mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-13 16:27:59 -05:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
00155e585f |
@@ -592,7 +592,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.2"
|
||||
"version": "3.12.5"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
|
||||
@@ -648,10 +648,10 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.15"
|
||||
"version": "3.12.5"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
}
|
||||
|
||||
@@ -271,7 +271,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.2"
|
||||
"version": "3.12.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
42
examples/onnx/log/gen.py
Normal file
42
examples/onnx/log/gen.py
Normal file
@@ -0,0 +1,42 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self):
|
||||
super(MyModel, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
m = torch.log(x)
|
||||
|
||||
return m
|
||||
|
||||
|
||||
circuit = MyModel()
|
||||
|
||||
x = torch.empty(1, 8).uniform_(0, 3)
|
||||
|
||||
out = circuit(x)
|
||||
|
||||
print(out)
|
||||
|
||||
torch.onnx.export(circuit, x, "network.onnx",
|
||||
export_params=True, # store the trained parameter weights inside the model file
|
||||
opset_version=17, # the ONNX version to export the model to
|
||||
do_constant_folding=True, # whether to execute constant folding for optimization
|
||||
input_names=['input'], # the model's input names
|
||||
output_names=['output'], # the model's output names
|
||||
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
|
||||
'output': {0: 'batch_size'}})
|
||||
|
||||
|
||||
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
|
||||
|
||||
data = dict(
|
||||
input_data=[d1],
|
||||
)
|
||||
|
||||
# Serialize data into file:
|
||||
json.dump(data, open("input.json", 'w'))
|
||||
1
examples/onnx/log/input.json
Normal file
1
examples/onnx/log/input.json
Normal file
@@ -0,0 +1 @@
|
||||
{"input_data": [[1.9252371788024902, 1.8418371677398682, 0.8400403261184692, 2.083845853805542, 0.9760497808456421, 0.6940176486968994, 0.015579521656036377, 2.2689192295074463]]}
|
||||
14
examples/onnx/log/network.onnx
Normal file
14
examples/onnx/log/network.onnx
Normal file
@@ -0,0 +1,14 @@
|
||||
pytorch2.2.2:o
|
||||
|
||||
inputoutput/Log"Log
|
||||
main_graphZ!
|
||||
input
|
||||
|
||||
|
||||
batch_size
|
||||
b"
|
||||
output
|
||||
|
||||
|
||||
batch_size
|
||||
B
|
||||
@@ -197,6 +197,9 @@ struct PyRunArgs {
|
||||
/// int: The number of legs used for decomposition
|
||||
#[pyo3(get, set)]
|
||||
pub decomp_legs: usize,
|
||||
/// bool: Should the circuit use unbounded lookups for log
|
||||
#[pyo3(get, set)]
|
||||
pub bounded_log_lookup: bool,
|
||||
}
|
||||
|
||||
/// default instantiation of PyRunArgs
|
||||
@@ -212,6 +215,7 @@ impl PyRunArgs {
|
||||
impl From<PyRunArgs> for RunArgs {
|
||||
fn from(py_run_args: PyRunArgs) -> Self {
|
||||
RunArgs {
|
||||
bounded_log_lookup: py_run_args.bounded_log_lookup,
|
||||
tolerance: Tolerance::from(py_run_args.tolerance),
|
||||
input_scale: py_run_args.input_scale,
|
||||
param_scale: py_run_args.param_scale,
|
||||
@@ -236,6 +240,7 @@ impl From<PyRunArgs> for RunArgs {
|
||||
impl Into<PyRunArgs> for RunArgs {
|
||||
fn into(self) -> PyRunArgs {
|
||||
PyRunArgs {
|
||||
bounded_log_lookup: self.bounded_log_lookup,
|
||||
tolerance: self.tolerance.val,
|
||||
input_scale: self.input_scale,
|
||||
param_scale: self.param_scale,
|
||||
|
||||
@@ -13,6 +13,10 @@ use serde::{Deserialize, Serialize};
|
||||
/// An enum representing the operations that consist of both lookups and arithmetic operations.
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum HybridOp {
|
||||
Ln {
|
||||
scale: utils::F32,
|
||||
},
|
||||
|
||||
RoundHalfToEven {
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
@@ -112,6 +116,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
|
||||
fn as_string(&self) -> String {
|
||||
match self {
|
||||
HybridOp::Ln { scale } => format!("LN(scale={})", scale),
|
||||
HybridOp::RoundHalfToEven { scale, legs } => {
|
||||
format!("ROUND_HALF_TO_EVEN(scale={}, legs={})", scale, legs)
|
||||
}
|
||||
@@ -189,6 +194,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
values: &[ValTensor<F>],
|
||||
) -> Result<Option<ValTensor<F>>, CircuitError> {
|
||||
Ok(Some(match self {
|
||||
HybridOp::Ln { scale } => layouts::ln(config, region, values[..].try_into()?, *scale)?,
|
||||
HybridOp::RoundHalfToEven { scale, legs } => {
|
||||
layouts::round_half_to_even(config, region, values[..].try_into()?, *scale, *legs)?
|
||||
}
|
||||
@@ -327,6 +333,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
HybridOp::Softmax { output_scale, .. } | HybridOp::Recip { output_scale, .. } => {
|
||||
multiplier_to_scale(output_scale.0 as f64)
|
||||
}
|
||||
HybridOp::Ln {
|
||||
scale: output_scale,
|
||||
} => 4 * multiplier_to_scale(output_scale.0 as f64),
|
||||
_ => in_scales[0],
|
||||
};
|
||||
Ok(scale)
|
||||
|
||||
@@ -4507,6 +4507,332 @@ pub fn ceil<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
)
|
||||
}
|
||||
|
||||
/// integer ln layout
|
||||
/// # Arguments
|
||||
/// * `config` - BaseConfig
|
||||
/// * `region` - RegionCtx
|
||||
/// * `values` - &[ValTensor<F>; 1]
|
||||
/// * `scale` - utils::F32
|
||||
/// # Returns
|
||||
/// * ValTensor<F>
|
||||
/// # Example
|
||||
///
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::circuit::ops::layouts::ln;
|
||||
/// use ezkl::tensor::val::ValTensor;
|
||||
/// use halo2curves::bn256::Fr as Fp;
|
||||
/// use ezkl::circuit::region::RegionCtx;
|
||||
/// use ezkl::circuit::region::RegionSettings;
|
||||
/// use ezkl::circuit::BaseConfig;
|
||||
/// let dummy_config = BaseConfig::dummy(12, 2);
|
||||
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
|
||||
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[3, 2, 3, 1]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
///
|
||||
/// let result = ln::<Fp>(&dummy_config, &mut dummy_region, &[x], 2.0.into()).unwrap();
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 0, 4, -8]), &[1, 1, 2, 2]).unwrap();
|
||||
/// assert_eq!(result.int_evals().unwrap(), expected);
|
||||
///
|
||||
/// ```
|
||||
pub fn ln<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 1],
|
||||
scale: utils::F32,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
// first generate the claimed val
|
||||
|
||||
let mut input = values[0].clone();
|
||||
|
||||
println!("input {}", input.show());
|
||||
|
||||
let scale_as_felt = integer_rep_to_felt(scale.0.round() as IntegerRep);
|
||||
|
||||
let assigned_triple_scaled_as_felt_tensor = region.assign(
|
||||
&config.custom_gates.inputs[1],
|
||||
&create_constant_tensor(scale_as_felt * scale_as_felt * scale_as_felt, 1),
|
||||
)?;
|
||||
|
||||
// natural ln is log2(x) * ln(2)
|
||||
let ln2 = utils::F32::from(2.0_f32.ln());
|
||||
// now create a constant tensor for ln2 with scale
|
||||
let ln2_tensor: ValTensor<F> = create_constant_tensor(
|
||||
integer_rep_to_felt((ln2.0 * scale.0).round() as IntegerRep),
|
||||
1,
|
||||
);
|
||||
region.assign(&config.custom_gates.inputs[0], &ln2_tensor)?;
|
||||
let unit = create_constant_tensor(integer_rep_to_felt(1), 1);
|
||||
region.assign(&config.custom_gates.inputs[1], &unit)?;
|
||||
region.increment(1);
|
||||
|
||||
// 2. assign the image
|
||||
if !input.all_prev_assigned() {
|
||||
input = region.assign(&config.custom_gates.inputs[0], &input)?;
|
||||
// don't need to increment because the claimed output is assigned to output and incremented accordingly
|
||||
}
|
||||
|
||||
let is_assigned = !input.any_unknowns()?;
|
||||
|
||||
let mut claimed_output: ValTensor<F> = if is_assigned {
|
||||
let input_evals = input.int_evals()?;
|
||||
// returns an integer with the base 2 logarithm
|
||||
tensor::ops::nonlinearities::ilog2(&input_evals.clone(), scale.0 as f64)
|
||||
.par_iter()
|
||||
.map(|x| Value::known(integer_rep_to_felt(*x)))
|
||||
.collect::<Tensor<Value<F>>>()
|
||||
.into()
|
||||
} else {
|
||||
Tensor::new(
|
||||
Some(&vec![Value::<F>::unknown(); input.len()]),
|
||||
&[input.len()],
|
||||
)?
|
||||
.into()
|
||||
};
|
||||
claimed_output.reshape(input.dims())?;
|
||||
region.assign(&config.custom_gates.output, &claimed_output)?;
|
||||
region.increment(claimed_output.len());
|
||||
|
||||
let pow2_of_claimed_output = nonlinearity(
|
||||
config,
|
||||
region,
|
||||
&[claimed_output.clone()],
|
||||
&LookupOp::PowersOfTwo { scale },
|
||||
)?;
|
||||
|
||||
let num_bits = (std::mem::size_of::<IntegerRep>() * 8) as IntegerRep;
|
||||
|
||||
region.update_max_min_lookup_inputs_force(-num_bits, num_bits)?;
|
||||
|
||||
// now subtract 1 from the claimed output
|
||||
let claimed_output_minus_one = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[claimed_output.clone(), unit.clone()],
|
||||
BaseOp::Sub,
|
||||
)?;
|
||||
|
||||
// now add 1 to the claimed output
|
||||
let claimed_output_plus_one = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[claimed_output.clone(), unit.clone()],
|
||||
BaseOp::Add,
|
||||
)?;
|
||||
|
||||
// prior power of 2 is less than claimed output
|
||||
let prior_pow2 = nonlinearity(
|
||||
config,
|
||||
region,
|
||||
&[claimed_output_minus_one],
|
||||
&LookupOp::PowersOfTwo { scale },
|
||||
)?;
|
||||
|
||||
// next power of 2 is greater than claimed output
|
||||
let next_pow2 = nonlinearity(
|
||||
config,
|
||||
region,
|
||||
&[claimed_output_plus_one],
|
||||
&LookupOp::PowersOfTwo { scale },
|
||||
)?;
|
||||
|
||||
// assert that the original input is closest to the claimed output than the prior power of 2 and the next power of 2
|
||||
let distance_to_prior = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[input.clone(), prior_pow2.clone()],
|
||||
BaseOp::Sub,
|
||||
)?;
|
||||
|
||||
// now take abs of the distance
|
||||
let distance_to_prior_l1 = abs(config, region, &[distance_to_prior.clone()])?;
|
||||
|
||||
let distance_to_next = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[input.clone(), next_pow2.clone()],
|
||||
BaseOp::Sub,
|
||||
)?;
|
||||
|
||||
// now take abs of the distance
|
||||
let distance_to_next_l1 = abs(config, region, &[distance_to_next.clone()])?;
|
||||
|
||||
let distance_to_claimed = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[input.clone(), pow2_of_claimed_output.clone()],
|
||||
BaseOp::Sub,
|
||||
)?;
|
||||
|
||||
// now take abs of the distance
|
||||
let distance_to_claimed_l1 = abs(config, region, &[distance_to_claimed.clone()])?;
|
||||
|
||||
// can be less than or equal because we round up
|
||||
let is_distance_to_prior_less = less_equal(
|
||||
config,
|
||||
region,
|
||||
&[distance_to_claimed_l1.clone(), distance_to_prior_l1.clone()],
|
||||
)?;
|
||||
|
||||
// should be striclty less because we round up
|
||||
let is_distance_to_next_less = less(
|
||||
config,
|
||||
region,
|
||||
&[distance_to_claimed_l1, distance_to_next_l1.clone()],
|
||||
)?;
|
||||
|
||||
let is_distance_to_prior_less_and_distance_to_next_less = and(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
is_distance_to_prior_less.clone(),
|
||||
is_distance_to_next_less.clone(),
|
||||
],
|
||||
)?;
|
||||
|
||||
let mut comparison_unit = create_constant_tensor(
|
||||
integer_rep_to_felt(1),
|
||||
is_distance_to_prior_less_and_distance_to_next_less.len(),
|
||||
);
|
||||
|
||||
comparison_unit.reshape(is_distance_to_prior_less_and_distance_to_next_less.dims())?;
|
||||
|
||||
// assigned unit
|
||||
let assigned_unit = region.assign(&config.custom_gates.inputs[1], &comparison_unit)?;
|
||||
region.increment(assigned_unit.len());
|
||||
|
||||
// assert that the values are truthy
|
||||
enforce_equality(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
is_distance_to_prior_less_and_distance_to_next_less,
|
||||
assigned_unit.clone(),
|
||||
],
|
||||
)?;
|
||||
|
||||
// get a linear interpolation now
|
||||
|
||||
let sign_of_distance_to_claimed = sign(config, region, &[distance_to_claimed.clone()])?;
|
||||
let sign_of_distance_to_claimed_is_positive = equals(
|
||||
config,
|
||||
region,
|
||||
&[sign_of_distance_to_claimed.clone(), assigned_unit.clone()],
|
||||
)?;
|
||||
|
||||
let sign_of_distance_to_claimed_is_negative = not(
|
||||
config,
|
||||
region,
|
||||
&[sign_of_distance_to_claimed_is_positive.clone()],
|
||||
)?;
|
||||
|
||||
let pow2_prior_to_claimed_distance = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[pow2_of_claimed_output.clone(), prior_pow2.clone()],
|
||||
BaseOp::Sub,
|
||||
)?;
|
||||
|
||||
let pow2_next_to_claimed_distance = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[next_pow2.clone(), pow2_of_claimed_output.clone()],
|
||||
BaseOp::Sub,
|
||||
)?;
|
||||
|
||||
let recip_pow2_prior_to_claimed_distance = recip(
|
||||
config,
|
||||
region,
|
||||
&[pow2_prior_to_claimed_distance],
|
||||
scale_as_felt,
|
||||
scale_as_felt * scale_as_felt,
|
||||
)?;
|
||||
|
||||
let interpolated_distance = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
recip_pow2_prior_to_claimed_distance.clone(),
|
||||
distance_to_claimed.clone(),
|
||||
],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
let gated_prior_interpolated_distance = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
interpolated_distance.clone(),
|
||||
sign_of_distance_to_claimed_is_negative.clone(),
|
||||
],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
let recip_next_to_claimed_distance = recip(
|
||||
config,
|
||||
region,
|
||||
&[pow2_next_to_claimed_distance],
|
||||
scale_as_felt,
|
||||
scale_as_felt * scale_as_felt,
|
||||
)?;
|
||||
|
||||
let interpolated_distance_next = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
recip_next_to_claimed_distance.clone(),
|
||||
distance_to_claimed.clone(),
|
||||
],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
let gated_next_interpolated_distance = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
interpolated_distance_next.clone(),
|
||||
sign_of_distance_to_claimed_is_positive.clone(),
|
||||
],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
let scaled_claimed_output = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
claimed_output.clone(),
|
||||
assigned_triple_scaled_as_felt_tensor,
|
||||
],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
let claimed_output = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
scaled_claimed_output.clone(),
|
||||
gated_prior_interpolated_distance.clone(),
|
||||
],
|
||||
BaseOp::Add,
|
||||
)?;
|
||||
|
||||
let claimed_output = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
claimed_output.clone(),
|
||||
gated_next_interpolated_distance.clone(),
|
||||
],
|
||||
BaseOp::Add,
|
||||
)?;
|
||||
|
||||
// now multiply the claimed output by ln2
|
||||
pairwise(config, region, &[claimed_output, ln2_tensor], BaseOp::Mult)
|
||||
}
|
||||
|
||||
/// round layout
|
||||
/// # Arguments
|
||||
/// * `config` - BaseConfig
|
||||
|
||||
@@ -16,10 +16,11 @@ use halo2curves::ff::PrimeField;
|
||||
pub enum LookupOp {
|
||||
Div { denom: utils::F32 },
|
||||
IsOdd,
|
||||
PowersOfTwo { scale: utils::F32 },
|
||||
Ln { scale: utils::F32 },
|
||||
Sqrt { scale: utils::F32 },
|
||||
Rsqrt { scale: utils::F32 },
|
||||
Sigmoid { scale: utils::F32 },
|
||||
Ln { scale: utils::F32 },
|
||||
Exp { scale: utils::F32 },
|
||||
Cos { scale: utils::F32 },
|
||||
ACos { scale: utils::F32 },
|
||||
@@ -50,6 +51,8 @@ impl LookupOp {
|
||||
pub fn as_path(&self) -> String {
|
||||
match self {
|
||||
LookupOp::Pow { scale, a } => format!("pow_{}_{}", scale, a),
|
||||
LookupOp::Ln { scale } => format!("ln_{}", scale),
|
||||
LookupOp::PowersOfTwo { scale } => format!("pow2_{}", scale),
|
||||
LookupOp::IsOdd => "is_odd".to_string(),
|
||||
LookupOp::Div { denom } => format!("div_{}", denom),
|
||||
LookupOp::Sigmoid { scale } => format!("sigmoid_{}", scale),
|
||||
@@ -57,7 +60,6 @@ impl LookupOp {
|
||||
LookupOp::Rsqrt { scale } => format!("rsqrt_{}", scale),
|
||||
LookupOp::Erf { scale } => format!("erf_{}", scale),
|
||||
LookupOp::Exp { scale } => format!("exp_{}", scale),
|
||||
LookupOp::Ln { scale } => format!("ln_{}", scale),
|
||||
LookupOp::Cos { scale } => format!("cos_{}", scale),
|
||||
LookupOp::ACos { scale } => format!("acos_{}", scale),
|
||||
LookupOp::Cosh { scale } => format!("cosh_{}", scale),
|
||||
@@ -82,6 +84,12 @@ impl LookupOp {
|
||||
let x = x[0].clone().map(|x| felt_to_integer_rep(x));
|
||||
let res =
|
||||
match &self {
|
||||
LookupOp::Ln { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::ln(&x, scale.into()))
|
||||
}
|
||||
LookupOp::PowersOfTwo { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::ipow2(&x, scale.0.into()))
|
||||
}
|
||||
LookupOp::IsOdd => Ok::<_, TensorError>(tensor::ops::nonlinearities::is_odd(&x)),
|
||||
LookupOp::Pow { scale, a } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::pow(&x, scale.0.into(), a.0.into()),
|
||||
@@ -104,9 +112,6 @@ impl LookupOp {
|
||||
LookupOp::Exp { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::exp(&x, scale.into()))
|
||||
}
|
||||
LookupOp::Ln { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::ln(&x, scale.into()))
|
||||
}
|
||||
LookupOp::Cos { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::cos(&x, scale.into()))
|
||||
}
|
||||
@@ -163,10 +168,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
|
||||
/// Returns the name of the operation
|
||||
fn as_string(&self) -> String {
|
||||
match self {
|
||||
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
|
||||
LookupOp::PowersOfTwo { scale } => format!("POWERS_OF_TWO(scale={})", scale),
|
||||
LookupOp::IsOdd => "IS_ODD".to_string(),
|
||||
LookupOp::Pow { a, scale } => format!("POW(scale={}, exponent={})", scale, a),
|
||||
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
|
||||
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
|
||||
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
|
||||
LookupOp::Sqrt { scale } => format!("SQRT(scale={})", scale),
|
||||
LookupOp::Erf { scale } => format!("ERF(scale={})", scale),
|
||||
|
||||
@@ -851,9 +851,18 @@ pub fn new_op_from_onnx(
|
||||
"Exp" => SupportedOp::Nonlinear(LookupOp::Exp {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
}),
|
||||
"Ln" => SupportedOp::Nonlinear(LookupOp::Ln {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
}),
|
||||
"Ln" => {
|
||||
if run_args.bounded_log_lookup {
|
||||
SupportedOp::Hybrid(HybridOp::Ln {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
})
|
||||
} else {
|
||||
SupportedOp::Nonlinear(LookupOp::Ln {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
"Sin" => SupportedOp::Nonlinear(LookupOp::Sin {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
}),
|
||||
|
||||
@@ -317,11 +317,18 @@ pub struct RunArgs {
|
||||
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "2", value_hint = clap::ValueHint::Other))]
|
||||
/// the number of legs used for decompositions
|
||||
pub decomp_legs: usize,
|
||||
#[cfg_attr(
|
||||
all(feature = "ezkl", not(target_arch = "wasm32")),
|
||||
arg(long, default_value = "false")
|
||||
)]
|
||||
/// use unbounded lookup for the log
|
||||
pub bounded_log_lookup: bool,
|
||||
}
|
||||
|
||||
impl Default for RunArgs {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
bounded_log_lookup: false,
|
||||
tolerance: Tolerance::default(),
|
||||
input_scale: 7,
|
||||
param_scale: 7,
|
||||
|
||||
@@ -1500,6 +1500,59 @@ pub mod nonlinearities {
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Powers of 2
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `scale` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::ipow2;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 15, 2, 1, 1, 0]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let result = ipow2(&x, 1.0);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 32768, 4, 2, 2, 1]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn ipow2(a: &Tensor<IntegerRep>, scale_output: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let kix = a_i as f64;
|
||||
let kix = scale_output * (2.0_f64).powf(kix);
|
||||
let rounded = kix.round();
|
||||
Ok::<_, TensorError>(rounded as IntegerRep)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies ln base 2 to a tensor of integers.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `scale_input` - Single value
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::ilog2;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 15, 2, 1, 1, 2]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let result = ilog2(&x, 1.0);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 4, 1, 0, 0, 1]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn ilog2(a: &Tensor<IntegerRep>, scale_input: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let kix = (a_i as f64) / scale_input;
|
||||
let kix = (kix).log2();
|
||||
let rounded = kix.round();
|
||||
Ok::<_, TensorError>(rounded as IntegerRep)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies sigmoid to a tensor of integers.
|
||||
/// # Arguments
|
||||
///
|
||||
@@ -1628,12 +1681,11 @@ pub mod nonlinearities {
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies exponential to a tensor of integers.
|
||||
/// Elementwise applies ln to a tensor of integers.
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `a` - Tensor
|
||||
/// * `scale_input` - Single value
|
||||
/// * `scale_output` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
|
||||
Binary file not shown.
File diff suppressed because one or more lines are too long
@@ -27,7 +27,8 @@
|
||||
"check_mode": "UNSAFE",
|
||||
"commitment": "KZG",
|
||||
"decomp_base": 128,
|
||||
"decomp_legs": 2
|
||||
"decomp_legs": 2,
|
||||
"bounded_log_lookup": false
|
||||
},
|
||||
"num_rows": 46,
|
||||
"total_assignments": 92,
|
||||
|
||||
@@ -205,7 +205,7 @@ mod native_tests {
|
||||
"1l_tiny_div",
|
||||
];
|
||||
|
||||
const TESTS: [&str; 95] = [
|
||||
const TESTS: [&str; 96] = [
|
||||
"1l_mlp", //0
|
||||
"1l_slice",
|
||||
"1l_concat",
|
||||
@@ -305,6 +305,7 @@ mod native_tests {
|
||||
"lstm_medium", // 92
|
||||
"lenet_5", // 93
|
||||
"rsqrt", // 94
|
||||
"log", // 95
|
||||
];
|
||||
|
||||
const WASM_TESTS: [&str; 46] = [
|
||||
@@ -543,7 +544,7 @@ mod native_tests {
|
||||
}
|
||||
});
|
||||
|
||||
seq!(N in 0..=94 {
|
||||
seq!(N in 0..=95 {
|
||||
|
||||
#(#[test_case(TESTS[N])])*
|
||||
#[ignore]
|
||||
|
||||
Reference in New Issue
Block a user