Compare commits

..

3 Commits

Author SHA1 Message Date
Harsh Jha
be4cf94abc Revise title and description for adk SDK
Updated title and description for the adk documentation.
2026-02-03 12:42:19 +05:30
Harsh Jha
61262a83e1 feat: added js toolbox-adk sdk docs 2026-02-02 13:55:40 +05:30
Harsh Jha
2cadf1bf07 feat: Js SDK documentation added 2026-01-19 13:11:56 +05:30
4 changed files with 520 additions and 316 deletions

View File

@@ -1,12 +1,11 @@
---
title: "JS SDK"
title: "Javascript"
type: docs
weight: 7
description: >
JS SDKs to connect to the MCP Toolbox server.
Javascript SDKs to connect to the MCP Toolbox server.
---
## Overview
The MCP Toolbox service provides a centralized way to manage and expose tools
@@ -22,4 +21,48 @@ These JS SDKs act as clients for that service. They handle the communication nee
By using these SDKs, you can easily leverage your Toolbox-managed tools directly
within your JS applications or AI orchestration frameworks.
[Github](https://github.com/googleapis/mcp-toolbox-sdk-js)
## Which Package Should I Use?
Choosing the right package depends on how you are building your application:
- [`@toolbox-sdk/core`](https://github.com/googleapis/mcp-toolbox-sdk-js/tree/main/packages/toolbox-core):
This is a framework agnostic way to connect the tools to popular frameworks
like Langchain, LlamaIndex and Genkit.
- [`@toolbox-sdk/adk`](https://github.com/googleapis/mcp-toolbox-sdk-js/tree/main/packages/toolbox-adk):
This package provides a seamless way to connect to [Google ADK TS](https://github.com/google/adk-js).
## Available Packages
This repository hosts the following TS packages. See the package-specific
README for detailed installation and usage instructions:
| Package | Target Use Case | Integration | Path | Details (README) | Npm Version |
| :------ | :---------- | :---------- | :---------------------- | :---------- | :---------
| `toolbox-core` | Framework-agnostic / Custom applications | Use directly / Custom | `packages/toolbox-core/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-js/blob/main/packages/toolbox-core/README.md) | ![npm](https://img.shields.io/npm/v/@toolbox-sdk/core) |
| `toolbox-adk` | ADK applications | ADK | `packages/toolbox-adk/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-js/blob/main/packages/toolbox-adk/README.md) | ![npm](https://img.shields.io/npm/v/@toolbox-sdk/adk) |
## Getting Started
To get started using Toolbox tools with an application, follow these general steps:
1. **Set up and Run the Toolbox Service:**
Before using the SDKs, you need the main MCP Toolbox service running. Follow
the instructions here: [**Toolbox Getting Started
Guide**](https://github.com/googleapis/genai-toolbox?tab=readme-ov-file#getting-started)
2. **Install the Appropriate SDK:**
Choose the package based on your needs (see "[Which Package Should I Use?](#which-package-should-i-use)" above) and install it:
```bash
# For the core, framework-agnostic SDK
npm install @toolbox-sdk/core
```
{{< notice note >}}
Source code for [js-sdk](https://github.com/googleapis/mcp-toolbox-sdk-js)
{{< /notice >}}

View File

@@ -0,0 +1,472 @@
---
title: "Adk"
type: docs
weight: 8
description: >
MCP Toolbox ADK SDK for integrating functionalities of MCP Toolbox into your apps.
---
## Overview
The `@toolbox-sdk/adk` package provides a Javascript interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.
## Supported Environments
This SDK is a standard Node.js package built with TypeScript, ensuring broad compatibility with the modern JavaScript ecosystem.
- Node.js: Actively supported on Node.js v18.x and higher. The package is compatible with both modern ES Module (import) and legacy CommonJS (require).
- TypeScript: The SDK is written in TypeScript and ships with its own type declarations, providing a first-class development experience with autocompletion and type-checking out of the box.
- JavaScript: Fully supports modern JavaScript in Node.js environments.
## Installation
```bash
npm install @toolbox-sdk/adk
```
## Quickstart
1. **Start the Toolbox Service**
- Make sure the MCP Toolbox service is running. See the [Toolbox Getting Started Guide](/getting-started/introduction/#getting-started).
2. **Minimal Example**
Here's a minimal example to get you started. Ensure your Toolbox service is running and accessible.
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
const client = new ToolboxClient(URL);
async function quickstart() {
try {
const tools = await client.loadToolset();
// Use tools
} catch (error) {
console.error("unable to load toolset:", error.message);
}
}
quickstart();
```
{{< notice note>}}
This guide uses modern ES Module (`import`) syntax. If your project uses CommonJS, you can import the library using require: `const { ToolboxClient } = require('@toolbox-sdk/adk')`;.
{{< /notice >}}
## Usage
Import and initialize a Toolbox client, pointing it to the URL of your running Toolbox service.
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
// Replace with the actual URL where your Toolbox service is running
const URL = 'http://127.0.0.1:5000';
let client = new ToolboxClient(URL);
const tools = await client.loadToolset();
// Use the client and tools as per requirement
```
All interactions for loading and invoking tools happen through this client.
{{< notice note>}}
Closing the `ToolboxClient` also closes the underlying network session shared by all tools loaded from that client. As a result, any tool instances you have loaded will cease to function and will raise an error if you attempt to invoke them after the client is closed.
{{< /notice >}}
{{< notice note>}}
For advanced use cases, you can provide an external `AxiosInstance` during initialization (e.g., `ToolboxClient(url, my_session)`).
{{< /notice >}}
## Transport Protocols
The SDK supports multiple transport protocols to communicate with the Toolbox server. You can specify the protocol version during client initialization.
### Available Protocols
- `Protocol.MCP`: The default protocol version (currently aliases to `MCP_v20250618`).
- `Protocol.MCP_v20241105`: Use this for compatibility with older MCP servers (November 2024 version).
- `Protocol.MCP_v20250326`: March 2025 version.
- `Protocol.MCP_v20250618`: June 2025 version.
- `Protocol.MCP_v20251125`: November 2025 version.
- `Protocol.TOOLBOX`: Legacy Toolbox protocol.
### Specifying a Protocol
You can explicitly set the protocol by passing the `protocol` argument to the `ToolboxClient` constructor.
```javascript
import { ToolboxClient, Protocol } from '@toolbox-sdk/adk';
const URL = 'http://127.0.0.1:5000';
// Initialize with a specific protocol version
const client = new ToolboxClient(URL, null, null, Protocol.MCP_v20241105);
const tools = await client.loadToolset();
```
## Loading Tools
You can load tools individually or in groups (toolsets) as defined in your Toolbox service configuration. Loading a toolset is convenient when working with multiple related functions, while loading a single tool offers more granular control.
### Load a toolset
A toolset is a collection of related tools. You can load all tools in a toolset or a specific one:
```javascript
// Load all tools
const tools = await toolbox.loadToolset()
// Load a specific toolset
const tools = await toolbox.loadToolset("my-toolset")
```
### Load a single tool
Loads a specific tool by its unique name. This provides fine-grained control.
```javascript
const tool = await toolbox.loadTool("my-tool")
```
## Invoking Tools
Once loaded, tools behave like awaitable JS functions. You invoke them using `await` and pass arguments corresponding to the parameters defined in the tool's configuration within the Toolbox service.
```javascript
const tool = await toolbox.loadTool("my-tool")
const result = await tool.runAsync(args: {a: 5, b: 2})
```
{{< notice tip>}}
For a more comprehensive guide on setting up the Toolbox service itself, which you'll need running to use this SDK, please refer to the [Toolbox Quickstart Guide](getting-started/local_quickstart).
{{< /notice >}}
## Client to Server Authentication
This section describes how to authenticate the ToolboxClient itself when
connecting to a Toolbox server instance that requires authentication. This is
crucial for securing your Toolbox server endpoint, especially when deployed on
platforms like Cloud Run, GKE, or any environment where unauthenticated access is restricted.
This client-to-server authentication ensures that the Toolbox server can verify
the identity of the client making the request before any tool is loaded or
called. It is different from [Authenticating Tools](#authenticating-tools),
which deals with providing credentials for specific tools within an already
connected Toolbox session.
### When is Client-to-Server Authentication Needed?
You'll need this type of authentication if your Toolbox server is configured to
deny unauthenticated requests. For example:
- Your Toolbox server is deployed on Cloud Run and configured to "Require authentication."
- Your server is behind an Identity-Aware Proxy (IAP) or a similar
authentication layer.
- You have custom authentication middleware on your self-hosted Toolbox server.
Without proper client authentication in these scenarios, attempts to connect or
make calls (like `load_tool`) will likely fail with `Unauthorized` errors.
### How it works
The `ToolboxClient` allows you to specify functions that dynamically generate
HTTP headers for every request sent to the Toolbox server. The most common use
case is to add an [Authorization
header](https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Authorization)
with a bearer token (e.g., a Google ID token).
These header-generating functions are called just before each request, ensuring
that fresh credentials or header values can be used.
### Configuration
You can configure these dynamic headers as seen below:
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
import {getGoogleIdToken} from '@toolbox-sdk/core/auth'
const URL = 'http://127.0.0.1:5000';
const getGoogleIdTokenGetter = () => getGoogleIdToken(URL);
const client = new ToolboxClient(URL, null, {"Authorization": getGoogleIdTokenGetter});
// Use the client as usual
```
### Authenticating with Google Cloud Servers
For Toolbox servers hosted on Google Cloud (e.g., Cloud Run) and requiring
`Google ID token` authentication, the helper module
[auth_methods](src/toolbox_core/authMethods.ts) provides utility functions.
### Step by Step Guide for Cloud Run
1. **Configure Permissions**: [Grant](https://cloud.google.com/run/docs/securing/managing-access#service-add-principals) the `roles/run.invoker` IAM role on the Cloud
Run service to the principal. This could be your `user account email` or a
`service account`.
2. **Configure Credentials**
- Local Development: Set up
[ADC](https://cloud.google.com/docs/authentication/set-up-adc-local-dev-environment).
- Google Cloud Environments: When running within Google Cloud (e.g., Compute
Engine, GKE, another Cloud Run service, Cloud Functions), ADC is typically
configured automatically, using the environment's default service account.
3. **Connect to the Toolbox Server**
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
import {getGoogleIdToken} from '@toolbox-sdk/core/auth'
const URL = 'http://127.0.0.1:5000';
const getGoogleIdTokenGetter = () => getGoogleIdToken(URL);
const client = new ToolboxClient(URL, null, {"Authorization": getGoogleIdTokenGetter});
// Use the client as usual
```
## Authenticating Tools
{{< notice note>}}
**Always use HTTPS** to connect your application with the Toolbox service, especially in **production environments** or whenever the communication involves **sensitive data** (including scenarios where tools require authentication tokens). Using plain HTTP lacks encryption and exposes your application and data to significant security risks, such as eavesdropping and tampering.
{{< /notice >}}
Tools can be configured within the Toolbox service to require authentication,
ensuring only authorized users or applications can invoke them, especially when
accessing sensitive data.
### When is Authentication Needed?
Authentication is configured per-tool within the Toolbox service itself. If a
tool you intend to use is marked as requiring authentication in the service, you
must configure the SDK client to provide the necessary credentials (currently
Oauth2 tokens) when invoking that specific tool.
### Supported Authentication Mechanisms
The Toolbox service enables secure tool usage through **Authenticated Parameters**. For detailed information on how these mechanisms work within the Toolbox service and how to configure them, please refer to [Toolbox Service Documentation - Authenticated Parameters](resources/tools/#authenticated-parameters)
### Step 1: Configure Tools in Toolbox Service
First, ensure the target tool(s) are configured correctly in the Toolbox service
to require authentication. Refer to the [Toolbox Service Documentation -
Authenticated
Parameters](resources/tools/#authenticated-parameters)
for instructions.
### Step 2: Configure SDK Client
Your application needs a way to obtain the required Oauth2 token for the
authenticated user. The SDK requires you to provide a function capable of
retrieving this token *when the tool is invoked*.
#### Provide an ID Token Retriever Function
You must provide the SDK with a function (sync or async) that returns the
necessary token when called. The implementation depends on your application's
authentication flow (e.g., retrieving a stored token, initiating an OAuth flow).
{{< notice note>}}
The name used when registering the getter function with the SDK (e.g., `"my_api_token"`) must exactly match the `name` of the corresponding `authServices` defined in the tool's configuration within the Toolbox service.
{{< /notice >}}
```javascript
async function getAuthToken() {
// ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
// This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" // Placeholder
}
```
{{< notice tip>}}
Your token retriever function is invoked every time an authenticated parameter requires a token for a tool call. Consider implementing caching logic within this function to avoid redundant token fetching or generation, especially for tokens with longer validity periods or if the retrieval process is resource-intensive.
{{< /notice >}}
#### Option A: Add Authentication to a Loaded Tool
You can add the token retriever function to a tool object *after* it has been
loaded. This modifies the specific tool instance.
```javascript
const URL = 'http://127.0.0.1:5000';
let client = new ToolboxClient(URL);
let tool = await client.loadTool("my-tool")
const authTool = tool.addAuthTokenGetter("my_auth", get_auth_token) // Single token
// OR
const multiAuthTool = tool.addAuthTokenGetters({
"my_auth_1": getAuthToken1,
"my_auth_2": getAuthToken2,
}) // Multiple tokens
```
#### Option B: Add Authentication While Loading Tools
You can provide the token retriever(s) directly during the `loadTool` or
`loadToolset` calls. This applies the authentication configuration only to the
tools loaded in that specific call, without modifying the original tool objects
if they were loaded previously.
```javascript
const authTool = await toolbox.loadTool("toolName", {"myAuth": getAuthToken})
// OR
const authTools = await toolbox.loadToolset({"myAuth": getAuthToken})
```
{{< notice note>}}
Adding auth tokens during loading only affect the tools loaded within that call.
{{< /notice >}}
### Complete Authentication Example
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
async function getAuthToken() {
// ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
// This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" // Placeholder
}
const URL = 'http://127.0.0.1:5000';
let client = new ToolboxClient(URL);
const tool = await client.loadTool("my-tool");
const authTool = tool.addAuthTokenGetters({"my_auth": getAuthToken});
const result = await authTool.runAsync(args: {input:"some input"});
console.log(result);
```
## Binding Parameter Values
The SDK allows you to pre-set, or "bind", values for specific tool parameters
before the tool is invoked or even passed to an LLM. These bound values are
fixed and will not be requested or modified by the LLM during tool use.
### Why Bind Parameters?
- **Protecting sensitive information:** API keys, secrets, etc.
- **Enforcing consistency:** Ensuring specific values for certain parameters.
- **Pre-filling known data:** Providing defaults or context.
{{< notice note>}}
The parameter names used for binding (e.g., `"api_key"`) must exactly match the parameter names defined in the tool's configuration within the Toolbox service.
{{< /notice >}}
{{< notice note>}}
You do not need to modify the tool's configuration in the Toolbox service to
> bind parameter values using the SDK.
{{< /notice >}}
### Option A: Binding Parameters to a Loaded Tool
Bind values to a tool object *after* it has been loaded. This modifies the
specific tool instance.
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
const URL = 'http://127.0.0.1:5000';
let client = new ToolboxClient(URL);
const tool = await client.loadTool("my-tool");
const boundTool = tool.bindParam("param", "value");
// OR
const boundTool = tool.bindParams({"param": "value"});
```
### Option B: Binding Parameters While Loading Tools
Specify bound parameters directly when loading tools. This applies the binding
only to the tools loaded in that specific call.
```javascript
const boundTool = await client.loadTool("my-tool", null, {"param": "value"})
// OR
const boundTools = await client.loadToolset(null, {"param": "value"})
```
{{< notice note>}}
Bound values during loading only affect the tools loaded in that call.
{{< /notice >}}
### Binding Dynamic Values
Instead of a static value, you can bind a parameter to a synchronous or
asynchronous function. This function will be called *each time* the tool is
invoked to dynamically determine the parameter's value at runtime.
```javascript
async function getDynamicValue() {
// Logic to determine the value
return "dynamicValue";
}
const dynamicBoundTool = tool.bindParam("param", getDynamicValue)
```
{{< notice note>}}
You don't need to modify tool configurations to bind parameter values.
{{< /notice >}}
# Using with ADK
ADK JS:
```javascript
import {FunctionTool, InMemoryRunner, LlmAgent} from '@google/adk';
import {Content} from '@google/genai';
import {ToolboxClient} from '@toolbox-sdk/core'
const toolboxClient = new ToolboxClient("http://127.0.0.1:5000");
const loadedTools = await toolboxClient.loadToolset();
export const rootAgent = new LlmAgent({
name: 'weather_time_agent',
model: 'gemini-2.5-flash',
description:
'Agent to answer questions about the time and weather in a city.',
instruction:
'You are a helpful agent who can answer user questions about the time and weather in a city.',
tools: loadedTools,
});
async function main() {
const userId = 'test_user';
const appName = rootAgent.name;
const runner = new InMemoryRunner({agent: rootAgent, appName});
const session = await runner.sessionService.createSession({
appName,
userId,
});
const prompt = 'What is the weather in New York? And the time?';
const content: Content = {
role: 'user',
parts: [{text: prompt}],
};
console.log(content);
for await (const e of runner.runAsync({
userId,
sessionId: session.id,
newMessage: content,
})) {
if (e.content?.parts?.[0]?.text) {
console.log(`${e.author}: ${JSON.stringify(e.content, null, 2)}`);
}
}
}
main().catch(console.error);
```

View File

@@ -22,36 +22,4 @@ These Python SDKs act as clients for that service. They handle the communication
By using these SDKs, you can easily leverage your Toolbox-managed tools directly
within your Python applications or AI orchestration frameworks.
## Which Package Should I Use?
Choosing the right package depends on how you are building your application:
* [`toolbox-langchain`](langchain):
Use this package if you are building your application using the LangChain or
LangGraph frameworks. It provides tools that are directly compatible with the
LangChain ecosystem (`BaseTool` interface), simplifying integration.
* [`toolbox-llamaindex`](llamaindex):
Use this package if you are building your application using the LlamaIndex framework.
It provides tools that are directly compatible with the
LlamaIndex ecosystem (`BaseTool` interface), simplifying integration.
* [`toolbox-core`](core):
Use this package if you are not using LangChain/LangGraph or any other
orchestration framework, or if you need a framework-agnostic way to interact
with Toolbox tools (e.g., for custom orchestration logic or direct use in
Python scripts).
## Available Packages
This repository hosts the following Python packages. See the package-specific
README for detailed installation and usage instructions:
| Package | Target Use Case | Integration | Path | Details (README) | PyPI Status |
| :------ | :---------- | :---------- | :---------------------- | :---------- | :---------
| `toolbox-core` | Framework-agnostic / Custom applications | Use directly / Custom | `packages/toolbox-core/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-core/README.md) | ![pypi version](https://img.shields.io/pypi/v/toolbox-core.svg) |
| `toolbox-langchain` | LangChain / LangGraph applications | LangChain / LangGraph | `packages/toolbox-langchain/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-langchain/README.md) | ![pypi version](https://img.shields.io/pypi/v/toolbox-langchain.svg) |
| `toolbox-llamaindex` | LlamaIndex applications | LlamaIndex | `packages/toolbox-llamaindex/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-llamaindex/README.md) | ![pypi version](https://img.shields.io/pypi/v/toolbox-llamaindex.svg) |
{{< notice note >}}
Source code for [python-sdk](https://github.com/googleapis/mcp-toolbox-sdk-python)
{{< /notice >}}
[Github](https://github.com/googleapis/mcp-toolbox-sdk-python)

View File

@@ -1,279 +0,0 @@
---
title: "Adk"
type: docs
weight: 8
description: >
MCP Toolbox ADK SDK for integrating functionalities of MCP Toolbox into your apps.
---
## Overview
The `toolbox-adk` package provides a Python interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.
## Installation
```bash
pip install toolbox-adk
```
## Usage
The primary entry point is the `ToolboxToolset`, which loads tools from a remote Toolbox server and adapts them for use with ADK agents.
{{< notice note>}}
The `ToolboxToolset` in this package mirrors the `ToolboxToolset` in the [`adk-python`](https://github.com/google/adk-python) package. The `adk-python` version is a shim that delegates all functionality to this implementation.
{{< /notice >}}
```python
from toolbox_adk import ToolboxToolset
from google.adk.agents import Agent
# Create the Toolset
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000"
)
# Use in your ADK Agent
agent = Agent(tools=[toolset])
```
## Transport Protocols
The SDK supports multiple transport protocols for communicating with the Toolbox server. By default, the client uses the latest supported version of the **Model Context Protocol (MCP)**.
You can explicitly select a protocol using the `protocol` option during toolset initialization. This is useful if you need to use the native Toolbox HTTP protocol or pin the client to a specific legacy version of MCP.
{{< notice note>}}
* **Native Toolbox Transport**: This uses the service's native **REST over HTTP** API.
* **MCP Transports**: These options use the **Model Context Protocol over HTTP**.
{{< /notice >}}
### Supported Protocols
| Constant | Description |
| :--- | :--- |
| `Protocol.MCP` | **(Default)** Alias for the default MCP version (currently `2025-06-18`). |
| `Protocol.TOOLBOX` | The native Toolbox HTTP protocol. |
| `Protocol.MCP_v20251125` | MCP Protocol version 2025-11-25. |
| `Protocol.MCP_v20250618` | MCP Protocol version 2025-06-18. |
| `Protocol.MCP_v20250326` | MCP Protocol version 2025-03-26. |
| `Protocol.MCP_v20241105` | MCP Protocol version 2024-11-05. |
### Example
If you wish to use the native Toolbox protocol:
```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.TOOLBOX
)
```
If you want to pin the MCP Version 2025-03-26:
```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.MCP_v20250326
)
```
{{< notice tip>}}
By default, it uses **Toolbox Identity** (no authentication), which is suitable for local development.
For production environments (Cloud Run, GKE) or accessing protected resources, see the [Authentication](#authentication) section for strategies like Workload Identity or OAuth2.
{{< /notice >}}
## Authentication
The `ToolboxToolset` requires credentials to authenticate with the Toolbox server. You can configure these credentials using the `CredentialStrategy` factory methods.
The strategies handle two main types of authentication:
* **Client-to-Server**: Securing the connection to the Toolbox server (e.g., Workload Identity, API keys).
* **User Identity**: Authenticating the end-user for specific tools (e.g., 3-legged OAuth).
### 1. Workload Identity (ADC)
*Recommended for Cloud Run, GKE, or local development with `gcloud auth login`.*
Uses the agent's Application Default Credentials (ADC) to generate an OIDC token. This is the standard way for one service to authenticate to another on Google Cloud.
```python
from toolbox_adk import CredentialStrategy, ToolboxToolset
# target_audience: The URL of your Toolbox server
creds = CredentialStrategy.workload_identity(target_audience="https://my-toolbox-service.run.app")
toolset = ToolboxToolset(
server_url="https://my-toolbox-service.run.app",
credentials=creds
)
```
### 2. User Identity (OAuth2)
*Recommended for tools that act on behalf of the user.*
Configures the ADK-native interactive 3-legged OAuth flow to get consent and credentials from the end-user at runtime. This strategy is passed to the `ToolboxToolset` just like any other credential strategy.
```python
from toolbox_adk import CredentialStrategy, ToolboxToolset
creds = CredentialStrategy.user_identity(
client_id="YOUR_CLIENT_ID",
client_secret="YOUR_CLIENT_SECRET",
scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
# The toolset will now initiate OAuth flows when required by tools
toolset = ToolboxToolset(
server_url="...",
credentials=creds
)
```
### 3. API Key
*Use a static API key passed in a specific header (default: `X-API-Key`).*
```python
from toolbox_adk import CredentialStrategy
# Default header: X-API-Key
creds = CredentialStrategy.api_key(key="my-secret-key")
# Custom header
creds = CredentialStrategy.api_key(key="my-secret-key", header_name="X-My-Header")
```
### 4. HTTP Bearer Token
*Manually supply a static bearer token.*
```python
from toolbox_adk import CredentialStrategy
creds = CredentialStrategy.manual_token(token="your-static-bearer-token")
```
### 5. Manual Google Credentials
*Use an existing `google.auth.credentials.Credentials` object.*
```python
from toolbox_adk import CredentialStrategy
import google.auth
creds_obj, _ = google.auth.default()
creds = CredentialStrategy.manual_credentials(credentials=creds_obj)
```
### 6. Toolbox Identity (No Auth)
*Use this if your Toolbox server does not require authentication (e.g., local development).*
```python
from toolbox_adk import CredentialStrategy
creds = CredentialStrategy.toolbox_identity()
```
### 7. Native ADK Integration
*Convert ADK-native `AuthConfig` or `AuthCredential` objects.*
```python
from toolbox_adk import CredentialStrategy
# From AuthConfig
creds = CredentialStrategy.from_adk_auth_config(auth_config)
# From AuthCredential + AuthScheme
creds = CredentialStrategy.from_adk_credentials(auth_credential, scheme)
```
### 8. Tool-Specific Authentication
*Resolve authentication tokens dynamically for specific tools.*
Some tools may define their own authentication requirements (e.g., Salesforce OAuth, GitHub PAT) via `authSources` in their schema. You can provide a mapping of getters to resolve these tokens at runtime.
```python
async def get_salesforce_token():
# Fetch token from secret manager or reliable source
return "sf-access-token"
toolset = ToolboxToolset(
server_url="...",
auth_token_getters={
"salesforce-auth": get_salesforce_token, # Async callable
"github-pat": lambda: "my-pat-token" # Sync callable or static lambda
}
)
```
## Advanced Configuration
### Additional Headers
You can inject custom headers into every request made to the Toolbox server. This is useful for passing tracing IDs, API keys, or other metadata.
```python
toolset = ToolboxToolset(
server_url="...",
additional_headers={
"X-Trace-ID": "12345",
"X-My-Header": lambda: get_dynamic_header_value() # Can be a callable
}
)
```
### Global Parameter Binding
Bind values to tool parameters globally across all loaded tools. These values will be **fixed** and **hidden** from the LLM.
* **Schema Hiding**: The bound parameters are removed from the tool schema sent to the model, simplifying the context window.
* **Auto-Injection**: The values are automatically injected into the tool arguments during execution.
```python
toolset = ToolboxToolset(
server_url="...",
bound_params={
# 'region' will be removed from the LLM schema and injected automatically
"region": "us-central1",
"api_key": lambda: get_api_key() # Can be a callable
}
)
```
### Usage with Hooks
You can attach `pre_hook` and `post_hook` functions to execute logic before and after every tool invocation.
{{< notice note>}}
The `pre_hook` can modify `context.arguments` to dynamically alter the inputs passed to the tool.
{{< /notice >}}
```python
from google.adk.tools.tool_context import ToolContext
from typing import Any, Dict, Optional
async def log_start(context: ToolContext, args: Dict[str, Any]):
print(f"Starting tool with args: {args}")
# context is the ADK ToolContext
# Example: Inject or modify arguments
# args["user_id"] = "123"
async def log_end(context: ToolContext, args: Dict[str, Any], result: Optional[Any], error: Optional[Exception]):
print("Finished tool execution")
# Inspect result or error
if error:
print(f"Tool failed: {error}")
else:
print(f"Tool succeeded with result: {result}")
toolset = ToolboxToolset(
server_url="...",
pre_hook=log_start,
post_hook=log_end
)
```