Compare commits

...

69 Commits

Author SHA1 Message Date
github-actions[bot]
c48ff1a4e9 ci: update version string in docs 2025-03-18 22:08:52 +00:00
Ethan Cemer
fe978caa85 fix!: bug fixes (#956)
BREAKING CHANGE: DA verifier no longer backwards compatible
2025-03-18 22:08:29 +00:00
dante
1bef92407c fix: recip denom epsilon can induce non opt res (#957) 2025-03-17 14:46:33 +00:00
dante
5ff1c48ede refactor: allow for negative stride downsample (#955) 2025-03-14 12:07:37 -04:00
dante
ab4997d0c2 chore: update docs and panics (#952) 2025-03-10 11:32:28 -04:00
dante
701e69dd2f fix: handle [] shapes in sort (#954) 2025-03-08 13:17:45 -05:00
dante
f631445e26 docs: document arguments better (#950) 2025-03-05 16:10:50 -05:00
dante
fcbb27677f fix: empty dim len can be 1 (#949) 2025-02-28 23:56:19 -05:00
dante
bc26691bd5 chore: smaller cat dog example (#947) 2025-02-28 10:37:08 -05:00
dante
73c813a81d feat: pass data directly in cli (#939) 2025-02-13 12:35:13 -05:00
dante
ae076aef09 refactor: rm tolerance parameter (#937) 2025-02-11 12:57:18 -05:00
dante
a7544f4060 feat: generalize conv mem layout and ND (#935) 2025-02-10 09:11:58 -05:00
dante
c19fa5218a refactor: enforce max decomp base/legs in args (#936) 2025-02-09 16:15:40 -05:00
rebustron
eb205d0c73 chore: fix typos in comments and docs (#934) 2025-02-08 19:13:17 -05:00
dante
db498f8d7c docs: cat-dog example (#929) 2025-02-08 17:30:13 -05:00
Cypher Pepe
a363c91160 fix: broken links in polycommit.rs and poseidon.rs (#932) 2025-02-08 12:40:53 -05:00
dante
f7f04415fa chore!: add model input/output types to settings (#933)
BREAKING CHANGE: compiled model serialization is not backwards compatible
2025-02-07 16:05:59 -05:00
Jseam
de8d419e5d ci: change to sha hashes (#922) 2025-02-07 12:27:35 -05:00
dante
a38d318923 fix: pypi publication pipeline (#931) 2025-02-05 23:03:21 -05:00
dante
864990fe2d fix: publishing path 2025-02-05 19:57:13 -05:00
dante
29c3e4f977 fix: bump download artifact to v4 2025-02-05 19:05:29 -05:00
dante
0689115828 fix: ezkl-gpu name (#930) 2025-02-05 18:29:28 -05:00
dante
99f741304a Revert "fix: ezkl-gpu install"
This reverts commit 20ac99fdbf.
2025-02-05 18:03:46 -05:00
dante
20ac99fdbf fix: ezkl-gpu install 2025-02-05 18:01:26 -05:00
dante
532fa65e93 fix: patch python release pipeline for v4 2025-02-05 17:59:35 -05:00
dante
cfe5db545c fix: npm and pypi releases 2025-02-05 17:26:36 -05:00
dante
21ad56aea1 refactor: serial lookup commits for metal (#928) 2025-02-05 16:54:12 -05:00
dante
4ed7e0fd29 fix: use variable len domain for poseidon (#927) 2025-02-05 16:52:28 -05:00
dante
05d1f10615 docs: advanced security notices (#926)
---------

Co-authored-by: jason <jason.morton@gmail.com>
2025-02-05 15:14:29 +00:00
dante
9a8c754e45 fix: use onnx convention when integer dividing (#925) 2025-02-05 09:32:44 +00:00
dante
d82766d413 fix: force prover det on argmax/min for collisions (#923) 2025-02-04 12:08:34 +00:00
dante
820a80122b fix: range-check graph input and outputs (#921) 2025-02-04 02:33:27 +00:00
dante
9c64e42bd3 docs: improve quality + code quality fixes (#920) 2025-01-31 10:48:25 +00:00
dante
27b5e5dde3 fix: make flushing err more informative (#919) 2025-01-28 14:53:05 -05:00
dante
83c4afce3b fix: version interpolation in npm publishing (#917) 2025-01-27 23:20:58 -05:00
dante
50740a22df fix: patch pypi whl version labels (#916) 2025-01-27 20:25:03 -05:00
dante
a2624f6303 fix: strict cvx opt bounds to stop prover non-det (#914) 2025-01-24 08:48:50 -05:00
dante
fc5be4f949 fix: syn-sel should be range-checked when overflow (#913) 2025-01-23 12:26:31 -05:00
dante
d0ba505baa fix: node parsing should not panic (#912) 2025-01-22 08:02:29 -05:00
dante
f35688917d fix: rm macos metal bindings from python (#911) 2025-01-21 00:36:57 -05:00
Artem
7ae541ed35 feat: metal acceleration for MSM solving (#909)
---------

Co-authored-by: dante <45801863+alexander-camuto@users.noreply.github.com>
2025-01-20 22:17:24 -05:00
dante
675628cd08 fix!: shuffle argument should include an incrementing index (#904)
BREAKING CHANGE: pk and vk will not be backwards compatible
2025-01-17 09:19:10 -05:00
Artem
4fe7290240 fix: rust ci issue with updating swift pm testing files (#908) 2025-01-14 12:00:55 -05:00
dante
3e027db9b6 fix: apply zizmor suggestions to CI (#906)
---------

Co-authored-by: Jseam <hello.jseam@gmail.com>
2025-01-14 12:00:31 -05:00
Artem
e566acc22a fix: swift pm ci issue with updating testing files (#905) 2025-01-13 18:08:04 -05:00
dante
75ea99e81d fix: eager exec of ok_or error prints (#903) 2025-01-11 13:50:57 -05:00
dante
c5354c382d refactor: range check sanity toggled by CHECKMODE (#902) 2025-01-10 22:58:52 +00:00
dante
bdcba5ca61 feat: add gen-random-data helpers func (#901) 2025-01-09 00:14:27 +00:00
dante
6752a05f19 refactor: pregen mv-lookup blinds (#900) 2025-01-08 17:18:46 +00:00
dante
03aefb85eb chore: version mismatch warnings for artifacts (#899) 2025-01-06 16:01:34 +00:00
dante
e86caca8b6 refactor: batched poly reads (#897) 2025-01-06 15:49:47 +00:00
dante
c839a30ae6 fix: clearer duplication functions (#895) 2024-12-31 07:28:02 -05:00
dante
352812b9ac refactor!: simplified decompose op (#892) 2024-12-30 13:44:03 -05:00
dante
d48d0b0b3e fix: get_slice should not use intermediate Vec (#894) 2024-12-27 23:26:22 -05:00
Jseam
8b223354cc fix: add version string and sed (#893) 2024-12-27 14:24:28 -05:00
dante
caa6ef8e16 fix: const filtering strat is size dependent (#891) 2024-12-27 09:43:59 -05:00
Artem
c4354c10a5 fix: ios bindings update action (#886) 2024-12-16 10:49:13 -05:00
dante
c1ce8c88d0 chore: rm wasm serialization checks (#890) 2024-12-12 22:20:29 -05:00
dante
876a9584a1 chore: optimize wasm bundle for speed over size (#889) 2024-12-12 15:35:17 -05:00
dante
7d7f049cc4 chore: neural bag of words example (#888) 2024-12-12 14:20:21 -05:00
dante
96f3fd94b2 feat: ICICLE MSM and NTT integration (#884) 2024-12-07 00:32:09 +00:00
dante
6263510c56 fix: bump pypi-publish to unstable to use twine updates (#881) 2024-12-06 23:19:29 +00:00
Jseam
f5b8ae3213 fix: revert pypi to 1.11.0 (#880) 2024-12-05 14:46:40 -05:00
dante
b2e4e414f0 chore: update pyo3 and add stub (#879) 2024-12-05 10:35:06 -05:00
Dmitry
0b0199e2b7 fix: typo in lib.rs (#877) 2024-12-03 18:46:46 -05:00
dante
5e169bdd17 chore: update tract to 0.21.8-pre (#878) 2024-12-03 16:52:03 -05:00
dante
64cbcb3f7e chore: explicitly compile div op (#876) 2024-11-28 17:14:53 +09:00
dante
ee17f0ff9a chore: generalize the exp to other bases (#875) 2024-11-26 09:31:12 +09:00
Jseam
ee55e7dc19 fix: upgrade run-on-arch (#874) 2024-11-24 14:30:42 +09:00
119 changed files with 12764 additions and 6280 deletions

View File

@@ -2,3 +2,16 @@
runner = 'wasm-bindgen-test-runner'
rustflags = ["-C", "target-feature=+atomics,+bulk-memory,+mutable-globals","-C",
"link-arg=--max-memory=4294967296"]
[target.x86_64-apple-darwin]
rustflags = [
"-C", "link-arg=-undefined",
"-C", "link-arg=dynamic_lookup",
]
[target.aarch64-apple-darwin]
rustflags = [
"-C", "link-arg=-undefined",
"-C", "link-arg=dynamic_lookup",
]

View File

@@ -6,23 +6,16 @@ on:
description: "Test scenario tags"
jobs:
bench_elgamal:
runs-on: self-hosted
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
override: true
components: rustfmt, clippy
- name: Bench elgamal
run: cargo bench --verbose --bench elgamal
bench_poseidon:
permissions:
contents: read
runs-on: self-hosted
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -31,11 +24,15 @@ jobs:
run: cargo bench --verbose --bench poseidon
bench_einsum_accum_matmul:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -44,11 +41,15 @@ jobs:
run: cargo bench --verbose --bench accum_einsum_matmul
bench_accum_matmul_relu:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -57,11 +58,15 @@ jobs:
run: cargo bench --verbose --bench accum_matmul_relu
bench_accum_matmul_relu_overflow:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -70,11 +75,15 @@ jobs:
run: cargo bench --verbose --bench accum_matmul_relu_overflow
bench_relu:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -83,11 +92,15 @@ jobs:
run: cargo bench --verbose --bench relu
bench_accum_dot:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -96,11 +109,15 @@ jobs:
run: cargo bench --verbose --bench accum_dot
bench_accum_conv:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -109,11 +126,15 @@ jobs:
run: cargo bench --verbose --bench accum_conv
bench_accum_sumpool:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -122,11 +143,15 @@ jobs:
run: cargo bench --verbose --bench accum_sumpool
bench_pairwise_add:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -135,11 +160,15 @@ jobs:
run: cargo bench --verbose --bench pairwise_add
bench_accum_sum:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -148,11 +177,15 @@ jobs:
run: cargo bench --verbose --bench accum_sum
bench_pairwise_pow:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true

View File

@@ -15,17 +15,24 @@ defaults:
working-directory: .
jobs:
publish-wasm-bindings:
permissions:
contents: read
packages: write
name: publish-wasm-bindings
env:
RELEASE_TAG: ${{ github.ref_name }}
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
toolchain: nightly-2024-07-18
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
- uses: jetli/wasm-pack-action@0d096b08b4e5a7de8c28de67e11e945404e9eefa #v0.4.0
with:
# Pin to version 0.12.1
version: 'v0.12.1'
@@ -33,7 +40,7 @@ jobs:
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2025-02-17-x86_64-unknown-linux-gnu
- name: Install binaryen
run: |
set -e
@@ -42,41 +49,41 @@ jobs:
wasm-opt --version
- name: Build wasm files for both web and nodejs compilation targets
run: |
wasm-pack build --release --target nodejs --out-dir ./pkg/nodejs . -- -Z build-std="panic_abort,std"
wasm-pack build --release --target web --out-dir ./pkg/web . -- -Z build-std="panic_abort,std" --features web
wasm-pack build --release --target nodejs --out-dir ./pkg/nodejs . -- -Z build-std="panic_abort,std"
wasm-pack build --release --target web --out-dir ./pkg/web . -- -Z build-std="panic_abort,std" --features web
- name: Create package.json in pkg folder
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
echo '{
"name": "@ezkljs/engine",
"version": "${{ github.ref_name }}",
"dependencies": {
"@types/json-bigint": "^1.0.1",
"json-bigint": "^1.0.0"
},
"files": [
"nodejs/ezkl_bg.wasm",
"nodejs/ezkl.js",
"nodejs/ezkl.d.ts",
"nodejs/package.json",
"nodejs/utils.js",
"web/ezkl_bg.wasm",
"web/ezkl.js",
"web/ezkl.d.ts",
"web/snippets/**/*",
"web/package.json",
"web/utils.js",
"ezkl.d.ts"
],
"main": "nodejs/ezkl.js",
"module": "web/ezkl.js",
"types": "nodejs/ezkl.d.ts",
"sideEffects": [
"web/snippets/*"
]
}' > pkg/package.json
cat > pkg/package.json << EOF
{
"name": "@ezkljs/engine",
"version": "$RELEASE_TAG",
"dependencies": {
"@types/json-bigint": "^1.0.1",
"json-bigint": "^1.0.0"
},
"files": [
"nodejs/ezkl_bg.wasm",
"nodejs/ezkl.js",
"nodejs/ezkl.d.ts",
"nodejs/package.json",
"nodejs/utils.js",
"web/ezkl_bg.wasm",
"web/ezkl.js",
"web/ezkl.d.ts",
"web/snippets/**/*",
"web/package.json",
"web/utils.js",
"ezkl.d.ts"
],
"main": "nodejs/ezkl.js",
"module": "web/ezkl.js",
"types": "nodejs/ezkl.d.ts",
"sideEffects": [
"web/snippets/*"
]
}
EOF
- name: Replace memory definition in nodejs
run: |
@@ -169,7 +176,7 @@ jobs:
curl -s "https://raw.githubusercontent.com/zkonduit/ezkljs-engine/main/README.md" > ./pkg/README.md
- name: Set up Node.js
uses: actions/setup-node@v3
uses: actions/setup-node@1a4442cacd436585916779262731d5b162bc6ec7 #v3.8.2
with:
node-version: "18.12.1"
registry-url: "https://registry.npmjs.org"
@@ -184,21 +191,26 @@ jobs:
in-browser-evm-ver-publish:
permissions:
contents: read
packages: write
name: publish-in-browser-evm-verifier-package
needs: [publish-wasm-bindings]
runs-on: ubuntu-latest
env:
RELEASE_TAG: ${{ github.ref_name }}
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Update version in package.json
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
sed -i "s|\"version\": \".*\"|\"version\": \"${{ github.ref_name }}\"|" in-browser-evm-verifier/package.json
sed -i "s|\"version\": \".*\"|\"version\": \"$RELEASE_TAG\"|" in-browser-evm-verifier/package.json
- name: Prepare tag and fetch package integrity
run: |
CLEANED_TAG=${{ github.ref_name }} # Get the tag from ref_name
CLEANED_TAG=${RELEASE_TAG} # Get the tag from ref_name
CLEANED_TAG="${CLEANED_TAG#v}" # Remove leading 'v'
echo "CLEANED_TAG=${CLEANED_TAG}" >> $GITHUB_ENV # Set it as an environment variable for later steps
ENGINE_INTEGRITY=$(npm view @ezkljs/engine@$CLEANED_TAG dist.integrity)
@@ -218,13 +230,13 @@ jobs:
NR==30{$0=" specifier: \"" tag "\""}
NR==31{$0=" version: \"" tag "\""}
NR==400{$0=" /@ezkljs/engine@" tag ":"}
NR==401{$0=" resolution: {integrity: \"" integrity "\"}"} 1' in-browser-evm-verifier/pnpm-lock.yaml > temp.yaml && mv temp.yaml in-browser-evm-verifier/pnpm-lock.yaml
NR==401{$0=" resolution: {integrity: \"" integrity "\"}"} 1' in-browser-evm-verifier/pnpm-lock.yaml > temp.yaml && mv temp.yaml in-browser-evm-verifier/pnpm-lock.yaml
- name: Use pnpm 8
uses: pnpm/action-setup@v2
uses: pnpm/action-setup@eae0cfeb286e66ffb5155f1a79b90583a127a68b #v2.4.1
with:
version: 8
- name: Set up Node.js
uses: actions/setup-node@v3
uses: actions/setup-node@1a4442cacd436585916779262731d5b162bc6ec7 #v3.8.2
with:
node-version: "18.12.1"
registry-url: "https://registry.npmjs.org"
@@ -235,4 +247,4 @@ jobs:
pnpm run build
pnpm publish --no-git-checks
env:
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}

View File

@@ -6,12 +6,16 @@ on:
description: "Test scenario tags"
jobs:
large-tests:
permissions:
contents: read
runs-on: kaiju
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
toolchain: nightly-2024-07-18
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- name: nanoGPT Mock

View File

@@ -18,38 +18,46 @@ defaults:
jobs:
linux:
permissions:
contents: read
packages: write
runs-on: GPU
strategy:
matrix:
target: [x86_64]
env:
RELEASE_TAG: ${{ github.ref_name }}
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
- name: Set pyproject.toml version to match github tag and rename ezkl to ezkl-gpu
shell: bash
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig >pyproject.toml
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig > pyproject.toml.tmp
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.tmp > pyproject.toml
- uses: actions-rs/toolchain@v1
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
components: rustfmt, clippy
- name: Set Cargo.toml version to match github tag
- name: Set Cargo.toml version to match github tag and rename ezkl to ezkl-gpu
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
# the ezkl substitution here looks for the first instance of name = "ezkl" and changes it to "ezkl-gpu"
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
sed "0,/name = \"ezkl\"/s/name = \"ezkl\"/name = \"ezkl-gpu\"/" Cargo.toml.orig > Cargo.toml.tmp
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.tmp > Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig > Cargo.lock
- name: Install required libraries
shell: bash
@@ -57,7 +65,7 @@ jobs:
sudo apt-get update && sudo apt-get install -y openssl pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: auto
@@ -70,7 +78,7 @@ jobs:
pip install ezkl-gpu --no-index --find-links dist --force-reinstall
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
path: dist
@@ -86,7 +94,7 @@ jobs:
# needs: [ macos, windows, linux, linux-cross, musllinux, musllinux-cross ]
needs: [linux]
steps:
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 #v4.1.8
with:
name: wheels
- name: List Files
@@ -98,14 +106,14 @@ jobs:
# publishes to PyPI
- name: Publish package distributions to PyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@release/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
packages-dir: ./
packages-dir: ./wheels
# publishes to TestPyPI
- name: Publish package distribution to TestPyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@release/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ./
packages-dir: ./wheels

View File

@@ -16,36 +16,53 @@ defaults:
jobs:
macos:
permissions:
contents: read
runs-on: macos-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
matrix:
target: [x86_64, universal2-apple-darwin]
env:
RELEASE_TAG: ${{ github.ref_name }}
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
shell: bash
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- uses: actions-rs/toolchain@v1
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- name: Build wheels
uses: PyO3/maturin-action@v1
if: matrix.target == 'universal2-apple-darwin'
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
- name: Build wheels
if: matrix.target == 'x86_64'
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
@@ -56,24 +73,36 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-macos-${{ matrix.target }}
path: dist
windows:
permissions:
contents: read
runs-on: windows-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
matrix:
target: [x64, x86]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: ${{ matrix.target }}
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -84,14 +113,14 @@ jobs:
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- uses: actions-rs/toolchain@v1
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
@@ -101,24 +130,36 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0 #v4.6.0
with:
name: wheels
name: dist-windows-${{ matrix.target }}
path: dist
linux:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
matrix:
target: [x86_64]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -129,14 +170,13 @@ jobs:
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- name: Install required libraries
shell: bash
run: |
sudo apt-get update && sudo apt-get install -y openssl pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: auto
@@ -163,63 +203,14 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-linux-${{ matrix.target }}
path: dist
# TODO: There's a problem with the maturin-action toolchain for arm arch leading to failed builds
# linux-cross:
# runs-on: ubuntu-latest
# strategy:
# matrix:
# target: [aarch64, armv7]
# steps:
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v4
# with:
# python-version: 3.12
# - name: Install cross-compilation tools for aarch64
# if: matrix.target == 'aarch64'
# run: |
# sudo apt-get update
# sudo apt-get install -y gcc make gcc-aarch64-linux-gnu binutils-aarch64-linux-gnu libc6-dev-arm64-cross libusb-1.0-0-dev libatomic1-arm64-cross
# - name: Install cross-compilation tools for armv7
# if: matrix.target == 'armv7'
# run: |
# sudo apt-get update
# sudo apt-get install -y gcc make gcc-arm-linux-gnueabihf binutils-arm-linux-gnueabihf libc6-dev-armhf-cross libusb-1.0-0-dev libatomic1-armhf-cross
# - name: Build wheels
# uses: PyO3/maturin-action@v1
# with:
# target: ${{ matrix.target }}
# manylinux: auto
# args: --release --out dist --features python-bindings
# - uses: uraimo/run-on-arch-action@v2.5.0
# name: Install built wheel
# with:
# arch: ${{ matrix.target }}
# distro: ubuntu20.04
# githubToken: ${{ github.token }}
# install: |
# apt-get update
# apt-get install -y --no-install-recommends python3 python3-pip
# pip3 install -U pip
# run: |
# pip3 install ezkl --no-index --find-links dist/ --force-reinstall
# python3 -c "import ezkl"
# - name: Upload wheels
# uses: actions/upload-artifact@v3
# with:
# name: wheels
# path: dist
musllinux:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
@@ -227,12 +218,22 @@ jobs:
target:
- x86_64-unknown-linux-musl
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -249,7 +250,7 @@ jobs:
sudo apt-get update && sudo apt-get install -y pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: musllinux_1_2
@@ -270,12 +271,14 @@ jobs:
python3 -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-musllinux-${{ matrix.target }}
path: dist
musllinux-cross:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
@@ -284,11 +287,21 @@ jobs:
- target: aarch64-unknown-linux-musl
arch: aarch64
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -300,13 +313,13 @@ jobs:
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.platform.target }}
manylinux: musllinux_1_2
args: --release --out dist --features python-bindings
- uses: uraimo/run-on-arch-action@v2.5.0
- uses: uraimo/run-on-arch-action@5397f9e30a9b62422f302092631c99ae1effcd9e #v2.8.1
name: Install built wheel
with:
arch: ${{ matrix.platform.arch }}
@@ -321,9 +334,9 @@ jobs:
python3 -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-musllinux-${{ matrix.platform.target }}
path: dist
pypi-publish:
@@ -332,44 +345,43 @@ jobs:
permissions:
id-token: write
if: "startsWith(github.ref, 'refs/tags/')"
# TODO: Uncomment if linux-cross is working
# needs: [ macos, windows, linux, linux-cross, musllinux, musllinux-cross ]
needs: [macos, windows, linux, musllinux, musllinux-cross]
steps:
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 #v4.1.8
with:
name: wheels
pattern: dist-*
merge-multiple: true
path: wheels
- name: List Files
run: ls -R
# Both publish steps will fail if there is no trusted publisher setup
# On failure the publish step will then simply continue to the next one
# # publishes to TestPyPI
# - name: Publish package distribution to TestPyPI
# uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
# with:
# repository-url: https://test.pypi.org/legacy/
# packages-dir: ./
# publishes to PyPI
- name: Publish package distributions to PyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@release/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
packages-dir: ./
packages-dir: ./wheels
# publishes to TestPyPI
- name: Publish package distribution to TestPyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ./
doc-publish:
permissions:
contents: read
name: Trigger ReadTheDocs Build
runs-on: ubuntu-latest
needs: pypi-publish
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Trigger RTDs build
uses: dfm/rtds-action@v1
with:
webhook_url: ${{ secrets.RTDS_WEBHOOK_URL }}
webhook_token: ${{ secrets.RTDS_WEBHOOK_TOKEN }}
commit_ref: ${{ github.ref_name }}
commit_ref: ${{ github.ref_name }}

View File

@@ -10,6 +10,9 @@ on:
- "*"
jobs:
create-release:
permissions:
contents: read
packages: write
name: create-release
runs-on: ubuntu-22.04
if: startsWith(github.ref, 'refs/tags/')
@@ -27,12 +30,15 @@ jobs:
- name: Create Github Release
id: create-release
uses: softprops/action-gh-release@v1
uses: softprops/action-gh-release@c95fe1489396fe8a9eb87c0abf8aa5b2ef267fda #v2.2.1
with:
token: ${{ secrets.RELEASE_TOKEN }}
tag_name: ${{ env.EZKL_VERSION }}
build-release-gpu:
permissions:
contents: read
packages: write
name: build-release-gpu
needs: ["create-release"]
runs-on: GPU
@@ -43,13 +49,16 @@ jobs:
RUST_BACKTRACE: 1
PCRE2_SYS_STATIC: 1
steps:
- uses: actions-rs/toolchain@v1
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- name: Checkout repo
uses: actions/checkout@v4
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Get release version from tag
shell: bash
@@ -81,7 +90,7 @@ jobs:
echo "ASSET=build-artifacts/ezkl-linux-gpu.tar.gz" >> $GITHUB_ENV
- name: Upload release archive
uses: actions/upload-release-asset@v1.0.2
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 #v1.0.2
env:
GITHUB_TOKEN: ${{ secrets.RELEASE_TOKEN }}
with:
@@ -91,6 +100,10 @@ jobs:
asset_content_type: application/octet-stream
build-release:
permissions:
contents: read
packages: write
issues: write
name: build-release
needs: ["create-release"]
runs-on: ${{ matrix.os }}
@@ -106,32 +119,34 @@ jobs:
include:
- build: windows-msvc
os: windows-latest
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: x86_64-pc-windows-msvc
- build: macos
os: macos-13
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: x86_64-apple-darwin
- build: macos-aarch64
os: macos-13
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: aarch64-apple-darwin
- build: linux-musl
os: ubuntu-22.04
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: x86_64-unknown-linux-musl
- build: linux-gnu
os: ubuntu-22.04
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: x86_64-unknown-linux-gnu
- build: linux-aarch64
os: ubuntu-22.04
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: aarch64-unknown-linux-gnu
steps:
- name: Checkout repo
uses: actions/checkout@v4
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Get release version from tag
shell: bash
@@ -155,7 +170,7 @@ jobs:
fi
- name: Install Rust
uses: dtolnay/rust-toolchain@nightly
uses: dtolnay/rust-toolchain@4f94fbe7e03939b0e674bcc9ca609a16088f63ff #nightly branch, TODO: update when required
with:
target: ${{ matrix.target }}
@@ -181,14 +196,18 @@ jobs:
echo "target flag is: ${{ env.TARGET_FLAGS }}"
echo "target dir is: ${{ env.TARGET_DIR }}"
- name: Build release binary (no asm)
if: matrix.build != 'linux-gnu'
- name: Build release binary (no asm or metal)
if: matrix.build != 'linux-gnu' && matrix.build != 'macos-aarch64'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry
- name: Build release binary (asm)
if: matrix.build == 'linux-gnu'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features asm
- name: Build release binary (metal)
if: matrix.build == 'macos-aarch64'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features macos-metal
- name: Strip release binary
if: matrix.build != 'windows-msvc' && matrix.build != 'linux-aarch64'
run: strip "target/${{ matrix.target }}/release/ezkl"
@@ -214,7 +233,7 @@ jobs:
echo "ASSET=build-artifacts/ezkl-win.zip" >> $GITHUB_ENV
- name: Upload release archive
uses: actions/upload-release-asset@v1.0.2
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 #v1.0.2
env:
GITHUB_TOKEN: ${{ secrets.RELEASE_TOKEN }}
with:

File diff suppressed because it is too large Load Diff

32
.github/workflows/static-analysis.yml vendored Normal file
View File

@@ -0,0 +1,32 @@
name: Static Analysis
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
analyze:
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
# Run Zizmor static analysis
- name: Install Zizmor
run: cargo install --locked zizmor
- name: Run Zizmor Analysis
run: zizmor .

134
.github/workflows/swift-pm.yml vendored Normal file
View File

@@ -0,0 +1,134 @@
name: Build and Publish EZKL iOS SPM package
on:
push:
tags:
# Only support SemVer versioning tags
- 'v[0-9]+.[0-9]+.[0-9]+'
- '[0-9]+.[0-9]+.[0-9]+'
jobs:
build-and-update:
permissions:
contents: read
packages: write
runs-on: macos-latest
env:
EZKL_SWIFT_PACKAGE_REPO: github.com/zkonduit/ezkl-swift-package.git
RELEASE_TAG: ${{ github.ref_name }}
steps:
- name: Checkout EZKL
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Extract TAG from github.ref_name
run: |
# github.ref_name is provided by GitHub Actions and contains the tag name directly.
TAG="${RELEASE_TAG}"
echo "Original TAG: $TAG"
# Remove leading 'v' if present to match the Swift Package Manager version format.
NEW_TAG=${TAG#v}
echo "Stripped TAG: $NEW_TAG"
echo "TAG=$NEW_TAG" >> $GITHUB_ENV
- name: Install Rust (nightly)
uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly
override: true
- name: Build EzklCoreBindings
run: CONFIGURATION=release cargo run --bin ios_gen_bindings --features "ios-bindings uuid camino uniffi_bindgen" --no-default-features
- name: Clone ezkl-swift-package repository
run: |
git clone https://${{ env.EZKL_SWIFT_PACKAGE_REPO }}
- name: Copy EzklCoreBindings
run: |
rm -rf ezkl-swift-package/Sources/EzklCoreBindings
cp -r build/EzklCoreBindings ezkl-swift-package/Sources/
- name: Copy Test Files
run: |
rm -rf ezkl-swift-package/Tests/EzklAssets/
mkdir -p ezkl-swift-package/Tests/EzklAssets/
cp tests/assets/kzg ezkl-swift-package/Tests/EzklAssets/kzg.srs
cp tests/assets/input.json ezkl-swift-package/Tests/EzklAssets/input.json
cp tests/assets/model.compiled ezkl-swift-package/Tests/EzklAssets/network.ezkl
cp tests/assets/settings.json ezkl-swift-package/Tests/EzklAssets/settings.json
- name: Check for changes
id: check_changes
run: |
cd ezkl-swift-package
if git diff --quiet Sources/EzklCoreBindings Tests/EzklAssets; then
echo "no_changes=true" >> $GITHUB_OUTPUT
else
echo "no_changes=false" >> $GITHUB_OUTPUT
fi
- name: Set up Xcode environment
if: steps.check_changes.outputs.no_changes == 'false'
run: |
sudo xcode-select -s /Applications/Xcode.app/Contents/Developer
sudo xcodebuild -license accept
- name: Run Package Tests
if: steps.check_changes.outputs.no_changes == 'false'
run: |
cd ezkl-swift-package
xcodebuild test \
-scheme EzklPackage \
-destination 'platform=iOS Simulator,name=iPhone 15 Pro,OS=17.5' \
-resultBundlePath ../testResults
- name: Run Example App Tests
if: steps.check_changes.outputs.no_changes == 'false'
run: |
cd ezkl-swift-package/Example
xcodebuild test \
-project Example.xcodeproj \
-scheme EzklApp \
-destination 'platform=iOS Simulator,name=iPhone 15 Pro,OS=17.5' \
-parallel-testing-enabled NO \
-resultBundlePath ../../exampleTestResults \
-skip-testing:EzklAppUITests/EzklAppUITests/testButtonClicksInOrder
- name: Setup Git
run: |
cd ezkl-swift-package
git config user.name "GitHub Action"
git config user.email "action@github.com"
git remote set-url origin https://zkonduit:${EZKL_SWIFT_PACKAGE_REPO_TOKEN}@${{ env.EZKL_SWIFT_PACKAGE_REPO }}
env:
EZKL_SWIFT_PACKAGE_REPO_TOKEN: ${{ secrets.EZKL_PORTER_TOKEN }}
- name: Commit and Push Changes
if: steps.check_changes.outputs.no_changes == 'false'
run: |
cd ezkl-swift-package
git add Sources/EzklCoreBindings Tests/EzklAssets
git commit -m "Automatically updated EzklCoreBindings for EZKL"
if ! git push origin; then
echo "::error::Failed to push changes to ${{ env.EZKL_SWIFT_PACKAGE_REPO }}. Please ensure that EZKL_PORTER_TOKEN has the correct permissions."
exit 1
fi
- name: Tag the latest commit
run: |
cd ezkl-swift-package
source $GITHUB_ENV
# Tag the latest commit on the current branch
if git rev-parse "$TAG" >/dev/null 2>&1; then
echo "Tag $TAG already exists locally. Skipping tag creation."
else
git tag "$TAG"
fi
if ! git push origin "$TAG"; then
echo "::error::Failed to push tag '$TAG' to ${{ env.EZKL_SWIFT_PACKAGE_REPO }}. Please ensure EZKL_PORTER_TOKEN has correct permissions."
exit 1
fi

View File

@@ -11,10 +11,12 @@ jobs:
contents: write
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Bump version and push tag
id: tag_version
uses: mathieudutour/github-tag-action@v6.2
uses: mathieudutour/github-tag-action@a22cf08638b34d5badda920f9daf6e72c477b07b #v6.2
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
@@ -44,7 +46,7 @@ jobs:
git tag $RELEASE_TAG
- name: Push changes
uses: ad-m/github-push-action@master
uses: ad-m/github-push-action@77c5b412c50b723d2a4fbc6d71fb5723bcd439aa #master
env:
RELEASE_TAG: ${{ steps.tag_version.outputs.new_tag }}
with:

View File

@@ -1,85 +0,0 @@
name: Build and Publish EZKL iOS SPM package
on:
workflow_dispatch:
inputs:
tag:
description: "The tag to release"
required: true
push:
tags:
- "*"
jobs:
build-and-update:
runs-on: macos-latest
steps:
- name: Checkout EZKL
uses: actions/checkout@v3
- name: Install Rust
uses: actions-rs/toolchain@v1
with:
toolchain: nightly
override: true
- name: Build EzklCoreBindings
run: CONFIGURATION=release cargo run --bin ios_gen_bindings --features "ios-bindings uuid camino uniffi_bindgen" --no-default-features
- name: Clone ezkl-swift-package repository
run: |
git clone https://github.com/zkonduit/ezkl-swift-package.git
- name: Copy EzklCoreBindings
run: |
rm -rf ezkl-swift-package/Sources/EzklCoreBindings
cp -r build/EzklCoreBindings ezkl-swift-package/Sources/
- name: Copy Test Files
run: |
rm -rf ezkl-swift-package/Tests/EzklAssets/*
cp tests/assets/kzg ezkl-swift-package/Tests/EzklAssets/kzg.srs
cp tests/assets/input.json ezkl-swift-package/Tests/EzklAssets/input.json
cp tests/assets/model.compiled ezkl-swift-package/Tests/EzklAssets/network.ezkl
cp tests/assets/settings.json ezkl-swift-package/Tests/EzklAssets/settings.json
- name: Set up Xcode environment
run: |
sudo xcode-select -s /Applications/Xcode.app/Contents/Developer
sudo xcodebuild -license accept
- name: Run Package Tests
run: |
cd ezkl-swift-package
xcodebuild test \
-scheme EzklPackage \
-destination 'platform=iOS Simulator,name=iPhone 15 Pro,OS=17.5' \
-resultBundlePath ../testResults
- name: Run Example App Tests
run: |
cd ezkl-swift-package/Example
xcodebuild test \
-project Example.xcodeproj \
-scheme EzklApp \
-destination 'platform=iOS Simulator,name=iPhone 15 Pro,OS=17.5' \
-parallel-testing-enabled NO \
-resultBundlePath ../../exampleTestResults \
-skip-testing:EzklAppUITests/EzklAppUITests/testButtonClicksInOrder
- name: Commit and Push Changes to feat/ezkl-direct-integration
run: |
cd ezkl-swift-package
git config user.name "GitHub Action"
git config user.email "action@github.com"
git add Sources/EzklCoreBindings
git add Tests/EzklAssets
git commit -m "Automatically updated EzklCoreBindings for EZKL"
git tag ${{ github.event.inputs.tag }}
git remote set-url origin https://zkonduit:${EZKL_PORTER_TOKEN}@github.com/zkonduit/ezkl-swift-package.git
git push origin
git push origin tag ${{ github.event.inputs.tag }}
env:
EZKL_PORTER_TOKEN: ${{ secrets.EZKL_PORTER_TOKEN }}

6
.gitignore vendored
View File

@@ -9,6 +9,7 @@ pkg
!AttestData.sol
!VerifierBase.sol
!LoadInstances.sol
!AttestData.t.sol
*.pf
*.vk
*.pk
@@ -27,7 +28,6 @@ __pycache__/
*.pyc
*.pyo
*.py[cod]
bin/
build/
develop-eggs/
dist/
@@ -49,4 +49,6 @@ timingData.json
!tests/assets/pk.key
!tests/assets/vk.key
docs/python/build
!tests/assets/vk_aggr.key
!tests/assets/vk_aggr.key
cache
out

841
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -3,7 +3,7 @@ cargo-features = ["profile-rustflags"]
[package]
name = "ezkl"
version = "0.0.0"
edition = "2021"
edition = "2024"
default-run = "ezkl"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
@@ -16,11 +16,11 @@ crate-type = ["cdylib", "rlib", "staticlib"]
[dependencies]
halo2_gadgets = { git = "https://github.com/zkonduit/halo2", branch = "ac/optional-selector-poly" }
halo2_gadgets = { git = "https://github.com/zkonduit/halo2" }
halo2curves = { git = "https://github.com/privacy-scaling-explorations/halo2curves", rev = "b753a832e92d5c86c5c997327a9cf9de86a18851", features = [
"derive_serde",
] }
halo2_proofs = { git = "https://github.com/zkonduit/halo2", package = "halo2_proofs", branch = "ac/cache-lookup-commitments", features = [
halo2_proofs = { git = "https://github.com/zkonduit/halo2", package = "halo2_proofs", features = [
"circuit-params",
] }
rand = { version = "0.8", default-features = false }
@@ -35,12 +35,11 @@ halo2_wrong_ecc = { git = "https://github.com/zkonduit/halo2wrong", branch = "ac
snark-verifier = { git = "https://github.com/zkonduit/snark-verifier", branch = "ac/chunked-mv-lookup", features = [
"derive_serde",
] }
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", branch = "ac/update-h2-curves", optional = true }
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", optional = true }
maybe-rayon = { version = "0.1.1", default-features = false }
bincode = { version = "1.3.3", default-features = false }
unzip-n = "0.1.2"
num = "0.4.1"
portable-atomic = { version = "1.6.0", optional = true }
tosubcommand = { git = "https://github.com/zkonduit/enum_to_subcommand", package = "tosubcommand", optional = true }
semver = { version = "1.0.22", optional = true }
@@ -74,26 +73,25 @@ tokio-postgres = { version = "0.7.10", optional = true }
pg_bigdecimal = { version = "0.1.5", optional = true }
lazy_static = { version = "1.4.0", optional = true }
colored_json = { version = "3.0.1", default-features = false, optional = true }
regex = { version = "1", default-features = false, optional = true }
tokio = { version = "1.35.0", default-features = false, features = [
"macros",
"rt-multi-thread",
], optional = true }
pyo3 = { version = "0.21.2", features = [
pyo3 = { version = "0.23.2", features = [
"extension-module",
"abi3-py37",
"macros",
], default-features = false, optional = true }
pyo3-asyncio = { git = "https://github.com/jopemachine/pyo3-asyncio/", branch = "migration-pyo3-0.21", features = [
pyo3-async-runtimes = { git = "https://github.com/PyO3/pyo3-async-runtimes", version = "0.23.0", features = [
"attributes",
"tokio-runtime",
], default-features = false, optional = true }
pyo3-log = { version = "0.10.0", default-features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "40c64319291184814d9fea5fdf4fa16f5a4f7116", default-features = false, optional = true }
pyo3-log = { version = "0.12.0", default-features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "37132e0397d0a73e5bd3a8615d932dabe44f6736", default-features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
metal = { git = "https://github.com/gfx-rs/metal-rs", optional = true }
objc = { version = "0.2.4", optional = true }
mimalloc = { version = "0.1", optional = true }
pyo3-stub-gen = { version = "0.6.0", optional = true }
# universal bindings
uniffi = { version = "=0.28.0", optional = true }
@@ -146,6 +144,10 @@ shellexpand = "3.1.0"
runner = 'wasm-bindgen-test-runner'
[[bench]]
name = "zero_finder"
harness = false
[[bench]]
name = "accum_dot"
harness = false
@@ -210,6 +212,10 @@ required-features = ["ezkl"]
name = "ios_gen_bindings"
required-features = ["ios-bindings", "uuid", "camino", "uniffi_bindgen"]
[[bin]]
name = "py_stub_gen"
required-features = ["python-bindings"]
[features]
web = ["wasm-bindgen-rayon"]
default = [
@@ -220,7 +226,7 @@ default = [
"parallel-poly-read",
]
onnx = ["dep:tract-onnx"]
python-bindings = ["pyo3", "pyo3-log", "pyo3-asyncio"]
python-bindings = ["pyo3", "pyo3-log", "pyo3-async-runtimes", "pyo3-stub-gen"]
ios-bindings = ["mv-lookup", "precompute-coset", "parallel-poly-read", "uniffi"]
ios-bindings-test = ["ios-bindings", "uniffi/bindgen-tests"]
ezkl = [
@@ -236,16 +242,14 @@ ezkl = [
"dep:indicatif",
"dep:gag",
"dep:reqwest",
"dep:openssl",
"dep:tokio-postgres",
"dep:pg_bigdecimal",
"dep:lazy_static",
"dep:regex",
"dep:tokio",
"dep:openssl",
"dep:mimalloc",
"dep:chrono",
"dep:sha256",
"dep:portable-atomic",
"dep:clap_complete",
"dep:halo2_solidity_verifier",
"dep:semver",
@@ -268,13 +272,15 @@ icicle = ["halo2_proofs/icicle_gpu"]
empty-cmd = []
no-banner = []
no-update = []
# icicle patch to 0.1.0 if feature icicle is enabled
[patch.'https://github.com/ingonyama-zk/icicle']
icicle = { git = "https://github.com/ingonyama-zk/icicle?rev=45b00fb", package = "icicle", branch = "fix/vhnat/ezkl-build-fix" }
macos-metal = ["halo2_proofs/macos"]
ios-metal = ["halo2_proofs/ios"]
[patch.'https://github.com/zkonduit/halo2']
halo2_proofs = { git = "https://github.com/zkonduit/halo2?branch=ac/cache-lookup-commitments#8b13a0d2a7a34d8daab010dadb2c47dfa47d37d0", package = "halo2_proofs", branch = "ac/cache-lookup-commitments" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2#f441c920be45f8f05d2c06a173d82e8885a5ed4d", package = "halo2_proofs" }
[patch.'https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b']
halo2_proofs = { git = "https://github.com/zkonduit/halo2#f441c920be45f8f05d2c06a173d82e8885a5ed4d", package = "halo2_proofs" }
[patch.crates-io]
uniffi_testing = { git = "https://github.com/ElusAegis/uniffi-rs", branch = "feat/testing-feature-build-fix" }
@@ -283,4 +289,12 @@ uniffi_testing = { git = "https://github.com/ElusAegis/uniffi-rs", branch = "fea
rustflags = ["-C", "relocation-model=pic"]
lto = "fat"
codegen-units = 1
# panic = "abort"
#panic = "abort"
[profile.test-runs]
inherits = "dev"
opt-level = 3
[package.metadata.wasm-pack.profile.release]
wasm-opt = ["-O4", "--flexible-inline-max-function-size", "4294967295"]

View File

@@ -150,6 +150,13 @@ Ezkl is unaudited, beta software undergoing rapid development. There may be bugs
> NOTE: Because operations are quantized when they are converted from an onnx file to a zk-circuit, outputs in python and ezkl may differ slightly.
### Advanced security topics
Check out `docs/advanced_security` for more advanced information on potential threat vectors.
### no warranty
Copyright (c) 2024 Zkonduit Inc. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

312
abis/DataAttestation.json Normal file
View File

@@ -0,0 +1,312 @@
[
{
"inputs": [
{
"internalType": "address",
"name": "_contractAddresses",
"type": "address"
},
{
"internalType": "bytes",
"name": "_callData",
"type": "bytes"
},
{
"internalType": "uint256[]",
"name": "_decimals",
"type": "uint256[]"
},
{
"internalType": "uint256[]",
"name": "_bits",
"type": "uint256[]"
},
{
"internalType": "uint8",
"name": "_instanceOffset",
"type": "uint8"
}
],
"stateMutability": "nonpayable",
"type": "constructor"
},
{
"inputs": [],
"name": "HALF_ORDER",
"outputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "ORDER",
"outputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "uint256[]",
"name": "instances",
"type": "uint256[]"
}
],
"name": "attestData",
"outputs": [],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "callData",
"outputs": [
{
"internalType": "bytes",
"name": "",
"type": "bytes"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "contractAddress",
"outputs": [
{
"internalType": "address",
"name": "",
"type": "address"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "bytes",
"name": "encoded",
"type": "bytes"
}
],
"name": "getInstancesCalldata",
"outputs": [
{
"internalType": "uint256[]",
"name": "instances",
"type": "uint256[]"
}
],
"stateMutability": "pure",
"type": "function"
},
{
"inputs": [
{
"internalType": "bytes",
"name": "encoded",
"type": "bytes"
}
],
"name": "getInstancesMemory",
"outputs": [
{
"internalType": "uint256[]",
"name": "instances",
"type": "uint256[]"
}
],
"stateMutability": "pure",
"type": "function"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "index",
"type": "uint256"
}
],
"name": "getScalars",
"outputs": [
{
"components": [
{
"internalType": "uint256",
"name": "decimals",
"type": "uint256"
},
{
"internalType": "uint256",
"name": "bits",
"type": "uint256"
}
],
"internalType": "struct DataAttestation.Scalars",
"name": "",
"type": "tuple"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "instanceOffset",
"outputs": [
{
"internalType": "uint8",
"name": "",
"type": "uint8"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "x",
"type": "uint256"
},
{
"internalType": "uint256",
"name": "y",
"type": "uint256"
},
{
"internalType": "uint256",
"name": "denominator",
"type": "uint256"
}
],
"name": "mulDiv",
"outputs": [
{
"internalType": "uint256",
"name": "result",
"type": "uint256"
}
],
"stateMutability": "pure",
"type": "function"
},
{
"inputs": [
{
"internalType": "int256",
"name": "x",
"type": "int256"
},
{
"components": [
{
"internalType": "uint256",
"name": "decimals",
"type": "uint256"
},
{
"internalType": "uint256",
"name": "bits",
"type": "uint256"
}
],
"internalType": "struct DataAttestation.Scalars",
"name": "_scalars",
"type": "tuple"
}
],
"name": "quantizeData",
"outputs": [
{
"internalType": "int256",
"name": "quantized_data",
"type": "int256"
}
],
"stateMutability": "pure",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "target",
"type": "address"
},
{
"internalType": "bytes",
"name": "data",
"type": "bytes"
}
],
"name": "staticCall",
"outputs": [
{
"internalType": "bytes",
"name": "",
"type": "bytes"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "int256",
"name": "x",
"type": "int256"
}
],
"name": "toFieldElement",
"outputs": [
{
"internalType": "uint256",
"name": "field_element",
"type": "uint256"
}
],
"stateMutability": "pure",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "verifier",
"type": "address"
},
{
"internalType": "bytes",
"name": "encoded",
"type": "bytes"
}
],
"name": "verifyWithDataAttestation",
"outputs": [
{
"internalType": "bool",
"name": "",
"type": "bool"
}
],
"stateMutability": "view",
"type": "function"
}
]

View File

@@ -1,167 +0,0 @@
[
{
"inputs": [
{
"internalType": "address[]",
"name": "_contractAddresses",
"type": "address[]"
},
{
"internalType": "bytes[][]",
"name": "_callData",
"type": "bytes[][]"
},
{
"internalType": "uint256[][]",
"name": "_decimals",
"type": "uint256[][]"
},
{
"internalType": "uint256[]",
"name": "_scales",
"type": "uint256[]"
},
{
"internalType": "uint8",
"name": "_instanceOffset",
"type": "uint8"
},
{
"internalType": "address",
"name": "_admin",
"type": "address"
}
],
"stateMutability": "nonpayable",
"type": "constructor"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"name": "accountCalls",
"outputs": [
{
"internalType": "address",
"name": "contractAddress",
"type": "address"
},
{
"internalType": "uint256",
"name": "callCount",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "admin",
"outputs": [
{
"internalType": "address",
"name": "",
"type": "address"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "instanceOffset",
"outputs": [
{
"internalType": "uint8",
"name": "",
"type": "uint8"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"name": "scales",
"outputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "address[]",
"name": "_contractAddresses",
"type": "address[]"
},
{
"internalType": "bytes[][]",
"name": "_callData",
"type": "bytes[][]"
},
{
"internalType": "uint256[][]",
"name": "_decimals",
"type": "uint256[][]"
}
],
"name": "updateAccountCalls",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "_admin",
"type": "address"
}
],
"name": "updateAdmin",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "verifier",
"type": "address"
},
{
"internalType": "bytes",
"name": "encoded",
"type": "bytes"
}
],
"name": "verifyWithDataAttestation",
"outputs": [
{
"internalType": "bool",
"name": "",
"type": "bool"
}
],
"stateMutability": "view",
"type": "function"
}
]

View File

@@ -1,147 +0,0 @@
[
{
"inputs": [
{
"internalType": "address",
"name": "_contractAddresses",
"type": "address"
},
{
"internalType": "bytes",
"name": "_callData",
"type": "bytes"
},
{
"internalType": "uint256",
"name": "_decimals",
"type": "uint256"
},
{
"internalType": "uint256[]",
"name": "_scales",
"type": "uint256[]"
},
{
"internalType": "uint8",
"name": "_instanceOffset",
"type": "uint8"
},
{
"internalType": "address",
"name": "_admin",
"type": "address"
}
],
"stateMutability": "nonpayable",
"type": "constructor"
},
{
"inputs": [],
"name": "accountCall",
"outputs": [
{
"internalType": "address",
"name": "contractAddress",
"type": "address"
},
{
"internalType": "bytes",
"name": "callData",
"type": "bytes"
},
{
"internalType": "uint256",
"name": "decimals",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "admin",
"outputs": [
{
"internalType": "address",
"name": "",
"type": "address"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "instanceOffset",
"outputs": [
{
"internalType": "uint8",
"name": "",
"type": "uint8"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "_contractAddresses",
"type": "address"
},
{
"internalType": "bytes",
"name": "_callData",
"type": "bytes"
},
{
"internalType": "uint256",
"name": "_decimals",
"type": "uint256"
}
],
"name": "updateAccountCalls",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "_admin",
"type": "address"
}
],
"name": "updateAdmin",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "verifier",
"type": "address"
},
{
"internalType": "bytes",
"name": "encoded",
"type": "bytes"
}
],
"name": "verifyWithDataAttestation",
"outputs": [
{
"internalType": "bool",
"name": "",
"type": "bool"
}
],
"stateMutability": "view",
"type": "function"
}
]

View File

@@ -73,6 +73,8 @@ impl Circuit<Fr> for MyCircuit {
padding: vec![(0, 0)],
stride: vec![1; 2],
group: 1,
data_format: DataFormat::NCHW,
kernel_format: KernelFormat::OIHW,
}),
)
.unwrap();

View File

@@ -69,6 +69,7 @@ impl Circuit<Fr> for MyCircuit {
stride: vec![1, 1],
kernel_shape: vec![2, 2],
normalized: false,
data_format: DataFormat::NCHW,
}),
)
.unwrap();

View File

@@ -23,8 +23,6 @@ use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
const L: usize = 10;
#[derive(Clone, Debug)]
struct MyCircuit {
image: ValTensor<Fr>,
@@ -40,7 +38,7 @@ impl Circuit<Fr> for MyCircuit {
}
fn configure(cs: &mut ConstraintSystem<Fr>) -> Self::Config {
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, 10>::configure(cs, ())
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::configure(cs, ())
}
fn synthesize(
@@ -48,7 +46,7 @@ impl Circuit<Fr> for MyCircuit {
config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L> =
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE> =
PoseidonChip::new(config);
chip.layout(&mut layouter, &[self.image.clone()], 0, &mut HashMap::new())?;
Ok(())
@@ -59,7 +57,7 @@ fn runposeidon(c: &mut Criterion) {
let mut group = c.benchmark_group("poseidon");
for size in [64, 784, 2352, 12288].iter() {
let k = (PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::num_rows(*size)
let k = (PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::num_rows(*size)
as f32)
.log2()
.ceil() as u32;
@@ -67,7 +65,7 @@ fn runposeidon(c: &mut Criterion) {
let message = (0..*size).map(|_| Fr::random(OsRng)).collect::<Vec<_>>();
let _output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::run(message.to_vec())
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.to_vec())
.unwrap();
let mut image = Tensor::from(message.into_iter().map(Value::known));

117
benches/zero_finder.rs Normal file
View File

@@ -0,0 +1,117 @@
use std::thread;
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use halo2curves::{bn256::Fr as F, ff::Field};
use maybe_rayon::{
iter::{IndexedParallelIterator, IntoParallelRefIterator, ParallelIterator},
slice::ParallelSlice,
};
use rand::Rng;
// Assuming these are your types
#[derive(Clone)]
#[allow(dead_code)]
enum ValType {
Constant(F),
AssignedConstant(usize, F),
Other,
}
// Helper to generate test data
fn generate_test_data(size: usize, zero_probability: f64) -> Vec<ValType> {
let mut rng = rand::thread_rng();
(0..size)
.map(|_i| {
if rng.r#gen::<f64>() < zero_probability {
ValType::Constant(F::ZERO)
} else {
ValType::Constant(F::ONE) // Or some other non-zero value
}
})
.collect()
}
fn bench_zero_finding(c: &mut Criterion) {
let sizes = [
1_000, // 1K
10_000, // 10K
100_000, // 100K
256 * 256 * 2, // Our specific case
1_000_000, // 1M
10_000_000, // 10M
];
let zero_probability = 0.1; // 10% zeros
let mut group = c.benchmark_group("zero_finding");
group.sample_size(10); // Adjust based on your needs
for &size in &sizes {
let data = generate_test_data(size, zero_probability);
// Benchmark sequential version
group.bench_function(format!("sequential_{}", size), |b| {
b.iter(|| {
let result = data
.iter()
.enumerate()
.filter_map(|(i, e)| match e {
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
(*r == F::ZERO).then_some(i)
}
_ => None,
})
.collect::<Vec<_>>();
black_box(result)
})
});
// Benchmark parallel version
group.bench_function(format!("parallel_{}", size), |b| {
b.iter(|| {
let result = data
.par_iter()
.enumerate()
.filter_map(|(i, e)| match e {
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
(*r == F::ZERO).then_some(i)
}
_ => None,
})
.collect::<Vec<_>>();
black_box(result)
})
});
// Benchmark chunked parallel version
group.bench_function(format!("chunked_parallel_{}", size), |b| {
b.iter(|| {
let num_cores = thread::available_parallelism()
.map(|n| n.get())
.unwrap_or(1);
let chunk_size = (size / num_cores).max(100);
let result = data
.par_chunks(chunk_size)
.enumerate()
.flat_map(|(chunk_idx, chunk)| {
chunk
.par_iter() // Make sure we use par_iter() here
.enumerate()
.filter_map(move |(i, e)| match e {
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
(*r == F::ZERO).then_some(chunk_idx * chunk_size + i)
}
_ => None,
})
})
.collect::<Vec<_>>();
black_box(result)
})
});
}
group.finish();
}
criterion_group!(benches, bench_zero_finding);
criterion_main!(benches);

View File

@@ -8,21 +8,27 @@ contract LoadInstances {
*/
function getInstancesMemory(
bytes memory encoded
) internal pure returns (uint256[] memory instances) {
) public pure returns (uint256[] memory instances) {
bytes4 funcSig;
uint256 instances_offset;
uint256 instances_length;
assembly {
// fetch function sig. Either `verifyProof(bytes,uint256[])` or `verifyProof(address,bytes,uint256[])`
funcSig := mload(add(encoded, 0x20))
}
if (funcSig == 0xaf83a18d) {
instances_offset = 0x64;
} else if (funcSig == 0x1e8e1e13) {
instances_offset = 0x44;
} else {
revert("Invalid function signature");
}
assembly {
// Fetch instances offset which is 4 + 32 + 32 bytes away from
// start of encoded for `verifyProof(bytes,uint256[])`,
// and 4 + 32 + 32 +32 away for `verifyProof(address,bytes,uint256[])`
instances_offset := mload(
add(encoded, add(0x44, mul(0x20, eq(funcSig, 0xaf83a18d))))
)
instances_offset := mload(add(encoded, instances_offset))
instances_length := mload(add(add(encoded, 0x24), instances_offset))
}
@@ -41,6 +47,10 @@ contract LoadInstances {
)
}
}
require(
funcSig == 0xaf83a18d || funcSig == 0x1e8e1e13,
"Invalid function signature"
);
}
/**
* @dev Parse the instances array from the Halo2Verifier encoded calldata.
@@ -49,23 +59,31 @@ contract LoadInstances {
*/
function getInstancesCalldata(
bytes calldata encoded
) internal pure returns (uint256[] memory instances) {
) public pure returns (uint256[] memory instances) {
bytes4 funcSig;
uint256 instances_offset;
uint256 instances_length;
assembly {
// fetch function sig. Either `verifyProof(bytes,uint256[])` or `verifyProof(address,bytes,uint256[])`
funcSig := calldataload(encoded.offset)
}
if (funcSig == 0xaf83a18d) {
instances_offset = 0x44;
} else if (funcSig == 0x1e8e1e13) {
instances_offset = 0x24;
} else {
revert("Invalid function signature");
}
// We need to create a new assembly block in order for solidity
// to cast the funcSig to a bytes4 type. Otherwise it will load the entire first 32 bytes of the calldata
// within the block
assembly {
// Fetch instances offset which is 4 + 32 + 32 bytes away from
// start of encoded for `verifyProof(bytes,uint256[])`,
// and 4 + 32 + 32 +32 away for `verifyProof(address,bytes,uint256[])`
instances_offset := calldataload(
add(
encoded.offset,
add(0x24, mul(0x20, eq(funcSig, 0xaf83a18d)))
)
add(encoded.offset, instances_offset)
)
instances_length := calldataload(
@@ -96,7 +114,7 @@ contract LoadInstances {
// The kzg commitments of a given model, all aggregated into a single bytes array.
// At solidity generation time, the commitments are hardcoded into the contract via the COMMITMENT_KZG constant.
// It will be used to check that the proof commitments match the expected commitments.
bytes constant COMMITMENT_KZG = hex"";
bytes constant COMMITMENT_KZG = hex"1234";
contract SwapProofCommitments {
/**
@@ -113,17 +131,20 @@ contract SwapProofCommitments {
assembly {
// fetch function sig. Either `verifyProof(bytes,uint256[])` or `verifyProof(address,bytes,uint256[])`
funcSig := calldataload(encoded.offset)
}
if (funcSig == 0xaf83a18d) {
proof_offset = 0x24;
} else if (funcSig == 0x1e8e1e13) {
proof_offset = 0x04;
} else {
revert("Invalid function signature");
}
assembly {
// Fetch proof offset which is 4 + 32 bytes away from
// start of encoded for `verifyProof(bytes,uint256[])`,
// and 4 + 32 + 32 away for `verifyProof(address,bytes,uint256[])`
proof_offset := calldataload(
add(
encoded.offset,
add(0x04, mul(0x20, eq(funcSig, 0xaf83a18d)))
)
)
proof_offset := calldataload(add(encoded.offset, proof_offset))
proof_length := calldataload(
add(add(encoded.offset, 0x04), proof_offset)
@@ -154,7 +175,7 @@ contract SwapProofCommitments {
let wordCommitment := mload(add(commitment, i))
equal := eq(wordProof, wordCommitment)
if eq(equal, 0) {
return(0, 0)
break
}
}
}
@@ -163,36 +184,38 @@ contract SwapProofCommitments {
} /// end checkKzgCommits
}
contract DataAttestationSingle is LoadInstances, SwapProofCommitments {
/**
* @notice Struct used to make view only call to account to fetch the data that EZKL reads from.
* @param the address of the account to make calls to
* @param the abi encoded function calls to make to the `contractAddress`
*/
struct AccountCall {
address contractAddress;
bytes callData;
contract DataAttestation is LoadInstances, SwapProofCommitments {
// the address of the account to make calls to
address public immutable contractAddress;
// the abi encoded function calls to make to the `contractAddress` that returns the attested to data
bytes public callData;
struct Scalars {
// The number of base 10 decimals to scale the data by.
// For most ERC20 tokens this is 1e18
uint256 decimals;
// The number of fractional bits of the fixed point EZKL data points.
uint256 bits;
}
AccountCall public accountCall;
uint[] scales;
Scalars[] private scalars;
address public admin;
function getScalars(uint256 index) public view returns (Scalars memory) {
return scalars[index];
}
/**
* @notice EZKL P value
* @dev In order to prevent the verifier from accepting two version of the same pubInput, n and the quantity (n + P), where n + P <= 2^256, we require that all instances are stricly less than P. a
* @dev The reason for this is that the assmebly code of the verifier performs all arithmetic operations modulo P and as a consequence can't distinguish between n and n + P.
*/
uint256 constant ORDER =
uint256 public constant ORDER =
uint256(
0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
);
uint256 constant INPUT_LEN = 0;
uint256 constant OUTPUT_LEN = 0;
uint256 public constant HALF_ORDER = ORDER >> 1;
uint8 public instanceOffset;
@@ -204,53 +227,27 @@ contract DataAttestationSingle is LoadInstances, SwapProofCommitments {
constructor(
address _contractAddresses,
bytes memory _callData,
uint256 _decimals,
uint[] memory _scales,
uint8 _instanceOffset,
address _admin
uint256[] memory _decimals,
uint[] memory _bits,
uint8 _instanceOffset
) {
admin = _admin;
for (uint i; i < _scales.length; i++) {
scales.push(1 << _scales[i]);
require(
_bits.length == _decimals.length,
"Invalid scalar array lengths"
);
for (uint i; i < _bits.length; i++) {
scalars.push(Scalars(10 ** _decimals[i], 1 << _bits[i]));
}
populateAccountCalls(_contractAddresses, _callData, _decimals);
contractAddress = _contractAddresses;
callData = _callData;
instanceOffset = _instanceOffset;
}
function updateAdmin(address _admin) external {
require(msg.sender == admin, "Only admin can update admin");
if (_admin == address(0)) {
revert();
}
admin = _admin;
}
function updateAccountCalls(
address _contractAddresses,
bytes memory _callData,
uint256 _decimals
) external {
require(msg.sender == admin, "Only admin can update account calls");
populateAccountCalls(_contractAddresses, _callData, _decimals);
}
function populateAccountCalls(
address _contractAddresses,
bytes memory _callData,
uint256 _decimals
) internal {
AccountCall memory _accountCall = accountCall;
_accountCall.contractAddress = _contractAddresses;
_accountCall.callData = _callData;
_accountCall.decimals = 10 ** _decimals;
accountCall = _accountCall;
}
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
) public pure returns (uint256 result) {
unchecked {
uint256 prod0;
uint256 prod1;
@@ -298,21 +295,28 @@ contract DataAttestationSingle is LoadInstances, SwapProofCommitments {
/**
* @dev Quantize the data returned from the account calls to the scale used by the EZKL model.
* @param x - One of the elements of the data returned from the account calls
* @param _decimals - Number of base 10 decimals to scale the data by.
* @param _scale - The base 2 scale used to convert the floating point value into a fixed point value.
* @param _scalars - The scaling factors for the data returned from the account calls.
*
*/
function quantizeData(
int x,
uint256 _decimals,
uint256 _scale
) internal pure returns (int256 quantized_data) {
Scalars memory _scalars
) public pure returns (int256 quantized_data) {
if (_scalars.bits == 1 && _scalars.decimals == 1) {
return x;
}
bool neg = x < 0;
if (neg) x = -x;
uint output = mulDiv(uint256(x), _scale, _decimals);
if (mulmod(uint256(x), _scale, _decimals) * 2 >= _decimals) {
uint output = mulDiv(uint256(x), _scalars.bits, _scalars.decimals);
if (
mulmod(uint256(x), _scalars.bits, _scalars.decimals) * 2 >=
_scalars.decimals
) {
output += 1;
}
if (output > HALF_ORDER) {
revert("Overflow field modulus");
}
quantized_data = neg ? -int256(output) : int256(output);
}
/**
@@ -324,7 +328,7 @@ contract DataAttestationSingle is LoadInstances, SwapProofCommitments {
function staticCall(
address target,
bytes memory data
) internal view returns (bytes memory) {
) public view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
if (success) {
if (returndata.length == 0) {
@@ -345,7 +349,7 @@ contract DataAttestationSingle is LoadInstances, SwapProofCommitments {
*/
function toFieldElement(
int256 x
) internal pure returns (uint256 field_element) {
) public pure returns (uint256 field_element) {
// The casting down to uint256 is safe because the order is about 2^254, and the value
// of x ranges of -2^127 to 2^127, so x + int(ORDER) is always positive.
return uint256(x + int(ORDER)) % ORDER;
@@ -355,315 +359,16 @@ contract DataAttestationSingle is LoadInstances, SwapProofCommitments {
* @dev Make the account calls to fetch the data that EZKL reads from and attest to the data.
* @param instances - The public instances to the proof (the data in the proof that publicly accessible to the verifier).
*/
function attestData(uint256[] memory instances) internal view {
require(
instances.length >= INPUT_LEN + OUTPUT_LEN,
"Invalid public inputs length"
);
AccountCall memory _accountCall = accountCall;
uint[] memory _scales = scales;
bytes memory returnData = staticCall(
_accountCall.contractAddress,
_accountCall.callData
);
function attestData(uint256[] memory instances) public view {
bytes memory returnData = staticCall(contractAddress, callData);
int256[] memory x = abi.decode(returnData, (int256[]));
uint _offset;
int output = quantizeData(x[0], _accountCall.decimals, _scales[0]);
uint field_element = toFieldElement(output);
int output;
uint fieldElement;
for (uint i = 0; i < x.length; i++) {
if (field_element != instances[i + instanceOffset]) {
_offset += 1;
} else {
break;
}
}
uint length = x.length - _offset;
for (uint i = 1; i < length; i++) {
output = quantizeData(x[i], _accountCall.decimals, _scales[i]);
field_element = toFieldElement(output);
require(
field_element == instances[i + instanceOffset + _offset],
"Public input does not match"
);
}
}
/**
* @dev Verify the proof with the data attestation.
* @param verifier - The address of the verifier contract.
* @param encoded - The verifier calldata.
*/
function verifyWithDataAttestation(
address verifier,
bytes calldata encoded
) public view returns (bool) {
require(verifier.code.length > 0, "Address: call to non-contract");
attestData(getInstancesCalldata(encoded));
// static call the verifier contract to verify the proof
(bool success, bytes memory returndata) = verifier.staticcall(encoded);
if (success) {
return abi.decode(returndata, (bool));
} else {
revert("low-level call to verifier failed");
}
}
}
// This contract serves as a Data Attestation Verifier for the EZKL model.
// It is designed to read and attest to instances of proofs generated from a specified circuit.
// It is particularly constructed to read only int256 data from specified on-chain contracts' view functions.
// Overview of the contract functionality:
// 1. Initialization: Through the constructor, it sets up the contract calls that the EZKL model will read from.
// 2. Data Quantization: Quantizes the returned data into a scaled fixed-point representation. See the `quantizeData` method for details.
// 3. Static Calls: Makes static calls to fetch data from other contracts. See the `staticCall` method.
// 4. Field Element Conversion: The fixed-point representation is then converted into a field element modulo P using the `toFieldElement` method.
// 5. Data Attestation: The `attestData` method validates that the public instances match the data fetched and processed by the contract.
// 6. Proof Verification: The `verifyWithDataAttestationMulti` method parses the instances out of the encoded calldata and calls the `attestData` method to validate the public instances,
// 6b. Optional KZG Commitment Verification: It also checks the KZG commitments in the proof against the expected commitments using the `checkKzgCommits` method.
// then calls the `verifyProof` method to verify the proof on the verifier.
contract DataAttestationMulti is LoadInstances, SwapProofCommitments {
/**
* @notice Struct used to make view only calls to accounts to fetch the data that EZKL reads from.
* @param the address of the account to make calls to
* @param the abi encoded function calls to make to the `contractAddress`
*/
struct AccountCall {
address contractAddress;
mapping(uint256 => bytes) callData;
mapping(uint256 => uint256) decimals;
uint callCount;
}
AccountCall[] public accountCalls;
uint[] public scales;
address public admin;
/**
* @notice EZKL P value
* @dev In order to prevent the verifier from accepting two version of the same pubInput, n and the quantity (n + P), where n + P <= 2^256, we require that all instances are stricly less than P. a
* @dev The reason for this is that the assmebly code of the verifier performs all arithmetic operations modulo P and as a consequence can't distinguish between n and n + P.
*/
uint256 constant ORDER =
uint256(
0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
);
uint256 constant INPUT_CALLS = 0;
uint256 constant OUTPUT_CALLS = 0;
uint8 public instanceOffset;
/**
* @dev Initialize the contract with account calls the EZKL model will read from.
* @param _contractAddresses - The calls to all the contracts EZKL reads storage from.
* @param _callData - The abi encoded function calls to make to the `contractAddress` that EZKL reads storage from.
*/
constructor(
address[] memory _contractAddresses,
bytes[][] memory _callData,
uint256[][] memory _decimals,
uint[] memory _scales,
uint8 _instanceOffset,
address _admin
) {
admin = _admin;
for (uint i; i < _scales.length; i++) {
scales.push(1 << _scales[i]);
}
populateAccountCalls(_contractAddresses, _callData, _decimals);
instanceOffset = _instanceOffset;
}
function updateAdmin(address _admin) external {
require(msg.sender == admin, "Only admin can update admin");
if (_admin == address(0)) {
revert();
}
admin = _admin;
}
function updateAccountCalls(
address[] memory _contractAddresses,
bytes[][] memory _callData,
uint256[][] memory _decimals
) external {
require(msg.sender == admin, "Only admin can update account calls");
populateAccountCalls(_contractAddresses, _callData, _decimals);
}
function populateAccountCalls(
address[] memory _contractAddresses,
bytes[][] memory _callData,
uint256[][] memory _decimals
) internal {
require(
_contractAddresses.length == _callData.length &&
accountCalls.length == _contractAddresses.length,
"Invalid input length"
);
require(
_decimals.length == _contractAddresses.length,
"Invalid number of decimals"
);
// fill in the accountCalls storage array
uint counter = 0;
for (uint256 i = 0; i < _contractAddresses.length; i++) {
AccountCall storage accountCall = accountCalls[i];
accountCall.contractAddress = _contractAddresses[i];
accountCall.callCount = _callData[i].length;
for (uint256 j = 0; j < _callData[i].length; j++) {
accountCall.callData[j] = _callData[i][j];
accountCall.decimals[j] = 10 ** _decimals[i][j];
}
// count the total number of storage reads across all of the accounts
counter += _callData[i].length;
}
require(
counter == INPUT_CALLS + OUTPUT_CALLS,
"Invalid number of calls"
);
}
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
return prod0 / denominator;
}
require(denominator > prod1, "Math: mulDiv overflow");
uint256 remainder;
assembly {
remainder := mulmod(x, y, denominator)
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
uint256 twos = denominator & (~denominator + 1);
assembly {
denominator := div(denominator, twos)
prod0 := div(prod0, twos)
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
uint256 inverse = (3 * denominator) ^ 2;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
result = prod0 * inverse;
return result;
}
}
/**
* @dev Quantize the data returned from the account calls to the scale used by the EZKL model.
* @param data - The data returned from the account calls.
* @param decimals - The number of decimals the data returned from the account calls has (for floating point representation).
* @param scale - The scale used to convert the floating point value into a fixed point value.
*/
function quantizeData(
bytes memory data,
uint256 decimals,
uint256 scale
) internal pure returns (int256 quantized_data) {
int x = abi.decode(data, (int256));
bool neg = x < 0;
if (neg) x = -x;
uint output = mulDiv(uint256(x), scale, decimals);
if (mulmod(uint256(x), scale, decimals) * 2 >= decimals) {
output += 1;
}
quantized_data = neg ? -int256(output) : int256(output);
}
/**
* @dev Make a static call to the account to fetch the data that EZKL reads from.
* @param target - The address of the account to make calls to.
* @param data - The abi encoded function calls to make to the `contractAddress` that EZKL reads storage from.
* @return The data returned from the account calls. (Must come from either a view or pure function. Will throw an error otherwise)
*/
function staticCall(
address target,
bytes memory data
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
if (success) {
if (returndata.length == 0) {
require(
target.code.length > 0,
"Address: call to non-contract"
);
}
return returndata;
} else {
revert("Address: low-level call failed");
}
}
/**
* @dev Convert the fixed point quantized data into a field element.
* @param x - The quantized data.
* @return field_element - The field element.
*/
function toFieldElement(
int256 x
) internal pure returns (uint256 field_element) {
// The casting down to uint256 is safe because the order is about 2^254, and the value
// of x ranges of -2^127 to 2^127, so x + int(ORDER) is always positive.
return uint256(x + int(ORDER)) % ORDER;
}
/**
* @dev Make the account calls to fetch the data that EZKL reads from and attest to the data.
* @param instances - The public instances to the proof (the data in the proof that publicly accessible to the verifier).
*/
function attestData(uint256[] memory instances) internal view {
require(
instances.length >= INPUT_CALLS + OUTPUT_CALLS,
"Invalid public inputs length"
);
uint256 _accountCount = accountCalls.length;
uint counter = 0;
for (uint8 i = 0; i < _accountCount; ++i) {
address account = accountCalls[i].contractAddress;
for (uint8 j = 0; j < accountCalls[i].callCount; j++) {
bytes memory returnData = staticCall(
account,
accountCalls[i].callData[j]
);
uint256 scale = scales[counter];
int256 quantized_data = quantizeData(
returnData,
accountCalls[i].decimals[j],
scale
);
uint256 field_element = toFieldElement(quantized_data);
require(
field_element == instances[counter + instanceOffset],
"Public input does not match"
);
counter++;
output = quantizeData(x[i], scalars[i]);
fieldElement = toFieldElement(output);
if (fieldElement != instances[i]) {
revert("Public input does not match");
}
}
}

View File

@@ -0,0 +1,41 @@
## EZKL Security Note: Public Commitments and Low-Entropy Data
> **Disclaimer:** this a more technical post that requires some prior knowledge of how ZK proving systems like Halo2 operate, and in particular in how these APIs are constructed. For background reading we highly recommend the [Halo2 book](https://zcash.github.io/halo2/) and [Halo2 Club](https://halo2.club/).
## Overview of commitments in EZKL
A common design pattern in a zero knowledge (zk) application is thus:
- A prover has some data which is used within a circuit.
- This data, as it may be high-dimensional or somewhat private, is pre-committed to using some hash function.
- The zk-circuit which forms the core of the application then proves (para-phrasing) a statement of the form:
>"I know some data D which when hashed corresponds to the pre-committed to value H + whatever else the circuit is proving over D".
From our own experience, we've implemented such patterns using snark-friendly hash functions like [Poseidon](https://www.poseidon-hash.info/), for which there is a relatively well vetted [implementation](https://docs.rs/halo2_gadgets/latest/halo2_gadgets/poseidon/index.html) in Halo2. Even then these hash functions can introduce lots of overhead and can be very expensive to generate proofs for if the dimensionality of the data D is large.
You can also implement such a pattern using Halo2's `Fixed` columns _if the privacy preservation of the pre-image is not necessary_. These are Halo2 columns (i.e in reality just polynomials) that are left unblinded (unlike the blinded `Advice` columns), and whose commitments are shared with the verifier by way of the verifying key for the application's zk-circuit. These commitments are much lower cost to generate than implementing a hashing function, such as Poseidon, within a circuit.
> **Note:** Blinding is the process whereby a certain set of the final elements (i.e rows) of a Halo2 column are set to random field elements. This is the mechanism by which Halo2 achieves its zero knowledge properties for `Advice` columns. By contrast `Fixed` columns aren't zero-knowledge in that they are vulnerable to dictionary attacks in the same manner a hash function is. Given some set of known or popular data D an attacker can attempt to recover the pre-image of a hash by running D through the hash function to see if the outputs match a public commitment. These attacks aren't "possible" on blinded `Advice` columns.
> **Further Note:** Note that without blinding, with access to `M` proofs, each of which contains an evaluation of the polynomial at a different point, an attacker can more easily recover a non blinded column's pre-image. This is because each proof generates a new query and evaluation of the polynomial represented by the column and as such with repetition a clearer picture can emerge of the column's pre-image. Thus unblinded columns should only be used for privacy preservation, in the manner of a hash, if the number of proofs generated against a fixed set of values is limited. More formally if M independent and _unique_ queries are generated; if M is equal to the degree + 1 of the polynomial represented by the column (i.e the unique lagrange interpolation of the values in the columns), then the column's pre-image can be recovered. As such as the logrows K increases, the more queries are required to recover the pre-image (as 2^K unique queries are required). This assumes that the entries in the column are not structured, as if they are then the number of queries required to recover the pre-image is reduced (eg. if all rows above a certain point are known to be nil).
The annoyance in using `Fixed` columns comes from the fact that they require generating a new verifying key every time a new set of commitments is generated.
> **Example:** Say for instance an application leverages a zero-knowledge circuit to prove the correct execution of a neural network. Every week the neural network is finetuned or retrained on new data. If the architecture remains the same then commiting to the new network parameters, along with a new proof of performance on a test set, would be an ideal setup. If we leverage `Fixed` columns to commit to the model parameters, each new commitment will require re-generating a verifying key and sharing the new key with the verifier(s). This is not-ideal UX and can become expensive if the verifier is deployed on-chain.
An ideal commitment would thus have the low cost of a `Fixed` column but wouldn't require regenerating a new verifying key for each new commitment.
### Unblinded Advice Columns
A first step in designing such a commitment is to allow for optionally unblinded `Advice` columns within the Halo2 API. These won't be included in the verifying key, AND are blinded with a constant factor `1` -- such that if someone knows the pre-image to the commitment, they can recover it by running it through the corresponding polynomial commitment scheme (in ezkl's case [KZG commitments](https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html)).
This is implemented using the `polycommit` visibility parameter in the ezkl API.
## The Vulnerability of Public Commitments
Public commitments in EZKL (both Poseidon-hashed inputs and KZG commitments) can be vulnerable to brute-force attacks when input data has low entropy. A malicious actor could reveal committed data by searching through possible input values, compromising privacy in applications like anonymous credentials. This is particularly relevant when input data comes from known finite sets (e.g., names, dates).
Example Risk: In an anonymous credential system using EZKL for ID verification, an attacker could match hashed outputs against a database of common identifying information to deanonymize users.

View File

@@ -0,0 +1,54 @@
# EZKL Security Note: Quantization-Activated Model Backdoors
## Model backdoors and provenance
Machine learning models inherently suffer from robustness issues, which can lead to various
kinds of attacks, from backdoors to evasion attacks. These vulnerabilities are a direct byproductof how machine learning models learn and cannot be remediated.
We say a model has a backdoor whenever a specific attacker-chosen trigger in the input leads
to the model misbehaving. For instance, if we have an image classifier discriminating cats from dogs, the ability to turn any image of a cat into an image classified as a dog by changing a specific pixel pattern constitutes a backdoor.
Backdoors can be introduced using many different vectors. An attacker can introduce a
backdoor using traditional security vulnerabilities. For instance, they could directly alter the file containing model weights or dynamically hack the Python code of the model. In addition, backdoors can be introduced by the training data through a process known as poisoning. In this case, an attacker adds malicious data points to the dataset before the model is trained so that the model learns to associate the backdoor trigger with the intended misbehavior.
All these vectors constitute a whole range of provenance challenges, as any component of an
AI system can virtually be an entrypoint for a backdoor. Although provenance is already a
concern with traditional code, the issue is exacerbated with AI, as retraining a model is
cost-prohibitive. It is thus impractical to translate the “recompile it yourself” thinking to AI.
## Quantization activated backdoors
Backdoors are a generic concern in AI that is outside the scope of EZKL. However, EZKL may
activate a specific subset of backdoors. Several academic papers have demonstrated the
possibility, both in theory and in practice, of implanting undetectable and inactive backdoors in a full precision model that can be reactivated by quantization.
An external attacker may trick the user of an application running EZKL into loading a model
containing a quantization backdoor. This backdoor is active in the resulting model and circuit but not in the full-precision model supplied to EZKL, compromising the integrity of the target application and the resulting proof.
### When is this a concern for me as a user?
Any untrusted component in your AI stack may be a backdoor vector. In practice, the most
sensitive parts include:
- Datasets downloaded from the web or containing crowdsourced data
- Models downloaded from the web even after finetuning
- Untrusted software dependencies (well-known frameworks such as PyTorch can typically
be considered trusted)
- Any component loaded through an unsafe serialization format, such as Pickle.
Because backdoors are inherent to ML and cannot be eliminated, reviewing the provenance of
these sensitive components is especially important.
### Responsibilities of the user and EZKL
As EZKL cannot prevent backdoored models from being used, it is the responsibility of the user to review the provenance of all the components in their AI stack to ensure that no backdoor could have been implanted. EZKL shall not be held responsible for misleading prediction proofs resulting from using a backdoored model or for any harm caused to a system or its users due to a misbehaving model.
### Limitations:
- Attack effectiveness depends on calibration settings and internal rescaling operations.
- Further research needed on backdoor persistence through witness/proof stages.
- Can be mitigated by evaluating the quantized model (using `ezkl gen-witness`), rather than relying on the evaluation of the original model in pytorch or onnx-runtime as difference in evaluation could reveal a backdoor.
References:
1. [Quantization Backdoors to Deep Learning Commercial Frameworks (Ma et al., 2021)](https://arxiv.org/abs/2108.09187)
2. [Planting Undetectable Backdoors in Machine Learning Models (Goldwasser et al., 2022)](https://arxiv.org/abs/2204.06974)

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '0.0.0'
release = '21.0.0'
version = release

View File

@@ -32,6 +32,7 @@ use mnist::*;
use rand::rngs::OsRng;
use std::marker::PhantomData;
mod params;
const K: usize = 20;
@@ -208,6 +209,8 @@ where
padding: vec![(PADDING, PADDING); 2],
stride: vec![STRIDE; 2],
group: 1,
data_format: DataFormat::NCHW,
kernel_format: KernelFormat::OIHW,
};
let x = config
.layer_config

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,13 @@
# download tess data
# check if first argument has been set
if [ ! -z "$1" ]; then
DATA_DIR=$1
else
DATA_DIR=data
fi
echo "Downloading data to $DATA_DIR"
if [ ! -d "$DATA_DIR/CATDOG" ]; then
kaggle datasets download tongpython/cat-and-dog -p $DATA_DIR/CATDOG --unzip
fi

View File

@@ -272,33 +272,21 @@
"\n",
"- For file data sources, the raw floating point values that eventually get quantized, converted into field elements and stored in `witness.json` to be consumed by the circuit are stored. The output data contains the expected floating point values returned as outputs from running your vanilla pytorch model on the given inputs.\n",
"- For on chain data sources, the input_data field contains all the data necessary to read and format the on chain data into something digestable by EZKL (aka field elements :-D). \n",
"Here is what the schema for an on-chain data source graph input file should look like:\n",
"Here is what the schema for an on-chain data source graph input file should look like for a single call data source:\n",
" \n",
"```json\n",
"{\n",
" \"input_data\": {\n",
" \"rpc\": \"http://localhost:3030\", // The rpc endpoint of the chain you are deploying your verifier to\n",
" \"calls\": [\n",
" {\n",
" \"call_data\": [\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000000\", // The abi encoded call data to a view function that returns a single on-chain data point (we only support uint256 returns for now)\n",
" 7 // The number of decimal places of the large uint256 value. This is our way of representing large wei values as floating points on chain, since the evm only natively supports integer values.\n",
" ],\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000001\",\n",
" 5\n",
" ],\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000002\",\n",
" 5\n",
" ]\n",
" ],\n",
" \"address\": \"5fbdb2315678afecb367f032d93f642f64180aa3\" // The address of the contract that we are calling to get the data. \n",
" }\n",
" ]\n",
" }\n",
"}"
" \"input_data\": {\n",
" \"rpc\": \"http://localhost:3030\", // The rpc endpoint of the chain you are deploying your verifier to\n",
" \"calls\": {\n",
" \"call_data\": \"1f3be514000000000000000000000000c6962004f452be9203591991d15f6b388e09e8d00000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000000b000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000009000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000070000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000\", // The abi encoded call data to a view function that returns an array of on-chain data points we are attesting to. \n",
" \"decimals\": 0, // The number of decimal places of the large uint256 value. This is our way of representing large wei values as floating points on chain, since the evm only natively supports integer values.\n",
" \"address\": \"9A213F53334279C128C37DA962E5472eCD90554f\", // The address of the contract that we are calling to get the data. \n",
" \"len\": 12 // The number of data points returned by the view function (the length of the array)\n",
" }\n",
" }\n",
"}\n",
"```"
]
},
{
@@ -307,7 +295,7 @@
"metadata": {},
"outputs": [],
"source": [
"await ezkl.setup_test_evm_witness(\n",
"await ezkl.setup_test_evm_data(\n",
" data_path,\n",
" compiled_model_path,\n",
" # we write the call data to the same file as the input data\n",

View File

@@ -337,6 +337,7 @@
"w3 = Web3(HTTPProvider(RPC_URL))\n",
"\n",
"def test_on_chain_data(res):\n",
" print(f'poseidon_hash: {res[\"processed_outputs\"][\"poseidon_hash\"]}')\n",
" # Step 0: Convert the tensor to a flat list\n",
" data = [int(ezkl.felt_to_big_endian(res['processed_outputs']['poseidon_hash'][0]), 0)]\n",
"\n",
@@ -356,6 +357,9 @@
" arr.push(_numbers[i]);\n",
" }\n",
" }\n",
" function getArr() public view returns (uint[] memory) {\n",
" return arr;\n",
" }\n",
" }\n",
" '''\n",
"\n",
@@ -382,31 +386,30 @@
" contract = w3.eth.contract(address=tx_receipt['contractAddress'], abi=abi)\n",
"\n",
" # Step 4: Interact with the contract\n",
" calldata = []\n",
" for i, _ in enumerate(data):\n",
" call = contract.functions.arr(i).build_transaction()\n",
" calldata.append((call['data'][2:], 0))\n",
" calldata = contract.functions.getArr().build_transaction()['data'][2:]\n",
"\n",
" # Prepare the calls_to_account object\n",
" # If you were calling view functions across multiple contracts,\n",
" # you would have multiple entries in the calls_to_account array,\n",
" # one for each contract.\n",
" calls_to_account = [{\n",
" decimals = [0] * len(data)\n",
" call_to_account = {\n",
" 'call_data': calldata,\n",
" 'decimals': decimals,\n",
" 'address': contract.address[2:], # remove the '0x' prefix\n",
" }]\n",
" }\n",
"\n",
" print(f'calls_to_account: {calls_to_account}')\n",
" print(f'call_to_account: {call_to_account}')\n",
"\n",
" return calls_to_account\n",
" return call_to_account\n",
"\n",
"# Now let's start the Anvil process. You don't need to do this if you are deploying to a non-local chain.\n",
"start_anvil()\n",
"\n",
"# Now let's call our function, passing in the same input tensor we used to export the model 2 cells above.\n",
"calls_to_account = test_on_chain_data(res)\n",
"call_to_account = test_on_chain_data(res)\n",
"\n",
"data = dict(input_data = [data_array], output_data = {'rpc': RPC_URL, 'calls': calls_to_account })\n",
"data = dict(input_data = [data_array], output_data = {'rpc': RPC_URL, 'call': call_to_account })\n",
"\n",
"# Serialize on-chain data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
@@ -634,7 +637,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "ezkl",
"display_name": ".env",
"language": "python",
"name": "python3"
},
@@ -648,7 +651,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
"version": "3.11.5"
},
"orig_nbformat": 4
},

View File

@@ -276,33 +276,21 @@
"\n",
"- For file data sources, the raw floating point values that eventually get quantized, converted into field elements and stored in `witness.json` to be consumed by the circuit are stored. The output data contains the expected floating point values returned as outputs from running your vanilla pytorch model on the given inputs.\n",
"- For on chain data sources, the input_data field contains all the data necessary to read and format the on chain data into something digestable by EZKL (aka field elements :-D). \n",
"Here is what the schema for an on-chain data source graph input file should look like:\n",
"Here is what the schema for an on-chain data source graph input file should look like for a single call data source:\n",
" \n",
"```json\n",
"{\n",
" \"input_data\": {\n",
" \"rpc\": \"http://localhost:3030\", // The rpc endpoint of the chain you are deploying your verifier to\n",
" \"calls\": [\n",
" {\n",
" \"call_data\": [\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000000\", // The abi encoded call data to a view function that returns a single on-chain data point (we only support uint256 returns for now)\n",
" 7 // The number of decimal places of the large uint256 value. This is our way of representing large wei values as floating points on chain, since the evm only natively supports integer values.\n",
" ],\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000001\",\n",
" 5\n",
" ],\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000002\",\n",
" 5\n",
" ]\n",
" ],\n",
" \"address\": \"5fbdb2315678afecb367f032d93f642f64180aa3\" // The address of the contract that we are calling to get the data. \n",
" }\n",
" ]\n",
" }\n",
"}"
" \"input_data\": {\n",
" \"rpc\": \"http://localhost:3030\", // The rpc endpoint of the chain you are deploying your verifier to\n",
" \"calls\": {\n",
" \"call_data\": \"1f3be514000000000000000000000000c6962004f452be9203591991d15f6b388e09e8d00000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000000b000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000009000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000070000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000\", // The abi encoded call data to a view function that returns an array of on-chain data points we are attesting to. \n",
" \"decimals\": 0, // The number of decimal places of the large uint256 value. This is our way of representing large wei values as floating points on chain, since the evm only natively supports integer values.\n",
" \"address\": \"9A213F53334279C128C37DA962E5472eCD90554f\", // The address of the contract that we are calling to get the data. \n",
" \"len\": 3 // The number of data points returned by the view function (the length of the array)\n",
" }\n",
" }\n",
"}\n",
"```"
]
},
{
@@ -311,7 +299,7 @@
"metadata": {},
"outputs": [],
"source": [
"await ezkl.setup_test_evm_witness(\n",
"await ezkl.setup_test_evm_data(\n",
" data_path,\n",
" compiled_model_path,\n",
" # we write the call data to the same file as the input data\n",
@@ -337,7 +325,7 @@
"metadata": {},
"outputs": [],
"source": [
"res = await ezkl.get_srs( settings_path)\n"
"res = await ezkl.get_srs( settings_path)"
]
},
{
@@ -348,27 +336,6 @@
"We now need to generate the circuit witness. These are the model outputs (and any hashes) that are generated when feeding the previously generated `input.json` through the circuit / model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!export RUST_BACKTRACE=1\n",
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we setup verifying and proving keys for the circuit. As the name suggests the proving key is needed for ... proving and the verifying key is needed for ... verifying. "
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -391,6 +358,27 @@
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!export RUST_BACKTRACE=1\n",
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we setup verifying and proving keys for the circuit. As the name suggests the proving key is needed for ... proving and the verifying key is needed for ... verifying. "
]
},
{
"attachments": {},
"cell_type": "markdown",
@@ -581,7 +569,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "ezkl",
"display_name": ".env",
"language": "python",
"name": "python3"
},
@@ -595,7 +583,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.5"
},
"orig_nbformat": 4
},

File diff suppressed because one or more lines are too long

View File

@@ -77,6 +77,7 @@
"outputs": [],
"source": [
"gip_run_args = ezkl.PyRunArgs()\n",
"gip_run_args.ignore_range_check_inputs_outputs = True\n",
"gip_run_args.input_visibility = \"polycommit\" # matrix and generalized inverse commitments\n",
"gip_run_args.output_visibility = \"fixed\" # no parameters used\n",
"gip_run_args.param_visibility = \"fixed\" # should be Tensor(True)"
@@ -335,9 +336,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -1,279 +1,284 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Linear Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LinearRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LinearRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Linear Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LinearRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LinearRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
"\n",
"\n",
"# note that you can also call the following function to generate random data for the model\n",
"# it is functionally equivalent to the code above\n",
"ezkl.gen_random_data()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,456 +1,462 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mean of ERC20 transfer amounts\n",
"\n",
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
"\n",
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import json\n",
"import time\n",
"import subprocess\n",
"\n",
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
"os.system(\"chmod +x shovel\")\n",
"\n",
"\n",
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
"\n",
"# create a config.json file with the following contents\n",
"config = {\n",
" \"pg_url\": \"$PG_URL\",\n",
" \"eth_sources\": [\n",
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
" ],\n",
" \"integrations\": [{\n",
" \"name\": \"usdc_transfer\",\n",
" \"enabled\": True,\n",
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
" \"table\": {\n",
" \"name\": \"usdc\",\n",
" \"columns\": [\n",
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
" ]\n",
" },\n",
" \"block\": [\n",
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
" {\n",
" \"name\": \"log_addr\",\n",
" \"column\": \"log_addr\",\n",
" \"filter_op\": \"contains\",\n",
" \"filter_arg\": [\n",
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
" ]\n",
" }\n",
" ],\n",
" \"event\": {\n",
" \"name\": \"Transfer\",\n",
" \"type\": \"event\",\n",
" \"anonymous\": False,\n",
" \"inputs\": [\n",
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
" ]\n",
" }\n",
" }]\n",
"}\n",
"\n",
"# write the config to a file\n",
"with open(\"config.json\", \"w\") as f:\n",
" f.write(json.dumps(config))\n",
"\n",
"\n",
"# print the two env variables\n",
"os.system(\"echo $PG_URL\")\n",
"\n",
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
"\n",
"os.system(\"echo shovel is now installed. starting:\")\n",
"\n",
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
"proc = subprocess.Popen(command)\n",
"\n",
"os.system(\"echo shovel started.\")\n",
"\n",
"time.sleep(10)\n",
"\n",
"# after we've fetched some data -- kill the process\n",
"proc.terminate()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2wIAHwqH2_mo"
},
"source": [
"**Import Dependencies**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9Byiv2Nc2MsK"
},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import ezkl\n",
"import torch\n",
"import datetime\n",
"import pandas as pd\n",
"import requests\n",
"import json\n",
"import os\n",
"\n",
"import logging\n",
"# # uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n",
"\n",
"print(\"ezkl version: \", ezkl.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "osjj-0Ta3E8O"
},
"source": [
"**Create Computational Graph**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x1vl9ZXF3EEW",
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
},
"outputs": [],
"source": [
"from torch import nn\n",
"import torch\n",
"\n",
"\n",
"class Model(nn.Module):\n",
" def __init__(self):\n",
" super(Model, self).__init__()\n",
"\n",
" # x is a time series \n",
" def forward(self, x):\n",
" return [torch.mean(x)]\n",
"\n",
"\n",
"\n",
"\n",
"circuit = Model()\n",
"\n",
"\n",
"\n",
"\n",
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
"\n",
"# # print(torch.__version__)\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"print(device)\n",
"\n",
"circuit.to(device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=11, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"# export(circuit, input_shape=[1, 20])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E3qCeX-X5xqd"
},
"source": [
"**Set Data Source and Get Data**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6RAMplxk5xPk",
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
},
"outputs": [],
"source": [
"import getpass\n",
"# make an input.json file from the df above\n",
"input_filename = os.path.join('input.json')\n",
"\n",
"pg_input_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
"print(json_formatted_str)\n",
"\n",
"\n",
" # Serialize data into file:\n",
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this corresponds to 4 batches\n",
"calibration_filename = os.path.join('calibration.json')\n",
"\n",
"pg_cal_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
" # Serialize data into file:\n",
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eLJ7oirQ_HQR"
},
"source": [
"**EZKL Workflow**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rNw0C9QL6W88"
},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"\n",
"onnx_filename = os.path.join('lol.onnx')\n",
"compiled_filename = os.path.join('lol.compiled')\n",
"settings_filename = os.path.join('settings.json')\n",
"\n",
"# Generate settings using ezkl\n",
"res = ezkl.gen_settings(onnx_filename, settings_filename)\n",
"\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
"\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4MmE9SX66_Il",
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
},
"outputs": [],
"source": [
"# generate settings\n",
"\n",
"\n",
"# show the settings.json\n",
"with open(\"settings.json\") as f:\n",
" data = json.load(f)\n",
" json_formatted_str = json.dumps(data, indent=2)\n",
"\n",
" print(json_formatted_str)\n",
"\n",
"assert os.path.exists(\"settings.json\")\n",
"assert os.path.exists(\"input.json\")\n",
"assert os.path.exists(\"lol.onnx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fULvvnK7_CMb"
},
"outputs": [],
"source": [
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"\n",
"\n",
"# setup the proof\n",
"res = ezkl.setup(\n",
" compiled_filename,\n",
" vk_path,\n",
" pk_path\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_filename)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"witness_path = \"witness.json\"\n",
"\n",
"# generate the witness\n",
"res = await ezkl.gen_witness(\n",
" input_filename,\n",
" compiled_filename,\n",
" witness_path\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Oog3j6Kd-Wed",
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
},
"outputs": [],
"source": [
"# prove the zk circuit\n",
"# GENERATE A PROOF\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"\n",
"proof = ezkl.prove(\n",
" witness_path,\n",
" compiled_filename,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\"\n",
" )\n",
"\n",
"\n",
"print(\"proved\")\n",
"\n",
"assert os.path.isfile(proof_path)\n",
"\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mean of ERC20 transfer amounts\n",
"\n",
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
"\n",
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
"\n"
]
},
"nbformat": 4,
"nbformat_minor": 0
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import json\n",
"import time\n",
"import subprocess\n",
"\n",
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
"os.system(\"chmod +x shovel\")\n",
"\n",
"\n",
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
"\n",
"# create a config.json file with the following contents\n",
"config = {\n",
" \"pg_url\": \"$PG_URL\",\n",
" \"eth_sources\": [\n",
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
" ],\n",
" \"integrations\": [{\n",
" \"name\": \"usdc_transfer\",\n",
" \"enabled\": True,\n",
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
" \"table\": {\n",
" \"name\": \"usdc\",\n",
" \"columns\": [\n",
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
" ]\n",
" },\n",
" \"block\": [\n",
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
" {\n",
" \"name\": \"log_addr\",\n",
" \"column\": \"log_addr\",\n",
" \"filter_op\": \"contains\",\n",
" \"filter_arg\": [\n",
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
" ]\n",
" }\n",
" ],\n",
" \"event\": {\n",
" \"name\": \"Transfer\",\n",
" \"type\": \"event\",\n",
" \"anonymous\": False,\n",
" \"inputs\": [\n",
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
" ]\n",
" }\n",
" }]\n",
"}\n",
"\n",
"# write the config to a file\n",
"with open(\"config.json\", \"w\") as f:\n",
" f.write(json.dumps(config))\n",
"\n",
"\n",
"# print the two env variables\n",
"os.system(\"echo $PG_URL\")\n",
"\n",
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
"\n",
"os.system(\"echo shovel is now installed. starting:\")\n",
"\n",
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
"proc = subprocess.Popen(command)\n",
"\n",
"os.system(\"echo shovel started.\")\n",
"\n",
"time.sleep(10)\n",
"\n",
"# after we've fetched some data -- kill the process\n",
"proc.terminate()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2wIAHwqH2_mo"
},
"source": [
"**Import Dependencies**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9Byiv2Nc2MsK"
},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import ezkl\n",
"import torch\n",
"import datetime\n",
"import pandas as pd\n",
"import requests\n",
"import json\n",
"import os\n",
"\n",
"import logging\n",
"# # uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n",
"\n",
"print(\"ezkl version: \", ezkl.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "osjj-0Ta3E8O"
},
"source": [
"**Create Computational Graph**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x1vl9ZXF3EEW",
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
},
"outputs": [],
"source": [
"from torch import nn\n",
"import torch\n",
"\n",
"\n",
"class Model(nn.Module):\n",
" def __init__(self):\n",
" super(Model, self).__init__()\n",
"\n",
" # x is a time series \n",
" def forward(self, x):\n",
" return [torch.mean(x)]\n",
"\n",
"\n",
"\n",
"\n",
"circuit = Model()\n",
"\n",
"\n",
"\n",
"\n",
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
"\n",
"# # print(torch.__version__)\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"print(device)\n",
"\n",
"circuit.to(device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=11, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"# export(circuit, input_shape=[1, 20])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E3qCeX-X5xqd"
},
"source": [
"**Set Data Source and Get Data**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6RAMplxk5xPk",
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
},
"outputs": [],
"source": [
"import getpass\n",
"# make an input.json file from the df above\n",
"input_filename = os.path.join('input.json')\n",
"\n",
"pg_input_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
"print(json_formatted_str)\n",
"\n",
"\n",
" # Serialize data into file:\n",
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this corresponds to 4 batches\n",
"calibration_filename = os.path.join('calibration.json')\n",
"\n",
"pg_cal_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
" # Serialize data into file:\n",
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eLJ7oirQ_HQR"
},
"source": [
"**EZKL Workflow**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rNw0C9QL6W88"
},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"\n",
"onnx_filename = os.path.join('lol.onnx')\n",
"compiled_filename = os.path.join('lol.compiled')\n",
"settings_filename = os.path.join('settings.json')\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.decomp_legs = 4\n",
"\n",
"# Generate settings using ezkl\n",
"res = ezkl.gen_settings(onnx_filename, settings_filename, py_run_args=run_args)\n",
"\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
"\n",
"assert res == True\n",
"\n",
"await ezkl.get_srs(settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4MmE9SX66_Il",
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
},
"outputs": [],
"source": [
"# generate settings\n",
"\n",
"\n",
"# show the settings.json\n",
"with open(\"settings.json\") as f:\n",
" data = json.load(f)\n",
" json_formatted_str = json.dumps(data, indent=2)\n",
"\n",
" print(json_formatted_str)\n",
"\n",
"assert os.path.exists(\"settings.json\")\n",
"assert os.path.exists(\"input.json\")\n",
"assert os.path.exists(\"lol.onnx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fULvvnK7_CMb"
},
"outputs": [],
"source": [
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"\n",
"\n",
"# setup the proof\n",
"res = ezkl.setup(\n",
" compiled_filename,\n",
" vk_path,\n",
" pk_path\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_filename)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"witness_path = \"witness.json\"\n",
"\n",
"# generate the witness\n",
"res = await ezkl.gen_witness(\n",
" input_filename,\n",
" compiled_filename,\n",
" witness_path\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Oog3j6Kd-Wed",
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
},
"outputs": [],
"source": [
"# prove the zk circuit\n",
"# GENERATE A PROOF\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"\n",
"proof = ezkl.prove(\n",
" witness_path,\n",
" compiled_filename,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\"\n",
" )\n",
"\n",
"\n",
"print(\"proved\")\n",
"\n",
"assert os.path.isfile(proof_path)\n",
"\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -453,18 +453,18 @@
"outputs": [],
"source": [
"# now mock aggregate the proofs\n",
"proofs = []\n",
"for i in range(3):\n",
" proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
" proofs.append(proof_path)\n",
"# proofs = []\n",
"# for i in range(3):\n",
"# proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
"# proofs.append(proof_path)\n",
"\n",
"ezkl.mock_aggregate(proofs, logrows=23, split_proofs = True)"
"# ezkl.mock_aggregate(proofs, logrows=26, split_proofs = True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ezkl",
"display_name": ".env",
"language": "python",
"name": "python3"
},
@@ -478,7 +478,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
"version": "3.12.7"
},
"orig_nbformat": 4
},

View File

@@ -0,0 +1,766 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"This is a zk version of the tutorial found [here](https://github.com/bentrevett/pytorch-sentiment-analysis/blob/main/1%20-%20Neural%20Bag%20of%20Words.ipynb). The original tutorial is part of the PyTorch Sentiment Analysis series by Ben Trevett.\n",
"\n",
"1 - NBoW\n",
"\n",
"In this series we'll be building a machine learning model to perform sentiment analysis -- a subset of text classification where the task is to detect if a given sentence is positive or negative -- using PyTorch and torchtext. The dataset used will be movie reviews from the IMDb dataset, which we'll obtain using the datasets library.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Preparing Data\n",
"\n",
"Before we can implement our NBoW model, we first have to perform quite a few steps to get our data ready to use. NLP usually requires quite a lot of data wrangling beforehand, though libraries such as datasets and torchtext handle most of this for us.\n",
"\n",
"The steps to take are:\n",
"\n",
" 1. importing modules\n",
" 2. loading data\n",
" 3. tokenizing data\n",
" 4. creating data splits\n",
" 5. creating a vocabulary\n",
" 6. numericalizing data\n",
" 7. creating the data loaders\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install torchtex"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import collections\n",
"\n",
"import datasets\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"import torchtext\n",
"import tqdm\n",
"\n",
"# It is usually good practice to run your experiments multiple times with different random seeds -- both to measure the variance of your model and also to avoid having results only calculated with either \"good\" or \"bad\" seeds, i.e. being very lucky or unlucky with the randomness in the training process.\n",
"\n",
"seed = 1234\n",
"\n",
"np.random.seed(seed)\n",
"torch.manual_seed(seed)\n",
"torch.cuda.manual_seed(seed)\n",
"torch.backends.cudnn.deterministic = True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_data, test_data = datasets.load_dataset(\"imdb\", split=[\"train\", \"test\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can check the features attribute of a split to get more information about the features. We can see that text is a Value of dtype=string -- in other words, it's a string -- and that label is a ClassLabel. A ClassLabel means the feature is an integer representation of which class the example belongs to. num_classes=2 means that our labels are one of two values, 0 or 1, and names=['neg', 'pos'] gives us the human-readable versions of those values. Thus, a label of 0 means the example is a negative review and a label of 1 means the example is a positive review."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_data.features\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_data[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One of the first things we need to do to our data is tokenize it. Machine learning models aren't designed to handle strings, they're design to handle numbers. So what we need to do is break down our string into individual tokens, and then convert these tokens to numbers. We'll get to the conversion later, but first we'll look at tokenization.\n",
"\n",
"Tokenization involves using a tokenizer to process the strings in our dataset. A tokenizer is a function that goes from a string to a list of strings. There are many types of tokenizers available, but we're going to use a relatively simple one provided by torchtext called the basic_english tokenizer. We load our tokenizer as such:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = torchtext.data.utils.get_tokenizer(\"basic_english\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def tokenize_example(example, tokenizer, max_length):\n",
" tokens = tokenizer(example[\"text\"])[:max_length]\n",
" return {\"tokens\": tokens}\n",
"\n",
"\n",
"max_length = 256\n",
"\n",
"train_data = train_data.map(\n",
" tokenize_example, fn_kwargs={\"tokenizer\": tokenizer, \"max_length\": max_length}\n",
")\n",
"test_data = test_data.map(\n",
" tokenize_example, fn_kwargs={\"tokenizer\": tokenizer, \"max_length\": max_length}\n",
")\n",
"\n",
"\n",
"# create validation data \n",
"# Why have both a validation set and a test set? Your test set respresents the real world data that you'd see if you actually deployed this model. You won't be able to see what data your model will be fed once deployed, and your test set is supposed to reflect that. Every time we tune our model hyperparameters or training set-up to make it do a bit better on the test set, we are leak information from the test set into the training process. If we do this too often then we begin to overfit on the test set. Hence, we need some data which can act as a \"proxy\" test set which we can look at more frequently in order to evaluate how well our model actually does on unseen data -- this is the validation set.\n",
"\n",
"test_size = 0.25\n",
"\n",
"train_valid_data = train_data.train_test_split(test_size=test_size)\n",
"train_data = train_valid_data[\"train\"]\n",
"valid_data = train_valid_data[\"test\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we have to build a vocabulary. This is look-up table where every unique token in your dataset has a corresponding index (an integer).\n",
"\n",
"We do this as machine learning models cannot operate on strings, only numerical vaslues. Each index is used to construct a one-hot vector for each token. A one-hot vector is a vector where all the elements are 0, except one, which is 1, and the dimensionality is the total number of unique tokens in your vocabulary, commonly denoted by V."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"min_freq = 5\n",
"special_tokens = [\"<unk>\", \"<pad>\"]\n",
"\n",
"vocab = torchtext.vocab.build_vocab_from_iterator(\n",
" train_data[\"tokens\"],\n",
" min_freq=min_freq,\n",
" specials=special_tokens,\n",
")\n",
"\n",
"# We store the indices of the unknown and padding tokens (zero and one, respectively) in variables, as we'll use these further on in this notebook.\n",
"\n",
"unk_index = vocab[\"<unk>\"]\n",
"pad_index = vocab[\"<pad>\"]\n",
"\n",
"\n",
"vocab.set_default_index(unk_index)\n",
"\n",
"# To look-up a list of tokens, we can use the vocabulary's lookup_indices method.\n",
"vocab.lookup_indices([\"hello\", \"world\", \"some_token\", \"<pad>\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we have our vocabulary, we can numericalize our data. This involves converting the tokens within our dataset into indices. Similar to how we tokenized our data using the Dataset.map method, we'll define a function that takes an example and our vocabulary, gets the index for each token in each example and then creates an ids field which containes the numericalized tokens."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def numericalize_example(example, vocab):\n",
" ids = vocab.lookup_indices(example[\"tokens\"])\n",
" return {\"ids\": ids}\n",
"\n",
"train_data = train_data.map(numericalize_example, fn_kwargs={\"vocab\": vocab})\n",
"valid_data = valid_data.map(numericalize_example, fn_kwargs={\"vocab\": vocab})\n",
"test_data = test_data.map(numericalize_example, fn_kwargs={\"vocab\": vocab})\n",
"\n",
"train_data = train_data.with_format(type=\"torch\", columns=[\"ids\", \"label\"])\n",
"valid_data = valid_data.with_format(type=\"torch\", columns=[\"ids\", \"label\"])\n",
"test_data = test_data.with_format(type=\"torch\", columns=[\"ids\", \"label\"])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The final step of preparing the data is creating the data loaders. We can iterate over a data loader to retrieve batches of examples. This is also where we will perform any padding that is necessary.\n",
"\n",
"We first need to define a function to collate a batch, consisting of a list of examples, into what we want our data loader to output.\n",
"\n",
"Here, our desired output from the data loader is a dictionary with keys of \"ids\" and \"label\".\n",
"\n",
"The value of batch[\"ids\"] should be a tensor of shape [batch size, length], where length is the length of the longest sentence (in terms of tokens) within the batch, and all sentences shorter than this should be padded to that length.\n",
"\n",
"The value of batch[\"label\"] should be a tensor of shape [batch size] consisting of the label for each sentence in the batch.\n",
"\n",
"We define a function, get_collate_fn, which is passed the pad token index and returns the actual collate function. Within the actual collate function, collate_fn, we get a list of \"ids\" tensors for each example in the batch, and then use the pad_sequence function, which converts the list of tensors into the desired [batch size, length] shaped tensor and performs padding using the specified pad_index. By default, pad_sequence will return a [length, batch size] shaped tensor, but by setting batch_first=True, these two dimensions are switched. We get a list of \"label\" tensors and convert the list of tensors into a single [batch size] shaped tensor."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_collate_fn(pad_index):\n",
" def collate_fn(batch):\n",
" batch_ids = [i[\"ids\"] for i in batch]\n",
" batch_ids = nn.utils.rnn.pad_sequence(\n",
" batch_ids, padding_value=pad_index, batch_first=True\n",
" )\n",
" batch_label = [i[\"label\"] for i in batch]\n",
" batch_label = torch.stack(batch_label)\n",
" batch = {\"ids\": batch_ids, \"label\": batch_label}\n",
" return batch\n",
"\n",
" return collate_fn\n",
"\n",
"def get_data_loader(dataset, batch_size, pad_index, shuffle=False):\n",
" collate_fn = get_collate_fn(pad_index)\n",
" data_loader = torch.utils.data.DataLoader(\n",
" dataset=dataset,\n",
" batch_size=batch_size,\n",
" collate_fn=collate_fn,\n",
" shuffle=shuffle,\n",
" )\n",
" return data_loader\n",
"\n",
"\n",
"batch_size = 512\n",
"\n",
"train_data_loader = get_data_loader(train_data, batch_size, pad_index, shuffle=True)\n",
"valid_data_loader = get_data_loader(valid_data, batch_size, pad_index)\n",
"test_data_loader = get_data_loader(test_data, batch_size, pad_index)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"class NBoW(nn.Module):\n",
" def __init__(self, vocab_size, embedding_dim, output_dim, pad_index):\n",
" super().__init__()\n",
" self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_index)\n",
" self.fc = nn.Linear(embedding_dim, output_dim)\n",
"\n",
" def forward(self, ids):\n",
" # ids = [batch size, seq len]\n",
" embedded = self.embedding(ids)\n",
" # embedded = [batch size, seq len, embedding dim]\n",
" pooled = embedded.mean(dim=1)\n",
" # pooled = [batch size, embedding dim]\n",
" prediction = self.fc(pooled)\n",
" # prediction = [batch size, output dim]\n",
" return prediction\n",
"\n",
"\n",
"vocab_size = len(vocab)\n",
"embedding_dim = 300\n",
"output_dim = len(train_data.unique(\"label\"))\n",
"\n",
"model = NBoW(vocab_size, embedding_dim, output_dim, pad_index)\n",
"\n",
"def count_parameters(model):\n",
" return sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
"\n",
"\n",
"print(f\"The model has {count_parameters(model):,} trainable parameters\")\n",
"\n",
"vectors = torchtext.vocab.GloVe()\n",
"\n",
"pretrained_embedding = vectors.get_vecs_by_tokens(vocab.get_itos())\n",
"\n",
"optimizer = optim.Adam(model.parameters())\n",
"\n",
"criterion = nn.CrossEntropyLoss()\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"model = model.to(device)\n",
"criterion = criterion.to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def train(data_loader, model, criterion, optimizer, device):\n",
" model.train()\n",
" epoch_losses = []\n",
" epoch_accs = []\n",
" for batch in tqdm.tqdm(data_loader, desc=\"training...\"):\n",
" ids = batch[\"ids\"].to(device)\n",
" label = batch[\"label\"].to(device)\n",
" prediction = model(ids)\n",
" loss = criterion(prediction, label)\n",
" accuracy = get_accuracy(prediction, label)\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n",
" epoch_losses.append(loss.item())\n",
" epoch_accs.append(accuracy.item())\n",
" return np.mean(epoch_losses), np.mean(epoch_accs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def evaluate(data_loader, model, criterion, device):\n",
" model.eval()\n",
" epoch_losses = []\n",
" epoch_accs = []\n",
" with torch.no_grad():\n",
" for batch in tqdm.tqdm(data_loader, desc=\"evaluating...\"):\n",
" ids = batch[\"ids\"].to(device)\n",
" label = batch[\"label\"].to(device)\n",
" prediction = model(ids)\n",
" loss = criterion(prediction, label)\n",
" accuracy = get_accuracy(prediction, label)\n",
" epoch_losses.append(loss.item())\n",
" epoch_accs.append(accuracy.item())\n",
" return np.mean(epoch_losses), np.mean(epoch_accs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_accuracy(prediction, label):\n",
" batch_size, _ = prediction.shape\n",
" predicted_classes = prediction.argmax(dim=-1)\n",
" correct_predictions = predicted_classes.eq(label).sum()\n",
" accuracy = correct_predictions / batch_size\n",
" return accuracy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"n_epochs = 10\n",
"best_valid_loss = float(\"inf\")\n",
"\n",
"metrics = collections.defaultdict(list)\n",
"\n",
"for epoch in range(n_epochs):\n",
" train_loss, train_acc = train(\n",
" train_data_loader, model, criterion, optimizer, device\n",
" )\n",
" valid_loss, valid_acc = evaluate(valid_data_loader, model, criterion, device)\n",
" metrics[\"train_losses\"].append(train_loss)\n",
" metrics[\"train_accs\"].append(train_acc)\n",
" metrics[\"valid_losses\"].append(valid_loss)\n",
" metrics[\"valid_accs\"].append(valid_acc)\n",
" if valid_loss < best_valid_loss:\n",
" best_valid_loss = valid_loss\n",
" torch.save(model.state_dict(), \"nbow.pt\")\n",
" print(f\"epoch: {epoch}\")\n",
" print(f\"train_loss: {train_loss:.3f}, train_acc: {train_acc:.3f}\")\n",
" print(f\"valid_loss: {valid_loss:.3f}, valid_acc: {valid_acc:.3f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(10, 6))\n",
"ax = fig.add_subplot(1, 1, 1)\n",
"ax.plot(metrics[\"train_losses\"], label=\"train loss\")\n",
"ax.plot(metrics[\"valid_losses\"], label=\"valid loss\")\n",
"ax.set_xlabel(\"epoch\")\n",
"ax.set_ylabel(\"loss\")\n",
"ax.set_xticks(range(n_epochs))\n",
"ax.legend()\n",
"ax.grid()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(10, 6))\n",
"ax = fig.add_subplot(1, 1, 1)\n",
"ax.plot(metrics[\"train_accs\"], label=\"train accuracy\")\n",
"ax.plot(metrics[\"valid_accs\"], label=\"valid accuracy\")\n",
"ax.set_xlabel(\"epoch\")\n",
"ax.set_ylabel(\"loss\")\n",
"ax.set_xticks(range(n_epochs))\n",
"ax.legend()\n",
"ax.grid()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.load_state_dict(torch.load(\"nbow.pt\"))\n",
"\n",
"test_loss, test_acc = evaluate(test_data_loader, model, criterion, device)\n",
"\n",
"print(f\"test_loss: {test_loss:.3f}, test_acc: {test_acc:.3f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def predict_sentiment(text, model, tokenizer, vocab, device):\n",
" tokens = tokenizer(text)\n",
" ids = vocab.lookup_indices(tokens)\n",
" tensor = torch.LongTensor(ids).unsqueeze(dim=0).to(device)\n",
" prediction = model(tensor).squeeze(dim=0)\n",
" probability = torch.softmax(prediction, dim=-1)\n",
" predicted_class = prediction.argmax(dim=-1).item()\n",
" predicted_probability = probability[predicted_class].item()\n",
" return predicted_class, predicted_probability"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This film is terrible!\"\n",
"\n",
"predict_sentiment(text, model, tokenizer, vocab, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This film is great!\"\n",
"\n",
"predict_sentiment(text, model, tokenizer, vocab, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This film is not terrible, it's great!\"\n",
"\n",
"predict_sentiment(text, model, tokenizer, vocab, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This film is not great, it's terrible!\"\n",
"\n",
"predict_sentiment(text, model, tokenizer, vocab, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def text_to_tensor(text, tokenizer, vocab, device):\n",
" tokens = tokenizer(text)\n",
" ids = vocab.lookup_indices(tokens)\n",
" tensor = torch.LongTensor(ids).unsqueeze(dim=0).to(device)\n",
" return tensor\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we do onnx stuff to get the data ready for the zk-circuit."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"import json\n",
"\n",
"text = \"This film is terrible!\"\n",
"x = text_to_tensor(text, tokenizer, vocab, device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"model.eval()\n",
"model.to('cpu')\n",
"\n",
"model_path = \"network.onnx\"\n",
"data_path = \"input.json\"\n",
"\n",
" # Export the model\n",
"torch.onnx.export(model, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" model_path, # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"\n",
"\n",
"data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data_json = dict(input_data = [data_array])\n",
"\n",
"print(data_json)\n",
"\n",
" # Serialize data into file:\n",
"json.dump(data_json, open(data_path, 'w'))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ezkl\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.logrows = 23\n",
"run_args.scale_rebase_multiplier = 10\n",
"# inputs should be auditable by all\n",
"run_args.input_visibility = \"public\"\n",
"# same with outputs\n",
"run_args.output_visibility = \"public\"\n",
"# for simplicity, we'll just use the fixed model visibility: i.e it is public and can't be changed by the prover\n",
"run_args.param_visibility = \"fixed\"\n",
"\n",
"\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(py_run_args=run_args)\n",
"assert res == True\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit()\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file\n",
"res = await ezkl.gen_witness()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.mock()\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"res = ezkl.setup()\n",
"\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"res = ezkl.prove(proof_path=\"proof.json\")\n",
"\n",
"print(res)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"res = ezkl.verify()\n",
"\n",
"assert res == True\n",
"print(\"verified\")\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also verify it on chain by creating an onchain verifier"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"solc-select\"])\n",
" !solc-select install 0.8.20\n",
" !solc-select use 0.8.20\n",
" !solc --version\n",
" import os\n",
"\n",
"# rely on local installation if the notebook is not in colab\n",
"except:\n",
" import os\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = await ezkl.create_evm_verifier()\n",
"assert res == True\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You should see a `Verifier.sol`. Right-click and save it locally.\n",
"\n",
"Now go to [https://remix.ethereum.org](https://remix.ethereum.org).\n",
"\n",
"Create a new file within remix and copy the verifier code over.\n",
"\n",
"Finally, compile the code and deploy. For the demo you can deploy to the test environment within remix.\n",
"\n",
"If everything works, you would have deployed your verifer onchain! Copy the values in the cell above to the respective fields to test if the verifier is working."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -152,9 +152,11 @@
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"run_args = ezkl.PyRunArgs()\n",
"# logrows\n",
"run_args.logrows = 20\n",
"\n",
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True\n"
]
},
@@ -302,7 +304,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.9.13"
}
},
"nbformat": 4,

View File

@@ -220,15 +220,6 @@
"Check that the generated verifiers are identical for all models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"start_anvil()"
]
},
{
"cell_type": "code",
"execution_count": null,

View File

@@ -167,6 +167,8 @@
"run_args = ezkl.PyRunArgs()\n",
"# \"hashed/private\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"hashed/private/0\"\n",
"# as the inputs are felts we turn off input range checks\n",
"run_args.ignore_range_check_inputs_outputs = True\n",
"# we set it to fix the set we want to check membership for\n",
"run_args.param_visibility = \"fixed\"\n",
"# the output is public -- set membership fails if it is not = 0\n",
@@ -519,4 +521,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -204,6 +204,7 @@
"run_args = ezkl.PyRunArgs()\n",
"# \"polycommit\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"polycommit\"\n",
"run_args.ignore_range_check_inputs_outputs = True\n",
"# the parameters are public\n",
"run_args.param_visibility = \"fixed\"\n",
"# the output is public (this is the inequality test)\n",
@@ -514,4 +515,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -20,7 +20,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -60,7 +60,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -94,7 +94,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -134,7 +134,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -183,7 +183,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -201,6 +201,7 @@
"run_args.input_visibility = \"public\"\n",
"run_args.param_visibility = \"private\"\n",
"run_args.output_visibility = \"public\"\n",
"run_args.decomp_legs=5\n",
"run_args.num_inner_cols = 1\n",
"run_args.variables = [(\"batch_size\", 1)]"
]
@@ -269,7 +270,7 @@
"{\n",
" \"input_data\": {\n",
" \"rpc\": \"http://localhost:3030\", // The rpc endpoint of the chain you are deploying your verifier to\n",
" \"calls\": {\n",
" \"call\": {\n",
" \"call_data\": \"1f3be514000000000000000000000000c6962004f452be9203591991d15f6b388e09e8d00000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000000b000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000009000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000070000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000\", // The abi encoded call data to a view function that returns an array of on-chain data points we are attesting to. \n",
" \"decimals\": 0, // The number of decimal places of the large uint256 value. This is our way of representing large wei values as floating points on chain, since the evm only natively supports integer values.\n",
" \"address\": \"9A213F53334279C128C37DA962E5472eCD90554f\", // The address of the contract that we are calling to get the data. \n",
@@ -294,7 +295,6 @@
"import torch\n",
"import requests\n",
"\n",
"# This function counts the decimal places of a floating point number\n",
"def count_decimal_places(num):\n",
" num_str = str(num)\n",
" if '.' in num_str:\n",
@@ -302,69 +302,28 @@
" else:\n",
" return 0\n",
"\n",
"# setup web3 instance\n",
"w3 = Web3(HTTPProvider(RPC_URL)) \n",
"\n",
"def set_next_block_timestamp(anvil_url, timestamp):\n",
" # Send the JSON-RPC request to Anvil\n",
" payload = {\n",
" \"jsonrpc\": \"2.0\",\n",
" \"id\": 1,\n",
" \"method\": \"evm_setNextBlockTimestamp\",\n",
" \"params\": [timestamp]\n",
" }\n",
" response = requests.post(anvil_url, json=payload)\n",
" if response.status_code == 200:\n",
" print(f\"Next block timestamp set to: {timestamp}\")\n",
" else:\n",
" print(f\"Failed to set next block timestamp: {response.text}\")\n",
"\n",
"def on_chain_data(tensor):\n",
" # Step 0: Convert the tensor to a flat list\n",
" data = tensor.view(-1).tolist()\n",
"\n",
" # Step 1: Prepare the calldata\n",
" secondsAgo = [len(data) - 1 - i for i in range(len(data))]\n",
"\n",
" # Step 2: Prepare and compile the contract UniTickAttestor contract\n",
" contract_source_code = '''\n",
" // SPDX-License-Identifier: MIT\n",
" pragma solidity ^0.8.20;\n",
"\n",
" /// @title Pool state that is not stored\n",
" /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the\n",
" /// blockchain. The functions here may have variable gas costs.\n",
" interface IUniswapV3PoolDerivedState {\n",
" /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp\n",
" /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing\n",
" /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,\n",
" /// you must call it with secondsAgos = [3600, 0].\n",
" /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.\n",
" /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in\n",
" /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned\n",
" /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp\n",
" /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block\n",
" /// timestamp\n",
" function observe(\n",
" uint32[] calldata secondsAgos\n",
" )\n",
" external\n",
" view\n",
" returns (\n",
" int56[] memory tickCumulatives,\n",
" uint160[] memory secondsPerLiquidityCumulativeX128s\n",
" );\n",
" ) external view returns (\n",
" int56[] memory tickCumulatives,\n",
" uint160[] memory secondsPerLiquidityCumulativeX128s\n",
" );\n",
" }\n",
"\n",
" /// @title Uniswap Wrapper around `pool.observe` that stores the parameters for fetching and then attesting to historical data\n",
" /// @notice Provides functions to integrate with V3 pool oracle\n",
" contract UniTickAttestor {\n",
" /**\n",
" * @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool\n",
" * @param pool Address of the pool that we want to observe\n",
" * @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means\n",
" * @return tickCumulatives The cumulative tick values as of each `secondsAgo` from the current block timestamp\n",
" */\n",
" int256[] private cachedTicks;\n",
"\n",
" function consult(\n",
" IUniswapV3PoolDerivedState pool,\n",
" uint32[] memory secondsAgo\n",
@@ -375,6 +334,21 @@
" tickCumulatives[i] = int256(_ticks[i]);\n",
" }\n",
" }\n",
"\n",
" function cache_price(\n",
" IUniswapV3PoolDerivedState pool,\n",
" uint32[] memory secondsAgo\n",
" ) public {\n",
" (int56[] memory _ticks,) = pool.observe(secondsAgo);\n",
" cachedTicks = new int256[](_ticks.length);\n",
" for (uint256 i = 0; i < _ticks.length; i++) {\n",
" cachedTicks[i] = int256(_ticks[i]);\n",
" }\n",
" }\n",
"\n",
" function readPriceCache() public view returns (int256[] memory) {\n",
" return cachedTicks;\n",
" }\n",
" }\n",
" '''\n",
"\n",
@@ -384,69 +358,44 @@
" \"settings\": {\"outputSelection\": {\"*\": {\"*\": [\"metadata\", \"evm.bytecode\", \"abi\"]}}}\n",
" })\n",
"\n",
" # Get bytecode\n",
" bytecode = compiled_sol['contracts']['UniTickAttestor.sol']['UniTickAttestor']['evm']['bytecode']['object']\n",
"\n",
" # Get ABI\n",
" # In production if you are reading from really large contracts you can just use\n",
" # a stripped down version of the ABI of the contract you are calling, containing only the view functions you will fetch data from.\n",
" abi = json.loads(compiled_sol['contracts']['UniTickAttestor.sol']['UniTickAttestor']['metadata'])['output']['abi']\n",
"\n",
" # Step 3: Deploy the contract\n",
" # Deploy contract\n",
" UniTickAttestor = w3.eth.contract(abi=abi, bytecode=bytecode)\n",
" tx_hash = UniTickAttestor.constructor().transact()\n",
" tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)\n",
" # If you are deploying to production you can skip the 3 lines of code above and just instantiate the contract like this,\n",
" # passing the address and abi of the contract you are fetching data from.\n",
" contract = w3.eth.contract(address=tx_receipt['contractAddress'], abi=abi)\n",
"\n",
" # Step 4: Interact with the contract\n",
" call = contract.functions.consult(\n",
" # Address of the UniV3 usdc-weth pool 0.005 fee\n",
" # Step 4: Store data via cache_price transaction\n",
" tx_hash = contract.functions.cache_price(\n",
" \"0xC6962004f452bE9203591991D15f6b388e09E8D0\",\n",
" secondsAgo\n",
" ).build_transaction()\n",
" result = contract.functions.consult(\n",
" # Address of the UniV3 usdc-weth pool 0.005 fee\n",
" \"0xC6962004f452bE9203591991D15f6b388e09E8D0\",\n",
" secondsAgo\n",
" ).call()\n",
" \n",
" print(f'result: {result}')\n",
" ).transact()\n",
" tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)\n",
"\n",
" # Step 5: Prepare calldata for readPriceCache\n",
" call = contract.functions.readPriceCache().build_transaction()\n",
" calldata = call['data'][2:]\n",
"\n",
" time_stamp = w3.eth.get_block('latest')['timestamp']\n",
" # Get stored data\n",
" result = contract.functions.readPriceCache().call()\n",
" print(f'Cached ticks: {result}')\n",
"\n",
" print(f'time_stamp: {time_stamp}')\n",
" decimals = [0] * len(data)\n",
"\n",
" # Set the next block timestamp using the fetched time_stamp\n",
" set_next_block_timestamp(RPC_URL, time_stamp)\n",
"\n",
"\n",
" # Prepare the calls_to_account object\n",
" # If you were calling view functions across multiple contracts,\n",
" # you would have multiple entries in the calls_to_account array,\n",
" # one for each contract.\n",
" call_to_account = {\n",
" 'call_data': calldata,\n",
" 'decimals': 0,\n",
" 'address': contract.address[2:], # remove the '0x' prefix\n",
" 'len': len(data),\n",
" 'decimals': decimals,\n",
" 'address': contract.address[2:],\n",
" }\n",
"\n",
" print(f'call_to_account: {call_to_account}')\n",
"\n",
" return call_to_account\n",
"\n",
"# Now let's start the Anvil process. You don't need to do this if you are deploying to a non-local chain.\n",
"start_anvil()\n",
"call_to_account = on_chain_data(x)\n",
"\n",
"# Now let's call our function, passing in the same input tensor we used to export the model 2 cells above.\n",
"calls_to_account = on_chain_data(x)\n",
"\n",
"data = dict(input_data = {'rpc': RPC_URL, 'calls': calls_to_account })\n",
"\n",
"# Serialize on-chain data into file:\n",
"data = dict(input_data = {'rpc': RPC_URL, 'call': call_to_account })\n",
"json.dump(data, open(\"input.json\", 'w'))"
]
},
@@ -691,34 +640,7 @@
"source": [
"# !export RUST_BACKTRACE=1\n",
"\n",
"calls_to_account = on_chain_data(x)\n",
"\n",
"data = dict(input_data = {'rpc': RPC_URL, 'calls': calls_to_account })\n",
"\n",
"# Serialize on-chain data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
"\n",
"# setup web3 instance\n",
"w3 = Web3(HTTPProvider(RPC_URL)) \n",
"\n",
"time_stamp = w3.eth.get_block('latest')['timestamp']\n",
"\n",
"print(f'time_stamp: {time_stamp}')\n",
"\n",
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"# print(res)\n",
"assert os.path.isfile(proof_path)\n",
"# read the verifier address\n",
"addr_verifier = None\n",

View File

@@ -246,7 +246,7 @@
"metadata": {},
"outputs": [],
"source": [
"ezkl.setup_test_evm_witness(\n",
"ezkl.setup_test_evm_data(\n",
" data_path,\n",
" compiled_model_path,\n",
" # we write the call data to the same file as the input data\n",
@@ -374,14 +374,6 @@
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc888848",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
@@ -525,7 +517,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": ".env",
"language": "python",
"name": "python3"
},
@@ -539,7 +531,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,106 @@
{
"input_data": [
[
8761,
7654,
8501,
2404,
6929,
8858,
5946,
3673,
4131,
3854,
8137,
8239,
9038,
6299,
1118,
9737,
208,
7954,
3691,
610,
3468,
3314,
8658,
8366,
2850,
477,
6114,
232,
4601,
7420,
5713,
2936,
6061,
2870,
8421,
177,
7107,
7382,
6115,
5487,
8502,
2559,
1875,
129,
8533,
8201,
8414,
4775,
9817,
3127,
8761,
7654,
8501,
2404,
6929,
8858,
5946,
3673,
4131,
3854,
8137,
8239,
9038,
6299,
1118,
9737,
208,
7954,
3691,
610,
3468,
3314,
8658,
8366,
2850,
477,
6114,
232,
4601,
7420,
5713,
2936,
6061,
2870,
8421,
177,
7107,
7382,
6115,
5487,
8502,
2559,
1875,
129,
8533,
8201,
8414,
4775,
9817,
3127
]
]
}

Binary file not shown.

View File

@@ -0,0 +1 @@
{"run_args":{"input_scale":7,"param_scale":7,"scale_rebase_multiplier":1,"lookup_range":[-32768,32768],"logrows":17,"num_inner_cols":2,"variables":[["batch_size",1]],"input_visibility":"Private","output_visibility":"Public","param_visibility":"Private","rebase_frac_zero_constants":false,"check_mode":"UNSAFE","commitment":"KZG","decomp_base":16384,"decomp_legs":2,"bounded_log_lookup":false,"ignore_range_check_inputs_outputs":false},"num_rows":54,"total_assignments":109,"total_const_size":4,"total_dynamic_col_size":0,"max_dynamic_input_len":0,"num_dynamic_lookups":0,"num_shuffles":0,"total_shuffle_col_size":0,"model_instance_shapes":[[1,1]],"model_output_scales":[7],"model_input_scales":[7],"module_sizes":{"polycommit":[],"poseidon":[0,[0]]},"required_lookups":[],"required_range_checks":[[-1,1],[0,16383]],"check_mode":"UNSAFE","version":"0.0.0","num_blinding_factors":null,"timestamp":1739396322131,"input_types":["F32"],"output_types":["F32"]}

42
examples/onnx/exp/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.exp(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.5801457762718201, 0.6019012331962585, 0.8695418238639832, 0.17170941829681396, 0.500616729259491, 0.353726327419281, 0.6726185083389282, 0.5936906337738037]]}

View File

@@ -0,0 +1,14 @@
pytorch2.2.2:o

inputoutput/Exp"Exp
main_graphZ!
input


batch_size
b"
output


batch_size
B

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -0,0 +1,41 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = 10**x
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.9837989807128906, 0.026381194591522217, 0.3403851389884949, 0.14531707763671875, 0.24652725458145142, 0.7945117354393005, 0.4076554775238037, 0.23064672946929932]]}

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
return x // 3
circuit = MyModel()
x = torch.randint(0, 10, (1, 2, 2, 8))
out = circuit(x)
print(x)
print(out)
print(x/3)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[3, 4, 0, 9, 2, 6, 2, 5, 1, 5, 3, 5, 5, 7, 0, 2, 6, 1, 4, 4, 1, 9, 7, 7, 5, 8, 2, 0, 1, 5, 9, 8]]}

Binary file not shown.

View File

@@ -1,75 +1,52 @@
import torch
import torch.nn as nn
import sys
from torch import nn
import json
sys.path.append("..")
class Model(nn.Module):
"""
Just one Linear layer
"""
def __init__(self, configs):
super(Model, self).__init__()
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
# Use this line if you want to visualize the weights
# self.Linear.weight = nn.Parameter((1/self.seq_len)*torch.ones([self.pred_len,self.seq_len]))
self.channels = configs.enc_in
self.individual = configs.individual
if self.individual:
self.Linear = nn.ModuleList()
for i in range(self.channels):
self.Linear.append(nn.Linear(self.seq_len,self.pred_len))
else:
self.Linear = nn.Linear(self.seq_len, self.pred_len)
def forward(self, x):
# x: [Batch, Input length, Channel]
if self.individual:
output = torch.zeros([x.size(0),self.pred_len,x.size(2)],dtype=x.dtype).to(x.device)
for i in range(self.channels):
output[:,:,i] = self.Linear[i](x[:,:,i])
x = output
else:
x = self.Linear(x.permute(0,2,1)).permute(0,2,1)
return x # [Batch, Output length, Channel]
class Configs:
def __init__(self, seq_len, pred_len, enc_in=321, individual=True):
self.seq_len = seq_len
self.pred_len = pred_len
self.enc_in = enc_in
self.individual = individual
model = 'Linear'
seq_len = 10
pred_len = 4
enc_in = 3
configs = Configs(seq_len, pred_len, enc_in, True)
circuit = Model(configs)
x = torch.randn(1, seq_len, pred_len)
import numpy as np
import tf2onnx
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=15, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
# the model's input names
input_names=['input'],
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
# gather_nd in tf then export to onnx
x = in1 = Input((4, 1), dtype=tf.int32)
w = in2 = Input((4, ), dtype=tf.int32)
class MyLayer(Layer):
def call(self, x, w):
shape = tf.constant([8])
return tf.scatter_nd(x, w, shape)
x = MyLayer()(x, w)
tm = Model((in1, in2), x)
tm.summary()
tm.compile(optimizer='adam', loss='mse')
shape = [1, 4, 1]
index_shape = [1, 4]
# After training, export to onnx (network.onnx) and create a data file (input.json)
x = np.random.randint(0, 4, shape)
# w = random int tensor
w = np.random.randint(0, 4, index_shape)
spec = tf.TensorSpec(shape, tf.int32, name='input_0')
index_spec = tf.TensorSpec(index_shape, tf.int32, name='input_1')
model_path = "network.onnx"
tf2onnx.convert.from_keras(tm, input_signature=[spec, index_spec], inputs_as_nchw=['input_0', 'input_1'], opset=12, output_path=model_path)
d = x.reshape([-1]).tolist()
d1 = w.reshape([-1]).tolist()
data = dict(
input_data=[d1],
input_data=[d, d1],
)
# Serialize data into file:

View File

@@ -1 +1,16 @@
{"input_data": [[0.1874287724494934, 1.0498261451721191, 0.22384068369865417, 1.048445224761963, -0.5670360326766968, -0.38653188943862915, 0.12878702580928802, -2.3675858974456787, 0.5800458192825317, -0.43653929233551025, -0.2511898875236511, 0.3324051797389984, 0.27960312366485596, 0.4763695001602173, 0.3796705901622772, 1.1334782838821411, -0.87981778383255, -1.2451434135437012, 0.7672272324562073, -0.24404007196426392, -0.6875824928283691, 0.3619358539581299, -0.10131897777318954, 0.7169521450996399, 1.6585893630981445, -0.5451845526695251, 0.429487019777298, 0.7426952123641968, -0.2543637454509735, 0.06546942889690399, 0.7939824461936951, 0.1579471379518509, -0.043604474514722824, -0.8621711730957031, -0.5344759821891785, -0.05880478024482727, -0.17351101338863373, 0.5095029473304749, -0.7864817976951599, -0.449171245098114]]}
{
"input_data": [
[
0,
1,
2,
3
],
[
1,
0,
2,
1
]
]
}

851
ezkl.pyi Normal file
View File

@@ -0,0 +1,851 @@
# This file is automatically generated by pyo3_stub_gen
# ruff: noqa: E501, F401
import os
import pathlib
import typing
from enum import Enum, auto
class PyG1:
r"""
pyclass containing the struct used for G1, this is mostly a helper class
"""
...
class PyG1Affine:
r"""
pyclass containing the struct used for G1
"""
...
class PyRunArgs:
r"""
Python class containing the struct used for run_args
Returns
-------
PyRunArgs
"""
...
class PyCommitments(Enum):
r"""
pyclass representing an enum, denoting the type of commitment
"""
KZG = auto()
IPA = auto()
class PyInputType(Enum):
Bool = auto()
F16 = auto()
F32 = auto()
F64 = auto()
Int = auto()
TDim = auto()
class PyTestDataSource(Enum):
r"""
pyclass representing an enum
"""
File = auto()
OnChain = auto()
def aggregate(aggregation_snarks:typing.Sequence[str | os.PathLike | pathlib.Path],proof_path:str | os.PathLike | pathlib.Path,vk_path:str | os.PathLike | pathlib.Path,transcript:str,logrows:int,check_mode:str,split_proofs:bool,srs_path:typing.Optional[str | os.PathLike | pathlib.Path],commitment:PyCommitments) -> bool:
r"""
Creates an aggregated proof
Arguments
---------
aggregation_snarks: list[str]
List of paths to the various proofs
proof_path: str
Path to output the aggregated proof
vk_path: str
Path to the VK file
transcript:
Proof transcript type to be used. `evm` used by default. `poseidon` is also supported
logrows:
Logrows used for aggregation circuit
check_mode: str
Run sanity checks during calculations. Accepts `safe` or `unsafe`
split-proofs: bool
Whether the accumulated proofs are segments of a larger circuit
srs_path: str
Path to the SRS used
commitment: str
Accepts "kzg" or "ipa"
Returns
-------
bool
"""
...
def buffer_to_felts(buffer:typing.Sequence[int]) -> list[str]:
r"""
Converts a buffer to vector of field elements
Arguments
-------
buffer: list[int]
List of integers representing a buffer
Returns
-------
list[str]
List of field elements represented as strings
"""
...
def calibrate_settings(data:str | os.PathLike | pathlib.Path,model:str | os.PathLike | pathlib.Path,settings:str | os.PathLike | pathlib.Path,target:str,lookup_safety_margin:float,scales:typing.Optional[typing.Sequence[int]],scale_rebase_multiplier:typing.Sequence[int],max_logrows:typing.Optional[int]) -> typing.Any:
r"""
Calibrates the circuit settings
Arguments
---------
data: str
Path to the calibration data
model: str
Path to the onnx file
settings: str
Path to the settings file
lookup_safety_margin: int
the lookup safety margin to use for calibration. if the max lookup is 2^k, then the max lookup will be 2^k * lookup_safety_margin. larger = safer but slower
scales: list[int]
Optional scales to specifically try for calibration
scale_rebase_multiplier: list[int]
Optional scale rebase multipliers to specifically try for calibration. This is the multiplier at which we divide to return to the input scale.
max_logrows: int
Optional max logrows to use for calibration
Returns
-------
bool
"""
...
def compile_circuit(model:str | os.PathLike | pathlib.Path,compiled_circuit:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path) -> bool:
r"""
Compiles the circuit for use in other steps
Arguments
---------
model: str
Path to the onnx model file
compiled_circuit: str
Path to output the compiled circuit
settings_path: str
Path to the settings files
Returns
-------
bool
"""
...
def create_evm_data_attestation(input_data:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,abi_path:str | os.PathLike | pathlib.Path,witness_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> typing.Any:
r"""
Creates an EVM compatible data attestation verifier, you will need solc installed in your environment to run this
Arguments
---------
input_data: str
The path to the .json data file, which should contain the necessary calldata and account addresses needed to read from all the on-chain view functions that return the data that the network ingests as inputs
settings_path: str
The path to the settings file
sol_code_path: str
The path to the create the solidity verifier
abi_path: str
The path to create the ABI for the solidity verifier
Returns
-------
bool
"""
...
def create_evm_verifier(vk_path:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,abi_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path],reusable:bool) -> typing.Any:
r"""
Creates an EVM compatible verifier, you will need solc installed in your environment to run this
Arguments
---------
vk_path: str
The path to the verification key file
settings_path: str
The path to the settings file
sol_code_path: str
The path to the create the solidity verifier
abi_path: str
The path to create the ABI for the solidity verifier
srs_path: str
The path to the SRS file
reusable: bool
Whether the verifier should be rendered as a reusable contract. If so, then you will need to deploy the VK artifact separately which you can generate using the create_evm_vka command
Returns
-------
bool
"""
...
def create_evm_verifier_aggr(aggregation_settings:typing.Sequence[str | os.PathLike | pathlib.Path],vk_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,abi_path:str | os.PathLike | pathlib.Path,logrows:int,srs_path:typing.Optional[str | os.PathLike | pathlib.Path],reusable:bool) -> typing.Any:
r"""
Creates an evm compatible aggregate verifier, you will need solc installed in your environment to run this
Arguments
---------
aggregation_settings: str
path to the settings file
vk_path: str
The path to load the desired verification key file
sol_code_path: str
The path to the Solidity code
abi_path: str
The path to output the Solidity verifier ABI
logrows: int
Number of logrows used during aggregated setup
srs_path: str
The path to the SRS file
reusable: bool
Whether the verifier should be rendered as a reusable contract. If so, then you will need to deploy the VK artifact separately which you can generate using the create_evm_vka command
Returns
-------
bool
"""
...
def create_evm_vka(vk_path:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,abi_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> typing.Any:
r"""
Creates an Evm VK artifact. This command generated a VK with circuit specific meta data encoding in memory for use by the reusable H2 verifier.
This is useful for deploying verifier that were otherwise too big to fit on chain and required aggregation.
Arguments
---------
vk_path: str
The path to the verification key file
settings_path: str
The path to the settings file
sol_code_path: str
The path to the create the solidity verifying key.
abi_path: str
The path to create the ABI for the solidity verifier
srs_path: str
The path to the SRS file
Returns
-------
bool
"""
...
def deploy_da_evm(addr_path:str | os.PathLike | pathlib.Path,input_data:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,rpc_url:typing.Optional[str],optimizer_runs:int,private_key:typing.Optional[str]) -> typing.Any:
r"""
deploys the solidity da verifier
"""
...
def deploy_evm(addr_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,rpc_url:typing.Optional[str],contract_type:str,optimizer_runs:int,private_key:typing.Optional[str]) -> typing.Any:
r"""
deploys the solidity verifier
"""
...
def encode_evm_calldata(proof:str | os.PathLike | pathlib.Path,calldata:str | os.PathLike | pathlib.Path,addr_vk:typing.Optional[str]) -> list[int]:
r"""
Creates encoded evm calldata from a proof file
Arguments
---------
proof: str
Path to the proof file
calldata: str
Path to the calldata file to save
addr_vk: str
The address of the verification key contract (if the verifier key is to be rendered as a separate contract)
Returns
-------
vec[u8]
The encoded calldata
"""
...
def felt_to_big_endian(felt:str) -> str:
r"""
Converts a field element hex string to big endian
Arguments
-------
felt: str
The field element represented as a string
Returns
-------
str
field element represented as a string
"""
...
def felt_to_float(felt:str,scale:int) -> float:
r"""
Converts a field element hex string to a floating point number
Arguments
-------
felt: str
The field element represented as a string
scale: float
The scaling factor used to convert the field element into a floating point representation
Returns
-------
float
"""
...
def felt_to_int(felt:str) -> int:
r"""
Converts a field element hex string to an integer
Arguments
-------
felt: str
The field element represented as a string
Returns
-------
int
"""
...
def float_to_felt(input:float,scale:int,input_type:PyInputType) -> str:
r"""
Converts a floating point element to a field element hex string
Arguments
-------
input: float
The field element represented as a string
scale: float
The scaling factor used to quantize the float into a field element
input_type: PyInputType
The type of the input
Returns
-------
str
The field element represented as a string
"""
...
def gen_settings(model:str | os.PathLike | pathlib.Path,output:str | os.PathLike | pathlib.Path,py_run_args:typing.Optional[PyRunArgs]) -> bool:
r"""
Generates the circuit settings
Arguments
---------
model: str
Path to the onnx file
output: str
Path to create the settings file
py_run_args: PyRunArgs
PyRunArgs object to initialize the settings
Returns
-------
bool
"""
...
def gen_srs(srs_path:str | os.PathLike | pathlib.Path,logrows:int) -> None:
r"""
Generates the Structured Reference String (SRS), use this only for testing purposes
Arguments
---------
srs_path: str
Path to the create the SRS file
logrows: int
The number of logrows for the SRS file
"""
...
def gen_vk_from_pk_aggr(path_to_pk:str | os.PathLike | pathlib.Path,vk_output_path:str | os.PathLike | pathlib.Path) -> bool:
r"""
Generates a vk from a pk for an aggregate circuit and saves it to a file
Arguments
-------
path_to_pk: str
Path to the proving key
vk_output_path: str
Path to create the vk file
Returns
-------
bool
"""
...
def gen_vk_from_pk_single(path_to_pk:str | os.PathLike | pathlib.Path,circuit_settings_path:str | os.PathLike | pathlib.Path,vk_output_path:str | os.PathLike | pathlib.Path) -> bool:
r"""
Generates a vk from a pk for a model circuit and saves it to a file
Arguments
-------
path_to_pk: str
Path to the proving key
circuit_settings_path: str
Path to the witness file
vk_output_path: str
Path to create the vk file
Returns
-------
bool
"""
...
def gen_witness(data:str | os.PathLike | pathlib.Path,model:str | os.PathLike | pathlib.Path,output:typing.Optional[str | os.PathLike | pathlib.Path],vk_path:typing.Optional[str | os.PathLike | pathlib.Path],srs_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> typing.Any:
r"""
Runs the forward pass operation to generate a witness
Arguments
---------
data: str
Path to the data file
model: str
Path to the compiled model file
output: str
Path to create the witness file
vk_path: str
Path to the verification key
srs_path: str
Path to the SRS file
Returns
-------
dict
Python object containing the witness values
"""
...
def get_srs(settings_path:typing.Optional[str | os.PathLike | pathlib.Path],logrows:typing.Optional[int],srs_path:typing.Optional[str | os.PathLike | pathlib.Path],commitment:typing.Optional[PyCommitments]) -> typing.Any:
r"""
Gets a public srs
Arguments
---------
settings_path: str
Path to the settings file
logrows: int
The number of logrows for the SRS file
srs_path: str
Path to the create the SRS file
commitment: str
Specify the commitment used ("kzg", "ipa")
Returns
-------
bool
"""
...
def ipa_commit(message:typing.Sequence[str],vk_path:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> list[PyG1Affine]:
r"""
Generate an ipa commitment.
Arguments
-------
message: list[str]
List of field elements represnted as strings
vk_path: str
Path to the verification key
settings_path: str
Path to the settings file
srs_path: str
Path to the Structure Reference String (SRS) file
Returns
-------
list[PyG1Affine]
"""
...
def kzg_commit(message:typing.Sequence[str],vk_path:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> list[PyG1Affine]:
r"""
Generate a kzg commitment.
Arguments
-------
message: list[str]
List of field elements represnted as strings
vk_path: str
Path to the verification key
settings_path: str
Path to the settings file
srs_path: str
Path to the Structure Reference String (SRS) file
Returns
-------
list[PyG1Affine]
"""
...
def mock(witness:str | os.PathLike | pathlib.Path,model:str | os.PathLike | pathlib.Path) -> bool:
r"""
Mocks the prover
Arguments
---------
witness: str
Path to the witness file
model: str
Path to the compiled model file
Returns
-------
bool
"""
...
def mock_aggregate(aggregation_snarks:typing.Sequence[str | os.PathLike | pathlib.Path],logrows:int,split_proofs:bool) -> bool:
r"""
Mocks the aggregate prover
Arguments
---------
aggregation_snarks: list[str]
List of paths to the relevant proof files
logrows: int
Number of logrows to use for the aggregation circuit
split_proofs: bool
Indicates whether the accumulated are segments of a larger proof
Returns
-------
bool
"""
...
def poseidon_hash(message:typing.Sequence[str]) -> list[str]:
r"""
Generate a poseidon hash.
Arguments
-------
message: list[str]
List of field elements represented as strings
Returns
-------
list[str]
List of field elements represented as strings
"""
...
def prove(witness:str | os.PathLike | pathlib.Path,model:str | os.PathLike | pathlib.Path,pk_path:str | os.PathLike | pathlib.Path,proof_path:typing.Optional[str | os.PathLike | pathlib.Path],proof_type:str,srs_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> typing.Any:
r"""
Runs the prover on a set of inputs
Arguments
---------
witness: str
Path to the witness file
model: str
Path to the compiled model file
pk_path: str
Path to the proving key file
proof_path: str
Path to create the proof file
proof_type: str
Accepts `single`, `for-aggr`
srs_path: str
Path to the SRS file
Returns
-------
bool
"""
...
def setup(model:str | os.PathLike | pathlib.Path,vk_path:str | os.PathLike | pathlib.Path,pk_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path],witness_path:typing.Optional[str | os.PathLike | pathlib.Path],disable_selector_compression:bool) -> bool:
r"""
Runs the setup process
Arguments
---------
model: str
Path to the compiled model file
vk_path: str
Path to create the verification key file
pk_path: str
Path to create the proving key file
srs_path: str
Path to the SRS file
witness_path: str
Path to the witness file
disable_selector_compression: bool
Whether to compress the selectors or not
Returns
-------
bool
"""
...
def setup_aggregate(sample_snarks:typing.Sequence[str | os.PathLike | pathlib.Path],vk_path:str | os.PathLike | pathlib.Path,pk_path:str | os.PathLike | pathlib.Path,logrows:int,split_proofs:bool,srs_path:typing.Optional[str | os.PathLike | pathlib.Path],disable_selector_compression:bool,commitment:PyCommitments) -> bool:
r"""
Runs the setup process for an aggregate setup
Arguments
---------
sample_snarks: list[str]
List of paths to the various proofs
vk_path: str
Path to create the aggregated VK
pk_path: str
Path to create the aggregated PK
logrows: int
Number of logrows to use
split_proofs: bool
Whether the accumulated are segments of a larger proof
srs_path: str
Path to the SRS file
disable_selector_compression: bool
Whether to compress selectors
commitment: str
Accepts `kzg`, `ipa`
Returns
-------
bool
"""
...
def setup_test_evm_data(data_path:str | os.PathLike | pathlib.Path,compiled_circuit_path:str | os.PathLike | pathlib.Path,test_data:str | os.PathLike | pathlib.Path,input_source:PyTestDataSource,output_source:PyTestDataSource,rpc_url:typing.Optional[str]) -> typing.Any:
r"""
Setup test evm data
Arguments
---------
data_path: str
The path to the .json data file, which should include both the network input (possibly private) and the network output (public input to the proof)
compiled_circuit_path: str
The path to the compiled model file (generated using the compile-circuit command)
test_data: str
For testing purposes only. The optional path to the .json data file that will be generated that contains the OnChain data storage information derived from the file information in the data .json file. Should include both the network input (possibly private) and the network output (public input to the proof)
input_sources: str
Where the input data comes from
output_source: str
Where the output data comes from
rpc_url: str
RPC URL for an EVM compatible node, if None, uses Anvil as a local RPC node
Returns
-------
bool
"""
...
def swap_proof_commitments(proof_path:str | os.PathLike | pathlib.Path,witness_path:str | os.PathLike | pathlib.Path) -> None:
r"""
Swap the commitments in a proof
Arguments
-------
proof_path: str
Path to the proof file
witness_path: str
Path to the witness file
"""
...
def table(model:str | os.PathLike | pathlib.Path,py_run_args:typing.Optional[PyRunArgs]) -> str:
r"""
Displays the table as a string in python
Arguments
---------
model: str
Path to the onnx file
Returns
---------
str
Table of the nodes in the onnx file
"""
...
def verify(proof_path:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,vk_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path],reduced_srs:bool) -> bool:
r"""
Verifies a given proof
Arguments
---------
proof_path: str
Path to create the proof file
settings_path: str
Path to the settings file
vk_path: str
Path to the verification key file
srs_path: str
Path to the SRS file
non_reduced_srs: bool
Whether to reduce the number of SRS logrows to the number of instances rather than the number of logrows used for proofs (only works if the srs were generated in the same ceremony)
Returns
-------
bool
"""
...
def verify_aggr(proof_path:str | os.PathLike | pathlib.Path,vk_path:str | os.PathLike | pathlib.Path,logrows:int,commitment:PyCommitments,reduced_srs:bool,srs_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> bool:
r"""
Verifies and aggregate proof
Arguments
---------
proof_path: str
The path to the proof file
vk_path: str
The path to the verification key file
logrows: int
logrows used for aggregation circuit
commitment: str
Accepts "kzg" or "ipa"
reduced_srs: bool
Whether to reduce the number of SRS logrows to the number of instances rather than the number of logrows used for proofs (only works if the srs were generated in the same ceremony)
srs_path: str
The path to the SRS file
Returns
-------
bool
"""
...
def verify_evm(addr_verifier:str,proof_path:str | os.PathLike | pathlib.Path,rpc_url:typing.Optional[str],addr_da:typing.Optional[str],addr_vk:typing.Optional[str]) -> typing.Any:
r"""
verifies an evm compatible proof, you will need solc installed in your environment to run this
Arguments
---------
addr_verifier: str
The verifier contract's address as a hex string
proof_path: str
The path to the proof file (generated using the prove command)
rpc_url: str
RPC URL for an Ethereum node, if None will use Anvil but WON'T persist state
addr_da: str
does the verifier use data attestation ?
addr_vk: str
The addess of the separate VK contract (if the verifier key is rendered as a separate contract)
Returns
-------
bool
"""
...

View File

@@ -12,6 +12,7 @@ asyncio_mode = "auto"
[project]
name = "ezkl"
version = "0.0.0"
requires-python = ">=3.7"
classifiers = [
"Programming Language :: Rust",

View File

@@ -1,3 +1,3 @@
[toolchain]
channel = "nightly-2024-07-18"
channel = "nightly-2025-02-17"
components = ["rustfmt", "clippy"]

View File

@@ -1,7 +1,11 @@
// ignore file if compiling for wasm
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use mimalloc::MiMalloc;
#[global_allocator]
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
static GLOBAL: mimalloc::MiMalloc = mimalloc::MiMalloc;
static GLOBAL: MiMalloc = MiMalloc;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use clap::{CommandFactory, Parser};
@@ -24,6 +28,8 @@ use std::env;
#[tokio::main(flavor = "current_thread")]
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
pub async fn main() {
use log::debug;
let args = Cli::parse();
if let Some(generator) = args.generator {
@@ -38,7 +44,7 @@ pub async fn main() {
} else {
info!("Running with CPU");
}
info!(
debug!(
"command: \n {}",
&command.as_json().to_colored_json_auto().unwrap()
);

9
src/bin/py_stub_gen.rs Normal file
View File

@@ -0,0 +1,9 @@
use pyo3_stub_gen::Result;
fn main() -> Result<()> {
// `stub_info` is a function defined by `define_stub_info_gatherer!` macro.
env_logger::Builder::from_env(env_logger::Env::default().filter_or("RUST_LOG", "info")).init();
let stub = ezkl::bindings::python::stub_info()?;
stub.generate()?;
Ok(())
}

View File

@@ -4,10 +4,10 @@ use crate::circuit::modules::poseidon::{
PoseidonChip,
};
use crate::circuit::modules::Module;
use crate::circuit::{CheckMode, Tolerance};
use crate::circuit::CheckMode;
use crate::circuit::InputType;
use crate::commands::*;
use crate::fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep};
use crate::graph::modules::POSEIDON_LEN_GRAPH;
use crate::graph::TestDataSource;
use crate::graph::{
quantize_float, scale_to_multiplier, GraphCircuit, GraphSettings, Model, Visibility,
@@ -26,7 +26,12 @@ use pyo3::exceptions::{PyIOError, PyRuntimeError};
use pyo3::prelude::*;
use pyo3::wrap_pyfunction;
use pyo3_log;
use pyo3_stub_gen::{
define_stub_info_gatherer, derive::gen_stub_pyclass, derive::gen_stub_pyclass_enum,
derive::gen_stub_pyfunction, TypeInfo,
};
use snark_verifier::util::arithmetic::PrimeField;
use std::collections::HashSet;
use std::str::FromStr;
use std::{fs::File, path::PathBuf};
@@ -35,6 +40,7 @@ type PyFelt = String;
/// pyclass representing an enum
#[pyclass]
#[derive(Debug, Clone)]
#[gen_stub_pyclass_enum]
enum PyTestDataSource {
/// The data is loaded from a file
File,
@@ -54,6 +60,7 @@ impl From<PyTestDataSource> for TestDataSource {
/// pyclass containing the struct used for G1, this is mostly a helper class
#[pyclass]
#[derive(Debug, Clone)]
#[gen_stub_pyclass]
struct PyG1 {
#[pyo3(get, set)]
/// Field Element representing x
@@ -100,6 +107,7 @@ impl pyo3::ToPyObject for PyG1 {
/// pyclass containing the struct used for G1
#[pyclass]
#[derive(Debug, Clone)]
#[gen_stub_pyclass]
pub struct PyG1Affine {
#[pyo3(get, set)]
///
@@ -145,10 +153,8 @@ impl pyo3::ToPyObject for PyG1Affine {
///
#[pyclass]
#[derive(Clone)]
#[gen_stub_pyclass]
struct PyRunArgs {
#[pyo3(get, set)]
/// float: The tolerance for error on model outputs
pub tolerance: f32,
#[pyo3(get, set)]
/// int: The denominator in the fixed point representation used when quantizing inputs
pub input_scale: crate::Scale,
@@ -197,6 +203,9 @@ struct PyRunArgs {
/// bool: Should the circuit use unbounded lookups for log
#[pyo3(get, set)]
pub bounded_log_lookup: bool,
/// bool: Should the circuit use range checks for inputs and outputs (set to false if the input is a felt)
#[pyo3(get, set)]
pub ignore_range_check_inputs_outputs: bool,
}
/// default instantiation of PyRunArgs
@@ -213,7 +222,6 @@ impl From<PyRunArgs> for RunArgs {
fn from(py_run_args: PyRunArgs) -> Self {
RunArgs {
bounded_log_lookup: py_run_args.bounded_log_lookup,
tolerance: Tolerance::from(py_run_args.tolerance),
input_scale: py_run_args.input_scale,
param_scale: py_run_args.param_scale,
num_inner_cols: py_run_args.num_inner_cols,
@@ -229,6 +237,7 @@ impl From<PyRunArgs> for RunArgs {
commitment: Some(py_run_args.commitment.into()),
decomp_base: py_run_args.decomp_base,
decomp_legs: py_run_args.decomp_legs,
ignore_range_check_inputs_outputs: py_run_args.ignore_range_check_inputs_outputs,
}
}
}
@@ -237,7 +246,6 @@ impl Into<PyRunArgs> for RunArgs {
fn into(self) -> PyRunArgs {
PyRunArgs {
bounded_log_lookup: self.bounded_log_lookup,
tolerance: self.tolerance.val,
input_scale: self.input_scale,
param_scale: self.param_scale,
num_inner_cols: self.num_inner_cols,
@@ -253,12 +261,14 @@ impl Into<PyRunArgs> for RunArgs {
commitment: self.commitment.into(),
decomp_base: self.decomp_base,
decomp_legs: self.decomp_legs,
ignore_range_check_inputs_outputs: self.ignore_range_check_inputs_outputs,
}
}
}
#[pyclass]
#[derive(Debug, Clone)]
#[gen_stub_pyclass_enum]
/// pyclass representing an enum, denoting the type of commitment
pub enum PyCommitments {
/// KZG commitment
@@ -306,6 +316,70 @@ impl FromStr for PyCommitments {
}
}
#[pyclass]
#[derive(Debug, Clone)]
#[gen_stub_pyclass_enum]
enum PyInputType {
///
Bool,
///
F16,
///
F32,
///
F64,
///
Int,
///
TDim,
///
Unknown,
}
impl From<InputType> for PyInputType {
fn from(input_type: InputType) -> Self {
match input_type {
InputType::Bool => PyInputType::Bool,
InputType::F16 => PyInputType::F16,
InputType::F32 => PyInputType::F32,
InputType::F64 => PyInputType::F64,
InputType::Int => PyInputType::Int,
InputType::TDim => PyInputType::TDim,
InputType::Unknown => PyInputType::Unknown,
}
}
}
impl From<PyInputType> for InputType {
fn from(py_input_type: PyInputType) -> Self {
match py_input_type {
PyInputType::Bool => InputType::Bool,
PyInputType::F16 => InputType::F16,
PyInputType::F32 => InputType::F32,
PyInputType::F64 => InputType::F64,
PyInputType::Int => InputType::Int,
PyInputType::TDim => InputType::TDim,
PyInputType::Unknown => InputType::Unknown,
}
}
}
impl FromStr for PyInputType {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s.to_lowercase().as_str() {
"bool" => Ok(PyInputType::Bool),
"f16" => Ok(PyInputType::F16),
"f32" => Ok(PyInputType::F32),
"f64" => Ok(PyInputType::F64),
"int" => Ok(PyInputType::Int),
"tdim" => Ok(PyInputType::TDim),
"unknown" => Ok(PyInputType::Unknown),
_ => Err("Invalid value for InputType".to_string()),
}
}
}
/// Converts a field element hex string to big endian
///
/// Arguments
@@ -322,6 +396,7 @@ impl FromStr for PyCommitments {
#[pyfunction(signature = (
felt,
))]
#[gen_stub_pyfunction]
fn felt_to_big_endian(felt: PyFelt) -> PyResult<String> {
let felt = crate::pfsys::string_to_field::<Fr>(&felt);
Ok(format!("{:?}", felt))
@@ -341,6 +416,7 @@ fn felt_to_big_endian(felt: PyFelt) -> PyResult<String> {
#[pyfunction(signature = (
felt,
))]
#[gen_stub_pyfunction]
fn felt_to_int(felt: PyFelt) -> PyResult<IntegerRep> {
let felt = crate::pfsys::string_to_field::<Fr>(&felt);
let int_rep = felt_to_integer_rep(felt);
@@ -365,6 +441,7 @@ fn felt_to_int(felt: PyFelt) -> PyResult<IntegerRep> {
felt,
scale
))]
#[gen_stub_pyfunction]
fn felt_to_float(felt: PyFelt, scale: crate::Scale) -> PyResult<f64> {
let felt = crate::pfsys::string_to_field::<Fr>(&felt);
let int_rep = felt_to_integer_rep(felt);
@@ -383,6 +460,9 @@ fn felt_to_float(felt: PyFelt, scale: crate::Scale) -> PyResult<f64> {
/// scale: float
/// The scaling factor used to quantize the float into a field element
///
/// input_type: PyInputType
/// The type of the input
///
/// Returns
/// -------
/// str
@@ -390,9 +470,12 @@ fn felt_to_float(felt: PyFelt, scale: crate::Scale) -> PyResult<f64> {
///
#[pyfunction(signature = (
input,
scale
scale,
input_type=PyInputType::F64
))]
fn float_to_felt(input: f64, scale: crate::Scale) -> PyResult<PyFelt> {
#[gen_stub_pyfunction]
fn float_to_felt(mut input: f64, scale: crate::Scale, input_type: PyInputType) -> PyResult<PyFelt> {
InputType::roundtrip(&input_type.into(), &mut input);
let int_rep = quantize_float(&input, 0.0, scale)
.map_err(|_| PyIOError::new_err("Failed to quantize input"))?;
let felt = integer_rep_to_felt(int_rep);
@@ -414,6 +497,7 @@ fn float_to_felt(input: f64, scale: crate::Scale) -> PyResult<PyFelt> {
#[pyfunction(signature = (
buffer
))]
#[gen_stub_pyfunction]
fn buffer_to_felts(buffer: Vec<u8>) -> PyResult<Vec<String>> {
fn u8_array_to_u128_le(arr: [u8; 16]) -> u128 {
let mut n: u128 = 0;
@@ -486,16 +570,14 @@ fn buffer_to_felts(buffer: Vec<u8>) -> PyResult<Vec<String>> {
#[pyfunction(signature = (
message,
))]
#[gen_stub_pyfunction]
fn poseidon_hash(message: Vec<PyFelt>) -> PyResult<Vec<PyFelt>> {
let message: Vec<Fr> = message
.iter()
.map(crate::pfsys::string_to_field::<Fr>)
.collect::<Vec<_>>();
let output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, POSEIDON_LEN_GRAPH>::run(
message.clone(),
)
let output = PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.clone())
.map_err(|_| PyIOError::new_err("Failed to run poseidon"))?;
let hash = output[0]
@@ -510,7 +592,7 @@ fn poseidon_hash(message: Vec<PyFelt>) -> PyResult<Vec<PyFelt>> {
/// Arguments
/// -------
/// message: list[str]
/// List of field elements represnted as strings
/// List of field elements represented as strings
///
/// vk_path: str
/// Path to the verification key
@@ -531,6 +613,7 @@ fn poseidon_hash(message: Vec<PyFelt>) -> PyResult<Vec<PyFelt>> {
settings_path=PathBuf::from(DEFAULT_SETTINGS),
srs_path=None
))]
#[gen_stub_pyfunction]
fn kzg_commit(
message: Vec<PyFelt>,
vk_path: PathBuf,
@@ -568,7 +651,7 @@ fn kzg_commit(
/// Arguments
/// -------
/// message: list[str]
/// List of field elements represnted as strings
/// List of field elements represented as strings
///
/// vk_path: str
/// Path to the verification key
@@ -589,6 +672,7 @@ fn kzg_commit(
settings_path=PathBuf::from(DEFAULT_SETTINGS),
srs_path=None
))]
#[gen_stub_pyfunction]
fn ipa_commit(
message: Vec<PyFelt>,
vk_path: PathBuf,
@@ -635,6 +719,7 @@ fn ipa_commit(
proof_path=PathBuf::from(DEFAULT_PROOF),
witness_path=PathBuf::from(DEFAULT_WITNESS),
))]
#[gen_stub_pyfunction]
fn swap_proof_commitments(proof_path: PathBuf, witness_path: PathBuf) -> PyResult<()> {
crate::execute::swap_proof_commitments_cmd(proof_path, witness_path)
.map_err(|_| PyIOError::new_err("Failed to swap commitments"))?;
@@ -664,6 +749,7 @@ fn swap_proof_commitments(proof_path: PathBuf, witness_path: PathBuf) -> PyResul
circuit_settings_path=PathBuf::from(DEFAULT_SETTINGS),
vk_output_path=PathBuf::from(DEFAULT_VK),
))]
#[gen_stub_pyfunction]
fn gen_vk_from_pk_single(
path_to_pk: PathBuf,
circuit_settings_path: PathBuf,
@@ -701,6 +787,7 @@ fn gen_vk_from_pk_single(
path_to_pk=PathBuf::from(DEFAULT_PK_AGGREGATED),
vk_output_path=PathBuf::from(DEFAULT_VK_AGGREGATED),
))]
#[gen_stub_pyfunction]
fn gen_vk_from_pk_aggr(path_to_pk: PathBuf, vk_output_path: PathBuf) -> PyResult<bool> {
let pk = load_pk::<KZGCommitmentScheme<Bn256>, AggregationCircuit>(path_to_pk, ())
.map_err(|_| PyIOError::new_err("Failed to load pk"))?;
@@ -730,6 +817,7 @@ fn gen_vk_from_pk_aggr(path_to_pk: PathBuf, vk_output_path: PathBuf) -> PyResult
model = PathBuf::from(DEFAULT_MODEL),
py_run_args = None
))]
#[gen_stub_pyfunction]
fn table(model: PathBuf, py_run_args: Option<PyRunArgs>) -> PyResult<String> {
let run_args: RunArgs = py_run_args.unwrap_or_else(PyRunArgs::new).into();
let mut reader = File::open(model).map_err(|_| PyIOError::new_err("Failed to open model"))?;
@@ -755,6 +843,7 @@ fn table(model: PathBuf, py_run_args: Option<PyRunArgs>) -> PyResult<String> {
srs_path,
logrows,
))]
#[gen_stub_pyfunction]
fn gen_srs(srs_path: PathBuf, logrows: usize) -> PyResult<()> {
let params = ezkl_gen_srs::<KZGCommitmentScheme<Bn256>>(logrows as u32);
save_params::<KZGCommitmentScheme<Bn256>>(&srs_path, &params)?;
@@ -787,6 +876,7 @@ fn gen_srs(srs_path: PathBuf, logrows: usize) -> PyResult<()> {
srs_path=None,
commitment=None,
))]
#[gen_stub_pyfunction]
fn get_srs(
py: Python,
settings_path: Option<PathBuf>,
@@ -799,7 +889,7 @@ fn get_srs(
None => None,
};
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::get_srs_cmd(srs_path, settings_path, logrows, commitment)
.await
.map_err(|e| {
@@ -833,6 +923,7 @@ fn get_srs(
output=PathBuf::from(DEFAULT_SETTINGS),
py_run_args = None,
))]
#[gen_stub_pyfunction]
fn gen_settings(
model: PathBuf,
output: PathBuf,
@@ -848,6 +939,45 @@ fn gen_settings(
Ok(true)
}
/// Generates random data for the model
///
/// Arguments
/// ---------
/// model: str
/// Path to the onnx file
///
/// output: str
/// Path to create the data file
///
/// seed: int
/// Random seed to use for generated data
///
/// variables
/// Returns
/// -------
/// bool
///
#[pyfunction(signature = (
model=PathBuf::from(DEFAULT_MODEL),
output=PathBuf::from(DEFAULT_SETTINGS),
variables=Vec::from([("batch_size".to_string(), 1)]),
seed=DEFAULT_SEED.parse().unwrap(),
))]
#[gen_stub_pyfunction]
fn gen_random_data(
model: PathBuf,
output: PathBuf,
variables: Vec<(String, usize)>,
seed: u64,
) -> Result<bool, PyErr> {
crate::execute::gen_random_data(model, output, variables, seed).map_err(|e| {
let err_str = format!("Failed to generate settings: {}", e);
PyRuntimeError::new_err(err_str)
})?;
Ok(true)
}
/// Calibrates the circuit settings
///
/// Arguments
@@ -879,7 +1009,7 @@ fn gen_settings(
/// bool
///
#[pyfunction(signature = (
data = PathBuf::from(DEFAULT_CALIBRATION_FILE),
data = String::from(DEFAULT_CALIBRATION_FILE),
model = PathBuf::from(DEFAULT_MODEL),
settings = PathBuf::from(DEFAULT_SETTINGS),
target = CalibrationTarget::default(), // default is "resources
@@ -888,9 +1018,10 @@ fn gen_settings(
scale_rebase_multiplier = DEFAULT_SCALE_REBASE_MULTIPLIERS.split(",").map(|x| x.parse().unwrap()).collect(),
max_logrows = None,
))]
#[gen_stub_pyfunction]
fn calibrate_settings(
py: Python,
data: PathBuf,
data: String,
model: PathBuf,
settings: PathBuf,
target: CalibrationTarget,
@@ -899,7 +1030,7 @@ fn calibrate_settings(
scale_rebase_multiplier: Vec<u32>,
max_logrows: Option<u32>,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::calibrate(
model,
data,
@@ -945,21 +1076,22 @@ fn calibrate_settings(
/// Python object containing the witness values
///
#[pyfunction(signature = (
data=PathBuf::from(DEFAULT_DATA),
data=String::from(DEFAULT_DATA),
model=PathBuf::from(DEFAULT_COMPILED_CIRCUIT),
output=PathBuf::from(DEFAULT_WITNESS),
vk_path=None,
srs_path=None,
))]
#[gen_stub_pyfunction]
fn gen_witness(
py: Python,
data: PathBuf,
data: String,
model: PathBuf,
output: Option<PathBuf>,
vk_path: Option<PathBuf>,
srs_path: Option<PathBuf>,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
let output = crate::execute::gen_witness(model, data, output, vk_path, srs_path)
.await
.map_err(|e| {
@@ -988,6 +1120,7 @@ fn gen_witness(
witness=PathBuf::from(DEFAULT_WITNESS),
model=PathBuf::from(DEFAULT_COMPILED_CIRCUIT),
))]
#[gen_stub_pyfunction]
fn mock(witness: PathBuf, model: PathBuf) -> PyResult<bool> {
crate::execute::mock(model, witness).map_err(|e| {
let err_str = format!("Failed to run mock: {}", e);
@@ -1018,6 +1151,7 @@ fn mock(witness: PathBuf, model: PathBuf) -> PyResult<bool> {
logrows=DEFAULT_AGGREGATED_LOGROWS.parse().unwrap(),
split_proofs = false,
))]
#[gen_stub_pyfunction]
fn mock_aggregate(
aggregation_snarks: Vec<PathBuf>,
logrows: u32,
@@ -1065,6 +1199,7 @@ fn mock_aggregate(
witness_path = None,
disable_selector_compression=DEFAULT_DISABLE_SELECTOR_COMPRESSION.parse().unwrap(),
))]
#[gen_stub_pyfunction]
fn setup(
model: PathBuf,
vk_path: PathBuf,
@@ -1123,6 +1258,7 @@ fn setup(
proof_type=ProofType::default(),
srs_path=None,
))]
#[gen_stub_pyfunction]
fn prove(
witness: PathBuf,
model: PathBuf,
@@ -1178,6 +1314,7 @@ fn prove(
srs_path=None,
reduced_srs=DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION.parse::<bool>().unwrap(),
))]
#[gen_stub_pyfunction]
fn verify(
proof_path: PathBuf,
settings_path: PathBuf,
@@ -1237,6 +1374,7 @@ fn verify(
disable_selector_compression=DEFAULT_DISABLE_SELECTOR_COMPRESSION.parse().unwrap(),
commitment=DEFAULT_COMMITMENT.parse().unwrap(),
))]
#[gen_stub_pyfunction]
fn setup_aggregate(
sample_snarks: Vec<PathBuf>,
vk_path: PathBuf,
@@ -1287,6 +1425,7 @@ fn setup_aggregate(
compiled_circuit=PathBuf::from(DEFAULT_COMPILED_CIRCUIT),
settings_path=PathBuf::from(DEFAULT_SETTINGS),
))]
#[gen_stub_pyfunction]
fn compile_circuit(
model: PathBuf,
compiled_circuit: PathBuf,
@@ -1346,6 +1485,7 @@ fn compile_circuit(
srs_path=None,
commitment=DEFAULT_COMMITMENT.parse().unwrap(),
))]
#[gen_stub_pyfunction]
fn aggregate(
aggregation_snarks: Vec<PathBuf>,
proof_path: PathBuf,
@@ -1411,6 +1551,7 @@ fn aggregate(
reduced_srs=DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION.parse().unwrap(),
srs_path=None,
))]
#[gen_stub_pyfunction]
fn verify_aggr(
proof_path: PathBuf,
vk_path: PathBuf,
@@ -1458,6 +1599,7 @@ fn verify_aggr(
calldata=PathBuf::from(DEFAULT_CALLDATA),
addr_vk=None,
))]
#[gen_stub_pyfunction]
fn encode_evm_calldata<'a>(
proof: PathBuf,
calldata: PathBuf,
@@ -1510,6 +1652,7 @@ fn encode_evm_calldata<'a>(
srs_path=None,
reusable = DEFAULT_RENDER_REUSABLE.parse().unwrap(),
))]
#[gen_stub_pyfunction]
fn create_evm_verifier(
py: Python,
vk_path: PathBuf,
@@ -1519,7 +1662,7 @@ fn create_evm_verifier(
srs_path: Option<PathBuf>,
reusable: bool,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::create_evm_verifier(
vk_path,
srs_path,
@@ -1569,6 +1712,7 @@ fn create_evm_verifier(
abi_path=PathBuf::from(DEFAULT_VERIFIER_ABI),
srs_path=None
))]
#[gen_stub_pyfunction]
fn create_evm_vka(
py: Python,
vk_path: PathBuf,
@@ -1577,7 +1721,7 @@ fn create_evm_vka(
abi_path: PathBuf,
srs_path: Option<PathBuf>,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::create_evm_vka(vk_path, srs_path, settings_path, sol_code_path, abi_path)
.await
.map_err(|e| {
@@ -1610,21 +1754,22 @@ fn create_evm_vka(
/// bool
///
#[pyfunction(signature = (
input_data=PathBuf::from(DEFAULT_DATA),
input_data=String::from(DEFAULT_DATA),
settings_path=PathBuf::from(DEFAULT_SETTINGS),
sol_code_path=PathBuf::from(DEFAULT_SOL_CODE_DA),
abi_path=PathBuf::from(DEFAULT_VERIFIER_DA_ABI),
witness_path=None,
))]
#[gen_stub_pyfunction]
fn create_evm_data_attestation(
py: Python,
input_data: PathBuf,
input_data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
abi_path: PathBuf,
witness_path: Option<PathBuf>,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::create_evm_data_attestation(
settings_path,
sol_code_path,
@@ -1674,19 +1819,20 @@ fn create_evm_data_attestation(
test_data,
input_source,
output_source,
rpc_url=None,
rpc_url=None
))]
fn setup_test_evm_witness(
#[gen_stub_pyfunction]
fn setup_test_evm_data(
py: Python,
data_path: PathBuf,
data_path: String,
compiled_circuit_path: PathBuf,
test_data: PathBuf,
input_source: PyTestDataSource,
output_source: PyTestDataSource,
rpc_url: Option<String>,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
crate::execute::setup_test_evm_witness(
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::setup_test_evm_data(
data_path,
compiled_circuit_path,
test_data,
@@ -1696,7 +1842,7 @@ fn setup_test_evm_witness(
)
.await
.map_err(|e| {
let err_str = format!("Failed to run setup_test_evm_witness: {}", e);
let err_str = format!("Failed to run setup_test_evm_data: {}", e);
PyRuntimeError::new_err(err_str)
})?;
@@ -1713,6 +1859,7 @@ fn setup_test_evm_witness(
optimizer_runs=DEFAULT_OPTIMIZER_RUNS.parse().unwrap(),
private_key=None,
))]
#[gen_stub_pyfunction]
fn deploy_evm(
py: Python,
addr_path: PathBuf,
@@ -1722,7 +1869,7 @@ fn deploy_evm(
optimizer_runs: usize,
private_key: Option<String>,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::deploy_evm(
sol_code_path,
rpc_url,
@@ -1751,17 +1898,18 @@ fn deploy_evm(
optimizer_runs=DEFAULT_OPTIMIZER_RUNS.parse().unwrap(),
private_key=None
))]
#[gen_stub_pyfunction]
fn deploy_da_evm(
py: Python,
addr_path: PathBuf,
input_data: PathBuf,
input_data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
rpc_url: Option<String>,
optimizer_runs: usize,
private_key: Option<String>,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::deploy_da_evm(
input_data,
settings_path,
@@ -1797,7 +1945,7 @@ fn deploy_da_evm(
/// does the verifier use data attestation ?
///
/// addr_vk: str
/// The addess of the separate VK contract (if the verifier key is rendered as a separate contract)
/// The address of the separate VK contract (if the verifier key is rendered as a separate contract)
/// Returns
/// -------
/// bool
@@ -1809,6 +1957,7 @@ fn deploy_da_evm(
addr_da = None,
addr_vk = None,
))]
#[gen_stub_pyfunction]
fn verify_evm<'a>(
py: Python<'a>,
addr_verifier: &'a str,
@@ -1831,7 +1980,7 @@ fn verify_evm<'a>(
None
};
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::verify_evm(proof_path, addr_verifier, rpc_url, addr_da, addr_vk)
.await
.map_err(|e| {
@@ -1881,6 +2030,7 @@ fn verify_evm<'a>(
srs_path=None,
reusable = DEFAULT_RENDER_REUSABLE.parse().unwrap(),
))]
#[gen_stub_pyfunction]
fn create_evm_verifier_aggr(
py: Python,
aggregation_settings: Vec<PathBuf>,
@@ -1891,7 +2041,7 @@ fn create_evm_verifier_aggr(
srs_path: Option<PathBuf>,
reusable: bool,
) -> PyResult<Bound<'_, PyAny>> {
pyo3_asyncio::tokio::future_into_py(py, async move {
pyo3_async_runtimes::tokio::future_into_py(py, async move {
crate::execute::create_evm_aggregate_verifier(
vk_path,
srs_path,
@@ -1911,15 +2061,19 @@ fn create_evm_verifier_aggr(
})
}
// Define a function to gather stub information.
define_stub_info_gatherer!(stub_info);
// Python Module
#[pymodule]
fn ezkl(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
fn ezkl(m: &Bound<'_, PyModule>) -> PyResult<()> {
pyo3_log::init();
m.add_class::<PyRunArgs>()?;
m.add_class::<PyG1Affine>()?;
m.add_class::<PyG1>()?;
m.add_class::<PyTestDataSource>()?;
m.add_class::<PyCommitments>()?;
m.add_class::<PyInputType>()?;
m.add("__version__", env!("CARGO_PKG_VERSION"))?;
m.add_function(wrap_pyfunction!(felt_to_big_endian, m)?)?;
m.add_function(wrap_pyfunction!(felt_to_int, m)?)?;
@@ -1941,6 +2095,7 @@ fn ezkl(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(get_srs, m)?)?;
m.add_function(wrap_pyfunction!(gen_witness, m)?)?;
m.add_function(wrap_pyfunction!(gen_settings, m)?)?;
m.add_function(wrap_pyfunction!(gen_random_data, m)?)?;
m.add_function(wrap_pyfunction!(calibrate_settings, m)?)?;
m.add_function(wrap_pyfunction!(aggregate, m)?)?;
m.add_function(wrap_pyfunction!(mock_aggregate, m)?)?;
@@ -1952,9 +2107,54 @@ fn ezkl(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(deploy_evm, m)?)?;
m.add_function(wrap_pyfunction!(deploy_da_evm, m)?)?;
m.add_function(wrap_pyfunction!(verify_evm, m)?)?;
m.add_function(wrap_pyfunction!(setup_test_evm_witness, m)?)?;
m.add_function(wrap_pyfunction!(setup_test_evm_data, m)?)?;
m.add_function(wrap_pyfunction!(create_evm_verifier_aggr, m)?)?;
m.add_function(wrap_pyfunction!(create_evm_data_attestation, m)?)?;
m.add_function(wrap_pyfunction!(encode_evm_calldata, m)?)?;
Ok(())
}
impl pyo3_stub_gen::PyStubType for CalibrationTarget {
fn type_output() -> TypeInfo {
TypeInfo {
name: "str".to_string(),
import: HashSet::new(),
}
}
}
impl pyo3_stub_gen::PyStubType for ProofType {
fn type_output() -> TypeInfo {
TypeInfo {
name: "str".to_string(),
import: HashSet::new(),
}
}
}
impl pyo3_stub_gen::PyStubType for TranscriptType {
fn type_output() -> TypeInfo {
TypeInfo {
name: "str".to_string(),
import: HashSet::new(),
}
}
}
impl pyo3_stub_gen::PyStubType for CheckMode {
fn type_output() -> TypeInfo {
TypeInfo {
name: "str".to_string(),
import: HashSet::new(),
}
}
}
impl pyo3_stub_gen::PyStubType for ContractType {
fn type_output() -> TypeInfo {
TypeInfo {
name: "str".to_string(),
import: HashSet::new(),
}
}
}

View File

@@ -141,10 +141,11 @@ pub(crate) fn gen_vk(
.map_err(|e| EZKLError::InternalError(format!("Failed to create verifying key: {}", e)))?;
let mut serialized_vk = Vec::new();
vk.write(&mut serialized_vk, halo2_proofs::SerdeFormat::RawBytes)
.map_err(|e| {
EZKLError::InternalError(format!("Failed to serialize verifying key: {}", e))
})?;
vk.write(
&mut serialized_vk,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
)
.map_err(|e| EZKLError::InternalError(format!("Failed to serialize verifying key: {}", e)))?;
Ok(serialized_vk)
}
@@ -165,7 +166,7 @@ pub(crate) fn gen_pk(
let mut reader = BufReader::new(&vk[..]);
let vk = VerifyingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit.settings().clone(),
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize verifying key: {}", e)))?;
@@ -197,7 +198,7 @@ pub(crate) fn verify(
let mut reader = BufReader::new(&vk[..]);
let vk = VerifyingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit_settings.clone(),
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize vk: {}", e)))?;
@@ -277,7 +278,7 @@ pub(crate) fn verify_aggr(
let mut reader = BufReader::new(&vk[..]);
let vk = VerifyingKey::<G1Affine>::read::<_, AggregationCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
(),
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize vk: {}", e)))?;
@@ -365,7 +366,7 @@ pub(crate) fn prove(
let mut reader = BufReader::new(&pk[..]);
let pk = ProvingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit.settings().clone(),
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize proving key: {}", e)))?;
@@ -487,7 +488,7 @@ pub(crate) fn vk_validation(vk: Vec<u8>, settings: Vec<u8>) -> Result<bool, EZKL
let mut reader = BufReader::new(&vk[..]);
let _ = VerifyingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit_settings,
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize verifying key: {}", e)))?;
@@ -504,7 +505,7 @@ pub(crate) fn pk_validation(pk: Vec<u8>, settings: Vec<u8>) -> Result<bool, EZKL
let mut reader = BufReader::new(&pk[..]);
let _ = ProvingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit_settings,
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize proving key: {}", e)))?;

View File

@@ -8,10 +8,7 @@ use crate::{
Module,
},
fieldutils::{felt_to_integer_rep, integer_rep_to_felt},
graph::{
modules::POSEIDON_LEN_GRAPH, quantize_float, scale_to_multiplier, GraphCircuit,
GraphSettings,
},
graph::{quantize_float, scale_to_multiplier, GraphCircuit, GraphSettings},
};
use console_error_panic_hook;
use halo2_proofs::{
@@ -22,6 +19,7 @@ use halo2curves::{
bn256::{Bn256, Fr, G1Affine},
ff::PrimeField,
};
use std::str::FromStr;
use wasm_bindgen::prelude::*;
use wasm_bindgen_console_logger::DEFAULT_LOGGER;
@@ -113,9 +111,15 @@ pub fn feltToFloat(
#[wasm_bindgen]
#[allow(non_snake_case)]
pub fn floatToFelt(
input: f64,
mut input: f64,
scale: crate::Scale,
input_type: &str,
) -> Result<wasm_bindgen::Clamped<Vec<u8>>, JsError> {
crate::circuit::InputType::roundtrip(
&crate::circuit::InputType::from_str(input_type)
.map_err(|e| JsError::new(&format!("{}", e)))?,
&mut input,
);
let int_rep =
quantize_float(&input, 0.0, scale).map_err(|e| JsError::new(&format!("{}", e)))?;
let felt = integer_rep_to_felt(int_rep);
@@ -224,10 +228,7 @@ pub fn poseidonHash(
let message: Vec<Fr> = serde_json::from_slice(&message[..])
.map_err(|e| JsError::new(&format!("Failed to deserialize message: {}", e)))?;
let output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, POSEIDON_LEN_GRAPH>::run(
message.clone(),
)
let output = PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.clone())
.map_err(|e| JsError::new(&format!("{}", e)))?;
Ok(wasm_bindgen::Clamped(serde_json::to_vec(&output).map_err(

View File

@@ -1,7 +1,7 @@
/*
An easy-to-use implementation of the Poseidon Hash in the form of a Halo2 Chip. While the Poseidon Hash function
is already implemented in halo2_gadgets, there is no wrapper chip that makes it easy to use in other circuits.
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/zk_prover/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
*/
use std::collections::HashMap;

View File

@@ -1,20 +1,18 @@
/*
An easy-to-use implementation of the Poseidon Hash in the form of a Halo2 Chip. While the Poseidon Hash function
is already implemented in halo2_gadgets, there is no wrapper chip that makes it easy to use in other circuits.
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/zk_prover/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
*/
pub mod poseidon_params;
pub mod spec;
// This chip adds a set of advice columns to the gadget Chip to store the inputs of the hash
use halo2_gadgets::poseidon::{primitives::*, Hash, Pow5Chip, Pow5Config};
use halo2_proofs::arithmetic::Field;
use halo2_gadgets::poseidon::{
primitives::VariableLength, primitives::*, Hash, Pow5Chip, Pow5Config,
};
use halo2_proofs::halo2curves::bn256::Fr as Fp;
use halo2_proofs::{circuit::*, plonk::*};
// use maybe_rayon::prelude::{IndexedParallelIterator, IntoParallelRefIterator};
use maybe_rayon::prelude::ParallelIterator;
use maybe_rayon::slice::ParallelSlice;
use std::marker::PhantomData;
@@ -40,22 +38,17 @@ pub struct PoseidonConfig<const WIDTH: usize, const RATE: usize> {
pub pow5_config: Pow5Config<Fp, WIDTH, RATE>,
}
type InputAssignments = (Vec<AssignedCell<Fp, Fp>>, AssignedCell<Fp, Fp>);
type InputAssignments = Vec<AssignedCell<Fp, Fp>>;
/// PoseidonChip is a wrapper around the Pow5Chip that adds a set of advice columns to the gadget Chip to store the inputs of the hash
#[derive(Debug, Clone)]
pub struct PoseidonChip<
S: Spec<Fp, WIDTH, RATE> + Sync,
const WIDTH: usize,
const RATE: usize,
const L: usize,
> {
pub struct PoseidonChip<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize> {
config: PoseidonConfig<WIDTH, RATE>,
_marker: PhantomData<S>,
}
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
PoseidonChip<S, WIDTH, RATE, L>
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize>
PoseidonChip<S, WIDTH, RATE>
{
/// Creates a new PoseidonChip
pub fn configure_with_cols(
@@ -82,8 +75,8 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
}
}
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
PoseidonChip<S, WIDTH, RATE, L>
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize>
PoseidonChip<S, WIDTH, RATE>
{
/// Configuration of the PoseidonChip
pub fn configure_with_optional_instance(
@@ -100,9 +93,6 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
for input in hash_inputs.iter().take(WIDTH) {
meta.enable_equality(*input);
}
meta.enable_constant(rc_b[0]);
Self::configure_with_cols(
@@ -116,8 +106,8 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
}
}
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
Module<Fp> for PoseidonChip<S, WIDTH, RATE, L>
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize> Module<Fp>
for PoseidonChip<S, WIDTH, RATE>
{
type Config = PoseidonConfig<WIDTH, RATE>;
type InputAssignments = InputAssignments;
@@ -152,9 +142,6 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
for input in hash_inputs.iter().take(WIDTH) {
meta.enable_equality(*input);
}
meta.enable_constant(rc_b[0]);
let instance = meta.instance_column();
@@ -176,7 +163,10 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
message: &[ValTensor<Fp>],
constants: &mut ConstantsMap<Fp>,
) -> Result<Self::InputAssignments, ModuleError> {
assert_eq!(message.len(), 1);
if message.len() != 1 {
return Err(ModuleError::InputWrongLength(message.len()));
}
let message = message[0].clone();
let start_time = instant::Instant::now();
@@ -186,95 +176,81 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let res = layouter.assign_region(
|| "load message",
|mut region| {
let assigned_message: Result<Vec<AssignedCell<Fp, Fp>>, ModuleError> =
match &message {
ValTensor::Value { inner: v, .. } => {
v.iter()
.enumerate()
.map(|(i, value)| {
let x = i % WIDTH;
let y = i / WIDTH;
let assigned_message: Result<Vec<AssignedCell<Fp, Fp>>, _> = match &message {
ValTensor::Value { inner: v, .. } => v
.iter()
.enumerate()
.map(|(i, value)| {
let x = i % WIDTH;
let y = i / WIDTH;
match value {
ValType::Value(v) => region
.assign_advice(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
|| *v,
)
.map_err(|e| e.into()),
ValType::PrevAssigned(v)
| ValType::AssignedConstant(v, ..) => Ok(v.clone()),
ValType::Constant(f) => {
if local_constants.contains_key(f) {
Ok(constants
.get(f)
.unwrap()
.assigned_cell()
.ok_or(ModuleError::ConstantNotAssigned)?)
} else {
let res = region.assign_advice_from_constant(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
*f,
)?;
constants.insert(
*f,
ValType::AssignedConstant(res.clone(), *f),
);
Ok(res)
}
}
e => Err(ModuleError::WrongInputType(
format!("{:?}", e),
"PrevAssigned".to_string(),
)),
}
})
.collect()
}
ValTensor::Instance {
dims,
inner: col,
idx,
initial_offset,
..
} => {
// this should never ever fail
let num_elems = dims[*idx].iter().product::<usize>();
(0..num_elems)
.map(|i| {
let x = i % WIDTH;
let y = i / WIDTH;
region.assign_advice_from_instance(
|| "pub input anchor",
*col,
initial_offset + i,
match value {
ValType::Value(v) => region
.assign_advice(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
|| *v,
)
})
.collect::<Result<Vec<_>, _>>()
.map_err(|e| e.into())
}
};
.map_err(|e| e.into()),
ValType::PrevAssigned(v) | ValType::AssignedConstant(v, ..) => {
Ok(v.clone())
}
ValType::Constant(f) => {
if local_constants.contains_key(f) {
Ok(constants
.get(f)
.unwrap()
.assigned_cell()
.ok_or(ModuleError::ConstantNotAssigned)?)
} else {
let res = region.assign_advice_from_constant(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
*f,
)?;
let offset = message.len() / WIDTH + 1;
constants
.insert(*f, ValType::AssignedConstant(res.clone(), *f));
let zero_val = region
.assign_advice_from_constant(
|| "",
self.config.hash_inputs[0],
offset,
Fp::ZERO,
)
.unwrap();
Ok(res)
}
}
e => Err(ModuleError::WrongInputType(
format!("{:?}", e),
"AssignedValue".to_string(),
)),
}
})
.collect(),
ValTensor::Instance {
dims,
inner: col,
idx,
initial_offset,
..
} => {
// this should never ever fail
let num_elems = dims[*idx].iter().product::<usize>();
(0..num_elems)
.map(|i| {
let x = i % WIDTH;
let y = i / WIDTH;
region.assign_advice_from_instance(
|| "pub input anchor",
*col,
initial_offset + i,
self.config.hash_inputs[x],
y,
)
})
.collect::<Result<Vec<_>, _>>()
.map_err(|e| e.into())
}
};
Ok((assigned_message?, zero_val))
Ok(assigned_message?)
},
);
log::trace!(
@@ -295,7 +271,13 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
row_offset: usize,
constants: &mut ConstantsMap<Fp>,
) -> Result<ValTensor<Fp>, ModuleError> {
let (mut input_cells, zero_val) = self.layout_inputs(layouter, input, constants)?;
let input_cells = self.layout_inputs(layouter, input, constants)?;
// empty hash case
if input_cells.is_empty() {
return Ok(input[0].clone());
}
// extract the values from the input cells
let mut assigned_input: Tensor<ValType<Fp>> =
input_cells.iter().map(|e| ValType::from(e.clone())).into();
@@ -303,52 +285,25 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let start_time = instant::Instant::now();
let mut one_iter = false;
// do the Tree dance baby
while input_cells.len() > 1 || !one_iter {
let hashes: Result<Vec<AssignedCell<Fp, Fp>>, ModuleError> = input_cells
.chunks(L)
.enumerate()
.map(|(i, block)| {
let _start_time = instant::Instant::now();
let pow5_chip = Pow5Chip::construct(self.config.pow5_config.clone());
// initialize the hasher
let hasher = Hash::<_, _, S, VariableLength, WIDTH, RATE>::init(
pow5_chip,
layouter.namespace(|| "block_hasher"),
)?;
let mut block = block.to_vec();
let remainder = block.len() % L;
if remainder != 0 {
block.extend(vec![zero_val.clone(); L - remainder]);
}
let pow5_chip = Pow5Chip::construct(self.config.pow5_config.clone());
// initialize the hasher
let hasher = Hash::<_, _, S, ConstantLength<L>, WIDTH, RATE>::init(
pow5_chip,
layouter.namespace(|| "block_hasher"),
)?;
let hash = hasher.hash(
layouter.namespace(|| "hash"),
block.to_vec().try_into().map_err(|_| Error::Synthesis)?,
);
if i == 0 {
log::trace!("block (L={:?}) took: {:?}", L, _start_time.elapsed());
}
hash
})
.collect::<Result<Vec<_>, _>>()
.map_err(|e| e.into());
log::trace!("hashes (N={:?}) took: {:?}", len, start_time.elapsed());
one_iter = true;
input_cells = hashes?;
}
let hash: AssignedCell<Fp, Fp> = hasher.hash(
layouter.namespace(|| "hash"),
input_cells
.to_vec()
.try_into()
.map_err(|_| Error::Synthesis)?,
)?;
let duration = start_time.elapsed();
log::trace!("layout (N={:?}) took: {:?}", len, duration);
let result = Tensor::from(input_cells.iter().map(|e| ValType::from(e.clone())));
let result = Tensor::from(vec![ValType::from(hash.clone())].into_iter());
let output = match result[0].clone() {
ValType::PrevAssigned(v) => v,
@@ -387,69 +342,59 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
///
fn run(message: Vec<Fp>) -> Result<Vec<Vec<Fp>>, ModuleError> {
let mut hash_inputs = message;
let len = hash_inputs.len();
let len = message.len();
if len == 0 {
return Ok(vec![vec![]]);
}
let start_time = instant::Instant::now();
let mut one_iter = false;
// do the Tree dance baby
while hash_inputs.len() > 1 || !one_iter {
let hashes: Vec<Fp> = hash_inputs
.par_chunks(L)
.map(|block| {
let mut block = block.to_vec();
let remainder = block.len() % L;
if remainder != 0 {
block.extend(vec![Fp::ZERO; L - remainder].iter());
}
let block_len = block.len();
let message = block
.try_into()
.map_err(|_| ModuleError::InputWrongLength(block_len))?;
Ok(halo2_gadgets::poseidon::primitives::Hash::<
_,
S,
ConstantLength<L>,
{ WIDTH },
{ RATE },
>::init()
.hash(message))
})
.collect::<Result<Vec<_>, ModuleError>>()?;
one_iter = true;
hash_inputs = hashes;
}
let hash = halo2_gadgets::poseidon::primitives::Hash::<
_,
S,
VariableLength,
{ WIDTH },
{ RATE },
>::init()
.hash(message);
let duration = start_time.elapsed();
log::trace!("run (N={:?}) took: {:?}", len, duration);
Ok(vec![hash_inputs])
Ok(vec![vec![hash]])
}
fn num_rows(mut input_len: usize) -> usize {
fn num_rows(input_len: usize) -> usize {
// this was determined by running the circuit and looking at the number of constraints
// in the test called hash_for_a_range_of_input_sizes, then regressing in python to find the slope
let fixed_cost: usize = 41 * L;
// import numpy as np
// from scipy import stats
let mut num_rows = 0;
// x = np.array([32, 64, 96, 128, 160, 192])
// y = np.array([1298, 2594, 3890, 5186, 6482, 7778])
loop {
// the number of times the input_len is divisible by L
let num_chunks = input_len / L + 1;
num_rows += num_chunks * fixed_cost;
if num_chunks == 1 {
break;
}
input_len = num_chunks;
}
// slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
num_rows
// print(f"slope: {slope}")
// print(f"intercept: {intercept}")
// print(f"R^2: {r_value**2}")
// # Predict for any x
// def predict(x):
// return slope * x + intercept
// # Test prediction
// test_x = 256
// print(f"Predicted value for x={test_x}: {predict(test_x)}")
// our output:
// slope: 40.5
// intercept: 2.0
// R^2: 1.0
// Predicted value for x=256: 10370.0
let fixed_cost: usize = 41 * input_len;
// the cost of the hash function is linear with the number of inputs
fixed_cost + 2
}
}
@@ -476,12 +421,12 @@ mod tests {
const RATE: usize = POSEIDON_RATE;
const R: usize = 240;
struct HashCircuit<S: Spec<Fp, WIDTH, RATE>, const L: usize> {
struct HashCircuit<S: Spec<Fp, WIDTH, RATE>> {
message: ValTensor<Fp>,
_spec: PhantomData<S>,
}
impl<S: Spec<Fp, WIDTH, RATE>, const L: usize> Circuit<Fp> for HashCircuit<S, L> {
impl<S: Spec<Fp, WIDTH, RATE>> Circuit<Fp> for HashCircuit<S> {
type Config = PoseidonConfig<WIDTH, RATE>;
type FloorPlanner = ModulePlanner;
type Params = ();
@@ -497,7 +442,7 @@ mod tests {
}
fn configure(meta: &mut ConstraintSystem<Fp>) -> PoseidonConfig<WIDTH, RATE> {
PoseidonChip::<PoseidonSpec, WIDTH, RATE, L>::configure(meta, ())
PoseidonChip::<PoseidonSpec, WIDTH, RATE>::configure(meta, ())
}
fn synthesize(
@@ -505,7 +450,7 @@ mod tests {
config: PoseidonConfig<WIDTH, RATE>,
mut layouter: impl Layouter<Fp>,
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, WIDTH, RATE, L> = PoseidonChip::new(config);
let chip: PoseidonChip<PoseidonSpec, WIDTH, RATE> = PoseidonChip::new(config);
chip.layout(
&mut layouter,
&[self.message.clone()],
@@ -517,18 +462,33 @@ mod tests {
}
}
#[test]
fn poseidon_hash_empty() {
let message = [];
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.to_vec()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 9;
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};
let prover = halo2_proofs::dev::MockProver::run(k, &circuit, vec![vec![]]).unwrap();
assert_eq!(prover.verify(), Ok(()))
}
#[test]
fn poseidon_hash() {
let rng = rand::rngs::OsRng;
let message = [Fp::random(rng), Fp::random(rng)];
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 2>::run(message.to_vec()).unwrap();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.to_vec()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 9;
let circuit = HashCircuit::<PoseidonSpec, 2> {
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};
@@ -541,13 +501,13 @@ mod tests {
let rng = rand::rngs::OsRng;
let message = [Fp::random(rng), Fp::random(rng), Fp::random(rng)];
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 3>::run(message.to_vec()).unwrap();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.to_vec()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 9;
let circuit = HashCircuit::<PoseidonSpec, 3> {
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};
@@ -563,23 +523,21 @@ mod tests {
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
env_logger::init();
{
let i = 32;
for i in (32..128).step_by(32) {
// print a bunch of new lines
println!(
log::info!(
"i is {} -------------------------------------------------",
i
);
let message: Vec<Fp> = (0..i).map(|_| Fp::random(rng)).collect::<Vec<_>>();
let output =
PoseidonChip::<PoseidonSpec, WIDTH, RATE, 32>::run(message.clone()).unwrap();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.clone()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 17;
let circuit = HashCircuit::<PoseidonSpec, 32> {
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};
@@ -596,13 +554,13 @@ mod tests {
let mut message: Vec<Fp> = (0..2048).map(|_| Fp::random(rng)).collect::<Vec<_>>();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 25>::run(message.clone()).unwrap();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.clone()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 17;
let circuit = HashCircuit::<PoseidonSpec, 25> {
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};

View File

@@ -17,12 +17,14 @@ pub enum BaseOp {
Sub,
SumInit,
Sum,
IsBoolean,
}
/// Matches a [BaseOp] to an operation over inputs
impl BaseOp {
/// forward func
/// forward func for non-accumulating operations
/// # Panics
/// Panics if called on an accumulating operation
/// # Examples
pub fn nonaccum_f<
T: TensorType + Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Neg<Output = T>,
>(
@@ -34,12 +36,13 @@ impl BaseOp {
BaseOp::Add => a + b,
BaseOp::Sub => a - b,
BaseOp::Mult => a * b,
BaseOp::IsBoolean => b,
_ => panic!("nonaccum_f called on accumulating operation"),
}
}
/// forward func
/// forward func for accumulating operations
/// # Panics
/// Panics if called on a non-accumulating operation
pub fn accum_f<
T: TensorType + Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Neg<Output = T>,
>(
@@ -74,7 +77,6 @@ impl BaseOp {
BaseOp::Mult => "MULT",
BaseOp::Sum => "SUM",
BaseOp::SumInit => "SUMINIT",
BaseOp::IsBoolean => "ISBOOLEAN",
}
}
@@ -90,7 +92,6 @@ impl BaseOp {
BaseOp::Mult => (0, 1),
BaseOp::Sum => (-1, 2),
BaseOp::SumInit => (0, 1),
BaseOp::IsBoolean => (0, 1),
}
}
@@ -106,7 +107,6 @@ impl BaseOp {
BaseOp::Mult => 2,
BaseOp::Sum => 1,
BaseOp::SumInit => 1,
BaseOp::IsBoolean => 0,
}
}
@@ -122,7 +122,6 @@ impl BaseOp {
BaseOp::SumInit => 0,
BaseOp::CumProd => 1,
BaseOp::CumProdInit => 0,
BaseOp::IsBoolean => 0,
}
}
}

View File

@@ -2,16 +2,15 @@ use std::str::FromStr;
use halo2_proofs::{
circuit::Layouter,
plonk::{ConstraintSystem, Constraints, Expression, Selector},
plonk::{ConstraintSystem, Constraints, Expression, Selector, TableColumn},
poly::Rotation,
};
use log::debug;
#[cfg(feature = "python-bindings")]
use pyo3::{
conversion::{FromPyObject, PyTryFrom},
conversion::{FromPyObject, IntoPy},
exceptions::PyValueError,
prelude::*,
types::PyString,
};
use serde::{Deserialize, Serialize};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
@@ -21,7 +20,6 @@ use crate::{
circuit::{
ops::base::BaseOp,
table::{Range, RangeCheck, Table},
utils,
},
tensor::{Tensor, TensorType, ValTensor, VarTensor},
};
@@ -76,51 +74,12 @@ impl FromStr for CheckMode {
}
}
#[allow(missing_docs)]
/// An enum representing the tolerance we can accept for the accumulated arguments, either absolute or percentage
#[derive(Clone, Default, Debug, PartialEq, PartialOrd, Serialize, Deserialize, Copy)]
pub struct Tolerance {
pub val: f32,
pub scale: utils::F32,
}
impl std::fmt::Display for Tolerance {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:.2}", self.val)
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl ToFlags for Tolerance {
/// Convert the struct to a subcommand string
fn to_flags(&self) -> Vec<String> {
vec![format!("{}", self)]
}
}
impl FromStr for Tolerance {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if let Ok(val) = s.parse::<f32>() {
Ok(Tolerance {
val,
scale: utils::F32(1.0),
})
} else {
Err(
"Invalid tolerance value provided. It should expressed as a percentage (f32)."
.to_string(),
)
}
}
}
impl From<f32> for Tolerance {
fn from(value: f32) -> Self {
Tolerance {
val: value,
scale: utils::F32(1.0),
impl CheckMode {
/// Returns the value of the check mode
pub fn is_safe(&self) -> bool {
match self {
CheckMode::SAFE => true,
CheckMode::UNSAFE => false,
}
}
}
@@ -139,10 +98,9 @@ impl IntoPy<PyObject> for CheckMode {
#[cfg(feature = "python-bindings")]
/// Obtains CheckMode from PyObject (Required for CheckMode to be compatible with Python)
impl<'source> FromPyObject<'source> for CheckMode {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let trystr = <PyString as PyTryFrom>::try_from(ob)?;
let strval = trystr.to_string();
match strval.to_lowercase().as_str() {
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> PyResult<Self> {
let trystr = String::extract_bound(ob)?;
match trystr.to_lowercase().as_str() {
"safe" => Ok(CheckMode::SAFE),
"unsafe" => Ok(CheckMode::UNSAFE),
_ => Err(PyValueError::new_err("Invalid value for CheckMode")),
@@ -150,29 +108,6 @@ impl<'source> FromPyObject<'source> for CheckMode {
}
}
#[cfg(feature = "python-bindings")]
/// Converts Tolerance into a PyObject (Required for Tolerance to be compatible with Python)
impl IntoPy<PyObject> for Tolerance {
fn into_py(self, py: Python) -> PyObject {
(self.val, self.scale.0).to_object(py)
}
}
#[cfg(feature = "python-bindings")]
/// Obtains Tolerance from PyObject (Required for Tolerance to be compatible with Python)
impl<'source> FromPyObject<'source> for Tolerance {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
if let Ok((val, scale)) = ob.extract::<(f32, f32)>() {
Ok(Tolerance {
val,
scale: utils::F32(scale),
})
} else {
Err(PyValueError::new_err("Invalid tolerance value provided. "))
}
}
}
/// A struct representing the selectors for the dynamic lookup tables
#[derive(Clone, Debug, Default)]
pub struct DynamicLookups {
@@ -207,15 +142,16 @@ impl DynamicLookups {
/// A struct representing the selectors for the dynamic lookup tables
#[derive(Clone, Debug, Default)]
pub struct Shuffles {
/// [Selector]s generated when configuring the layer. We use a [BTreeMap] as we expect to configure many dynamic lookup ops.
pub input_selectors: BTreeMap<(usize, (usize, usize)), Selector>,
/// Selectors for the dynamic lookup tables
pub reference_selectors: Vec<Selector>,
pub output_selectors: Vec<Selector>,
/// Inputs:
pub inputs: Vec<VarTensor>,
/// tables
pub references: Vec<VarTensor>,
pub outputs: Vec<VarTensor>,
}
impl Shuffles {
@@ -226,9 +162,13 @@ impl Shuffles {
Self {
input_selectors: BTreeMap::new(),
reference_selectors: vec![],
inputs: vec![dummy_var.clone(), dummy_var.clone()],
references: vec![single_col_dummy_var.clone(), single_col_dummy_var.clone()],
output_selectors: vec![],
inputs: vec![dummy_var.clone(), dummy_var.clone(), dummy_var.clone()],
outputs: vec![
single_col_dummy_var.clone(),
single_col_dummy_var.clone(),
single_col_dummy_var.clone(),
],
}
}
}
@@ -328,6 +268,8 @@ pub struct BaseConfig<F: PrimeField + TensorType + PartialOrd> {
/// Activate sanity checks
pub check_mode: CheckMode,
_marker: PhantomData<F>,
/// shared table inputs
pub shared_table_inputs: Vec<TableColumn>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
@@ -340,6 +282,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
shuffles: Shuffles::dummy(col_size, num_inner_cols),
range_checks: RangeChecks::dummy(col_size, num_inner_cols),
check_mode: CheckMode::SAFE,
shared_table_inputs: vec![],
_marker: PhantomData,
}
}
@@ -366,13 +309,18 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
if inputs[0].num_cols() != output.num_cols() {
log::warn!("input and output shapes do not match");
}
if inputs[0].num_inner_cols() != inputs[1].num_inner_cols() {
log::warn!("input number of inner columns do not match");
}
if inputs[0].num_inner_cols() != output.num_inner_cols() {
log::warn!("input and output number of inner columns do not match");
}
for i in 0..output.num_blocks() {
for j in 0..output.num_inner_cols() {
nonaccum_selectors.insert((BaseOp::Add, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::Sub, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::Mult, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::IsBoolean, i, j), meta.selector());
}
}
@@ -406,24 +354,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
// Get output expressions for each input channel
let (rotation_offset, rng) = base_op.query_offset_rng();
let constraints = match base_op {
BaseOp::IsBoolean => {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, 0, 1)
.expect("non accum: output query failed");
let constraints = {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, rotation_offset, rng)
.expect("non accum: output query failed");
let output = expected_output[base_op.constraint_idx()].clone();
vec![(output.clone()) * (output.clone() - Expression::Constant(F::from(1)))]
}
_ => {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, rotation_offset, rng)
.expect("non accum: output query failed");
let res = base_op.nonaccum_f((qis[0].clone(), qis[1].clone()));
vec![expected_output[base_op.constraint_idx()].clone() - res]
}
let res = base_op.nonaccum_f((qis[0].clone(), qis[1].clone()));
vec![expected_output[base_op.constraint_idx()].clone() - res]
};
Constraints::with_selector(selector, constraints)
@@ -478,6 +415,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
dynamic_lookups: DynamicLookups::default(),
shuffles: Shuffles::default(),
range_checks: RangeChecks::default(),
shared_table_inputs: vec![],
check_mode,
_marker: PhantomData,
}
@@ -508,21 +446,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
return Err(CircuitError::WrongColumnType(output.name().to_string()));
}
// we borrow mutably twice so we need to do this dance
let table = if !self.static_lookups.tables.contains_key(nl) {
// as all tables have the same input we see if there's another table who's input we can reuse
let table = if let Some(table) = self.static_lookups.tables.values().next() {
Table::<F>::configure(
cs,
lookup_range,
logrows,
nl,
Some(table.table_inputs.clone()),
)
} else {
Table::<F>::configure(cs, lookup_range, logrows, nl, None)
};
let table =
Table::<F>::configure(cs, lookup_range, logrows, nl, &mut self.shared_table_inputs);
self.static_lookups.tables.insert(nl.clone(), table.clone());
table
} else {
@@ -573,9 +499,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
// this is 0 if the index is the same as the column index (starting from 1)
let col_expr = sel.clone()
* table
* (table
.selector_constructor
.get_expr_at_idx(col_idx, synthetic_sel);
.get_expr_at_idx(col_idx, synthetic_sel));
let multiplier =
table.selector_constructor.get_selector_val_at_idx(col_idx);
@@ -607,6 +533,40 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
res
});
}
// add a degree-k custom constraint of the following form to the range check and
// static lookup configuration.
// 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 · ∏ (𝑠𝑒𝑙 𝑖) = 0 where 𝑠𝑒𝑙 is the synthetic_sel, and the product is over the set of overflowed columns
// and 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 is the selector value at the column index
cs.create_gate("range_check_on_sel", |cs| {
let synthetic_sel = match len {
1 => Expression::Constant(F::from(1)),
_ => match index {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
},
};
let range_check_on_synthetic_sel = match len {
1 => Expression::Constant(F::from(0)),
_ => {
let mut initial_expr = Expression::Constant(F::from(1));
for i in 0..len {
initial_expr = initial_expr
* (synthetic_sel.clone()
- Expression::Constant(F::from(i as u64)))
}
initial_expr
}
};
let sel = cs.query_selector(multi_col_selector);
Constraints::with_selector(sel, vec![range_check_on_synthetic_sel])
});
self.static_lookups
.selectors
.insert((nl.clone(), x, y), multi_col_selector);
@@ -732,8 +692,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
pub fn configure_shuffles(
&mut self,
cs: &mut ConstraintSystem<F>,
inputs: &[VarTensor; 2],
references: &[VarTensor; 2],
inputs: &[VarTensor; 3],
outputs: &[VarTensor; 3],
) -> Result<(), CircuitError>
where
F: Field,
@@ -744,14 +704,14 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
}
}
for t in references.iter() {
for t in outputs.iter() {
if !t.is_advice() || t.num_inner_cols() > 1 {
return Err(CircuitError::WrongDynamicColumnType(t.name().to_string()));
}
}
// assert all tables have the same number of blocks
if references
if outputs
.iter()
.map(|t| t.num_blocks())
.collect::<Vec<_>>()
@@ -759,23 +719,23 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
.any(|w| w[0] != w[1])
{
return Err(CircuitError::WrongDynamicColumnType(
"references inner cols".to_string(),
"outputs inner cols".to_string(),
));
}
let one = Expression::Constant(F::ONE);
for q in 0..references[0].num_blocks() {
let s_reference = cs.complex_selector();
for q in 0..outputs[0].num_blocks() {
let s_output = cs.complex_selector();
for x in 0..inputs[0].num_blocks() {
for y in 0..inputs[0].num_inner_cols() {
let s_input = cs.complex_selector();
cs.lookup_any("lookup", |cs| {
cs.lookup_any("shuffle", |cs| {
let s_inputq = cs.query_selector(s_input);
let mut expression = vec![];
let s_referenceq = cs.query_selector(s_reference);
let s_outputq = cs.query_selector(s_output);
let mut input_queries = vec![one.clone()];
for input in inputs {
@@ -787,9 +747,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
});
}
let mut ref_queries = vec![one.clone()];
for reference in references {
ref_queries.push(match reference {
let mut output_queries = vec![one.clone()];
for output in outputs {
output_queries.push(match output {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[q][0], Rotation(0))
}
@@ -798,7 +758,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
}
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
let rhs = output_queries.into_iter().map(|c| c * s_outputq.clone());
expression.extend(lhs.zip(rhs));
expression
@@ -809,13 +769,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
.or_insert(s_input);
}
}
self.shuffles.reference_selectors.push(s_reference);
self.shuffles.output_selectors.push(s_output);
}
// if we haven't previously initialized the input/output, do so now
if self.shuffles.references.is_empty() {
debug!("assigning shuffles reference");
self.shuffles.references = references.to_vec();
if self.shuffles.outputs.is_empty() {
debug!("assigning shuffles output");
self.shuffles.outputs = outputs.to_vec();
}
if self.shuffles.inputs.is_empty() {
debug!("assigning shuffles input");
@@ -847,7 +807,6 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
let range_check = if let std::collections::btree_map::Entry::Vacant(e) =
self.range_checks.ranges.entry(range)
{
// as all tables have the same input we see if there's another table who's input we can reuse
let range_check = RangeCheck::<F>::configure(cs, range, logrows);
e.insert(range_check.clone());
range_check
@@ -885,9 +844,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
let default_x = range_check.get_first_element(col_idx);
let col_expr = sel.clone()
* range_check
* (range_check
.selector_constructor
.get_expr_at_idx(col_idx, synthetic_sel);
.get_expr_at_idx(col_idx, synthetic_sel));
let multiplier = range_check
.selector_constructor
@@ -910,6 +869,40 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
res
});
}
// add a degree-k custom constraint of the following form to the range check and
// static lookup configuration.
// 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 · ∏ (𝑠𝑒𝑙 𝑖) = 0 where 𝑠𝑒𝑙 is the synthetic_sel, and the product is over the set of overflowed columns
// and 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 is the selector value at the column index
cs.create_gate("range_check_on_sel", |cs| {
let synthetic_sel = match len {
1 => Expression::Constant(F::from(1)),
_ => match index {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
},
};
let range_check_on_synthetic_sel = match len {
1 => Expression::Constant(F::from(0)),
_ => {
let mut initial_expr = Expression::Constant(F::from(1));
for i in 0..len {
initial_expr = initial_expr
* (synthetic_sel.clone()
- Expression::Constant(F::from(i as u64)))
}
initial_expr
}
};
let sel = cs.query_selector(multi_col_selector);
Constraints::with_selector(sel, vec![range_check_on_synthetic_sel])
});
self.range_checks
.selectors
.insert((range, x, y), multi_col_selector);

View File

@@ -25,7 +25,7 @@ pub enum CircuitError {
/// This operation is unsupported
#[error("unsupported operation in graph")]
UnsupportedOp,
///
/// Invalid einsum expression
#[error("invalid einsum expression")]
InvalidEinsum,
/// Flush error
@@ -97,4 +97,16 @@ pub enum CircuitError {
/// Invalid scale
#[error("negative scale for an op that requires positive inputs {0}")]
NegativeScale(String),
#[error("invalid input type {0}")]
/// Invalid input type
InvalidInputType(String),
#[error("an element is missing from the shuffled version of the tensor")]
/// An element is missing from the shuffled version of the tensor
MissingShuffleElement,
/// Visibility has not been set
#[error("visibility has not been set")]
UnsetVisibility,
/// A decomposition base overflowed
#[error("decomposition base overflowed")]
DecompositionBaseOverflow,
}

View File

@@ -1,9 +1,9 @@
use super::*;
use crate::{
circuit::{layouts, utils, Tolerance},
fieldutils::integer_rep_to_felt,
circuit::{layouts, utils},
fieldutils::{integer_rep_to_felt, IntegerRep},
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorType, ValTensor},
tensor::{self, DataFormat, Tensor, TensorType, ValTensor},
};
use halo2curves::ff::PrimeField;
use serde::{Deserialize, Serialize};
@@ -57,11 +57,13 @@ pub enum HybridOp {
stride: Vec<usize>,
kernel_shape: Vec<usize>,
normalized: bool,
data_format: DataFormat,
},
MaxPool {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
pool_dims: Vec<usize>,
data_format: DataFormat,
},
ReduceMin {
axes: Vec<usize>,
@@ -76,7 +78,9 @@ pub enum HybridOp {
output_scale: utils::F32,
axes: Vec<usize>,
},
RangeCheck(Tolerance),
Output {
decomp: bool,
},
Greater,
GreaterEqual,
Less,
@@ -151,10 +155,10 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
kernel_shape,
normalized,
normalized, data_format
} => format!(
"SUMPOOL (padding={:?}, stride={:?}, kernel_shape={:?}, normalized={})",
padding, stride, kernel_shape, normalized
"SUMPOOL (padding={:?}, stride={:?}, kernel_shape={:?}, normalized={}, data_format={:?})",
padding, stride, kernel_shape, normalized, data_format
),
HybridOp::ReduceMax { axes } => format!("REDUCEMAX (axes={:?})", axes),
HybridOp::ReduceArgMax { dim } => format!("REDUCEARGMAX (dim={})", dim),
@@ -162,9 +166,10 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
data_format,
} => format!(
"MaxPool (padding={:?}, stride={:?}, pool_dims={:?})",
padding, stride, pool_dims
"MaxPool (padding={:?}, stride={:?}, pool_dims={:?}, data_format={:?})",
padding, stride, pool_dims, data_format
),
HybridOp::ReduceMin { axes } => format!("REDUCEMIN (axes={:?})", axes),
HybridOp::ReduceArgMin { dim } => format!("REDUCEARGMIN (dim={})", dim),
@@ -178,7 +183,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
input_scale, output_scale, axes
)
}
HybridOp::RangeCheck(p) => format!("RANGECHECK (tol={:?})", p),
HybridOp::Output { decomp } => {
format!("OUTPUT (decomp={})", decomp)
}
HybridOp::Greater => "GREATER".to_string(),
HybridOp::GreaterEqual => "GREATEREQUAL".to_string(),
HybridOp::Less => "LESS".to_string(),
@@ -234,6 +241,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
stride,
kernel_shape,
normalized,
data_format,
} => layouts::sumpool(
config,
region,
@@ -242,6 +250,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
stride,
kernel_shape,
*normalized,
*data_format,
)?,
HybridOp::Recip {
input_scale,
@@ -250,8 +259,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
integer_rep_to_felt(input_scale.0 as IntegerRep),
integer_rep_to_felt(output_scale.0 as IntegerRep),
)?,
HybridOp::Div { denom, .. } => {
if denom.0.fract() == 0.0 {
@@ -259,7 +268,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
config,
region,
values[..].try_into()?,
integer_rep_to_felt(denom.0 as i128),
integer_rep_to_felt(denom.0 as IntegerRep),
)?
} else {
layouts::nonlinearity(
@@ -282,6 +291,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
data_format,
} => layouts::max_pool(
config,
region,
@@ -289,6 +299,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
*data_format,
)?,
HybridOp::ReduceMax { axes } => {
layouts::max_axes(config, region, values[..].try_into()?, axes)?
@@ -314,13 +325,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
*output_scale,
axes,
)?,
HybridOp::RangeCheck(tol) => layouts::range_check_percent(
config,
region,
values[..].try_into()?,
tol.scale,
tol.val,
)?,
HybridOp::Output { decomp } => {
layouts::output(config, region, values[..].try_into()?, *decomp)?
}
HybridOp::Greater => layouts::greater(config, region, values[..].try_into()?)?,
HybridOp::GreaterEqual => {
layouts::greater_equal(config, region, values[..].try_into()?)?

File diff suppressed because it is too large Load Diff

View File

@@ -19,7 +19,7 @@ pub enum LookupOp {
PowersOfTwo { scale: utils::F32 },
Ln { scale: utils::F32 },
Sigmoid { scale: utils::F32 },
Exp { scale: utils::F32 },
Exp { scale: utils::F32, base: utils::F32 },
Cos { scale: utils::F32 },
ACos { scale: utils::F32 },
Cosh { scale: utils::F32 },
@@ -55,7 +55,7 @@ impl LookupOp {
LookupOp::Div { denom } => format!("div_{}", denom),
LookupOp::Sigmoid { scale } => format!("sigmoid_{}", scale),
LookupOp::Erf { scale } => format!("erf_{}", scale),
LookupOp::Exp { scale } => format!("exp_{}", scale),
LookupOp::Exp { scale, base } => format!("exp_{}_{}", scale, base),
LookupOp::Cos { scale } => format!("cos_{}", scale),
LookupOp::ACos { scale } => format!("acos_{}", scale),
LookupOp::Cosh { scale } => format!("cosh_{}", scale),
@@ -99,9 +99,9 @@ impl LookupOp {
LookupOp::Erf { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::erffunc(&x, scale.into()))
}
LookupOp::Exp { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::exp(&x, scale.into()))
}
LookupOp::Exp { scale, base } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::exp(&x, scale.into(), base.into()),
),
LookupOp::Cos { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::cos(&x, scale.into()))
}
@@ -165,7 +165,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
LookupOp::Erf { scale } => format!("ERF(scale={})", scale),
LookupOp::Exp { scale } => format!("EXP(scale={})", scale),
LookupOp::Exp { scale, base } => format!("EXP(scale={}, base={})", scale, base),
LookupOp::Tan { scale } => format!("TAN(scale={})", scale),
LookupOp::ATan { scale } => format!("ATAN(scale={})", scale),
LookupOp::Tanh { scale } => format!("TANH(scale={})", scale),

View File

@@ -1,6 +1,8 @@
use std::any::Any;
use serde::{Deserialize, Serialize};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tract_onnx::prelude::DatumType;
use crate::{
graph::quantize_tensor,
@@ -96,6 +98,8 @@ pub enum InputType {
Int,
///
TDim,
///
Unknown,
}
impl InputType {
@@ -105,7 +109,10 @@ impl InputType {
}
///
pub fn roundtrip<T: num::ToPrimitive + num::FromPrimitive + Clone>(&self, input: &mut T) {
pub fn roundtrip<T: num::ToPrimitive + num::FromPrimitive + Clone + std::fmt::Debug>(
&self,
input: &mut T,
) {
match self {
InputType::Bool => {
let boolean_input = input.clone().to_i64().unwrap();
@@ -118,7 +125,7 @@ impl InputType {
*input = T::from_f32(f32_input).unwrap();
}
InputType::F32 => {
let f32_input = input.clone().to_f32().unwrap();
let f32_input: f32 = input.clone().to_f32().unwrap();
*input = T::from_f32(f32_input).unwrap();
}
InputType::F64 => {
@@ -129,6 +136,47 @@ impl InputType {
let int_input = input.clone().to_i64().unwrap();
*input = T::from_i64(int_input).unwrap();
}
InputType::Unknown => {}
}
}
}
impl std::str::FromStr for InputType {
type Err = CircuitError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"bool" => Ok(InputType::Bool),
"f16" => Ok(InputType::F16),
"f32" => Ok(InputType::F32),
"f64" => Ok(InputType::F64),
"int" => Ok(InputType::Int),
"tdim" => Ok(InputType::TDim),
e => Err(CircuitError::InvalidInputType(e.to_string())),
}
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl From<DatumType> for InputType {
/// # Panics
/// Panics if the datum type is not supported
fn from(datum_type: DatumType) -> Self {
match datum_type {
DatumType::Bool => InputType::Bool,
DatumType::F16 => InputType::F16,
DatumType::F32 => InputType::F32,
DatumType::F64 => InputType::F64,
DatumType::I8 => InputType::Int,
DatumType::I16 => InputType::Int,
DatumType::I32 => InputType::Int,
DatumType::I64 => InputType::Int,
DatumType::U8 => InputType::Int,
DatumType::U16 => InputType::Int,
DatumType::U32 => InputType::Int,
DatumType::U64 => InputType::Int,
DatumType::TDim => InputType::TDim,
_ => unimplemented!(),
}
}
}
@@ -140,6 +188,8 @@ pub struct Input {
pub scale: crate::Scale,
///
pub datum_type: InputType,
/// decomp check
pub decomp: bool,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Input {
@@ -177,6 +227,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Input
config,
region,
values[..].try_into()?,
self.decomp,
)?)),
}
} else {
@@ -232,20 +283,26 @@ pub struct Constant<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
///
#[serde(skip)]
pub pre_assigned_val: Option<ValTensor<F>>,
///
pub decomp: bool,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Constant<F> {
///
pub fn new(quantized_values: Tensor<F>, raw_values: Tensor<f32>) -> Self {
pub fn new(quantized_values: Tensor<F>, raw_values: Tensor<f32>, decomp: bool) -> Self {
Self {
quantized_values,
raw_values,
pre_assigned_val: None,
decomp,
}
}
/// Rebase the scale of the constant
pub fn rebase_scale(&mut self, new_scale: crate::Scale) -> Result<(), CircuitError> {
let visibility = self.quantized_values.visibility().unwrap();
let visibility = match self.quantized_values.visibility() {
Some(v) => v,
None => return Err(CircuitError::UnsetVisibility),
};
self.quantized_values = quantize_tensor(self.raw_values.clone(), new_scale, &visibility)?;
Ok(())
}
@@ -262,13 +319,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Constant<F> {
}
impl<
F: PrimeField
+ TensorType
+ PartialOrd
+ std::hash::Hash
+ Serialize
+ for<'de> Deserialize<'de>,
> Op<F> for Constant<F>
F: PrimeField + TensorType + PartialOrd + std::hash::Hash + Serialize + for<'de> Deserialize<'de>,
> Op<F> for Constant<F>
{
fn as_any(&self) -> &dyn Any {
self
@@ -289,7 +341,12 @@ impl<
self.quantized_values.clone().try_into()?
};
// we gotta constrain it once if its used multiple times
Ok(Some(layouts::identity(config, region, &[value])?))
Ok(Some(layouts::identity(
config,
region,
&[value],
self.decomp,
)?))
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {

View File

@@ -4,6 +4,7 @@ use crate::{
utils::{self, F32},
},
tensor::{self, Tensor, TensorError},
tensor::{DataFormat, KernelFormat},
};
use super::{base::BaseOp, *};
@@ -43,10 +44,12 @@ pub enum PolyOp {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
group: usize,
data_format: DataFormat,
kernel_format: KernelFormat,
},
Downsample {
axis: usize,
stride: usize,
stride: isize,
modulo: usize,
},
DeConv {
@@ -54,6 +57,8 @@ pub enum PolyOp {
output_padding: Vec<usize>,
stride: Vec<usize>,
group: usize,
data_format: DataFormat,
kernel_format: KernelFormat,
},
Add,
Sub,
@@ -103,13 +108,8 @@ pub enum PolyOp {
}
impl<
F: PrimeField
+ TensorType
+ PartialOrd
+ std::hash::Hash
+ Serialize
+ for<'de> Deserialize<'de>,
> Op<F> for PolyOp
F: PrimeField + TensorType + PartialOrd + std::hash::Hash + Serialize + for<'de> Deserialize<'de>,
> Op<F> for PolyOp
{
/// Returns a reference to the Any trait.
fn as_any(&self) -> &dyn Any {
@@ -165,10 +165,12 @@ impl<
stride,
padding,
group,
data_format,
kernel_format,
} => {
format!(
"CONV (stride={:?}, padding={:?}, group={})",
stride, padding, group
"CONV (stride={:?}, padding={:?}, group={}, data_format={:?}, kernel_format={:?})",
stride, padding, group, data_format, kernel_format
)
}
PolyOp::DeConv {
@@ -176,10 +178,12 @@ impl<
padding,
output_padding,
group,
data_format,
kernel_format,
} => {
format!(
"DECONV (stride={:?}, padding={:?}, output_padding={:?}, group={})",
stride, padding, output_padding, group
"DECONV (stride={:?}, padding={:?}, output_padding={:?}, group={}, data_format={:?}, kernel_format={:?})",
stride, padding, output_padding, group, data_format, kernel_format
)
}
PolyOp::Concat { axis } => format!("CONCAT (axis={})", axis),
@@ -242,6 +246,8 @@ impl<
padding,
stride,
group,
data_format,
kernel_format,
} => layouts::conv(
config,
region,
@@ -249,9 +255,17 @@ impl<
padding,
stride,
*group,
*data_format,
*kernel_format,
)?,
PolyOp::GatherElements { dim, constant_idx } => {
if let Some(idx) = constant_idx {
if values.len() != 1 {
return Err(TensorError::DimError(
"GatherElements only accepts single inputs".to_string(),
)
.into());
}
tensor::ops::gather_elements(values[0].get_inner_tensor()?, idx, *dim)?.into()
} else {
layouts::gather_elements(config, region, values[..].try_into()?, *dim)?.0
@@ -269,6 +283,12 @@ impl<
}
PolyOp::ScatterElements { dim, constant_idx } => {
if let Some(idx) = constant_idx {
if values.len() != 2 {
return Err(TensorError::DimError(
"ScatterElements requires two inputs".to_string(),
)
.into());
}
tensor::ops::scatter(
values[0].get_inner_tensor()?,
idx,
@@ -297,6 +317,8 @@ impl<
output_padding,
stride,
group,
data_format,
kernel_format,
} => layouts::deconv(
config,
region,
@@ -305,13 +327,17 @@ impl<
output_padding,
stride,
*group,
*data_format,
*kernel_format,
)?,
PolyOp::Add => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Add)?,
PolyOp::Sub => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Sub)?,
PolyOp::Mult => {
layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Mult)?
}
PolyOp::Identity { .. } => layouts::identity(config, region, values[..].try_into()?)?,
PolyOp::Identity { .. } => {
layouts::identity(config, region, values[..].try_into()?, false)?
}
PolyOp::Reshape(d) | PolyOp::Flatten(d) => layouts::reshape(values[..].try_into()?, d)?,
PolyOp::Pad(p) => {
if values.len() != 1 {

View File

@@ -211,7 +211,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
self.min_lookup_inputs().to_string().green(),
self.max_range_size().to_string().green(),
self.dynamic_lookup_col_coord().to_string().green(),
self.shuffle_col_coord().to_string().green(),
self.shuffle_col_coord().to_string().green(),
self.max_dynamic_input_len().to_string().green()
);
}
@@ -474,7 +474,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
Ok(())
}
/// Update the max and min forcefully
/// Update the max and min forcefully
pub fn update_max_min_lookup_inputs_force(
&mut self,
min: IntegerRep,
@@ -611,7 +611,6 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<(ValTensor<F>, usize), CircuitError> {
self.update_max_dynamic_input_len(values.len());
if let Some(region) = &self.region {
@@ -672,22 +671,17 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
}
/// Assign a valtensor to a vartensor with duplication
pub fn assign_with_duplication(
pub fn assign_with_duplication_unconstrained(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
check_mode: &crate::circuit::CheckMode,
single_inner_col: bool,
) -> Result<(ValTensor<F>, usize), Error> {
if let Some(region) = &self.region {
// duplicates every nth element to adjust for column overflow
let (res, len) = var.assign_with_duplication(
let (res, len) = var.assign_with_duplication_unconstrained(
&mut region.borrow_mut(),
self.row,
self.linear_coord,
values,
check_mode,
single_inner_col,
&mut self.assigned_constants,
)?;
Ok((res, len))
@@ -696,7 +690,37 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
self.row,
self.linear_coord,
values,
single_inner_col,
false,
&mut self.assigned_constants,
)?;
Ok((values.clone(), len))
}
}
/// Assign a valtensor to a vartensor with duplication
pub fn assign_with_duplication_constrained(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
check_mode: &crate::circuit::CheckMode,
) -> Result<(ValTensor<F>, usize), Error> {
if let Some(region) = &self.region {
// duplicates every nth element to adjust for column overflow
let (res, len) = var.assign_with_duplication_constrained(
&mut region.borrow_mut(),
self.row,
self.linear_coord,
values,
check_mode,
&mut self.assigned_constants,
)?;
Ok((res, len))
} else {
let (_, len) = var.dummy_assign_with_duplication(
self.row,
self.linear_coord,
values,
true,
&mut self.assigned_constants,
)?;
Ok((values.clone(), len))

View File

@@ -132,21 +132,16 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
(first_element, op_f.output[0])
}
///
/// calculates the column size given the number of rows and reserved blinding rows
pub fn cal_col_size(logrows: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(logrows as u32) - reserved_blinding_rows
}
///
pub fn cal_bit_range(bits: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(bits as u32) - reserved_blinding_rows
}
}
///
pub fn num_cols_required(range_len: IntegerRep, col_size: usize) -> usize {
// number of cols needed to store the range
(range_len / (col_size as IntegerRep)) as usize + 1
(range_len / col_size as IntegerRep) as usize + 1
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
@@ -168,7 +163,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
range: Range,
logrows: usize,
nonlinearity: &LookupOp,
preexisting_inputs: Option<Vec<TableColumn>>,
preexisting_inputs: &mut Vec<TableColumn>,
) -> Table<F> {
let factors = cs.blinding_factors() + RESERVED_BLINDING_ROWS_PAD;
let col_size = Self::cal_col_size(logrows, factors);
@@ -177,28 +172,28 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
debug!("table range: {:?}", range);
let table_inputs = preexisting_inputs.unwrap_or_else(|| {
let mut cols = vec![];
for _ in 0..num_cols {
cols.push(cs.lookup_table_column());
// validate enough columns are provided to store the range
if preexisting_inputs.len() < num_cols {
// add columns to match the required number of columns
let diff = num_cols - preexisting_inputs.len();
for _ in 0..diff {
preexisting_inputs.push(cs.lookup_table_column());
}
cols
});
let num_cols = table_inputs.len();
}
let num_cols = preexisting_inputs.len();
if num_cols > 1 {
warn!("Using {} columns for non-linearity table.", num_cols);
}
let table_outputs = table_inputs
let table_outputs = preexisting_inputs
.iter()
.map(|_| cs.lookup_table_column())
.collect::<Vec<_>>();
Table {
nonlinearity: nonlinearity.clone(),
table_inputs,
table_inputs: preexisting_inputs.clone(),
table_outputs,
is_assigned: false,
selector_constructor: SelectorConstructor::new(num_cols),
@@ -355,16 +350,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RangeCheck<F> {
integer_rep_to_felt(chunk * (self.col_size as IntegerRep) + self.range.0)
}
///
/// calculates the column size
pub fn cal_col_size(logrows: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(logrows as u32) - reserved_blinding_rows
}
///
pub fn cal_bit_range(bits: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(bits as u32) - reserved_blinding_rows
}
/// get column index given input
pub fn get_col_index(&self, input: F) -> F {
// range is split up into chunks of size col_size, find the chunk that input is in

View File

@@ -1,5 +1,6 @@
use crate::circuit::ops::poly::PolyOp;
use crate::circuit::*;
use crate::tensor::{DataFormat, KernelFormat};
use crate::tensor::{Tensor, TensorType, ValTensor, VarTensor};
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
@@ -1040,6 +1041,10 @@ mod conv {
let a = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
let b = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
let output = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
// column for constants
let _constant = VarTensor::constant_cols(cs, K, 8, false);
Self::Config::configure(cs, &[a, b], &output, CheckMode::SAFE)
}
@@ -1061,6 +1066,8 @@ mod conv {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis)
@@ -1171,7 +1178,7 @@ mod conv_col_ultra_overflow {
use super::*;
const K: usize = 4;
const K: usize = 6;
const LEN: usize = 10;
#[derive(Clone)]
@@ -1191,9 +1198,10 @@ mod conv_col_ultra_overflow {
}
fn configure(cs: &mut ConstraintSystem<F>) -> Self::Config {
let a = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let b = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let output = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let a = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let b = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let output = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN * LEN * LEN * LEN, false);
Self::Config::configure(cs, &[a, b], &output, CheckMode::SAFE)
}
@@ -1215,6 +1223,8 @@ mod conv_col_ultra_overflow {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis)
@@ -1372,6 +1382,8 @@ mod conv_relu_col_ultra_overflow {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis);
@@ -1776,13 +1788,18 @@ mod shuffle {
let d = VarTensor::new_advice(cs, K, 1, LEN);
let e = VarTensor::new_advice(cs, K, 1, LEN);
let f: VarTensor = VarTensor::new_advice(cs, K, 1, LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN * NUM_LOOP, false);
let mut config =
Self::Config::configure(cs, &[a.clone(), b.clone()], &c, CheckMode::SAFE);
config
.configure_shuffles(cs, &[a.clone(), b.clone()], &[d.clone(), e.clone()])
.configure_shuffles(
cs,
&[a.clone(), b.clone(), c.clone()],
&[d.clone(), e.clone(), f.clone()],
)
.unwrap();
config
}
@@ -1803,6 +1820,7 @@ mod shuffle {
&mut region,
&self.inputs[i],
&self.references[i],
layouts::SortCollisionMode::Unsorted,
)
.map_err(|_| Error::Synthesis)?;
}
@@ -1988,7 +2006,7 @@ mod add_with_overflow_and_poseidon {
let base = BaseConfig::configure(cs, &[a, b], &output, CheckMode::SAFE);
VarTensor::constant_cols(cs, K, 2, false);
let poseidon = PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::configure(cs, ());
let poseidon = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::configure(cs, ());
MyCircuitConfig { base, poseidon }
}
@@ -1998,7 +2016,7 @@ mod add_with_overflow_and_poseidon {
mut config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let poseidon_chip: PoseidonChip<PoseidonSpec, WIDTH, RATE, WIDTH> =
let poseidon_chip: PoseidonChip<PoseidonSpec, WIDTH, RATE> =
PoseidonChip::new(config.poseidon.clone());
let assigned_inputs_a =
@@ -2033,11 +2051,9 @@ mod add_with_overflow_and_poseidon {
let b = (0..LEN)
.map(|i| halo2curves::bn256::Fr::from(i as u64 + 1))
.collect::<Vec<_>>();
let commitment_a =
PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::run(a.clone()).unwrap()[0][0];
let commitment_a = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(a.clone()).unwrap()[0][0];
let commitment_b =
PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::run(b.clone()).unwrap()[0][0];
let commitment_b = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(b.clone()).unwrap()[0][0];
// parameters
let a = Tensor::from(a.into_iter().map(Value::known));
@@ -2059,13 +2075,11 @@ mod add_with_overflow_and_poseidon {
let b = (0..LEN)
.map(|i| halo2curves::bn256::Fr::from(i as u64 + 1))
.collect::<Vec<_>>();
let commitment_a = PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::run(a.clone())
.unwrap()[0][0]
+ Fr::one();
let commitment_a =
PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(a.clone()).unwrap()[0][0] + Fr::one();
let commitment_b = PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::run(b.clone())
.unwrap()[0][0]
+ Fr::one();
let commitment_b =
PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(b.clone()).unwrap()[0][0] + Fr::one();
// parameters
let a = Tensor::from(a.into_iter().map(Value::known));

View File

@@ -1,19 +1,14 @@
use alloy::primitives::Address as H160;
use clap::{Command, Parser, Subcommand};
use clap_complete::{generate, Generator, Shell};
use clap_complete::{Generator, Shell, generate};
#[cfg(feature = "python-bindings")]
use pyo3::{
conversion::{FromPyObject, PyTryFrom},
exceptions::PyValueError,
prelude::*,
types::PyString,
};
use pyo3::{conversion::FromPyObject, exceptions::PyValueError, prelude::*};
use serde::{Deserialize, Serialize};
use std::path::PathBuf;
use std::str::FromStr;
use tosubcommand::{ToFlags, ToSubcommand};
use crate::{pfsys::ProofType, Commitments, RunArgs};
use crate::{Commitments, RunArgs, pfsys::ProofType};
use crate::circuit::CheckMode;
use crate::graph::TestDataSource;
@@ -88,13 +83,15 @@ pub const DEFAULT_VK_SOL: &str = "vk.sol";
/// Default VK abi path
pub const DEFAULT_VK_ABI: &str = "vk.abi";
/// Default scale rebase multipliers for calibration
pub const DEFAULT_SCALE_REBASE_MULTIPLIERS: &str = "1,2,10";
pub const DEFAULT_SCALE_REBASE_MULTIPLIERS: &str = "1,10";
/// Default use reduced srs for verification
pub const DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION: &str = "false";
/// Default only check for range check rebase
pub const DEFAULT_ONLY_RANGE_CHECK_REBASE: &str = "false";
/// Default commitment
pub const DEFAULT_COMMITMENT: &str = "kzg";
/// Default seed used to generate random data
pub const DEFAULT_SEED: &str = "21242";
#[cfg(feature = "python-bindings")]
/// Converts TranscriptType into a PyObject (Required for TranscriptType to be compatible with Python)
@@ -109,8 +106,8 @@ impl IntoPy<PyObject> for TranscriptType {
#[cfg(feature = "python-bindings")]
/// Obtains TranscriptType from PyObject (Required for TranscriptType to be compatible with Python)
impl<'source> FromPyObject<'source> for TranscriptType {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let trystr = <PyString as PyTryFrom>::try_from(ob)?;
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> PyResult<Self> {
let trystr = String::extract_bound(ob)?;
let strval = trystr.to_string();
match strval.to_lowercase().as_str() {
"poseidon" => Ok(TranscriptType::Poseidon),
@@ -196,9 +193,7 @@ pub enum ContractType {
impl Default for ContractType {
fn default() -> Self {
ContractType::Verifier {
reusable: false,
}
ContractType::Verifier { reusable: false }
}
}
@@ -210,10 +205,8 @@ impl std::fmt::Display for ContractType {
match self {
ContractType::Verifier { reusable: true } => {
"verifier/reusable".to_string()
},
ContractType::Verifier {
reusable: false,
} => "verifier".to_string(),
}
ContractType::Verifier { reusable: false } => "verifier".to_string(),
ContractType::VerifyingKeyArtifact => "vka".to_string(),
}
)
@@ -241,7 +234,6 @@ impl From<&str> for ContractType {
}
}
#[derive(Debug, Copy, Clone, Serialize, Deserialize, PartialEq, PartialOrd)]
/// wrapper for H160 to make it easy to parse into flag vals
pub struct H160Flag {
@@ -287,9 +279,8 @@ impl IntoPy<PyObject> for CalibrationTarget {
#[cfg(feature = "python-bindings")]
/// Obtains CalibrationTarget from PyObject (Required for CalibrationTarget to be compatible with Python)
impl<'source> FromPyObject<'source> for CalibrationTarget {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let trystr = <PyString as PyTryFrom>::try_from(ob)?;
let strval = trystr.to_string();
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> PyResult<Self> {
let strval = String::extract_bound(ob)?;
match strval.to_lowercase().as_str() {
"resources" => Ok(CalibrationTarget::Resources {
col_overflow: false,
@@ -306,12 +297,8 @@ impl<'source> FromPyObject<'source> for CalibrationTarget {
impl IntoPy<PyObject> for ContractType {
fn into_py(self, py: Python) -> PyObject {
match self {
ContractType::Verifier { reusable: true } => {
"verifier/reusable".to_object(py)
}
ContractType::Verifier {
reusable: false,
} => "verifier".to_object(py),
ContractType::Verifier { reusable: true } => "verifier/reusable".to_object(py),
ContractType::Verifier { reusable: false } => "verifier".to_object(py),
ContractType::VerifyingKeyArtifact => "vka".to_object(py),
}
}
@@ -320,13 +307,10 @@ impl IntoPy<PyObject> for ContractType {
#[cfg(feature = "python-bindings")]
/// Obtains ContractType from PyObject (Required for ContractType to be compatible with Python)
impl<'source> FromPyObject<'source> for ContractType {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let trystr = <PyString as PyTryFrom>::try_from(ob)?;
let strval = trystr.to_string();
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> PyResult<Self> {
let strval = String::extract_bound(ob)?;
match strval.to_lowercase().as_str() {
"verifier" => Ok(ContractType::Verifier {
reusable: false,
}),
"verifier" => Ok(ContractType::Verifier { reusable: false }),
"verifier/reusable" => Ok(ContractType::Verifier { reusable: true }),
"vka" => Ok(ContractType::VerifyingKeyArtifact),
_ => Err(PyValueError::new_err("Invalid value for ContractType")),
@@ -341,45 +325,50 @@ pub fn get_styles() -> clap::builder::Styles {
clap::builder::styling::Style::new()
.bold()
.underline()
.fg_color(Some(clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Cyan))),
.fg_color(Some(clap::builder::styling::Color::Ansi(
clap::builder::styling::AnsiColor::Cyan,
))),
)
.header(
clap::builder::styling::Style::new()
.bold()
.underline()
.fg_color(Some(clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Cyan))),
)
.literal(
clap::builder::styling::Style::new().fg_color(Some(clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Magenta))),
)
.invalid(
clap::builder::styling::Style::new()
.bold()
.fg_color(Some(clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Red))),
)
.error(
clap::builder::styling::Style::new()
.bold()
.fg_color(Some(clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Red))),
.fg_color(Some(clap::builder::styling::Color::Ansi(
clap::builder::styling::AnsiColor::Cyan,
))),
)
.literal(clap::builder::styling::Style::new().fg_color(Some(
clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Magenta),
)))
.invalid(clap::builder::styling::Style::new().bold().fg_color(Some(
clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Red),
)))
.error(clap::builder::styling::Style::new().bold().fg_color(Some(
clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Red),
)))
.valid(
clap::builder::styling::Style::new()
.bold()
.underline()
.fg_color(Some(clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::Green))),
)
.placeholder(
clap::builder::styling::Style::new().fg_color(Some(clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::White))),
.fg_color(Some(clap::builder::styling::Color::Ansi(
clap::builder::styling::AnsiColor::Green,
))),
)
.placeholder(clap::builder::styling::Style::new().fg_color(Some(
clap::builder::styling::Color::Ansi(clap::builder::styling::AnsiColor::White),
)))
}
/// Print completions for the given generator
pub fn print_completions<G: Generator>(gen: G, cmd: &mut Command) {
generate(gen, cmd, cmd.get_name().to_string(), &mut std::io::stdout());
pub fn print_completions<G: Generator>(r#gen: G, cmd: &mut Command) {
generate(
r#gen,
cmd,
cmd.get_name().to_string(),
&mut std::io::stdout(),
);
}
#[allow(missing_docs)]
#[derive(Parser, Debug, Clone)]
#[command(author, about, long_about = None)]
@@ -393,7 +382,6 @@ pub struct Cli {
pub command: Option<Commands>,
}
#[allow(missing_docs)]
#[derive(Debug, Subcommand, Clone, Deserialize, Serialize, PartialEq, PartialOrd, ToSubcommand)]
pub enum Commands {
@@ -414,7 +402,7 @@ pub enum Commands {
GenWitness {
/// The path to the .json data file
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, default_value = DEFAULT_COMPILED_CIRCUIT, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
@@ -441,12 +429,26 @@ pub enum Commands {
#[clap(flatten)]
args: RunArgs,
},
/// Generate random data for a model
GenRandomData {
/// The path to the .onnx model file
#[arg(short = 'M', long, default_value = DEFAULT_MODEL, value_hint = clap::ValueHint::FilePath)]
model: Option<PathBuf>,
/// The path to the .json data file
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
/// Hand-written parser for graph variables, eg. batch_size=1
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'V', long, value_parser = crate::parse_key_val::<String, usize>, default_value = "batch_size->1", value_delimiter = ',', value_hint = clap::ValueHint::Other))]
variables: Vec<(String, usize)>,
/// random seed for reproducibility (optional)
#[arg(long, value_hint = clap::ValueHint::Other, default_value = DEFAULT_SEED)]
seed: u64,
},
/// Calibrates the proving scale, lookup bits and logrows from a circuit settings file.
CalibrateSettings {
CalibrateSettings {
/// The path to the .json calibration data file.
#[arg(short = 'D', long, default_value = DEFAULT_CALIBRATION_FILE, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the .onnx model file
#[arg(short = 'M', long, default_value = DEFAULT_MODEL, value_hint = clap::ValueHint::FilePath)]
model: Option<PathBuf>,
@@ -490,7 +492,7 @@ pub enum Commands {
commitment: Option<Commitments>,
},
/// Gets an SRS from a circuit settings file.
/// Gets an SRS from a circuit settings file.
#[command(name = "get-srs")]
GetSrs {
/// The path to output the desired srs file, if set to None will save to ~/.ezkl/srs
@@ -575,7 +577,7 @@ pub enum Commands {
require_equals = true,
num_args = 0..=1,
default_value_t = TranscriptType::default(),
value_enum,
value_enum,
value_hint = clap::ValueHint::Other
)]
transcript: TranscriptType,
@@ -625,12 +627,12 @@ pub enum Commands {
#[arg(long, default_value = DEFAULT_DISABLE_SELECTOR_COMPRESSION, action = clap::ArgAction::SetTrue)]
disable_selector_compression: Option<bool>,
},
/// Deploys a test contact that the data attester reads from and creates a data attestation formatted input.json file that contains call data information
/// Deploys a test contact that the data attester reads from and creates a data attestation formatted input.json file that contains call data information
#[command(arg_required_else_help = true)]
SetupTestEvmData {
/// The path to the .json data file, which should include both the network input (possibly private) and the network output (public input to the proof)
#[arg(short = 'D', long, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
@@ -649,20 +651,7 @@ pub enum Commands {
#[arg(long, default_value = "on-chain", value_hint = clap::ValueHint::Other)]
output_source: TestDataSource,
},
/// The Data Attestation Verifier contract stores the account calls to fetch data to feed into ezkl. This call data can be updated by an admin account. This tests that admin account is able to update this call data.
#[command(arg_required_else_help = true)]
TestUpdateAccountCalls {
/// The path to the verifier contract's address
#[arg(long, value_hint = clap::ValueHint::Other)]
addr: H160Flag,
/// The path to the .json data file.
#[arg(short = 'D', long, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
/// RPC URL for an Ethereum node, if None will use Anvil but WON'T persist state
#[arg(short = 'U', long, value_hint = clap::ValueHint::Url)]
rpc_url: Option<String>,
},
/// Swaps the positions in the transcript that correspond to commitments
/// Swaps the positions in the transcript that correspond to commitments
SwapProofCommitments {
/// The path to the proof file
#[arg(short = 'P', long, default_value = DEFAULT_PROOF, value_hint = clap::ValueHint::FilePath)]
@@ -672,7 +661,7 @@ pub enum Commands {
witness_path: Option<PathBuf>,
},
/// Loads model, data, and creates proof
/// Loads model, data, and creates proof
Prove {
/// The path to the .json witness file (generated using the gen-witness command)
#[arg(short = 'W', long, default_value = DEFAULT_WITNESS, value_hint = clap::ValueHint::FilePath)]
@@ -694,7 +683,7 @@ pub enum Commands {
require_equals = true,
num_args = 0..=1,
default_value_t = ProofType::Single,
value_enum,
value_enum,
value_hint = clap::ValueHint::Other
)]
proof_type: ProofType,
@@ -702,7 +691,7 @@ pub enum Commands {
#[arg(long, default_value = DEFAULT_CHECKMODE, value_hint = clap::ValueHint::Other)]
check_mode: Option<CheckMode>,
},
/// Encodes a proof into evm calldata
/// Encodes a proof into evm calldata
#[command(name = "encode-evm-calldata")]
EncodeEvmCalldata {
/// The path to the proof file (generated using the prove command)
@@ -715,7 +704,7 @@ pub enum Commands {
#[arg(long, value_hint = clap::ValueHint::Other)]
addr_vk: Option<H160Flag>,
},
/// Creates an Evm verifier for a single proof
/// Creates an Evm verifier for a single proof
#[command(name = "create-evm-verifier")]
CreateEvmVerifier {
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
@@ -737,7 +726,7 @@ pub enum Commands {
#[arg(long, default_value = DEFAULT_RENDER_REUSABLE, action = clap::ArgAction::SetTrue)]
reusable: Option<bool>,
},
/// Creates an Evm verifier artifact for a single proof to be used by the reusable verifier
/// Creates an Evm verifier artifact for a single proof to be used by the reusable verifier
#[command(name = "create-evm-vka")]
CreateEvmVKArtifact {
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
@@ -756,7 +745,7 @@ pub enum Commands {
#[arg(long, default_value = DEFAULT_VK_ABI, value_hint = clap::ValueHint::FilePath)]
abi_path: Option<PathBuf>,
},
/// Creates an Evm verifier that attests to on-chain inputs for a single proof
/// Creates an Evm verifier that attests to on-chain inputs for a single proof
#[command(name = "create-evm-da")]
CreateEvmDataAttestation {
/// The path to load circuit settings .json file from (generated using the gen-settings command)
@@ -774,13 +763,13 @@ pub enum Commands {
/// view functions that return the data that the network
/// ingests as inputs.
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the witness file. This is needed for proof swapping for kzg commitments.
#[arg(short = 'W', long, default_value = DEFAULT_WITNESS, value_hint = clap::ValueHint::FilePath)]
witness: Option<PathBuf>,
},
/// Creates an Evm verifier for an aggregate proof
/// Creates an Evm verifier for an aggregate proof
#[command(name = "create-evm-verifier-aggr")]
CreateEvmVerifierAggr {
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
@@ -844,7 +833,7 @@ pub enum Commands {
#[arg(long, default_value = DEFAULT_COMMITMENT, value_hint = clap::ValueHint::Other)]
commitment: Option<Commitments>,
},
/// Deploys an evm contract (verifier, reusable verifier, or vk artifact) that is generated by ezkl
/// Deploys an evm contract (verifier, reusable verifier, or vk artifact) that is generated by ezkl
DeployEvm {
/// The path to the Solidity code (generated using the create-evm-verifier command)
#[arg(long, default_value = DEFAULT_SOL_CODE, value_hint = clap::ValueHint::FilePath)]
@@ -865,12 +854,12 @@ pub enum Commands {
#[arg(long = "contract-type", short = 'C', default_value = DEFAULT_CONTRACT_DEPLOYMENT_TYPE, value_hint = clap::ValueHint::Other)]
contract: ContractType,
},
/// Deploys an evm verifier that allows for data attestation
/// Deploys an evm verifier that allows for data attestation
#[command(name = "deploy-evm-da")]
DeployEvmDataAttestation {
/// The path to the .json data file, which should include both the network input (possibly private) and the network output (public input to the proof)
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
#[arg(long, default_value = DEFAULT_SETTINGS, value_hint = clap::ValueHint::FilePath)]
settings_path: Option<PathBuf>,
@@ -890,7 +879,7 @@ pub enum Commands {
#[arg(short = 'P', long, value_hint = clap::ValueHint::Other)]
private_key: Option<String>,
},
/// Verifies a proof using a local Evm executor, returning accept or reject
/// Verifies a proof using a local Evm executor, returning accept or reject
#[command(name = "verify-evm")]
VerifyEvm {
/// The path to the proof file (generated using the prove command)
@@ -918,7 +907,6 @@ pub enum Commands {
},
}
impl Commands {
/// Converts the commands to a json string
pub fn as_json(&self) -> String {
@@ -929,4 +917,4 @@ impl Commands {
pub fn from_json(json: &str) -> Self {
serde_json::from_str(json).unwrap()
}
}
}

File diff suppressed because one or more lines are too long

View File

@@ -1,32 +1,30 @@
use crate::circuit::region::RegionSettings;
use crate::EZKL_BUF_CAPACITY;
use crate::circuit::CheckMode;
use crate::circuit::region::RegionSettings;
use crate::commands::CalibrationTarget;
use crate::eth::{
deploy_contract_via_solidity, deploy_da_verifier_via_solidity, fix_da_multi_sol,
fix_da_single_sol,
};
use crate::eth::{deploy_contract_via_solidity, deploy_da_verifier_via_solidity, fix_da_sol};
#[allow(unused_imports)]
use crate::eth::{get_contract_artifacts, verify_proof_via_solidity};
use crate::graph::input::{Calls, GraphData};
use crate::graph::input::GraphData;
use crate::graph::{GraphCircuit, GraphSettings, GraphWitness, Model};
use crate::graph::{TestDataSource, TestSources};
use crate::pfsys::evm::aggregation_kzg::{AggregationCircuit, PoseidonTranscript};
use crate::pfsys::{
create_keys, load_pk, load_vk, save_params, save_pk, Snark, StrategyType, TranscriptType,
ProofSplitCommit, create_proof_circuit, swap_proof_commitments_polycommit, verify_proof_circuit,
};
use crate::pfsys::{
create_proof_circuit, swap_proof_commitments_polycommit, verify_proof_circuit, ProofSplitCommit,
Snark, StrategyType, TranscriptType, create_keys, load_pk, load_vk, save_params, save_pk,
};
use crate::pfsys::{save_vk, srs::*};
use crate::tensor::TensorError;
use crate::EZKL_BUF_CAPACITY;
use crate::{commands::*, EZKLError};
use crate::{Commitments, RunArgs};
use crate::{EZKLError, commands::*};
use colored::Colorize;
#[cfg(unix)]
use gag::Gag;
use halo2_proofs::dev::VerifyFailure;
use halo2_proofs::plonk::{self, Circuit};
use halo2_proofs::poly::VerificationStrategy;
use halo2_proofs::poly::commitment::{CommitmentScheme, Params};
use halo2_proofs::poly::commitment::{ParamsProver, Verifier};
use halo2_proofs::poly::ipa::commitment::{IPACommitmentScheme, ParamsIPA};
@@ -39,7 +37,6 @@ use halo2_proofs::poly::kzg::strategy::AccumulatorStrategy as KZGAccumulatorStra
use halo2_proofs::poly::kzg::{
commitment::ParamsKZG, strategy::SingleStrategy as KZGSingleStrategy,
};
use halo2_proofs::poly::VerificationStrategy;
use halo2_proofs::transcript::{EncodedChallenge, TranscriptReadBuffer};
use halo2_solidity_verifier;
use halo2curves::bn256::{Bn256, Fr, G1Affine};
@@ -50,12 +47,12 @@ use instant::Instant;
use itertools::Itertools;
use log::debug;
use log::{info, trace, warn};
use serde::de::DeserializeOwned;
use serde::Serialize;
use serde::de::DeserializeOwned;
use snark_verifier::loader::native::NativeLoader;
use snark_verifier::system::halo2::Config;
use snark_verifier::system::halo2::compile;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use snark_verifier::system::halo2::Config;
use std::fs::File;
use std::io::BufWriter;
use std::io::{Cursor, Write};
@@ -65,6 +62,8 @@ use std::str::FromStr;
use std::time::Duration;
use tabled::Tabled;
use thiserror::Error;
use tract_onnx::prelude::IntoTensor;
use tract_onnx::prelude::Tensor as TractTensor;
use lazy_static::lazy_static;
@@ -116,7 +115,7 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
} => gen_srs_cmd(
srs_path,
logrows as u32,
commitment.unwrap_or(Commitments::from_str(DEFAULT_COMMITMENT).unwrap()),
commitment.unwrap_or_else(|| Commitments::from_str(DEFAULT_COMMITMENT).unwrap()),
),
Commands::GetSrs {
srs_path,
@@ -134,6 +133,17 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
settings_path.unwrap_or(DEFAULT_SETTINGS.into()),
args,
),
Commands::GenRandomData {
model,
data,
variables,
seed,
} => gen_random_data(
model.unwrap_or(DEFAULT_MODEL.into()),
data.unwrap_or(DEFAULT_DATA.into()),
variables,
seed,
),
Commands::CalibrateSettings {
model,
settings_path,
@@ -288,7 +298,7 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
input_source,
output_source,
} => {
setup_test_evm_witness(
setup_test_evm_data(
data.unwrap_or(DEFAULT_DATA.into()),
compiled_circuit.unwrap_or(DEFAULT_COMPILED_CIRCUIT.into()),
test_data,
@@ -298,11 +308,6 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
)
.await
}
Commands::TestUpdateAccountCalls {
addr,
data,
rpc_url,
} => test_update_account_calls(addr, data.unwrap_or(DEFAULT_DATA.into()), rpc_url).await,
Commands::SwapProofCommitments {
proof_path,
witness_path,
@@ -503,7 +508,9 @@ fn update_ezkl_binary(version: &Option<String>) -> Result<String, EZKLError> {
.status()
.is_err()
{
log::warn!("bash is not installed on this system, trying to run the install script with sh (may fail)");
log::warn!(
"bash is not installed on this system, trying to run the install script with sh (may fail)"
);
"sh"
} else {
"bash"
@@ -712,7 +719,7 @@ pub(crate) fn table(model: PathBuf, run_args: RunArgs) -> Result<String, EZKLErr
pub(crate) async fn gen_witness(
compiled_circuit_path: PathBuf,
data: PathBuf,
data: String,
output: Option<PathBuf>,
vk_path: Option<PathBuf>,
srs_path: Option<PathBuf>,
@@ -720,7 +727,7 @@ pub(crate) async fn gen_witness(
// these aren't real values so the sanity checks are mostly meaningless
let mut circuit = GraphCircuit::load(compiled_circuit_path)?;
let data: GraphData = GraphData::from_path(data)?;
let data = GraphData::from_str(&data)?;
let settings = circuit.settings().clone();
let vk = if let Some(vk) = vk_path {
@@ -828,6 +835,71 @@ pub(crate) fn gen_circuit_settings(
Ok(String::new())
}
/// Generate a circuit settings file
pub(crate) fn gen_random_data(
model_path: PathBuf,
data_path: PathBuf,
variables: Vec<(String, usize)>,
seed: u64,
) -> Result<String, EZKLError> {
let mut file = std::fs::File::open(&model_path).map_err(|e| {
crate::graph::errors::GraphError::ReadWriteFileError(
model_path.display().to_string(),
e.to_string(),
)
})?;
let (tract_model, _symbol_values) = Model::load_onnx_using_tract(&mut file, &variables)?;
let input_facts = tract_model
.input_outlets()
.map_err(|e| EZKLError::from(e.to_string()))?
.iter()
.map(|&i| tract_model.outlet_fact(i))
.collect::<tract_onnx::prelude::TractResult<Vec<_>>>()
.map_err(|e| EZKLError::from(e.to_string()))?;
/// Generates a random tensor of a given size and type.
fn random(
sizes: &[usize],
datum_type: tract_onnx::prelude::DatumType,
seed: u64,
) -> TractTensor {
use rand::{Rng, SeedableRng};
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
let mut tensor = TractTensor::zero::<f32>(sizes).unwrap();
let slice = tensor.as_slice_mut::<f32>().unwrap();
slice.iter_mut().for_each(|x| *x = rng.r#gen());
tensor.cast_to_dt(datum_type).unwrap().into_owned()
}
fn tensor_for_fact(fact: &tract_onnx::prelude::TypedFact, seed: u64) -> TractTensor {
if let Some(value) = &fact.konst {
return value.clone().into_tensor();
}
random(
fact.shape
.as_concrete()
.expect("Expected concrete shape, found: {fact:?}"),
fact.datum_type,
seed,
)
}
let generated = input_facts
.iter()
.map(|v| tensor_for_fact(v, seed))
.collect_vec();
let data = GraphData::from_tract_data(&generated)?;
data.save(data_path)?;
Ok(String::new())
}
// not for wasm targets
pub(crate) fn init_spinner() -> ProgressBar {
let pb = indicatif::ProgressBar::new_spinner();
@@ -966,7 +1038,7 @@ impl AccuracyResults {
#[allow(clippy::too_many_arguments)]
pub(crate) async fn calibrate(
model_path: PathBuf,
data: PathBuf,
data: String,
settings_path: PathBuf,
target: CalibrationTarget,
lookup_safety_margin: f64,
@@ -980,7 +1052,7 @@ pub(crate) async fn calibrate(
use crate::fieldutils::IntegerRep;
let data = GraphData::from_path(data)?;
let data = GraphData::from_str(&data)?;
// load the pre-generated settings
let settings = GraphSettings::load(&settings_path)?;
// now retrieve the run args
@@ -1444,7 +1516,7 @@ pub(crate) async fn create_evm_data_attestation(
settings_path: PathBuf,
sol_code_path: PathBuf,
abi_path: PathBuf,
input: PathBuf,
input: String,
witness: Option<PathBuf>,
) -> Result<String, EZKLError> {
#[allow(unused_imports)]
@@ -1457,52 +1529,31 @@ pub(crate) async fn create_evm_data_attestation(
trace!("params computed");
// if input is not provided, we just instantiate dummy input data
let data = GraphData::from_path(input).unwrap_or(GraphData::new(DataSource::File(vec![])));
let data =
GraphData::from_str(&input).unwrap_or_else(|_| GraphData::new(DataSource::File(vec![])));
debug!("data attestation data: {:?}", data);
// The number of input and output instances we attest to for the single call data attestation
let mut input_len = None;
let mut output_len = None;
let output_data = if let Some(DataSource::OnChain(source)) = data.output_data {
if let Some(DataSource::OnChain(source)) = data.output_data {
if visibility.output.is_private() {
return Err("private output data on chain is not supported on chain".into());
}
let mut on_chain_output_data = vec![];
match source.calls {
Calls::Multiple(calls) => {
for call in calls {
on_chain_output_data.push(call);
}
}
Calls::Single(call) => {
output_len = Some(call.len);
}
}
Some(on_chain_output_data)
} else {
None
output_len = Some(source.call.decimals.len());
};
let input_data = if let DataSource::OnChain(source) = data.input_data {
if let DataSource::OnChain(source) = data.input_data {
if visibility.input.is_private() {
return Err("private input data on chain is not supported on chain".into());
}
let mut on_chain_input_data = vec![];
match source.calls {
Calls::Multiple(calls) => {
for call in calls {
on_chain_input_data.push(call);
}
}
Calls::Single(call) => {
input_len = Some(call.len);
}
}
Some(on_chain_input_data)
} else {
None
input_len = Some(source.call.decimals.len());
};
// If both model inputs and outputs are attested to then we
// Read the settings file. Look if either the run_ars.input_visibility, run_args.output_visibility or run_args.param_visibility is KZGCommit
// if so, then we need to load the witness
@@ -1523,30 +1574,22 @@ pub(crate) async fn create_evm_data_attestation(
None
};
// if either input_len or output_len is Some then we are in the single call data attestation mode
if input_len.is_some() || output_len.is_some() {
let output = fix_da_single_sol(input_len, output_len)?;
let mut f = File::create(sol_code_path.clone())?;
let _ = f.write(output.as_bytes());
// fetch abi of the contract
let (abi, _, _) = get_contract_artifacts(sol_code_path, "DataAttestationSingle", 0).await?;
// save abi to file
serde_json::to_writer(std::fs::File::create(abi_path)?, &abi)?;
} else {
let output = fix_da_multi_sol(input_data, output_data, commitment_bytes)?;
let mut f = File::create(sol_code_path.clone())?;
let _ = f.write(output.as_bytes());
// fetch abi of the contract
let (abi, _, _) = get_contract_artifacts(sol_code_path, "DataAttestationMulti", 0).await?;
// save abi to file
serde_json::to_writer(std::fs::File::create(abi_path)?, &abi)?;
}
let output: String = fix_da_sol(
commitment_bytes,
input_len.is_none() && output_len.is_none(),
)?;
let mut f = File::create(sol_code_path.clone())?;
let _ = f.write(output.as_bytes());
// fetch abi of the contract
let (abi, _, _) = get_contract_artifacts(sol_code_path, "DataAttestation", 0).await?;
// save abi to file
serde_json::to_writer(std::fs::File::create(abi_path)?, &abi)?;
Ok(String::new())
}
pub(crate) async fn deploy_da_evm(
data: PathBuf,
data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
rpc_url: Option<String>,
@@ -1788,8 +1831,8 @@ pub(crate) fn setup(
Ok(String::new())
}
pub(crate) async fn setup_test_evm_witness(
data_path: PathBuf,
pub(crate) async fn setup_test_evm_data(
data_path: String,
compiled_circuit_path: PathBuf,
test_data: PathBuf,
rpc_url: Option<String>,
@@ -1798,7 +1841,7 @@ pub(crate) async fn setup_test_evm_witness(
) -> Result<String, EZKLError> {
use crate::graph::TestOnChainData;
let mut data = GraphData::from_path(data_path)?;
let mut data = GraphData::from_str(&data_path)?;
let mut circuit = GraphCircuit::load(compiled_circuit_path)?;
// if both input and output are from files fail
@@ -1824,17 +1867,6 @@ pub(crate) async fn setup_test_evm_witness(
}
use crate::pfsys::ProofType;
pub(crate) async fn test_update_account_calls(
addr: H160Flag,
data: PathBuf,
rpc_url: Option<String>,
) -> Result<String, EZKLError> {
use crate::eth::update_account_calls;
update_account_calls(addr.into(), data, rpc_url.as_deref()).await?;
Ok(String::new())
}
#[allow(clippy::too_many_arguments)]
pub(crate) fn prove(
@@ -2048,6 +2080,7 @@ pub(crate) fn mock_aggregate(
Ok(String::new())
}
#[allow(clippy::too_many_arguments)]
pub(crate) fn setup_aggregate(
sample_snarks: Vec<PathBuf>,
vk_path: PathBuf,

View File

@@ -5,10 +5,12 @@ use halo2curves::ff::PrimeField;
/// Integer representation of a PrimeField element.
pub type IntegerRep = i128;
/// Converts an i64 to a PrimeField element.
/// Converts an integer rep to a PrimeField element.
pub fn integer_rep_to_felt<F: PrimeField>(x: IntegerRep) -> F {
if x >= 0 {
F::from_u128(x as u128)
} else if x == IntegerRep::MIN {
-F::from_u128(x.saturating_neg() as u128) - F::ONE
} else {
-F::from_u128(x.saturating_neg() as u128)
}
@@ -32,6 +34,9 @@ pub fn felt_to_f64<F: PrimeField + PartialOrd + Field>(x: F) -> f64 {
/// Converts a PrimeField element to an i64.
pub fn felt_to_integer_rep<F: PrimeField + PartialOrd + Field>(x: F) -> IntegerRep {
if x > F::from_u128(IntegerRep::MAX as u128) {
if x == -F::from_u128(IntegerRep::MAX as u128) - F::ONE {
return IntegerRep::MIN;
}
let rep = (-x).to_repr();
let negtmp: &[u8] = rep.as_ref();
let lower_128: u128 = u128::from_le_bytes(negtmp[..16].try_into().unwrap());
@@ -51,7 +56,7 @@ mod test {
use halo2curves::pasta::Fp as F;
#[test]
fn test_conv() {
fn integerreptofelt() {
let res: F = integer_rep_to_felt(-15);
assert_eq!(res, -F::from(15));
@@ -69,8 +74,24 @@ mod test {
fn felttointegerrep() {
for x in -(2_i128.pow(16))..(2_i128.pow(16)) {
let fieldx: F = integer_rep_to_felt::<F>(x);
let xf: i128 = felt_to_integer_rep::<F>(fieldx);
let xf: IntegerRep = felt_to_integer_rep::<F>(fieldx);
assert_eq!(x, xf);
}
}
#[test]
fn felttointegerrepmin() {
let x = IntegerRep::MIN;
let fieldx: F = integer_rep_to_felt::<F>(x);
let xf: IntegerRep = felt_to_integer_rep::<F>(fieldx);
assert_eq!(x, xf);
}
#[test]
fn felttointegerrepmax() {
let x = IntegerRep::MAX;
let fieldx: F = integer_rep_to_felt::<F>(x);
let xf: IntegerRep = felt_to_integer_rep::<F>(fieldx);
assert_eq!(x, xf);
}
}

View File

@@ -11,6 +11,12 @@ pub enum GraphError {
/// Shape mismatch in circuit construction
#[error("invalid dimensions used for node {0} ({1})")]
InvalidDims(usize, String),
/// Non scalar power
#[error("we only support scalar powers")]
NonScalarPower,
/// Non scalar base for exponentiation
#[error("we only support scalar bases for exponentiation")]
NonScalarBase,
/// Wrong method was called to configure an op
#[error("wrong method was called to configure node {0} ({1})")]
WrongMethod(usize, String),
@@ -27,7 +33,7 @@ pub enum GraphError {
#[error("a node is missing required params: {0}")]
MissingParams(String),
/// A node has missing parameters
#[error("a node is has misformed params: {0}")]
#[error("a node has misformed params: {0}")]
MisformedParams(String),
/// Error in the configuration of the visibility of variables
#[error("there should be at least one set of public variables")]
@@ -113,13 +119,13 @@ pub enum GraphError {
/// Missing input for a node
#[error("missing input for node {0}")]
MissingInput(usize),
///
/// Ranges can only be constant
#[error("range only supports constant inputs in a zk circuit")]
NonConstantRange,
///
/// Trilu diagonal must be constant
#[error("trilu only supports constant diagonals in a zk circuit")]
NonConstantTrilu,
///
/// The witness was too short
#[error("insufficient witness values to generate a fixed output")]
InsufficientWitnessValues,
/// Missing scale
@@ -143,4 +149,13 @@ pub enum GraphError {
/// Invalid RunArg
#[error("invalid RunArgs: {0}")]
InvalidRunArgs(String),
/// Only nearest neighbor interpolation is supported
#[error("only nearest neighbor interpolation is supported")]
InvalidInterpolation,
/// Node has a missing output
#[error("node {0} has a missing output")]
MissingOutput(usize),
/// Inssuficient advice columns
#[error("insuficcient advice columns (need {0} at least)")]
InsufficientAdviceColumns(usize),
}

File diff suppressed because it is too large Load Diff

View File

@@ -60,7 +60,10 @@ use pyo3::prelude::*;
#[cfg(feature = "python-bindings")]
use pyo3::types::PyDict;
#[cfg(feature = "python-bindings")]
use pyo3::types::PyDictMethods;
#[cfg(feature = "python-bindings")]
use pyo3::ToPyObject;
use serde::{Deserialize, Serialize};
use std::ops::Deref;
pub use utilities::*;
@@ -277,7 +280,13 @@ impl GraphWitness {
})?;
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, file);
serde_json::from_reader(reader).map_err(|e| e.into())
let witness: GraphWitness =
serde_json::from_reader(reader).map_err(Into::<GraphError>::into)?;
// check versions match
crate::check_version_string_matches(witness.version.as_deref().unwrap_or(""));
Ok(witness)
}
/// Save the model input to a file
@@ -343,10 +352,10 @@ impl ToPyObject for GraphWitness {
if let Some(processed_inputs) = &self.processed_inputs {
//poseidon_hash
if let Some(processed_inputs_poseidon_hash) = &processed_inputs.poseidon_hash {
insert_poseidon_hash_pydict(dict_inputs, processed_inputs_poseidon_hash).unwrap();
insert_poseidon_hash_pydict(&dict_inputs, processed_inputs_poseidon_hash).unwrap();
}
if let Some(processed_inputs_polycommit) = &processed_inputs.polycommit {
insert_polycommit_pydict(dict_inputs, processed_inputs_polycommit).unwrap();
insert_polycommit_pydict(&dict_inputs, processed_inputs_polycommit).unwrap();
}
dict.set_item("processed_inputs", dict_inputs).unwrap();
@@ -354,10 +363,10 @@ impl ToPyObject for GraphWitness {
if let Some(processed_params) = &self.processed_params {
if let Some(processed_params_poseidon_hash) = &processed_params.poseidon_hash {
insert_poseidon_hash_pydict(dict_params, processed_params_poseidon_hash).unwrap();
insert_poseidon_hash_pydict(&dict_params, processed_params_poseidon_hash).unwrap();
}
if let Some(processed_params_polycommit) = &processed_params.polycommit {
insert_polycommit_pydict(dict_inputs, processed_params_polycommit).unwrap();
insert_polycommit_pydict(&dict_params, processed_params_polycommit).unwrap();
}
dict.set_item("processed_params", dict_params).unwrap();
@@ -365,10 +374,11 @@ impl ToPyObject for GraphWitness {
if let Some(processed_outputs) = &self.processed_outputs {
if let Some(processed_outputs_poseidon_hash) = &processed_outputs.poseidon_hash {
insert_poseidon_hash_pydict(dict_outputs, processed_outputs_poseidon_hash).unwrap();
insert_poseidon_hash_pydict(&dict_outputs, processed_outputs_poseidon_hash)
.unwrap();
}
if let Some(processed_outputs_polycommit) = &processed_outputs.polycommit {
insert_polycommit_pydict(dict_inputs, processed_outputs_polycommit).unwrap();
insert_polycommit_pydict(&dict_outputs, processed_outputs_polycommit).unwrap();
}
dict.set_item("processed_outputs", dict_outputs).unwrap();
@@ -379,7 +389,10 @@ impl ToPyObject for GraphWitness {
}
#[cfg(feature = "python-bindings")]
fn insert_poseidon_hash_pydict(pydict: &PyDict, poseidon_hash: &Vec<Fp>) -> Result<(), PyErr> {
fn insert_poseidon_hash_pydict(
pydict: &Bound<'_, PyDict>,
poseidon_hash: &Vec<Fp>,
) -> Result<(), PyErr> {
let poseidon_hash: Vec<String> = poseidon_hash.iter().map(field_to_string).collect();
pydict.set_item("poseidon_hash", poseidon_hash)?;
@@ -387,7 +400,10 @@ fn insert_poseidon_hash_pydict(pydict: &PyDict, poseidon_hash: &Vec<Fp>) -> Resu
}
#[cfg(feature = "python-bindings")]
fn insert_polycommit_pydict(pydict: &PyDict, commits: &Vec<Vec<G1Affine>>) -> Result<(), PyErr> {
fn insert_polycommit_pydict(
pydict: &Bound<'_, PyDict>,
commits: &Vec<Vec<G1Affine>>,
) -> Result<(), PyErr> {
use crate::bindings::python::PyG1Affine;
let poseidon_hash: Vec<Vec<PyG1Affine>> = commits
.iter()
@@ -439,6 +455,10 @@ pub struct GraphSettings {
pub num_blinding_factors: Option<usize>,
/// unix time timestamp
pub timestamp: Option<u128>,
/// Model inputs types (if any)
pub input_types: Option<Vec<InputType>>,
/// Model outputs types (if any)
pub output_types: Option<Vec<InputType>>,
}
impl GraphSettings {
@@ -562,10 +582,14 @@ impl GraphSettings {
// buf reader
let reader =
std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, std::fs::File::open(path)?);
serde_json::from_reader(reader).map_err(|e| {
let settings: GraphSettings = serde_json::from_reader(reader).map_err(|e| {
error!("failed to load settings file at {}", e);
std::io::Error::new(std::io::ErrorKind::Other, e)
})
})?;
crate::check_version_string_matches(&settings.version);
Ok(settings)
}
/// Export the ezkl configuration as json
@@ -599,11 +623,6 @@ impl GraphSettings {
}
}
///
pub fn uses_modules(&self) -> bool {
!self.module_sizes.max_constraints() > 0
}
/// if any visibility is encrypted or hashed
pub fn module_requires_fixed(&self) -> bool {
self.run_args.input_visibility.is_hashed()
@@ -687,6 +706,9 @@ impl GraphCircuit {
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, f);
let result: GraphCircuit = bincode::deserialize_from(reader)?;
// check the versions matche
crate::check_version_string_matches(&result.core.settings.version);
Ok(result)
}
}
@@ -743,7 +765,7 @@ pub struct TestOnChainData {
pub data: std::path::PathBuf,
/// rpc endpoint
pub rpc: Option<String>,
///
/// data sources for the on chain data
pub data_sources: TestSources,
}
@@ -931,7 +953,7 @@ impl GraphCircuit {
DataSource::File(file_data) => {
self.load_file_data(file_data, &shapes, scales, input_types)
}
_ => unreachable!("cannot load from on-chain data"),
_ => Err(GraphError::OnChainDataSource),
}
}
@@ -1004,24 +1026,11 @@ impl GraphCircuit {
shapes: &Vec<Vec<usize>>,
scales: Vec<crate::Scale>,
) -> Result<Vec<Tensor<Fp>>, GraphError> {
use crate::eth::{
evm_quantize_multi, evm_quantize_single, read_on_chain_inputs_multi,
read_on_chain_inputs_single, setup_eth_backend,
};
use crate::eth::{evm_quantize, read_on_chain_inputs, setup_eth_backend};
let (client, client_address) = setup_eth_backend(Some(&source.rpc), None).await?;
let quantized_evm_inputs = match source.calls {
input::Calls::Single(call) => {
let (inputs, decimals) =
read_on_chain_inputs_single(client.clone(), client_address, call).await?;
evm_quantize_single(client, scales, &inputs, decimals).await?
}
input::Calls::Multiple(calls) => {
let inputs =
read_on_chain_inputs_multi(client.clone(), client_address, &calls).await?;
evm_quantize_multi(client, scales, &inputs).await?
}
};
let input = read_on_chain_inputs(client.clone(), client_address, &source.call).await?;
let quantized_evm_inputs =
evm_quantize(client, scales, &input, &source.call.decimals).await?;
// on-chain data has already been quantized at this point. Just need to reshape it and push into tensor vector
let mut inputs: Vec<Tensor<Fp>> = vec![];
for (input, shape) in [quantized_evm_inputs].iter().zip(shapes) {
@@ -1422,6 +1431,8 @@ impl GraphCircuit {
let output_scales = self.model().graph.get_output_scales()?;
let input_shapes = self.model().graph.input_shapes()?;
let output_shapes = self.model().graph.output_shapes()?;
let mut input_data = None;
let mut output_data = None;
if matches!(
test_on_chain_data.data_sources.input,
@@ -1432,23 +1443,12 @@ impl GraphCircuit {
return Err(GraphError::OnChainDataSource);
}
let input_data = match &data.input_data {
DataSource::File(input_data) => input_data,
input_data = match &data.input_data {
DataSource::File(input_data) => Some(input_data),
_ => {
return Err(GraphError::OnChainDataSource);
return Err(GraphError::MissingDataSource);
}
};
// Get the flatten length of input_data
// if the input source is a field then set scale to 0
let datam: (Vec<Tensor<Fp>>, OnChainSource) = OnChainSource::test_from_file_data(
input_data,
input_scales,
input_shapes,
test_on_chain_data.rpc.as_deref(),
)
.await?;
data.input_data = datam.1.into();
}
if matches!(
test_on_chain_data.data_sources.output,
@@ -1459,20 +1459,43 @@ impl GraphCircuit {
return Err(GraphError::OnChainDataSource);
}
let output_data = match &data.output_data {
Some(DataSource::File(output_data)) => output_data,
Some(DataSource::OnChain(_)) => return Err(GraphError::OnChainDataSource),
output_data = match &data.output_data {
Some(DataSource::File(output_data)) => Some(output_data),
_ => return Err(GraphError::MissingDataSource),
};
let datum: (Vec<Tensor<Fp>>, OnChainSource) = OnChainSource::test_from_file_data(
output_data,
output_scales,
output_shapes,
test_on_chain_data.rpc.as_deref(),
)
.await?;
data.output_data = Some(datum.1.into());
}
// Merge the input and output data
let mut file_data: Vec<Vec<input::FileSourceInner>> = vec![];
let mut scales: Vec<crate::Scale> = vec![];
let mut shapes: Vec<Vec<usize>> = vec![];
if let Some(input_data) = input_data {
file_data.extend(input_data.clone());
scales.extend(input_scales.clone());
shapes.extend(input_shapes.clone());
}
if let Some(output_data) = output_data {
file_data.extend(output_data.clone());
scales.extend(output_scales.clone());
shapes.extend(output_shapes.clone());
};
// print file data
debug!("file data: {:?}", file_data);
let on_chain_data: OnChainSource = OnChainSource::test_from_file_data(
&file_data,
scales,
shapes,
test_on_chain_data.rpc.as_deref(),
)
.await?;
// Here we update the GraphData struct with the on-chain data
if input_data.is_some() {
data.input_data = on_chain_data.clone().into();
}
if output_data.is_some() {
data.output_data = Some(on_chain_data.into());
}
debug!("test on-chain data: {:?}", data);
// Save the updated GraphData struct to the data_path
data.save(test_on_chain_data.data)?;
Ok(())

View File

@@ -1,7 +1,6 @@
use super::errors::GraphError;
use super::extract_const_quantized_values;
use super::node::*;
use super::scale_to_multiplier;
use super::vars::*;
use super::GraphSettings;
use crate::circuit::hybrid::HybridOp;
@@ -379,13 +378,18 @@ pub struct ParsedNodes {
pub nodes: BTreeMap<usize, NodeType>,
inputs: Vec<usize>,
outputs: Vec<Outlet>,
output_types: Vec<InputType>,
}
impl ParsedNodes {
/// Returns the output types of the computational graph.
pub fn get_output_types(&self) -> Vec<InputType> {
self.output_types.clone()
}
/// Returns the number of the computational graph's inputs
pub fn num_inputs(&self) -> usize {
let input_nodes = self.inputs.iter();
input_nodes.len()
self.inputs.len()
}
/// Input types
@@ -425,8 +429,7 @@ impl ParsedNodes {
/// Returns the number of the computational graph's outputs
pub fn num_outputs(&self) -> usize {
let output_nodes = self.outputs.iter();
output_nodes.len()
self.outputs.len()
}
/// Returns shapes of the computational graph's outputs
@@ -493,6 +496,16 @@ impl Model {
Ok(om)
}
/// Gets the input types from the parsed nodes
pub fn get_input_types(&self) -> Result<Vec<InputType>, GraphError> {
self.graph.get_input_types()
}
/// Gets the output types from the parsed nodes
pub fn get_output_types(&self) -> Vec<InputType> {
self.graph.get_output_types()
}
///
pub fn save(&self, path: PathBuf) -> Result<(), GraphError> {
let f = std::fs::File::create(&path).map_err(|e| {
@@ -576,6 +589,11 @@ impl Model {
required_range_checks: res.range_checks.into_iter().collect(),
model_output_scales: self.graph.get_output_scales()?,
model_input_scales: self.graph.get_input_scales(),
input_types: match self.get_input_types() {
Ok(x) => Some(x),
Err(_) => None,
},
output_types: Some(self.get_output_types()),
num_dynamic_lookups: res.num_dynamic_lookups,
total_dynamic_col_size: res.dynamic_lookup_col_coord,
num_shuffles: res.num_shuffles,
@@ -621,19 +639,23 @@ impl Model {
/// * `scale` - The scale to use for quantization.
/// * `public_params` - Whether to make the params public.
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn load_onnx_using_tract(
pub(crate) fn load_onnx_using_tract(
reader: &mut dyn std::io::Read,
run_args: &RunArgs,
variables: &[(String, usize)],
) -> Result<TractResult, GraphError> {
use tract_onnx::tract_hir::internal::GenericFactoid;
let mut model = tract_onnx::onnx().model_for_read(reader)?;
let variables: std::collections::HashMap<String, usize> =
std::collections::HashMap::from_iter(run_args.variables.clone());
std::collections::HashMap::from_iter(variables.iter().map(|(k, v)| (k.clone(), *v)));
for (i, id) in model.clone().inputs.iter().enumerate() {
let input = model.node_mut(id.node);
if input.outputs.len() == 0 {
return Err(GraphError::MissingOutput(id.node));
}
let mut fact: InferenceFact = input.outputs[0].fact.clone();
for (i, x) in fact.clone().shape.dims().enumerate() {
@@ -655,8 +677,8 @@ impl Model {
}
let mut symbol_values = SymbolValues::default();
for (symbol, value) in run_args.variables.iter() {
let symbol = model.symbol_table.sym(symbol);
for (symbol, value) in variables.iter() {
let symbol = model.symbols.sym(symbol);
symbol_values = symbol_values.with(&symbol, *value as i64);
debug!("set {} to {}", symbol, value);
}
@@ -683,7 +705,7 @@ impl Model {
) -> Result<ParsedNodes, GraphError> {
let start_time = instant::Instant::now();
let (model, symbol_values) = Self::load_onnx_using_tract(reader, run_args)?;
let (model, symbol_values) = Self::load_onnx_using_tract(reader, &run_args.variables)?;
let scales = VarScales::from_args(run_args);
let nodes = Self::nodes_from_graph(
@@ -702,6 +724,11 @@ impl Model {
nodes,
inputs: model.inputs.iter().map(|o| o.node).collect(),
outputs: model.outputs.iter().map(|o| (o.node, o.slot)).collect(),
output_types: model
.outputs
.iter()
.map(|o| Ok::<InputType, GraphError>(model.outlet_fact(*o)?.datum_type.into()))
.collect::<Result<Vec<_>, GraphError>>()?,
};
let duration = start_time.elapsed();
@@ -860,6 +887,15 @@ impl Model {
nodes: subgraph_nodes,
inputs: model.inputs.iter().map(|o| o.node).collect(),
outputs: model.outputs.iter().map(|o| (o.node, o.slot)).collect(),
output_types: model
.outputs
.iter()
.map(|o| {
Ok::<InputType, GraphError>(
model.outlet_fact(*o)?.datum_type.into(),
)
})
.collect::<Result<Vec<_>, GraphError>>()?,
};
let om = Model {
@@ -906,6 +942,7 @@ impl Model {
n.opkind = SupportedOp::Input(Input {
scale,
datum_type: inp.datum_type,
decomp: !run_args.ignore_range_check_inputs_outputs,
});
input_idx += 1;
n.out_scale = scale;
@@ -964,7 +1001,7 @@ impl Model {
GraphError::ReadWriteFileError(model_path.display().to_string(), e.to_string())
})?;
let (model, _) = Model::load_onnx_using_tract(&mut file, run_args)?;
let (model, _) = Model::load_onnx_using_tract(&mut file, &run_args.variables)?;
let datum_types: Vec<DatumType> = model
.input_outlets()?
@@ -1016,6 +1053,10 @@ impl Model {
let required_lookups = settings.required_lookups.clone();
let required_range_checks = settings.required_range_checks.clone();
if vars.advices.len() < 3 {
return Err(GraphError::InsufficientAdviceColumns(3));
}
let mut base_gate = PolyConfig::configure(
meta,
vars.advices[0..2].try_into()?,
@@ -1035,6 +1076,10 @@ impl Model {
}
if settings.requires_dynamic_lookup() {
if vars.advices.len() < 6 {
return Err(GraphError::InsufficientAdviceColumns(6));
}
base_gate.configure_dynamic_lookup(
meta,
vars.advices[0..3].try_into()?,
@@ -1043,10 +1088,13 @@ impl Model {
}
if settings.requires_shuffle() {
if vars.advices.len() < 6 {
return Err(GraphError::InsufficientAdviceColumns(6));
}
base_gate.configure_shuffles(
meta,
vars.advices[0..2].try_into()?,
vars.advices[3..5].try_into()?,
vars.advices[0..3].try_into()?,
vars.advices[3..6].try_into()?,
)?;
}
@@ -1061,6 +1109,7 @@ impl Model {
/// * `vars` - The variables for the circuit.
/// * `witnessed_outputs` - The values to compare against.
/// * `constants` - The constants for the circuit.
#[allow(clippy::too_many_arguments)]
pub fn layout(
&self,
mut config: ModelConfig,
@@ -1123,17 +1172,10 @@ impl Model {
})?;
if run_args.output_visibility.is_public() || run_args.output_visibility.is_fixed() {
let output_scales = self.graph.get_output_scales().map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?;
let res = outputs
.iter()
.enumerate()
.map(|(i, output)| {
let mut tolerance = run_args.tolerance;
tolerance.scale = scale_to_multiplier(output_scales[i]).into();
let comparators = if run_args.output_visibility == Visibility::Public {
let res = vars
.instance
@@ -1155,7 +1197,9 @@ impl Model {
.layout(
&mut thread_safe_region,
&[output.clone(), comparators],
Box::new(HybridOp::RangeCheck(tolerance)),
Box::new(HybridOp::Output {
decomp: !run_args.ignore_range_check_inputs_outputs,
}),
)
.map_err(|e| e.into())
})
@@ -1199,9 +1243,9 @@ impl Model {
// Then number of columns in the circuits
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
region.debug_report();
debug!("input indices: {:?}", node.inputs());
debug!("output scales: {:?}", node.out_scales());
debug!(
trace!("input indices: {:?}", node.inputs());
trace!("output scales: {:?}", node.out_scales());
trace!(
"input scales: {:?}",
node.inputs()
.iter()
@@ -1220,12 +1264,13 @@ impl Model {
// we re-assign inputs, always from the 0 outlet
vec![results.get(idx).ok_or(GraphError::MissingResults)?[0].clone()]
};
debug!("output dims: {:?}", node.out_dims());
debug!(
trace!("output dims: {:?}", node.out_dims());
trace!(
"input dims {:?}",
values.iter().map(|v| v.dims()).collect_vec()
);
let start = instant::Instant::now();
match &node {
NodeType::Node(n) => {
let res = if node.is_constant() && node.num_uses() == 1 {
@@ -1363,6 +1408,7 @@ impl Model {
results.insert(*idx, full_results);
}
}
debug!("------------ layout of {} took {:?}", idx, start.elapsed());
}
// we do this so we can support multiple passes of the same model and have deterministic results (Non-assigned inputs etc... etc...)
@@ -1413,11 +1459,9 @@ impl Model {
let outputs = self.layout_nodes(&mut model_config, &mut region, &mut results)?;
if self.visibility.output.is_public() || self.visibility.output.is_fixed() {
let output_scales = self.graph.get_output_scales()?;
let res = outputs
.iter()
.enumerate()
.map(|(i, output)| {
.map(|output| {
let mut comparator: ValTensor<Fp> = (0..output.len())
.map(|_| {
if !self.visibility.output.is_fixed() {
@@ -1430,13 +1474,12 @@ impl Model {
.into();
comparator.reshape(output.dims())?;
let mut tolerance = run_args.tolerance;
tolerance.scale = scale_to_multiplier(output_scales[i]).into();
dummy_config.layout(
&mut region,
&[output.clone(), comparator],
Box::new(HybridOp::RangeCheck(tolerance)),
Box::new(HybridOp::Output {
decomp: !run_args.ignore_range_check_inputs_outputs,
}),
)
})
.collect::<Result<Vec<_>, _>>();
@@ -1458,7 +1501,7 @@ impl Model {
.iter()
.map(|x| {
x.get_felt_evals()
.unwrap_or(Tensor::new(Some(&[Fp::ZERO]), &[1]).unwrap())
.unwrap_or_else(|_| Tensor::new(Some(&[Fp::ZERO]), &[1]).unwrap())
})
.collect();
@@ -1528,6 +1571,7 @@ impl Model {
let mut op = crate::circuit::Constant::new(
c.quantized_values.clone(),
c.raw_values.clone(),
c.decomp,
);
op.pre_assign(consts[const_idx].clone());
n.opkind = SupportedOp::Constant(op);
@@ -1555,4 +1599,16 @@ impl Model {
}
Ok(instance_shapes)
}
/// Input types of the computational graph's public inputs (if any)
pub fn instance_types(&self) -> Result<Vec<InputType>, GraphError> {
let mut instance_types = vec![];
if self.visibility.input.is_public() {
instance_types.extend(self.graph.get_input_types()?);
}
if self.visibility.output.is_public() {
instance_types.extend(self.graph.get_output_types());
}
Ok(instance_types)
}
}

View File

@@ -14,14 +14,11 @@ use serde::{Deserialize, Serialize};
use super::errors::GraphError;
use super::{VarVisibility, Visibility};
/// poseidon len to hash in tree
pub const POSEIDON_LEN_GRAPH: usize = 32;
/// Poseidon number of instances
pub const POSEIDON_INSTANCES: usize = 1;
/// Poseidon module type
pub type ModulePoseidon =
PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, POSEIDON_LEN_GRAPH>;
pub type ModulePoseidon = PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>;
/// Poseidon module config
pub type ModulePoseidonConfig = PoseidonConfig<POSEIDON_WIDTH, POSEIDON_RATE>;
@@ -284,7 +281,6 @@ impl GraphModules {
log::error!("Poseidon config not initialized");
return Err(Error::Synthesis);
}
// If the module is encrypted, then we need to encrypt the inputs
}
Ok(())

View File

@@ -1,10 +1,19 @@
// Import dependencies for scaling operations
use super::scale_to_multiplier;
// Import ONNX-specific utilities when EZKL feature is enabled
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use super::utilities::node_output_shapes;
// Import scale management types for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use super::VarScales;
// Import visibility settings for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use super::Visibility;
// Import operation types for different circuit components
use crate::circuit::hybrid::HybridOp;
use crate::circuit::lookup::LookupOp;
use crate::circuit::poly::PolyOp;
@@ -13,28 +22,49 @@ use crate::circuit::Constant;
use crate::circuit::Input;
use crate::circuit::Op;
use crate::circuit::Unknown;
// Import graph error types for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use crate::graph::errors::GraphError;
// Import ONNX operation conversion utilities
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use crate::graph::new_op_from_onnx;
// Import tensor error handling
use crate::tensor::TensorError;
// Import curve-specific field type
use halo2curves::bn256::Fr as Fp;
// Import logging for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use log::trace;
// Import serialization traits
use serde::Deserialize;
use serde::Serialize;
// Import data structures for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use std::collections::BTreeMap;
// Import formatting traits for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use std::fmt;
// Import table display formatting for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tabled::Tabled;
// Import ONNX-specific types and traits for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tract_onnx::{
self,
prelude::{Node as OnnxNode, SymbolValues, TypedFact, TypedOp},
};
/// Helper function to format vectors for display
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn display_vector<T: fmt::Debug>(v: &Vec<T>) -> String {
if !v.is_empty() {
@@ -44,29 +74,35 @@ fn display_vector<T: fmt::Debug>(v: &Vec<T>) -> String {
}
}
/// Helper function to format operation kinds for display
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn display_opkind(v: &SupportedOp) -> String {
v.as_string()
}
/// A wrapper for an operation that has been rescaled.
/// A wrapper for an operation that has been rescaled to handle different precision requirements.
/// This enables operations to work with inputs that have been scaled to different fixed-point representations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Rescaled {
/// The operation that has to be rescaled.
/// The underlying operation that needs to be rescaled
pub inner: Box<SupportedOp>,
/// The scale of the operation's inputs.
/// Vector of (index, scale) pairs defining how each input should be scaled
pub scale: Vec<(usize, u128)>,
}
/// Implementation of the Op trait for Rescaled operations
impl Op<Fp> for Rescaled {
/// Convert to Any type for runtime type checking
fn as_any(&self) -> &dyn std::any::Any {
self
}
/// Get string representation of the operation
fn as_string(&self) -> String {
format!("RESCALED INPUT ({})", self.inner.as_string())
}
/// Calculate output scale based on input scales
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
let in_scales = in_scales
.into_iter()
@@ -77,6 +113,7 @@ impl Op<Fp> for Rescaled {
Op::<Fp>::out_scale(&*self.inner, in_scales)
}
/// Layout the operation in the circuit
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<Fp>,
@@ -93,28 +130,40 @@ impl Op<Fp> for Rescaled {
self.inner.layout(config, region, res)
}
/// Create a cloned boxed copy of this operation
fn clone_dyn(&self) -> Box<dyn Op<Fp>> {
Box::new(self.clone()) // Forward to the derive(Clone) impl
Box::new(self.clone())
}
}
/// A wrapper for an operation that has been rescaled.
/// A wrapper for operations that require scale rebasing
/// This handles cases where operation scales need to be adjusted to a target scale
/// while preserving the numerical relationships
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct RebaseScale {
/// The operation that has to be rescaled.
/// The operation that needs to be rescaled
pub inner: Box<SupportedOp>,
/// rebase op
/// Operation used for rebasing, typically division
pub rebase_op: HybridOp,
/// scale being rebased to
/// Scale that we're rebasing to
pub target_scale: i32,
/// The original scale of the operation's inputs.
/// Original scale of operation's inputs before rebasing
pub original_scale: i32,
/// multiplier
/// Scaling multiplier used in rebasing
pub multiplier: f64,
}
impl RebaseScale {
/// Creates a rebased version of an operation if needed
///
/// # Arguments
/// * `inner` - Operation to potentially rebase
/// * `global_scale` - Base scale for the system
/// * `op_out_scale` - Current output scale of the operation
/// * `scale_rebase_multiplier` - Factor determining when rebasing should occur
///
/// # Returns
/// Original or rebased operation depending on scale relationships
pub fn rebase(
inner: SupportedOp,
global_scale: crate::Scale,
@@ -155,7 +204,15 @@ impl RebaseScale {
}
}
/// Creates a rebased operation with increased scale
///
/// # Arguments
/// * `inner` - Operation to potentially rebase
/// * `target_scale` - Scale to rebase to
/// * `op_out_scale` - Current output scale of the operation
///
/// # Returns
/// Original or rebased operation with increased scale
pub fn rebase_up(
inner: SupportedOp,
target_scale: crate::Scale,
@@ -192,10 +249,12 @@ impl RebaseScale {
}
impl Op<Fp> for RebaseScale {
/// Convert to Any type for runtime type checking
fn as_any(&self) -> &dyn std::any::Any {
self
}
/// Get string representation of the operation
fn as_string(&self) -> String {
format!(
"REBASED (div={:?}, rebasing_op={}) ({})",
@@ -205,10 +264,12 @@ impl Op<Fp> for RebaseScale {
)
}
/// Calculate output scale based on input scales
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
Ok(self.target_scale)
}
/// Layout the operation in the circuit
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<Fp>,
@@ -222,34 +283,40 @@ impl Op<Fp> for RebaseScale {
self.rebase_op.layout(config, region, &[original_res])
}
/// Create a cloned boxed copy of this operation
fn clone_dyn(&self) -> Box<dyn Op<Fp>> {
Box::new(self.clone()) // Forward to the derive(Clone) impl
Box::new(self.clone())
}
}
/// A single operation in a [crate::graph::Model].
/// Represents all supported operation types in the circuit
/// Each variant encapsulates a different type of operation with specific behavior
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum SupportedOp {
/// A linear operation.
/// Linear operations (polynomial-based)
Linear(PolyOp),
/// A nonlinear operation.
/// Nonlinear operations requiring lookup tables
Nonlinear(LookupOp),
/// A hybrid operation.
/// Mixed operations combining different approaches
Hybrid(HybridOp),
///
/// Input values to the circuit
Input(Input),
///
/// Constant values in the circuit
Constant(Constant<Fp>),
///
/// Placeholder for unsupported operations
Unknown(Unknown),
///
/// Operations requiring rescaling of inputs
Rescaled(Rescaled),
///
/// Operations requiring scale rebasing
RebaseScale(RebaseScale),
}
impl SupportedOp {
/// Checks if the operation is a lookup operation
///
/// # Returns
/// * `true` if operation requires lookup table
/// * `false` otherwise
pub fn is_lookup(&self) -> bool {
match self {
SupportedOp::Nonlinear(_) => true,
@@ -257,7 +324,12 @@ impl SupportedOp {
_ => false,
}
}
/// Returns input operation if this is an input
///
/// # Returns
/// * `Some(Input)` if this is an input operation
/// * `None` otherwise
pub fn get_input(&self) -> Option<Input> {
match self {
SupportedOp::Input(op) => Some(op.clone()),
@@ -265,7 +337,11 @@ impl SupportedOp {
}
}
/// Returns reference to rebased operation if this is a rebased operation
///
/// # Returns
/// * `Some(&RebaseScale)` if this is a rebased operation
/// * `None` otherwise
pub fn get_rebased(&self) -> Option<&RebaseScale> {
match self {
SupportedOp::RebaseScale(op) => Some(op),
@@ -273,7 +349,11 @@ impl SupportedOp {
}
}
/// Returns reference to lookup operation if this is a lookup operation
///
/// # Returns
/// * `Some(&LookupOp)` if this is a lookup operation
/// * `None` otherwise
pub fn get_lookup(&self) -> Option<&LookupOp> {
match self {
SupportedOp::Nonlinear(op) => Some(op),
@@ -281,7 +361,11 @@ impl SupportedOp {
}
}
/// Returns reference to constant if this is a constant
///
/// # Returns
/// * `Some(&Constant)` if this is a constant
/// * `None` otherwise
pub fn get_constant(&self) -> Option<&Constant<Fp>> {
match self {
SupportedOp::Constant(op) => Some(op),
@@ -289,7 +373,11 @@ impl SupportedOp {
}
}
/// Returns mutable reference to constant if this is a constant
///
/// # Returns
/// * `Some(&mut Constant)` if this is a constant
/// * `None` otherwise
pub fn get_mutable_constant(&mut self) -> Option<&mut Constant<Fp>> {
match self {
SupportedOp::Constant(op) => Some(op),
@@ -297,18 +385,19 @@ impl SupportedOp {
}
}
/// Creates a homogeneously rescaled version of this operation if needed
/// Only available with EZKL feature enabled
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn homogenous_rescale(
&self,
in_scales: Vec<crate::Scale>,
) -> Result<Box<dyn Op<Fp>>, GraphError> {
let inputs_to_scale = self.requires_homogenous_input_scales();
// creates a rescaled op if the inputs are not homogenous
let op = self.clone_dyn();
super::homogenize_input_scales(op, in_scales, inputs_to_scale)
}
/// Since each associated value of `SupportedOp` implements `Op`, let's define a helper method to retrieve it.
/// Returns reference to underlying Op implementation
fn as_op(&self) -> &dyn Op<Fp> {
match self {
SupportedOp::Linear(op) => op,
@@ -322,9 +411,10 @@ impl SupportedOp {
}
}
/// check if is the identity operation
/// Checks if this is an identity operation
///
/// # Returns
/// * `true` if the operation is the identity operation
/// * `true` if this operation passes input through unchanged
/// * `false` otherwise
pub fn is_identity(&self) -> bool {
match self {
@@ -361,9 +451,11 @@ impl From<Box<dyn Op<Fp>>> for SupportedOp {
if let Some(op) = value.as_any().downcast_ref::<Unknown>() {
return SupportedOp::Unknown(op.clone());
};
if let Some(op) = value.as_any().downcast_ref::<Rescaled>() {
return SupportedOp::Rescaled(op.clone());
};
if let Some(op) = value.as_any().downcast_ref::<RebaseScale>() {
return SupportedOp::RebaseScale(op.clone());
};
@@ -375,6 +467,7 @@ impl From<Box<dyn Op<Fp>>> for SupportedOp {
}
impl Op<Fp> for SupportedOp {
/// Layout this operation in the circuit
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<Fp>,
@@ -384,54 +477,61 @@ impl Op<Fp> for SupportedOp {
self.as_op().layout(config, region, values)
}
/// Check if this is an input operation
fn is_input(&self) -> bool {
self.as_op().is_input()
}
/// Check if this is a constant operation
fn is_constant(&self) -> bool {
self.as_op().is_constant()
}
/// Get which inputs require homogeneous scales
fn requires_homogenous_input_scales(&self) -> Vec<usize> {
self.as_op().requires_homogenous_input_scales()
}
/// Create a clone of this operation
fn clone_dyn(&self) -> Box<dyn Op<Fp>> {
self.as_op().clone_dyn()
}
/// Get string representation
fn as_string(&self) -> String {
self.as_op().as_string()
}
/// Convert to Any type
fn as_any(&self) -> &dyn std::any::Any {
self
}
/// Calculate output scale from input scales
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
self.as_op().out_scale(in_scales)
}
}
/// A node's input is a tensor from another node's output.
/// Represents a connection to another node's output
/// First element is node index, second is output slot index
pub type Outlet = (usize, usize);
/// A single operation in a [crate::graph::Model].
/// Represents a single computational node in the circuit graph
/// Contains all information needed to execute and connect operations
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Node {
/// [Op] i.e what operation this node represents.
/// The operation this node performs
pub opkind: SupportedOp,
/// The denominator in the fixed point representation for the node's output. Tensors of differing scales should not be combined.
/// Fixed point scale factor for this node's output
pub out_scale: i32,
// Usually there is a simple in and out shape of the node as an operator. For example, an Affine node has three input_shapes (one for the input, weight, and bias),
// but in_dim is [in], out_dim is [out]
/// The indices of the node's inputs.
/// Connections to other nodes' outputs that serve as inputs
pub inputs: Vec<Outlet>,
/// Dimensions of output.
/// Shape of this node's output tensor
pub out_dims: Vec<usize>,
/// The node's unique identifier.
/// Unique identifier for this node
pub idx: usize,
/// The node's num of uses
/// Number of times this node's output is used
pub num_uses: usize,
}
@@ -469,12 +569,19 @@ impl PartialEq for Node {
}
impl Node {
/// Converts a tract [OnnxNode] into an ezkl [Node].
/// # Arguments:
/// * `node` - [OnnxNode]
/// * `other_nodes` - [BTreeMap] of other previously initialized [Node]s in the computational graph.
/// * `public_params` - flag if parameters of model are public
/// * `idx` - The node's unique identifier.
/// Creates a new Node from an ONNX node
/// Only available when EZKL feature is enabled
///
/// # Arguments
/// * `node` - Source ONNX node
/// * `other_nodes` - Map of existing nodes in the graph
/// * `scales` - Scale factors for variables
/// * `idx` - Unique identifier for this node
/// * `symbol_values` - ONNX symbol values
/// * `run_args` - Runtime configuration arguments
///
/// # Returns
/// New Node instance or error if creation fails
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
#[allow(clippy::too_many_arguments)]
pub fn new(
@@ -612,16 +719,14 @@ impl Node {
})
}
/// check if it is a softmax node
/// Check if this node performs softmax operation
pub fn is_softmax(&self) -> bool {
if let SupportedOp::Hybrid(HybridOp::Softmax { .. }) = self.opkind {
true
} else {
false
}
matches!(self.opkind, SupportedOp::Hybrid(HybridOp::Softmax { .. }))
}
}
/// Helper function to rescale constants that are only used once
/// Only available when EZKL feature is enabled
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn rescale_const_with_single_use(
constant: &mut Constant<Fp>,

View File

@@ -1,14 +1,14 @@
use super::errors::GraphError;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use super::VarScales;
use super::errors::GraphError;
use super::{Rescaled, SupportedOp, Visibility};
use crate::circuit::Op;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use crate::circuit::hybrid::HybridOp;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use crate::circuit::lookup::LookupOp;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use crate::circuit::poly::PolyOp;
use crate::circuit::Op;
use crate::fieldutils::IntegerRep;
use crate::tensor::{Tensor, TensorError, TensorType};
use halo2curves::bn256::Fr as Fp;
@@ -22,6 +22,7 @@ use std::sync::Arc;
use tract_onnx::prelude::{DatumType, Node as OnnxNode, TypedFact, TypedOp};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tract_onnx::tract_core::ops::{
Downsample,
array::{
Gather, GatherElements, GatherNd, MultiBroadcastTo, OneHot, ScatterElements, ScatterNd,
Slice, Topk,
@@ -31,7 +32,6 @@ use tract_onnx::tract_core::ops::{
einsum::EinSum,
element_wise::ElementWiseOp,
nn::{LeakyRelu, Reduce, Softmax},
Downsample,
};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tract_onnx::tract_hir::{
@@ -39,16 +39,15 @@ use tract_onnx::tract_hir::{
ops::array::{Pad, PadMode, TypedConcat},
ops::cnn::PoolSpec,
ops::konst::Const,
ops::nn::DataFormat,
tract_core::ops::cast::Cast,
tract_core::ops::cnn::{conv::KernelFormat, MaxPool, SumPool},
tract_core::ops::cnn::{MaxPool, SumPool},
};
/// Quantizes an iterable of f32s to a [Tensor] of i32s using a fixed point representation.
/// Quantizes an iterable of f64 to a [Tensor] of IntegerRep using a fixed point representation.
/// NAN gets mapped to 0. INFINITY and NEG_INFINITY error out.
/// Arguments
///
/// * `vec` - the vector to quantize.
/// * `dims` - the dimensionality of the resulting [Tensor].
/// * `elem` - the element to quantize.
/// * `shift` - offset used in the fixed point representation.
/// * `scale` - `2^scale` used in the fixed point representation.
pub fn quantize_float(
@@ -59,7 +58,7 @@ pub fn quantize_float(
let mult = scale_to_multiplier(scale);
let max_value = ((IntegerRep::MAX as f64 - shift) / mult).round(); // the maximum value that can be represented w/o sig bit truncation
if *elem > max_value {
if *elem > max_value || *elem < -max_value {
return Err(TensorError::SigBitTruncationError);
}
@@ -85,7 +84,7 @@ pub fn scale_to_multiplier(scale: crate::Scale) -> f64 {
f64::powf(2., scale as f64)
}
/// Converts a scale (log base 2) to a fixed point multiplier.
/// Converts a fixed point multiplier to a scale (log base 2).
pub fn multiplier_to_scale(mult: f64) -> crate::Scale {
mult.log2().round() as crate::Scale
}
@@ -142,8 +141,6 @@ use tract_onnx::prelude::SymbolValues;
pub fn extract_tensor_value(
input: Arc<tract_onnx::prelude::Tensor>,
) -> Result<Tensor<f32>, GraphError> {
use maybe_rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
let dt = input.datum_type();
let dims = input.shape().to_vec();
@@ -156,7 +153,7 @@ pub fn extract_tensor_value(
match dt {
DatumType::F16 => {
let vec = input.as_slice::<tract_onnx::prelude::f16>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| (*x).into()).collect();
let cast: Vec<f32> = vec.iter().map(|x| (*x).into()).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::F32 => {
@@ -165,61 +162,61 @@ pub fn extract_tensor_value(
}
DatumType::F64 => {
let vec = input.as_slice::<f64>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::I64 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<i64>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::I32 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<i32>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::I16 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<i16>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::I8 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<i8>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::U8 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<u8>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::U16 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<u16>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::U32 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<u32>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::U64 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<u64>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::Bool => {
// Generally a shape or hyperparam
let vec = input.as_slice::<bool>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as usize as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as usize as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::TDim => {
@@ -227,13 +224,10 @@ pub fn extract_tensor_value(
let vec = input.as_slice::<tract_onnx::prelude::TDim>()?.to_vec();
let cast: Result<Vec<f32>, GraphError> = vec
.par_iter()
.iter()
.map(|x| match x.to_i64() {
Ok(v) => Ok(v as f32),
Err(_) => match x.to_i64() {
Ok(v) => Ok(v as f32),
Err(_) => Err(GraphError::UnsupportedDataType(0, "TDim".to_string())),
},
Err(_) => Err(GraphError::UnsupportedDataType(0, "TDim".to_string())),
})
.collect();
@@ -279,9 +273,9 @@ pub fn new_op_from_onnx(
symbol_values: &SymbolValues,
run_args: &crate::RunArgs,
) -> Result<(SupportedOp, Vec<usize>), GraphError> {
use tract_onnx::tract_core::ops::array::Trilu;
use crate::circuit::InputType;
use std::f64::consts::E;
use tract_onnx::tract_core::ops::array::Trilu;
let input_scales = inputs
.iter()
@@ -312,6 +306,9 @@ pub fn new_op_from_onnx(
let mut deleted_indices = vec![];
let node = match node.op().name().as_ref() {
"ShiftLeft" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "shift left".to_string()));
};
// load shift amount
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
@@ -324,10 +321,13 @@ pub fn new_op_from_onnx(
out_scale: Some(input_scales[0] - raw_values[0] as i32),
})
} else {
return Err(GraphError::OpMismatch(idx, "ShiftLeft".to_string()));
return Err(GraphError::OpMismatch(idx, "shift left".to_string()));
}
}
"ShiftRight" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "shift right".to_string()));
};
// load shift amount
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
@@ -340,7 +340,7 @@ pub fn new_op_from_onnx(
out_scale: Some(input_scales[0] + raw_values[0] as i32),
})
} else {
return Err(GraphError::OpMismatch(idx, "ShiftRight".to_string()));
return Err(GraphError::OpMismatch(idx, "shift right".to_string()));
}
}
"MultiBroadcastTo" => {
@@ -363,7 +363,10 @@ pub fn new_op_from_onnx(
}
}
assert_eq!(input_ops.len(), 3, "Range requires 3 inputs");
if input_ops.len() != 3 {
return Err(GraphError::InvalidDims(idx, "range".to_string()));
}
let input_ops = input_ops
.iter()
.map(|x| x.get_constant().ok_or(GraphError::NonConstantRange))
@@ -378,7 +381,11 @@ pub fn new_op_from_onnx(
// Quantize the raw value (integers)
let quantized_value = quantize_tensor(raw_value.clone(), 0, &Visibility::Fixed)?;
let c = crate::circuit::ops::Constant::new(quantized_value, raw_value);
let c = crate::circuit::ops::Constant::new(
quantized_value,
raw_value,
!run_args.ignore_range_check_inputs_outputs,
);
// Create a constant op
SupportedOp::Constant(c)
}
@@ -419,6 +426,10 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(inputs.len() - 1);
if inputs[0].out_dims().is_empty() || inputs[0].out_dims()[0].len() <= axis {
return Err(GraphError::InvalidDims(idx, "gather".to_string()));
}
op = SupportedOp::Hybrid(crate::circuit::ops::hybrid::HybridOp::Gather {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| {
@@ -436,6 +447,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: false,
}));
inputs[1].bump_scale(0);
}
@@ -447,8 +459,17 @@ pub fn new_op_from_onnx(
"Topk" => {
let op = load_op::<Topk>(node.op(), idx, node.op().name().to_string())?;
let axis = op.axis;
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "topk".to_string()));
};
// if param_visibility.is_public() {
let k = if let Some(c) = inputs[1].opkind().get_mutable_constant() {
if c.raw_values.len() != 1 {
return Err(GraphError::InvalidDims(idx, "topk".to_string()));
}
inputs[1].decrement_use();
deleted_indices.push(inputs.len() - 1);
c.raw_values.map(|x| x as usize)[0]
@@ -488,6 +509,10 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "scatter elements".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::ScatterElements {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| x as usize)),
@@ -499,6 +524,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: !run_args.ignore_range_check_inputs_outputs,
}));
inputs[1].bump_scale(0);
}
@@ -522,6 +548,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "scatter nd".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::ScatterND {
constant_idx: Some(c.raw_values.map(|x| x as usize)),
})
@@ -532,6 +561,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: !run_args.ignore_range_check_inputs_outputs,
}));
inputs[1].bump_scale(0);
}
@@ -555,6 +585,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "gather nd".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::GatherND {
batch_dims,
indices: Some(c.raw_values.map(|x| x as usize)),
@@ -566,6 +599,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: !run_args.ignore_range_check_inputs_outputs,
}));
inputs[1].bump_scale(0);
}
@@ -589,6 +623,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "gather elements".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::GatherElements {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| x as usize)),
@@ -600,6 +637,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: !run_args.ignore_range_check_inputs_outputs,
}));
inputs[1].bump_scale(0);
}
@@ -674,7 +712,11 @@ pub fn new_op_from_onnx(
constant_scale,
&run_args.param_visibility,
)?;
let c = crate::circuit::ops::Constant::new(quantized_value, raw_value);
let c = crate::circuit::ops::Constant::new(
quantized_value,
raw_value,
run_args.ignore_range_check_inputs_outputs,
);
// Create a constant op
SupportedOp::Constant(c)
}
@@ -684,7 +726,9 @@ pub fn new_op_from_onnx(
};
let op = load_op::<Reduce>(node.op(), idx, node.op().name().to_string())?;
let axes: Vec<usize> = op.axes.into_iter().collect();
assert_eq!(axes.len(), 1, "only support argmax over one axis");
if axes.len() != 1 {
return Err(GraphError::InvalidDims(idx, "argmax".to_string()));
}
SupportedOp::Hybrid(HybridOp::ReduceArgMax { dim: axes[0] })
}
@@ -694,7 +738,9 @@ pub fn new_op_from_onnx(
};
let op = load_op::<Reduce>(node.op(), idx, node.op().name().to_string())?;
let axes: Vec<usize> = op.axes.into_iter().collect();
assert_eq!(axes.len(), 1, "only support argmin over one axis");
if axes.len() != 1 {
return Err(GraphError::InvalidDims(idx, "argmin".to_string()));
}
SupportedOp::Hybrid(HybridOp::ReduceArgMin { dim: axes[0] })
}
@@ -803,6 +849,9 @@ pub fn new_op_from_onnx(
}
}
"Recip" => {
if inputs.len() != 1 {
return Err(GraphError::InvalidDims(idx, "recip".to_string()));
};
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
// If the input scale is larger than the params scale
@@ -846,6 +895,9 @@ pub fn new_op_from_onnx(
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Rsqrt" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "rsqrt".to_string()));
};
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
SupportedOp::Hybrid(HybridOp::Rsqrt {
@@ -855,6 +907,7 @@ pub fn new_op_from_onnx(
}
"Exp" => SupportedOp::Nonlinear(LookupOp::Exp {
scale: scale_to_multiplier(input_scales[0]).into(),
base: E.into(),
}),
"Ln" => {
if run_args.bounded_log_lookup {
@@ -926,13 +979,19 @@ pub fn new_op_from_onnx(
DatumType::F64 => (scales.input, InputType::F64),
_ => return Err(GraphError::UnsupportedDataType(idx, format!("{:?}", dt))),
};
SupportedOp::Input(crate::circuit::ops::Input { scale, datum_type })
SupportedOp::Input(crate::circuit::ops::Input {
scale,
datum_type,
decomp: !run_args.ignore_range_check_inputs_outputs,
})
}
"Cast" => {
let op = load_op::<Cast>(node.op(), idx, node.op().name().to_string())?;
let dt = op.to;
assert_eq!(input_scales.len(), 1);
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "cast".to_string()));
};
match dt {
DatumType::Bool
@@ -982,6 +1041,11 @@ pub fn new_op_from_onnx(
if const_idx.len() == 1 {
let const_idx = const_idx[0];
if inputs.len() <= const_idx {
return Err(GraphError::InvalidDims(idx, "mul".to_string()));
}
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
if c.raw_values.len() == 1 && c.raw_values[0] < 1. {
// if not divisible by 2 then we need to add a range check
@@ -1004,21 +1068,21 @@ pub fn new_op_from_onnx(
op
}
"Iff" => SupportedOp::Linear(PolyOp::Iff),
"Less" => {
"<" => {
if inputs.len() == 2 {
SupportedOp::Hybrid(HybridOp::Less)
} else {
return Err(GraphError::InvalidDims(idx, "less".to_string()));
}
}
"LessEqual" => {
"<=" => {
if inputs.len() == 2 {
SupportedOp::Hybrid(HybridOp::LessEqual)
} else {
return Err(GraphError::InvalidDims(idx, "less equal".to_string()));
}
}
"Greater" => {
">" => {
// Extract the slope layer hyperparams
if inputs.len() == 2 {
SupportedOp::Hybrid(HybridOp::Greater)
@@ -1026,7 +1090,7 @@ pub fn new_op_from_onnx(
return Err(GraphError::InvalidDims(idx, "greater".to_string()));
}
}
"GreaterEqual" => {
">=" => {
// Extract the slope layer hyperparams
if inputs.len() == 2 {
SupportedOp::Hybrid(HybridOp::GreaterEqual)
@@ -1056,6 +1120,9 @@ pub fn new_op_from_onnx(
return Err(GraphError::OpMismatch(idx, "softmax".to_string()));
}
};
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "softmax".to_string()));
}
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
@@ -1078,13 +1145,6 @@ pub fn new_op_from_onnx(
let pool_spec: &PoolSpec = &sumpool_node.pool_spec;
// only support pytorch type formatting for now
if pool_spec.data_format != DataFormat::NCHW {
return Err(GraphError::MissingParams(
"data in wrong format".to_string(),
));
}
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, &input_dims[0])?;
let kernel_shape = &pool_spec.kernel_shape;
@@ -1093,24 +1153,45 @@ pub fn new_op_from_onnx(
padding,
stride: stride.to_vec(),
pool_dims: kernel_shape.to_vec(),
data_format: pool_spec.data_format.into(),
})
}
"Ceil" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "ceil".to_string()));
}
SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Floor" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "floor".to_string()));
}
SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Round" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "round".to_string()));
}
SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"RoundHalfToEven" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "roundhalftoeven".to_string()));
}
SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Round" => SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"RoundHalfToEven" => SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Sign" => SupportedOp::Linear(PolyOp::Sign),
"Pow" => {
// Extract the slope layer hyperparams from a const
@@ -1120,7 +1201,9 @@ pub fn new_op_from_onnx(
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.len() > 1 {
unimplemented!("only support scalar pow")
return Err(GraphError::NonScalarPower);
} else if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
let exponent = c.raw_values[0];
@@ -1133,8 +1216,77 @@ pub fn new_op_from_onnx(
a: crate::circuit::utils::F32(exponent),
})
}
} else if let Some(c) = inputs[0].opkind().get_mutable_constant() {
inputs[0].decrement_use();
deleted_indices.push(0);
if c.raw_values.len() > 1 {
return Err(GraphError::NonScalarBase);
} else if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
let base = c.raw_values[0];
SupportedOp::Nonlinear(LookupOp::Exp {
scale: scale_to_multiplier(input_scales[1]).into(),
base: base.into(),
})
} else {
unimplemented!("only support constant pow for now")
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
}
"Div" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "div".to_string()));
}
let const_idx = inputs
.iter()
.enumerate()
.filter(|(_, n)| n.is_constant())
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_idx.len() > 1 || const_idx.is_empty() {
return Err(GraphError::InvalidDims(idx, "div".to_string()));
}
let const_idx = const_idx[0];
if const_idx != 1 {
return Err(GraphError::MisformedParams(
"only support div with constant as second input".to_string(),
));
}
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
if c.raw_values.len() == 1 && c.raw_values[0] != 0. {
inputs[const_idx].decrement_use();
deleted_indices.push(const_idx);
// get the non constant index
let denom = c.raw_values[0];
let op = SupportedOp::Hybrid(HybridOp::Div {
denom: denom.into(),
});
// if the input is scale 0 we re up to the max scale
if input_scales[0] == 0 {
SupportedOp::Rescaled(Rescaled {
inner: Box::new(op),
scale: vec![(0, scale_to_multiplier(scales.get_max()) as u128)],
})
} else {
op
}
} else {
return Err(GraphError::MisformedParams(
"only support non zero divisors of size 1".to_string(),
));
}
} else {
return Err(GraphError::MisformedParams(
"only support div with constant as second input".to_string(),
));
}
}
"Cube" => SupportedOp::Linear(PolyOp::Pow(3)),
@@ -1155,15 +1307,6 @@ pub fn new_op_from_onnx(
}
}
if ((conv_node.pool_spec.data_format != DataFormat::NCHW)
&& (conv_node.pool_spec.data_format != DataFormat::CHW))
|| (conv_node.kernel_fmt != KernelFormat::OIHW)
{
return Err(GraphError::MisformedParams(
"data or kernel in wrong format".to_string(),
));
}
let pool_spec = &conv_node.pool_spec;
let stride = extract_strides(pool_spec)?;
@@ -1191,13 +1334,15 @@ pub fn new_op_from_onnx(
padding,
stride,
group,
data_format: conv_node.pool_spec.data_format.into(),
kernel_format: conv_node.kernel_fmt.into(),
})
}
"Not" => SupportedOp::Linear(PolyOp::Not),
"And" => SupportedOp::Linear(PolyOp::And),
"Or" => SupportedOp::Linear(PolyOp::Or),
"Xor" => SupportedOp::Linear(PolyOp::Xor),
"Equals" => SupportedOp::Hybrid(HybridOp::Equals),
"==" => SupportedOp::Hybrid(HybridOp::Equals),
"Deconv" => {
let deconv_node: &Deconv = match node.op().downcast_ref::<Deconv>() {
Some(b) => b,
@@ -1214,14 +1359,6 @@ pub fn new_op_from_onnx(
}
}
if (deconv_node.pool_spec.data_format != DataFormat::NCHW)
|| (deconv_node.kernel_format != KernelFormat::OIHW)
{
return Err(GraphError::MisformedParams(
"data or kernel in wrong format".to_string(),
));
}
let pool_spec = &deconv_node.pool_spec;
let stride = extract_strides(pool_spec)?;
@@ -1247,6 +1384,8 @@ pub fn new_op_from_onnx(
output_padding: deconv_node.adjustments.to_vec(),
stride,
group: deconv_node.group,
data_format: deconv_node.pool_spec.data_format.into(),
kernel_format: deconv_node.kernel_format.into(),
})
}
"Downsample" => {
@@ -1259,7 +1398,7 @@ pub fn new_op_from_onnx(
SupportedOp::Linear(PolyOp::Downsample {
axis: downsample_node.axis,
stride: downsample_node.stride as usize,
stride: downsample_node.stride,
modulo: downsample_node.modulo,
})
}
@@ -1274,7 +1413,7 @@ pub fn new_op_from_onnx(
if !resize_node.contains("interpolator: Nearest")
&& !resize_node.contains("nearest: Floor")
{
unimplemented!("Only nearest neighbor interpolation is supported")
return Err(GraphError::InvalidInterpolation);
}
// check if optional scale factor is present
if inputs.len() != 2 && inputs.len() != 3 {
@@ -1330,13 +1469,6 @@ pub fn new_op_from_onnx(
let pool_spec: &PoolSpec = &sumpool_node.pool_spec;
// only support pytorch type formatting for now
if pool_spec.data_format != DataFormat::NCHW {
return Err(GraphError::MissingParams(
"data in wrong format".to_string(),
));
}
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, &input_dims[0])?;
@@ -1345,6 +1477,7 @@ pub fn new_op_from_onnx(
stride: stride.to_vec(),
kernel_shape: pool_spec.kernel_shape.to_vec(),
normalized: sumpool_node.normalize,
data_format: pool_spec.data_format.into(),
})
}
"Pad" => {
@@ -1378,6 +1511,10 @@ pub fn new_op_from_onnx(
SupportedOp::Linear(PolyOp::Reshape(output_shape))
}
"Flatten" => {
if inputs.len() != 1 || inputs[0].out_dims().is_empty() {
return Err(GraphError::InvalidDims(idx, "flatten".to_string()));
};
let new_dims: Vec<usize> = vec![inputs[0].out_dims()[0].iter().product::<usize>()];
SupportedOp::Linear(PolyOp::Flatten(new_dims))
}
@@ -1451,12 +1588,10 @@ pub fn homogenize_input_scales(
input_scales: Vec<crate::Scale>,
inputs_to_scale: Vec<usize>,
) -> Result<Box<dyn Op<Fp>>, GraphError> {
let relevant_input_scales = input_scales
.clone()
.into_iter()
.enumerate()
.filter(|(idx, _)| inputs_to_scale.contains(idx))
.map(|(_, scale)| scale)
let relevant_input_scales = inputs_to_scale
.iter()
.filter(|idx| input_scales.len() > **idx)
.map(|&idx| input_scales[idx])
.collect_vec();
if inputs_to_scale.is_empty() {
@@ -1497,10 +1632,30 @@ pub fn homogenize_input_scales(
}
#[cfg(test)]
/// tests for the utility module
pub mod tests {
use super::*;
// quantization tests
#[test]
fn test_quantize_tensor() {
let tensor: Tensor<f32> = (0..10).map(|x| x as f32).into();
let reference: Tensor<Fp> = (0..10).map(|x| x.into()).into();
let scale = 0;
let visibility = &Visibility::Public;
let quantized: Tensor<Fp> = quantize_tensor(tensor, scale, visibility).unwrap();
assert_eq!(quantized.len(), 10);
assert_eq!(quantized, reference);
}
#[test]
fn test_quantize_edge_cases() {
assert_eq!(quantize_float(&f64::NAN, 0.0, 0).unwrap(), 0);
assert!(quantize_float(&f64::INFINITY, 0.0, 0).is_err());
assert!(quantize_float(&f64::NEG_INFINITY, 0.0, 0).is_err());
}
#[test]
fn test_flatten_valtensors() {
let tensor1: Tensor<Fp> = (0..10).map(|x| x.into()).into();

View File

@@ -9,38 +9,36 @@ use itertools::Itertools;
use log::debug;
#[cfg(feature = "python-bindings")]
use pyo3::{
exceptions::PyValueError, types::PyString, FromPyObject, IntoPy, PyAny, PyObject, PyResult,
PyTryFrom, Python, ToPyObject,
exceptions::PyValueError, FromPyObject, IntoPy, PyObject, PyResult, Python, ToPyObject,
};
use serde::{Deserialize, Serialize};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tosubcommand::ToFlags;
use self::errors::GraphError;
use super::*;
/// Label enum to track whether model input, model parameters, and model output are public, private, or hashed
/// Defines the visibility level of values within the zero-knowledge circuit
/// Controls how values are handled during proof generation and verification
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord, Default)]
pub enum Visibility {
/// Mark an item as private to the prover (not in the proof submitted for verification)
/// Value is private to the prover and not included in proof
#[default]
Private,
/// Mark an item as public (sent in the proof submitted for verification)
/// Value is public and included in proof for verification
Public,
/// Mark an item as publicly committed to (hash sent in the proof submitted for verification)
/// Value is hashed and the hash is included in proof
Hashed {
/// Whether the hash is used as an instance (sent in the proof submitted for verification)
/// if false the hash is used as an advice (not in the proof submitted for verification) and is then sent to the computational graph
/// if true the hash is used as an instance (sent in the proof submitted for verification) the *inputs* to the hashing function are then sent to the computational graph
/// Controls how the hash is handled in proof
/// true - hash is included directly in proof (public)
/// false - hash is used as advice and passed to computational graph
hash_is_public: bool,
///
/// Specifies which outputs this hash affects
outlets: Vec<usize>,
},
/// Mark an item as publicly committed to (KZG commitment sent in the proof submitted for verification)
/// Value is committed using KZG commitment scheme
KZGCommit,
/// assigned as a constant in the circuit
/// Value is assigned as a constant in the circuit
Fixed,
}
@@ -67,15 +65,17 @@ impl Display for Visibility {
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl ToFlags for Visibility {
/// Converts visibility to command line flags
fn to_flags(&self) -> Vec<String> {
vec![format!("{}", self)]
}
}
impl<'a> From<&'a str> for Visibility {
/// Converts string representation to Visibility
fn from(s: &'a str) -> Self {
if s.contains("hashed/private") {
// split on last occurrence of '/'
// Split on last occurrence of '/'
let (_, outlets) = s.split_at(s.rfind('/').unwrap());
let outlets = outlets
.trim_start_matches('/')
@@ -107,8 +107,8 @@ impl<'a> From<&'a str> for Visibility {
}
#[cfg(feature = "python-bindings")]
/// Converts Visibility into a PyObject (Required for Visibility to be compatible with Python)
impl IntoPy<PyObject> for Visibility {
/// Converts Visibility to Python object
fn into_py(self, py: Python) -> PyObject {
match self {
Visibility::Private => "private".to_object(py),
@@ -135,16 +135,13 @@ impl IntoPy<PyObject> for Visibility {
}
#[cfg(feature = "python-bindings")]
/// Obtains Visibility from PyObject (Required for Visibility to be compatible with Python)
impl<'source> FromPyObject<'source> for Visibility {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let trystr = <PyString as PyTryFrom>::try_from(ob)?;
let strval = trystr.to_string();
/// Extracts Visibility from Python object
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> PyResult<Self> {
let strval = String::extract_bound(ob)?;
let strval = strval.as_str();
if strval.contains("hashed/private") {
// split on last occurence of '/'
let (_, outlets) = strval.split_at(strval.rfind('/').unwrap());
let outlets = outlets
.trim_start_matches('/')
@@ -177,29 +174,32 @@ impl<'source> FromPyObject<'source> for Visibility {
}
impl Visibility {
#[allow(missing_docs)]
/// Returns true if visibility is Fixed
pub fn is_fixed(&self) -> bool {
matches!(&self, Visibility::Fixed)
}
#[allow(missing_docs)]
/// Returns true if visibility is Private or hashed private
pub fn is_private(&self) -> bool {
matches!(&self, Visibility::Private) || self.is_hashed_private()
}
#[allow(missing_docs)]
/// Returns true if visibility is Public
pub fn is_public(&self) -> bool {
matches!(&self, Visibility::Public)
}
#[allow(missing_docs)]
/// Returns true if visibility involves hashing
pub fn is_hashed(&self) -> bool {
matches!(&self, Visibility::Hashed { .. })
}
#[allow(missing_docs)]
/// Returns true if visibility uses KZG commitment
pub fn is_polycommit(&self) -> bool {
matches!(&self, Visibility::KZGCommit)
}
#[allow(missing_docs)]
/// Returns true if visibility is hashed with public hash
pub fn is_hashed_public(&self) -> bool {
if let Visibility::Hashed {
hash_is_public: true,
@@ -210,7 +210,8 @@ impl Visibility {
}
false
}
#[allow(missing_docs)]
/// Returns true if visibility is hashed with private hash
pub fn is_hashed_private(&self) -> bool {
if let Visibility::Hashed {
hash_is_public: false,
@@ -222,11 +223,12 @@ impl Visibility {
false
}
#[allow(missing_docs)]
/// Returns true if visibility requires additional processing
pub fn requires_processing(&self) -> bool {
matches!(&self, Visibility::Hashed { .. }) | matches!(&self, Visibility::KZGCommit)
}
#[allow(missing_docs)]
/// Returns vector of output indices that this visibility setting affects
pub fn overwrites_inputs(&self) -> Vec<usize> {
if let Visibility::Hashed { outlets, .. } = self {
return outlets.clone();
@@ -235,14 +237,14 @@ impl Visibility {
}
}
/// Represents the scale of the model input, model parameters.
/// Manages scaling factors for different parts of the model
#[derive(Clone, Debug, Default, Deserialize, Serialize, PartialEq, PartialOrd)]
pub struct VarScales {
///
/// Scale factor for input values
pub input: crate::Scale,
///
/// Scale factor for parameter values
pub params: crate::Scale,
///
/// Multiplier for scale rebasing
pub rebase_multiplier: u32,
}
@@ -253,17 +255,17 @@ impl std::fmt::Display for VarScales {
}
impl VarScales {
///
/// Returns maximum scale value
pub fn get_max(&self) -> crate::Scale {
std::cmp::max(self.input, self.params)
}
///
/// Returns minimum scale value
pub fn get_min(&self) -> crate::Scale {
std::cmp::min(self.input, self.params)
}
/// Place in [VarScales] struct.
/// Creates VarScales from runtime arguments
pub fn from_args(args: &RunArgs) -> Self {
Self {
input: args.input_scale,
@@ -273,16 +275,17 @@ impl VarScales {
}
}
/// Represents whether the model input, model parameters, and model output are Public or Private to the prover.
/// Controls visibility settings for different parts of the model
#[derive(Clone, Debug, Deserialize, Serialize, PartialEq, PartialOrd)]
pub struct VarVisibility {
/// Input to the model or computational graph
/// Visibility of model inputs
pub input: Visibility,
/// Parameters, such as weights and biases, in the model
/// Visibility of model parameters (weights, biases)
pub params: Visibility,
/// Output of the model or computational graph
/// Visibility of model outputs
pub output: Visibility,
}
impl std::fmt::Display for VarVisibility {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
@@ -304,8 +307,7 @@ impl Default for VarVisibility {
}
impl VarVisibility {
/// Read from cli args whether the model input, model parameters, and model output are Public or Private to the prover.
/// Place in [VarVisibility] struct.
/// Creates visibility settings from runtime arguments
pub fn from_args(args: &RunArgs) -> Result<Self, GraphError> {
let input_vis = &args.input_visibility;
let params_vis = &args.param_visibility;
@@ -316,17 +318,17 @@ impl VarVisibility {
}
if !output_vis.is_public()
& !params_vis.is_public()
& !input_vis.is_public()
& !output_vis.is_fixed()
& !params_vis.is_fixed()
& !input_vis.is_fixed()
& !output_vis.is_hashed()
& !params_vis.is_hashed()
& !input_vis.is_hashed()
& !output_vis.is_polycommit()
& !params_vis.is_polycommit()
& !input_vis.is_polycommit()
&& !params_vis.is_public()
&& !input_vis.is_public()
&& !output_vis.is_fixed()
&& !params_vis.is_fixed()
&& !input_vis.is_fixed()
&& !output_vis.is_hashed()
&& !params_vis.is_hashed()
&& !input_vis.is_hashed()
&& !output_vis.is_polycommit()
&& !params_vis.is_polycommit()
&& !input_vis.is_polycommit()
{
return Err(GraphError::Visibility);
}
@@ -338,17 +340,17 @@ impl VarVisibility {
}
}
/// A wrapper for holding all columns that will be assigned to by a model.
/// Container for circuit columns used by a model
#[derive(Clone, Debug)]
pub struct ModelVars<F: PrimeField + TensorType + PartialOrd> {
#[allow(missing_docs)]
/// Advice columns for circuit assignments
pub advices: Vec<VarTensor>,
#[allow(missing_docs)]
/// Optional instance column for public inputs
pub instance: Option<ValTensor<F>>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
/// Get instance col
/// Gets reference to instance column if it exists
pub fn get_instance_col(&self) -> Option<&Column<Instance>> {
if let Some(instance) = &self.instance {
match instance {
@@ -360,14 +362,14 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
}
}
/// Set the initial instance offset
/// Sets initial offset for instance values
pub fn set_initial_instance_offset(&mut self, offset: usize) {
if let Some(instance) = &mut self.instance {
instance.set_initial_instance_offset(offset);
}
}
/// Get the total instance len
/// Gets total length of instance data
pub fn get_instance_len(&self) -> usize {
if let Some(instance) = &self.instance {
instance.get_total_instance_len()
@@ -376,21 +378,21 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
}
}
/// Increment the instance offset
/// Increments instance index
pub fn increment_instance_idx(&mut self) {
if let Some(instance) = &mut self.instance {
instance.increment_idx();
}
}
/// Reset the instance offset
/// Sets instance index to specific value
pub fn set_instance_idx(&mut self, val: usize) {
if let Some(instance) = &mut self.instance {
instance.set_idx(val);
}
}
/// Get the instance offset
/// Gets current instance index
pub fn get_instance_idx(&self) -> usize {
if let Some(instance) = &self.instance {
instance.get_idx()
@@ -399,7 +401,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
}
}
///
/// Initializes instance column with specified dimensions and scale
pub fn instantiate_instance(
&mut self,
cs: &mut ConstraintSystem<F>,
@@ -420,7 +422,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
};
}
/// Allocate all columns that will be assigned to by a model.
/// Creates new ModelVars with allocated columns based on settings
pub fn new(cs: &mut ConstraintSystem<F>, params: &GraphSettings) -> Self {
debug!("number of blinding factors: {}", cs.blinding_factors());
@@ -438,7 +440,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
.collect_vec();
if requires_dynamic_lookup || requires_shuffle {
let num_cols = if requires_dynamic_lookup { 3 } else { 2 };
let num_cols = 3;
for _ in 0..num_cols {
let dynamic_lookup =
VarTensor::new_advice(cs, logrows, 1, dynamic_lookup_and_shuffle_size);

View File

@@ -28,6 +28,9 @@
//! A library for turning computational graphs, such as neural networks, into ZK-circuits.
//!
use log::warn;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use mimalloc as _;
/// Error type
// #[cfg_attr(not(feature = "ezkl"), derive(uniffi::Error))]
@@ -94,12 +97,11 @@ impl From<String> for EZKLError {
use std::str::FromStr;
use circuit::{table::Range, CheckMode, Tolerance};
use circuit::{table::Range, CheckMode};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use clap::Args;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use fieldutils::IntegerRep;
use graph::Visibility;
use graph::{Visibility, MAX_PUBLIC_SRS};
use halo2_proofs::poly::{
ipa::commitment::IPACommitmentScheme, kzg::commitment::KZGCommitmentScheme,
};
@@ -120,7 +122,7 @@ pub fn version() -> &'static str {
}
}
/// Bindings managment
/// Bindings management
#[cfg(any(
feature = "ios-bindings",
all(target_arch = "wasm32", target_os = "unknown"),
@@ -165,7 +167,6 @@ pub mod srs_sha;
pub mod tensor;
#[cfg(feature = "ios-bindings")]
uniffi::setup_scaffolding!();
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use lazy_static::lazy_static;
@@ -180,11 +181,9 @@ lazy_static! {
.unwrap_or("8000".to_string())
.parse()
.unwrap();
/// The serialization format for the keys
pub static ref EZKL_KEY_FORMAT: String = std::env::var("EZKL_KEY_FORMAT")
.unwrap_or("raw-bytes".to_string());
}
#[cfg(any(not(feature = "ezkl"), target_arch = "wasm32"))]
@@ -266,80 +265,101 @@ impl From<String> for Commitments {
}
/// Parameters specific to a proving run
///
/// RunArgs contains all configuration parameters needed to control the proving process,
/// including scaling factors, visibility settings, and circuit parameters.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq, PartialOrd)]
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
derive(Args, ToFlags)
)]
pub struct RunArgs {
/// The tolerance for error on model outputs
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'T', long, default_value = "0", value_hint = clap::ValueHint::Other))]
pub tolerance: Tolerance,
/// The denominator in the fixed point representation used when quantizing inputs
/// Fixed point scaling factor for quantizing inputs
/// Higher values provide more precision but increase circuit complexity
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'S', long, default_value = "7", value_hint = clap::ValueHint::Other))]
pub input_scale: Scale,
/// The denominator in the fixed point representation used when quantizing parameters
/// Fixed point scaling factor for quantizing parameters
/// Higher values provide more precision but increase circuit complexity
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "7", value_hint = clap::ValueHint::Other))]
pub param_scale: Scale,
/// if the scale is ever > scale_rebase_multiplier * input_scale then the scale is rebased to input_scale (this a more advanced parameter, use with caution)
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "1", value_hint = clap::ValueHint::Other))]
/// Scale rebase threshold multiplier
/// When scale exceeds input_scale * multiplier, it is rebased to input_scale
/// Advanced parameter that should be used with caution
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "1", value_hint = clap::ValueHint::Other))]
pub scale_rebase_multiplier: u32,
/// The min and max elements in the lookup table input column
/// Range for lookup table input column values
/// Specified as (min, max) pair
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'B', long, value_parser = parse_key_val::<IntegerRep, IntegerRep>, default_value = "-32768->32768"))]
pub lookup_range: Range,
/// The log_2 number of rows
/// Log2 of the number of rows in the circuit
/// Controls circuit size and proving time
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'K', long, default_value = "17", value_hint = clap::ValueHint::Other))]
pub logrows: u32,
/// The log_2 number of rows
/// Number of inner columns per block
/// Affects circuit layout and efficiency
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'N', long, default_value = "2", value_hint = clap::ValueHint::Other))]
pub num_inner_cols: usize,
/// Hand-written parser for graph variables, eg. batch_size=1
/// Graph variables for parameterizing the computation
/// Format: "name->value", e.g. "batch_size->1"
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'V', long, value_parser = parse_key_val::<String, usize>, default_value = "batch_size->1", value_delimiter = ',', value_hint = clap::ValueHint::Other))]
pub variables: Vec<(String, usize)>,
/// Flags whether inputs are public, private, fixed, hashed, polycommit
/// Visibility setting for input values
/// Controls whether inputs are public or private in the circuit
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "private", value_hint = clap::ValueHint::Other))]
pub input_visibility: Visibility,
/// Flags whether outputs are public, private, fixed, hashed, polycommit
/// Visibility setting for output values
/// Controls whether outputs are public or private in the circuit
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "public", value_hint = clap::ValueHint::Other))]
pub output_visibility: Visibility,
/// Flags whether params are fixed, private, hashed, polycommit
/// Visibility setting for parameters
/// Controls how parameters are handled in the circuit
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "private", value_hint = clap::ValueHint::Other))]
pub param_visibility: Visibility,
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
/// Should constants with 0.0 fraction be rebased to scale 0
/// Whether to rebase constants with zero fractional part to scale 0
/// Can improve efficiency for integer constants
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
pub rebase_frac_zero_constants: bool,
/// check mode (safe, unsafe, etc)
/// Circuit checking mode
/// Controls level of constraint verification
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "unsafe", value_hint = clap::ValueHint::Other))]
pub check_mode: CheckMode,
/// commitment scheme
/// Commitment scheme for circuit proving
/// Affects proof size and verification time
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "kzg", value_hint = clap::ValueHint::Other))]
pub commitment: Option<Commitments>,
/// the base used for decompositions
/// Base for number decomposition
/// Must be a power of 2
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "16384", value_hint = clap::ValueHint::Other))]
pub decomp_base: usize,
/// Number of decomposition legs
/// Controls decomposition granularity
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "2", value_hint = clap::ValueHint::Other))]
/// the number of legs used for decompositions
pub decomp_legs: usize,
/// Whether to use bounded lookup for logarithm computation
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
/// use unbounded lookup for the log
pub bounded_log_lookup: bool,
/// Range check inputs and outputs (turn off if the inputs are felts)
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
pub ignore_range_check_inputs_outputs: bool,
}
impl Default for RunArgs {
/// Creates a new RunArgs instance with default values
///
/// Default configuration is optimized for common use cases
/// while maintaining reasonable proving time and circuit size
fn default() -> Self {
Self {
bounded_log_lookup: false,
tolerance: Tolerance::default(),
input_scale: 7,
param_scale: 7,
scale_rebase_multiplier: 1,
@@ -355,54 +375,139 @@ impl Default for RunArgs {
commitment: None,
decomp_base: 16384,
decomp_legs: 2,
ignore_range_check_inputs_outputs: false,
}
}
}
impl RunArgs {
/// Validates the RunArgs configuration
///
/// Performs comprehensive validation of all parameters to ensure they are within
/// acceptable ranges and follow required constraints. Returns accumulated errors
/// if any validations fail.
///
/// # Returns
/// - Ok(()) if all validations pass
/// - Err(String) with detailed error message if any validation fails
pub fn validate(&self) -> Result<(), String> {
let mut errors = Vec::new();
// check if the largest represented integer in the decomposed form overflows IntegerRep
// try it with the largest possible value
let max_decomp = (self.decomp_base as IntegerRep).checked_pow(self.decomp_legs as u32);
if max_decomp.is_none() {
errors.push(format!(
"decomp_base^decomp_legs overflows IntegerRep: {}^{}",
self.decomp_base, self.decomp_legs
));
}
// Visibility validations
if self.param_visibility == Visibility::Public {
return Err(
"params cannot be public instances, you are probably trying to use `fixed` or `kzgcommit`"
.into(),
errors.push(
"Parameters cannot be public instances. Use 'fixed' or 'kzgcommit' instead"
.to_string(),
);
}
// Scale validations
if self.scale_rebase_multiplier < 1 {
return Err("scale_rebase_multiplier must be >= 1".into());
errors.push("scale_rebase_multiplier must be >= 1".to_string());
}
// if any of the scales are too small
if self.input_scale < 8 || self.param_scale < 8 {
warn!("low scale values (<8) may impact precision");
}
// Lookup range validations
if self.lookup_range.0 > self.lookup_range.1 {
return Err("lookup_range min is greater than max".into());
errors.push(format!(
"Invalid lookup range: min ({}) is greater than max ({})",
self.lookup_range.0, self.lookup_range.1
));
}
// Size validations
if self.logrows < 1 {
return Err("logrows must be >= 1".into());
errors.push("logrows must be >= 1".to_string());
}
if self.num_inner_cols < 1 {
return Err("num_inner_cols must be >= 1".into());
errors.push("num_inner_cols must be >= 1".to_string());
}
if self.tolerance.val > 0.0 && self.output_visibility != Visibility::Public {
return Err("tolerance > 0.0 requires output_visibility to be public".into());
let batch_size = self.variables.iter().find(|(name, _)| name == "batch_size");
if let Some(batch_size) = batch_size {
if batch_size.1 == 0 {
errors.push("'batch_size' cannot be 0".to_string());
}
}
// Decomposition validations
if self.decomp_base == 0 {
errors.push("decomp_base cannot be 0".to_string());
}
if self.decomp_legs == 0 {
errors.push("decomp_legs cannot be 0".to_string());
}
// Performance validations
if self.logrows > MAX_PUBLIC_SRS {
warn!("logrows exceeds maximum public SRS size");
}
// Performance warnings
if self.input_scale > 20 || self.param_scale > 20 {
warn!("High scale values (>20) may impact performance");
}
if errors.is_empty() {
Ok(())
} else {
Err(errors.join("\n"))
}
Ok(())
}
/// Export the ezkl configuration as json
/// Exports the configuration as JSON
///
/// Serializes the RunArgs instance to a JSON string
///
/// # Returns
/// * `Ok(String)` containing JSON representation
/// * `Err` if serialization fails
pub fn as_json(&self) -> Result<String, Box<dyn std::error::Error>> {
let serialized = match serde_json::to_string(&self) {
Ok(s) => s,
Err(e) => {
return Err(Box::new(e));
}
};
Ok(serialized)
let res = serde_json::to_string(&self)?;
Ok(res)
}
/// Parse an ezkl configuration from a json
/// Parses configuration from JSON
///
/// Deserializes a RunArgs instance from a JSON string
///
/// # Arguments
/// * `arg_json` - JSON string containing configuration
///
/// # Returns
/// * `Ok(RunArgs)` if parsing succeeds
/// * `Err` if parsing fails
pub fn from_json(arg_json: &str) -> Result<Self, serde_json::Error> {
serde_json::from_str(arg_json)
}
}
/// Parse a single key-value pair
// Additional helper functions for the module
/// Parses a key-value pair from a string in the format "key->value"
///
/// # Arguments
/// * `s` - Input string in the format "key->value"
///
/// # Returns
/// * `Ok((T, U))` - Parsed key and value
/// * `Err` - If parsing fails
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn parse_key_val<T, U>(
s: &str,
@@ -415,8 +520,114 @@ where
{
let pos = s
.find("->")
.ok_or_else(|| format!("invalid x->y: no `->` found in `{s}`"))?;
let a = s[..pos].parse()?;
let b = s[pos + 2..].parse()?;
Ok((a, b))
.ok_or_else(|| format!("invalid KEY->VALUE: no `->` found in `{s}`"))?;
Ok((s[..pos].parse()?, s[pos + 2..].parse()?))
}
/// Verifies that a version string matches the expected artifact version
/// Logs warnings for version mismatches or unversioned artifacts
///
/// # Arguments
/// * `artifact_version` - Version string from the artifact
pub fn check_version_string_matches(artifact_version: &str) {
if artifact_version == "0.0.0"
|| artifact_version == "source - no compatibility guaranteed"
|| artifact_version.is_empty()
{
log::warn!("Artifact version is 0.0.0, skipping version check");
return;
}
let version = crate::version();
if version == "source - no compatibility guaranteed" {
log::warn!("Compiled source version is not guaranteed to match artifact version");
return;
}
if version != artifact_version {
log::warn!(
"Version mismatch: CLI version is {} but artifact version is {}",
version,
artifact_version
);
}
}
#[cfg(test)]
#[allow(clippy::field_reassign_with_default)]
mod tests {
use super::*;
#[test]
fn test_valid_default_args() {
let args = RunArgs::default();
assert!(args.validate().is_ok());
}
#[test]
fn test_invalid_param_visibility() {
let mut args = RunArgs::default();
args.param_visibility = Visibility::Public;
let err = args.validate().unwrap_err();
assert!(err.contains("Parameters cannot be public instances"));
}
#[test]
fn test_invalid_scale_rebase() {
let mut args = RunArgs::default();
args.scale_rebase_multiplier = 0;
let err = args.validate().unwrap_err();
assert!(err.contains("scale_rebase_multiplier must be >= 1"));
}
#[test]
fn test_invalid_lookup_range() {
let mut args = RunArgs::default();
args.lookup_range = (100, -100);
let err = args.validate().unwrap_err();
assert!(err.contains("Invalid lookup range"));
}
#[test]
fn test_invalid_logrows() {
let mut args = RunArgs::default();
args.logrows = 0;
let err = args.validate().unwrap_err();
assert!(err.contains("logrows must be >= 1"));
}
#[test]
fn test_invalid_inner_cols() {
let mut args = RunArgs::default();
args.num_inner_cols = 0;
let err = args.validate().unwrap_err();
assert!(err.contains("num_inner_cols must be >= 1"));
}
#[test]
fn test_zero_batch_size() {
let mut args = RunArgs::default();
args.variables = vec![("batch_size".to_string(), 0)];
let err = args.validate().unwrap_err();
assert!(err.contains("'batch_size' cannot be 0"));
}
#[test]
fn test_json_serialization() {
let args = RunArgs::default();
let json = args.as_json().unwrap();
let deserialized = RunArgs::from_json(&json).unwrap();
assert_eq!(args, deserialized);
}
#[test]
fn test_multiple_validation_errors() {
let mut args = RunArgs::default();
args.logrows = 0;
args.lookup_range = (100, -100);
let err = args.validate().unwrap_err();
// Should contain multiple error messages
assert!(err.matches("\n").count() >= 1);
}
}

View File

@@ -133,7 +133,6 @@ pub fn aggregate<'a>(
.collect_vec()
}));
// loader.ctx().constrain_equal(cell_0, cell_1)
let mut transcript = PoseidonTranscript::<Rc<Halo2Loader>, _>::new(loader, snark.proof());
let proof = PlonkSuccinctVerifier::read_proof(svk, &protocol, &instances, &mut transcript)
.map_err(|_| plonk::Error::Synthesis)?;
@@ -309,11 +308,11 @@ impl AggregationCircuit {
})
}
///
/// Number of limbs used for decomposition
pub fn num_limbs() -> usize {
LIMBS
}
///
/// Number of bits used for decomposition
pub fn num_bits() -> usize {
BITS
}

View File

@@ -17,16 +17,16 @@ use crate::{Commitments, EZKL_BUF_CAPACITY, EZKL_KEY_FORMAT};
use clap::ValueEnum;
use halo2_proofs::circuit::Value;
use halo2_proofs::plonk::{
create_proof, keygen_pk, keygen_vk_custom, verify_proof, Circuit, ProvingKey, VerifyingKey,
Circuit, ProvingKey, VerifyingKey, create_proof, keygen_pk, keygen_vk_custom, verify_proof,
};
use halo2_proofs::poly::VerificationStrategy;
use halo2_proofs::poly::commitment::{CommitmentScheme, Params, ParamsProver, Prover, Verifier};
use halo2_proofs::poly::ipa::commitment::IPACommitmentScheme;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::VerificationStrategy;
use halo2_proofs::transcript::{EncodedChallenge, TranscriptReadBuffer, TranscriptWriterBuffer};
use halo2curves::CurveAffine;
use halo2curves::ff::{FromUniformBytes, PrimeField, WithSmallOrderMulGroup};
use halo2curves::serde::SerdeObject;
use halo2curves::CurveAffine;
use instant::Instant;
use log::{debug, info, trace};
#[cfg(not(feature = "det-prove"))]
@@ -46,8 +46,14 @@ use thiserror::Error as thisError;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tosubcommand::ToFlags;
#[cfg(feature = "python-bindings")]
use pyo3::types::PyDictMethods;
use halo2curves::bn256::{Bn256, Fr, G1Affine};
/// Converts a string to a `SerdeFormat`.
/// # Panics
/// Panics if the provided `s` is not a valid `SerdeFormat` (i.e. not one of "processed", "raw-bytes-unchecked", or "raw-bytes").
fn serde_format_from_str(s: &str) -> halo2_proofs::SerdeFormat {
match s {
"processed" => halo2_proofs::SerdeFormat::Processed,
@@ -116,9 +122,8 @@ impl ToPyObject for ProofType {
#[cfg(feature = "python-bindings")]
/// Obtains StrategyType from PyObject (Required for StrategyType to be compatible with Python)
impl<'source> pyo3::FromPyObject<'source> for ProofType {
fn extract(ob: &'source pyo3::PyAny) -> pyo3::PyResult<Self> {
let trystr = <pyo3::types::PyString as pyo3::PyTryFrom>::try_from(ob)?;
let strval = trystr.to_string();
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> pyo3::PyResult<Self> {
let strval = String::extract_bound(ob)?;
match strval.to_lowercase().as_str() {
"single" => Ok(ProofType::Single),
"for-aggr" => Ok(ProofType::ForAggr),
@@ -174,9 +179,8 @@ impl pyo3::IntoPy<PyObject> for StrategyType {
#[cfg(feature = "python-bindings")]
/// Obtains StrategyType from PyObject (Required for StrategyType to be compatible with Python)
impl<'source> pyo3::FromPyObject<'source> for StrategyType {
fn extract(ob: &'source pyo3::PyAny) -> pyo3::PyResult<Self> {
let trystr = <pyo3::types::PyString as pyo3::PyTryFrom>::try_from(ob)?;
let strval = trystr.to_string();
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> pyo3::PyResult<Self> {
let strval = String::extract_bound(ob)?;
match strval.to_lowercase().as_str() {
"single" => Ok(StrategyType::Single),
"accum" => Ok(StrategyType::Accum),
@@ -235,7 +239,7 @@ impl ToPyObject for TranscriptType {
#[cfg(feature = "python-bindings")]
///
pub fn g1affine_to_pydict(g1affine_dict: &PyDict, g1affine: &G1Affine) {
pub fn g1affine_to_pydict(g1affine_dict: &pyo3::Bound<'_, PyDict>, g1affine: &G1Affine) {
let g1affine_x = field_to_string(&g1affine.x);
let g1affine_y = field_to_string(&g1affine.y);
g1affine_dict.set_item("x", g1affine_x).unwrap();
@@ -246,7 +250,7 @@ pub fn g1affine_to_pydict(g1affine_dict: &PyDict, g1affine: &G1Affine) {
use halo2curves::bn256::G1;
#[cfg(feature = "python-bindings")]
///
pub fn g1_to_pydict(g1_dict: &PyDict, g1: &G1) {
pub fn g1_to_pydict(g1_dict: &pyo3::Bound<'_, PyDict>, g1: &G1) {
let g1_x = field_to_string(&g1.x);
let g1_y = field_to_string(&g1.y);
let g1_z = field_to_string(&g1.z);
@@ -320,7 +324,7 @@ where
}
#[cfg(feature = "python-bindings")]
use pyo3::{types::PyDict, PyObject, Python, ToPyObject};
use pyo3::{PyObject, Python, ToPyObject, types::PyDict};
#[cfg(feature = "python-bindings")]
impl<F: PrimeField + SerdeObject + Serialize, C: CurveAffine + Serialize> ToPyObject for Snark<F, C>
where
@@ -337,21 +341,22 @@ where
dict.set_item("instances", field_elems).unwrap();
let hex_proof = hex::encode(&self.proof);
dict.set_item("proof", format!("0x{}", hex_proof)).unwrap();
dict.set_item("transcript_type", self.transcript_type)
dict.set_item("transcript_type", self.transcript_type.to_object(py))
.unwrap();
dict.to_object(py)
}
}
impl<
F: PrimeField + SerdeObject + Serialize + FromUniformBytes<64> + DeserializeOwned,
C: CurveAffine + Serialize + DeserializeOwned,
> Snark<F, C>
F: PrimeField + SerdeObject + Serialize + FromUniformBytes<64> + DeserializeOwned,
C: CurveAffine + Serialize + DeserializeOwned,
> Snark<F, C>
where
C::Scalar: Serialize + DeserializeOwned,
C::ScalarExt: Serialize + DeserializeOwned,
{
/// Create a new application snark from proof and instance variables ready for aggregation
#[allow(clippy::too_many_arguments)]
pub fn new(
protocol: Option<PlonkProtocol<C>>,
instances: Vec<Vec<F>>,
@@ -527,7 +532,6 @@ pub fn create_keys<Scheme: CommitmentScheme, C: Circuit<Scheme::Scalar>>(
disable_selector_compression: bool,
) -> Result<ProvingKey<Scheme::Curve>, halo2_proofs::plonk::Error>
where
C: Circuit<Scheme::Scalar>,
<Scheme as CommitmentScheme>::Scalar: FromUniformBytes<64>,
{
// Real proof
@@ -793,7 +797,6 @@ pub fn load_vk<Scheme: CommitmentScheme, C: Circuit<Scheme::Scalar>>(
params: <C as Circuit<Scheme::Scalar>>::Params,
) -> Result<VerifyingKey<Scheme::Curve>, PfsysError>
where
C: Circuit<Scheme::Scalar>,
Scheme::Curve: SerdeObject + CurveAffine,
Scheme::Scalar: PrimeField + SerdeObject + FromUniformBytes<64>,
{
@@ -816,11 +819,11 @@ pub fn load_pk<Scheme: CommitmentScheme, C: Circuit<Scheme::Scalar>>(
params: <C as Circuit<Scheme::Scalar>>::Params,
) -> Result<ProvingKey<Scheme::Curve>, PfsysError>
where
C: Circuit<Scheme::Scalar>,
Scheme::Curve: SerdeObject + CurveAffine,
Scheme::Scalar: PrimeField + SerdeObject + FromUniformBytes<64>,
{
debug!("loading proving key from {:?}", path);
let start = instant::Instant::now();
let f = File::open(path.clone()).map_err(|e| PfsysError::LoadPk(format!("{}", e)))?;
let mut reader = BufReader::with_capacity(*EZKL_BUF_CAPACITY, f);
let pk = ProvingKey::<Scheme::Curve>::read::<_, C>(
@@ -829,7 +832,8 @@ where
params,
)
.map_err(|e| PfsysError::LoadPk(format!("{}", e)))?;
info!("loaded proving key ✅");
let elapsed = start.elapsed();
info!("loaded proving key in {:?}", elapsed);
Ok(pk)
}

Some files were not shown because too many files have changed in this diff Show More