Compare commits

..

2 Commits

Author SHA1 Message Date
Harsh Jha
b9a6728887 Apply suggestions from code review
Co-authored-by: Anubhav Dhawan <anubhavdhawan@google.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2026-02-03 12:30:26 +05:30
Harsh Jha
779128903c feat: added python toolbox-llamaindex sdk doc in main docsite 2026-01-12 14:02:29 +05:30
2 changed files with 386 additions and 279 deletions

View File

@@ -1,279 +0,0 @@
---
title: "Adk"
type: docs
weight: 8
description: >
MCP Toolbox ADK SDK for integrating functionalities of MCP Toolbox into your apps.
---
## Overview
The `toolbox-adk` package provides a Python interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.
## Installation
```bash
pip install toolbox-adk
```
## Usage
The primary entry point is the `ToolboxToolset`, which loads tools from a remote Toolbox server and adapts them for use with ADK agents.
{{< notice note>}}
The `ToolboxToolset` in this package mirrors the `ToolboxToolset` in the [`adk-python`](https://github.com/google/adk-python) package. The `adk-python` version is a shim that delegates all functionality to this implementation.
{{< /notice >}}
```python
from toolbox_adk import ToolboxToolset
from google.adk.agents import Agent
# Create the Toolset
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000"
)
# Use in your ADK Agent
agent = Agent(tools=[toolset])
```
## Transport Protocols
The SDK supports multiple transport protocols for communicating with the Toolbox server. By default, the client uses the latest supported version of the **Model Context Protocol (MCP)**.
You can explicitly select a protocol using the `protocol` option during toolset initialization. This is useful if you need to use the native Toolbox HTTP protocol or pin the client to a specific legacy version of MCP.
{{< notice note>}}
* **Native Toolbox Transport**: This uses the service's native **REST over HTTP** API.
* **MCP Transports**: These options use the **Model Context Protocol over HTTP**.
{{< /notice >}}
### Supported Protocols
| Constant | Description |
| :--- | :--- |
| `Protocol.MCP` | **(Default)** Alias for the default MCP version (currently `2025-06-18`). |
| `Protocol.TOOLBOX` | The native Toolbox HTTP protocol. |
| `Protocol.MCP_v20251125` | MCP Protocol version 2025-11-25. |
| `Protocol.MCP_v20250618` | MCP Protocol version 2025-06-18. |
| `Protocol.MCP_v20250326` | MCP Protocol version 2025-03-26. |
| `Protocol.MCP_v20241105` | MCP Protocol version 2024-11-05. |
### Example
If you wish to use the native Toolbox protocol:
```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.TOOLBOX
)
```
If you want to pin the MCP Version 2025-03-26:
```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.MCP_v20250326
)
```
{{< notice tip>}}
By default, it uses **Toolbox Identity** (no authentication), which is suitable for local development.
For production environments (Cloud Run, GKE) or accessing protected resources, see the [Authentication](#authentication) section for strategies like Workload Identity or OAuth2.
{{< /notice >}}
## Authentication
The `ToolboxToolset` requires credentials to authenticate with the Toolbox server. You can configure these credentials using the `CredentialStrategy` factory methods.
The strategies handle two main types of authentication:
* **Client-to-Server**: Securing the connection to the Toolbox server (e.g., Workload Identity, API keys).
* **User Identity**: Authenticating the end-user for specific tools (e.g., 3-legged OAuth).
### 1. Workload Identity (ADC)
*Recommended for Cloud Run, GKE, or local development with `gcloud auth login`.*
Uses the agent's Application Default Credentials (ADC) to generate an OIDC token. This is the standard way for one service to authenticate to another on Google Cloud.
```python
from toolbox_adk import CredentialStrategy, ToolboxToolset
# target_audience: The URL of your Toolbox server
creds = CredentialStrategy.workload_identity(target_audience="https://my-toolbox-service.run.app")
toolset = ToolboxToolset(
server_url="https://my-toolbox-service.run.app",
credentials=creds
)
```
### 2. User Identity (OAuth2)
*Recommended for tools that act on behalf of the user.*
Configures the ADK-native interactive 3-legged OAuth flow to get consent and credentials from the end-user at runtime. This strategy is passed to the `ToolboxToolset` just like any other credential strategy.
```python
from toolbox_adk import CredentialStrategy, ToolboxToolset
creds = CredentialStrategy.user_identity(
client_id="YOUR_CLIENT_ID",
client_secret="YOUR_CLIENT_SECRET",
scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
# The toolset will now initiate OAuth flows when required by tools
toolset = ToolboxToolset(
server_url="...",
credentials=creds
)
```
### 3. API Key
*Use a static API key passed in a specific header (default: `X-API-Key`).*
```python
from toolbox_adk import CredentialStrategy
# Default header: X-API-Key
creds = CredentialStrategy.api_key(key="my-secret-key")
# Custom header
creds = CredentialStrategy.api_key(key="my-secret-key", header_name="X-My-Header")
```
### 4. HTTP Bearer Token
*Manually supply a static bearer token.*
```python
from toolbox_adk import CredentialStrategy
creds = CredentialStrategy.manual_token(token="your-static-bearer-token")
```
### 5. Manual Google Credentials
*Use an existing `google.auth.credentials.Credentials` object.*
```python
from toolbox_adk import CredentialStrategy
import google.auth
creds_obj, _ = google.auth.default()
creds = CredentialStrategy.manual_credentials(credentials=creds_obj)
```
### 6. Toolbox Identity (No Auth)
*Use this if your Toolbox server does not require authentication (e.g., local development).*
```python
from toolbox_adk import CredentialStrategy
creds = CredentialStrategy.toolbox_identity()
```
### 7. Native ADK Integration
*Convert ADK-native `AuthConfig` or `AuthCredential` objects.*
```python
from toolbox_adk import CredentialStrategy
# From AuthConfig
creds = CredentialStrategy.from_adk_auth_config(auth_config)
# From AuthCredential + AuthScheme
creds = CredentialStrategy.from_adk_credentials(auth_credential, scheme)
```
### 8. Tool-Specific Authentication
*Resolve authentication tokens dynamically for specific tools.*
Some tools may define their own authentication requirements (e.g., Salesforce OAuth, GitHub PAT) via `authSources` in their schema. You can provide a mapping of getters to resolve these tokens at runtime.
```python
async def get_salesforce_token():
# Fetch token from secret manager or reliable source
return "sf-access-token"
toolset = ToolboxToolset(
server_url="...",
auth_token_getters={
"salesforce-auth": get_salesforce_token, # Async callable
"github-pat": lambda: "my-pat-token" # Sync callable or static lambda
}
)
```
## Advanced Configuration
### Additional Headers
You can inject custom headers into every request made to the Toolbox server. This is useful for passing tracing IDs, API keys, or other metadata.
```python
toolset = ToolboxToolset(
server_url="...",
additional_headers={
"X-Trace-ID": "12345",
"X-My-Header": lambda: get_dynamic_header_value() # Can be a callable
}
)
```
### Global Parameter Binding
Bind values to tool parameters globally across all loaded tools. These values will be **fixed** and **hidden** from the LLM.
* **Schema Hiding**: The bound parameters are removed from the tool schema sent to the model, simplifying the context window.
* **Auto-Injection**: The values are automatically injected into the tool arguments during execution.
```python
toolset = ToolboxToolset(
server_url="...",
bound_params={
# 'region' will be removed from the LLM schema and injected automatically
"region": "us-central1",
"api_key": lambda: get_api_key() # Can be a callable
}
)
```
### Usage with Hooks
You can attach `pre_hook` and `post_hook` functions to execute logic before and after every tool invocation.
{{< notice note>}}
The `pre_hook` can modify `context.arguments` to dynamically alter the inputs passed to the tool.
{{< /notice >}}
```python
from google.adk.tools.tool_context import ToolContext
from typing import Any, Dict, Optional
async def log_start(context: ToolContext, args: Dict[str, Any]):
print(f"Starting tool with args: {args}")
# context is the ADK ToolContext
# Example: Inject or modify arguments
# args["user_id"] = "123"
async def log_end(context: ToolContext, args: Dict[str, Any], result: Optional[Any], error: Optional[Exception]):
print("Finished tool execution")
# Inspect result or error
if error:
print(f"Tool failed: {error}")
else:
print(f"Tool succeeded with result: {result}")
toolset = ToolboxToolset(
server_url="...",
pre_hook=log_start,
post_hook=log_end
)
```

View File

@@ -0,0 +1,386 @@
---
title: "LlamaIndex"
type: docs
weight: 8
description: >
MCP Toolbox LlamaIndex SDK for integrating functionalities of MCP Toolbox into your LlamaIndex apps.
---
## Overview
The `toolbox-llamaindex` package provides a Python interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.
## Installation
```bash
pip install toolbox-llamaindex
```
## Quickstart
Here's a minimal example to get you started using
[LlamaIndex](https://docs.llamaindex.ai/en/stable/#getting-started):
```py
import asyncio
from llama_index.llms.google_genai import GoogleGenAI
from llama_index.core.agent.workflow import AgentWorkflow
from toolbox_llamaindex import ToolboxClient
async def run_agent():
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tools = toolbox.load_toolset()
vertex_model = GoogleGenAI(
model="gemini-2.0-flash-001",
vertexai_config={"project": "project-id", "location": "us-central1"},
)
agent = AgentWorkflow.from_tools_or_functions(
tools,
llm=vertex_model,
system_prompt="You are a helpful assistant.",
)
response = await agent.run(user_msg="Get some response from the agent.")
print(response)
asyncio.run(run_agent())
```
{{< notice tip >}}
For a complete, end-to-end example including setting up the service and using an SDK, see the full tutorial: [Toolbox Quickstart Tutorial](getting-started/local_quickstart)
{{< /notice >}}
## Usage
Import and initialize the toolbox client.
```py
from toolbox_llamaindex import ToolboxClient
# Replace with your Toolbox service's URL
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
```
## Loading Tools
### Load a toolset
A toolset is a collection of related tools. You can load all tools in a toolset
or a specific one:
```py
# Load all tools
tools = toolbox.load_toolset()
# Load a specific toolset
tools = toolbox.load_toolset("my-toolset")
```
### Load a single tool
```py
tool = toolbox.load_tool("my-tool")
```
Loading individual tools gives you finer-grained control over which tools are
available to your LLM agent.
## Use with LlamaIndex
LlamaIndex's agents can dynamically choose and execute tools based on the user
input. Include tools loaded from the Toolbox SDK in the agent's toolkit:
```py
from llama_index.llms.google_genai import GoogleGenAI
from llama_index.core.agent.workflow import AgentWorkflow
vertex_model = GoogleGenAI(
model="gemini-2.0-flash-001",
vertexai_config={"project": "project-id", "location": "us-central1"},
)
# Initialize agent with tools
agent = AgentWorkflow.from_tools_or_functions(
tools,
llm=vertex_model,
system_prompt="You are a helpful assistant.",
)
# Query the agent
response = await agent.run(user_msg="Get some response from the agent.")
print(response)
```
### Maintain state
To maintain state for the agent, add context as follows:
```py
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.llms.google_genai import GoogleGenAI
vertex_model = GoogleGenAI(
model="gemini-2.0-flash-001",
vertexai_config={"project": "project-id", "location": "us-central1"},
)
agent = AgentWorkflow.from_tools_or_functions(
tools,
llm=vertex_model,
system_prompt="You are a helpful assistant.",
)
# Save memory in agent context
ctx = Context(agent)
response = await agent.run(user_msg="Give me some response.", ctx=ctx)
print(response)
```
## Manual usage
Execute a tool manually using the `call` method:
```py
result = tools[0].call(name="Alice", age=30)
```
This is useful for testing tools or when you need precise control over tool
execution outside of an agent framework.
## Client to Server Authentication
This section describes how to authenticate the ToolboxClient itself when
connecting to a Toolbox server instance that requires authentication. This is
crucial for securing your Toolbox server endpoint, especially when deployed on
platforms like Cloud Run, GKE, or any environment where unauthenticated access is restricted.
This client-to-server authentication ensures that the Toolbox server can verify
the identity of the client making the request before any tool is loaded or
called. It is different from [Authenticating Tools](#authenticating-tools),
which deals with providing credentials for specific tools within an already
connected Toolbox session.
### When is Client-to-Server Authentication Needed?
You'll need this type of authentication if your Toolbox server is configured to
deny unauthenticated requests. For example:
- Your Toolbox server is deployed on Cloud Run and configured to "Require authentication."
- Your server is behind an Identity-Aware Proxy (IAP) or a similar
authentication layer.
- You have custom authentication middleware on your self-hosted Toolbox server.
Without proper client authentication in these scenarios, attempts to connect or
make calls (like `load_tool`) will likely fail with `Unauthorized` errors.
### How it works
The `ToolboxClient` allows you to specify functions (or coroutines for the async
client) that dynamically generate HTTP headers for every request sent to the
Toolbox server. The most common use case is to add an Authorization header with
a bearer token (e.g., a Google ID token).
These header-generating functions are called just before each request, ensuring
that fresh credentials or header values can be used.
### Configuration
You can configure these dynamic headers as follows:
```python
from toolbox_llamaindex import ToolboxClient
async with ToolboxClient(
"toolbox-url",
client_headers={"header1": header1_getter, "header2": header2_getter},
) as client:
```
### Authenticating with Google Cloud Servers
For Toolbox servers hosted on Google Cloud (e.g., Cloud Run) and requiring
`Google ID token` authentication, the helper module
[auth_methods](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-core/src/toolbox_core/auth_methods.py) provides utility functions.
### Step by Step Guide for Cloud Run
1. **Configure Permissions**: [Grant](https://cloud.google.com/run/docs/securing/managing-access#service-add-principals) the `roles/run.invoker` IAM role on the Cloud
Run service to the principal. This could be your `user account email` or a
`service account`.
2. **Configure Credentials**
- Local Development: Set up
[ADC](https://cloud.google.com/docs/authentication/set-up-adc-local-dev-environment).
- Google Cloud Environments: When running within Google Cloud (e.g., Compute
Engine, GKE, another Cloud Run service, Cloud Functions), ADC is typically
configured automatically, using the environment's default service account.
3. **Connect to the Toolbox Server**
```python
from toolbox_llamaindex import ToolboxClient
from toolbox_core import auth_methods
auth_token_provider = auth_methods.aget_google_id_token(URL)
async with ToolboxClient(
URL,
client_headers={"Authorization": auth_token_provider},
) as client:
tools = await client.aload_toolset()
# Now, you can use the client as usual.
```
## Authenticating Tools
{{< notice note >}}
Always use HTTPS to connect your application with the Toolbox service, especially when using tools with authentication configured. Using HTTP exposes your application to serious security risks.
{{< /notice >}}
Some tools require user authentication to access sensitive data.
### Supported Authentication Mechanisms
Toolbox currently supports authentication using the [OIDC
protocol](https://openid.net/specs/openid-connect-core-1_0.html) with [ID
tokens](https://openid.net/specs/openid-connect-core-1_0.html#IDToken) (not
access tokens) for [Google OAuth
2.0](https://cloud.google.com/apigee/docs/api-platform/security/oauth/oauth-home).
### Configure Tools
Refer to [these
instructions](https://googleapis.github.io/genai-toolbox/resources/tools/#authenticated-parameters) on
configuring tools for authenticated parameters.
### Configure SDK
You need a method to retrieve an ID token from your authentication service:
```py
async def get_auth_token():
# ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
# This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" # Placeholder
```
#### Add Authentication to a Tool
```py
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tools = toolbox.load_toolset()
auth_tool = tools[0].add_auth_token_getter("my_auth", get_auth_token) # Single token
multi_auth_tool = tools[0].add_auth_token_getters({"auth_1": get_auth_1}, {"auth_2": get_auth_2}) # Multiple tokens
# OR
auth_tools = [tool.add_auth_token_getter("my_auth", get_auth_token) for tool in tools]
```
#### Add Authentication While Loading
```py
auth_tool = toolbox.load_tool(auth_token_getters={"my_auth": get_auth_token})
auth_tools = toolbox.load_toolset(auth_token_getters={"my_auth": get_auth_token})
```
{{< notice note >}}
Adding auth tokens during loading only affect the tools loaded within that call.
{{< /notice >}}
### Complete Example
```py
import asyncio
from toolbox_llamaindex import ToolboxClient
async def get_auth_token():
# ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
# This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" # Placeholder
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tool = toolbox.load_tool("my-tool")
auth_tool = tool.add_auth_token_getter("my_auth", get_auth_token)
result = auth_tool.call(input="some input")
print(result)
```
## Binding Parameter Values
Predetermine values for tool parameters using the SDK. These values won't be
modified by the LLM. This is useful for:
* **Protecting sensitive information:** API keys, secrets, etc.
* **Enforcing consistency:** Ensuring specific values for certain parameters.
* **Pre-filling known data:** Providing defaults or context.
### Binding Parameters to a Tool
```py
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tools = toolbox.load_toolset()
bound_tool = tool[0].bind_param("param", "value") # Single param
multi_bound_tool = tools[0].bind_params({"param1": "value1", "param2": "value2"}) # Multiple params
# OR
bound_tools = [tool.bind_param("param", "value") for tool in tools]
```
### Binding Parameters While Loading
```py
bound_tool = toolbox.load_tool("my-tool", bound_params={"param": "value"})
bound_tools = toolbox.load_toolset(bound_params={"param": "value"})
```
{{< notice note >}}
Bound values during loading only affect the tools loaded in that call.
{{< /notice >}}
### Binding Dynamic Values
Use a function to bind dynamic values:
```py
def get_dynamic_value():
# Logic to determine the value
return "dynamic_value"
dynamic_bound_tool = tool.bind_param("param", get_dynamic_value)
```
{{< notice note >}}
You don't need to modify tool configurations to bind parameter values.
{{< /notice >}}
## Asynchronous Usage
For better performance through [cooperative
multitasking](https://en.wikipedia.org/wiki/Cooperative_multitasking), you can
use the asynchronous interfaces of the `ToolboxClient`.
{{< notice note >}}
Asynchronous interfaces like `aload_tool` and `aload_toolset` require an asynchronous environment. For guidance on running asynchronous Python programs, see [asyncio documentation](https://docs.python.org/3/library/asyncio-runner.html#running-an-asyncio-program).
{{< /notice >}}
```py
import asyncio
from toolbox_llamaindex import ToolboxClient
async def main():
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tool = await client.aload_tool("my-tool")
tools = await client.aload_toolset()
response = await tool.ainvoke()
if __name__ == "__main__":
asyncio.run(main())
```