Commit Graph

78 Commits

Author SHA1 Message Date
youben11
2009ee1c94 chore: changing ref to repo after its renaming
also formatting and update the check_license script to match that
2022-01-06 12:40:10 +01:00
youben11
f1161f7f6d chore: formatting
Quick fix due to ordering of includes, had to add #include
<mlir/Transforms/DialectConversion.h> to include/concretelang/Conversion/Utils/GenericOpTypeConversionPattern.h
2022-01-03 09:29:19 +01:00
youben11
940cb96be4 chore: rename dialects
HLFHE to FHE
MidLFHE to TFHE
LowLFHE to Concrete
2021-12-29 15:13:34 +01:00
youben11
e73291abdc chore: rename compiler to concrete-compiler
zamalang => concretelang
zamacompiler => concretecompiler
2021-12-29 15:13:34 +01:00
youben11
971cb56182 chore: licensing 2021-12-29 15:13:34 +01:00
rudy
d8fee32cea feat(HLFHELinalg): add apply_mapped_table_lookup
Resolves #182
2021-12-27 15:34:33 +01:00
Antoniu Pop
cdca7ca6f7 feat(compiler): add Dataflow/RT dialect and code generation for dataflow auto parallelization. 2021-12-23 15:57:53 +00:00
Quentin Bourgerie
db683f4a0e feat(compiler/runtime): Introduce a RT dialect 2021-12-23 15:57:53 +00:00
rudy
5ed2dcb3c1 fix(compiler): MANP segfault bug in case of missing MANP value 2021-12-20 10:40:58 +01:00
Andi Drebes
f319ba37d2 feat(compiler): Integrate HLFHELinalg tiling passes into compilation pipeline 2021-12-17 16:09:59 +01:00
Andi Drebes
bc75831c86 feat(compiler): Add passes for tiling of HLFHELinalg.matmul_eint_int
Add two passes related to the tiling of `HLFHELinalg.matmul_eint_int`
operations.

The `HLFHELinalgTilingMarker` pass takes a vector of tile sizes and
adds an integer array attribute "tile-sizes" to each instance of
`HLFHELinalg.matmul_eint_int`, e.g.,

  "HLFHELinalg.matmul_eint_int"(%arg0, %arg1) {"tile-sizes" = [2, 2, 2]} :
    (tensor<4x2x!HLFHE.eint<6>>, tensor<2x2xi7>) -> tensor<4x2x!HLFHE.eint<6>>

The `HLFHELinalgTiling` performs the actual tiling of each
`HLFHELinalg.matmul_eint_int` operation marked with a "tile-sizes"
attribute. The tiling preserves the level of abstraction of
HLFHELinalg and is implemented as a perfect loop nest of SCF for loops
with a `HLFHELinalg.matmul_eint_int` in the body.

For example,

  func @main(%arg0: tensor<4x2x!HLFHE.eint<6>>, %arg1: tensor<2x2xi7>)
    -> tensor<4x2x!HLFHE.eint<6>>
  {
    %0 = "HLFHELinalg.matmul_eint_int"(%arg0, %arg1) {"tile-sizes" = [2, 2, 2]} :
           (tensor<4x2x!HLFHE.eint<6>>, tensor<2x2xi7>) -> tensor<4x2x!HLFHE.eint<6>>
    return %0 : tensor<4x2x!HLFHE.eint<6>>
  }

becomes:

  func @main(%arg0: tensor<4x2x!HLFHE.eint<6>>, %arg1: tensor<2x2xi7>)
    -> tensor<4x2x!HLFHE.eint<6>>
  {
    %c2 = arith.constant 2 : index
    %c0 = arith.constant 0 : index
    %c4 = arith.constant 4 : index

    %0 = "HLFHELinalg.zero"() : () -> tensor<4x2x!HLFHE.eint<6>>
    %1 = scf.for %arg2 = %c0 to %c4 step %c2 iter_args(%arg3 = %0)
           -> (tensor<4x2x!HLFHE.eint<6>>) {
      %2 = scf.for %arg4 = %c0 to %c2 step %c2 iter_args(%arg5 = %arg3)
             -> (tensor<4x2x!HLFHE.eint<6>>) {
        %3 = scf.for %arg6 = %c0 to %c2 step %c2 iter_args(%arg7 = %arg5)
	       -> (tensor<4x2x!HLFHE.eint<6>>) {
          %4 = tensor.extract_slice %arg0[%arg2, %arg4] [2, 2] [1, 1] :
	         tensor<4x2x!HLFHE.eint<6>> to tensor<2x2x!HLFHE.eint<6>>
          %5 = tensor.extract_slice %arg1[%arg4, %arg6] [2, 2] [1, 1] :
	         tensor<2x2xi7> to tensor<2x2xi7>
          %6 = tensor.extract_slice %arg7[%arg2, %arg6] [2, 2] [1, 1] :
	         tensor<4x2x!HLFHE.eint<6>> to tensor<2x2x!HLFHE.eint<6>>

          %7 = "HLFHELinalg.matmul_eint_int"(%4, %5) :
	         (tensor<2x2x!HLFHE.eint<6>>, tensor<2x2xi7>)
		 -> tensor<2x2x!HLFHE.eint<6>>

          %8 = "HLFHELinalg.add_eint"(%6, %7) :
	         (tensor<2x2x!HLFHE.eint<6>>, tensor<2x2x!HLFHE.eint<6>>)
		 -> tensor<2x2x!HLFHE.eint<6>>

          %9 = tensor.insert_slice %8 into %arg7[%arg2, %arg6] [2, 2] [1, 1] :
	         tensor<2x2x!HLFHE.eint<6>> into tensor<4x2x!HLFHE.eint<6>>

          scf.yield %9 : tensor<4x2x!HLFHE.eint<6>>
        }
        scf.yield %3 : tensor<4x2x!HLFHE.eint<6>>
      }
      scf.yield %2 : tensor<4x2x!HLFHE.eint<6>>
    }
    return %1 : tensor<4x2x!HLFHE.eint<6>>
  }

Only full tiles are supported, i.e., the size of the dimensions of the
operands must be a multiple of the respective tile sizes.
2021-12-17 16:09:59 +01:00
Quentin Bourgerie
bb1add2a6f enhance(compiler): Remove the restriction of analysis on the HLFHELinalg.dot
While the manp analysis wasn't handle tensor the dot operation restrict the operands to come from a block argument. Since the tensor are handled in the manp pass this restriction has no more meaning.
2021-12-07 11:17:33 +01:00
Quentin Bourgerie
fb58dcc59d enhance(compiler/lowlfhe): Give the runtime context as function argument instead of a global variable (close #195) 2021-12-02 10:56:47 +01:00
Andi Drebes
4883eebfa3 feat(compiler): Add HLFHELinalg.zero operation
Add a new operation `HLFHELinalg.zero`, broadcasting an encrypted,
zero-valued integer into a tensor of encrypted integers with static
shape.

Example creating a one-dimensional tensor with five elements all
initialized to an encrypted zero:

  %tensor = "HLFHELinalg.zero"() : () -> tensor<5x!HLFHE.eint<4>>
2021-12-01 11:24:27 +01:00
Quentin Bourgerie
ddbafd713d feat(compiler): Add the HLFHELinalg.matmul_int_eint operator 2021-11-24 09:19:25 +01:00
Quentin Bourgerie
100862e484 feat(compiler): Add the support of linalg.tensor_expand_shape and linalg.tensor_collapse_shape on encrypted tensors 2021-11-17 14:19:15 +01:00
youben11
ac7f1f5a6b feat(compiler): add HLFHELinalg.apply_multi_lut
Apply a lookup table on the different elements of the encrypted tensors,
but using different lookup tables.

MANP support as well as tests
2021-11-15 11:25:44 +01:00
Quentin Bourgerie
5df775a51b feat(compiler): MANP Analysis of HLFHELinalg.matmul (closes #178) 2021-11-12 16:50:29 +01:00
Quentin Bourgerie
12b4771405 feat(compiler/linalg): Definition of HLFHELinalg.matmul_eint_int (closes #176) 2021-11-12 16:50:29 +01:00
youben11
a888a6b329 typo: bad function name 2021-11-10 15:24:31 +01:00
youben11
99d6d11616 feat(compiler): support HLFHELinalg.neg_eint in MANP 2021-11-10 15:24:31 +01:00
youben11
d9adbab036 feat(compiler): add HLFHELinalg.neg_eint op 2021-11-10 15:24:31 +01:00
youben11
efacd7d8a1 feat(compiler): support HLFHE.neg_eint in MANP 2021-11-10 15:24:31 +01:00
youben11
c1cd6bb380 feat(compiler): add MidLFHE.neg_glwe op 2021-11-10 15:24:06 +01:00
youben11
cc4e403e7a feat(compiler): add HLFHE.neg_eint op 2021-11-10 14:52:35 +01:00
rudy
97389a3b06 Move HLFHE.dot_eint_int to HLFHELinalg.
Resolves #183
2021-11-09 11:39:08 +01:00
youben11
03c1588db4 chore: update to LLVM 8b7cc93e
major changes:
- https://llvm.discourse.group/t/psa-removed-arithmetic-ops-from-standard/4455
- use add_mlir_public_c_api_library helper to correctly add a CAPI library
2021-10-29 16:08:41 +01:00
Quentin Bourgerie
5bb58453aa feat(compiler): MANP Analysis of HLFHELinalg.apply_lookup_table (close #175) 2021-10-29 13:47:38 +02:00
Quentin Bourgerie
2900c9a2a1 feat(compiler): Add support of HLFHELinalg binary operators in MANP pass (close #172) 2021-10-29 13:47:38 +02:00
Quentin Bourgerie
be92b4580d Merge branch 'master' into hlfhelinalg-binary-op-lowering 2021-10-29 13:47:35 +02:00
Andi Drebes
d4b4839d6e fix(compiler): Take into account function parameters in MaxMANPPass
When determining the maximum MANP and precision, the `MaxMANPPass`
only takes into account results generated by an operation, but ignores
function parameters. However, encrypted function parameters are
assumed to have a MANP value of 1 and can have an arbitrary
precision. This patch takes into account function arguments by using
their default MANP values and the extracting their precision.
2021-10-29 13:44:34 +02:00
Andi Drebes
0423a05db8 feat(compiler): Add support for tensor.extract operations in MANP pass
Add support for `tensor.extract` operations in the MANP pass. This
currently only supports extract operations on tensors of encrypted
integers, which are passed as function arguments, e.g.:

 func @extract_ith(%t: tensor<10x!HLFHE.eint<5>>, %i: index) -> !HLFHE.eint<5>{
   %c = tensor.extract %t[%i] : tensor<10x!HLFHE.eint<5>>
   return %c : !HLFHE.eint<5>
 }
2021-10-29 13:44:34 +02:00
Quentin Bourgerie
dea1be9d52 feat(compiler): HLFHELinalg.apply_lookup_table definition 2021-10-29 12:17:38 +02:00
Quentin Bourgerie
64e327209f feat(compiler): HLFHELinalg.sub_int_eint 2021-10-29 12:17:32 +02:00
Quentin Bourgerie
3b02a16f7b feat(compiler): HLFHELinalg.add_eint definition 2021-10-29 12:16:41 +02:00
Quentin Bourgerie
0d4e10169b feat(compiler): Introduce the HLFHELinalg dialect and a first operator HLFHELinalg.add_eint_int 2021-10-29 12:16:41 +02:00
Quentin Bourgerie
1c202ebaff enhance(compiler): Support of tensor operators in MANP pass (close #169) 2021-10-20 16:21:52 +02:00
Quentin Bourgerie
966160bc2c fix(compiler): apply_lookup_table operators take tensor of i64
We decide to make this choice as they are issue to crate tensor of custom integer type in python.
+ we don't do the integer extension before convert to the concrete CAPI that requires i64
2021-10-13 10:28:35 +02:00
youben11
ebdc95f827 chore: update llvm and fix API breaks 2021-10-08 12:11:34 +01:00
Andi Drebes
5ce3fd5f43 refactor(compiler): Move ceilLog2 to separate header file 2021-09-28 11:35:58 +02:00
Andi Drebes
1200a46e49 feat(compiler): Add HLFHE pass selecting maximum MANP and encrypted integer width
This pass calculates the squared Minimal Arithmetic Noise Padding
(MANP) for each operation using the MANP pass and extracts the maximum
(non-squared) Minimal Arithmetic Noise Padding and the maximum
ecrypted integer width from.
2021-09-28 11:35:58 +02:00
Andi Drebes
ed762942c1 feat(compiler): Add pass for Minimal Arithmetic Noise Padding
This pass calculates the squared Minimal Arithmetic Noise Padding
(MANP) for each operation of a function and stores the result in an
integer attribute named "sqMANP". This metric is identical to the
squared 2-norm of the constant vector of an equivalent dot product
between a vector of encrypted integers resulting directly from an
encryption and a vector of plaintext constants.

The pass supports the following operations:

 - HLFHE.dot_eint_int
 - HLFHE.zero
 - HLFHE.add_eint_int
 - HLFHE.add_eint
 - HLFHE.sub_int_eint
 - HLFHE.mul_eint_int
 - HLFHE.apply_lookup_table

If any other operation is encountered, the pass conservatively
fails. The pass further makes the optimistic assumption that all
values passed to a function are either the direct result of an
encryption of a noise-refreshing operation.
2021-09-28 11:35:58 +02:00
youben11
746d991af6 refactor: ins forward decl w generic ty @pass-init
Insert forward declarations with generic types at pass initialization.
More docs for all the pass for lowering LUT
2021-09-09 20:35:28 +02:00
youben11
5f16cfabbf fix(Runtime): link missing libraries
We currently use LD_PRELOAD with the python extension to make the JIT
execution find the appropriate symbols, however, not linking with some
libraries caused other tools such as make to complain of not finding
symbols from libpthread and others
2021-09-09 20:35:28 +02:00
youben11
50d2ff82af chore(compiler): disable bitwidth check for table lookup 2021-09-09 20:35:28 +02:00
Quentin Bourgerie
70fb5fcd8e fix(compiler/midlfhe): Change constraint on operators with integers (just too large integers are forbidden) 2021-08-24 16:21:31 +02:00
Quentin Bourgerie
fa62e1f0e5 refactor(compiler): Move memref HLFHE and MidLFHE operators to tensor 2021-08-18 11:15:30 +02:00
Quentin Bourgerie
7372cd3d0a fix(compiler/hlfhe): More verification on dot_eint_int 2021-08-17 16:53:32 +02:00
Andi Drebes
8b9c9f2da1 refactor(compiler): HLFHE.dot_eint_int: Switch from reference to value semantics
This changes the semantics of `HLFHE.dot_eint_int` from memref-based
reference semantics to tensor-based value semantics. The former:

  "HLFHE.dot_eint_int"(%arg0, %arg1, %arg2) :
     (memref<Nx!HLFHE.eint<0>>, memref<Nxi32>, memref<!HLFHE.eint<0>>) -> ()

becomes:

  "HLFHE.dot_eint_int"(%arg0, %arg1) :
     (tensor<Nx!HLFHE.eint<0>>, tensor<Nxi32>) -> !HLFHE.eint<0>

As a side effect, data-flow analyses become much easier. With the
previous memref type of the plaintext argument it is difficult to
check whether the plaintext values are statically defined constants or
originate from a memory region changed at execution time (e.g., for
analyses evaluating the impact on noise). Changing the plaintext type
from `memref` to `vector` makes such analyses significantly easier.
2021-08-17 16:53:32 +02:00
Ayoub Benaissa
7a2511b3d4 feat(compiler): LowLFHE dialect (#77)
* feat(compiler): low level fhe dialect

* feat(compiler): using generated printer/parser in LowLFHE

* feat(compiler): new types and ops for LowLFHE

* tests(compiler): LowLFHE types and ops

* feat(compiler): fill ops

* cleanup

* summary + description

* tests(compiler): use new CLI args

* formatting
2021-08-05 14:32:46 +01:00