Compare commits

...

7 Commits

Author SHA1 Message Date
dante
00155e585f feat: bounded lookup log argument (#864) 2024-11-07 12:16:55 +00:00
dante
0876faa12c feat: bounded lookup round half to even (#863) 2024-11-01 00:51:15 -04:00
dante
a3c131dac0 feat: lookupless rounding ops (#862) 2024-10-31 11:29:46 -04:00
sebastiandanconia
fd9c2305ac docs: improve cli friendliness (#861)
* Improve clarity of an info!() message

* Replace references to EZKL_REPO_PATH in `--help' output

Command `--help' messages aren't meant to be unduly verbose; we can
write them for common/simple use cases. We continue to support
EZKL_REPO_PATH for users who need it, for example to support
containerized server use cases.

To be clear, by default, EZKL_REPO_PATH = $HOME/.ezkl
2024-10-30 17:25:47 -04:00
dante
a0060f341d chore: rm lookup recip (#859) 2024-10-29 15:57:38 -04:00
dante
17f1d42739 chore: unify leakyrelu and relu (#858) 2024-10-29 10:43:40 -04:00
dante
ebaee9e2b1 feat: lookupless min/max ops (#854) 2024-10-26 08:00:27 -04:00
38 changed files with 1765 additions and 735 deletions

View File

@@ -169,7 +169,7 @@ harness = false
[[bench]]
name = "relu"
name = "sigmoid"
harness = false
[[bench]]
@@ -177,12 +177,12 @@ name = "relu_lookupless"
harness = false
[[bench]]
name = "accum_matmul_relu"
name = "accum_matmul_sigmoid"
harness = false
[[bench]]
name = "accum_matmul_relu_overflow"
name = "accum_matmul_sigmoid_overflow"
harness = false
[[bin]]

View File

@@ -64,7 +64,7 @@ impl Circuit<Fr> for MyCircuit {
&a,
BITS,
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
&LookupOp::Sigmoid { scale: 1.0.into() },
)
.unwrap();
@@ -93,7 +93,7 @@ impl Circuit<Fr> for MyCircuit {
.layout(
&mut region,
&[output.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -65,7 +65,7 @@ impl Circuit<Fr> for MyCircuit {
&a,
BITS,
k,
&LookupOp::LeakyReLU { slope: 0.0.into() },
&LookupOp::Sigmoid { scale: 1.0.into() },
)
.unwrap();
@@ -94,7 +94,7 @@ impl Circuit<Fr> for MyCircuit {
.layout(
&mut region,
&[output.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -68,7 +68,14 @@ impl Circuit<Fr> for NLCircuit {
|region| {
let mut region = RegionCtx::new(region, 0, 1, 1024, 2);
config
.layout(&mut region, &[self.input.clone()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[self.input.clone()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
},

View File

@@ -42,7 +42,7 @@ impl Circuit<Fr> for NLCircuit {
.map(|_| VarTensor::new_advice(cs, K, 1, LEN))
.collect::<Vec<_>>();
let nl = LookupOp::LeakyReLU { slope: 0.0.into() };
let nl = LookupOp::Sigmoid { scale: 1.0.into() };
let mut config = Config::default();
@@ -68,7 +68,7 @@ impl Circuit<Fr> for NLCircuit {
.layout(
&mut region,
&[self.input.clone()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -146,6 +146,8 @@ where
let params = VarTensor::new_advice(cs, K, NUM_INNER_COLS, LEN);
let output = VarTensor::new_advice(cs, K, NUM_INNER_COLS, LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN, false);
println!("INPUT COL {:#?}", input);
let mut layer_config = PolyConfig::configure(
@@ -156,15 +158,11 @@ where
);
layer_config
.configure_lookup(
cs,
&input,
&output,
&params,
(LOOKUP_MIN, LOOKUP_MAX),
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
)
.configure_range_check(cs, &input, &params, (-1, 1), K)
.unwrap();
layer_config
.configure_range_check(cs, &input, &params, (0, 1023), K)
.unwrap();
layer_config
@@ -195,6 +193,11 @@ where
) -> Result<(), Error> {
config.layer_config.layout_tables(&mut layouter).unwrap();
config
.layer_config
.layout_range_checks(&mut layouter)
.unwrap();
let x = layouter
.assign_region(
|| "mlp_4d",
@@ -224,7 +227,10 @@ where
.layout(
&mut region,
&[x.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();

View File

@@ -53,6 +53,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
let output = VarTensor::new_advice(cs, K, 1, LEN);
// tells the config layer to add an affine op to the circuit gate
let _constant = VarTensor::constant_cols(cs, K, LEN, false);
println!("INPUT COL {:#?}", input);
let mut layer_config = PolyConfig::<F>::configure(
cs,
&[input.clone(), params.clone()],
@@ -60,17 +64,12 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
CheckMode::SAFE,
);
// sets up a new ReLU table and resuses it for l1 and l3 non linearities
layer_config
.configure_lookup(
cs,
&input,
&output,
&params,
(LOOKUP_MIN, LOOKUP_MAX),
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
)
.configure_range_check(cs, &input, &params, (-1, 1), K)
.unwrap();
layer_config
.configure_range_check(cs, &input, &params, (0, 1023), K)
.unwrap();
// sets up a new ReLU table and resuses it for l1 and l3 non linearities
@@ -104,6 +103,11 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
) -> Result<(), Error> {
config.layer_config.layout_tables(&mut layouter).unwrap();
config
.layer_config
.layout_range_checks(&mut layouter)
.unwrap();
let x = layouter
.assign_region(
|| "mlp_4d",
@@ -144,7 +148,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layout(
&mut region,
&[x],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
scale: 1,
slope: 0.0.into(),
}),
)
.unwrap()
.unwrap();
@@ -184,7 +191,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layout(
&mut region,
&[x],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
scale: 1,
slope: 0.0.into(),
}),
)
.unwrap();
println!("6");

View File

@@ -592,7 +592,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.12.5"
},
"orig_nbformat": 4
},

View File

@@ -648,10 +648,10 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -271,7 +271,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.12.7"
}
},
"nbformat": 4,

42
examples/onnx/log/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.log(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 3)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[1.9252371788024902, 1.8418371677398682, 0.8400403261184692, 2.083845853805542, 0.9760497808456421, 0.6940176486968994, 0.015579521656036377, 2.2689192295074463]]}

View File

@@ -0,0 +1,14 @@
pytorch2.2.2:o

inputoutput/Log"Log
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -21,9 +21,9 @@ def main():
torch_model = Circuit()
# Input to the model
shape = [3, 2, 3]
w = 0.1*torch.rand(1, *shape, requires_grad=True)
x = 0.1*torch.rand(1, *shape, requires_grad=True)
y = 0.1*torch.rand(1, *shape, requires_grad=True)
w = 2 * torch.rand(1, *shape, requires_grad=True) - 1
x = 2 * torch.rand(1, *shape, requires_grad=True) - 1
y = 2 * torch.rand(1, *shape, requires_grad=True) - 1
torch_out = torch_model(w, x, y)
# Export the model
torch.onnx.export(torch_model, # model being run

View File

@@ -1 +1,148 @@
{"input_shapes": [[3, 2, 3], [3, 2, 3], [3, 2, 3], [3, 2, 3]], "input_data": [[0.0025284828152507544, 0.04976580664515495, 0.025840921327471733, 0.0829394981265068, 0.09595223516225815, 0.08764562010765076, 0.06308566778898239, 0.062386948615312576, 0.08090643584728241, 0.09267748892307281, 0.07428313046693802, 0.08987367898225784, 0.005716216750442982, 0.0666426345705986, 0.012837404385209084, 0.05769496038556099, 0.05761152133345604, 0.08006472885608673], [0.007834953255951405, 0.011380612850189209, 0.08560049533843994, 0.022283583879470825, 0.07879520952701569, 0.04422441124916077, 0.030812596902251244, 0.006081616971641779, 0.011045408435165882, 0.08776585012674332, 0.044985152781009674, 0.015603715553879738, 0.07923348993062973, 0.04872611165046692, 0.0036642670165747404, 0.05142095685005188, 0.0963878259062767, 0.03225792199373245], [0.09952805936336517, 0.002214533044025302, 0.011696457862854004, 0.022422820329666138, 0.04151459410786629, 0.027647346258163452, 0.011919880285859108, 0.006539052817970514, 0.06569185107946396, 0.034328874200582504, 0.0032284557819366455, 0.004105025436729193, 0.022395813837647438, 0.07135921716690063, 0.07882415503263474, 0.09764843434095383, 0.05335796996951103, 0.0525360181927681]], "output_data": [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]}
{
"input_shapes": [
[
3,
2,
3
],
[
3,
2,
3
],
[
3,
2,
3
],
[
3,
2,
3
]
],
"input_data": [
[
0.5,
1.5,
-0.04514765739440918,
0.5936200618743896,
0.9271858930587769,
0.6688600778579712,
-0.20331168174743652,
-0.7016235589981079,
0.025863051414489746,
-0.19426143169403076,
0.9827852249145508,
0.4897397756576538,
-1.5,
-0.5,
0.9278832674026489,
0.5943725109100342,
-0.573331356048584,
0.3675816059112549
],
[
0.7803324460983276,
-0.9616303443908691,
0.6070173978805542,
-0.028337717056274414,
-0.5080242156982422,
-0.9280107021331787,
0.6150380373001099,
0.3865993022918701,
-0.43668973445892334,
0.17152702808380127,
0.5144252777099609,
-0.28881049156188965,
0.8932310342788696,
0.059034109115600586,
0.6865451335906982,
0.009820222854614258,
0.23011493682861328,
-0.9492779970169067
],
[
-0.21352827548980713,
-0.16015326976776123,
-0.38964390754699707,
0.13464701175689697,
-0.8814496994018555,
0.5037975311279297,
-0.804405927658081,
0.9858957529067993,
0.19567716121673584,
0.9777265787124634,
0.6151977777481079,
0.568595290184021,
0.10584986209869385,
-0.8975653648376465,
0.6235959529876709,
-0.547879695892334,
0.9289869070053101,
0.7567293643951416
]
],
"output_data": [
[
1.0,
0.0,
-0.0,
1.0,
1.0,
1.0,
-0.0,
-1.0,
0.0,
-0.0,
1.0,
0.0,
0.0,
1.0,
1.0,
1.0,
-1.0,
0.0
],
[
0.0,
-1.0,
0.0,
-1.0,
-1.0,
-1.0,
0.0,
0.0,
-1.0,
0.0,
0.0,
-1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
-1.0
],
[
-0.0,
-0.0,
-0.0,
1.0,
-0.0,
1.0,
-0.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
-0.0,
1.0,
-0.0,
1.0,
1.0
]
]
}

View File

@@ -1,10 +1,11 @@
pytorch2.0.1:â
pytorch2.2.2:ă

woutput_w/Round"Round

xoutput_x/Floor"Floor

youtput_y/Ceil"Ceil torch_jitZ%
youtput_y/Ceil"Ceil
main_graphZ%
w



View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
# reciprocal sqrt
m = 1 / torch.sqrt(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.8590779900550842, 0.4029041528701782, 0.6507361531257629, 0.9782488942146301, 0.37392884492874146, 0.6867020726203918, 0.11407750844955444, 0.362740159034729]]}

View File

@@ -0,0 +1,17 @@
pytorch2.2.2:Ź
$
input/Sqrt_output_0/Sqrt"Sqrt
1
/Sqrt_output_0output /Reciprocal"
Reciprocal
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -197,6 +197,9 @@ struct PyRunArgs {
/// int: The number of legs used for decomposition
#[pyo3(get, set)]
pub decomp_legs: usize,
/// bool: Should the circuit use unbounded lookups for log
#[pyo3(get, set)]
pub bounded_log_lookup: bool,
}
/// default instantiation of PyRunArgs
@@ -212,6 +215,7 @@ impl PyRunArgs {
impl From<PyRunArgs> for RunArgs {
fn from(py_run_args: PyRunArgs) -> Self {
RunArgs {
bounded_log_lookup: py_run_args.bounded_log_lookup,
tolerance: Tolerance::from(py_run_args.tolerance),
input_scale: py_run_args.input_scale,
param_scale: py_run_args.param_scale,
@@ -236,6 +240,7 @@ impl From<PyRunArgs> for RunArgs {
impl Into<PyRunArgs> for RunArgs {
fn into(self) -> PyRunArgs {
PyRunArgs {
bounded_log_lookup: self.bounded_log_lookup,
tolerance: self.tolerance.val,
input_scale: self.input_scale,
param_scale: self.param_scale,

View File

@@ -94,4 +94,7 @@ pub enum CircuitError {
#[error("[io] {0}")]
/// IO error
IoError(#[from] std::io::Error),
/// Invalid scale
#[error("negative scale for an op that requires positive inputs {0}")]
NegativeScale(String),
}

View File

@@ -13,10 +13,29 @@ use serde::{Deserialize, Serialize};
/// An enum representing the operations that consist of both lookups and arithmetic operations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum HybridOp {
Ln {
scale: utils::F32,
},
RoundHalfToEven {
scale: utils::F32,
legs: usize,
},
Ceil {
scale: utils::F32,
legs: usize,
},
Floor {
scale: utils::F32,
legs: usize,
},
Round {
scale: utils::F32,
legs: usize,
},
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
use_range_check_for_int: bool,
},
Div {
denom: utils::F32,
@@ -45,6 +64,8 @@ pub enum HybridOp {
ReduceArgMin {
dim: usize,
},
Max,
Min,
Softmax {
input_scale: utils::F32,
output_scale: utils::F32,
@@ -79,6 +100,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
| HybridOp::Less { .. }
| HybridOp::Equals { .. }
| HybridOp::GreaterEqual { .. }
| HybridOp::Max
| HybridOp::Min
| HybridOp::LessEqual { .. } => {
vec![0, 1]
}
@@ -93,13 +116,22 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
fn as_string(&self) -> String {
match self {
HybridOp::Ln { scale } => format!("LN(scale={})", scale),
HybridOp::RoundHalfToEven { scale, legs } => {
format!("ROUND_HALF_TO_EVEN(scale={}, legs={})", scale, legs)
}
HybridOp::Ceil { scale, legs } => format!("CEIL(scale={}, legs={})", scale, legs),
HybridOp::Floor { scale, legs } => format!("FLOOR(scale={}, legs={})", scale, legs),
HybridOp::Round { scale, legs } => format!("ROUND(scale={}, legs={})", scale, legs),
HybridOp::Max => format!("MAX"),
HybridOp::Min => format!("MIN"),
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => format!(
"RECIP (input_scale={}, output_scale={}, use_range_check_for_int={})",
input_scale, output_scale, use_range_check_for_int
"RECIP (input_scale={}, output_scale={})",
input_scale, output_scale
),
HybridOp::Div {
denom,
@@ -162,6 +194,21 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
values: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, CircuitError> {
Ok(Some(match self {
HybridOp::Ln { scale } => layouts::ln(config, region, values[..].try_into()?, *scale)?,
HybridOp::RoundHalfToEven { scale, legs } => {
layouts::round_half_to_even(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Ceil { scale, legs } => {
layouts::ceil(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Floor { scale, legs } => {
layouts::floor(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Round { scale, legs } => {
layouts::round(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Max => layouts::max_comp(config, region, values[..].try_into()?)?,
HybridOp::Min => layouts::min_comp(config, region, values[..].try_into()?)?,
HybridOp::SumPool {
padding,
stride,
@@ -179,31 +226,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => {
if input_scale.0.fract() == 0.0
&& output_scale.0.fract() == 0.0
&& *use_range_check_for_int
{
layouts::recip(
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
)?
} else {
layouts::nonlinearity(
config,
region,
values.try_into()?,
&LookupOp::Recip {
input_scale: *input_scale,
output_scale: *output_scale,
},
)?
}
}
} => layouts::recip(
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
)?,
HybridOp::Div {
denom,
use_range_check_for_int,
@@ -304,6 +333,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
HybridOp::Softmax { output_scale, .. } | HybridOp::Recip { output_scale, .. } => {
multiplier_to_scale(output_scale.0 as f64)
}
HybridOp::Ln {
scale: output_scale,
} => 4 * multiplier_to_scale(output_scale.0 as f64),
_ => in_scales[0],
};
Ok(scale)

File diff suppressed because it is too large Load Diff

View File

@@ -4,7 +4,6 @@ use serde::{Deserialize, Serialize};
use crate::{
circuit::{layouts, table::Range, utils},
fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep},
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorError, TensorType},
};
@@ -15,101 +14,29 @@ use halo2curves::ff::PrimeField;
/// An enum representing the operations that can be used to express more complex operations via accumulation
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Deserialize, Serialize)]
pub enum LookupOp {
Div {
denom: utils::F32,
},
Cast {
scale: utils::F32,
},
Max {
scale: utils::F32,
a: utils::F32,
},
Min {
scale: utils::F32,
a: utils::F32,
},
Ceil {
scale: utils::F32,
},
Floor {
scale: utils::F32,
},
Round {
scale: utils::F32,
},
RoundHalfToEven {
scale: utils::F32,
},
Sqrt {
scale: utils::F32,
},
Rsqrt {
scale: utils::F32,
},
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
},
LeakyReLU {
slope: utils::F32,
},
Sigmoid {
scale: utils::F32,
},
Ln {
scale: utils::F32,
},
Exp {
scale: utils::F32,
},
Cos {
scale: utils::F32,
},
ACos {
scale: utils::F32,
},
Cosh {
scale: utils::F32,
},
ACosh {
scale: utils::F32,
},
Sin {
scale: utils::F32,
},
ASin {
scale: utils::F32,
},
Sinh {
scale: utils::F32,
},
ASinh {
scale: utils::F32,
},
Tan {
scale: utils::F32,
},
ATan {
scale: utils::F32,
},
Tanh {
scale: utils::F32,
},
ATanh {
scale: utils::F32,
},
Erf {
scale: utils::F32,
},
KroneckerDelta,
Pow {
scale: utils::F32,
a: utils::F32,
},
HardSwish {
scale: utils::F32,
},
Div { denom: utils::F32 },
IsOdd,
PowersOfTwo { scale: utils::F32 },
Ln { scale: utils::F32 },
Sqrt { scale: utils::F32 },
Rsqrt { scale: utils::F32 },
Sigmoid { scale: utils::F32 },
Exp { scale: utils::F32 },
Cos { scale: utils::F32 },
ACos { scale: utils::F32 },
Cosh { scale: utils::F32 },
ACosh { scale: utils::F32 },
Sin { scale: utils::F32 },
ASin { scale: utils::F32 },
Sinh { scale: utils::F32 },
ASinh { scale: utils::F32 },
Tan { scale: utils::F32 },
ATan { scale: utils::F32 },
Tanh { scale: utils::F32 },
ATanh { scale: utils::F32 },
Erf { scale: utils::F32 },
Pow { scale: utils::F32, a: utils::F32 },
HardSwish { scale: utils::F32 },
}
impl LookupOp {
@@ -123,27 +50,16 @@ impl LookupOp {
/// as path
pub fn as_path(&self) -> String {
match self {
LookupOp::Ceil { scale } => format!("ceil_{}", scale),
LookupOp::Floor { scale } => format!("floor_{}", scale),
LookupOp::Round { scale } => format!("round_{}", scale),
LookupOp::RoundHalfToEven { scale } => format!("round_half_to_even_{}", scale),
LookupOp::Pow { scale, a } => format!("pow_{}_{}", scale, a),
LookupOp::KroneckerDelta => "kronecker_delta".into(),
LookupOp::Max { scale, a } => format!("max_{}_{}", scale, a),
LookupOp::Min { scale, a } => format!("min_{}_{}", scale, a),
LookupOp::Ln { scale } => format!("ln_{}", scale),
LookupOp::PowersOfTwo { scale } => format!("pow2_{}", scale),
LookupOp::IsOdd => "is_odd".to_string(),
LookupOp::Div { denom } => format!("div_{}", denom),
LookupOp::Cast { scale } => format!("cast_{}", scale),
LookupOp::Recip {
input_scale,
output_scale,
} => format!("recip_{}_{}", input_scale, output_scale),
LookupOp::LeakyReLU { slope: a } => format!("leaky_relu_{}", a),
LookupOp::Sigmoid { scale } => format!("sigmoid_{}", scale),
LookupOp::Sqrt { scale } => format!("sqrt_{}", scale),
LookupOp::Rsqrt { scale } => format!("rsqrt_{}", scale),
LookupOp::Erf { scale } => format!("erf_{}", scale),
LookupOp::Exp { scale } => format!("exp_{}", scale),
LookupOp::Ln { scale } => format!("ln_{}", scale),
LookupOp::Cos { scale } => format!("cos_{}", scale),
LookupOp::ACos { scale } => format!("acos_{}", scale),
LookupOp::Cosh { scale } => format!("cosh_{}", scale),
@@ -168,47 +84,19 @@ impl LookupOp {
let x = x[0].clone().map(|x| felt_to_integer_rep(x));
let res =
match &self {
LookupOp::Ceil { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::ceil(&x, scale.into()))
LookupOp::Ln { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::ln(&x, scale.into()))
}
LookupOp::Floor { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::floor(&x, scale.into()))
LookupOp::PowersOfTwo { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::ipow2(&x, scale.0.into()))
}
LookupOp::Round { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::round(&x, scale.into()))
}
LookupOp::RoundHalfToEven { scale } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::round_half_to_even(&x, scale.into()),
),
LookupOp::IsOdd => Ok::<_, TensorError>(tensor::ops::nonlinearities::is_odd(&x)),
LookupOp::Pow { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::pow(&x, scale.0.into(), a.0.into()),
),
LookupOp::KroneckerDelta => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::kronecker_delta(&x))
}
LookupOp::Max { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::max(&x, scale.0.into(), a.0.into()),
),
LookupOp::Min { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::min(&x, scale.0.into(), a.0.into()),
),
LookupOp::Div { denom } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::const_div(&x, f32::from(*denom).into()),
),
LookupOp::Cast { scale } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::const_div(&x, f32::from(*scale).into()),
),
LookupOp::Recip {
input_scale,
output_scale,
} => Ok::<_, TensorError>(tensor::ops::nonlinearities::recip(
&x,
input_scale.into(),
output_scale.into(),
)),
LookupOp::LeakyReLU { slope: a } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::leakyrelu(&x, a.0.into()))
}
LookupOp::Sigmoid { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::sigmoid(&x, scale.into()))
}
@@ -224,9 +112,6 @@ impl LookupOp {
LookupOp::Exp { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::exp(&x, scale.into()))
}
LookupOp::Ln { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::ln(&x, scale.into()))
}
LookupOp::Cos { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::cos(&x, scale.into()))
}
@@ -283,25 +168,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
/// Returns the name of the operation
fn as_string(&self) -> String {
match self {
LookupOp::Ceil { scale } => format!("CEIL(scale={})", scale),
LookupOp::Floor { scale } => format!("FLOOR(scale={})", scale),
LookupOp::Round { scale } => format!("ROUND(scale={})", scale),
LookupOp::RoundHalfToEven { scale } => format!("ROUND_HALF_TO_EVEN(scale={})", scale),
LookupOp::Pow { a, scale } => format!("POW(scale={}, exponent={})", scale, a),
LookupOp::KroneckerDelta => "K_DELTA".into(),
LookupOp::Max { scale, a } => format!("MAX(scale={}, a={})", scale, a),
LookupOp::Min { scale, a } => format!("MIN(scale={}, a={})", scale, a),
LookupOp::Recip {
input_scale,
output_scale,
} => format!(
"RECIP(input_scale={}, output_scale={})",
input_scale, output_scale
),
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
LookupOp::Cast { scale } => format!("CAST(scale={})", scale),
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
LookupOp::LeakyReLU { slope: a } => format!("L_RELU(slope={})", a),
LookupOp::PowersOfTwo { scale } => format!("POWERS_OF_TWO(scale={})", scale),
LookupOp::IsOdd => "IS_ODD".to_string(),
LookupOp::Pow { a, scale } => format!("POW(scale={}, exponent={})", scale, a),
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
LookupOp::Sqrt { scale } => format!("SQRT(scale={})", scale),
LookupOp::Erf { scale } => format!("ERF(scale={})", scale),
@@ -340,12 +211,6 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
/// Returns the scale of the output of the operation.
fn out_scale(&self, inputs_scale: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
let scale = match self {
LookupOp::Cast { scale } => {
let in_scale = inputs_scale[0];
in_scale + multiplier_to_scale(1. / scale.0 as f64)
}
LookupOp::Recip { output_scale, .. } => multiplier_to_scale(output_scale.into()),
LookupOp::KroneckerDelta => 0,
_ => inputs_scale[0],
};
Ok(scale)

View File

@@ -1,5 +1,8 @@
use crate::{
circuit::layouts,
circuit::{
layouts,
utils::{self, F32},
},
tensor::{self, Tensor, TensorError},
};
@@ -9,9 +12,12 @@ use super::{base::BaseOp, *};
/// An enum representing the operations that can be expressed as arithmetic (non lookup) operations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum PolyOp {
ReLU,
Abs,
Sign,
LeakyReLU {
slope: utils::F32,
scale: i32,
},
GatherElements {
dim: usize,
constant_idx: Option<Tensor<usize>>,
@@ -112,9 +118,9 @@ impl<
fn as_string(&self) -> String {
match &self {
PolyOp::LeakyReLU { slope: a, .. } => format!("LEAKYRELU (slope={})", a),
PolyOp::Abs => "ABS".to_string(),
PolyOp::Sign => "SIGN".to_string(),
PolyOp::ReLU => "RELU".to_string(),
PolyOp::GatherElements { dim, constant_idx } => format!(
"GATHERELEMENTS (dim={}, constant_idx{})",
dim,
@@ -198,7 +204,9 @@ impl<
Ok(Some(match self {
PolyOp::Abs => layouts::abs(config, region, values[..].try_into()?)?,
PolyOp::Sign => layouts::sign(config, region, values[..].try_into()?)?,
PolyOp::ReLU => layouts::relu(config, region, values[..].try_into()?)?,
PolyOp::LeakyReLU { slope, scale } => {
layouts::leaky_relu(config, region, values[..].try_into()?, slope, scale)?
}
PolyOp::MultiBroadcastTo { shape } => {
layouts::expand(config, region, values[..].try_into()?, shape)?
}
@@ -329,6 +337,12 @@ impl<
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
let scale = match self {
// this corresponds to the relu operation
PolyOp::LeakyReLU {
slope: F32(0.0), ..
} => in_scales[0],
// this corresponds to the leaky relu operation with a slope which induces a change in scale
PolyOp::LeakyReLU { scale, .. } => in_scales[0] + *scale,
PolyOp::MeanOfSquares { .. } => 2 * in_scales[0],
PolyOp::Xor | PolyOp::Or | PolyOp::And | PolyOp::Not => 0,
PolyOp::Iff => in_scales[1],

View File

@@ -474,6 +474,17 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
Ok(())
}
/// Update the max and min forcefully
pub fn update_max_min_lookup_inputs_force(
&mut self,
min: IntegerRep,
max: IntegerRep,
) -> Result<(), CircuitError> {
self.statistics.max_lookup_inputs = self.statistics.max_lookup_inputs.max(max);
self.statistics.min_lookup_inputs = self.statistics.min_lookup_inputs.min(min);
Ok(())
}
/// Update the max and min from inputs
pub fn update_max_min_lookup_range(&mut self, range: Range) -> Result<(), CircuitError> {
if range.0 > range.1 {

View File

@@ -150,12 +150,16 @@ pub fn num_cols_required(range_len: IntegerRep, col_size: usize) -> usize {
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
/// get largest element represented by the range
pub fn largest(&self) -> IntegerRep {
self.range.0 + (self.col_size * self.table_inputs.len() - 1) as IntegerRep
}
fn name(&self) -> String {
format!(
"{}_{}_{}",
self.nonlinearity.as_path(),
self.range.0,
self.range.1
self.largest()
)
}
/// Configures the table.
@@ -222,7 +226,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
}
let smallest = self.range.0;
let largest = self.range.1;
let largest = self.largest();
let gen_table = || -> Result<(Tensor<F>, Tensor<F>), crate::tensor::TensorError> {
let inputs = Tensor::from(smallest..=largest)
@@ -291,6 +295,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
row_offset += chunk_idx * self.col_size;
let (x, y) = self.cartesian_coord(row_offset);
if !preassigned_input {
table.assign_cell(
|| format!("nl_i_col row {}", row_offset),

View File

@@ -1379,7 +1379,10 @@ mod conv_relu_col_ultra_overflow {
.layout(
&mut region,
&[output.unwrap().unwrap()],
Box::new(PolyOp::ReLU),
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
@@ -2347,7 +2350,14 @@ mod matmul_relu {
.unwrap();
let _output = config
.base_config
.layout(&mut region, &[output.unwrap()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[output.unwrap()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
},
@@ -2439,7 +2449,14 @@ mod relu {
|region| {
let mut region = RegionCtx::new(region, 0, 1, 2, 2);
Ok(config
.layout(&mut region, &[self.input.clone()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[self.input.clone()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap())
},
)
@@ -2482,11 +2499,11 @@ mod lookup_ultra_overflow {
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
#[derive(Clone)]
struct ReLUCircuit<F: PrimeField + TensorType + PartialOrd> {
struct SigmoidCircuit<F: PrimeField + TensorType + PartialOrd> {
pub input: ValTensor<F>,
}
impl Circuit<F> for ReLUCircuit<F> {
impl Circuit<F> for SigmoidCircuit<F> {
type Config = BaseConfig<F>;
type FloorPlanner = SimpleFloorPlanner;
type Params = TestParams;
@@ -2500,7 +2517,7 @@ mod lookup_ultra_overflow {
.map(|_| VarTensor::new_advice(cs, 4, 1, 3))
.collect::<Vec<_>>();
let nl = LookupOp::LeakyReLU { slope: 0.0.into() };
let nl = LookupOp::Sigmoid { scale: 1.0.into() };
let mut config = BaseConfig::default();
@@ -2533,7 +2550,7 @@ mod lookup_ultra_overflow {
.layout(
&mut region,
&[self.input.clone()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.map_err(|_| Error::Synthesis)
},
@@ -2546,13 +2563,13 @@ mod lookup_ultra_overflow {
#[test]
#[ignore]
fn relucircuit() {
fn sigmoidcircuit() {
// get some logs fam
crate::logger::init_logger();
// parameters
let a = Tensor::from((0..4).map(|i| Value::known(F::from(i + 1))));
let circuit = ReLUCircuit::<F> {
let circuit = SigmoidCircuit::<F> {
input: ValTensor::from(a),
};
@@ -2562,7 +2579,7 @@ mod lookup_ultra_overflow {
let pk = crate::pfsys::create_keys::<
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
ReLUCircuit<F>,
SigmoidCircuit<F>,
>(&circuit, &params, true)
.unwrap();

View File

@@ -508,7 +508,7 @@ pub enum Commands {
/// Gets an SRS from a circuit settings file.
#[command(name = "get-srs")]
GetSrs {
/// The path to output the desired srs file, if set to None will save to $EZKL_REPO_PATH/srs
/// The path to output the desired srs file, if set to None will save to ~/.ezkl/srs
#[arg(long, default_value = None, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// Path to the circuit settings .json file to read in logrows from. Overriden by logrows if specified.
@@ -555,7 +555,7 @@ pub enum Commands {
/// The path to save the proving key to
#[arg(long, default_value = DEFAULT_PK_AGGREGATED, value_hint = clap::ValueHint::FilePath)]
pk_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// logrows used for aggregation circuit
@@ -582,7 +582,7 @@ pub enum Commands {
/// The path to output the proof file to
#[arg(long, default_value = DEFAULT_PROOF_AGGREGATED, value_hint = clap::ValueHint::FilePath)]
proof_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long)]
srs_path: Option<PathBuf>,
#[arg(
@@ -624,7 +624,7 @@ pub enum Commands {
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, default_value = DEFAULT_COMPILED_CIRCUIT, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to output the verification key file to
@@ -701,7 +701,7 @@ pub enum Commands {
/// The path to output the proof file to
#[arg(long, default_value = DEFAULT_PROOF, value_hint = clap::ValueHint::FilePath)]
proof_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
#[arg(
@@ -733,7 +733,7 @@ pub enum Commands {
/// Creates an Evm verifier for a single proof
#[command(name = "create-evm-verifier")]
CreateEvmVerifier {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
@@ -755,7 +755,7 @@ pub enum Commands {
/// Creates an Evm verifier artifact for a single proof to be used by the reusable verifier
#[command(name = "create-evm-vka")]
CreateEvmVKArtifact {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
@@ -798,7 +798,7 @@ pub enum Commands {
/// Creates an Evm verifier for an aggregate proof
#[command(name = "create-evm-verifier-aggr")]
CreateEvmVerifierAggr {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load the desired verification key file
@@ -831,7 +831,7 @@ pub enum Commands {
/// The path to the verification key file (generated using the setup command)
#[arg(long, default_value = DEFAULT_VK, value_hint = clap::ValueHint::FilePath)]
vk_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// Reduce SRS logrows to the number of instances rather than the number of logrows used for proofs (only works if the srs were generated in the same ceremony)
@@ -849,7 +849,7 @@ pub enum Commands {
/// reduced srs
#[arg(long, default_value = DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION, action = clap::ArgAction::SetTrue)]
reduced_srs: Option<bool>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// logrows used for aggregation circuit

View File

@@ -677,11 +677,12 @@ pub(crate) async fn get_srs_cmd(
pb.finish_with_message("SRS validated.");
info!("Saving SRS to disk...");
let mut file = std::fs::File::create(get_srs_path(k, srs_path.clone(), commitment))?;
let computed_srs_path = get_srs_path(k, srs_path.clone(), commitment);
let mut file = std::fs::File::create(&computed_srs_path)?;
let mut buffer = BufWriter::with_capacity(*EZKL_BUF_CAPACITY, &mut file);
params.write(&mut buffer)?;
info!("Saved SRS to disk.");
info!("Saved SRS to {}.", computed_srs_path.as_os_str().to_str().unwrap_or("disk"));
info!("SRS downloaded");
} else {

View File

@@ -763,93 +763,52 @@ pub fn new_op_from_onnx(
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_inputs.len() != 1 {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
}
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
};
if inputs.len() == 2 {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
if unit == 0. {
SupportedOp::Linear(PolyOp::ReLU)
if const_inputs.len() > 0 {
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
};
if unit == 0. {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
SupportedOp::Linear(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
})
} else {
SupportedOp::Hybrid(HybridOp::Max)
}
} else {
// get the non-constant index
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
SupportedOp::Nonlinear(LookupOp::Max {
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
a: crate::circuit::utils::F32(unit),
})
SupportedOp::Hybrid(HybridOp::Max)
}
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
}
"Min" => {
// Extract the min value
// first find the input that is a constant
// and then extract the value
let const_inputs = inputs
.iter()
.enumerate()
.filter(|(_, n)| n.is_constant())
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_inputs.len() != 1 {
return Err(GraphError::OpMismatch(idx, "Min".to_string()));
}
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "min".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Min".to_string()));
};
if inputs.len() == 2 {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
// get the non-constant index
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
SupportedOp::Nonlinear(LookupOp::Min {
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
a: crate::circuit::utils::F32(unit),
})
SupportedOp::Hybrid(HybridOp::Min)
} else {
return Err(GraphError::InvalidDims(idx, "min".to_string()));
}
}
"Recip" => {
let in_scale = inputs[0].out_scales()[0];
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
// If the input scale is larger than the params scale
SupportedOp::Hybrid(HybridOp::Recip {
input_scale: (scale_to_multiplier(in_scale) as f32).into(),
output_scale: (scale_to_multiplier(max_scale) as f32).into(),
use_range_check_for_int: true,
})
}
@@ -864,8 +823,9 @@ pub fn new_op_from_onnx(
}
};
SupportedOp::Nonlinear(LookupOp::LeakyReLU {
SupportedOp::Linear(PolyOp::LeakyReLU {
slope: crate::circuit::utils::F32(leaky_op.alpha),
scale: scales.params,
})
}
"Scan" => {
@@ -877,61 +837,70 @@ pub fn new_op_from_onnx(
"Abs" => SupportedOp::Linear(PolyOp::Abs),
"Neg" => SupportedOp::Linear(PolyOp::Neg),
"HardSwish" => SupportedOp::Nonlinear(LookupOp::HardSwish {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Sigmoid" => SupportedOp::Nonlinear(LookupOp::Sigmoid {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Sqrt" => SupportedOp::Nonlinear(LookupOp::Sqrt {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Rsqrt" => SupportedOp::Nonlinear(LookupOp::Rsqrt {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Exp" => SupportedOp::Nonlinear(LookupOp::Exp {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
}),
"Ln" => SupportedOp::Nonlinear(LookupOp::Ln {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Ln" => {
if run_args.bounded_log_lookup {
SupportedOp::Hybrid(HybridOp::Ln {
scale: scale_to_multiplier(input_scales[0]).into(),
})
} else {
SupportedOp::Nonlinear(LookupOp::Ln {
scale: scale_to_multiplier(input_scales[0]).into(),
})
}
}
"Sin" => SupportedOp::Nonlinear(LookupOp::Sin {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Cos" => SupportedOp::Nonlinear(LookupOp::Cos {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Tan" => SupportedOp::Nonlinear(LookupOp::Tan {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Asin" => SupportedOp::Nonlinear(LookupOp::ASin {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Acos" => SupportedOp::Nonlinear(LookupOp::ACos {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Atan" => SupportedOp::Nonlinear(LookupOp::ATan {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Sinh" => SupportedOp::Nonlinear(LookupOp::Sinh {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Cosh" => SupportedOp::Nonlinear(LookupOp::Cosh {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Tanh" => SupportedOp::Nonlinear(LookupOp::Tanh {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Asinh" => SupportedOp::Nonlinear(LookupOp::ASinh {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Acosh" => SupportedOp::Nonlinear(LookupOp::ACosh {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Atanh" => SupportedOp::Nonlinear(LookupOp::ATanh {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Erf" => SupportedOp::Nonlinear(LookupOp::Erf {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Source" => {
let dt = node.outputs[0].fact.datum_type;
@@ -975,11 +944,9 @@ pub fn new_op_from_onnx(
replace_const(
0,
0,
SupportedOp::Nonlinear(LookupOp::Cast {
scale: crate::circuit::utils::F32(scale_to_multiplier(
input_scales[0],
)
as f32),
SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
)?
} else {
@@ -1085,7 +1052,7 @@ pub fn new_op_from_onnx(
}
};
let in_scale = inputs[0].out_scales()[0];
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
SupportedOp::Hybrid(HybridOp::Softmax {
@@ -1123,17 +1090,21 @@ pub fn new_op_from_onnx(
pool_dims: kernel_shape.to_vec(),
})
}
"Ceil" => SupportedOp::Nonlinear(LookupOp::Ceil {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Floor" => SupportedOp::Nonlinear(LookupOp::Floor {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Round" => SupportedOp::Nonlinear(LookupOp::Round {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
"Round" => SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"RoundHalfToEven" => SupportedOp::Nonlinear(LookupOp::RoundHalfToEven {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
"RoundHalfToEven" => SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Sign" => SupportedOp::Linear(PolyOp::Sign),
"Pow" => {
@@ -1146,10 +1117,17 @@ pub fn new_op_from_onnx(
if c.raw_values.len() > 1 {
unimplemented!("only support scalar pow")
}
SupportedOp::Nonlinear(LookupOp::Pow {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
a: crate::circuit::utils::F32(c.raw_values[0]),
})
let exponent = c.raw_values[0];
if exponent.fract() == 0.0 {
SupportedOp::Linear(PolyOp::Pow(exponent as u32))
} else {
SupportedOp::Nonlinear(LookupOp::Pow {
scale: scale_to_multiplier(input_scales[0]).into(),
a: crate::circuit::utils::F32(exponent),
})
}
} else {
unimplemented!("only support constant pow for now")
}

View File

@@ -317,11 +317,18 @@ pub struct RunArgs {
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "2", value_hint = clap::ValueHint::Other))]
/// the number of legs used for decompositions
pub decomp_legs: usize,
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
/// use unbounded lookup for the log
pub bounded_log_lookup: bool,
}
impl Default for RunArgs {
fn default() -> Self {
Self {
bounded_log_lookup: false,
tolerance: Tolerance::default(),
input_scale: 7,
param_scale: 7,

View File

@@ -27,7 +27,7 @@ pub fn get_rep(
n: usize,
) -> Result<Vec<IntegerRep>, DecompositionError> {
// check if x is too large
if x.abs() > (base.pow(n as u32) as IntegerRep) {
if x.abs() > (base.pow(n as u32) as IntegerRep) - 1 {
return Err(DecompositionError::TooLarge(*x, base, n));
}
let mut rep = vec![0; n + 1];
@@ -1421,85 +1421,6 @@ pub fn slice<T: TensorType + Send + Sync>(
pub mod nonlinearities {
use super::*;
/// Ceiling operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
///
/// use ezkl::tensor::ops::nonlinearities::ceil;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = ceil(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 4, 4, 6, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn ceil(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.ceil() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Floor operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::floor;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = floor(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 2, 2, 4, 4, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn floor(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.floor() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Round operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::round;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = round(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 4, 4, 6, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn round(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.round() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Round half to even operator.
/// # Arguments
/// * `a` - Tensor
@@ -1553,31 +1474,81 @@ pub mod nonlinearities {
.unwrap()
}
/// Applies Kronecker delta to a tensor of integers.
/// Checks if a tensor's elements are odd
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::kronecker_delta;
/// use ezkl::tensor::ops::nonlinearities::is_odd;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// Some(&[2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// ).unwrap();
/// let result = kronecker_delta(&x);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 0, 0, 1]), &[2, 3]).unwrap();
///
/// let result = is_odd(&x);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 1, 0, 1, 1, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn kronecker_delta<T: TensorType + std::cmp::PartialEq + Send + Sync>(
a: &Tensor<T>,
) -> Tensor<T> {
pub fn is_odd(a: &Tensor<IntegerRep>) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
if a_i == T::zero().unwrap() {
Ok::<_, TensorError>(T::one().unwrap())
} else {
Ok::<_, TensorError>(T::zero().unwrap())
}
let rounded = if a_i % 2 == 0 { 0 } else { 1 };
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Powers of 2
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::ipow2;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// ).unwrap();
/// let result = ipow2(&x, 1.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 32768, 4, 2, 2, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn ipow2(a: &Tensor<IntegerRep>, scale_output: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = a_i as f64;
let kix = scale_output * (2.0_f64).powf(kix);
let rounded = kix.round();
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Elementwise applies ln base 2 to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// * `scale_input` - Single value
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::ilog2;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, 2]),
/// &[2, 3],
/// ).unwrap();
/// let result = ilog2(&x, 1.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 4, 1, 0, 0, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn ilog2(a: &Tensor<IntegerRep>, scale_input: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale_input;
let kix = (kix).log2();
let rounded = kix.round();
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
@@ -1710,12 +1681,11 @@ pub mod nonlinearities {
.unwrap()
}
/// Elementwise applies exponential to a tensor of integers.
/// Elementwise applies ln to a tensor of integers.
/// # Arguments
///
/// * `a` - Tensor
/// * `scale_input` - Single value
/// * `scale_output` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
@@ -1750,27 +1720,6 @@ pub mod nonlinearities {
.unwrap()
}
/// Elementwise applies sign to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::sign;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[-2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// ).unwrap();
/// let result = sign(&x);
/// let expected = Tensor::<IntegerRep>::new(Some(&[-1, 1, 1, 1, 1, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn sign(a: &Tensor<IntegerRep>) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(a_i.signum()))
.unwrap()
}
/// Elementwise applies square root to a tensor of integers.
/// # Arguments
///
@@ -2254,101 +2203,6 @@ pub mod nonlinearities {
.unwrap()
}
/// Elementwise applies leaky relu to a tensor of integers.
/// # Arguments
///
/// * `a` - Tensor
/// * `scale` - Single value
/// * `slope` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::leakyrelu;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = leakyrelu(&x, 0.1);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 15, 2, 1, 1, -1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn leakyrelu(a: &Tensor<IntegerRep>, slope: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let rounded = if a_i < 0 {
let d_inv_x = (slope) * (a_i as f64);
d_inv_x.round() as IntegerRep
} else {
let d_inv_x = a_i as f64;
d_inv_x.round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise applies max to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// * `b` - scalar
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::max;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = max(&x, 1.0, 1.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 15, 2, 1, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn max(a: &Tensor<IntegerRep>, scale_input: f64, threshold: f64) -> Tensor<IntegerRep> {
// calculate value of output
a.par_enum_map(|_, a_i| {
let d_inv_x = (a_i as f64) / scale_input;
let rounded = if d_inv_x <= threshold {
(threshold * scale_input).round() as IntegerRep
} else {
(d_inv_x * scale_input).round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise applies min to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// * `b` - scalar
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::min;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = min(&x, 1.0, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 2, 1, 1, -5]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn min(a: &Tensor<IntegerRep>, scale_input: f64, threshold: f64) -> Tensor<IntegerRep> {
// calculate value of output
a.par_enum_map(|_, a_i| {
let d_inv_x = (a_i as f64) / scale_input;
let rounded = if d_inv_x >= threshold {
(threshold * scale_input).round() as IntegerRep
} else {
(d_inv_x * scale_input).round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise divides a tensor with a const integer element.
/// # Arguments
///
@@ -2429,104 +2283,6 @@ pub mod nonlinearities {
})
.unwrap()
}
/// Elementwise greater than
/// # Arguments
///
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::greater_than;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
/// let result = greater_than(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 1, 0, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn greater_than(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) > 0_f64)))
.unwrap()
}
/// Elementwise greater than
/// # Arguments
///
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::greater_than_equal;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
/// let result = greater_than_equal(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 0, 1, 1, 0, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn greater_than_equal(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) >= 0_f64)))
.unwrap()
}
/// Elementwise less than
/// # Arguments
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::less_than;
///
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
///
/// let result = less_than(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 1, 0, 0, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn less_than(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) < 0_f64)))
.unwrap()
}
/// Elementwise less than
/// # Arguments
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::less_than_equal;
///
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
///
/// let result = less_than_equal(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 1, 1, 0, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn less_than_equal(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) <= 0_f64)))
.unwrap()
}
}
/// Ops that return the transcript i.e intermediate calcs of an op

Binary file not shown.

File diff suppressed because one or more lines are too long

View File

@@ -27,7 +27,8 @@
"check_mode": "UNSAFE",
"commitment": "KZG",
"decomp_base": 128,
"decomp_legs": 2
"decomp_legs": 2,
"bounded_log_lookup": false
},
"num_rows": 46,
"total_assignments": 92,

View File

@@ -205,7 +205,7 @@ mod native_tests {
"1l_tiny_div",
];
const TESTS: [&str; 94] = [
const TESTS: [&str; 96] = [
"1l_mlp", //0
"1l_slice",
"1l_concat",
@@ -304,6 +304,8 @@ mod native_tests {
"lstm_large", // 91
"lstm_medium", // 92
"lenet_5", // 93
"rsqrt", // 94
"log", // 95
];
const WASM_TESTS: [&str; 46] = [
@@ -542,7 +544,7 @@ mod native_tests {
}
});
seq!(N in 0..=93 {
seq!(N in 0..=95 {
#(#[test_case(TESTS[N])])*
#[ignore]
@@ -851,9 +853,11 @@ mod native_tests {
fn kzg_prove_and_verify_tight_lookup_(test: &str) {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
let path = test_dir.into_path();
let path = path.to_str().unwrap();
crate::native_tests::mv_test_(path, test);
prove_and_verify(path, test.to_string(), "safe", "private", "private", "public", 1, None, false, "single", Commitments::KZG, 1);
test_dir.close().unwrap();
// test_dir.close().unwrap();
}
#(#[test_case(TESTS[N])])*
@@ -1118,7 +1122,7 @@ mod native_tests {
});
seq!(N in 0..=93 {
seq!(N in 0..4 {
#(#[test_case(TESTS[N])])*
fn kzg_evm_prove_and_verify_reusable_verifier_(test: &str) {
crate::native_tests::init_binary();
@@ -1631,7 +1635,6 @@ mod native_tests {
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
.args(args)
.stdout(std::process::Stdio::null())
.status()
.expect("failed to execute process");
assert!(status.success());

View File

@@ -124,41 +124,40 @@ mod py_tests {
}
const TESTS: [&str; 34] = [
"ezkl_demo_batch.ipynb",
"proof_splitting.ipynb", // 0
"variance.ipynb",
"mnist_gan.ipynb",
// "mnist_vae.ipynb",
"keras_simple_demo.ipynb",
"mnist_gan_proof_splitting.ipynb", // 4
"hashed_vis.ipynb", // 5
"simple_demo_all_public.ipynb",
"data_attest.ipynb",
"little_transformer.ipynb",
"simple_demo_aggregated_proofs.ipynb",
"ezkl_demo.ipynb", // 10
"lstm.ipynb",
"set_membership.ipynb", // 12
"decision_tree.ipynb",
"random_forest.ipynb",
"gradient_boosted_trees.ipynb", // 15
"xgboost.ipynb",
"lightgbm.ipynb",
"svm.ipynb",
"simple_demo_public_input_output.ipynb",
"simple_demo_public_network_output.ipynb", // 20
"gcn.ipynb",
"linear_regression.ipynb",
"stacked_regression.ipynb",
"data_attest_hashed.ipynb",
"kzg_vis.ipynb", // 25
"kmeans.ipynb",
"solvency.ipynb",
"sklearn_mlp.ipynb",
"generalized_inverse.ipynb",
"mnist_classifier.ipynb", // 30
"world_rotation.ipynb",
"logistic_regression.ipynb",
"ezkl_demo_batch.ipynb", // 0
"proof_splitting.ipynb", // 1
"variance.ipynb", // 2
"mnist_gan.ipynb", // 3
"keras_simple_demo.ipynb", // 4
"mnist_gan_proof_splitting.ipynb", // 5
"hashed_vis.ipynb", // 6
"simple_demo_all_public.ipynb", // 7
"data_attest.ipynb", // 8
"little_transformer.ipynb", // 9
"simple_demo_aggregated_proofs.ipynb", // 10
"ezkl_demo.ipynb", // 11
"lstm.ipynb", // 12
"set_membership.ipynb", // 13
"decision_tree.ipynb", // 14
"random_forest.ipynb", // 15
"gradient_boosted_trees.ipynb", // 16
"xgboost.ipynb", // 17
"lightgbm.ipynb", // 18
"svm.ipynb", // 19
"simple_demo_public_input_output.ipynb", // 20
"simple_demo_public_network_output.ipynb", // 21
"gcn.ipynb", // 22
"linear_regression.ipynb", // 23
"stacked_regression.ipynb", // 24
"data_attest_hashed.ipynb", // 25
"kzg_vis.ipynb", // 26
"kmeans.ipynb", // 27
"solvency.ipynb", // 28
"sklearn_mlp.ipynb", // 29
"generalized_inverse.ipynb", // 30
"mnist_classifier.ipynb", // 31
"world_rotation.ipynb", // 32
"logistic_regression.ipynb", // 33
];
macro_rules! test_func {