark/examples/shark_inference/stable_diffusion/main.py --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
```
The output on a 6900XT would like:
```shell
44it [00:08, 5.14it/s]i = 44 t = 120 (191ms)
45it [00:08, 5.15it/s]i = 45 t = 100 (191ms)
46it [00:08, 5.16it/s]i = 46 t = 80 (191ms)
47it [00:09, 5.16it/s]i = 47 t = 60 (193ms)
48it [00:09, 5.15it/s]i = 48 t = 40 (195ms)
49it [00:09, 5.12it/s]i = 49 t = 20 (196ms)
50it [00:09, 5.14it/s]
Average step time: 192.8154182434082ms/it
Total image generation runtime (s): 10.390909433364868
(shark.venv) PS C:\g\shark>
```
For more options to the Stable Diffusion model read [this](https://github.com/nod-ai/SHARK/blob/main/shark/examples/shark_inference/stable_diffusion/README.md)
</details>
<details>
<summary>Discord link</summary>
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
</details>

View File

@@ -0,0 +1,88 @@
import os
import torch
from shark.shark_inference import SharkInference
from stable_args import args
from shark.shark_importer import import_with_fx
from shark.iree_utils.vulkan_utils import set_iree_vulkan_runtime_flags
def _compile_module(shark_module, model_name, extra_args=[]):
if args.load_vmfb or args.save_vmfb:
device = (
args.device
if "://" not in args.device
else "-".join(args.device.split("://"))
)
extended_name = "{}_{}".format(model_name, device)
vmfb_path = os.path.join(os.getcwd(), extended_name + ".vmfb")
if args.load_vmfb and os.path.isfile(vmfb_path) and not args.save_vmfb:
print(f"loading existing vmfb from: {vmfb_path}")
shark_module.load_module(vmfb_path, extra_args=extra_args)
else:
if args.save_vmfb:
print("Saving to {}".format(vmfb_path))
else:
print(
"No vmfb found. Compiling and saving to {}".format(
vmfb_path
)
)
path = shark_module.save_module(
os.getcwd(), extended_name, extra_args
)
shark_module.load_module(path, extra_args=extra_args)
else:
shark_module.compile(extra_args)
return shark_module
# Downloads the model from shark_tank and returns the shark_module.
def get_shark_model(tank_url, model_name, extra_args=[]):
from shark.shark_downloader import download_model
from shark.parser import shark_args
# Set local shark_tank cache directory.
shark_args.local_tank_cache = args.local_tank_cache
mlir_model, func_name, inputs, golden_out = download_model(
model_name,
tank_url=tank_url,
frontend="torch",
)
shark_module = SharkInference(
mlir_model, func_name, device=args.device, mlir_dialect="linalg"
)
return _compile_module(shark_module, model_name, extra_args)
# Converts the torch-module into a shark_module.
def compile_through_fx(model, inputs, model_name, extra_args=[]):
mlir_module, func_name = import_with_fx(model, inputs)
shark_module = SharkInference(
mlir_module,
func_name,
device=args.device,
mlir_dialect="linalg",
)
return _compile_module(shark_module, model_name, extra_args)
def set_iree_runtime_flags():
vulkan_runtime_flags = [
f"--vulkan_large_heap_block_size={args.vulkan_large_heap_block_size}",
f"--vulkan_validation_layers={'true' if args.vulkan_validation_layers else 'false'}",
]
if args.enable_rgp:
vulkan_runtime_flags += [
f"--enable_rgp=true",
f"--vulkan_debug_utils=true",
]
if "vulkan" in args.device:
set_iree_vulkan_runtime_flags(flags=vulkan_runtime_flags)
return

View File

@@ -18,7 +18,7 @@ class T5Module(tf.Module):
self.m = TFT5Model.from_pretrained("t5-small")
self.m.predict = lambda x, y: self.m(input_ids=x, decoder_input_ids=y)
@tf.function(input_signature=t5_inputs)
@tf.function(input_signature=t5_inputs, jit_compile=True)
def forward(self, input_ids, decoder_input_ids):
return self.m.predict(input_ids, decoder_input_ids)

View File

@@ -1,8 +1,10 @@
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_torch_model
from shark.shark_downloader import download_model
mlir_model, func_name, inputs, golden_out = download_torch_model("v_diffusion")
mlir_model, func_name, inputs, golden_out = download_model(
"v_diffusion", frontend="torch"
)
shark_module = SharkInference(
mlir_model, func_name, device="vulkan", mlir_dialect="linalg"

View File

@@ -52,7 +52,8 @@ class BertModule(tf.Module):
input_signature=[
bert_input, # inputs
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
]
],
jit_compile=True,
)
def forward(self, inputs, labels):
with tf.GradientTape() as tape:

View File

@@ -0,0 +1,41 @@
# Stable Diffusion Img2Img model
## Installation
<details>
<summary>Installation (Linux)</summary>
### Activate shark.venv Virtual Environment
```shell
source shark.venv/bin/activate
# Some older pip installs may not be able to handle the recent PyTorch deps
python -m pip install --upgrade pip
```
### Install dependencies
# Run the setup.sh script
```shell
./setup.sh
```
### Run the Stable diffusion Img2Img model
To run the model with the default set of images and params, run:
```shell
python stable_diffusion_img2img.py
```
To run the model with your set of images, and parameters you need to specify the following params:
1.) Input images directory with the arg `--input_dir` containing 3-5 images.
2.) What to teach the model? Using the arg `--what_to_teach`, allowed values are `object` or `style`.
3.) Placeholder token using the arg `--placeholder_token`, that represents your new concept. It should be passed with the opening and closing angle brackets. For ex: token is `cat-toy`, it should be passed as `<cat-toy>`.
4.) Initializer token using the arg `--initializer_token`, which summarise what is your new concept.
For the result, you need to pass the text prompt with the arg: `--prompt`. The prompt string should contain a "*s" in it, which will be replaced by the placeholder token during the inference.
By default the result images will go into the `sd_result` dir. To specify your output dir use the arg: `--output_dir`.
The default value of max_training_steps is `3000`, which takes some hours to complete. You can pass the smaller value with the arg `--training_steps`. Specify the number of images to be sampled for the result with the `--num_inference_samples` arg.

View File

@@ -0,0 +1,25 @@
#!/bin/bash
TD="$(cd $(dirname $0) && pwd)"
if [ -z "$PYTHON" ]; then
PYTHON="$(which python3)"
fi
function die() {
echo "Error executing command: $*"
exit 1
}
PYTHON_VERSION_X_Y=`${PYTHON} -c 'import sys; version=sys.version_info[:2]; print("{0}.{1}".format(*version))'`
echo "Python: $PYTHON"
echo "Python version: $PYTHON_VERSION_X_Y"
mkdir input_images
wget https://huggingface.co/datasets/valhalla/images/resolve/main/2.jpeg -P input_images/
wget https://huggingface.co/datasets/valhalla/images/resolve/main/3.jpeg -P input_images/
wget https://huggingface.co/datasets/valhalla/images/resolve/main/5.jpeg -P input_images/
wget https://huggingface.co/datasets/valhalla/images/resolve/main/6.jpeg -P input_images/
pip install diffusers["training"]==0.4.1 transformers ftfy opencv-python

View File

@@ -0,0 +1,597 @@
# Textual-inversion fine-tuning for Stable Diffusion using diffusers
# This script shows how to "teach" Stable Diffusion a new concept via
# textual-inversion using 🤗 Hugging Face [🧨 Diffusers library](https://github.com/huggingface/diffusers).
# By using just 3-5 images you can teach new concepts to Stable Diffusion
# and personalize the model on your own images.
import argparse
import itertools
import math
import os
import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
YOUR_TOKEN = "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"
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument(
"--input_dir",
type=str,
default="input_images/",
help="the directory contains the images used for fine tuning",
)
p.add_argument(
"--output_dir",
type=str,
default="sd_result",
help="the directory contains the images used for fine tuning",
)
p.add_argument(
"--training_steps",
type=int,
default=3000,
help="the maximum number of training steps",
)
p.add_argument("--seed", type=int, default=42, help="the random seed")
p.add_argument(
"--what_to_teach",
type=str,
choices=["object", "style"],
default="object",
help="what is it that you are teaching?",
)
p.add_argument(
"--placeholder_token",
type=str,
default="<cat-toy>",
help="It is the token you are going to use to represent your new concept",
)
p.add_argument(
"--initializer_token",
type=str,
default="toy",
help="It is a word that can summarise what is your new concept",
)
p.add_argument(
"--inference_steps",
type=int,
default=50,
help="the number of steps for inference",
)
p.add_argument(
"--num_inference_samples",
type=int,
default=4,
help="the number of samples for inference",
)
p.add_argument(
"--prompt",
type=str,
default="a grafitti in a wall with a *s on it",
help="the text prompt to use",
)
args = p.parse_args()
if "*s" not in args.prompt:
raise ValueError(
f'The prompt should have a "*s" which will be replaced by a placeholder token.'
)
prompt1, prompt2 = args.prompt.split("*s")
args.prompt = prompt1 + args.placeholder_token + prompt2
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4"
# Load input images.
images = []
for filename in os.listdir(args.input_dir):
img = cv2.imread(os.path.join(args.input_dir, filename))
if img is not None:
images.append(img)
# Setup the prompt templates for training
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
# Setup the dataset
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="*",
center_crop=False,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.flip_p = flip_p
self.image_paths = [
os.path.join(self.data_root, file_path)
for file_path in os.listdir(self.data_root)
]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.templates = (
imagenet_style_templates_small
if learnable_property == "style"
else imagenet_templates_small
)
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
text = random.choice(self.templates).format(placeholder_string)
example["input_ids"] = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2,
(w - crop) // 2 : (w + crop) // 2,
]
image = Image.fromarray(img)
image = image.resize(
(self.size, self.size), resample=self.interpolation
)
image = self.flip_transform(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
# Setting up the model
# Load the tokenizer and add the placeholder token as a additional special token.
# Please read and if you agree accept the LICENSE
# [here](https://huggingface.co/CompVis/stable-diffusion-v1-4) if you see an error
tokenizer = CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer",
use_auth_token=YOUR_TOKEN,
)
# Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Get token ids for our placeholder and initializer token.
# This code block will complain if initializer string is not a single token
# Convert the initializer_token, placeholder_token to ids
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > 1:
raise ValueError("The initializer token must be a single token.")
initializer_token_id = token_ids[0]
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
# Load the Stable Diffusion model
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
use_auth_token=YOUR_TOKEN,
)
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path,
subfolder="vae",
use_auth_token=YOUR_TOKEN,
)
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
use_auth_token=YOUR_TOKEN,
)
# We have added the `placeholder_token` in the `tokenizer` so we resize the token embeddings here,
# this will a new embedding vector in the token embeddings for our `placeholder_token`
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
# In Textual-Inversion we only train the newly added embedding vector,
# so lets freeze rest of the model parameters here.
def freeze_params(params):
for param in params:
param.requires_grad = False
# Freeze vae and unet
freeze_params(vae.parameters())
freeze_params(unet.parameters())
# Freeze all parameters except for the token embeddings in text encoder
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
)
freeze_params(params_to_freeze)
# Creating our training data
train_dataset = TextualInversionDataset(
data_root=args.input_dir,
tokenizer=tokenizer,
size=512,
placeholder_token=args.placeholder_token,
repeats=100,
learnable_property=args.what_to_teach, # Option selected above between object and style
center_crop=False,
set="train",
)
def create_dataloader(train_batch_size=1):
return torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True
)
# Create noise_scheduler for training.
noise_scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
tensor_format="pt",
)
# Define hyperparameters for our training
hyperparameters = {
"learning_rate": 5e-04,
"scale_lr": True,
"max_train_steps": args.training_steps,
"train_batch_size": 1,
"gradient_accumulation_steps": 4,
"seed": args.seed,
"output_dir": "sd-concept-output",
}
def training_function(text_encoder, vae, unet):
logger = get_logger(__name__)
train_batch_size = hyperparameters["train_batch_size"]
gradient_accumulation_steps = hyperparameters[
"gradient_accumulation_steps"
]
learning_rate = hyperparameters["learning_rate"]
max_train_steps = hyperparameters["max_train_steps"]
output_dir = hyperparameters["output_dir"]
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
)
train_dataloader = create_dataloader(train_batch_size)
if hyperparameters["scale_lr"]:
learning_rate = (
learning_rate
* gradient_accumulation_steps
* train_batch_size
* accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
lr=learning_rate,
)
text_encoder, optimizer, train_dataloader = accelerator.prepare(
text_encoder, optimizer, train_dataloader
)
# Move vae and unet to device
vae.to(accelerator.device)
unet.to(accelerator.device)
# Keep vae and unet in eval model as we don't train these
vae.eval()
unet.eval()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = (
train_batch_size
* accelerator.num_processes
* gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(max_train_steps), disable=not accelerator.is_local_main_process
)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(num_train_epochs):
text_encoder.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(text_encoder):
# Convert images to latent space
latents = (
vae.encode(batch["pixel_values"])
.latent_dist.sample()
.detach()
)
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn(latents.shape).to(latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(
latents, noise, timesteps
)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
noise_pred = unet(
noisy_latents, timesteps, encoder_hidden_states
).sample
loss = (
F.mse_loss(noise_pred, noise, reduction="none")
.mean([1, 2, 3])
.mean()
)
accelerator.backward(loss)
# Zero out the gradients for all token embeddings except the newly added
# embeddings for the concept, as we only want to optimize the concept embeddings
if accelerator.num_processes > 1:
grads = (
text_encoder.module.get_input_embeddings().weight.grad
)
else:
grads = text_encoder.get_input_embeddings().weight.grad
# Get the index for tokens that we want to zero the grads for
index_grads_to_zero = (
torch.arange(len(tokenizer)) != placeholder_token_id
)
grads.data[index_grads_to_zero, :] = grads.data[
index_grads_to_zero, :
].fill_(0)
optimizer.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
accelerator.wait_for_everyone()
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
pipeline = StableDiffusionPipeline(
text_encoder=accelerator.unwrap_model(text_encoder),
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=PNDMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
skip_prk_steps=True,
),
safety_checker=StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
),
feature_extractor=CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
),
)
pipeline.save_pretrained(output_dir)
# Also save the newly trained embeddings
learned_embeds = (
accelerator.unwrap_model(text_encoder)
.get_input_embeddings()
.weight[placeholder_token_id]
)
learned_embeds_dict = {
args.placeholder_token: learned_embeds.detach().cpu()
}
torch.save(
learned_embeds_dict, os.path.join(output_dir, "learned_embeds.bin")
)
import accelerate
accelerate.notebook_launcher(
training_function, args=(text_encoder, vae, unet), num_processes=1
)
# Set up the pipeline
pipe = StableDiffusionPipeline.from_pretrained(
hyperparameters["output_dir"],
# torch_dtype=torch.float16,
)
all_images = []
for _ in range(args.num_inference_samples):
images = pipe(
[args.prompt],
num_inference_steps=args.inference_steps,
guidance_scale=7.5,
).images
all_images.extend(images)
# output_path = os.path.abspath(os.path.join(os.getcwd(), args.output_dir))
if not os.path.isdir(args.output_dir):
os.mkdir(args.output_dir)
[
image.save(f"{args.output_dir}/{i}.jpeg")
for i, image in enumerate(all_images)
]

View File

@@ -37,7 +37,19 @@ def run_cmd(cmd):
sys.exit("Exiting program due to error running:", cmd)
IREE_DEVICE_MAP = {
def iree_device_map(device):
uri_parts = device.split("://", 2)
if len(uri_parts) == 1:
return _IREE_DEVICE_MAP[uri_parts[0]]
else:
return f"{_IREE_DEVICE_MAP[uri_parts[0]]}://{uri_parts[1]}"
def get_supported_device_list():
return list(_IREE_DEVICE_MAP.keys())
_IREE_DEVICE_MAP = {
"cpu": "local-task",
"cuda": "cuda",
"vulkan": "vulkan",
@@ -46,7 +58,14 @@ IREE_DEVICE_MAP = {
"intel-gpu": "level_zero",
}
IREE_TARGET_MAP = {
def iree_target_map(device):
if "://" in device:
device = device.split("://")[0]
return _IREE_TARGET_MAP[device]
_IREE_TARGET_MAP = {
"cpu": "llvm-cpu",
"cuda": "cuda",
"vulkan": "vulkan",
@@ -55,9 +74,13 @@ IREE_TARGET_MAP = {
"intel-gpu": "opencl-spirv",
}
# Finds whether the required drivers are installed for the given device.
def check_device_drivers(device):
"""Checks necessary drivers present for gpu and vulkan devices"""
if "://" in device:
device = device.split("://")[0]
if device == "cuda":
try:
subprocess.check_output("nvidia-smi")

View File

@@ -13,12 +13,13 @@
# limitations under the License.
import iree.runtime.scripts.iree_benchmark_module as benchmark_module
from shark.iree_utils._common import run_cmd, IREE_DEVICE_MAP
from shark.iree_utils._common import run_cmd, iree_device_map
from shark.iree_utils.cpu_utils import get_cpu_count
import numpy as np
import os
import re
UNIT_TO_SECOND_MAP = {"ms": 0.001, "s": 1}
UNIT_TO_SECOND_MAP = {"us": 1e-6, "ms": 0.001, "s": 1}
def tensor_to_type_str(input_tensors: tuple, mlir_dialect: str):
@@ -69,10 +70,40 @@ def build_benchmark_args(
# TODO: Replace name of train with actual train fn name.
fn_name = "train"
benchmark_cl.append(f"--entry_function={fn_name}")
benchmark_cl.append(f"--device={IREE_DEVICE_MAP[device]}")
benchmark_cl.append(f"--device={iree_device_map(device)}")
mlir_input_types = tensor_to_type_str(input_tensors, mlir_dialect)
for mlir_input in mlir_input_types:
benchmark_cl.append(f"--function_input={mlir_input}")
if device == "cpu":
num_cpus = get_cpu_count()
if num_cpus is not None:
benchmark_cl.append(f"--task_topology_max_group_count={num_cpus}")
time_extractor = "| awk 'END{{print $2 $3}}'"
benchmark_cl.append(time_extractor)
return benchmark_cl
def build_benchmark_args_non_tensor_input(
input_file: str,
device: str,
inputs: tuple,
mlir_dialect: str,
function_name: str,
):
"""
Inputs: input_file leading to vmfb, input_tensor to function, target device,
and whether it is training or not.
Outputs: string that execute benchmark-module on target model.
"""
path = benchmark_module.__path__[0]
benchmarker_path = os.path.join(path, "..", "..", "iree-benchmark-module")
benchmark_cl = [benchmarker_path, f"--module_file={input_file}"]
# TODO: The function named can be passed as one of the args.
if function_name:
benchmark_cl.append(f"--entry_function={function_name}")
benchmark_cl.append(f"--device={iree_device_map(device)}")
for input in inputs:
benchmark_cl.append(f"--function_input={input}")
time_extractor = "| awk 'END{{print $2 $3}}'"
benchmark_cl.append(time_extractor)
return benchmark_cl

View File

@@ -13,12 +13,18 @@
# limitations under the License.
import iree.runtime as ireert
import iree.compiler as ireec
from shark.iree_utils._common import IREE_DEVICE_MAP, IREE_TARGET_MAP
from shark.iree_utils._common import iree_device_map, iree_target_map
from shark.iree_utils.benchmark_utils import *
from shark.parser import shark_args
import numpy as np
import os
import re
# Get the iree-compile arguments given device.
def get_iree_device_args(device):
def get_iree_device_args(device, extra_args=[]):
if "://" in device:
device = device.split("://")[0]
if device == "cpu":
from shark.iree_utils.cpu_utils import get_iree_cpu_args
@@ -30,7 +36,7 @@ def get_iree_device_args(device):
if device in ["metal", "vulkan"]:
from shark.iree_utils.vulkan_utils import get_iree_vulkan_args
return get_iree_vulkan_args()
return get_iree_vulkan_args(extra_args=extra_args)
if device == "rocm":
from shark.iree_utils.gpu_utils import get_iree_rocm_args
@@ -62,14 +68,178 @@ def get_iree_common_args():
]
# Args that are suitable only for certain models or groups of models.
# shark_args are passed down from pytests to control which models compile with these flags,
# but they can also be set in shark/parser.py
def get_model_specific_args():
ms_args = []
if shark_args.enable_conv_transform == True:
ms_args += ["--iree-flow-enable-conv-nchw-to-nhwc-transform"]
return ms_args
def create_dispatch_dirs(bench_dir, device):
protected_files = ["ordered-dispatches.txt"]
bench_dir_path = bench_dir.split("/")
bench_dir_path[-1] = "temp_" + bench_dir_path[-1]
tmp_bench_dir = "/".join(bench_dir_path)
for f_ in os.listdir(bench_dir):
if os.path.isfile(f"{bench_dir}/{f_}") and f_ not in protected_files:
dir_name = re.sub("\.\S*$", "", f_)
if os.path.exists(f"{bench_dir}/{dir_name}"):
os.system(f"rm -rf {bench_dir}/{dir_name}")
os.system(f"mkdir {bench_dir}/{dir_name}")
os.system(f"mv {bench_dir}/{f_} {bench_dir}/{dir_name}/{f_}")
for f_ in os.listdir(tmp_bench_dir):
if os.path.isfile(f"{tmp_bench_dir}/{f_}"):
dir_name = ""
for d_ in os.listdir(bench_dir):
if re.search(f"{d_}(?=\D)", f_):
dir_name = d_
if dir_name != "":
os.system(
f"mv {tmp_bench_dir}/{f_} {bench_dir}/{dir_name}/{dir_name}_benchmark.mlir"
)
def dump_isas(bench_dir):
for d_ in os.listdir(bench_dir):
if os.path.isdir(f"{bench_dir}/{d_}"):
for f_ in os.listdir(f"{bench_dir}/{d_}"):
if f_.endswith(".spv"):
os.system(
f"amdllpc -gfxip 11.0 {bench_dir}/{d_}/{f_} -v > \
{bench_dir}/{d_}/isa.txt"
)
def compile_benchmark_dirs(bench_dir, device, dispatch_benchmarks):
benchmark_runtimes = {}
dispatch_list = []
all_dispatches = False
if dispatch_benchmarks.lower().strip() == "all":
all_dispatches = True
else:
try:
dispatch_list = [
int(dispatch_index)
for dispatch_index in dispatch_benchmarks.split(" ")
]
except:
print("ERROR: Invalid dispatch benchmarks")
return None
for d_ in os.listdir(bench_dir):
if os.path.isdir(f"{bench_dir}/{d_}"):
in_dispatches = False
for dispatch in dispatch_list:
if str(dispatch) in d_:
in_dispatches = True
if all_dispatches or in_dispatches:
for f_ in os.listdir(f"{bench_dir}/{d_}"):
if "benchmark.mlir" in f_:
dispatch_file = open(f"{bench_dir}/{d_}/{f_}", "r")
module = dispatch_file.read()
dispatch_file.close()
flatbuffer_blob = ireec.compile_str(
module, target_backends=[iree_target_map(device)]
)
vmfb_file = open(
f"{bench_dir}/{d_}/{d_}_benchmark.vmfb", "wb"
)
vmfb_file.write(flatbuffer_blob)
vmfb_file.close()
config = get_iree_runtime_config(device)
vm_module = ireert.VmModule.from_flatbuffer(
config.vm_instance, flatbuffer_blob
)
benchmark_cl = build_benchmark_args_non_tensor_input(
input_file=f"{bench_dir}/{d_}/{d_}_benchmark.vmfb",
device=device,
inputs=(0,),
mlir_dialect="linalg",
function_name="",
)
benchmark_bash = open(
f"{bench_dir}/{d_}/{d_}_benchmark.sh", "w+"
)
benchmark_bash.write("#!/bin/bash\n")
benchmark_bash.write(" ".join(benchmark_cl))
benchmark_bash.close()
benchmark_data = run_benchmark_module(benchmark_cl)
benchmark_file = open(
f"{bench_dir}/{d_}/{d_}_data.txt", "w+"
)
benchmark_file.write(f"DISPATCH: {d_}\n")
benchmark_file.write(str(benchmark_data) + "\n")
benchmark_file.write(
"SHARK BENCHMARK RESULT: "
+ str(1 / (benchmark_data * 0.001))
+ "\n"
)
benchmark_file.close()
benchmark_runtimes[d_] = 1 / (benchmark_data * 0.001)
elif ".mlir" in f_ and "benchmark" not in f_:
dispatch_file = open(f"{bench_dir}/{d_}/{f_}", "r")
module = dispatch_file.read()
dispatch_file.close()
module = re.sub(
"hal.executable private",
"hal.executable public",
module,
)
flatbuffer_blob = ireec.compile_str(
module,
target_backends=[iree_target_map(device)],
extra_args=["--compile-mode=hal-executable"],
)
spirv_file = open(
f"{bench_dir}/{d_}/{d_}_spirv.vmfb", "wb"
)
spirv_file.write(flatbuffer_blob)
spirv_file.close()
ordered_dispatches = [
(k, v)
for k, v in sorted(
benchmark_runtimes.items(), key=lambda item: item[1]
)
][::-1]
f_ = open(f"{bench_dir}/ordered-dispatches.txt", "w+")
for dispatch in ordered_dispatches:
f_.write(f"{dispatch[0]}: {dispatch[1]}ms\n")
f_.close()
def compile_module_to_flatbuffer(
module, device, frontend, func_name, model_config_path
module,
device,
frontend,
func_name,
model_config_path,
extra_args,
model_name="None",
):
# Setup Compile arguments wrt to frontends.
input_type = ""
args = get_iree_frontend_args(frontend)
args += get_iree_device_args(device)
args += get_iree_device_args(device, extra_args)
args += get_iree_common_args()
args += get_model_specific_args()
args += extra_args
if frontend in ["tensorflow", "tf"]:
input_type = "mhlo"
@@ -78,25 +248,23 @@ def compile_module_to_flatbuffer(
elif frontend in ["tflite", "tflite-tosa"]:
input_type = "tosa"
elif frontend in ["tm_tensor"]:
input_type = frontend
input_type = ireec.InputType.TM_TENSOR
# TODO: make it simpler.
# Compile according to the input type, else just try compiling.
if input_type not in ["mhlo", "tosa"]:
module = str(module)
if input_type != "":
# Currently for MHLO/TOSA.
flatbuffer_blob = ireec.compile_str(
module,
target_backends=[IREE_TARGET_MAP[device]],
target_backends=[iree_target_map(device)],
extra_args=args,
input_type=input_type,
)
else:
# Currently for Torch.
flatbuffer_blob = ireec.compile_str(
str(module),
target_backends=[IREE_TARGET_MAP[device]],
module,
target_backends=[iree_target_map(device)],
extra_args=args,
)
@@ -105,7 +273,7 @@ def compile_module_to_flatbuffer(
def get_iree_module(flatbuffer_blob, device, func_name):
# Returns the compiled module and the configs.
config = ireert.Config(IREE_DEVICE_MAP[device])
config = get_iree_runtime_config(device)
vm_module = ireert.VmModule.from_flatbuffer(
config.vm_instance, flatbuffer_blob
)
@@ -121,10 +289,11 @@ def get_iree_compiled_module(
frontend: str = "torch",
func_name: str = "forward",
model_config_path: str = None,
extra_args: list = [],
):
"""Given a module returns the compiled .vmfb and configs"""
flatbuffer_blob = compile_module_to_flatbuffer(
module, device, frontend, func_name, model_config_path
module, device, frontend, func_name, model_config_path, extra_args
)
return get_iree_module(flatbuffer_blob, device, func_name)
@@ -146,12 +315,18 @@ def export_iree_module_to_vmfb(
mlir_dialect: str = "linalg",
func_name: str = "forward",
model_config_path: str = None,
module_name: str = None,
extra_args: list = [],
):
# Compiles the module given specs and saves it as .vmfb file.
flatbuffer_blob = compile_module_to_flatbuffer(
module, device, mlir_dialect, func_name, model_config_path
module, device, mlir_dialect, func_name, model_config_path, extra_args
)
module_name = f"{mlir_dialect}_{func_name}_{device}"
if module_name is None:
device_name = (
device if "://" not in device else "-".join(device.split("://"))
)
module_name = f"{mlir_dialect}_{func_name}_{device_name}"
filename = os.path.join(directory, module_name + ".vmfb")
print(f"Saved vmfb in {filename}.")
with open(filename, "wb") as f:
@@ -173,18 +348,34 @@ def export_module_to_mlir_file(module, frontend, directory: str):
return filename
def get_results(compiled_vm, input, config, frontend="torch"):
def get_results(
compiled_vm, input, config, frontend="torch", send_to_host=True
):
"""Runs a .vmfb file given inputs and config and returns output."""
device_inputs = [ireert.asdevicearray(config.device, a) for a in input]
result = compiled_vm(*device_inputs)
result_tensors = []
if isinstance(result, tuple):
for val in result:
result_tensors.append(np.copy(np.asarray(val, val.dtype)))
if send_to_host:
for val in result:
result_tensors.append(np.asarray(val, val.dtype))
else:
for val in result:
result_tensors.append(val)
return result_tensors
elif isinstance(result, dict):
data = list(result.items())
res = np.array(data, dtype=object)
return np.copy(res)
if send_to_host:
res = np.array(data, dtype=object)
return np.copy(res)
return data
else:
return np.copy(np.asarray(result, dtype=result.dtype))
if send_to_host:
return result.to_host()
return result
def get_iree_runtime_config(device):
device = iree_device_map(device)
config = ireert.Config(device=ireert.get_device(device))
return config

View File

@@ -16,6 +16,17 @@
import subprocess
def get_cpu_count():
import multiprocessing
try:
cpu_count = multiprocessing.cpu_count()
return cpu_count
except NotImplementedError:
return None
# Get the default cpu args.
def get_iree_cpu_args():
find_triple_cmd = "uname -s -m"

View File

@@ -14,34 +14,97 @@
# All the iree_vulkan related functionalities go here.
from os import linesep
from shark.iree_utils._common import run_cmd
import iree.runtime as ireert
from sys import platform
def get_vulkan_triple_flag():
vulkan_device_cmd = "vulkaninfo | grep deviceName"
vulkan_device = run_cmd(vulkan_device_cmd).strip()
def get_vulkan_device_name():
vulkaninfo_dump = run_cmd("vulkaninfo").split(linesep)
vulkaninfo_list = [s.strip() for s in vulkaninfo_dump if "deviceName" in s]
if len(vulkaninfo_list) == 0:
raise ValueError("No device name found in VulkanInfo!")
if len(vulkaninfo_list) > 1:
print(
f"Found {len(vulkaninfo_list)} device names. choosing first one: {vulkaninfo_list[0]}"
)
return vulkaninfo_list[0]
def get_os_name():
if platform.startswith("linux"):
return "linux"
elif platform == "darwin":
return "macos"
elif platform == "win32":
return "windows"
else:
print("Cannot detect OS type, defaulting to linux.")
return "linux"
def get_vulkan_triple_flag(extra_args=[]):
if "-iree-vulkan-target-triple=" in " ".join(extra_args):
print(f"Using target triple from command line args")
return None
system_os = get_os_name()
vulkan_device = get_vulkan_device_name()
# Apple Targets
if all(x in vulkan_device for x in ("Apple", "M1")):
print(f"Found {vulkan_device} Device. Using m1-moltenvk-macos")
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
elif all(x in vulkan_device for x in ("Apple", "M2")):
print("Found Apple M2 Device. Using m1-moltenvk-macos")
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
# Nvidia Targets
elif all(x in vulkan_device for x in ("RTX", "2080")):
print(
f"Found {vulkan_device} Device. Using turing-rtx2080-{system_os}"
)
return f"-iree-vulkan-target-triple=turing-rtx2080-{system_os}"
elif all(x in vulkan_device for x in ("A100", "SXM4")):
print(f"Found {vulkan_device} Device. Using ampere-rtx3080-linux")
return "-iree-vulkan-target-triple=ampere-rtx3080-linux"
print(
f"Found {vulkan_device} Device. Using ampere-rtx3080-{system_os}"
)
return f"-iree-vulkan-target-triple=ampere-rtx3080-{system_os}"
elif all(x in vulkan_device for x in ("RTX", "3090")):
print(f"Found {vulkan_device} Device. Using ampere-rtx3090-linux")
return "-iree-vulkan-target-triple=ampere-rtx3090-linux"
elif any(x in vulkan_device for x in ("Radeon", "RX 5")):
print(
"Found AMD Radeon RX 5000 series device. Using rdna1-5700xt-linux"
f"Found {vulkan_device} Device. Using ampere-rtx3090-{system_os}"
)
return "-iree-vulkan-target-triple=rdna1-5700xt-linux"
elif all(x in vulkan_device for x in ("Radeon", "RX 6")):
return f"-iree-vulkan-target-triple=ampere-rtx3090-{system_os}"
elif all(x in vulkan_device for x in ("RTX", "4090")):
print(
"Found AMD Radeon RX 6000 series device. Using rdna2-unknown-linux"
f"Found {vulkan_device} Device. Using ampere-rtx3090-{system_os}"
)
return "-iree-vulkan-target-triple=rdna2-unknown-linux"
return f"-iree-vulkan-target-triple=ampere-rtx3090-{system_os}"
elif all(x in vulkan_device for x in ("RTX", "4000")):
print(
f"Found {vulkan_device} Device. Using turing-rtx4000-{system_os}"
)
return f"-iree-vulkan-target-triple=turing-rtx4000-{system_os}"
elif all(x in vulkan_device for x in ("RTX", "5000")):
print(
f"Found {vulkan_device} Device. Using turing-rtx5000-{system_os}"
)
return f"-iree-vulkan-target-triple=turing-rtx5000-{system_os}"
elif all(x in vulkan_device for x in ("RTX", "6000")):
print(
f"Found {vulkan_device} Device. Using turing-rtx6000-{system_os}"
)
return f"-iree-vulkan-target-triple=turing-rtx6000-{system_os}"
elif all(x in vulkan_device for x in ("RTX", "8000")):
print(
f"Found {vulkan_device} Device. Using turing-rtx8000-{system_os}"
)
return f"-iree-vulkan-target-triple=turing-rtx8000-{system_os}"
# Amd Targets
elif all(x in vulkan_device for x in ("AMD", "7900")):
print(f"Found {vulkan_device} Device. Using rdna3-7900-{system_os}")
return f"-iree-vulkan-target-triple=rdna3-7900-{system_os}"
elif any(x in vulkan_device for x in ("AMD", "Radeon")):
print(f"Found AMD device. Using rdna2-unknown-{system_os}")
return f"-iree-vulkan-target-triple=rdna2-unknown-{system_os}"
else:
print(
"""Optimized kernel for your target device is not added yet.
@@ -52,10 +115,16 @@ def get_vulkan_triple_flag():
return None
def get_iree_vulkan_args():
def get_iree_vulkan_args(extra_args=[]):
# vulkan_flag = ["--iree-flow-demote-i64-to-i32"]
vulkan_flag = []
vulkan_triple_flag = get_vulkan_triple_flag()
vulkan_triple_flag = get_vulkan_triple_flag(extra_args)
if vulkan_triple_flag is not None:
vulkan_flag.append(vulkan_triple_flag)
return vulkan_flag
def set_iree_vulkan_runtime_flags(flags):
for flag in flags:
ireert.flags.parse_flags(flag)
return

View File

@@ -12,6 +12,19 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
This function takes the model mlir file and the tuned config file as input,
and output a new mlir file with lowering configs annotated on certain ops.
There are two ways to utilize the function:
1. Call model_annotation function within another python script
from shark.model_annotation import model_annotation
with create_context() as ctx:
module = model_annotation(ctx, input_contents=..., config_path=..., search_op=...)
2. Run model_annotation.py directly
python model_annotation.py path_to_original_mlir path_to_config_file
"""
import json
import os
import sys
@@ -105,7 +118,9 @@ def add_attributes(op: ir.Operation, config: Dict):
def parse_config(config: Dict):
if config["pipeline"] == "GPU" or config["pipeline"] == "GPU_TENSORCORE":
split_k = None
pipeline_depth = None
if "GPU" in config["pipeline"]:
pipeline = (
"LLVMGPUMatmulSimt"
if config["pipeline"] == "GPU"
@@ -113,24 +128,31 @@ def parse_config(config: Dict):
)
tile_sizes = [config["work_group_tile_sizes"]]
workgroup_size = config["work_group_sizes"]
try:
if "pipeline_depth" in config.keys():
pipeline_depth = config["pipeline_depth"]
except:
pipeline_depth = None
try:
if "split_k" in config.keys():
split_k = config["split_k"]
except:
split_k = None
else:
elif "SPIRV" in config["pipeline"]:
pipeline = config["pipeline"]
tile_sizes = [
config["work_group_tile_sizes"],
config["l1_tile_sizes"],
config["vector_tile_sizes"],
config["parallel_tile_sizes"],
config["reduction_tile_sizes"],
]
if "vector_tile_sizes" in config.keys():
tile_sizes += [config["vector_tile_sizes"]]
if "window_tile_sizes" in config.keys():
tile_sizes += [config["window_tile_sizes"]]
workgroup_size = config["work_group_sizes"]
else:
# For IREE CPU pipelines
pipeline = config["pipeline"]
tile_sizes = [
config["work_group_tile_sizes"],
config["parallel_tile_sizes"],
config["reduction_tile_sizes"],
]
workgroup_size = []
split_k = None
pipeline_depth = None
return tile_sizes, pipeline, workgroup_size, split_k, pipeline_depth

View File

@@ -93,4 +93,23 @@ parser.add_argument(
help="Specify where to save downloaded shark_tank artifacts. If this is not set, the default is ~/.local/shark_tank/.",
)
parser.add_argument(
"--dispatch_benchmarks",
default=None,
help='dispatches to return benchamrk data on. use "All" for all, and None for none.',
)
parser.add_argument(
"--dispatch_benchmarks_dir",
default="temp_dispatch_benchmarks",
help='directory where you want to store dispatch data generated with "--dispatch_benchmarks"',
)
parser.add_argument(
"--enable_conv_transform",
default=False,
action="store_true",
help="Enables the --iree-flow-enable-conv-nchw-to-nhwc-transform flag.",
)
shark_args, unknown = parser.parse_known_args()

View File

@@ -39,29 +39,54 @@ class OnnxFusionOptions(object):
self.no_attention_mask = False
def check_requirements(frontend):
import importlib
has_pkgs = False
if frontend == "torch":
tv_spec = importlib.util.find_spec("torchvision")
has_pkgs = tv_spec is not None
elif frontend in ["tensorflow", "tf"]:
keras_spec = importlib.util.find_spec("keras")
tf_spec = importlib.util.find_spec("tensorflow")
has_pkgs = keras_spec is not None and tf_spec is not None
return has_pkgs
class SharkBenchmarkRunner(SharkRunner):
# SharkRunner derived class with Benchmarking capabilities.
def __init__(
self,
mlir_module: str,
mlir_module: bytes,
function_name: str = "forward",
device: str = "none",
mlir_dialect: str = "linalg",
extra_args: list = [],
):
self.device = shark_args.device if device == "none" else device
self.frontend_model = None
self.vmfb_file = None
self.mlir_dialect = mlir_dialect
self.extra_args = extra_args
SharkRunner.__init__(
self,
mlir_module,
function_name,
device,
self.mlir_dialect,
self.extra_args,
compile_vmfb=True,
)
if self.vmfb_file == None:
self.vmfb_file = export_iree_module_to_vmfb(
mlir_module, device, shark_args.repro_dir, self.mlir_dialect
mlir_module,
device,
shark_args.repro_dir,
self.mlir_dialect,
function_name,
extra_args=self.extra_args,
)
def setup_cl(self, input_tensors):
@@ -71,11 +96,11 @@ class SharkBenchmarkRunner(SharkRunner):
input_tensors,
mlir_dialect=self.mlir_dialect,
)
print(self.benchmark_cl)
def benchmark_frontend(self, modelname):
if self.mlir_dialect in ["linalg", "torch"]:
return self.benchmark_torch(modelname)
elif self.mlir_dialect in ["mhlo", "tf"]:
return self.benchmark_tf(modelname)
@@ -114,32 +139,45 @@ class SharkBenchmarkRunner(SharkRunner):
def benchmark_tf(self, modelname):
import tensorflow as tf
visible_default = tf.config.list_physical_devices("GPU")
try:
tf.config.set_visible_devices([], "GPU")
visible_devices = tf.config.get_visible_devices()
for device in visible_devices:
assert device.device_type != "GPU"
except:
# Invalid device or cannot modify virtual devices once initialized.
pass
from tank.model_utils_tf import get_tf_model
model, input, = get_tf_model(
modelname
)[:2]
frontend_model = model
# tf_device = "/GPU:0" if self.device == "cuda" else "/CPU:0"
tf_device = "/CPU:0"
with tf.device(tf_device):
model, input, = get_tf_model(
modelname
)[:2]
frontend_model = model
for i in range(shark_args.num_warmup_iterations):
frontend_model.forward(*input)
for i in range(shark_args.num_warmup_iterations):
frontend_model.forward(*input)
begin = time.time()
for i in range(shark_args.num_iterations):
out = frontend_model.forward(*input)
if i == shark_args.num_iterations - 1:
end = time.time()
break
print(
f"TF benchmark:{shark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{shark_args.num_iterations}"
)
return [
f"{shark_args.num_iterations/(end-begin)}",
f"{((end-begin)/shark_args.num_iterations)*1000}",
]
begin = time.time()
for i in range(shark_args.num_iterations):
out = frontend_model.forward(*input)
if i == shark_args.num_iterations - 1:
end = time.time()
break
print(
f"TF benchmark:{shark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{shark_args.num_iterations}"
)
return [
f"{shark_args.num_iterations/(end-begin)}",
f"{((end-begin)/shark_args.num_iterations)*1000}",
]
def benchmark_c(self):
print(self.benchmark_cl)
result = run_benchmark_module(self.benchmark_cl)
print(f"Shark-IREE-C benchmark:{result} iter/second")
return [f"{result}", f"{1000/result}"]
@@ -249,19 +287,15 @@ for currently supported models. Exiting benchmark ONNX."
return [param_count, model_tags, model_notes]
def compare_bench_results(self, baseline: str, result: str):
# Takes two numbers represented as strings and returns "<n>x slower/faster", as in "result is <n>x slower than baseline".
a = float(baseline)
b = float(result)
if a < b:
# result slower than baseline
comparison = (b - a) / a
comp_str = f"{round(comparison, 2)}x slower"
elif a > b:
# result faster than baseline
if baseline is not None:
# Takes a baseline and a result string and calculates a comparison, e.g. "1.04x baseline".
a = float(baseline)
b = float(result)
comparison = a / b
comp_str = f"{round(comparison, 2)}x faster"
comp_str = f"{round(comparison, 2)}x baseline"
else:
comp_str = "equal"
comp_str = "N/A"
return comp_str
def benchmark_all_csv(
@@ -311,17 +345,21 @@ for currently supported models. Exiting benchmark ONNX."
) = ["", "", ""]
if e == "frontend":
bench_result["engine"] = frontend
(
bench_result["iter/sec"],
bench_result["ms/iter"],
) = self.benchmark_frontend(modelname)
self.frontend_result = bench_result["ms/iter"]
bench_result["vs. PyTorch/TF"] = "="
(
bench_result["param_count"],
bench_result["tags"],
bench_result["notes"],
) = self.get_metadata(modelname)
if check_requirements(frontend):
(
bench_result["iter/sec"],
bench_result["ms/iter"],
) = self.benchmark_frontend(modelname)
self.frontend_result = bench_result["ms/iter"]
bench_result["vs. PyTorch/TF"] = "baseline"
(
bench_result["param_count"],
bench_result["tags"],
bench_result["notes"],
) = self.get_metadata(modelname)
else:
self.frontend_result = None
continue
elif e == "shark_python":
bench_result["engine"] = "shark_python"

View File

@@ -14,11 +14,51 @@
import numpy as np
import os
import urllib.request
import json
import hashlib
import sys
from pathlib import Path
from shark.parser import shark_args
from google.cloud import storage
def download_public_file(
full_gs_url, destination_folder_name, single_file=False
):
"""Downloads a public blob from the bucket."""
# bucket_name = "gs://your-bucket-name/path/to/file"
# destination_file_name = "local/path/to/file"
storage_client = storage.Client.create_anonymous_client()
bucket_name = full_gs_url.split("/")[2]
source_blob_name = None
dest_filename = None
desired_file = None
if single_file:
desired_file = full_gs_url.split("/")[-1]
source_blob_name = "/".join(full_gs_url.split("/")[3:-1])
destination_folder_name, dest_filename = os.path.split(
destination_folder_name
)
else:
source_blob_name = "/".join(full_gs_url.split("/")[3:])
bucket = storage_client.bucket(bucket_name)
blobs = bucket.list_blobs(prefix=source_blob_name)
if not os.path.exists(destination_folder_name):
os.mkdir(destination_folder_name)
for blob in blobs:
blob_name = blob.name.split("/")[-1]
if single_file:
if blob_name == desired_file:
destination_filename = os.path.join(
destination_folder_name, dest_filename
)
blob.download_to_filename(destination_filename)
else:
continue
destination_filename = os.path.join(destination_folder_name, blob_name)
blob.download_to_filename(destination_filename)
input_type_to_np_dtype = {
"float32": np.float32,
@@ -30,7 +70,6 @@ input_type_to_np_dtype = {
"int8": np.int8,
}
# Save the model in the home local so it needn't be fetched everytime in the CI.
home = str(Path.home())
alt_path = os.path.join(os.path.dirname(__file__), "../gen_shark_tank/")
@@ -50,10 +89,10 @@ if custom_path:
else:
WORKDIR = os.path.join(home, ".local/shark_tank/")
print(
f"shark_tank local cache is located at {WORKDIR} . You may change this by setting the --local_tank_cache="
" pytest flag"
f"shark_tank local cache is located at {WORKDIR} . You may change this by setting the --local_tank_cache= flag"
)
# Checks whether the directory and files exists.
def check_dir_exists(model_name, frontend="torch", dynamic=""):
model_dir = os.path.join(WORKDIR, model_name)
@@ -79,194 +118,64 @@ def check_dir_exists(model_name, frontend="torch", dynamic=""):
and os.path.isfile(os.path.join(model_dir, "golden_out.npz"))
and os.path.isfile(os.path.join(model_dir, "hash.npy"))
):
print(
f"""The models are present in the {WORKDIR}. If you want a fresh
download, consider deleting the directory."""
)
print(f"""Using cached models from {WORKDIR}...""")
return True
return False
# Downloads the torch model from gs://shark_tank dir.
def download_torch_model(
model_name, dynamic=False, tank_url="gs://shark_tank/latest"
def download_model(
model_name,
dynamic=False,
tank_url="gs://shark_tank/latest",
frontend=None,
tuned=None,
):
model_name = model_name.replace("/", "_")
dyn_str = "_dynamic" if dynamic else ""
os.makedirs(WORKDIR, exist_ok=True)
model_dir_name = model_name + "_torch"
def gs_download_model():
gs_command = (
'gsutil -o "GSUtil:parallel_process_count=1" cp -r '
+ tank_url
+ "/"
+ model_dir_name
+ " "
+ WORKDIR
)
if os.system(gs_command) != 0:
raise Exception("model not present in the tank. Contact Nod Admin")
if not check_dir_exists(model_dir_name, frontend="torch", dynamic=dyn_str):
gs_download_model()
else:
model_dir = os.path.join(WORKDIR, model_dir_name)
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
gs_hash = (
'gsutil -o "GSUtil:parallel_process_count=1" cp '
+ tank_url
+ "/"
+ model_dir_name
+ "/hash.npy"
+ " "
+ os.path.join(model_dir, "upstream_hash.npy")
)
if os.system(gs_hash) != 0:
raise Exception("hash of the model not present in the tank.")
upstream_hash = str(
np.load(os.path.join(model_dir, "upstream_hash.npy"))
)
if local_hash != upstream_hash:
if shark_args.update_tank == True:
gs_download_model()
else:
print(
"Hash does not match upstream in gs://shark_tank/. If you are using SHARK Downloader with locally generated artifacts, this is working as intended."
)
model_dir_name = model_name + "_" + frontend
model_dir = os.path.join(WORKDIR, model_dir_name)
with open(
os.path.join(model_dir, model_name + dyn_str + "_torch.mlir")
) as f:
mlir_file = f.read()
full_gs_url = tank_url.rstrip("/") + "/" + model_dir_name
function_name = str(np.load(os.path.join(model_dir, "function_name.npy")))
inputs = np.load(os.path.join(model_dir, "inputs.npz"))
golden_out = np.load(os.path.join(model_dir, "golden_out.npz"))
if shark_args.update_tank == True:
print(f"Updating artifacts for model {model_name}...")
download_public_file(full_gs_url, model_dir)
inputs_tuple = tuple([inputs[key] for key in inputs])
golden_out_tuple = tuple([golden_out[key] for key in golden_out])
return mlir_file, function_name, inputs_tuple, golden_out_tuple
# Downloads the tflite model from gs://shark_tank dir.
def download_tflite_model(
model_name, dynamic=False, tank_url="gs://shark_tank/latest"
):
dyn_str = "_dynamic" if dynamic else ""
os.makedirs(WORKDIR, exist_ok=True)
model_dir_name = model_name + "_tflite"
def gs_download_model():
gs_command = (
'gsutil -o "GSUtil:parallel_process_count=1" cp -r '
+ tank_url
+ "/"
+ model_dir_name
+ " "
+ WORKDIR
)
if os.system(gs_command) != 0:
raise Exception("model not present in the tank. Contact Nod Admin")
if not check_dir_exists(
model_dir_name, frontend="tflite", dynamic=dyn_str
elif not check_dir_exists(
model_dir_name, frontend=frontend, dynamic=dyn_str
):
gs_download_model()
print(f"Downloading artifacts for model {model_name}...")
download_public_file(full_gs_url, model_dir)
else:
model_dir = os.path.join(WORKDIR, model_dir_name)
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
gs_hash = (
'gsutil -o "GSUtil:parallel_process_count=1" cp '
+ tank_url
+ "/"
+ model_dir_name
+ "/hash.npy"
+ " "
+ os.path.join(model_dir, "upstream_hash.npy")
)
if os.system(gs_hash) != 0:
raise Exception("hash of the model not present in the tank.")
upstream_hash = str(
np.load(os.path.join(model_dir, "upstream_hash.npy"))
)
if local_hash != upstream_hash:
if shark_args.update_tank == True:
gs_download_model()
else:
if not _internet_connected():
print(
"No internet connection. Using the model already present in the tank."
)
else:
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
gs_hash_url = (
tank_url.rstrip("/") + "/" + model_dir_name + "/hash.npy"
)
download_public_file(
gs_hash_url,
os.path.join(model_dir, "upstream_hash.npy"),
single_file=True,
)
upstream_hash = str(
np.load(os.path.join(model_dir, "upstream_hash.npy"))
)
if local_hash != upstream_hash:
print(
"Hash does not match upstream in gs://shark_tank/. If you are using SHARK Downloader with locally generated artifacts, this is working as intended."
"Hash does not match upstream in gs://shark_tank/latest. If you want to use locally generated artifacts, this is working as intended. Otherwise, run with --update_tank."
)
model_dir = os.path.join(WORKDIR, model_dir_name)
with open(
os.path.join(model_dir, model_name + dyn_str + "_tflite.mlir")
) as f:
mlir_file = f.read()
function_name = str(np.load(os.path.join(model_dir, "function_name.npy")))
inputs = np.load(os.path.join(model_dir, "inputs.npz"))
golden_out = np.load(os.path.join(model_dir, "golden_out.npz"))
inputs_tuple = tuple([inputs[key] for key in inputs])
golden_out_tuple = tuple([golden_out[key] for key in golden_out])
return mlir_file, function_name, inputs_tuple, golden_out_tuple
def download_tf_model(
model_name, tuned=None, tank_url="gs://shark_tank/latest"
):
model_name = model_name.replace("/", "_")
os.makedirs(WORKDIR, exist_ok=True)
model_dir_name = model_name + "_tf"
def gs_download_model():
gs_command = (
'gsutil -o "GSUtil:parallel_process_count=1" cp -r '
+ tank_url
+ "/"
+ model_dir_name
+ " "
+ WORKDIR
)
if os.system(gs_command) != 0:
raise Exception("model not present in the tank. Contact Nod Admin")
if not check_dir_exists(model_dir_name, frontend="tf"):
gs_download_model()
else:
model_dir = os.path.join(WORKDIR, model_dir_name)
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
gs_hash = (
'gsutil -o "GSUtil:parallel_process_count=1" cp '
+ tank_url
+ "/"
+ model_dir_name
+ "/hash.npy"
+ " "
+ os.path.join(model_dir, "upstream_hash.npy")
)
if os.system(gs_hash) != 0:
raise Exception("hash of the model not present in the tank.")
upstream_hash = str(
np.load(os.path.join(model_dir, "upstream_hash.npy"))
)
if local_hash != upstream_hash:
if shark_args.update_tank == True:
gs_download_model()
else:
print(
"Hash does not match upstream in gs://shark_tank/. If you are using SHARK Downloader with locally generated artifacts, this is working as intended."
)
model_dir = os.path.join(WORKDIR, model_dir_name)
suffix = "_tf.mlir" if tuned is None else "_tf_" + tuned + ".mlir"
tuned_str = "" if tuned is None else "_" + tuned
suffix = f"{dyn_str}_{frontend}{tuned_str}.mlir"
filename = os.path.join(model_dir, model_name + suffix)
if not os.path.isfile(filename):
filename = os.path.join(model_dir, model_name + "_tf.mlir")
with open(filename) as f:
with open(filename, mode="rb") as f:
mlir_file = f.read()
function_name = str(np.load(os.path.join(model_dir, "function_name.npy")))
@@ -276,3 +185,13 @@ def download_tf_model(
inputs_tuple = tuple([inputs[key] for key in inputs])
golden_out_tuple = tuple([golden_out[key] for key in golden_out])
return mlir_file, function_name, inputs_tuple, golden_out_tuple
def _internet_connected():
import requests as req
try:
req.get("http://1.1.1.1")
return True
except:
return False

View File

@@ -75,21 +75,24 @@ class SharkImporter:
self.module, self.inputs, is_dynamic, tracing_required
)
def _tf_mlir(self, func_name):
def _tf_mlir(self, func_name, save_dir="./shark_tmp/"):
from iree.compiler import tf as tfc
return tfc.compile_module(
self.module, exported_names=[func_name], import_only=True
self.module,
exported_names=[func_name],
import_only=True,
output_file=save_dir,
)
def _tflite_mlir(self, func_name):
def _tflite_mlir(self, func_name, save_dir="./shark_tmp/"):
from iree.compiler import tflite as tflitec
from shark.iree_utils._common import IREE_TARGET_MAP
self.mlir_model = tflitec.compile_file(
self.raw_model_file, # in tflite, it is a path to .tflite file, not a tflite interpreter
input_type="tosa",
import_only=True,
output_file=save_dir,
)
return self.mlir_model
@@ -99,6 +102,7 @@ class SharkImporter:
is_dynamic=False,
tracing_required=False,
func_name="forward",
save_dir="./shark_tmp/",
):
if self.frontend in ["torch", "pytorch"]:
if self.inputs == None:
@@ -108,15 +112,15 @@ class SharkImporter:
sys.exit(1)
return self._torch_mlir(is_dynamic, tracing_required), func_name
if self.frontend in ["tf", "tensorflow"]:
return self._tf_mlir(func_name), func_name
return self._tf_mlir(func_name, save_dir), func_name
if self.frontend in ["tflite", "tf-lite"]:
func_name = "main"
return self._tflite_mlir(func_name), func_name
return self._tflite_mlir(func_name, save_dir), func_name
# Converts the frontend specific tensors into np array.
def convert_to_numpy(self, array_tuple: tuple):
if self.frontend in ["torch", "pytorch"]:
return [x.detach().numpy() for x in array_tuple]
return [x.detach().cpu().numpy() for x in array_tuple]
if self.frontend in ["tf", "tensorflow"]:
return [x.numpy() for x in array_tuple]
@@ -130,19 +134,20 @@ class SharkImporter:
outputs_name = "golden_out.npz"
func_file_name = "function_name"
model_name_mlir = model_name + "_" + self.frontend + ".mlir"
try:
inputs = [x.cpu().detach() for x in inputs]
except AttributeError:
try:
inputs = [x.numpy() for x in inputs]
except AttributeError:
inputs = [x for x in inputs]
np.savez(os.path.join(dir, inputs_name), *inputs)
np.savez(os.path.join(dir, outputs_name), *outputs)
np.save(os.path.join(dir, func_file_name), np.array(func_name))
mlir_str = mlir_data
if self.frontend == "torch":
mlir_str = mlir_data.operation.get_asm()
elif self.frontend == "tf":
mlir_str = mlir_data.decode("utf-8")
elif self.frontend == "tflite":
mlir_str = mlir_data.decode("utf-8")
with open(os.path.join(dir, model_name_mlir), "w") as mlir_file:
mlir_file.write(mlir_str)
with open(os.path.join(dir, model_name_mlir), "wb") as mlir_file:
mlir_file.write(mlir_data)
return
@@ -159,9 +164,13 @@ class SharkImporter:
f"There is no input provided: {self.inputs}, please provide inputs or simply run import_mlir."
)
sys.exit(1)
model_name_mlir = model_name + "_" + self.frontend + ".mlir"
artifact_path = os.path.join(dir, model_name_mlir)
imported_mlir = self.import_mlir(
is_dynamic, tracing_required, func_name
is_dynamic,
tracing_required,
func_name,
save_dir=artifact_path,
)
# TODO: Make sure that any generic function name is accepted. Currently takes in the default function names.
# TODO: Check for multiple outputs.
@@ -171,7 +180,7 @@ class SharkImporter:
golden_out = self.module(*self.inputs)
if torch.is_tensor(golden_out):
golden_out = tuple(
golden_out.detach().numpy(),
golden_out.detach().cpu().numpy(),
)
else:
golden_out = self.convert_to_numpy(golden_out)
@@ -234,3 +243,59 @@ class SharkImporter:
self.inputs,
golden_out,
)
# Applies fx conversion to the model and imports the mlir.
def import_with_fx(model, inputs, debug=False):
import torch
from torch.fx.experimental.proxy_tensor import make_fx
from torch._decomp import get_decompositions
# TODO: Control the decompositions.
fx_g = make_fx(
model,
decomposition_table=get_decompositions(
[
torch.ops.aten.embedding_dense_backward,
torch.ops.aten.native_layer_norm_backward,
torch.ops.aten.slice_backward,
torch.ops.aten.select_backward,
torch.ops.aten.norm.ScalarOpt_dim,
torch.ops.aten.native_group_norm,
torch.ops.aten.upsample_bilinear2d.vec,
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
torch.ops.aten.native_layer_norm,
]
),
)(*inputs)
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
fx_g.recompile()
def strip_overloads(gm):
"""
Modifies the target of graph nodes in :attr:`gm` to strip overloads.
Args:
gm(fx.GraphModule): The input Fx graph module to be modified
"""
for node in gm.graph.nodes:
if isinstance(node.target, torch._ops.OpOverload):
node.target = node.target.overloadpacket
gm.recompile()
strip_overloads(fx_g)
mlir_importer = SharkImporter(
fx_g,
inputs,
frontend="torch",
)
if debug:
(mlir_module, func_name), _, _ = mlir_importer.import_debug()
return mlir_module, func_name
mlir_module, func_name = mlir_importer.import_mlir()
return mlir_module, func_name

View File

@@ -12,6 +12,8 @@
from shark.iree_utils.compile_utils import (
export_iree_module_to_vmfb,
load_flatbuffer,
create_dispatch_dirs,
compile_benchmark_dirs,
)
import os
from shark.shark_runner import SharkRunner
@@ -37,7 +39,7 @@ class SharkInference:
Attributes
----------
mlir_module : str
mlir_module represented in string.
mlir_module represented in string; modules from torch-mlir are serialized in bytecode format.
function_name : str
function to execute in the given mlir_module.
device : str
@@ -63,21 +65,48 @@ class SharkInference:
def __init__(
self,
mlir_module: str,
mlir_module: bytes,
function_name: str = "forward",
device: str = "none",
mlir_dialect: str = "linalg",
is_benchmark: bool = False,
dispatch_benchmark: str = None,
dispatch_benchmark_dir: str = "temp_dispatch_benchmarks",
):
self.mlir_module = mlir_module
self.function_name = function_name
self.device = shark_args.device if device == "none" else device
self.mlir_dialect = mlir_dialect
self.is_benchmark = is_benchmark
self.dispatch_benchmarks = (
shark_args.dispatch_benchmarks
if dispatch_benchmark is None
else dispatch_benchmark
)
self.dispatch_benchmarks_dir = (
shark_args.dispatch_benchmarks_dir
if dispatch_benchmark_dir == "temp_dispatch_benchmarks"
else dispatch_benchmark_dir
)
self.shark_runner = None
def compile(self):
def compile(self, extra_args=[]):
if self.dispatch_benchmarks is not None:
extra_args.append(
f"--iree-hal-dump-executable-sources-to={self.dispatch_benchmarks_dir}"
)
extra_args.append(
f"--iree-hal-dump-executable-binaries-to={self.dispatch_benchmarks_dir}"
)
temp_dir = self.dispatch_benchmarks_dir.split("/")
temp_dir[-1] = "temp_" + temp_dir[-1]
temp_dir = "/".join(temp_dir)
self.temp_dispatch_benchmarks_dir = temp_dir
extra_args.append(
f"--iree-hal-dump-executable-benchmarks-to={self.temp_dispatch_benchmarks_dir}"
)
if self.is_benchmark == True:
from shark.shark_benchmark_runner import SharkBenchmarkRunner
@@ -87,6 +116,7 @@ class SharkInference:
self.function_name,
self.device,
self.mlir_dialect,
extra_args=extra_args,
)
else:
@@ -95,11 +125,21 @@ class SharkInference:
self.function_name,
self.device,
self.mlir_dialect,
extra_args=extra_args,
)
if self.dispatch_benchmarks is not None:
create_dispatch_dirs(self.dispatch_benchmarks_dir, self.device)
compile_benchmark_dirs(
self.dispatch_benchmarks_dir,
self.device,
self.dispatch_benchmarks,
)
os.system(f"rm -rf {self.temp_dispatch_benchmarks_dir}")
# inputs are considered to be tuple of np.array.
def forward(self, inputs: tuple):
return self.shark_runner.run(inputs)
def forward(self, inputs: tuple, send_to_host=True):
return self.shark_runner.run(inputs, send_to_host)
# Captures the static input information from the mlir_module.
# TODO(pashu123): Generate the input information for dynamic shapes.
@@ -144,21 +184,24 @@ class SharkInference:
# TODO: Instead of passing directory and having names decided by the module
# , user may want to save the module with manual names.
def save_module(self, dir=os.getcwd()):
def save_module(self, dir=os.getcwd(), module_name=None, extra_args=[]):
return export_iree_module_to_vmfb(
self.mlir_module,
self.device,
dir,
self.mlir_dialect,
self.function_name,
module_name=module_name,
extra_args=extra_args,
)
# load and return the module.
def load_module(self, path):
def load_module(self, path, extra_args=[]):
self.shark_runner = SharkRunner(
function_name=self.function_name,
device=self.device,
compile_vmfb=False,
extra_args=extra_args,
)
(
self.shark_runner.iree_compilation_module,

View File

@@ -61,19 +61,21 @@ class SharkRunner:
def __init__(
self,
mlir_module: str = "none",
mlir_module: bytes = None,
function_name: str = "forward",
device: str = "none",
mlir_dialect: str = "linalg",
extra_args: list = [],
compile_vmfb: bool = True,
):
self.mlir_module = mlir_module
self.function_name = function_name
self.device = shark_args.device if device == "none" else device
self.mlir_dialect = mlir_dialect
self.extra_args = extra_args
if check_device_drivers(self.device):
device_driver_info(self.device)
print(device_driver_info(self.device))
sys.exit(1)
if compile_vmfb == True:
@@ -86,12 +88,14 @@ class SharkRunner:
self.device,
self.mlir_dialect,
func_name=self.function_name,
extra_args=self.extra_args,
)
def run(self, inputs: tuple):
def run(self, inputs: tuple, send_to_host=False):
return get_results(
self.iree_compilation_module,
inputs,
self.iree_config,
self.mlir_dialect,
send_to_host,
)

296
shark/stress_test.py Normal file
View File

@@ -0,0 +1,296 @@
# Copyright 2022 The Nod Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from iree.runtime import query_available_drivers, get_driver
from shark.shark_downloader import download_model
from shark.shark_inference import SharkInference
from typing import List, Optional, Tuple
import numpy as np
import argparse
from shark.iree_utils._common import _IREE_DEVICE_MAP
import multiprocessing
from shark.shark_runner import supported_dialects
import logging
from concurrent.futures import ProcessPoolExecutor
from concurrent.futures.thread import ThreadPoolExecutor
import time
import numpy as np
IREE_TO_SHARK_DRIVER_MAP = {v: k for k, v in _IREE_DEVICE_MAP.items()}
def stress_test_compiled_model(
shark_module_path: str,
function_name: str,
device: str,
inputs: List[np.ndarray],
golden_out: List[np.ndarray],
batch_size: int,
max_iterations: int,
max_duration_seconds: float,
inference_timeout_seconds: float,
tolerance_nulp: int,
stress_test_index: int,
):
logging.info(
f"Running stress test {stress_test_index} on device {device}."
)
shark_module = SharkInference(
mlir_module=bytes(), function_name=function_name, device=device
)
shark_module.load_module(shark_module_path)
input_batches = [np.repeat(arr, batch_size, axis=0) for arr in inputs]
golden_output_batches = np.repeat(golden_out, batch_size, axis=0)
report_interval_seconds = 10
start_time = time.time()
previous_report_time = start_time
executor = ThreadPoolExecutor(1)
first_iteration_output = None
for i in range(max_iterations):
inference_task = executor.submit(shark_module.forward, input_batches)
output = inference_task.result(inference_timeout_seconds)
if first_iteration_output is None:
np.testing.assert_array_almost_equal_nulp(
golden_output_batches, output, nulp=tolerance_nulp
)
first_iteration_output = output
else:
np.testing.assert_array_equal(output, first_iteration_output)
current_time = time.time()
if report_interval_seconds < current_time - previous_report_time:
logging.info(
f"Stress test {stress_test_index} on device "
f"{device} at iteration {i+1}"
)
previous_report_time = current_time
if max_duration_seconds < current_time - start_time:
return
logging.info(f"Stress test {stress_test_index} on device {device} done.")
def get_device_type(device_name: str):
return device_name.split("://", 1)[0]
def get_device_types(device_names: str):
return [get_device_type(device_name) for device_name in device_names]
def query_devices(device_types: Optional[List[str]] = None) -> List[str]:
devices = []
if device_types is None:
device_types = [
IREE_TO_SHARK_DRIVER_MAP[name]
for name in query_available_drivers()
if name in IREE_TO_SHARK_DRIVER_MAP
]
for device_type in device_types:
driver = get_driver(_IREE_DEVICE_MAP[device_type])
device_infos = driver.query_available_devices()
for device_info in device_infos:
uri_path = (
device_info["path"]
if device_info["path"] != ""
else str(device_info["device_id"])
)
device_uri = f"{device_type}://{uri_path}"
devices.append(device_uri)
return devices
def compile_stress_test_module(
device_types: List[str], mlir_model: str, func_name: str, mlir_dialect: str
) -> List[str]:
shark_module_paths = []
for device_type in device_types:
logging.info(
f"Compiling stress test model for device type {device_type}."
)
shark_module = SharkInference(
mlir_model,
func_name,
mlir_dialect=mlir_dialect,
device=device_type,
)
shark_module_paths.append(shark_module.save_module())
return shark_module_paths
def stress_test(
model_name: str,
dynamic_model: bool = False,
device_types: Optional[List[str]] = None,
device_names: Optional[List[str]] = None,
batch_size: int = 1,
max_iterations: int = 10**7,
max_duration_seconds: float = 3600,
inference_timeout_seconds: float = 60,
mlir_dialect: str = "linalg",
frontend: str = "torch",
oversubscription_factor: int = 1,
tolerance_nulp: int = 50000,
):
logging.info(f"Downloading stress test model {model_name}.")
mlir_model, func_name, inputs, golden_out = download_model(
model_name=model_name, dynamic=dynamic_model, frontend=frontend
)
if device_names is None or device_types is not None:
device_names = [] if device_names is None else device_names
with ProcessPoolExecutor() as executor:
device_names.extend(
executor.submit(query_devices, device_types).result()
)
device_types_set = list(set(get_device_types(device_names)))
shark_module_paths_set = compile_stress_test_module(
device_types_set, mlir_model, func_name, mlir_dialect
)
device_type_shark_module_path_map = {
device_type: module_path
for device_type, module_path in zip(
device_types_set, shark_module_paths_set
)
}
device_name_shark_module_path_map = {
device_name: device_type_shark_module_path_map[
get_device_type(device_name)
]
for device_name in device_names
}
# This needs to run in a spearate process, because it uses the drvier chache
# in IREE and a subsequent call to `iree.runtime.SystemContext.add_vm_module`
# in a forked process will hang.
with multiprocessing.Pool(
len(device_name_shark_module_path_map) * oversubscription_factor
) as process_pool:
process_pool.starmap(
stress_test_compiled_model,
[
(
module_path,
func_name,
device_name,
inputs,
golden_out,
batch_size,
max_iterations,
max_duration_seconds,
inference_timeout_seconds,
tolerance_nulp,
stress_test_index,
)
for stress_test_index, (device_name, module_path) in enumerate(
list(device_name_shark_module_path_map.items())
* oversubscription_factor
)
],
)
if __name__ == "__main__":
logging.basicConfig(encoding="utf-8", level=logging.INFO)
parser = argparse.ArgumentParser(
description="Downloads, compiles and runs a model from the tank to stress test the system."
)
parser.add_argument(
"--model", type=str, help="Model name in the tank.", default="alexnet"
)
parser.add_argument(
"--dynamic",
help="Use dynamic version of the model.",
action="store_true",
default=False,
)
parser.add_argument(
"--frontend", type=str, help="Frontend of the model.", default="torch"
)
parser.add_argument(
"--mlir-dialect",
type=str,
help="MLIR dialect of the model.",
default="linalg",
choices=supported_dialects,
)
parser.add_argument(
"--device-types",
type=str,
nargs="*",
choices=_IREE_DEVICE_MAP.keys(),
help="Runs the stress test on all devices with that type. "
"If absent and no deveices are specified "
"will run against all available devices.",
)
parser.add_argument(
"--devices",
type=str,
nargs="*",
help="List of devices to run the stress test on. "
"If device-types is specified will run against the union of the two.",
)
parser.add_argument(
"--batch-size",
type=int,
help="Number of inputs to feed into the model",
default=1,
)
parser.add_argument(
"--oversubscription",
type=int,
help="Oversubscrption factor. Each device will execute the model simultaneously "
"this many number of times.",
default=1,
)
parser.add_argument(
"--max-iterations",
type=int,
help="Maximum number of iterations to run the stress test per device.",
default=10**7,
)
parser.add_argument(
"--max-duration",
type=float,
help="Maximum number of seconds to run the stress test.",
default=3600,
)
parser.add_argument(
"--inference-timeout",
type=float,
help="Timeout in seconds for a single model inference operation.",
default=60,
)
parser.add_argument(
"--tolerance-nulp",
type=int,
help="The maximum number of unit in the last place for tolerance "
"when verifing results with the golden reference output.",
default=50000,
)
args = parser.parse_known_args()[0]
stress_test(
model_name=args.model,
dynamic_model=args.dynamic,
frontend=args.frontend,
mlir_dialect=args.mlir_dialect,
device_types=args.device_types,
device_names=args.devices,
batch_size=args.batch_size,
oversubscription_factor=args.oversubscription,
max_iterations=args.max_iterations,
max_duration_seconds=args.max_duration,
inference_timeout_seconds=args.inference_timeout,
tolerance_nulp=args.tolerance_nulp,
)

View File

@@ -0,0 +1,31 @@
# Copyright 2022 The Nod Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import subprocess
import sys
import importlib.util
def test_stress_test():
subprocess.check_call(
[
sys.executable,
importlib.util.find_spec("shark.stress_test").origin,
"--model=squeezenet1_0",
"--devices",
"cpu",
"--max-iterations=1",
]
)

View File

@@ -17,6 +17,7 @@ import torch_mlir
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
import tempfile
from shark.parser import shark_args
import io
def get_module_name_for_asm_dump(module):
@@ -55,9 +56,8 @@ def get_torch_mlir_module(
input: tuple,
dynamic: bool,
jit_trace: bool,
from_torchscript: bool = False,
):
"""Get the MLIR's linalg-on-tensors module from torchscipt module."""
"""Get the MLIR's linalg-on-tensors module from the torchscipt module."""
ignore_traced_shapes = False
if dynamic:
input = create_dynamic_placeholders(input)
@@ -66,11 +66,14 @@ def get_torch_mlir_module(
tempfile.tempdir = shark_args.repro_dir
module = torch_mlir.compile(
mlir_module = torch_mlir.compile(
module,
input,
output_type=torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=jit_trace,
ignore_traced_shapes=ignore_traced_shapes,
)
return module
bytecode_stream = io.BytesIO()
mlir_module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
return bytecode

View File

@@ -1,3 +1,211 @@
## Supported and Validated Models
### PyTorch HuggingFace Models
| PyTorch Language Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| Albert | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| BigBird | :green_heart: (AOT) | | | |
| dbmdz/ConvBERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| DistilBERT | :broken_heart: (JIT) | | | |
| GPT2 | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| MobileBert | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
| microsoft/beit | :green_heart: | :green_heart: | :broken_heart: | :broken_heart: |
| facebook/deit | :green_heart: | :green_heart: | :broken_heart: | :broken_heart: |
| facebook/convnext | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
### Torchvision Models
| TORCHVISION Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|--------------------|----------------------|----------|----------|-------------|
| AlexNet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| MobileNetV2 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| MobileNetV3 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Unet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnet18 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnet50 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnet101 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| Resnext50_32x4d | :green_heart: (Script) | | | |
| SqueezeNet | :green_heart: (Script) | :green_heart: | :broken_heart: | :broken_heart: |
| EfficientNet | :green_heart: (Script) | | | |
| Regnet | :green_heart: (Script) | | | |
| Resnest | :broken_heart: (Script) | | | |
| Vision Transformer | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| VGG 16 | :green_heart: (Script) | :green_heart: | :green_heart: | |
| Wide Resnet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
| RAFT | :broken_heart: (JIT) | | | |
For more information refer to [MODEL TRACKING SHEET](https://docs.google.com/spreadsheets/d/15PcjKeHZIrB5LfDyuw7DGEEE8XnQEX2aX8lm8qbxV8A/edit#gid=0)
### Tensorflow Models (Inference)
| Hugging Face Models | tf-mhlo lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| MiniLM | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| albert-base-v2 | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| DistilBERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| CamemBert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| ConvBert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| Deberta | | | | |
| electra | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| funnel | | | | |
| layoutlm | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| longformer | | | | |
| mobile-bert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| rembert | | | | |
| tapas | | | | |
| flaubert | :broken_heart: | :green_heart: | :green_heart: | :green_heart: |
| roberta | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| xlm-roberta | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
| mpnet | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
### PyTorch Training Models
| Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :green_heart: | :green_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
### JAX Models
| Models | JAX-MHLO lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| DALL-E | :broken_heart: | :broken_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
<details>
<summary>TFLite Models</summary>
### TFLite Models
| Models | TOSA/LinAlg | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---------------------|----------------------|----------|----------|-------------|
| BERT | :broken_heart: | :broken_heart: | | |
| FullyConnected | :green_heart: | :green_heart: | | |
| albert | :green_heart: | :green_heart: | | |
| asr_conformer | :green_heart: | :green_heart: | | |
| bird_classifier | :green_heart: | :green_heart: | | |
| cartoon_gan | :green_heart: | :green_heart: | | |
| craft_text | :green_heart: | :green_heart: | | |
| deeplab_v3 | :green_heart: | :green_heart: | | |
| densenet | :green_heart: | :green_heart: | | |
| east_text_detector | :green_heart: | :green_heart: | | |
| efficientnet_lite0_int8 | :green_heart: | :green_heart: | | |
| efficientnet | :green_heart: | :green_heart: | | |
| gpt2 | :green_heart: | :green_heart: | | |
| image_stylization | :green_heart: | :green_heart: | | |
| inception_v4 | :green_heart: | :green_heart: | | |
| inception_v4_uint8 | :green_heart: | :green_heart: | | |
| lightning_fp16 | :green_heart: | :green_heart: | | |
| lightning_i8 | :green_heart: | :green_heart: | | |
| lightning | :green_heart: | :green_heart: | | |
| magenta | :green_heart: | :green_heart: | | |
| midas | :green_heart: | :green_heart: | | |
| mirnet | :green_heart: | :green_heart: | | |
| mnasnet | :green_heart: | :green_heart: | | |
| mobilebert_edgetpu_s_float | :green_heart: | :green_heart: | | |
| mobilebert_edgetpu_s_quant | :green_heart: | :green_heart: | | |
| mobilebert | :green_heart: | :green_heart: | | |
| mobilebert_tf2_float | :green_heart: | :green_heart: | | |
| mobilebert_tf2_quant | :green_heart: | :green_heart: | | |
| mobilenet_ssd_quant | :green_heart: | :green_heart: | | |
| mobilenet_v1 | :green_heart: | :green_heart: | | |
| mobilenet_v1_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v2_int8 | :green_heart: | :green_heart: | | |
| mobilenet_v2 | :green_heart: | :green_heart: | | |
| mobilenet_v2_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v3-large | :green_heart: | :green_heart: | | |
| mobilenet_v3-large_uint8 | :green_heart: | :green_heart: | | |
| mobilenet_v35-int8 | :green_heart: | :green_heart: | | |
| nasnet | :green_heart: | :green_heart: | | |
| person_detect | :green_heart: | :green_heart: | | |
| posenet | :green_heart: | :green_heart: | | |
| resnet_50_int8 | :green_heart: | :green_heart: | | |
| rosetta | :green_heart: | :green_heart: | | |
| spice | :green_heart: | :green_heart: | | |
| squeezenet | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v1 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v1_uint8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_fpnlite | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_fpnlite_uint8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2_int8 | :green_heart: | :green_heart: | | |
| ssd_mobilenet_v2 | :green_heart: | :green_heart: | | |
| ssd_spaghettinet_large | :green_heart: | :green_heart: | | |
| ssd_spaghettinet_large_uint8 | :green_heart: | :green_heart: | | |
| visual_wake_words_i8 | :green_heart: | :green_heart: | | |
</details>
## Testing and Benchmarks
### Run all model tests on CPU/GPU/VULKAN/Metal
For a list of models included in our pytest model suite, see https://github.com/nod-ai/SHARK/blob/main/tank/all_models.csv
```shell
pytest tank/test_models.py
# Models included in the pytest suite can be found listed in all_models.csv.
# If on Linux for multithreading on CPU (faster results):
pytest tank/test_models.py -n auto
```
### Running specific tests
```shell
# Search for test cases by including a keyword that matches all or part of the test case's name;
pytest tank/test_models.py -k "keyword"
# Test cases are named uniformly by format test_module_<model_name_underscores_only>_<torch/tf>_<static/dynamic>_<device>.
# Example: Test all models on nvidia gpu:
pytest tank/test_models.py -k "cuda"
# Example: Test all tensorflow resnet models on Vulkan backend:
pytest tank/test_models.py -k "resnet and tf and vulkan"
# Exclude a test case:
pytest tank/test_models.py -k "not ..."
### Run benchmarks on SHARK tank pytests and generate bench_results.csv with results.
(the following requires source installation with `IMPORTER=1 ./setup_venv.sh`)
```shell
pytest --benchmark tank/test_models.py
# Just do static GPU benchmarks for PyTorch tests:
pytest --benchmark tank/test_models.py -k "pytorch and static and cuda"
```
### Benchmark Resnet50, MiniLM on CPU
(requires source installation with `IMPORTER=1 ./setup_venv.sh`)
```shell
# We suggest running the following commands as root before running benchmarks on CPU:
cat /sys/devices/system/cpu/cpu*/topology/thread_siblings_list | awk -F, '{print $2}' | sort -n | uniq | ( while read X ; do echo $X ; echo 0 > /sys/devices/system/cpu/cpu$X/online ; done )
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
# Benchmark canonical Resnet50 on CPU via pytest
pytest --benchmark tank/test_models.py -k "resnet50 and tf_static_cpu"
# Benchmark canonical MiniLM on CPU via pytest
pytest --benchmark tank/test_models.py -k "MiniLM and cpu"
# Benchmark MiniLM on CPU via transformer-benchmarks:
git clone --recursive https://github.com/nod-ai/transformer-benchmarks.git
cd transformer-benchmarks
./perf-ci.sh -n
# Check detail.csv for MLIR/IREE results.
```
To run the fine tuning example, from the root SHARK directory, run:
```shell
@@ -11,3 +219,5 @@ if running from a google vm, you can view jupyter notebooks on your local system
gcloud compute ssh <YOUR_INSTANCE_DETAILS> --ssh-flag="-N -L localhost:8888:localhost:8888"
```

View File

@@ -1,34 +1,34 @@
resnet50,mhlo,tf,1e-02,1e-3,default
albert-base-v2,mhlo,tf,1e-02,1e-3,default
roberta-base,mhlo,tf,1e-02,1e-3,default
bert-base-uncased,mhlo,tf,1e-2,1e-3,default
camembert-base,mhlo,tf,1e-2,1e-3,default
dbmdz/convbert-base-turkish-cased,mhlo,tf,1e-2,1e-3,default
distilbert-base-uncased,mhlo,tf,1e-2,1e-3,default
facebook/convnext-tiny-224,mhlo,tf,1e-2,1e-3,tf_vit
funnel-transformer/small,mhlo,tf,1e-2,1e-3,default
google/electra-small-discriminator,mhlo,tf,1e-2,1e-3,default
google/mobilebert-uncased,mhlo,tf,1e-2,1e-3,default
google/vit-base-patch16-224,mhlo,tf,1e-2,1e-3,tf_vit
hf-internal-testing/tiny-random-flaubert,mhlo,tf,1e-2,1e-3,default
microsoft/MiniLM-L12-H384-uncased,mhlo,tf,1e-2,1e-3,tf_hf
microsoft/layoutlm-base-uncased,mhlo,tf,1e-2,1e-3,default
microsoft/mpnet-base,mhlo,tf,1e-2,1e-3,default
albert-base-v2,linalg,torch,1e-2,1e-3,default
alexnet,linalg,torch,1e-2,1e-3,default
bert-base-cased,linalg,torch,1e-2,1e-3,default
bert-base-uncased,linalg,torch,1e-2,1e-3,default
distilbert-base-uncased,linalg,torch,1e-2,1e-3,default
facebook/deit-small-distilled-patch16-224,linalg,torch,1e-2,1e-3,default
google/vit-base-patch16-224,linalg,torch,1e-2,1e-3,default
microsoft/beit-base-patch16-224-pt22k-ft22k,linalg,torch,1e-2,1e-3,default
microsoft/MiniLM-L12-H384-uncased,linalg,torch,1e-2,1e-3,default
microsoft/resnet-50,linalg,torch,1e-2,1e-3,default
google/mobilebert-uncased,linalg,torch,1e-2,1e-3,default
mobilenet_v3_small,linalg,torch,1e-2,1e-3,default
nvidia/mit-b0,linalg,torch,1e-2,1e-3,default
resnet101,linalg,torch,1e-2,1e-3,default
resnet18,linalg,torch,1e-2,1e-3,default
resnet50,linalg,torch,1e-2,1e-3,default
squeezenet1_0,linalg,torch,1e-2,1e-3,default
wide_resnet50_2,linalg,torch,1e-2,1e-3,default
resnet50,mhlo,tf,1e-2,1e-3,default,nhcw-nhwc,False,False,True,"Vulkan Numerical Error: mostly conv"
albert-base-v2,mhlo,tf,1e-2,1e-2,default,None,False,False,False,""
roberta-base,mhlo,tf,1e-02,1e-3,default,nhcw-nhwc,False,False,False,""
bert-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,""
camembert-base,mhlo,tf,1e-2,1e-3,default,None,False,False,False,""
dbmdz/convbert-base-turkish-cased,mhlo,tf,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"https://github.com/iree-org/iree/issues/9971"
distilbert-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,""
facebook/convnext-tiny-224,mhlo,tf,1e-2,1e-3,tf_vit,nhcw-nhwc,True,True,True,"https://github.com/nod-ai/SHARK/issues/311 & https://github.com/nod-ai/SHARK/issues/342"
funnel-transformer/small,mhlo,tf,1e-2,1e-3,default,None,True,True,True,"https://github.com/nod-ai/SHARK/issues/201"
google/electra-small-discriminator,mhlo,tf,1e-2,1e-3,default,None,False,False,False,""
google/mobilebert-uncased,mhlo,tf,1e-2,1e-3,default,None,True,False,False,"Fails during iree-compile."
google/vit-base-patch16-224,mhlo,tf,1e-2,1e-3,tf_vit,nhcw-nhwc,False,False,True,"Vulkan Numerical Error (mostly conv)"
microsoft/MiniLM-L12-H384-uncased,mhlo,tf,1e-2,1e-3,tf_hf,None,True,False,False,"Fails during iree-compile."
microsoft/layoutlm-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,""
microsoft/mpnet-base,mhlo,tf,1e-2,1e-2,default,None,False,False,False,""
albert-base-v2,linalg,torch,1e-2,1e-3,default,None,True,True,True,"issue with aten.tanh in torch-mlir"
alexnet,linalg,torch,1e-2,1e-3,default,None,False,False,True,"Assertion Error: Zeros Output"
bert-base-cased,linalg,torch,1e-2,1e-3,default,None,False,False,False,""
bert-base-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,""
facebook/deit-small-distilled-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"Fails during iree-compile."
google/vit-base-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"https://github.com/nod-ai/SHARK/issues/311"
microsoft/beit-base-patch16-224-pt22k-ft22k,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"https://github.com/nod-ai/SHARK/issues/390"
microsoft/MiniLM-L12-H384-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,True,""
microsoft/resnet-50,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,True,"Vulkan Numerical Error (mostly conv)"
google/mobilebert-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,True,"https://github.com/nod-ai/SHARK/issues/344"
mobilenet_v3_small,linalg,torch,1e-1,1e-2,default,nhcw-nhwc,False,True,True,"https://github.com/nod-ai/SHARK/issues/388"
nvidia/mit-b0,linalg,torch,1e-2,1e-3,default,None,True,True,True,"https://github.com/nod-ai/SHARK/issues/343"
resnet101,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,True,"Vulkan Numerical Error (mostly conv)"
resnet18,linalg,torch,1e-2,1e-3,default,None,True,True,True,""
resnet50,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,True,"Vulkan Numerical Error (mostly conv)"
squeezenet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,True,"https://github.com/nod-ai/SHARK/issues/388"
wide_resnet50_2,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,True,"Vulkan Numerical Error (mostly conv)"
efficientnet-v2-s,mhlo,tf,1e-02,1e-3,default,nhcw-nhwc,False,False,True,"https://github.com/nod-ai/SHARK/issues/575"
mnasnet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,True,"https://github.com/nod-ai/SHARK/issues/388"
1 resnet50 mhlo tf 1e-02 1e-2 1e-3 default nhcw-nhwc False False True Vulkan Numerical Error: mostly conv
2 albert-base-v2 mhlo tf 1e-02 1e-2 1e-3 1e-2 default None False False False
3 roberta-base mhlo tf 1e-02 1e-3 default nhcw-nhwc False False False
4 bert-base-uncased mhlo tf 1e-2 1e-3 default None False False False
5 camembert-base mhlo tf 1e-2 1e-3 default None False False False
6 dbmdz/convbert-base-turkish-cased mhlo tf 1e-2 1e-3 default nhcw-nhwc True True True https://github.com/iree-org/iree/issues/9971
7 distilbert-base-uncased mhlo tf 1e-2 1e-3 default None False False False
8 facebook/convnext-tiny-224 mhlo tf 1e-2 1e-3 tf_vit nhcw-nhwc True True True https://github.com/nod-ai/SHARK/issues/311 & https://github.com/nod-ai/SHARK/issues/342
9 funnel-transformer/small mhlo tf 1e-2 1e-3 default None True True True https://github.com/nod-ai/SHARK/issues/201
10 google/electra-small-discriminator mhlo tf 1e-2 1e-3 default None False False False
11 google/mobilebert-uncased mhlo tf 1e-2 1e-3 default None True False False Fails during iree-compile.
12 google/vit-base-patch16-224 mhlo tf 1e-2 1e-3 tf_vit nhcw-nhwc False False True Vulkan Numerical Error (mostly conv)
13 hf-internal-testing/tiny-random-flaubert microsoft/MiniLM-L12-H384-uncased mhlo tf 1e-2 1e-3 default tf_hf None True False False Fails during iree-compile.
14 microsoft/MiniLM-L12-H384-uncased microsoft/layoutlm-base-uncased mhlo tf 1e-2 1e-3 tf_hf default None False False False
15 microsoft/layoutlm-base-uncased microsoft/mpnet-base mhlo tf 1e-2 1e-3 1e-2 default None False False False
16 microsoft/mpnet-base albert-base-v2 mhlo linalg tf torch 1e-2 1e-3 default None True True True issue with aten.tanh in torch-mlir
17 albert-base-v2 alexnet linalg torch 1e-2 1e-3 default None False False True Assertion Error: Zeros Output
18 alexnet bert-base-cased linalg torch 1e-2 1e-3 default None False False False
19 bert-base-cased bert-base-uncased linalg torch 1e-2 1e-3 default None False False False
20 bert-base-uncased facebook/deit-small-distilled-patch16-224 linalg torch 1e-2 1e-3 default nhcw-nhwc False True False Fails during iree-compile.
21 distilbert-base-uncased google/vit-base-patch16-224 linalg torch 1e-2 1e-3 default nhcw-nhwc False True False https://github.com/nod-ai/SHARK/issues/311
22 facebook/deit-small-distilled-patch16-224 microsoft/beit-base-patch16-224-pt22k-ft22k linalg torch 1e-2 1e-3 default nhcw-nhwc False True False https://github.com/nod-ai/SHARK/issues/390
23 google/vit-base-patch16-224 microsoft/MiniLM-L12-H384-uncased linalg torch 1e-2 1e-3 default None False False True
24 microsoft/beit-base-patch16-224-pt22k-ft22k microsoft/resnet-50 linalg torch 1e-2 1e-3 default nhcw-nhwc False False True Vulkan Numerical Error (mostly conv)
25 microsoft/MiniLM-L12-H384-uncased google/mobilebert-uncased linalg torch 1e-2 1e-3 default None False False True https://github.com/nod-ai/SHARK/issues/344
26 microsoft/resnet-50 mobilenet_v3_small linalg torch 1e-2 1e-1 1e-3 1e-2 default nhcw-nhwc False True True https://github.com/nod-ai/SHARK/issues/388
27 google/mobilebert-uncased nvidia/mit-b0 linalg torch 1e-2 1e-3 default None True True True https://github.com/nod-ai/SHARK/issues/343
28 mobilenet_v3_small resnet101 linalg torch 1e-2 1e-3 default nhcw-nhwc False False True Vulkan Numerical Error (mostly conv)
29 nvidia/mit-b0 resnet18 linalg torch 1e-2 1e-3 default None True True True
30 resnet101 resnet50 linalg torch 1e-2 1e-3 default nhcw-nhwc False False True Vulkan Numerical Error (mostly conv)
31 resnet18 squeezenet1_0 linalg torch 1e-2 1e-3 default nhcw-nhwc False False True https://github.com/nod-ai/SHARK/issues/388
32 resnet50 wide_resnet50_2 linalg torch 1e-2 1e-3 default nhcw-nhwc False False True Vulkan Numerical Error (mostly conv)
33 squeezenet1_0 efficientnet-v2-s linalg mhlo torch tf 1e-2 1e-02 1e-3 default nhcw-nhwc False False True https://github.com/nod-ai/SHARK/issues/575
34 wide_resnet50_2 mnasnet1_0 linalg torch 1e-2 1e-3 default nhcw-nhwc False False True https://github.com/nod-ai/SHARK/issues/388

View File

@@ -32,7 +32,7 @@ class BertModule(tf.Module):
input_ids=x, attention_mask=y, token_type_ids=z, training=False
)
@tf.function(input_signature=bert_input)
@tf.function(input_signature=bert_input, jit_compile=True)
def predict(self, input_word_ids, input_mask, segment_ids):
return self.m.predict(input_word_ids, input_mask, segment_ids)

View File

@@ -33,7 +33,7 @@ class BertModule(tf.Module):
input_ids=x, attention_mask=y, token_type_ids=z, training=False
)
@tf.function(input_signature=bert_input)
@tf.function(input_signature=bert_input, jit_compile=True)
def predict(self, input_ids, attention_mask, token_type_ids):
return self.m.predict(input_ids, attention_mask, token_type_ids)

View File

@@ -52,7 +52,7 @@ class SeqClassification(tf.Module):
)
self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)[0]
@tf.function(input_signature=inputs_signature)
@tf.function(input_signature=inputs_signature, jit_compile=True)
def forward(self, input_ids, attention_mask):
return tf.math.softmax(
self.m.predict(input_ids, attention_mask), axis=-1

View File

@@ -1,8 +1,9 @@
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_torch_model
from shark.shark_downloader import download_model
mlir_model, func_name, inputs, golden_out = download_torch_model(
"bert-base-uncased_tosa"
mlir_model, func_name, inputs, golden_out = download_model(
"bert-base-uncased_tosa",
frontend="torch",
)
shark_module = SharkInference(

View File

@@ -72,7 +72,8 @@ class BertModule(tf.Module):
input_signature=[
bert_input, # inputs
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
]
],
jit_compile=True,
)
def learn(self, inputs, labels):
with tf.GradientTape() as tape:

View File

@@ -60,7 +60,8 @@ class BertModule(tf.Module):
shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32
), # input2: segment_ids
tf.TensorSpec([BATCH_SIZE], tf.int32), # input3: labels
]
],
jit_compile=True,
)
def learn(self, input_word_ids, input_mask, segment_ids, labels):
with tf.GradientTape() as tape:
@@ -75,7 +76,7 @@ class BertModule(tf.Module):
self.optimizer.apply_gradients(zip(gradients, variables))
return loss
@tf.function(input_signature=bert_input)
@tf.function(input_signature=bert_input, jit_compile=True)
def predict(self, input_word_ids, input_mask, segment_ids):
inputs = [input_word_ids, input_mask, segment_ids]
return self.m.predict(inputs)

View File

@@ -57,7 +57,8 @@ class BertModule(tf.Module):
input_signature=[
bert_input, # inputs
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
]
],
jit_compile=True,
)
def learn(self, inputs, labels):
with tf.GradientTape() as tape:

View File

@@ -50,7 +50,8 @@ class BertModule(tf.Module):
input_signature=[
bert_input, # inputs
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
]
],
jit_compile=True,
)
def learn(self, inputs, labels):
with tf.GradientTape() as tape:

View File

@@ -57,7 +57,8 @@ class BertModule(tf.Module):
shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32
), # input2: segment_ids
tf.TensorSpec([BATCH_SIZE], tf.int32), # input3: labels
]
],
jit_compile=True,
)
def learn(self, input_word_ids, input_mask, segment_ids, labels):
with tf.GradientTape() as tape:
@@ -72,7 +73,7 @@ class BertModule(tf.Module):
self.optimizer.apply_gradients(zip(gradients, variables))
return loss
@tf.function(input_signature=bert_input)
@tf.function(input_signature=bert_input, jit_compile=True)
def predict(self, input_word_ids, input_mask, segment_ids):
inputs = [input_word_ids, input_mask, segment_ids]
return self.m.predict(inputs)

View File

@@ -53,7 +53,8 @@ class BertModule(tf.Module):
input_signature=[
bert_input, # inputs
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
]
],
jit_compile=True,
)
def learn(self, inputs, labels):
with tf.GradientTape() as tape:

View File

@@ -46,7 +46,8 @@ class BertModule(tf.Module):
input_signature=[
bert_input, # inputs
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
]
],
jit_compile=True,
)
def learn(self, inputs, labels):
with tf.GradientTape() as tape:

View File

@@ -0,0 +1,83 @@
#!/usr/bin/env python
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer
import tensorflow as tf
from shark.shark_inference import SharkInference
from shark.parser import shark_args
import argparse
seq_parser = argparse.ArgumentParser(
description="Shark Sequence Classification."
)
seq_parser.add_argument(
"--hf_model_name",
type=str,
default="bert-base-uncased",
help="Hugging face model to run sequence classification.",
)
seq_args, unknown = seq_parser.parse_known_args()
BATCH_SIZE = 1
MAX_SEQUENCE_LENGTH = 16
# Create a set of input signature.
inputs_signature = [
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
]
# For supported models please see here:
# https://huggingface.co/docs/transformers/model_doc/auto#transformers.TFAutoModelForSequenceClassification
def preprocess_input(text="This is just used to compile the model"):
tokenizer = AutoTokenizer.from_pretrained(seq_args.hf_model_name)
inputs = tokenizer(
text,
padding="max_length",
return_tensors="tf",
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
)
return inputs
class SeqClassification(tf.Module):
def __init__(self, model_name):
super(SeqClassification, self).__init__()
self.m = TFAutoModelForSequenceClassification.from_pretrained(
model_name, output_attentions=False, num_labels=2
)
self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)[0]
@tf.function(input_signature=inputs_signature, jit_compile=True)
def forward(self, input_ids, attention_mask):
return tf.math.softmax(
self.m.predict(input_ids, attention_mask), axis=-1
)
if __name__ == "__main__":
inputs = preprocess_input()
shark_module = SharkInference(
SeqClassification(seq_args.hf_model_name),
(inputs["input_ids"], inputs["attention_mask"]),
)
shark_module.set_frontend("tensorflow")
shark_module.compile()
print(f"Model has been successfully compiled on {shark_args.device}")
while True:
input_text = input(
"Enter the text to classify (press q or nothing to exit): "
)
if not input_text or input_text == "q":
break
inputs = preprocess_input(input_text)
print(
shark_module.forward(
(inputs["input_ids"], inputs["attention_mask"])
)
)

View File

@@ -1,6 +1,6 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
from shark.shark_downloader import download_model
from shark.parser import shark_args
from tank.test_utils import get_valid_test_params, shark_test_name_func
from parameterized import parameterized
@@ -21,8 +21,8 @@ class DebertaBaseModuleTester:
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"microsoft/deberta-base"
model, func_name, inputs, golden_out = download_model(
"microsoft/deberta-base", frontend="tf"
)
shark_module = SharkInference(

View File

@@ -1,5 +1,5 @@
import numpy as np
from shark.shark_downloader import download_tflite_model
from shark.shark_downloader import download_model
from shark.shark_inference import SharkInference
import pytest
import unittest
@@ -58,8 +58,8 @@ class GptTfliteModuleTester:
shark_args.save_vmfb = self.save_vmfb
# Preprocess to get SharkImporter input args
mlir_model, func_name, inputs, tflite_results = download_tflite_model(
model_name="gpt2-64"
mlir_model, func_name, inputs, tflite_results = download_model(
model_name="gpt2-64", backend="tflite"
)
shark_module = SharkInference(
mlir_module=mlir_model,

View File

@@ -20,10 +20,6 @@ class OPTModuleTester:
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device, model_name):
# model_mlir, func_name, input, act_out = download_torch_model(
# "opt", dynamic
# )
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
# config = OPTConfig()
# opt_model = OPTModel(config)

View File

@@ -1,6 +1,6 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
from shark.shark_downloader import download_model
from tank.test_utils import get_valid_test_params, shark_test_name_func
from parameterized import parameterized
@@ -18,8 +18,8 @@ class RemBertModuleTester:
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"google/rembert"
model, func_name, inputs, golden_out = download_model(
"google/rembert", frontend="tf"
)
shark_module = SharkInference(

View File

@@ -1,6 +1,6 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
from shark.shark_downloader import download_model
import iree.compiler as ireec
import unittest
@@ -16,8 +16,9 @@ class TapasBaseModuleTester:
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"google/tapas-base"
model, func_name, inputs, golden_out = download_model(
"google/tapas-base",
frontend="tf",
)
shark_module = SharkInference(

View File

@@ -15,7 +15,7 @@ from torchvision.transforms import functional as TF
from tqdm import trange
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_torch_model
from shark.shark_downloader import download_model
import numpy as np
import sys
@@ -191,7 +191,9 @@ x_in = x[0:min_batch_size, :, :, :]
ts = x_in.new_ones([x_in.shape[0]])
t_in = t[0] * ts
mlir_model, func_name, inputs, golden_out = download_torch_model("v_diffusion")
mlir_model, func_name, inputs, golden_out = download_model(
"v_diffusion", frontend="torch"
)
shark_module = SharkInference(
mlir_model, func_name, device=args.runtime_device, mlir_dialect="linalg"

View File

@@ -27,3 +27,5 @@ microsoft/mpnet-base,False,False,-,-,-
roberta-base,False,False,-,-,-
xlm-roberta-base,False,False,-,-,-
facebook/convnext-tiny-224,False,False,-,-,-
efficientnet-v2-s,False,False,22M,"image-classification,cnn","Includes MBConv and Fused-MBConv"
mnasnet1_0,False,True,-,"cnn, torchvision, mobile, architecture-search","Outperforms other mobile CNNs on Accuracy vs. Latency"
1 model_name use_tracing dynamic param_count tags notes
27 roberta-base False False - - -
28 xlm-roberta-base False False - - -
29 facebook/convnext-tiny-224 False False - - -
30 efficientnet-v2-s False False 22M image-classification,cnn Includes MBConv and Fused-MBConv
31 mnasnet1_0 False True - cnn, torchvision, mobile, architecture-search Outperforms other mobile CNNs on Accuracy vs. Latency

Some files were not shown because too many files have changed in this diff Show More