Compare commits

..

2 Commits

Author SHA1 Message Date
Harsh Jha
baca9735d6 chore: fixing metadata for adk doc 2026-02-03 12:32:34 +05:30
Harsh Jha
be4fc9e207 feat: python toolbox-adk sdk doc migration 2026-02-03 12:02:17 +05:30
2 changed files with 279 additions and 497 deletions

View File

@@ -0,0 +1,279 @@
---
title: "Adk"
type: docs
weight: 8
description: >
MCP Toolbox ADK SDK for integrating functionalities of MCP Toolbox into your apps.
---
## Overview
The `toolbox-adk` package provides a Python interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.
## Installation
```bash
pip install toolbox-adk
```
## Usage
The primary entry point is the `ToolboxToolset`, which loads tools from a remote Toolbox server and adapts them for use with ADK agents.
{{< notice note>}}
The `ToolboxToolset` in this package mirrors the `ToolboxToolset` in the [`adk-python`](https://github.com/google/adk-python) package. The `adk-python` version is a shim that delegates all functionality to this implementation.
{{< /notice >}}
```python
from toolbox_adk import ToolboxToolset
from google.adk.agents import Agent
# Create the Toolset
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000"
)
# Use in your ADK Agent
agent = Agent(tools=[toolset])
```
## Transport Protocols
The SDK supports multiple transport protocols for communicating with the Toolbox server. By default, the client uses the latest supported version of the **Model Context Protocol (MCP)**.
You can explicitly select a protocol using the `protocol` option during toolset initialization. This is useful if you need to use the native Toolbox HTTP protocol or pin the client to a specific legacy version of MCP.
{{< notice note>}}
* **Native Toolbox Transport**: This uses the service's native **REST over HTTP** API.
* **MCP Transports**: These options use the **Model Context Protocol over HTTP**.
{{< /notice >}}
### Supported Protocols
| Constant | Description |
| :--- | :--- |
| `Protocol.MCP` | **(Default)** Alias for the default MCP version (currently `2025-06-18`). |
| `Protocol.TOOLBOX` | The native Toolbox HTTP protocol. |
| `Protocol.MCP_v20251125` | MCP Protocol version 2025-11-25. |
| `Protocol.MCP_v20250618` | MCP Protocol version 2025-06-18. |
| `Protocol.MCP_v20250326` | MCP Protocol version 2025-03-26. |
| `Protocol.MCP_v20241105` | MCP Protocol version 2024-11-05. |
### Example
If you wish to use the native Toolbox protocol:
```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.TOOLBOX
)
```
If you want to pin the MCP Version 2025-03-26:
```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.MCP_v20250326
)
```
{{< notice tip>}}
By default, it uses **Toolbox Identity** (no authentication), which is suitable for local development.
For production environments (Cloud Run, GKE) or accessing protected resources, see the [Authentication](#authentication) section for strategies like Workload Identity or OAuth2.
{{< /notice >}}
## Authentication
The `ToolboxToolset` requires credentials to authenticate with the Toolbox server. You can configure these credentials using the `CredentialStrategy` factory methods.
The strategies handle two main types of authentication:
* **Client-to-Server**: Securing the connection to the Toolbox server (e.g., Workload Identity, API keys).
* **User Identity**: Authenticating the end-user for specific tools (e.g., 3-legged OAuth).
### 1. Workload Identity (ADC)
*Recommended for Cloud Run, GKE, or local development with `gcloud auth login`.*
Uses the agent's Application Default Credentials (ADC) to generate an OIDC token. This is the standard way for one service to authenticate to another on Google Cloud.
```python
from toolbox_adk import CredentialStrategy, ToolboxToolset
# target_audience: The URL of your Toolbox server
creds = CredentialStrategy.workload_identity(target_audience="https://my-toolbox-service.run.app")
toolset = ToolboxToolset(
server_url="https://my-toolbox-service.run.app",
credentials=creds
)
```
### 2. User Identity (OAuth2)
*Recommended for tools that act on behalf of the user.*
Configures the ADK-native interactive 3-legged OAuth flow to get consent and credentials from the end-user at runtime. This strategy is passed to the `ToolboxToolset` just like any other credential strategy.
```python
from toolbox_adk import CredentialStrategy, ToolboxToolset
creds = CredentialStrategy.user_identity(
client_id="YOUR_CLIENT_ID",
client_secret="YOUR_CLIENT_SECRET",
scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
# The toolset will now initiate OAuth flows when required by tools
toolset = ToolboxToolset(
server_url="...",
credentials=creds
)
```
### 3. API Key
*Use a static API key passed in a specific header (default: `X-API-Key`).*
```python
from toolbox_adk import CredentialStrategy
# Default header: X-API-Key
creds = CredentialStrategy.api_key(key="my-secret-key")
# Custom header
creds = CredentialStrategy.api_key(key="my-secret-key", header_name="X-My-Header")
```
### 4. HTTP Bearer Token
*Manually supply a static bearer token.*
```python
from toolbox_adk import CredentialStrategy
creds = CredentialStrategy.manual_token(token="your-static-bearer-token")
```
### 5. Manual Google Credentials
*Use an existing `google.auth.credentials.Credentials` object.*
```python
from toolbox_adk import CredentialStrategy
import google.auth
creds_obj, _ = google.auth.default()
creds = CredentialStrategy.manual_credentials(credentials=creds_obj)
```
### 6. Toolbox Identity (No Auth)
*Use this if your Toolbox server does not require authentication (e.g., local development).*
```python
from toolbox_adk import CredentialStrategy
creds = CredentialStrategy.toolbox_identity()
```
### 7. Native ADK Integration
*Convert ADK-native `AuthConfig` or `AuthCredential` objects.*
```python
from toolbox_adk import CredentialStrategy
# From AuthConfig
creds = CredentialStrategy.from_adk_auth_config(auth_config)
# From AuthCredential + AuthScheme
creds = CredentialStrategy.from_adk_credentials(auth_credential, scheme)
```
### 8. Tool-Specific Authentication
*Resolve authentication tokens dynamically for specific tools.*
Some tools may define their own authentication requirements (e.g., Salesforce OAuth, GitHub PAT) via `authSources` in their schema. You can provide a mapping of getters to resolve these tokens at runtime.
```python
async def get_salesforce_token():
# Fetch token from secret manager or reliable source
return "sf-access-token"
toolset = ToolboxToolset(
server_url="...",
auth_token_getters={
"salesforce-auth": get_salesforce_token, # Async callable
"github-pat": lambda: "my-pat-token" # Sync callable or static lambda
}
)
```
## Advanced Configuration
### Additional Headers
You can inject custom headers into every request made to the Toolbox server. This is useful for passing tracing IDs, API keys, or other metadata.
```python
toolset = ToolboxToolset(
server_url="...",
additional_headers={
"X-Trace-ID": "12345",
"X-My-Header": lambda: get_dynamic_header_value() # Can be a callable
}
)
```
### Global Parameter Binding
Bind values to tool parameters globally across all loaded tools. These values will be **fixed** and **hidden** from the LLM.
* **Schema Hiding**: The bound parameters are removed from the tool schema sent to the model, simplifying the context window.
* **Auto-Injection**: The values are automatically injected into the tool arguments during execution.
```python
toolset = ToolboxToolset(
server_url="...",
bound_params={
# 'region' will be removed from the LLM schema and injected automatically
"region": "us-central1",
"api_key": lambda: get_api_key() # Can be a callable
}
)
```
### Usage with Hooks
You can attach `pre_hook` and `post_hook` functions to execute logic before and after every tool invocation.
{{< notice note>}}
The `pre_hook` can modify `context.arguments` to dynamically alter the inputs passed to the tool.
{{< /notice >}}
```python
from google.adk.tools.tool_context import ToolContext
from typing import Any, Dict, Optional
async def log_start(context: ToolContext, args: Dict[str, Any]):
print(f"Starting tool with args: {args}")
# context is the ADK ToolContext
# Example: Inject or modify arguments
# args["user_id"] = "123"
async def log_end(context: ToolContext, args: Dict[str, Any], result: Optional[Any], error: Optional[Exception]):
print("Finished tool execution")
# Inspect result or error
if error:
print(f"Tool failed: {error}")
else:
print(f"Tool succeeded with result: {result}")
toolset = ToolboxToolset(
server_url="...",
pre_hook=log_start,
post_hook=log_end
)
```

View File

@@ -1,497 +0,0 @@
---
title: "core"
type: docs
weight: 8
description: >
MCP Toolbox Core SDK for integrating functionalities of MCP Toolbox into your Agentic apps.
---
## Overview
The `toolbox-core` package provides a Python interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.
## Installation
```bash
pip install toolbox-core
```
{{< notice note >}}
* The primary `ToolboxClient` is asynchronous and requires using `await` for loading and invoking tools, as shown in most examples.
* Asynchronous code needs to run within an event loop (e.g., using `asyncio.run()` or in an async framework). See the [Python `asyncio` documentation](https://docs.python.org/3/library/asyncio-task.html) for more details.
* If you prefer synchronous execution, refer to the [Synchronous Usage](#synchronous-usage) section below.
{{< /notice >}}
{{< notice note>}}
The `ToolboxClient` (and its synchronous counterpart `ToolboxSyncClient`) interacts with network resources using an underlying HTTP client session. You should remember to use a context manager or explicitly call `close()` to clean up these resources. If you provide your own session, you'll need to close it in addition to calling `ToolboxClient.close()`.
{{< /notice >}}
## Quickstart
1. **Start the Toolbox Service**
- Make sure the MCP Toolbox service is running on port `5000` of your local machine. See the [Toolbox Getting Started Guide](/getting-started/introduction/#getting-started).
2. **Minimal Example**
```python
import asyncio
from toolbox_core import ToolboxClient
async def main():
# Replace with the actual URL where your Toolbox service is running
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
weather_tool = await toolbox.load_tool("get_weather")
result = await weather_tool(location="London")
print(result)
if __name__ == "__main__":
asyncio.run(main())
```
{{< notice tip>}}
For a complete, end-to-end example including setting up the service and using an SDK, see the full tutorial: [**Toolbox Quickstart Tutorial**](https://googleapis.github.io/genai-toolbox/getting-started/local_quickstart)
{{< /notice >}}
{{< notice note>}}
If you initialize `ToolboxClient` without providing an external session and cannot use `async with`, you must explicitly close the client using `await toolbox.close()` in a `finally` block. This ensures the internally created session is closed.
```py
toolbox = ToolboxClient("http://127.0.0.1:5000")
try:
# ... use toolbox ...
finally:
await toolbox.close()
```
{{< /notice >}}
## Usage
Import and initialize a Toolbox client, pointing it to the URL of your running
Toolbox service.
```py
from toolbox_core import ToolboxClient
# Replace with your Toolbox service's URL
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
```
All interactions for loading and invoking tools happen through this client.
{{< notice tip>}}
For advanced use cases, you can provide an external `aiohttp.ClientSession` during initialization (e.g., `ToolboxClient(url, session=my_session)`). If you provide your own session, you are responsible for managing its lifecycle; `ToolboxClient` *will not* close it.
{{< /notice >}}
{{< notice note>}}
Closing the `ToolboxClient` also closes the underlying network session shared by all tools loaded from that client. As a result, any tool instances you have loaded will cease to function and will raise an error if you attempt to invoke them after the client is closed.
{{< /notice >}}
## Loading Tools
You can load tools individually or in groups (toolsets) as defined in your
Toolbox service configuration. Loading a toolset is convenient when working with
multiple related functions, while loading a single tool offers more granular
control.
### Load a toolset
A toolset is a collection of related tools. You can load all tools in a toolset
or a specific one:
```py
# Load all tools
tools = await toolbox.load_toolset()
# Load a specific toolset
tools = await toolbox.load_toolset("my-toolset")
```
### Load a single tool
Loads a specific tool by its unique name. This provides fine-grained control.
```py
tool = await toolbox.load_tool("my-tool")
```
## Invoking Tools
Once loaded, tools behave like awaitable Python functions. You invoke them using
`await` and pass arguments corresponding to the parameters defined in the tool's
configuration within the Toolbox service.
```py
tool = await toolbox.load_tool("my-tool")
result = await tool("foo", bar="baz")
```
{{< notice tip>}}
For a more comprehensive guide on setting up the Toolbox service itself, which you'll need running to use this SDK, please refer to the [Toolbox Quickstart Guide](getting-started/local_quickstart).
{{< /notice >}}
## Synchronous Usage
By default, the `ToolboxClient` and the `ToolboxTool` objects it produces behave like asynchronous Python functions, requiring the use of `await`.
If your application primarily uses synchronous code, or you prefer not to manage an asyncio event loop, you can use the synchronous alternatives provided:
* `ToolboxSyncClient`: The synchronous counterpart to `ToolboxClient`.
* `ToolboxSyncTool`: The synchronous counterpart to `ToolboxTool`.
The `ToolboxSyncClient` handles communication with the Toolbox service synchronously and produces `ToolboxSyncTool` instances when you load tools. You do not use the `await` keyword when interacting with these synchronous versions.
```py
from toolbox_core import ToolboxSyncClient
with ToolboxSyncClient("http://127.0.0.1:5000") as toolbox:
weather_tool = toolbox.load_tool("get_weather")
result = weather_tool(location="Paris")
print(result)
```
{{< notice tip>}}
While synchronous invocation is available for convenience, it's generally considered best practice to use asynchronous operations (like those provided by the default `ToolboxClient` and `ToolboxTool`) for an I/O-bound task like tool invocation. Asynchronous programming allows for cooperative multitasking, often leading to better performance and resource utilization, especially in applications handling concurrent requests.
{{< /notice >}}
## Use with LangGraph
The Toolbox Core SDK integrates smoothly with frameworks like LangGraph,
allowing you to incorporate tools managed by the Toolbox service into your
agentic workflows.
{{< notice tip>}}
The loaded tools (both async `ToolboxTool` and sync `ToolboxSyncTool`) are callable and can often be used directly. However, to ensure parameter descriptions from Google-style docstrings are accurately parsed and made available to the LLM (via `bind_tools()`) and LangGraph internals, it's recommended to wrap the loaded tools using LangChain's [`StructuredTool`](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.structured.StructuredTool.html).
{{< /notice >}}
Here's a conceptual example adapting the [official LangGraph tool calling
guide](https://langchain-ai.github.io/langgraph/how-tos/tool-calling):
```py
import asyncio
from typing import Annotated
from typing_extensions import TypedDict
from langchain_core.messages import HumanMessage, BaseMessage
from toolbox_core import ToolboxClient
from langchain_google_vertexai import ChatVertexAI
from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import ToolNode
from langchain.tools import StructuredTool
from langgraph.graph.message import add_messages
class State(TypedDict):
messages: Annotated[list[BaseMessage], add_messages]
async def main():
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tools = await toolbox.load_toolset()
wrapped_tools = [StructuredTool.from_function(tool, parse_docstring=True) for tool in tools]
model_with_tools = ChatVertexAI(model="gemini-2.5-flash").bind_tools(wrapped_tools)
tool_node = ToolNode(wrapped_tools)
def call_agent(state: State):
response = model_with_tools.invoke(state["messages"])
return {"messages": [response]}
def should_continue(state: State):
last_message = state["messages"][-1]
if last_message.tool_calls:
return "tools"
return END
graph_builder = StateGraph(State)
graph_builder.add_node("agent", call_agent)
graph_builder.add_node("tools", tool_node)
graph_builder.add_edge(START, "agent")
graph_builder.add_conditional_edges(
"agent",
should_continue,
)
graph_builder.add_edge("tools", "agent")
app = graph_builder.compile()
prompt = "What is the weather in London?"
inputs = {"messages": [HumanMessage(content=prompt)]}
print(f"User: {prompt}\n")
print("--- Streaming Agent Steps ---")
events = app.stream(
inputs,
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
print("\n---\n")
asyncio.run(main())
```
## Client to Server Authentication
This section describes how to authenticate the ToolboxClient itself when
connecting to a Toolbox server instance that requires authentication. This is
crucial for securing your Toolbox server endpoint, especially when deployed on
platforms like Cloud Run, GKE, or any environment where unauthenticated access is restricted.
This client-to-server authentication ensures that the Toolbox server can verify
the identity of the client making the request before any tool is loaded or
called. It is different from [Authenticating Tools](#authenticating-tools),
which deals with providing credentials for specific tools within an already
connected Toolbox session.
### When is Client-to-Server Authentication Needed?
You'll need this type of authentication if your Toolbox server is configured to
deny unauthenticated requests. For example:
- Your Toolbox server is deployed on Cloud Run and configured to "Require authentication."
- Your server is behind an Identity-Aware Proxy (IAP) or a similar
authentication layer.
- You have custom authentication middleware on your self-hosted Toolbox server.
Without proper client authentication in these scenarios, attempts to connect or
make calls (like `load_tool`) will likely fail with `Unauthorized` errors.
### How it works
The `ToolboxClient` (and `ToolboxSyncClient`) allows you to specify functions
(or coroutines for the async client) that dynamically generate HTTP headers for
every request sent to the Toolbox server. The most common use case is to add an
Authorization header with a bearer token (e.g., a Google ID token).
These header-generating functions are called just before each request, ensuring
that fresh credentials or header values can be used.
### Configuration
You can configure these dynamic headers as seen below:
```python
from toolbox_core import ToolboxClient
async with ToolboxClient("toolbox-url", client_headers={"header1": header1_getter, "header2": header2_getter, ...}) as client:
# Use client
pass
```
### Authenticating with Google Cloud Servers
For Toolbox servers hosted on Google Cloud (e.g., Cloud Run) and requiring
`Google ID token` authentication, the helper module
[auth_methods](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-core/src/toolbox_core/auth_methods.py) provides utility functions.
### Step by Step Guide for Cloud Run
1. **Configure Permissions**: [Grant](https://cloud.google.com/run/docs/securing/managing-access#service-add-principals) the `roles/run.invoker` IAM role on the Cloud
Run service to the principal. This could be your `user account email` or a
`service account`.
2. **Configure Credentials**
- Local Development: Set up
[ADC](https://cloud.google.com/docs/authentication/set-up-adc-local-dev-environment).
- Google Cloud Environments: When running within Google Cloud (e.g., Compute
Engine, GKE, another Cloud Run service, Cloud Functions), ADC is typically
configured automatically, using the environment's default service account.
3. **Connect to the Toolbox Server**
```python
from toolbox_core import auth_methods
auth_token_provider = auth_methods.aget_google_id_token(URL) # can also use sync method
async with ToolboxClient(
URL,
client_headers={"Authorization": auth_token_provider},
) as client:
tools = await client.load_toolset()
# Now, you can use the client as usual.
```
## Authenticating Tools
{{< notice info >}}
**Always use HTTPS** to connect your application with the Toolbox service, especially in **production environments** or whenever the communication involves **sensitive data** (including scenarios where tools require authentication tokens). Using plain HTTP lacks encryption and exposes your application and data to significant security risks, such as eavesdropping and tampering.
{{</notice>}}
Tools can be configured within the Toolbox service to require authentication,
ensuring only authorized users or applications can invoke them, especially when
accessing sensitive data.
### When is Authentication Needed?
Authentication is configured per-tool within the Toolbox service itself. If a
tool you intend to use is marked as requiring authentication in the service, you
must configure the SDK client to provide the necessary credentials (currently
Oauth2 tokens) when invoking that specific tool.
### Supported Authentication Mechanisms
The Toolbox service enables secure tool usage through **Authenticated Parameters**. For detailed information on how these mechanisms work within the Toolbox service and how to configure them, please refer to [Authenticated Parameters](resources/tools/#authenticated-parameters)
### Step 1: Configure Tools in Toolbox Service
First, ensure the target tool(s) are configured correctly in the Toolbox service
to require authentication. Refer to the [Authenticated Parameters](https://googleapis.github.io/genai-toolbox/resources/tools/#authenticated-parameters)
for instructions.
### Step 2: Configure SDK Client
Your application needs a way to obtain the required Oauth2 token for the
authenticated user. The SDK requires you to provide a function capable of
retrieving this token *when the tool is invoked*.
#### Provide an ID Token Retriever Function
You must provide the SDK with a function (sync or async) that returns the
necessary token when called. The implementation depends on your application's
authentication flow (e.g., retrieving a stored token, initiating an OAuth flow).
{{< notice info>}}
The name used when registering the getter function with the SDK (e.g.,`"my_api_token"`) must exactly match the `name` of the corresponding `authServices` defined in the tool's configuration within the Toolbox service.
{{</notice>}}
```py
async def get_auth_token():
# ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
# This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" # Placeholder
```
{{< notice tip>}}
Your token retriever function is invoked every time an authenticated parameter requires a token for a tool call. Consider implementing caching logic within this function to avoid redundant token fetching or generation, especially for tokens with longer validity periods or if the retrieval process is resource-intensive.
{{</notice>}}
#### Option A: Add Authentication to a Loaded Tool
You can add the token retriever function to a tool object *after* it has been
loaded. This modifies the specific tool instance.
```py
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tool = await toolbox.load_tool("my-tool")
auth_tool = tool.add_auth_token_getter("my_auth", get_auth_token) # Single token
# OR
multi_auth_tool = tool.add_auth_token_getters({
"my_auth_1": get_auth_token_1,
"my_auth_2": get_auth_token_2,
}) # Multiple tokens
```
#### Option B: Add Authentication While Loading Tools
You can provide the token retriever(s) directly during the `load_tool` or
`load_toolset` calls. This applies the authentication configuration only to the
tools loaded in that specific call, without modifying the original tool objects
if they were loaded previously.
```py
auth_tool = await toolbox.load_tool(auth_token_getters={"my_auth": get_auth_token})
# OR
auth_tools = await toolbox.load_toolset(auth_token_getters={"my_auth": get_auth_token})
```
{{< notice >}}
Adding auth tokens during loading only affect the tools loaded within that call.
{{</notice>}}
### Complete Authentication Example
```py
import asyncio
from toolbox_core import ToolboxClient
async def get_auth_token():
# ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
# This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" # Placeholder
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tool = await toolbox.load_tool("my-tool")
auth_tool = tool.add_auth_token_getters({"my_auth": get_auth_token})
result = auth_tool(input="some input")
print(result)
```
{{< notice >}}
An auth token getter for a specific name (e.g., `“GOOGLE_ID”`) will replace any client header with the same name followed by `“_token”` (e.g., `“GOOGLE_ID_token”`).
{{</notice>}}
## Binding Parameter Values
The SDK allows you to pre-set, or "bind", values for specific tool parameters
before the tool is invoked or even passed to an LLM. These bound values are
fixed and will not be requested or modified by the LLM during tool use.
### Why Bind Parameters?
- **Protecting sensitive information:** API keys, secrets, etc.
- **Enforcing consistency:** Ensuring specific values for certain parameters.
- **Pre-filling known data:** Providing defaults or context.
{{< notice info >}}
The parameter names used for binding (e.g., `"api_key"`) must exactly match the parameter names defined in the tools configuration within the Toolbox service.
{{</notice>}}
{{< notice >}}
You do not need to modify the tools configuration in the Toolbox service to bind parameter values using the SDK.
{{</notice>}}
### Option A: Binding Parameters to a Loaded Tool
Bind values to a tool object *after* it has been loaded. This modifies the
specific tool instance.
```py
async with ToolboxClient("http://127.0.0.1:5000") as toolbox:
tool = await toolbox.load_tool("my-tool")
bound_tool = tool.bind_param("param", "value")
# OR
bound_tool = tool.bind_params({"param": "value"})
```
### Option B: Binding Parameters While Loading Tools
Specify bound parameters directly when loading tools. This applies the binding
only to the tools loaded in that specific call.
```py
bound_tool = await toolbox.load_tool("my-tool", bound_params={"param": "value"})
# OR
bound_tools = await toolbox.load_toolset(bound_params={"param": "value"})
```
### Binding Dynamic Values
Instead of a static value, you can bind a parameter to a synchronous or
asynchronous function. This function will be called *each time* the tool is
invoked to dynamically determine the parameter's value at runtime.
{{< notice >}}
You dont need to modify tool configurations to bind parameter values.
{{</notice>}}
```py
async def get_dynamic_value():
# Logic to determine the value
return "dynamic_value"
# Assuming `tool` is a loaded tool instance from a ToolboxClient
dynamic_bound_tool = tool.bind_param("param", get_dynamic_value)
```