Compare commits

..

10 Commits

Author SHA1 Message Date
github-actions[bot]
457196f9c1 ci: update version string in docs 2024-10-31 15:30:06 +00:00
dante
a3c131dac0 feat: lookupless rounding ops (#862) 2024-10-31 11:29:46 -04:00
sebastiandanconia
fd9c2305ac docs: improve cli friendliness (#861)
* Improve clarity of an info!() message

* Replace references to EZKL_REPO_PATH in `--help' output

Command `--help' messages aren't meant to be unduly verbose; we can
write them for common/simple use cases. We continue to support
EZKL_REPO_PATH for users who need it, for example to support
containerized server use cases.

To be clear, by default, EZKL_REPO_PATH = $HOME/.ezkl
2024-10-30 17:25:47 -04:00
dante
a0060f341d chore: rm lookup recip (#859) 2024-10-29 15:57:38 -04:00
dante
17f1d42739 chore: unify leakyrelu and relu (#858) 2024-10-29 10:43:40 -04:00
dante
ebaee9e2b1 feat: lookupless min/max ops (#854) 2024-10-26 08:00:27 -04:00
dante
d51cba589a feat: dynamic lookup overflow (#853) 2024-10-23 23:12:00 -04:00
Artem
1cb1b6e143 feat: iOS Bindings (#846) 2024-10-23 09:58:55 -04:00
Ethan Cemer
d2b683b527 feat: reusable verifier (#821) 2024-10-22 09:10:24 -04:00
Jseam
a06b09ef1f docs: add batch demo (#849) 2024-10-15 08:36:24 +01:00
35 changed files with 1030 additions and 1359 deletions

1
.gitignore vendored
View File

@@ -9,7 +9,6 @@ pkg
!AttestData.sol
!VerifierBase.sol
!LoadInstances.sol
!VerifierManager.sol
*.pf
*.vk
*.pk

2
Cargo.lock generated
View File

@@ -2397,7 +2397,7 @@ dependencies = [
[[package]]
name = "halo2_solidity_verifier"
version = "0.1.0"
source = "git+https://github.com/alexander-camuto/halo2-solidity-verifier?branch=vka-log#c319e229ad677ee4c7d95bdae45c2958350cfd14"
source = "git+https://github.com/alexander-camuto/halo2-solidity-verifier?branch=ac/update-h2-curves#eede1db7f3e599112bd1186e9d1913286bdcb539"
dependencies = [
"askama",
"blake2b_simd",

View File

@@ -19,11 +19,8 @@ crate-type = ["cdylib", "rlib", "staticlib"]
halo2_gadgets = { git = "https://github.com/zkonduit/halo2", branch = "ac/optional-selector-poly" }
halo2curves = { git = "https://github.com/privacy-scaling-explorations/halo2curves", rev = "b753a832e92d5c86c5c997327a9cf9de86a18851", features = [
"derive_serde",
"derive_serde",
] }
halo2_proofs = { git = "https://github.com/zkonduit/halo2", package = "halo2_proofs", branch = "ac/cache-lookup-commitments", features = [
"circuit-params",
] }
halo2_proofs = { git = "https://github.com/zkonduit/halo2", package = "halo2_proofs", branch = "ac/cache-lookup-commitments", features = ["circuit-params"] }
rand = { version = "0.8", default-features = false }
itertools = { version = "0.10.3", default-features = false }
clap = { version = "4.5.3", features = ["derive"], optional = true }
@@ -36,9 +33,9 @@ halo2_wrong_ecc = { git = "https://github.com/zkonduit/halo2wrong", branch = "ac
snark-verifier = { git = "https://github.com/zkonduit/snark-verifier", branch = "ac/chunked-mv-lookup", features = [
"derive_serde",
] }
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", branch = "vka-log", optional = true }
maybe-rayon = { version = "0.1.1", default_features = false }
bincode = { version = "1.3.3", default_features = false }
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", branch = "ac/update-h2-curves", optional = true }
maybe-rayon = { version = "0.1.1", default-features = false }
bincode = { version = "1.3.3", default-features = false }
unzip-n = "0.1.2"
num = "0.4.1"
portable-atomic = { version = "1.6.0", optional = true }
@@ -46,7 +43,10 @@ tosubcommand = { git = "https://github.com/zkonduit/enum_to_subcommand", package
semver = { version = "1.0.22", optional = true }
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
serde_json = { version = "1.0.97", features = ["float_roundtrip", "raw_value"] }
serde_json = { version = "1.0.97", features = [
"float_roundtrip",
"raw_value",
] }
# evm related deps
alloy = { git = "https://github.com/alloy-rs/alloy", version = "0.1.0", rev = "5fbf57bac99edef9d8475190109a7ea9fb7e5e83", features = [
@@ -56,39 +56,23 @@ alloy = { git = "https://github.com/alloy-rs/alloy", version = "0.1.0", rev = "5
"rpc-types-eth",
"signer-wallet",
"node-bindings",
], optional = true }
foundry-compilers = { version = "0.4.1", features = [
"svm-solc",
], optional = true }
foundry-compilers = { version = "0.4.1", features = ["svm-solc"], optional = true }
ethabi = { version = "18", optional = true }
indicatif = { version = "0.17.5", features = ["rayon"], optional = true }
gag = { version = "1.0.0", default-features = false, optional = true }
instant = { version = "0.1" }
reqwest = { version = "0.12.4", default-features = false, features = [
"default-tls",
"multipart",
"stream",
], optional = true }
reqwest = { version = "0.12.4", default-features = false, features = ["default-tls", "multipart", "stream"], optional = true }
openssl = { version = "0.10.55", features = ["vendored"], optional = true }
tokio-postgres = { version = "0.7.10", optional = true }
pg_bigdecimal = { version = "0.1.5", optional = true }
lazy_static = { version = "1.4.0", optional = true }
colored_json = { version = "3.0.1", default-features = false, optional = true }
regex = { version = "1", default-features = false, optional = true }
tokio = { version = "1.35.0", default-features = false, features = [
"macros",
"rt-multi-thread",
], optional = true }
pyo3 = { version = "0.21.2", features = [
"extension-module",
"abi3-py37",
"macros",
], default-features = false, optional = true }
pyo3-asyncio = { git = "https://github.com/jopemachine/pyo3-asyncio/", branch = "migration-pyo3-0.21", features = [
"attributes",
"tokio-runtime",
], default-features = false, optional = true }
tokio = { version = "1.35.0", default-features = false, features = ["macros", "rt-multi-thread"], optional = true }
pyo3 = { version = "0.21.2", features = ["extension-module", "abi3-py37", "macros"], default-features = false, optional = true }
pyo3-asyncio = { git = "https://github.com/jopemachine/pyo3-asyncio/", branch="migration-pyo3-0.21", features = ["attributes", "tokio-runtime"], default-features = false, optional = true }
pyo3-log = { version = "0.10.0", default-features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "40c64319291184814d9fea5fdf4fa16f5a4f7116", default-features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
@@ -185,7 +169,7 @@ harness = false
[[bench]]
name = "relu"
name = "sigmoid"
harness = false
[[bench]]
@@ -193,12 +177,12 @@ name = "relu_lookupless"
harness = false
[[bench]]
name = "accum_matmul_relu"
name = "accum_matmul_sigmoid"
harness = false
[[bench]]
name = "accum_matmul_relu_overflow"
name = "accum_matmul_sigmoid_overflow"
harness = false
[[bin]]
@@ -213,13 +197,7 @@ required-features = ["ios-bindings", "uuid", "camino", "uniffi_bindgen"]
[features]
web = ["wasm-bindgen-rayon"]
default = [
"ezkl",
"mv-lookup",
"precompute-coset",
"no-banner",
"parallel-poly-read",
]
default = ["ezkl", "mv-lookup", "precompute-coset", "no-banner", "parallel-poly-read"]
onnx = ["dep:tract-onnx"]
python-bindings = ["pyo3", "pyo3-log", "pyo3-asyncio"]
ios-bindings = ["mv-lookup", "precompute-coset", "parallel-poly-read", "uniffi"]
@@ -253,10 +231,7 @@ ezkl = [
"dep:clap",
"dep:tosubcommand",
]
parallel-poly-read = [
"halo2_proofs/circuit-params",
"halo2_proofs/parallel-poly-read",
]
parallel-poly-read = ["halo2_proofs/circuit-params", "halo2_proofs/parallel-poly-read"]
mv-lookup = [
"halo2_proofs/mv-lookup",
"snark-verifier/mv-lookup",
@@ -285,3 +260,4 @@ rustflags = ["-C", "relocation-model=pic"]
lto = "fat"
codegen-units = 1
# panic = "abort"

View File

@@ -1,146 +0,0 @@
[
{
"inputs": [
{
"internalType": "address",
"name": "owner",
"type": "address"
}
],
"name": "OwnableInvalidOwner",
"type": "error"
},
{
"inputs": [
{
"internalType": "address",
"name": "account",
"type": "address"
}
],
"name": "OwnableUnauthorizedAccount",
"type": "error"
},
{
"anonymous": false,
"inputs": [
{
"indexed": false,
"internalType": "address",
"name": "addr",
"type": "address"
}
],
"name": "DeployedVerifier",
"type": "event"
},
{
"anonymous": false,
"inputs": [
{
"indexed": true,
"internalType": "address",
"name": "previousOwner",
"type": "address"
},
{
"indexed": true,
"internalType": "address",
"name": "newOwner",
"type": "address"
}
],
"name": "OwnershipTransferred",
"type": "event"
},
{
"inputs": [
{
"internalType": "bytes",
"name": "bytecode",
"type": "bytes"
}
],
"name": "deployVerifier",
"outputs": [
{
"internalType": "address",
"name": "addr",
"type": "address"
}
],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [],
"name": "owner",
"outputs": [
{
"internalType": "address",
"name": "",
"type": "address"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "bytes",
"name": "bytecode",
"type": "bytes"
}
],
"name": "precomputeAddress",
"outputs": [
{
"internalType": "address",
"name": "",
"type": "address"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "renounceOwnership",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "newOwner",
"type": "address"
}
],
"name": "transferOwnership",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "",
"type": "address"
}
],
"name": "verifierAddresses",
"outputs": [
{
"internalType": "bool",
"name": "",
"type": "bool"
}
],
"stateMutability": "view",
"type": "function"
}
]

View File

@@ -64,7 +64,7 @@ impl Circuit<Fr> for MyCircuit {
&a,
BITS,
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
&LookupOp::Sigmoid { scale: 1.0.into() },
)
.unwrap();
@@ -93,7 +93,7 @@ impl Circuit<Fr> for MyCircuit {
.layout(
&mut region,
&[output.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -65,7 +65,7 @@ impl Circuit<Fr> for MyCircuit {
&a,
BITS,
k,
&LookupOp::LeakyReLU { slope: 0.0.into() },
&LookupOp::Sigmoid { scale: 1.0.into() },
)
.unwrap();
@@ -94,7 +94,7 @@ impl Circuit<Fr> for MyCircuit {
.layout(
&mut region,
&[output.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -68,7 +68,14 @@ impl Circuit<Fr> for NLCircuit {
|region| {
let mut region = RegionCtx::new(region, 0, 1, 1024, 2);
config
.layout(&mut region, &[self.input.clone()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[self.input.clone()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
},

View File

@@ -42,7 +42,7 @@ impl Circuit<Fr> for NLCircuit {
.map(|_| VarTensor::new_advice(cs, K, 1, LEN))
.collect::<Vec<_>>();
let nl = LookupOp::LeakyReLU { slope: 0.0.into() };
let nl = LookupOp::Sigmoid { scale: 1.0.into() };
let mut config = Config::default();
@@ -68,7 +68,7 @@ impl Circuit<Fr> for NLCircuit {
.layout(
&mut region,
&[self.input.clone()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -1,184 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
// lib/openzeppelin-contracts/contracts/utils/Context.sol
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// lib/openzeppelin-contracts/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
/// set the owener initialy to be the anvil test account
address private _owner = 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor() {
_transferOwnership(msg.sender);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// interface for the reusable verifier.
interface Halo2VerifierReusable {
function verifyProof(
address vkArtifact,
bytes calldata proof,
uint256[] calldata instances
) external returns (bool);
}
// Manages the deployment of all EZKL reusbale verifiers (ezkl version specific), verifiying key artifacts (circuit specific) and
// routing proof verifications to the correct VKA and associate reusable verifier.
// Helps to prevent the deployment of duplicate verifiers.
contract EZKLVerifierManager is Ownable {
/// @dev Mapping that checks if a given reusable verifier has been deployed
mapping(address => bool) public verifierAddresses;
event DeployedVerifier(address addr);
// 1. Compute the address of the verifier to be deployed
function precomputeAddress(
bytes memory bytecode
) public view returns (address) {
bytes32 hash = keccak256(
abi.encodePacked(
bytes1(0xff),
address(this),
uint(0),
keccak256(bytecode)
)
);
return address(uint160(uint(hash)));
}
// 2. Deploy the reusable verifier using create2
/// @param bytecode The bytecode of the reusable verifier to deploy
function deployVerifier(
bytes memory bytecode
) public returns (address addr) {
assembly {
addr := create2(
0x0, // value, hardcode to 0
add(bytecode, 0x20),
mload(bytecode),
0x0 // salt, hardcode to 0
)
if iszero(extcodesize(addr)) {
revert(0, 0)
}
}
verifierAddresses[addr] = true;
emit DeployedVerifier(addr);
}
}

View File

@@ -1,4 +1,4 @@
ezkl==0.0.0
ezkl==15.2.0
sphinx
sphinx-rtd-theme
sphinxcontrib-napoleon

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '0.0.0'
release = '15.2.0'
version = release

View File

@@ -146,6 +146,8 @@ where
let params = VarTensor::new_advice(cs, K, NUM_INNER_COLS, LEN);
let output = VarTensor::new_advice(cs, K, NUM_INNER_COLS, LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN, false);
println!("INPUT COL {:#?}", input);
let mut layer_config = PolyConfig::configure(
@@ -156,15 +158,11 @@ where
);
layer_config
.configure_lookup(
cs,
&input,
&output,
&params,
(LOOKUP_MIN, LOOKUP_MAX),
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
)
.configure_range_check(cs, &input, &params, (-1, 1), K)
.unwrap();
layer_config
.configure_range_check(cs, &input, &params, (0, 1023), K)
.unwrap();
layer_config
@@ -195,6 +193,11 @@ where
) -> Result<(), Error> {
config.layer_config.layout_tables(&mut layouter).unwrap();
config
.layer_config
.layout_range_checks(&mut layouter)
.unwrap();
let x = layouter
.assign_region(
|| "mlp_4d",
@@ -224,7 +227,10 @@ where
.layout(
&mut region,
&[x.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();

View File

@@ -53,6 +53,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
let output = VarTensor::new_advice(cs, K, 1, LEN);
// tells the config layer to add an affine op to the circuit gate
let _constant = VarTensor::constant_cols(cs, K, LEN, false);
println!("INPUT COL {:#?}", input);
let mut layer_config = PolyConfig::<F>::configure(
cs,
&[input.clone(), params.clone()],
@@ -60,17 +64,12 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
CheckMode::SAFE,
);
// sets up a new ReLU table and resuses it for l1 and l3 non linearities
layer_config
.configure_lookup(
cs,
&input,
&output,
&params,
(LOOKUP_MIN, LOOKUP_MAX),
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
)
.configure_range_check(cs, &input, &params, (-1, 1), K)
.unwrap();
layer_config
.configure_range_check(cs, &input, &params, (0, 1023), K)
.unwrap();
// sets up a new ReLU table and resuses it for l1 and l3 non linearities
@@ -104,6 +103,11 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
) -> Result<(), Error> {
config.layer_config.layout_tables(&mut layouter).unwrap();
config
.layer_config
.layout_range_checks(&mut layouter)
.unwrap();
let x = layouter
.assign_region(
|| "mlp_4d",
@@ -144,7 +148,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layout(
&mut region,
&[x],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
scale: 1,
slope: 0.0.into(),
}),
)
.unwrap()
.unwrap();
@@ -184,7 +191,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layout(
&mut region,
&[x],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
scale: 1,
slope: 0.0.into(),
}),
)
.unwrap();
println!("6");

View File

@@ -21,9 +21,9 @@ def main():
torch_model = Circuit()
# Input to the model
shape = [3, 2, 3]
w = 0.1*torch.rand(1, *shape, requires_grad=True)
x = 0.1*torch.rand(1, *shape, requires_grad=True)
y = 0.1*torch.rand(1, *shape, requires_grad=True)
w = 2 * torch.rand(1, *shape, requires_grad=True) - 1
x = 2 * torch.rand(1, *shape, requires_grad=True) - 1
y = 2 * torch.rand(1, *shape, requires_grad=True) - 1
torch_out = torch_model(w, x, y)
# Export the model
torch.onnx.export(torch_model, # model being run

View File

@@ -1 +1 @@
{"input_shapes": [[3, 2, 3], [3, 2, 3], [3, 2, 3], [3, 2, 3]], "input_data": [[0.0025284828152507544, 0.04976580664515495, 0.025840921327471733, 0.0829394981265068, 0.09595223516225815, 0.08764562010765076, 0.06308566778898239, 0.062386948615312576, 0.08090643584728241, 0.09267748892307281, 0.07428313046693802, 0.08987367898225784, 0.005716216750442982, 0.0666426345705986, 0.012837404385209084, 0.05769496038556099, 0.05761152133345604, 0.08006472885608673], [0.007834953255951405, 0.011380612850189209, 0.08560049533843994, 0.022283583879470825, 0.07879520952701569, 0.04422441124916077, 0.030812596902251244, 0.006081616971641779, 0.011045408435165882, 0.08776585012674332, 0.044985152781009674, 0.015603715553879738, 0.07923348993062973, 0.04872611165046692, 0.0036642670165747404, 0.05142095685005188, 0.0963878259062767, 0.03225792199373245], [0.09952805936336517, 0.002214533044025302, 0.011696457862854004, 0.022422820329666138, 0.04151459410786629, 0.027647346258163452, 0.011919880285859108, 0.006539052817970514, 0.06569185107946396, 0.034328874200582504, 0.0032284557819366455, 0.004105025436729193, 0.022395813837647438, 0.07135921716690063, 0.07882415503263474, 0.09764843434095383, 0.05335796996951103, 0.0525360181927681]], "output_data": [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]}
{"input_shapes": [[3, 2, 3], [3, 2, 3], [3, 2, 3], [3, 2, 3]], "input_data": [[0.6261028051376343, 0.49872446060180664, -0.04514765739440918, 0.5936200618743896, 0.9271858930587769, 0.6688600778579712, -0.20331168174743652, -0.7016235589981079, 0.025863051414489746, -0.19426143169403076, 0.9827852249145508, 0.4897397756576538, 0.2992602586746216, 0.7011144161224365, 0.9278832674026489, 0.5943725109100342, -0.573331356048584, 0.3675816059112549], [0.7803324460983276, -0.9616303443908691, 0.6070173978805542, -0.028337717056274414, -0.5080242156982422, -0.9280107021331787, 0.6150380373001099, 0.3865993022918701, -0.43668973445892334, 0.17152702808380127, 0.5144252777099609, -0.28881049156188965, 0.8932310342788696, 0.059034109115600586, 0.6865451335906982, 0.009820222854614258, 0.23011493682861328, -0.9492779970169067], [-0.21352827548980713, -0.16015326976776123, -0.38964390754699707, 0.13464701175689697, -0.8814496994018555, 0.5037975311279297, -0.804405927658081, 0.9858957529067993, 0.19567716121673584, 0.9777265787124634, 0.6151977777481079, 0.568595290184021, 0.10584986209869385, -0.8975653648376465, 0.6235959529876709, -0.547879695892334, 0.9289869070053101, 0.7567293643951416]], "output_data": [[1.0, 0.0, -0.0, 1.0, 1.0, 1.0, -0.0, -1.0, 0.0, -0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, -1.0, 0.0], [0.0, -1.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [-0.0, -0.0, -0.0, 1.0, -0.0, 1.0, -0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -0.0, 1.0, -0.0, 1.0, 1.0]]}

View File

@@ -1,10 +1,11 @@
pytorch2.0.1:â
pytorch2.2.2:ă

woutput_w/Round"Round

xoutput_x/Floor"Floor

youtput_y/Ceil"Ceil torch_jitZ%
youtput_y/Ceil"Ceil
main_graphZ%
w



View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
# reciprocal sqrt
m = 1 / torch.sqrt(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.8590779900550842, 0.4029041528701782, 0.6507361531257629, 0.9782488942146301, 0.37392884492874146, 0.6867020726203918, 0.11407750844955444, 0.362740159034729]]}

View File

@@ -0,0 +1,17 @@
pytorch2.2.2:Ź
$
input/Sqrt_output_0/Sqrt"Sqrt
1
/Sqrt_output_0output /Reciprocal"
Reciprocal
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -94,4 +94,7 @@ pub enum CircuitError {
#[error("[io] {0}")]
/// IO error
IoError(#[from] std::io::Error),
/// Invalid scale
#[error("negative scale for an op that requires positive inputs {0}")]
NegativeScale(String),
}

View File

@@ -13,10 +13,21 @@ use serde::{Deserialize, Serialize};
/// An enum representing the operations that consist of both lookups and arithmetic operations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum HybridOp {
Ceil {
scale: utils::F32,
legs: usize,
},
Floor {
scale: utils::F32,
legs: usize,
},
Round {
scale: utils::F32,
legs: usize,
},
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
use_range_check_for_int: bool,
},
Div {
denom: utils::F32,
@@ -45,6 +56,8 @@ pub enum HybridOp {
ReduceArgMin {
dim: usize,
},
Max,
Min,
Softmax {
input_scale: utils::F32,
output_scale: utils::F32,
@@ -79,6 +92,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
| HybridOp::Less { .. }
| HybridOp::Equals { .. }
| HybridOp::GreaterEqual { .. }
| HybridOp::Max
| HybridOp::Min
| HybridOp::LessEqual { .. } => {
vec![0, 1]
}
@@ -93,13 +108,17 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
fn as_string(&self) -> String {
match self {
HybridOp::Ceil { scale, legs } => format!("CEIL(scale={}, legs={})", scale, legs),
HybridOp::Floor { scale, legs } => format!("FLOOR(scale={}, legs={})", scale, legs),
HybridOp::Round { scale, legs } => format!("ROUND(scale={}, legs={})", scale, legs),
HybridOp::Max => format!("MAX"),
HybridOp::Min => format!("MIN"),
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => format!(
"RECIP (input_scale={}, output_scale={}, use_range_check_for_int={})",
input_scale, output_scale, use_range_check_for_int
"RECIP (input_scale={}, output_scale={})",
input_scale, output_scale
),
HybridOp::Div {
denom,
@@ -162,6 +181,17 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
values: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, CircuitError> {
Ok(Some(match self {
HybridOp::Ceil { scale, legs } => {
layouts::ceil(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Floor { scale, legs } => {
layouts::floor(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Round { scale, legs } => {
layouts::round(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Max => layouts::max_comp(config, region, values[..].try_into()?)?,
HybridOp::Min => layouts::min_comp(config, region, values[..].try_into()?)?,
HybridOp::SumPool {
padding,
stride,
@@ -179,31 +209,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => {
if input_scale.0.fract() == 0.0
&& output_scale.0.fract() == 0.0
&& *use_range_check_for_int
{
layouts::recip(
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
)?
} else {
layouts::nonlinearity(
config,
region,
values.try_into()?,
&LookupOp::Recip {
input_scale: *input_scale,
output_scale: *output_scale,
},
)?
}
}
} => layouts::recip(
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
)?,
HybridOp::Div {
denom,
use_range_check_for_int,

View File

@@ -4155,6 +4155,110 @@ pub(crate) fn argmin<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
Ok(assigned_argmin)
}
/// Max layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 2]
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::max_comp;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 2, 3, 0]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let y = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 1, 1, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
///
/// let result = max_comp::<Fp>(&dummy_config, &mut dummy_region, &[x, y]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[5, 2, 3, 1]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
///
pub fn max_comp<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, CircuitError> {
let is_greater = greater(config, region, values)?;
let is_less = not(config, region, &[is_greater.clone()])?;
let max_val_p1 = pairwise(
config,
region,
&[values[0].clone(), is_greater],
BaseOp::Mult,
)?;
let max_val_p2 = pairwise(config, region, &[values[1].clone(), is_less], BaseOp::Mult)?;
pairwise(config, region, &[max_val_p1, max_val_p2], BaseOp::Add)
}
/// Min comp layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 2]
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::min_comp;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 2, 3, 0]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let y = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 1, 1, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = min_comp::<Fp>(&dummy_config, &mut dummy_region, &[x, y]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[5, 1, 1, 0]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
pub fn min_comp<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, CircuitError> {
let is_greater = greater(config, region, values)?;
let is_less = not(config, region, &[is_greater.clone()])?;
let min_val_p1 = pairwise(config, region, &[values[0].clone(), is_less], BaseOp::Mult)?;
let min_val_p2 = pairwise(
config,
region,
&[values[1].clone(), is_greater],
BaseOp::Mult,
)?;
pairwise(config, region, &[min_val_p1, min_val_p2], BaseOp::Add)
}
/// max layout
pub(crate) fn max<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
@@ -4178,6 +4282,438 @@ pub(crate) fn min<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
.map_err(|e| e.into())
}
/// floor layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 1]
/// * `scale` - utils::F32
/// * `legs` - usize
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::floor;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[3, -2, -3, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = floor::<Fp>(&dummy_config, &mut dummy_region, &[x], 2.0.into(), 2).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, -2, -4, 0]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
pub fn floor<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: utils::F32,
legs: usize,
) -> Result<ValTensor<F>, CircuitError> {
// decompose with base scale and then set the last element to zero
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
// set the last element to zero and then recompose, we don't actually need to assign here
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
let zero = ValType::Constant(F::ZERO);
let negative_one = create_constant_tensor(integer_rep_to_felt(-1), 1);
let assigned_negative_one = region.assign(&config.custom_gates.inputs[1], &negative_one)?;
region.increment(1);
let dims = decomposition.dims().to_vec();
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
let cartesian_coord = first_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function =
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
let coord = cartesian_coord[i].clone();
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut sliced_input = decomposition.get_slice(&slice)?;
sliced_input.flatten();
let last_elem = sliced_input.last()?;
let last_elem_is_zero = equals_zero(config, region, &[last_elem.clone()])?;
let last_elem_is_not_zero = not(config, region, &[last_elem_is_zero.clone()])?;
let sign = sliced_input.first()?;
let is_negative = equals(config, region, &[sign, assigned_negative_one.clone()])?;
let is_negative_and_not_zero = and(
config,
region,
&[last_elem_is_not_zero.clone(), is_negative.clone()],
)?;
// increment the penultimate element
let incremented_elem = pairwise(
config,
region,
&[
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
is_negative_and_not_zero.clone(),
],
BaseOp::Add,
)?;
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
inner_tensor[sliced_input.len() - 2] =
incremented_elem.get_inner_tensor()?.clone()[0].clone();
// set the last elem to zero
inner_tensor[sliced_input.len() - 1] = zero.clone();
Ok(inner_tensor.clone())
};
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
let mut incremented_tensor = incremented_tensor.combine()?;
incremented_tensor.reshape(&dims)?;
recompose(
config,
region,
&[incremented_tensor.into()],
&(scale.0 as usize),
)
}
/// ceil layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 1]
/// * `scale` - utils::F32
/// * `legs` - usize
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::ceil;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[3, -2, 3, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = ceil::<Fp>(&dummy_config, &mut dummy_region, &[x], 2.0.into(), 2).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, -2, 4, 2]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
///
pub fn ceil<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: utils::F32,
legs: usize,
) -> Result<ValTensor<F>, CircuitError> {
// decompose with base scale and then set the last element to zero
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
// set the last element to zero and then recompose, we don't actually need to assign here
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
let zero = ValType::Constant(F::ZERO);
let one = create_constant_tensor(integer_rep_to_felt(1), 1);
let assigned_one = region.assign(&config.custom_gates.inputs[1], &one)?;
region.increment(1);
let dims = decomposition.dims().to_vec();
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
let cartesian_coord = first_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function =
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
let coord = cartesian_coord[i].clone();
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut sliced_input = decomposition.get_slice(&slice)?;
sliced_input.flatten();
let last_elem = sliced_input.last()?;
let last_elem_is_zero = equals_zero(config, region, &[last_elem.clone()])?;
let last_elem_is_not_zero = not(config, region, &[last_elem_is_zero.clone()])?;
let sign = sliced_input.first()?;
let is_positive = equals(config, region, &[sign, assigned_one.clone()])?;
let is_positive_and_not_zero = and(
config,
region,
&[last_elem_is_not_zero.clone(), is_positive.clone()],
)?;
// increment the penultimate element
let incremented_elem = pairwise(
config,
region,
&[
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
is_positive_and_not_zero.clone(),
],
BaseOp::Add,
)?;
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
inner_tensor[sliced_input.len() - 2] =
incremented_elem.get_inner_tensor()?.clone()[0].clone();
// set the last elem to zero
inner_tensor[sliced_input.len() - 1] = zero.clone();
Ok(inner_tensor.clone())
};
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
let mut incremented_tensor = incremented_tensor.combine()?;
incremented_tensor.reshape(&dims)?;
recompose(
config,
region,
&[incremented_tensor.into()],
&(scale.0 as usize),
)
}
/// round layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 1]
/// * `scale` - utils::F32
/// * `legs` - usize
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::round;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[3, -2, 3, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = round::<Fp>(&dummy_config, &mut dummy_region, &[x], 4.0.into(), 2).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, -4, 4, 0]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
///
pub fn round<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: utils::F32,
legs: usize,
) -> Result<ValTensor<F>, CircuitError> {
// decompose with base scale and then set the last element to zero
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
// set the last element to zero and then recompose, we don't actually need to assign here
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
let zero = ValType::Constant(F::ZERO);
let one = create_constant_tensor(integer_rep_to_felt(1), 1);
let assigned_one = region.assign(&config.custom_gates.inputs[1], &one)?;
let negative_one = create_constant_tensor(integer_rep_to_felt(-1), 1);
let assigned_negative_one = region.assign(&config.custom_gates.output, &negative_one)?;
region.increment(1);
// if scale is not exactly divisible by 2 we warn
if scale.0 % 2.0 != 0.0 {
log::warn!("Scale is not exactly divisible by 2.0, rounding may not be accurate");
}
let midway_point: ValTensor<F> = create_constant_tensor(
integer_rep_to_felt((scale.0 / 2.0).round() as IntegerRep),
1,
);
let assigned_midway_point = region.assign(&config.custom_gates.inputs[1], &midway_point)?;
let dims = decomposition.dims().to_vec();
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
let cartesian_coord = first_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function =
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
let coord = cartesian_coord[i].clone();
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut sliced_input = decomposition.get_slice(&slice)?;
sliced_input.flatten();
let last_elem = sliced_input.last()?;
let sign = sliced_input.first()?;
let is_positive = equals(config, region, &[sign.clone(), assigned_one.clone()])?;
let is_negative = equals(config, region, &[sign, assigned_negative_one.clone()])?;
let is_greater_than_midway = greater_equal(
config,
region,
&[last_elem.clone(), assigned_midway_point.clone()],
)?;
// if greater than midway point and positive, increment
let is_positive_and_more_than_midway = and(
config,
region,
&[is_positive.clone(), is_greater_than_midway.clone()],
)?;
// is less than midway point and negative, decrement
let is_negative_and_more_than_midway = and(
config,
region,
&[is_negative.clone(), is_greater_than_midway],
)?;
let conditions_for_increment = or(
config,
region,
&[
is_positive_and_more_than_midway.clone(),
is_negative_and_more_than_midway.clone(),
],
)?;
// increment the penultimate element
let incremented_elem = pairwise(
config,
region,
&[
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
conditions_for_increment.clone(),
],
BaseOp::Add,
)?;
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
inner_tensor[sliced_input.len() - 2] =
incremented_elem.get_inner_tensor()?.clone()[0].clone();
// set the last elem to zero
inner_tensor[sliced_input.len() - 1] = zero.clone();
Ok(inner_tensor.clone())
};
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
let mut incremented_tensor = incremented_tensor.combine()?;
incremented_tensor.reshape(&dims)?;
recompose(
config,
region,
&[incremented_tensor.into()],
&(scale.0 as usize),
)
}
pub(crate) fn recompose<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
base: &usize,
) -> Result<ValTensor<F>, CircuitError> {
let input = values[0].clone();
let first_dims = input.dims().to_vec()[..input.dims().len() - 1].to_vec();
let n = input.dims().last().unwrap() - 1;
let is_assigned = !input.all_prev_assigned();
let bases: ValTensor<F> = Tensor::from(
(0..n)
.rev()
.map(|x| ValType::Constant(integer_rep_to_felt(base.pow(x as u32) as IntegerRep))),
)
.into();
// multiply and sum the values
let mut output: Tensor<Tensor<ValType<F>>> = Tensor::new(None, &first_dims)?;
let cartesian_coord = first_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function =
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
let coord = cartesian_coord[i].clone();
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut sliced_input = input.get_slice(&slice)?;
sliced_input.flatten();
if !is_assigned {
sliced_input = region.assign(&config.custom_gates.inputs[0], &sliced_input)?;
}
// get the sign bit and make sure it is valid
let sign = sliced_input.first()?;
let rest = sliced_input.get_slice(&[1..sliced_input.len()])?;
let prod_decomp = dot(config, region, &[rest, bases.clone()])?;
let signed_decomp = pairwise(config, region, &[prod_decomp, sign], BaseOp::Mult)?;
Ok(signed_decomp.get_inner_tensor()?.clone())
};
region.apply_in_loop(&mut output, inner_loop_function)?;
let mut combined_output = output.combine()?;
combined_output.reshape(&first_dims)?;
Ok(combined_output.into())
}
pub(crate) fn decompose<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
@@ -4263,7 +4799,6 @@ pub(crate) fn sign<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
) -> Result<ValTensor<F>, CircuitError> {
let mut decomp = decompose(config, region, values, &region.base(), &region.legs())?;
// get every n elements now, which correspond to the sign bit
decomp.get_every_n(region.legs() + 1)?;
decomp.reshape(values[0].dims())?;
@@ -4280,10 +4815,12 @@ pub(crate) fn abs<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
pairwise(config, region, &[values[0].clone(), sign], BaseOp::Mult)
}
pub(crate) fn relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
pub(crate) fn leaky_relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
alpha: &utils::F32,
input_scale: &i32,
) -> Result<ValTensor<F>, CircuitError> {
let sign = sign(config, region, values)?;
@@ -4292,12 +4829,45 @@ pub(crate) fn relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
let relu_mask = equals(config, region, &[sign, unit])?;
pairwise(
let positive = pairwise(
config,
region,
&[values[0].clone(), relu_mask],
&[values[0].clone(), relu_mask.clone()],
BaseOp::Mult,
)
)?;
if alpha.0 == 0. {
return Ok(positive);
}
if input_scale < &0 {
return Err(CircuitError::NegativeScale("leaky_relu".to_string()));
}
let scale_constant = create_constant_tensor(F::from(2_i32.pow(*input_scale as u32) as u64), 1);
let rescaled_positive = pairwise(config, region, &[positive, scale_constant], BaseOp::Mult)?;
let neg_mask = not(config, region, &[relu_mask])?;
let quantized_alpha = quantize_tensor(
Tensor::from([alpha.0; 1].into_iter()),
*input_scale,
&crate::graph::Visibility::Fixed,
)?;
let alpha_tensor = create_constant_tensor(quantized_alpha[0], 1);
let scaled_neg_mask = pairwise(config, region, &[neg_mask, alpha_tensor], BaseOp::Mult)?;
let neg_part = pairwise(
config,
region,
&[values[0].clone(), scaled_neg_mask],
BaseOp::Mult,
)?;
pairwise(config, region, &[rescaled_positive, neg_part], BaseOp::Add)
}
fn multi_dim_axes_op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(

View File

@@ -15,101 +15,29 @@ use halo2curves::ff::PrimeField;
/// An enum representing the operations that can be used to express more complex operations via accumulation
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Deserialize, Serialize)]
pub enum LookupOp {
Div {
denom: utils::F32,
},
Cast {
scale: utils::F32,
},
Max {
scale: utils::F32,
a: utils::F32,
},
Min {
scale: utils::F32,
a: utils::F32,
},
Ceil {
scale: utils::F32,
},
Floor {
scale: utils::F32,
},
Round {
scale: utils::F32,
},
RoundHalfToEven {
scale: utils::F32,
},
Sqrt {
scale: utils::F32,
},
Rsqrt {
scale: utils::F32,
},
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
},
LeakyReLU {
slope: utils::F32,
},
Sigmoid {
scale: utils::F32,
},
Ln {
scale: utils::F32,
},
Exp {
scale: utils::F32,
},
Cos {
scale: utils::F32,
},
ACos {
scale: utils::F32,
},
Cosh {
scale: utils::F32,
},
ACosh {
scale: utils::F32,
},
Sin {
scale: utils::F32,
},
ASin {
scale: utils::F32,
},
Sinh {
scale: utils::F32,
},
ASinh {
scale: utils::F32,
},
Tan {
scale: utils::F32,
},
ATan {
scale: utils::F32,
},
Tanh {
scale: utils::F32,
},
ATanh {
scale: utils::F32,
},
Erf {
scale: utils::F32,
},
KroneckerDelta,
Pow {
scale: utils::F32,
a: utils::F32,
},
HardSwish {
scale: utils::F32,
},
Div { denom: utils::F32 },
Cast { scale: utils::F32 },
RoundHalfToEven { scale: utils::F32 },
Sqrt { scale: utils::F32 },
Rsqrt { scale: utils::F32 },
Sigmoid { scale: utils::F32 },
Ln { scale: utils::F32 },
Exp { scale: utils::F32 },
Cos { scale: utils::F32 },
ACos { scale: utils::F32 },
Cosh { scale: utils::F32 },
ACosh { scale: utils::F32 },
Sin { scale: utils::F32 },
ASin { scale: utils::F32 },
Sinh { scale: utils::F32 },
ASinh { scale: utils::F32 },
Tan { scale: utils::F32 },
ATan { scale: utils::F32 },
Tanh { scale: utils::F32 },
ATanh { scale: utils::F32 },
Erf { scale: utils::F32 },
Pow { scale: utils::F32, a: utils::F32 },
HardSwish { scale: utils::F32 },
}
impl LookupOp {
@@ -123,21 +51,10 @@ impl LookupOp {
/// as path
pub fn as_path(&self) -> String {
match self {
LookupOp::Ceil { scale } => format!("ceil_{}", scale),
LookupOp::Floor { scale } => format!("floor_{}", scale),
LookupOp::Round { scale } => format!("round_{}", scale),
LookupOp::RoundHalfToEven { scale } => format!("round_half_to_even_{}", scale),
LookupOp::Pow { scale, a } => format!("pow_{}_{}", scale, a),
LookupOp::KroneckerDelta => "kronecker_delta".into(),
LookupOp::Max { scale, a } => format!("max_{}_{}", scale, a),
LookupOp::Min { scale, a } => format!("min_{}_{}", scale, a),
LookupOp::Div { denom } => format!("div_{}", denom),
LookupOp::Cast { scale } => format!("cast_{}", scale),
LookupOp::Recip {
input_scale,
output_scale,
} => format!("recip_{}_{}", input_scale, output_scale),
LookupOp::LeakyReLU { slope: a } => format!("leaky_relu_{}", a),
LookupOp::Sigmoid { scale } => format!("sigmoid_{}", scale),
LookupOp::Sqrt { scale } => format!("sqrt_{}", scale),
LookupOp::Rsqrt { scale } => format!("rsqrt_{}", scale),
@@ -168,47 +85,18 @@ impl LookupOp {
let x = x[0].clone().map(|x| felt_to_integer_rep(x));
let res =
match &self {
LookupOp::Ceil { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::ceil(&x, scale.into()))
}
LookupOp::Floor { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::floor(&x, scale.into()))
}
LookupOp::Round { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::round(&x, scale.into()))
}
LookupOp::RoundHalfToEven { scale } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::round_half_to_even(&x, scale.into()),
),
LookupOp::Pow { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::pow(&x, scale.0.into(), a.0.into()),
),
LookupOp::KroneckerDelta => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::kronecker_delta(&x))
}
LookupOp::Max { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::max(&x, scale.0.into(), a.0.into()),
),
LookupOp::Min { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::min(&x, scale.0.into(), a.0.into()),
),
LookupOp::Div { denom } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::const_div(&x, f32::from(*denom).into()),
),
LookupOp::Cast { scale } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::const_div(&x, f32::from(*scale).into()),
),
LookupOp::Recip {
input_scale,
output_scale,
} => Ok::<_, TensorError>(tensor::ops::nonlinearities::recip(
&x,
input_scale.into(),
output_scale.into(),
)),
LookupOp::LeakyReLU { slope: a } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::leakyrelu(&x, a.0.into()))
}
LookupOp::Sigmoid { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::sigmoid(&x, scale.into()))
}
@@ -283,25 +171,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
/// Returns the name of the operation
fn as_string(&self) -> String {
match self {
LookupOp::Ceil { scale } => format!("CEIL(scale={})", scale),
LookupOp::Floor { scale } => format!("FLOOR(scale={})", scale),
LookupOp::Round { scale } => format!("ROUND(scale={})", scale),
LookupOp::RoundHalfToEven { scale } => format!("ROUND_HALF_TO_EVEN(scale={})", scale),
LookupOp::Pow { a, scale } => format!("POW(scale={}, exponent={})", scale, a),
LookupOp::KroneckerDelta => "K_DELTA".into(),
LookupOp::Max { scale, a } => format!("MAX(scale={}, a={})", scale, a),
LookupOp::Min { scale, a } => format!("MIN(scale={}, a={})", scale, a),
LookupOp::Recip {
input_scale,
output_scale,
} => format!(
"RECIP(input_scale={}, output_scale={})",
input_scale, output_scale
),
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
LookupOp::Cast { scale } => format!("CAST(scale={})", scale),
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
LookupOp::LeakyReLU { slope: a } => format!("L_RELU(slope={})", a),
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
LookupOp::Sqrt { scale } => format!("SQRT(scale={})", scale),
LookupOp::Erf { scale } => format!("ERF(scale={})", scale),
@@ -344,8 +218,6 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
let in_scale = inputs_scale[0];
in_scale + multiplier_to_scale(1. / scale.0 as f64)
}
LookupOp::Recip { output_scale, .. } => multiplier_to_scale(output_scale.into()),
LookupOp::KroneckerDelta => 0,
_ => inputs_scale[0],
};
Ok(scale)

View File

@@ -1,5 +1,8 @@
use crate::{
circuit::layouts,
circuit::{
layouts,
utils::{self, F32},
},
tensor::{self, Tensor, TensorError},
};
@@ -9,9 +12,12 @@ use super::{base::BaseOp, *};
/// An enum representing the operations that can be expressed as arithmetic (non lookup) operations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum PolyOp {
ReLU,
Abs,
Sign,
LeakyReLU {
slope: utils::F32,
scale: i32,
},
GatherElements {
dim: usize,
constant_idx: Option<Tensor<usize>>,
@@ -112,9 +118,9 @@ impl<
fn as_string(&self) -> String {
match &self {
PolyOp::LeakyReLU { slope: a, .. } => format!("LEAKYRELU (slope={})", a),
PolyOp::Abs => "ABS".to_string(),
PolyOp::Sign => "SIGN".to_string(),
PolyOp::ReLU => "RELU".to_string(),
PolyOp::GatherElements { dim, constant_idx } => format!(
"GATHERELEMENTS (dim={}, constant_idx{})",
dim,
@@ -198,7 +204,9 @@ impl<
Ok(Some(match self {
PolyOp::Abs => layouts::abs(config, region, values[..].try_into()?)?,
PolyOp::Sign => layouts::sign(config, region, values[..].try_into()?)?,
PolyOp::ReLU => layouts::relu(config, region, values[..].try_into()?)?,
PolyOp::LeakyReLU { slope, scale } => {
layouts::leaky_relu(config, region, values[..].try_into()?, slope, scale)?
}
PolyOp::MultiBroadcastTo { shape } => {
layouts::expand(config, region, values[..].try_into()?, shape)?
}
@@ -329,6 +337,12 @@ impl<
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
let scale = match self {
// this corresponds to the relu operation
PolyOp::LeakyReLU {
slope: F32(0.0), ..
} => in_scales[0],
// this corresponds to the leaky relu operation with a slope which induces a change in scale
PolyOp::LeakyReLU { scale, .. } => in_scales[0] + *scale,
PolyOp::MeanOfSquares { .. } => 2 * in_scales[0],
PolyOp::Xor | PolyOp::Or | PolyOp::And | PolyOp::Not => 0,
PolyOp::Iff => in_scales[1],

View File

@@ -1379,7 +1379,10 @@ mod conv_relu_col_ultra_overflow {
.layout(
&mut region,
&[output.unwrap().unwrap()],
Box::new(PolyOp::ReLU),
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
@@ -2347,7 +2350,14 @@ mod matmul_relu {
.unwrap();
let _output = config
.base_config
.layout(&mut region, &[output.unwrap()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[output.unwrap()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
},
@@ -2439,7 +2449,14 @@ mod relu {
|region| {
let mut region = RegionCtx::new(region, 0, 1, 2, 2);
Ok(config
.layout(&mut region, &[self.input.clone()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[self.input.clone()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap())
},
)
@@ -2482,11 +2499,11 @@ mod lookup_ultra_overflow {
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
#[derive(Clone)]
struct ReLUCircuit<F: PrimeField + TensorType + PartialOrd> {
struct SigmoidCircuit<F: PrimeField + TensorType + PartialOrd> {
pub input: ValTensor<F>,
}
impl Circuit<F> for ReLUCircuit<F> {
impl Circuit<F> for SigmoidCircuit<F> {
type Config = BaseConfig<F>;
type FloorPlanner = SimpleFloorPlanner;
type Params = TestParams;
@@ -2500,7 +2517,7 @@ mod lookup_ultra_overflow {
.map(|_| VarTensor::new_advice(cs, 4, 1, 3))
.collect::<Vec<_>>();
let nl = LookupOp::LeakyReLU { slope: 0.0.into() };
let nl = LookupOp::Sigmoid { scale: 1.0.into() };
let mut config = BaseConfig::default();
@@ -2533,7 +2550,7 @@ mod lookup_ultra_overflow {
.layout(
&mut region,
&[self.input.clone()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.map_err(|_| Error::Synthesis)
},
@@ -2546,13 +2563,13 @@ mod lookup_ultra_overflow {
#[test]
#[ignore]
fn relucircuit() {
fn sigmoidcircuit() {
// get some logs fam
crate::logger::init_logger();
// parameters
let a = Tensor::from((0..4).map(|i| Value::known(F::from(i + 1))));
let circuit = ReLUCircuit::<F> {
let circuit = SigmoidCircuit::<F> {
input: ValTensor::from(a),
};
@@ -2562,7 +2579,7 @@ mod lookup_ultra_overflow {
let pk = crate::pfsys::create_keys::<
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
ReLUCircuit<F>,
SigmoidCircuit<F>,
>(&circuit, &params, true)
.unwrap();

View File

@@ -95,9 +95,6 @@ pub const DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION: &str = "false";
pub const DEFAULT_ONLY_RANGE_CHECK_REBASE: &str = "false";
/// Default commitment
pub const DEFAULT_COMMITMENT: &str = "kzg";
// TODO: In prod this will be the same across all chains we deploy to using the EZKL multisig create2 deployment.
/// Default address of the verifier manager.
pub const DEFAULT_VERIFIER_MANAGER_ADDRESS: &str = "0xdc64a140aa3e981100a9beca4e685f962f0cf6c9";
#[cfg(feature = "python-bindings")]
/// Converts TranscriptType into a PyObject (Required for TranscriptType to be compatible with Python)
@@ -190,13 +187,11 @@ pub enum ContractType {
/// Deploys a verifier contrat tailored to the circuit and not reusable
Verifier {
/// Whether to deploy a reusable verifier. This can reduce state bloat on-chain since you need only deploy a verifying key artifact (vka) for a given circuit which is significantly smaller than the verifier contract (up to 4 times smaller for large circuits)
/// Can also be used as an alternative to aggregation for verifiers that are otherwise too large to fit on-chain.
/// Can also be used as an alternative to aggregation for verifiers that are otherwise too large to fit on-chain.
reusable: bool,
},
/// Deploys a verifying key artifact that the reusable verifier loads into memory during runtime. Encodes the circuit specific data that was otherwise hardcoded onto the stack.
VerifyingKeyArtifact,
/// Manages the deployments of all reusable verifier and verifying artifact keys. Routes all the verification tx to the correct artifacts.
VerifierManager
}
impl Default for ContractType {
@@ -220,7 +215,6 @@ impl std::fmt::Display for ContractType {
reusable: false,
} => "verifier".to_string(),
ContractType::VerifyingKeyArtifact => "vka".to_string(),
ContractType::VerifierManager => "manager".to_string()
}
)
}
@@ -238,16 +232,16 @@ impl From<&str> for ContractType {
"verifier" => ContractType::Verifier { reusable: false },
"verifier/reusable" => ContractType::Verifier { reusable: true },
"vka" => ContractType::VerifyingKeyArtifact,
"manager" => ContractType::VerifierManager,
_ => {
log::error!("Invalid value for ContractType");
log::warn!("Defaulting to verifier");
ContractType::default()
},
}
}
}
}
#[derive(Debug, Copy, Clone, Serialize, Deserialize, PartialEq, PartialOrd)]
/// wrapper for H160 to make it easy to parse into flag vals
pub struct H160Flag {
@@ -514,7 +508,7 @@ pub enum Commands {
/// Gets an SRS from a circuit settings file.
#[command(name = "get-srs")]
GetSrs {
/// The path to output the desired srs file, if set to None will save to $EZKL_REPO_PATH/srs
/// The path to output the desired srs file, if set to None will save to ~/.ezkl/srs
#[arg(long, default_value = None, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// Path to the circuit settings .json file to read in logrows from. Overriden by logrows if specified.
@@ -561,7 +555,7 @@ pub enum Commands {
/// The path to save the proving key to
#[arg(long, default_value = DEFAULT_PK_AGGREGATED, value_hint = clap::ValueHint::FilePath)]
pk_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// logrows used for aggregation circuit
@@ -588,7 +582,7 @@ pub enum Commands {
/// The path to output the proof file to
#[arg(long, default_value = DEFAULT_PROOF_AGGREGATED, value_hint = clap::ValueHint::FilePath)]
proof_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long)]
srs_path: Option<PathBuf>,
#[arg(
@@ -630,7 +624,7 @@ pub enum Commands {
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, default_value = DEFAULT_COMPILED_CIRCUIT, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to output the verification key file to
@@ -707,7 +701,7 @@ pub enum Commands {
/// The path to output the proof file to
#[arg(long, default_value = DEFAULT_PROOF, value_hint = clap::ValueHint::FilePath)]
proof_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
#[arg(
@@ -739,7 +733,7 @@ pub enum Commands {
/// Creates an Evm verifier for a single proof
#[command(name = "create-evm-verifier")]
CreateEvmVerifier {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
@@ -761,7 +755,7 @@ pub enum Commands {
/// Creates an Evm verifier artifact for a single proof to be used by the reusable verifier
#[command(name = "create-evm-vka")]
CreateEvmVKArtifact {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
@@ -804,7 +798,7 @@ pub enum Commands {
/// Creates an Evm verifier for an aggregate proof
#[command(name = "create-evm-verifier-aggr")]
CreateEvmVerifierAggr {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load the desired verification key file
@@ -837,7 +831,7 @@ pub enum Commands {
/// The path to the verification key file (generated using the setup command)
#[arg(long, default_value = DEFAULT_VK, value_hint = clap::ValueHint::FilePath)]
vk_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// Reduce SRS logrows to the number of instances rather than the number of logrows used for proofs (only works if the srs were generated in the same ceremony)
@@ -855,7 +849,7 @@ pub enum Commands {
/// reduced srs
#[arg(long, default_value = DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION, action = clap::ArgAction::SetTrue)]
reduced_srs: Option<bool>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// logrows used for aggregation circuit
@@ -882,14 +876,6 @@ pub enum Commands {
/// Private secp256K1 key in hex format, 64 chars, no 0x prefix, of the account signing transactions. If None the private key will be generated by Anvil
#[arg(short = 'P', long, value_hint = clap::ValueHint::Other)]
private_key: Option<String>,
/// Deployed verifier manager contract's address
/// Used to facilitate reusable verifier and vk artifact deployment
#[arg(long, value_hint = clap::ValueHint::Other)]
addr_verifier_manager: Option<H160Flag>,
/// Deployed reusable verifier contract's address
/// Use to facilitate reusable verifier and vk artifact deployment
#[arg(long, value_hint = clap::ValueHint::Other)]
addr_reusable_verifier: Option<H160Flag>,
/// Contract type to be deployed
#[arg(long = "contract-type", short = 'C', default_value = DEFAULT_CONTRACT_DEPLOYMENT_TYPE, value_hint = clap::ValueHint::Other)]
contract: ContractType,

View File

@@ -31,7 +31,7 @@ use alloy::transports::{RpcError, TransportErrorKind};
use foundry_compilers::artifacts::Settings as SolcSettings;
use foundry_compilers::error::{SolcError, SolcIoError};
use foundry_compilers::Solc;
use halo2_solidity_verifier::{encode_calldata, encode_deploy};
use halo2_solidity_verifier::encode_calldata;
use halo2curves::bn256::{Fr, G1Affine};
use halo2curves::group::ff::PrimeField;
use itertools::Itertools;
@@ -213,16 +213,6 @@ abigen!(
}
);
// The bytecode here was generated from running solc compiler version 0.8.20 with optimization enabled and runs param set to 1.
abigen!(
#[allow(missing_docs)]
#[sol(
rpc,
bytecode = "60806040525f80546001600160a01b03191673f39fd6e51aad88f6f4ce6ab8827279cfffb92266179055348015610034575f80fd5b5061003e33610043565b610092565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6103dc8061009f5f395ff3fe608060405234801561000f575f80fd5b5060043610610060575f3560e01c80635717ecef146100645780635d34fd561461009b578063715018a6146100bb5780637a33ac87146100c55780638da5cb5b14610125578063f2fde38b1461012d575b5f80fd5b6100866100723660046102a7565b60016020525f908152604090205460ff1681565b60405190151581526020015b60405180910390f35b6100ae6100a93660046102e8565b610140565b6040516100929190610392565b6100c36101bf565b005b6100ae6100d33660046102e8565b8051602091820120604080516001600160f81b0319818501523060601b6001600160601b03191660218201525f6035820152605580820193909352815180820390930183526075019052805191012090565b6100ae6101d2565b6100c361013b3660046102a7565b6101e0565b5f610149610226565b5f8251602084015ff59050803b61015e575f80fd5b6001600160a01b0381165f90815260016020819052604091829020805460ff19169091179055517f27bf8213352a1c07513a54703c920b9e437940154edead05874c43279acf166c906101b2908390610392565b60405180910390a1919050565b6101c7610226565b6101d05f610258565b565b5f546001600160a01b031690565b6101e8610226565b6001600160a01b03811661021a575f604051631e4fbdf760e01b81526004016102119190610392565b60405180910390fd5b61022381610258565b50565b3361022f6101d2565b6001600160a01b0316146101d0573360405163118cdaa760e01b81526004016102119190610392565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f602082840312156102b7575f80fd5b81356001600160a01b03811681146102cd575f80fd5b9392505050565b634e487b7160e01b5f52604160045260245ffd5b5f602082840312156102f8575f80fd5b81356001600160401b038082111561030e575f80fd5b818401915084601f830112610321575f80fd5b813581811115610333576103336102d4565b604051601f8201601f19908116603f0116810190838211818310171561035b5761035b6102d4565b81604052828152876020848701011115610373575f80fd5b826020860160208301375f928101602001929092525095945050505050565b6001600160a01b039190911681526020019056fea26469706673582212201d85104628b308554b775f612650220008f8e318f66dc4ace466d82d70bae4e264736f6c63430008140033"
)]
EZKLVerifierManager,
"./abis/EZKLVerifierManager.json"
);
#[derive(Debug, thiserror::Error)]
pub enum EthError {
#[error("a transport error occurred: {0}")]
@@ -362,99 +352,6 @@ pub async fn deploy_contract_via_solidity(
Ok(contract)
}
pub async fn deploy_vka(
sol_code_path: PathBuf,
rpc_url: Option<&str>,
runs: usize,
private_key: Option<&str>,
contract_name: &str,
verifier_manager: H160,
reusable_verifier: H160,
) -> Result<H160, EthError> {
let (client, _) = setup_eth_backend(rpc_url, private_key).await?;
// Create an instance of the EZKLVerifierManager contract
let verifier_manager_contract = EZKLVerifierManager::new(verifier_manager, client.clone());
// Get the bytecode of the contract to be deployed
let (_, bytecode, _run_time_bytecode) =
get_contract_artifacts(sol_code_path.clone(), contract_name, runs).await?;
// Check if the reusable verifier is already deployed
let deployed_verifier: bool = verifier_manager_contract
.verifierAddresses(reusable_verifier)
.call()
.await?
._0;
if deployed_verifier == false {
panic!("The reusable verifier for this VKA has not been deployed yet.");
}
let encoded = encode_deploy(&bytecode);
debug!("encoded: {:#?}", hex::encode(&encoded));
let input: TransactionInput = encoded.into();
let tx = TransactionRequest::default()
.to(reusable_verifier)
.input(input);
debug!("transaction {:#?}", tx);
let result = client.call(&tx).await;
if let Err(e) = result {
return Err(EvmVerificationError::SolidityExecution(e.to_string()).into());
}
// Now send the tx
let _ = client.send_transaction(tx).await?;
let result = result?;
debug!("result: {:#?}", result.to_vec());
let contract = H160::from_slice(&result.to_vec()[12..32]);
return Ok(contract);
}
pub async fn deploy_reusable_verifier(
sol_code_path: PathBuf,
rpc_url: Option<&str>,
runs: usize,
private_key: Option<&str>,
contract_name: &str,
verifier_manager: H160,
) -> Result<H160, EthError> {
let (client, _) = setup_eth_backend(rpc_url, private_key).await?;
// Create an instance of the EZKLVerifierManager contract
let verifier_manager_contract = EZKLVerifierManager::new(verifier_manager, client.clone());
// Get the bytecode of the contract to be deployed
let (_, bytecode, _run_time_bytecode) =
get_contract_artifacts(sol_code_path.clone(), contract_name, runs).await?;
// Deploy the contract using the EZKLVerifierManager
let output = verifier_manager_contract
.deployVerifier(bytecode.clone().into())
.call()
.await?;
let out = verifier_manager_contract
.precomputeAddress(bytecode.clone().into())
.call()
.await?;
// assert that out == output
assert_eq!(out._0, output.addr);
// Get the deployed contract address from the receipt
let contract = output.addr;
let _ = verifier_manager_contract
.deployVerifier(bytecode.into())
.send()
.await?;
return Ok(contract);
}
///
pub async fn deploy_da_verifier_via_solidity(
settings_path: PathBuf,

View File

@@ -410,46 +410,24 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
commitment.into(),
)
.map(|e| serde_json::to_string(&e).unwrap()),
#[cfg(not(target_arch = "wasm32"))]
Commands::DeployEvm {
sol_code_path,
rpc_url,
addr_path,
optimizer_runs,
private_key,
addr_verifier_manager,
addr_reusable_verifier,
contract,
} => {
// if contract type is either verifier/reusable
match contract {
ContractType::Verifier { reusable: true } => {
if addr_verifier_manager.is_none() {
panic!("Must pass a verifier manager address for reusable verifier")
}
}
ContractType::VerifyingKeyArtifact => {
if addr_verifier_manager.is_none() || addr_reusable_verifier.is_none() {
panic!(
"Must pass a verifier manager address and reusable verifier address for verifying key artifact"
)
}
}
_ => {}
};
deploy_evm(
sol_code_path.unwrap_or(DEFAULT_SOL_CODE.into()),
rpc_url,
addr_path.unwrap_or(DEFAULT_CONTRACT_ADDRESS.into()),
optimizer_runs,
private_key,
addr_verifier_manager.map(|s| s.into()),
addr_reusable_verifier.map(|s| s.into()),
contract,
)
.await
}
#[cfg(not(target_arch = "wasm32"))]
Commands::DeployEvmDataAttestation {
data,
settings_path,
@@ -693,17 +671,18 @@ pub(crate) async fn get_srs_cmd(
let srs_uri = format!("{}{}", PUBLIC_SRS_URL, k);
let mut reader = Cursor::new(fetch_srs(&srs_uri).await?);
// check the SRS
let pb = init_spinner();
pb.set_message("Validating SRS (this may take a while) ...");
let pb = init_spinner();
pb.set_message("Validating SRS (this may take a while) ...");
let params = ParamsKZG::<Bn256>::read(&mut reader)?;
pb.finish_with_message("SRS validated.");
pb.finish_with_message("SRS validated.");
info!("Saving SRS to disk...");
let mut file = std::fs::File::create(get_srs_path(k, srs_path.clone(), commitment))?;
let computed_srs_path = get_srs_path(k, srs_path.clone(), commitment);
let mut file = std::fs::File::create(&computed_srs_path)?;
let mut buffer = BufWriter::with_capacity(*EZKL_BUF_CAPACITY, &mut file);
params.write(&mut buffer)?;
info!("Saved SRS to disk.");
info!("Saved SRS to {}.", computed_srs_path.as_os_str().to_str().unwrap_or("disk"));
info!("SRS downloaded");
} else {
@@ -749,7 +728,7 @@ pub(crate) async fn gen_witness(
None
};
let mut input = circuit.load_graph_input(&data).await?;
let mut input = circuit.load_graph_input(&data).await?;
#[cfg(any(not(feature = "ezkl"), target_arch = "wasm32"))]
let mut input = circuit.load_graph_input(&data)?;
@@ -1439,7 +1418,6 @@ pub(crate) async fn create_evm_verifier(
Ok(String::new())
}
#[cfg(not(target_arch = "wasm32"))]
pub(crate) async fn create_evm_vka(
vk_path: PathBuf,
srs_path: Option<PathBuf>,
@@ -1468,20 +1446,9 @@ pub(crate) async fn create_evm_vka(
num_instance,
);
let (reusable_verifier, vk_solidity) = generator.render_separately()?;
let vk_solidity = generator.render_separately()?.1;
// Remove the first line of vk_solidity (license identifier). Same license identifier for all contracts in this .sol
let vk_solidity = vk_solidity
.lines()
.skip(1)
.collect::<Vec<&str>>()
.join("\n");
// We store each contracts to the same file...
// We need to do this so that during the deployment transaction we make sure
// verifier manager links the VKA to the correct reusable_verifier.
let combined_solidity = format!("{}\n\n{}", reusable_verifier, vk_solidity);
File::create(sol_code_path.clone())?.write_all(combined_solidity.as_bytes())?;
File::create(sol_code_path.clone())?.write_all(vk_solidity.as_bytes())?;
// fetch abi of the contract
let (abi, _, _) = get_contract_artifacts(sol_code_path, "Halo2VerifyingArtifact", 0).await?;
@@ -1599,51 +1566,21 @@ pub(crate) async fn deploy_evm(
addr_path: PathBuf,
runs: usize,
private_key: Option<String>,
verifier_manager: Option<alloy::primitives::Address>,
reusable_verifier: Option<alloy::primitives::Address>,
contract: ContractType,
) -> Result<String, EZKLError> {
use crate::eth::{deploy_reusable_verifier, deploy_vka};
let contract_name = match contract {
ContractType::Verifier { reusable: false } => "Halo2Verifier",
ContractType::Verifier { reusable: true } => "Halo2VerifierReusable",
ContractType::VerifyingKeyArtifact => "Halo2VerifyingArtifact",
ContractType::VerifierManager => "EZKLVerifierManager",
};
let contract_address = if contract_name == "Halo2VerifierReusable" {
// Use VerifierManager to deploy the contract
deploy_reusable_verifier(
sol_code_path,
rpc_url.as_deref(),
runs,
private_key.as_deref(),
contract_name,
verifier_manager.unwrap(),
)
.await?
} else if contract_name == "Halo2VerifyingArtifact" {
deploy_vka(
sol_code_path,
rpc_url.as_deref(),
runs,
private_key.as_deref(),
contract_name,
verifier_manager.unwrap(),
reusable_verifier.unwrap(),
)
.await?
} else {
deploy_contract_via_solidity(
sol_code_path,
rpc_url.as_deref(),
runs,
private_key.as_deref(),
contract_name,
)
.await?
};
let contract_address = deploy_contract_via_solidity(
sol_code_path,
rpc_url.as_deref(),
runs,
private_key.as_deref(),
contract_name,
)
.await?;
info!("Contract deployed at: {:#?}", contract_address);
@@ -2085,7 +2022,7 @@ pub(crate) fn mock_aggregate(
}
}
// proof aggregation
let pb = {
let pb = {
let pb = init_spinner();
pb.set_message("Aggregating (may take a while)...");
pb
@@ -2096,7 +2033,7 @@ pub(crate) fn mock_aggregate(
let prover = halo2_proofs::dev::MockProver::run(logrows, &circuit, vec![circuit.instances()])
.map_err(|e| ExecutionError::MockProverError(e.to_string()))?;
prover.verify().map_err(ExecutionError::VerifyError)?;
pb.finish_with_message("Done.");
pb.finish_with_message("Done.");
Ok(String::new())
}
@@ -2190,7 +2127,7 @@ pub(crate) fn aggregate(
}
// proof aggregation
let pb = {
let pb = {
let pb = init_spinner();
pb.set_message("Aggregating (may take a while)...");
pb
@@ -2339,7 +2276,7 @@ pub(crate) fn aggregate(
);
snark.save(&proof_path)?;
pb.finish_with_message("Done.");
pb.finish_with_message("Done.");
Ok(snark)
}

View File

@@ -763,81 +763,41 @@ pub fn new_op_from_onnx(
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_inputs.len() != 1 {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
}
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
};
if inputs.len() == 2 {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
if unit == 0. {
SupportedOp::Linear(PolyOp::ReLU)
if const_inputs.len() > 0 {
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
};
if unit == 0. {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
SupportedOp::Linear(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
})
} else {
SupportedOp::Hybrid(HybridOp::Max)
}
} else {
// get the non-constant index
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
SupportedOp::Nonlinear(LookupOp::Max {
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
a: crate::circuit::utils::F32(unit),
})
SupportedOp::Hybrid(HybridOp::Max)
}
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
}
"Min" => {
// Extract the min value
// first find the input that is a constant
// and then extract the value
let const_inputs = inputs
.iter()
.enumerate()
.filter(|(_, n)| n.is_constant())
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_inputs.len() != 1 {
return Err(GraphError::OpMismatch(idx, "Min".to_string()));
}
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "min".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Min".to_string()));
};
if inputs.len() == 2 {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
// get the non-constant index
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
SupportedOp::Nonlinear(LookupOp::Min {
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
a: crate::circuit::utils::F32(unit),
})
SupportedOp::Hybrid(HybridOp::Min)
} else {
return Err(GraphError::InvalidDims(idx, "min".to_string()));
}
@@ -849,7 +809,6 @@ pub fn new_op_from_onnx(
SupportedOp::Hybrid(HybridOp::Recip {
input_scale: (scale_to_multiplier(in_scale) as f32).into(),
output_scale: (scale_to_multiplier(max_scale) as f32).into(),
use_range_check_for_int: true,
})
}
@@ -864,8 +823,9 @@ pub fn new_op_from_onnx(
}
};
SupportedOp::Nonlinear(LookupOp::LeakyReLU {
SupportedOp::Linear(PolyOp::LeakyReLU {
slope: crate::circuit::utils::F32(leaky_op.alpha),
scale: scales.params,
})
}
"Scan" => {
@@ -1123,14 +1083,17 @@ pub fn new_op_from_onnx(
pool_dims: kernel_shape.to_vec(),
})
}
"Ceil" => SupportedOp::Nonlinear(LookupOp::Ceil {
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
legs: run_args.decomp_legs,
}),
"Floor" => SupportedOp::Nonlinear(LookupOp::Floor {
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
legs: run_args.decomp_legs,
}),
"Round" => SupportedOp::Nonlinear(LookupOp::Round {
"Round" => SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
legs: run_args.decomp_legs,
}),
"RoundHalfToEven" => SupportedOp::Nonlinear(LookupOp::RoundHalfToEven {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
@@ -1146,10 +1109,17 @@ pub fn new_op_from_onnx(
if c.raw_values.len() > 1 {
unimplemented!("only support scalar pow")
}
SupportedOp::Nonlinear(LookupOp::Pow {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
a: crate::circuit::utils::F32(c.raw_values[0]),
})
let exponent = c.raw_values[0];
if exponent.fract() == 0.0 {
SupportedOp::Linear(PolyOp::Pow(exponent as u32))
} else {
SupportedOp::Nonlinear(LookupOp::Pow {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
a: crate::circuit::utils::F32(exponent),
})
}
} else {
unimplemented!("only support constant pow for now")
}

View File

@@ -27,7 +27,7 @@ pub fn get_rep(
n: usize,
) -> Result<Vec<IntegerRep>, DecompositionError> {
// check if x is too large
if x.abs() > (base.pow(n as u32) as IntegerRep) {
if x.abs() > (base.pow(n as u32) as IntegerRep) - 1 {
return Err(DecompositionError::TooLarge(*x, base, n));
}
let mut rep = vec![0; n + 1];
@@ -1421,85 +1421,6 @@ pub fn slice<T: TensorType + Send + Sync>(
pub mod nonlinearities {
use super::*;
/// Ceiling operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
///
/// use ezkl::tensor::ops::nonlinearities::ceil;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = ceil(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 4, 4, 6, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn ceil(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.ceil() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Floor operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::floor;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = floor(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 2, 2, 4, 4, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn floor(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.floor() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Round operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::round;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = round(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 4, 4, 6, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn round(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.round() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Round half to even operator.
/// # Arguments
/// * `a` - Tensor
@@ -1553,35 +1474,6 @@ pub mod nonlinearities {
.unwrap()
}
/// Applies Kronecker delta to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::kronecker_delta;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// ).unwrap();
/// let result = kronecker_delta(&x);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 0, 0, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn kronecker_delta<T: TensorType + std::cmp::PartialEq + Send + Sync>(
a: &Tensor<T>,
) -> Tensor<T> {
a.par_enum_map(|_, a_i| {
if a_i == T::zero().unwrap() {
Ok::<_, TensorError>(T::one().unwrap())
} else {
Ok::<_, TensorError>(T::zero().unwrap())
}
})
.unwrap()
}
/// Elementwise applies sigmoid to a tensor of integers.
/// # Arguments
///
@@ -1750,27 +1642,6 @@ pub mod nonlinearities {
.unwrap()
}
/// Elementwise applies sign to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::sign;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[-2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// ).unwrap();
/// let result = sign(&x);
/// let expected = Tensor::<IntegerRep>::new(Some(&[-1, 1, 1, 1, 1, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn sign(a: &Tensor<IntegerRep>) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(a_i.signum()))
.unwrap()
}
/// Elementwise applies square root to a tensor of integers.
/// # Arguments
///
@@ -2254,101 +2125,6 @@ pub mod nonlinearities {
.unwrap()
}
/// Elementwise applies leaky relu to a tensor of integers.
/// # Arguments
///
/// * `a` - Tensor
/// * `scale` - Single value
/// * `slope` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::leakyrelu;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = leakyrelu(&x, 0.1);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 15, 2, 1, 1, -1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn leakyrelu(a: &Tensor<IntegerRep>, slope: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let rounded = if a_i < 0 {
let d_inv_x = (slope) * (a_i as f64);
d_inv_x.round() as IntegerRep
} else {
let d_inv_x = a_i as f64;
d_inv_x.round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise applies max to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// * `b` - scalar
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::max;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = max(&x, 1.0, 1.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 15, 2, 1, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn max(a: &Tensor<IntegerRep>, scale_input: f64, threshold: f64) -> Tensor<IntegerRep> {
// calculate value of output
a.par_enum_map(|_, a_i| {
let d_inv_x = (a_i as f64) / scale_input;
let rounded = if d_inv_x <= threshold {
(threshold * scale_input).round() as IntegerRep
} else {
(d_inv_x * scale_input).round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise applies min to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// * `b` - scalar
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::min;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = min(&x, 1.0, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 2, 1, 1, -5]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn min(a: &Tensor<IntegerRep>, scale_input: f64, threshold: f64) -> Tensor<IntegerRep> {
// calculate value of output
a.par_enum_map(|_, a_i| {
let d_inv_x = (a_i as f64) / scale_input;
let rounded = if d_inv_x >= threshold {
(threshold * scale_input).round() as IntegerRep
} else {
(d_inv_x * scale_input).round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise divides a tensor with a const integer element.
/// # Arguments
///
@@ -2429,104 +2205,6 @@ pub mod nonlinearities {
})
.unwrap()
}
/// Elementwise greater than
/// # Arguments
///
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::greater_than;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
/// let result = greater_than(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 1, 0, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn greater_than(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) > 0_f64)))
.unwrap()
}
/// Elementwise greater than
/// # Arguments
///
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::greater_than_equal;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
/// let result = greater_than_equal(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 0, 1, 1, 0, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn greater_than_equal(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) >= 0_f64)))
.unwrap()
}
/// Elementwise less than
/// # Arguments
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::less_than;
///
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
///
/// let result = less_than(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 1, 0, 0, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn less_than(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) < 0_f64)))
.unwrap()
}
/// Elementwise less than
/// # Arguments
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::less_than_equal;
///
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
///
/// let result = less_than_equal(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 1, 1, 0, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn less_than_equal(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) <= 0_f64)))
.unwrap()
}
}
/// Ops that return the transcript i.e intermediate calcs of an op

Binary file not shown.

View File

@@ -205,7 +205,7 @@ mod native_tests {
"1l_tiny_div",
];
const TESTS: [&str; 94] = [
const TESTS: [&str; 95] = [
"1l_mlp", //0
"1l_slice",
"1l_concat",
@@ -304,6 +304,7 @@ mod native_tests {
"lstm_large", // 91
"lstm_medium", // 92
"lenet_5", // 93
"rsqrt", // 94
];
const WASM_TESTS: [&str; 46] = [
@@ -542,7 +543,7 @@ mod native_tests {
}
});
seq!(N in 0..=93 {
seq!(N in 0..=94 {
#(#[test_case(TESTS[N])])*
#[ignore]
@@ -851,9 +852,11 @@ mod native_tests {
fn kzg_prove_and_verify_tight_lookup_(test: &str) {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
let path = test_dir.into_path();
let path = path.to_str().unwrap();
crate::native_tests::mv_test_(path, test);
prove_and_verify(path, test.to_string(), "safe", "private", "private", "public", 1, None, false, "single", Commitments::KZG, 1);
test_dir.close().unwrap();
// test_dir.close().unwrap();
}
#(#[test_case(TESTS[N])])*
@@ -1000,21 +1003,13 @@ mod native_tests {
use crate::native_tests::run_js_tests;
use ezkl::logger::init_logger;
use crate::native_tests::lazy_static;
use std::sync::Once;
// Global variables to store verifier hashes and identical verifiers
lazy_static! {
static ref ANVIL_INSTANCE: std::sync::Mutex<Option<std::process::Child>> = std::sync::Mutex::new(None);
// create a new variable of type
static ref REUSABLE_VERIFIER_ADDR: std::sync::Mutex<Option<String>> = std::sync::Mutex::new(None);
}
static INIT: Once = Once::new();
fn initialize() {
INIT.call_once(|| {
let anvil_child = crate::native_tests::start_anvil(false, Hardfork::Latest);
*ANVIL_INSTANCE.lock().unwrap() = Some(anvil_child);
});
}
/// Currently only on chain inputs that return a non-negative value are supported.
const TESTS_ON_CHAIN_INPUT: [&str; 17] = [
@@ -1126,10 +1121,9 @@ mod native_tests {
});
seq!(N in 0..=93 {
seq!(N in 0..4 {
#(#[test_case(TESTS[N])])*
fn kzg_evm_prove_and_verify_reusable_verifier_(test: &str) {
initialize();
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
@@ -1137,18 +1131,28 @@ mod native_tests {
init_logger();
log::error!("Running kzg_evm_prove_and_verify_reusable_verifier_ for test: {}", test);
// default vis
kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "private", "private", "public", false);
let reusable_verifier_address: String = kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "private", "private", "public", &mut REUSABLE_VERIFIER_ADDR.lock().unwrap(), false);
// public/public vis
kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "public", "private", "public", false);
let reusable_verifier_address: String = kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "public", "private", "public", &mut Some(reusable_verifier_address), false);
// hashed input
kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "hashed", "private", "public", false);
let reusable_verifier_address: String = kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "hashed", "private", "public", &mut Some(reusable_verifier_address), false);
match REUSABLE_VERIFIER_ADDR.try_lock() {
Ok(mut addr) => {
*addr = Some(reusable_verifier_address.clone());
log::error!("Reusing the same verifeir deployed at address: {}", reusable_verifier_address);
}
Err(_) => {
log::error!("Failed to acquire lock on REUSABLE_VERIFIER_ADDR");
}
}
test_dir.close().unwrap();
}
#(#[test_case(TESTS[N])])*
fn kzg_evm_prove_and_verify_reusable_verifier_with_overflow_(test: &str) {
initialize();
// verifier too big to fit on chain with overflow calibration target
if test == "1l_eltwise_div" || test == "lenet_5" || test == "ltsf" || test == "lstm_large" {
return;
@@ -1160,13 +1164,24 @@ mod native_tests {
init_logger();
log::error!("Running kzg_evm_prove_and_verify_reusable_verifier_with_overflow_ for test: {}", test);
// default vis
kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "private", "private", "public", true);
let reusable_verifier_address: String = kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "private", "private", "public", &mut REUSABLE_VERIFIER_ADDR.lock().unwrap(), true);
// public/public vis
kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "public", "private", "public", true);
let reusable_verifier_address: String = kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "public", "private", "public", &mut Some(reusable_verifier_address), true);
// hashed input
kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "hashed", "private", "public", true);
let reusable_verifier_address: String = kzg_evm_prove_and_verify_reusable_verifier(2, path, test.to_string(), "hashed", "private", "public", &mut Some(reusable_verifier_address), true);
match REUSABLE_VERIFIER_ADDR.try_lock() {
Ok(mut addr) => {
*addr = Some(reusable_verifier_address.clone());
log::error!("Reusing the same verifeir deployed at address: {}", reusable_verifier_address);
}
Err(_) => {
log::error!("Failed to acquire lock on REUSABLE_VERIFIER_ADDR");
}
}
test_dir.close().unwrap();
}
});
@@ -1619,7 +1634,6 @@ mod native_tests {
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
.args(args)
.stdout(std::process::Stdio::null())
.status()
.expect("failed to execute process");
assert!(status.success());
@@ -2216,8 +2230,9 @@ mod native_tests {
input_visibility: &str,
param_visibility: &str,
output_visibility: &str,
reusable_verifier_address: &mut Option<String>,
overflow: bool,
) {
) -> String {
let anvil_url = ANVIL_URL.as_str();
prove_and_verify(
@@ -2240,82 +2255,57 @@ mod native_tests {
let vk_arg = format!("{}/{}/key.vk", test_dir, example_name);
let rpc_arg = format!("--rpc-url={}", anvil_url);
// addr path for verifier manager contract
let addr_path_arg = format!("--addr-path={}/{}/addr.txt", test_dir, example_name);
let verifier_manager_arg: String;
let settings_arg = format!("--settings-path={}", settings_path);
// reusable verifier sol_arg
let sol_arg = format!("--sol-code-path={}/{}/kzg.sol", test_dir, example_name);
// create the reusable verifier
let args = vec![
"create-evm-verifier",
"--vk-path",
&vk_arg,
&settings_arg,
&sol_arg,
"--reusable",
];
// if the reusable verifier address is not set, create the verifier
let deployed_addr_arg = match reusable_verifier_address {
Some(addr) => addr.clone(),
None => {
// create the reusable verifier
let args = vec![
"create-evm-verifier",
"--vk-path",
&vk_arg,
&settings_arg,
&sol_arg,
"--reusable",
];
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
.args(&args)
.status()
.expect("failed to execute process");
assert!(status.success());
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
.args(&args)
.status()
.expect("failed to execute process");
assert!(status.success());
// deploy the verifier manager
let args = vec![
"deploy-evm",
rpc_arg.as_str(),
addr_path_arg.as_str(),
// set the sol code path to be contracts/VerifierManager.sol relative to root
"--sol-code-path=contracts/VerifierManager.sol",
"-C=manager",
];
// deploy the verifier
let args = vec![
"deploy-evm",
rpc_arg.as_str(),
addr_path_arg.as_str(),
sol_arg.as_str(),
"-C=verifier/reusable",
];
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
.args(&args)
.status()
.expect("failed to execute process");
assert!(status.success());
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
.args(&args)
.status()
.expect("failed to execute process");
assert!(status.success());
// read in the address of the verifier manager
let addr = std::fs::read_to_string(format!("{}/{}/addr.txt", test_dir, example_name))
.expect("failed to read address file");
// read in the address
let addr =
std::fs::read_to_string(format!("{}/{}/addr.txt", test_dir, example_name))
.expect("failed to read address file");
verifier_manager_arg = format!("--addr-verifier-manager={}", addr);
// if the reusable verifier address is not set, deploy the verifier manager and then create the verifier
let rv_addr = {
// addr path for rv contract
let addr_path_arg = format!("--addr-path={}/{}/addr_rv.txt", test_dir, example_name);
// deploy the reusable verifier via the verifier router.
let args = vec![
"deploy-evm",
rpc_arg.as_str(),
addr_path_arg.as_str(),
sol_arg.as_str(),
verifier_manager_arg.as_str(),
"-C=verifier/reusable",
];
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
.args(&args)
.status()
.expect("failed to execute process");
assert!(status.success());
// read in the address of the verifier manager
let addr =
std::fs::read_to_string(format!("{}/{}/addr_rv.txt", test_dir, example_name))
.expect("failed to read address file");
addr
let deployed_addr_arg = format!("--addr-verifier={}", addr);
// set the reusable verifier address
*reusable_verifier_address = Some(addr);
deployed_addr_arg
}
};
let addr_path_arg_vk = format!("--addr-path={}/{}/addr_vk.txt", test_dir, example_name);
let sol_arg_vk: String = format!("--sol-code-path={}/{}/vk.sol", test_dir, example_name);
// create the verifier
let addr_path_arg_vk = format!("--addr-path={}/{}/addr_vk.txt", test_dir, example_name);
let sol_arg_vk: String = format!("--sol-code-path={}/{}/vk.sol", test_dir, example_name);
// create the verifier
@@ -2333,15 +2323,11 @@ mod native_tests {
.expect("failed to execute process");
assert!(status.success());
let rv_addr_arg = format!("--addr-reusable-verifier={}", rv_addr);
// deploy the vka via the "DeployVKA" command on the reusable verifier
// deploy the vka
let args = vec![
"deploy-evm",
rpc_arg.as_str(),
addr_path_arg_vk.as_str(),
verifier_manager_arg.as_str(),
rv_addr_arg.as_str(),
sol_arg_vk.as_str(),
"-C=vka",
];
@@ -2371,8 +2357,6 @@ mod native_tests {
assert!(status.success());
let deployed_addr_arg = format!("--addr-verifier={}", rv_addr);
// now verify the proof
let pf_arg = format!("{}/{}/proof.pf", test_dir, example_name);
let args = vec![
@@ -2432,6 +2416,9 @@ mod native_tests {
i
);
}
// Returned deploy_addr_arg for reusable verifier
deployed_addr_arg
}
// run js browser evm verify tests for a given example

View File

@@ -124,41 +124,40 @@ mod py_tests {
}
const TESTS: [&str; 34] = [
"ezkl_demo_batch.ipynb",
"proof_splitting.ipynb", // 0
"variance.ipynb",
"mnist_gan.ipynb",
// "mnist_vae.ipynb",
"keras_simple_demo.ipynb",
"mnist_gan_proof_splitting.ipynb", // 4
"hashed_vis.ipynb", // 5
"simple_demo_all_public.ipynb",
"data_attest.ipynb",
"little_transformer.ipynb",
"simple_demo_aggregated_proofs.ipynb",
"ezkl_demo.ipynb", // 10
"lstm.ipynb",
"set_membership.ipynb", // 12
"decision_tree.ipynb",
"random_forest.ipynb",
"gradient_boosted_trees.ipynb", // 15
"xgboost.ipynb",
"lightgbm.ipynb",
"svm.ipynb",
"simple_demo_public_input_output.ipynb",
"simple_demo_public_network_output.ipynb", // 20
"gcn.ipynb",
"linear_regression.ipynb",
"stacked_regression.ipynb",
"data_attest_hashed.ipynb",
"kzg_vis.ipynb", // 25
"kmeans.ipynb",
"solvency.ipynb",
"sklearn_mlp.ipynb",
"generalized_inverse.ipynb",
"mnist_classifier.ipynb", // 30
"world_rotation.ipynb",
"logistic_regression.ipynb",
"ezkl_demo_batch.ipynb", // 0
"proof_splitting.ipynb", // 1
"variance.ipynb", // 2
"mnist_gan.ipynb", // 3
"keras_simple_demo.ipynb", // 4
"mnist_gan_proof_splitting.ipynb", // 5
"hashed_vis.ipynb", // 6
"simple_demo_all_public.ipynb", // 7
"data_attest.ipynb", // 8
"little_transformer.ipynb", // 9
"simple_demo_aggregated_proofs.ipynb", // 10
"ezkl_demo.ipynb", // 11
"lstm.ipynb", // 12
"set_membership.ipynb", // 13
"decision_tree.ipynb", // 14
"random_forest.ipynb", // 15
"gradient_boosted_trees.ipynb", // 16
"xgboost.ipynb", // 17
"lightgbm.ipynb", // 18
"svm.ipynb", // 19
"simple_demo_public_input_output.ipynb", // 20
"simple_demo_public_network_output.ipynb", // 21
"gcn.ipynb", // 22
"linear_regression.ipynb", // 23
"stacked_regression.ipynb", // 24
"data_attest_hashed.ipynb", // 25
"kzg_vis.ipynb", // 26
"kmeans.ipynb", // 27
"solvency.ipynb", // 28
"sklearn_mlp.ipynb", // 29
"generalized_inverse.ipynb", // 30
"mnist_classifier.ipynb", // 31
"world_rotation.ipynb", // 32
"logistic_regression.ipynb", // 33
];
macro_rules! test_func {

View File

@@ -1 +1 @@
[{"type":"function","name":"deployVKA","inputs":[{"name":"bytecode","type":"bytes","internalType":"bytes"}],"outputs":[{"name":"addr","type":"address","internalType":"address"}],"stateMutability":"nonpayable"},{"type":"function","name":"precomputeAddress","inputs":[{"name":"bytecode","type":"bytes","internalType":"bytes"}],"outputs":[{"name":"","type":"address","internalType":"address"}],"stateMutability":"view"},{"type":"function","name":"verifyProof","inputs":[{"name":"vk","type":"address","internalType":"address"},{"name":"proof","type":"bytes","internalType":"bytes"},{"name":"instances","type":"uint256[]","internalType":"uint256[]"}],"outputs":[{"name":"","type":"bool","internalType":"bool"}],"stateMutability":"nonpayable"},{"type":"function","name":"vkaLog","inputs":[{"name":"","type":"address","internalType":"address"}],"outputs":[{"name":"","type":"bool","internalType":"bool"}],"stateMutability":"view"},{"type":"event","name":"DeployedVKArtifact","inputs":[{"name":"vka","type":"address","indexed":false,"internalType":"address"}],"anonymous":false},{"type":"error","name":"UnloggedVka","inputs":[{"name":"vka","type":"address","internalType":"address"}]}]
[{"type":"function","name":"verifyProof","inputs":[{"internalType":"bytes","name":"proof","type":"bytes"},{"internalType":"uint256[]","name":"instances","type":"uint256[]"}],"outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable"}]

2
vk.abi
View File

@@ -1 +1 @@
[{"type":"constructor","inputs":[],"stateMutability":"nonpayable"}]
[{"type":"constructor","inputs":[]}]