mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-13 16:27:59 -05:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
371e67421c | ||
|
|
64cbcb3f7e | ||
|
|
ee17f0ff9a | ||
|
|
ee55e7dc19 |
4
.github/workflows/pypi.yml
vendored
4
.github/workflows/pypi.yml
vendored
@@ -168,7 +168,7 @@ jobs:
|
||||
name: wheels
|
||||
path: dist
|
||||
|
||||
# TODO: There's a problem with the maturin-action toolchain for arm arch leading to failed builds
|
||||
# There's a problem with the maturin-action toolchain for arm arch leading to failed builds
|
||||
# linux-cross:
|
||||
# runs-on: ubuntu-latest
|
||||
# strategy:
|
||||
@@ -306,7 +306,7 @@ jobs:
|
||||
manylinux: musllinux_1_2
|
||||
args: --release --out dist --features python-bindings
|
||||
|
||||
- uses: uraimo/run-on-arch-action@v2.5.0
|
||||
- uses: uraimo/run-on-arch-action@v2.8.1
|
||||
name: Install built wheel
|
||||
with:
|
||||
arch: ${{ matrix.platform.arch }}
|
||||
|
||||
53
.github/workflows/rust.yml
vendored
53
.github/workflows/rust.yml
vendored
@@ -207,23 +207,6 @@ jobs:
|
||||
# AR=/opt/homebrew/opt/llvm/bin/llvm-ar CC=/opt/homebrew/opt/llvm/bin/clang wasm-pack test --firefox --headless -- -Z build-std="panic_abort,std" --features web
|
||||
run: wasm-pack test --chrome --headless -- -Z build-std="panic_abort,std" --features web
|
||||
|
||||
tutorial:
|
||||
runs-on: ubuntu-latest
|
||||
needs: [build, library-tests, docs, python-tests, python-integration-tests]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
override: true
|
||||
components: rustfmt, clippy
|
||||
- uses: baptiste0928/cargo-install@v1
|
||||
with:
|
||||
crate: cargo-nextest
|
||||
locked: true
|
||||
- name: Circuit Render
|
||||
run: cargo nextest run --release --verbose tests::tutorial_
|
||||
|
||||
mock-proving-tests:
|
||||
runs-on: non-gpu
|
||||
needs: [build, library-tests, docs, python-tests, python-integration-tests]
|
||||
@@ -494,23 +477,23 @@ jobs:
|
||||
- name: Mock aggr tests (KZG)
|
||||
run: cargo nextest run --release --verbose tests_aggr::kzg_aggr_mock_prove_and_verify_ --test-threads 8
|
||||
|
||||
prove-and-verify-aggr-tests-gpu:
|
||||
runs-on: GPU
|
||||
env:
|
||||
ENABLE_ICICLE_GPU: true
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
override: true
|
||||
components: rustfmt, clippy
|
||||
- uses: baptiste0928/cargo-install@v1
|
||||
with:
|
||||
crate: cargo-nextest
|
||||
locked: true
|
||||
- name: KZG )tests
|
||||
run: cargo nextest run --verbose tests_aggr::kzg_aggr_prove_and_verify_ --features icicle --test-threads 1 -- --include-ignored
|
||||
# prove-and-verify-aggr-tests-gpu:
|
||||
# runs-on: GPU
|
||||
# env:
|
||||
# ENABLE_ICICLE_GPU: true
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - uses: actions-rs/toolchain@v1
|
||||
# with:
|
||||
# toolchain: nightly-2024-07-18
|
||||
# override: true
|
||||
# components: rustfmt, clippy
|
||||
# - uses: baptiste0928/cargo-install@v1
|
||||
# with:
|
||||
# crate: cargo-nextest
|
||||
# locked: true
|
||||
# - name: KZG tests
|
||||
# run: cargo nextest run --verbose tests_aggr::kzg_aggr_prove_and_verify_ --features icicle --test-threads 1 -- --include-ignored
|
||||
|
||||
prove-and-verify-aggr-tests:
|
||||
runs-on: large-self-hosted
|
||||
@@ -614,8 +597,6 @@ jobs:
|
||||
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt;
|
||||
- name: Build python ezkl
|
||||
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
|
||||
- name: Div rebase
|
||||
run: source .env/bin/activate; cargo nextest run --release --verbose tests::accuracy_measurement_div_rebase_
|
||||
- name: Public inputs
|
||||
run: source .env/bin/activate; cargo nextest run --release --verbose tests::accuracy_measurement_public_inputs_
|
||||
- name: fixed params
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import ezkl
|
||||
|
||||
project = 'ezkl'
|
||||
release = '0.0.0'
|
||||
release = '15.6.5'
|
||||
version = release
|
||||
|
||||
|
||||
|
||||
42
examples/onnx/exp/gen.py
Normal file
42
examples/onnx/exp/gen.py
Normal file
@@ -0,0 +1,42 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self):
|
||||
super(MyModel, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
m = torch.exp(x)
|
||||
|
||||
return m
|
||||
|
||||
|
||||
circuit = MyModel()
|
||||
|
||||
x = torch.empty(1, 8).uniform_(0, 1)
|
||||
|
||||
out = circuit(x)
|
||||
|
||||
print(out)
|
||||
|
||||
torch.onnx.export(circuit, x, "network.onnx",
|
||||
export_params=True, # store the trained parameter weights inside the model file
|
||||
opset_version=17, # the ONNX version to export the model to
|
||||
do_constant_folding=True, # whether to execute constant folding for optimization
|
||||
input_names=['input'], # the model's input names
|
||||
output_names=['output'], # the model's output names
|
||||
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
|
||||
'output': {0: 'batch_size'}})
|
||||
|
||||
|
||||
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
|
||||
|
||||
data = dict(
|
||||
input_data=[d1],
|
||||
)
|
||||
|
||||
# Serialize data into file:
|
||||
json.dump(data, open("input.json", 'w'))
|
||||
1
examples/onnx/exp/input.json
Normal file
1
examples/onnx/exp/input.json
Normal file
@@ -0,0 +1 @@
|
||||
{"input_data": [[0.5801457762718201, 0.6019012331962585, 0.8695418238639832, 0.17170941829681396, 0.500616729259491, 0.353726327419281, 0.6726185083389282, 0.5936906337738037]]}
|
||||
14
examples/onnx/exp/network.onnx
Normal file
14
examples/onnx/exp/network.onnx
Normal file
@@ -0,0 +1,14 @@
|
||||
pytorch2.2.2:o
|
||||
|
||||
inputoutput/Exp"Exp
|
||||
main_graphZ!
|
||||
input
|
||||
|
||||
|
||||
batch_size
|
||||
b"
|
||||
output
|
||||
|
||||
|
||||
batch_size
|
||||
B
|
||||
41
examples/onnx/general_exp/gen.py
Normal file
41
examples/onnx/general_exp/gen.py
Normal file
@@ -0,0 +1,41 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self):
|
||||
super(MyModel, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
m = 10**x
|
||||
return m
|
||||
|
||||
|
||||
circuit = MyModel()
|
||||
|
||||
x = torch.empty(1, 8).uniform_(0, 1)
|
||||
|
||||
out = circuit(x)
|
||||
|
||||
print(out)
|
||||
|
||||
torch.onnx.export(circuit, x, "network.onnx",
|
||||
export_params=True, # store the trained parameter weights inside the model file
|
||||
opset_version=17, # the ONNX version to export the model to
|
||||
do_constant_folding=True, # whether to execute constant folding for optimization
|
||||
input_names=['input'], # the model's input names
|
||||
output_names=['output'], # the model's output names
|
||||
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
|
||||
'output': {0: 'batch_size'}})
|
||||
|
||||
|
||||
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
|
||||
|
||||
data = dict(
|
||||
input_data=[d1],
|
||||
)
|
||||
|
||||
# Serialize data into file:
|
||||
json.dump(data, open("input.json", 'w'))
|
||||
1
examples/onnx/general_exp/input.json
Normal file
1
examples/onnx/general_exp/input.json
Normal file
@@ -0,0 +1 @@
|
||||
{"input_data": [[0.9837989807128906, 0.026381194591522217, 0.3403851389884949, 0.14531707763671875, 0.24652725458145142, 0.7945117354393005, 0.4076554775238037, 0.23064672946929932]]}
|
||||
BIN
examples/onnx/general_exp/network.onnx
Normal file
BIN
examples/onnx/general_exp/network.onnx
Normal file
Binary file not shown.
@@ -1,5 +1,6 @@
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
f64::consts::E,
|
||||
ops::Range,
|
||||
};
|
||||
|
||||
@@ -5624,7 +5625,10 @@ pub fn softmax<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config,
|
||||
region,
|
||||
&[sub],
|
||||
&LookupOp::Exp { scale: input_scale },
|
||||
&LookupOp::Exp {
|
||||
scale: input_scale,
|
||||
base: E.into(),
|
||||
},
|
||||
)?;
|
||||
|
||||
percent(config, region, &[ex.clone()], input_scale, output_scale)
|
||||
|
||||
@@ -19,7 +19,7 @@ pub enum LookupOp {
|
||||
PowersOfTwo { scale: utils::F32 },
|
||||
Ln { scale: utils::F32 },
|
||||
Sigmoid { scale: utils::F32 },
|
||||
Exp { scale: utils::F32 },
|
||||
Exp { scale: utils::F32, base: utils::F32 },
|
||||
Cos { scale: utils::F32 },
|
||||
ACos { scale: utils::F32 },
|
||||
Cosh { scale: utils::F32 },
|
||||
@@ -55,7 +55,7 @@ impl LookupOp {
|
||||
LookupOp::Div { denom } => format!("div_{}", denom),
|
||||
LookupOp::Sigmoid { scale } => format!("sigmoid_{}", scale),
|
||||
LookupOp::Erf { scale } => format!("erf_{}", scale),
|
||||
LookupOp::Exp { scale } => format!("exp_{}", scale),
|
||||
LookupOp::Exp { scale, base } => format!("exp_{}_{}", scale, base),
|
||||
LookupOp::Cos { scale } => format!("cos_{}", scale),
|
||||
LookupOp::ACos { scale } => format!("acos_{}", scale),
|
||||
LookupOp::Cosh { scale } => format!("cosh_{}", scale),
|
||||
@@ -99,9 +99,9 @@ impl LookupOp {
|
||||
LookupOp::Erf { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::erffunc(&x, scale.into()))
|
||||
}
|
||||
LookupOp::Exp { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::exp(&x, scale.into()))
|
||||
}
|
||||
LookupOp::Exp { scale, base } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::exp(&x, scale.into(), base.into()),
|
||||
),
|
||||
LookupOp::Cos { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::cos(&x, scale.into()))
|
||||
}
|
||||
@@ -165,7 +165,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
|
||||
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
|
||||
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
|
||||
LookupOp::Erf { scale } => format!("ERF(scale={})", scale),
|
||||
LookupOp::Exp { scale } => format!("EXP(scale={})", scale),
|
||||
LookupOp::Exp { scale, base } => format!("EXP(scale={}, base={})", scale, base),
|
||||
LookupOp::Tan { scale } => format!("TAN(scale={})", scale),
|
||||
LookupOp::ATan { scale } => format!("ATAN(scale={})", scale),
|
||||
LookupOp::Tanh { scale } => format!("TANH(scale={})", scale),
|
||||
|
||||
@@ -279,6 +279,8 @@ pub fn new_op_from_onnx(
|
||||
symbol_values: &SymbolValues,
|
||||
run_args: &crate::RunArgs,
|
||||
) -> Result<(SupportedOp, Vec<usize>), GraphError> {
|
||||
use std::f64::consts::E;
|
||||
|
||||
use tract_onnx::tract_core::ops::array::Trilu;
|
||||
|
||||
use crate::circuit::InputType;
|
||||
@@ -855,6 +857,7 @@ pub fn new_op_from_onnx(
|
||||
}
|
||||
"Exp" => SupportedOp::Nonlinear(LookupOp::Exp {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
base: E.into(),
|
||||
}),
|
||||
"Ln" => {
|
||||
if run_args.bounded_log_lookup {
|
||||
@@ -1134,7 +1137,57 @@ pub fn new_op_from_onnx(
|
||||
})
|
||||
}
|
||||
} else {
|
||||
unimplemented!("only support constant pow for now")
|
||||
if let Some(c) = inputs[0].opkind().get_mutable_constant() {
|
||||
inputs[0].decrement_use();
|
||||
deleted_indices.push(0);
|
||||
if c.raw_values.len() > 1 {
|
||||
unimplemented!("only support scalar base")
|
||||
}
|
||||
|
||||
let base = c.raw_values[0];
|
||||
|
||||
SupportedOp::Nonlinear(LookupOp::Exp {
|
||||
scale: scale_to_multiplier(input_scales[1]).into(),
|
||||
base: base.into(),
|
||||
})
|
||||
} else {
|
||||
unimplemented!("only support constant base or pow for now")
|
||||
}
|
||||
}
|
||||
}
|
||||
"Div" => {
|
||||
let const_idx = inputs
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, n)| n.is_constant())
|
||||
.map(|(i, _)| i)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
if const_idx.len() > 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "div".to_string()));
|
||||
}
|
||||
|
||||
let const_idx = const_idx[0];
|
||||
|
||||
if const_idx != 1 {
|
||||
unimplemented!("only support div with constant as second input")
|
||||
}
|
||||
|
||||
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
|
||||
if c.raw_values.len() == 1 && c.raw_values[0] != 0. {
|
||||
inputs[const_idx].decrement_use();
|
||||
deleted_indices.push(const_idx);
|
||||
// get the non constant index
|
||||
let denom = c.raw_values[0];
|
||||
|
||||
SupportedOp::Hybrid(HybridOp::Div {
|
||||
denom: denom.into(),
|
||||
})
|
||||
} else {
|
||||
unimplemented!("only support non zero divisors of size 1")
|
||||
}
|
||||
} else {
|
||||
unimplemented!("only support div with constant as second input")
|
||||
}
|
||||
}
|
||||
"Cube" => SupportedOp::Linear(PolyOp::Pow(3)),
|
||||
|
||||
@@ -1664,7 +1664,7 @@ pub mod nonlinearities {
|
||||
/// Some(&[2, 15, 2, 1, 1, 0]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let result = exp(&x, 1.0);
|
||||
/// let result = exp(&x, 1.0, std::f64::consts::E);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[7, 3269017, 7, 3, 3, 1]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
///
|
||||
@@ -1673,16 +1673,16 @@ pub mod nonlinearities {
|
||||
/// Some(&[37, 12, 41]),
|
||||
/// &[3],
|
||||
/// ).unwrap();
|
||||
/// let result = exp(&x, 512.0);
|
||||
/// let result = exp(&x, 512.0, std::f64::consts::E);
|
||||
///
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[550, 524, 555]), &[3]).unwrap();
|
||||
///
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn exp(a: &Tensor<IntegerRep>, scale_input: f64) -> Tensor<IntegerRep> {
|
||||
pub fn exp(a: &Tensor<IntegerRep>, scale_input: f64, base: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let kix = (a_i as f64) / scale_input;
|
||||
let fout = scale_input * kix.exp();
|
||||
let fout = scale_input * base.powf(kix);
|
||||
let rounded = fout.round();
|
||||
Ok::<_, TensorError>(rounded as IntegerRep)
|
||||
})
|
||||
|
||||
@@ -205,7 +205,7 @@ mod native_tests {
|
||||
"1l_tiny_div",
|
||||
];
|
||||
|
||||
const TESTS: [&str; 96] = [
|
||||
const TESTS: [&str; 98] = [
|
||||
"1l_mlp", //0
|
||||
"1l_slice",
|
||||
"1l_concat",
|
||||
@@ -306,6 +306,8 @@ mod native_tests {
|
||||
"lenet_5", // 93
|
||||
"rsqrt", // 94
|
||||
"log", // 95
|
||||
"exp", // 96
|
||||
"general_exp", // 97
|
||||
];
|
||||
|
||||
const WASM_TESTS: [&str; 46] = [
|
||||
@@ -490,7 +492,7 @@ mod native_tests {
|
||||
#[cfg(feature="icicle")]
|
||||
seq!(N in 0..=2 {
|
||||
#(#[test_case(TESTS_AGGR[N])])*
|
||||
fn aggr_prove_and_verify_(test: &str) {
|
||||
fn kzg_aggr_prove_and_verify_(test: &str) {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(test_dir.path().to_str().unwrap(), test);
|
||||
@@ -544,7 +546,7 @@ mod native_tests {
|
||||
}
|
||||
});
|
||||
|
||||
seq!(N in 0..=95 {
|
||||
seq!(N in 0..=97 {
|
||||
|
||||
#(#[test_case(TESTS[N])])*
|
||||
#[ignore]
|
||||
|
||||
Reference in New Issue
Block a user