mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-14 08:48:01 -05:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
457196f9c1 |
@@ -1,4 +1,4 @@
|
||||
ezkl==15.3.0
|
||||
ezkl==15.2.0
|
||||
sphinx
|
||||
sphinx-rtd-theme
|
||||
sphinxcontrib-napoleon
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import ezkl
|
||||
|
||||
project = 'ezkl'
|
||||
release = '15.3.0'
|
||||
release = '15.2.0'
|
||||
version = release
|
||||
|
||||
|
||||
|
||||
@@ -1,148 +1 @@
|
||||
{
|
||||
"input_shapes": [
|
||||
[
|
||||
3,
|
||||
2,
|
||||
3
|
||||
],
|
||||
[
|
||||
3,
|
||||
2,
|
||||
3
|
||||
],
|
||||
[
|
||||
3,
|
||||
2,
|
||||
3
|
||||
],
|
||||
[
|
||||
3,
|
||||
2,
|
||||
3
|
||||
]
|
||||
],
|
||||
"input_data": [
|
||||
[
|
||||
0.5,
|
||||
1.5,
|
||||
-0.04514765739440918,
|
||||
0.5936200618743896,
|
||||
0.9271858930587769,
|
||||
0.6688600778579712,
|
||||
-0.20331168174743652,
|
||||
-0.7016235589981079,
|
||||
0.025863051414489746,
|
||||
-0.19426143169403076,
|
||||
0.9827852249145508,
|
||||
0.4897397756576538,
|
||||
-1.5,
|
||||
-0.5,
|
||||
0.9278832674026489,
|
||||
0.5943725109100342,
|
||||
-0.573331356048584,
|
||||
0.3675816059112549
|
||||
],
|
||||
[
|
||||
0.7803324460983276,
|
||||
-0.9616303443908691,
|
||||
0.6070173978805542,
|
||||
-0.028337717056274414,
|
||||
-0.5080242156982422,
|
||||
-0.9280107021331787,
|
||||
0.6150380373001099,
|
||||
0.3865993022918701,
|
||||
-0.43668973445892334,
|
||||
0.17152702808380127,
|
||||
0.5144252777099609,
|
||||
-0.28881049156188965,
|
||||
0.8932310342788696,
|
||||
0.059034109115600586,
|
||||
0.6865451335906982,
|
||||
0.009820222854614258,
|
||||
0.23011493682861328,
|
||||
-0.9492779970169067
|
||||
],
|
||||
[
|
||||
-0.21352827548980713,
|
||||
-0.16015326976776123,
|
||||
-0.38964390754699707,
|
||||
0.13464701175689697,
|
||||
-0.8814496994018555,
|
||||
0.5037975311279297,
|
||||
-0.804405927658081,
|
||||
0.9858957529067993,
|
||||
0.19567716121673584,
|
||||
0.9777265787124634,
|
||||
0.6151977777481079,
|
||||
0.568595290184021,
|
||||
0.10584986209869385,
|
||||
-0.8975653648376465,
|
||||
0.6235959529876709,
|
||||
-0.547879695892334,
|
||||
0.9289869070053101,
|
||||
0.7567293643951416
|
||||
]
|
||||
],
|
||||
"output_data": [
|
||||
[
|
||||
1.0,
|
||||
0.0,
|
||||
-0.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
-0.0,
|
||||
-1.0,
|
||||
0.0,
|
||||
-0.0,
|
||||
1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
-1.0,
|
||||
0.0
|
||||
],
|
||||
[
|
||||
0.0,
|
||||
-1.0,
|
||||
0.0,
|
||||
-1.0,
|
||||
-1.0,
|
||||
-1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-1.0
|
||||
],
|
||||
[
|
||||
-0.0,
|
||||
-0.0,
|
||||
-0.0,
|
||||
1.0,
|
||||
-0.0,
|
||||
1.0,
|
||||
-0.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
1.0,
|
||||
-0.0,
|
||||
1.0,
|
||||
-0.0,
|
||||
1.0,
|
||||
1.0
|
||||
]
|
||||
]
|
||||
}
|
||||
{"input_shapes": [[3, 2, 3], [3, 2, 3], [3, 2, 3], [3, 2, 3]], "input_data": [[0.6261028051376343, 0.49872446060180664, -0.04514765739440918, 0.5936200618743896, 0.9271858930587769, 0.6688600778579712, -0.20331168174743652, -0.7016235589981079, 0.025863051414489746, -0.19426143169403076, 0.9827852249145508, 0.4897397756576538, 0.2992602586746216, 0.7011144161224365, 0.9278832674026489, 0.5943725109100342, -0.573331356048584, 0.3675816059112549], [0.7803324460983276, -0.9616303443908691, 0.6070173978805542, -0.028337717056274414, -0.5080242156982422, -0.9280107021331787, 0.6150380373001099, 0.3865993022918701, -0.43668973445892334, 0.17152702808380127, 0.5144252777099609, -0.28881049156188965, 0.8932310342788696, 0.059034109115600586, 0.6865451335906982, 0.009820222854614258, 0.23011493682861328, -0.9492779970169067], [-0.21352827548980713, -0.16015326976776123, -0.38964390754699707, 0.13464701175689697, -0.8814496994018555, 0.5037975311279297, -0.804405927658081, 0.9858957529067993, 0.19567716121673584, 0.9777265787124634, 0.6151977777481079, 0.568595290184021, 0.10584986209869385, -0.8975653648376465, 0.6235959529876709, -0.547879695892334, 0.9289869070053101, 0.7567293643951416]], "output_data": [[1.0, 0.0, -0.0, 1.0, 1.0, 1.0, -0.0, -1.0, 0.0, -0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, -1.0, 0.0], [0.0, -1.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [-0.0, -0.0, -0.0, 1.0, -0.0, 1.0, -0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -0.0, 1.0, -0.0, 1.0, 1.0]]}
|
||||
@@ -13,10 +13,6 @@ use serde::{Deserialize, Serialize};
|
||||
/// An enum representing the operations that consist of both lookups and arithmetic operations.
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum HybridOp {
|
||||
RoundHalfToEven {
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
},
|
||||
Ceil {
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
@@ -112,13 +108,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
|
||||
fn as_string(&self) -> String {
|
||||
match self {
|
||||
HybridOp::RoundHalfToEven { scale, legs } => {
|
||||
format!("ROUND_HALF_TO_EVEN(scale={}, legs={})", scale, legs)
|
||||
}
|
||||
HybridOp::Ceil { scale, legs } => format!("CEIL(scale={}, legs={})", scale, legs),
|
||||
HybridOp::Floor { scale, legs } => format!("FLOOR(scale={}, legs={})", scale, legs),
|
||||
HybridOp::Round { scale, legs } => format!("ROUND(scale={}, legs={})", scale, legs),
|
||||
|
||||
HybridOp::Max => format!("MAX"),
|
||||
HybridOp::Min => format!("MIN"),
|
||||
HybridOp::Recip {
|
||||
@@ -189,9 +181,6 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
values: &[ValTensor<F>],
|
||||
) -> Result<Option<ValTensor<F>>, CircuitError> {
|
||||
Ok(Some(match self {
|
||||
HybridOp::RoundHalfToEven { scale, legs } => {
|
||||
layouts::round_half_to_even(config, region, values[..].try_into()?, *scale, *legs)?
|
||||
}
|
||||
HybridOp::Ceil { scale, legs } => {
|
||||
layouts::ceil(config, region, values[..].try_into()?, *scale, *legs)?
|
||||
}
|
||||
|
||||
@@ -4654,155 +4654,6 @@ pub fn round<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
)
|
||||
}
|
||||
|
||||
/// round half to even layout
|
||||
/// # Arguments
|
||||
/// * `config` - BaseConfig
|
||||
/// * `region` - RegionCtx
|
||||
/// * `values` - &[ValTensor<F>; 1]
|
||||
/// * `scale` - utils::F32
|
||||
/// * `legs` - usize
|
||||
/// # Returns
|
||||
/// * ValTensor<F>
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::circuit::ops::layouts::round;
|
||||
/// use ezkl::tensor::val::ValTensor;
|
||||
/// use halo2curves::bn256::Fr as Fp;
|
||||
/// use ezkl::circuit::region::RegionCtx;
|
||||
/// use ezkl::circuit::region::RegionSettings;
|
||||
/// use ezkl::circuit::BaseConfig;
|
||||
/// let dummy_config = BaseConfig::dummy(12, 2);
|
||||
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
|
||||
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[3, -2, 3, 1]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
/// let result = round::<Fp>(&dummy_config, &mut dummy_region, &[x], 4.0.into(), 2).unwrap();
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, -4, 4, 0]), &[1, 1, 2, 2]).unwrap();
|
||||
/// assert_eq!(result.int_evals().unwrap(), expected);
|
||||
/// ```
|
||||
///
|
||||
pub fn round_half_to_even<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 1],
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
// decompose with base scale and then set the last element to zero
|
||||
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
|
||||
// set the last element to zero and then recompose, we don't actually need to assign here
|
||||
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
|
||||
let zero = ValType::Constant(F::ZERO);
|
||||
|
||||
// if scale is not exactly divisible by 2 we warn
|
||||
if scale.0 % 2.0 != 0.0 {
|
||||
log::warn!("Scale is not exactly divisible by 2.0, rounding may not be accurate");
|
||||
}
|
||||
|
||||
let midway_point: ValTensor<F> = create_constant_tensor(
|
||||
integer_rep_to_felt((scale.0 / 2.0).round() as IntegerRep),
|
||||
1,
|
||||
);
|
||||
let assigned_midway_point = region.assign(&config.custom_gates.inputs[1], &midway_point)?;
|
||||
|
||||
region.increment(1);
|
||||
|
||||
let dims = decomposition.dims().to_vec();
|
||||
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
|
||||
|
||||
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
|
||||
|
||||
let cartesian_coord = first_dims
|
||||
.iter()
|
||||
.map(|x| 0..*x)
|
||||
.multi_cartesian_product()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let inner_loop_function =
|
||||
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
|
||||
let coord = cartesian_coord[i].clone();
|
||||
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
|
||||
let mut sliced_input = decomposition.get_slice(&slice)?;
|
||||
sliced_input.flatten();
|
||||
let last_elem = sliced_input.last()?;
|
||||
|
||||
let penultimate_elem =
|
||||
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?;
|
||||
|
||||
let is_equal_to_midway = equals(
|
||||
config,
|
||||
region,
|
||||
&[last_elem.clone(), assigned_midway_point.clone()],
|
||||
)?;
|
||||
// penultimate_elem is equal to midway point and even, do nothing
|
||||
let is_odd = nonlinearity(
|
||||
config,
|
||||
region,
|
||||
&[penultimate_elem.clone()],
|
||||
&LookupOp::IsOdd,
|
||||
)?;
|
||||
|
||||
let is_odd_and_equal_to_midway = and(
|
||||
config,
|
||||
region,
|
||||
&[is_odd.clone(), is_equal_to_midway.clone()],
|
||||
)?;
|
||||
|
||||
let is_greater_than_midway = greater(
|
||||
config,
|
||||
region,
|
||||
&[last_elem.clone(), assigned_midway_point.clone()],
|
||||
)?;
|
||||
|
||||
// if the number is equal to midway point and odd increment, or if it is is_greater_than_midway
|
||||
let is_odd_and_equal_to_midway_or_greater_than_midway = or(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
is_odd_and_equal_to_midway.clone(),
|
||||
is_greater_than_midway.clone(),
|
||||
],
|
||||
)?;
|
||||
|
||||
// increment the penultimate element
|
||||
let incremented_elem = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
|
||||
is_odd_and_equal_to_midway_or_greater_than_midway.clone(),
|
||||
],
|
||||
BaseOp::Add,
|
||||
)?;
|
||||
|
||||
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
|
||||
inner_tensor[sliced_input.len() - 2] =
|
||||
incremented_elem.get_inner_tensor()?.clone()[0].clone();
|
||||
|
||||
// set the last elem to zero
|
||||
inner_tensor[sliced_input.len() - 1] = zero.clone();
|
||||
|
||||
Ok(inner_tensor.clone())
|
||||
};
|
||||
|
||||
region.update_max_min_lookup_inputs_force(0, scale.0 as IntegerRep)?;
|
||||
|
||||
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
|
||||
|
||||
let mut incremented_tensor = incremented_tensor.combine()?;
|
||||
incremented_tensor.reshape(&dims)?;
|
||||
|
||||
recompose(
|
||||
config,
|
||||
region,
|
||||
&[incremented_tensor.into()],
|
||||
&(scale.0 as usize),
|
||||
)
|
||||
}
|
||||
|
||||
pub(crate) fn recompose<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
|
||||
@@ -4,6 +4,7 @@ use serde::{Deserialize, Serialize};
|
||||
use crate::{
|
||||
circuit::{layouts, table::Range, utils},
|
||||
fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep},
|
||||
graph::multiplier_to_scale,
|
||||
tensor::{self, Tensor, TensorError, TensorType},
|
||||
};
|
||||
|
||||
@@ -15,7 +16,8 @@ use halo2curves::ff::PrimeField;
|
||||
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Deserialize, Serialize)]
|
||||
pub enum LookupOp {
|
||||
Div { denom: utils::F32 },
|
||||
IsOdd,
|
||||
Cast { scale: utils::F32 },
|
||||
RoundHalfToEven { scale: utils::F32 },
|
||||
Sqrt { scale: utils::F32 },
|
||||
Rsqrt { scale: utils::F32 },
|
||||
Sigmoid { scale: utils::F32 },
|
||||
@@ -49,9 +51,10 @@ impl LookupOp {
|
||||
/// as path
|
||||
pub fn as_path(&self) -> String {
|
||||
match self {
|
||||
LookupOp::RoundHalfToEven { scale } => format!("round_half_to_even_{}", scale),
|
||||
LookupOp::Pow { scale, a } => format!("pow_{}_{}", scale, a),
|
||||
LookupOp::IsOdd => "is_odd".to_string(),
|
||||
LookupOp::Div { denom } => format!("div_{}", denom),
|
||||
LookupOp::Cast { scale } => format!("cast_{}", scale),
|
||||
LookupOp::Sigmoid { scale } => format!("sigmoid_{}", scale),
|
||||
LookupOp::Sqrt { scale } => format!("sqrt_{}", scale),
|
||||
LookupOp::Rsqrt { scale } => format!("rsqrt_{}", scale),
|
||||
@@ -82,13 +85,18 @@ impl LookupOp {
|
||||
let x = x[0].clone().map(|x| felt_to_integer_rep(x));
|
||||
let res =
|
||||
match &self {
|
||||
LookupOp::IsOdd => Ok::<_, TensorError>(tensor::ops::nonlinearities::is_odd(&x)),
|
||||
LookupOp::RoundHalfToEven { scale } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::round_half_to_even(&x, scale.into()),
|
||||
),
|
||||
LookupOp::Pow { scale, a } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::pow(&x, scale.0.into(), a.0.into()),
|
||||
),
|
||||
LookupOp::Div { denom } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::const_div(&x, f32::from(*denom).into()),
|
||||
),
|
||||
LookupOp::Cast { scale } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::const_div(&x, f32::from(*scale).into()),
|
||||
),
|
||||
LookupOp::Sigmoid { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::sigmoid(&x, scale.into()))
|
||||
}
|
||||
@@ -163,9 +171,10 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
|
||||
/// Returns the name of the operation
|
||||
fn as_string(&self) -> String {
|
||||
match self {
|
||||
LookupOp::IsOdd => "IS_ODD".to_string(),
|
||||
LookupOp::RoundHalfToEven { scale } => format!("ROUND_HALF_TO_EVEN(scale={})", scale),
|
||||
LookupOp::Pow { a, scale } => format!("POW(scale={}, exponent={})", scale, a),
|
||||
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
|
||||
LookupOp::Cast { scale } => format!("CAST(scale={})", scale),
|
||||
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
|
||||
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
|
||||
LookupOp::Sqrt { scale } => format!("SQRT(scale={})", scale),
|
||||
@@ -205,6 +214,10 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
|
||||
/// Returns the scale of the output of the operation.
|
||||
fn out_scale(&self, inputs_scale: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
|
||||
let scale = match self {
|
||||
LookupOp::Cast { scale } => {
|
||||
let in_scale = inputs_scale[0];
|
||||
in_scale + multiplier_to_scale(1. / scale.0 as f64)
|
||||
}
|
||||
_ => inputs_scale[0],
|
||||
};
|
||||
Ok(scale)
|
||||
|
||||
@@ -474,17 +474,6 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Update the max and min forcefully
|
||||
pub fn update_max_min_lookup_inputs_force(
|
||||
&mut self,
|
||||
min: IntegerRep,
|
||||
max: IntegerRep,
|
||||
) -> Result<(), CircuitError> {
|
||||
self.statistics.max_lookup_inputs = self.statistics.max_lookup_inputs.max(max);
|
||||
self.statistics.min_lookup_inputs = self.statistics.min_lookup_inputs.min(min);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Update the max and min from inputs
|
||||
pub fn update_max_min_lookup_range(&mut self, range: Range) -> Result<(), CircuitError> {
|
||||
if range.0 > range.1 {
|
||||
|
||||
@@ -150,16 +150,12 @@ pub fn num_cols_required(range_len: IntegerRep, col_size: usize) -> usize {
|
||||
}
|
||||
|
||||
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
|
||||
/// get largest element represented by the range
|
||||
pub fn largest(&self) -> IntegerRep {
|
||||
self.range.0 + (self.col_size * self.table_inputs.len() - 1) as IntegerRep
|
||||
}
|
||||
fn name(&self) -> String {
|
||||
format!(
|
||||
"{}_{}_{}",
|
||||
self.nonlinearity.as_path(),
|
||||
self.range.0,
|
||||
self.largest()
|
||||
self.range.1
|
||||
)
|
||||
}
|
||||
/// Configures the table.
|
||||
@@ -226,7 +222,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
|
||||
}
|
||||
|
||||
let smallest = self.range.0;
|
||||
let largest = self.largest();
|
||||
let largest = self.range.1;
|
||||
|
||||
let gen_table = || -> Result<(Tensor<F>, Tensor<F>), crate::tensor::TensorError> {
|
||||
let inputs = Tensor::from(smallest..=largest)
|
||||
@@ -295,7 +291,6 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
|
||||
|
||||
row_offset += chunk_idx * self.col_size;
|
||||
let (x, y) = self.cartesian_coord(row_offset);
|
||||
|
||||
if !preassigned_input {
|
||||
table.assign_cell(
|
||||
|| format!("nl_i_col row {}", row_offset),
|
||||
|
||||
@@ -803,7 +803,7 @@ pub fn new_op_from_onnx(
|
||||
}
|
||||
}
|
||||
"Recip" => {
|
||||
let in_scale = input_scales[0];
|
||||
let in_scale = inputs[0].out_scales()[0];
|
||||
let max_scale = std::cmp::max(scales.get_max(), in_scale);
|
||||
// If the input scale is larger than the params scale
|
||||
SupportedOp::Hybrid(HybridOp::Recip {
|
||||
@@ -837,61 +837,61 @@ pub fn new_op_from_onnx(
|
||||
"Abs" => SupportedOp::Linear(PolyOp::Abs),
|
||||
"Neg" => SupportedOp::Linear(PolyOp::Neg),
|
||||
"HardSwish" => SupportedOp::Nonlinear(LookupOp::HardSwish {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Sigmoid" => SupportedOp::Nonlinear(LookupOp::Sigmoid {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Sqrt" => SupportedOp::Nonlinear(LookupOp::Sqrt {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Rsqrt" => SupportedOp::Nonlinear(LookupOp::Rsqrt {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Exp" => SupportedOp::Nonlinear(LookupOp::Exp {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Ln" => SupportedOp::Nonlinear(LookupOp::Ln {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Sin" => SupportedOp::Nonlinear(LookupOp::Sin {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Cos" => SupportedOp::Nonlinear(LookupOp::Cos {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Tan" => SupportedOp::Nonlinear(LookupOp::Tan {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Asin" => SupportedOp::Nonlinear(LookupOp::ASin {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Acos" => SupportedOp::Nonlinear(LookupOp::ACos {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Atan" => SupportedOp::Nonlinear(LookupOp::ATan {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Sinh" => SupportedOp::Nonlinear(LookupOp::Sinh {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Cosh" => SupportedOp::Nonlinear(LookupOp::Cosh {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Tanh" => SupportedOp::Nonlinear(LookupOp::Tanh {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Asinh" => SupportedOp::Nonlinear(LookupOp::ASinh {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Acosh" => SupportedOp::Nonlinear(LookupOp::ACosh {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Atanh" => SupportedOp::Nonlinear(LookupOp::ATanh {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Erf" => SupportedOp::Nonlinear(LookupOp::Erf {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Source" => {
|
||||
let dt = node.outputs[0].fact.datum_type;
|
||||
@@ -935,9 +935,11 @@ pub fn new_op_from_onnx(
|
||||
replace_const(
|
||||
0,
|
||||
0,
|
||||
SupportedOp::Hybrid(HybridOp::Floor {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
SupportedOp::Nonlinear(LookupOp::Cast {
|
||||
scale: crate::circuit::utils::F32(scale_to_multiplier(
|
||||
input_scales[0],
|
||||
)
|
||||
as f32),
|
||||
}),
|
||||
)?
|
||||
} else {
|
||||
@@ -1043,7 +1045,7 @@ pub fn new_op_from_onnx(
|
||||
}
|
||||
};
|
||||
|
||||
let in_scale = input_scales[0];
|
||||
let in_scale = inputs[0].out_scales()[0];
|
||||
let max_scale = std::cmp::max(scales.get_max(), in_scale);
|
||||
|
||||
SupportedOp::Hybrid(HybridOp::Softmax {
|
||||
@@ -1082,20 +1084,19 @@ pub fn new_op_from_onnx(
|
||||
})
|
||||
}
|
||||
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"Round" => SupportedOp::Hybrid(HybridOp::Round {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"RoundHalfToEven" => SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
"RoundHalfToEven" => SupportedOp::Nonlinear(LookupOp::RoundHalfToEven {
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
}),
|
||||
"Sign" => SupportedOp::Linear(PolyOp::Sign),
|
||||
"Pow" => {
|
||||
@@ -1115,7 +1116,7 @@ pub fn new_op_from_onnx(
|
||||
SupportedOp::Linear(PolyOp::Pow(exponent as u32))
|
||||
} else {
|
||||
SupportedOp::Nonlinear(LookupOp::Pow {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
a: crate::circuit::utils::F32(exponent),
|
||||
})
|
||||
}
|
||||
|
||||
@@ -1474,32 +1474,6 @@ pub mod nonlinearities {
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Checks if a tensor's elements are odd
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `scale` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::is_odd;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 15, 2, 1, 1, 0]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
///
|
||||
/// let result = is_odd(&x);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 1, 0, 1, 1, 0]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn is_odd(a: &Tensor<IntegerRep>) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let rounded = if a_i % 2 == 0 { 0 } else { 1 };
|
||||
Ok::<_, TensorError>(rounded)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies sigmoid to a tensor of integers.
|
||||
/// # Arguments
|
||||
///
|
||||
|
||||
Reference in New Issue
Block a user