Compare commits

..

6 Commits

Author SHA1 Message Date
Harsh Jha
baca9735d6 chore: fixing metadata for adk doc 2026-02-03 12:32:34 +05:30
Harsh Jha
be4fc9e207 feat: python toolbox-adk sdk doc migration 2026-02-03 12:02:17 +05:30
Harsh Jha
f0c7eb129b Merge branch 'sdk-docs-migrate' of https://github.com/googleapis/genai-toolbox into py-sdk-docs 2026-01-12 13:23:55 +05:30
Harsh Jha
fef07c71a1 chore: fixed github link for python sdk 2026-01-12 13:23:12 +05:30
Harsh Jha
12b25a0beb chore: resolve pr comment 2025-12-12 12:35:17 +05:30
Harsh Jha
073c8b3268 feat: added python sdk introduction 2025-12-12 12:26:02 +05:30
4 changed files with 312 additions and 238 deletions

View File

@@ -7,41 +7,6 @@ description: >
---
## Overview
![MCP Toolbox
Logo](https://raw.githubusercontent.com/googleapis/genai-toolbox/main/logo.png)
# MCP Toolbox SDKs for Go
[![License: Apache
2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Docs](https://img.shields.io/badge/Docs-MCP_Toolbox-blue)](https://googleapis.github.io/genai-toolbox/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=flat&logo=discord&logoColor=white)](https://discord.gg/Dmm69peqjh)
[![Medium](https://img.shields.io/badge/Medium-12100E?style=flat&logo=medium&logoColor=white)](https://medium.com/@mcp_toolbox)
[![Go Report Card](https://goreportcard.com/badge/github.com/googleapis/mcp-toolbox-sdk-go)](https://goreportcard.com/report/github.com/googleapis/mcp-toolbox-sdk-go)
[![Module Version](https://img.shields.io/github/v/release/googleapis/mcp-toolbox-sdk-go)](https://img.shields.io/github/v/release/googleapis/mcp-toolbox-sdk-go)
[![Go Version](https://img.shields.io/github/go-mod/go-version/googleapis/mcp-toolbox-sdk-go)](https://img.shields.io/github/go-mod/go-version/googleapis/mcp-toolbox-sdk-go)
This repository contains the Go SDK designed to seamlessly integrate the
functionalities of the [MCP
Toolbox](https://github.com/googleapis/genai-toolbox) into your Gen AI
applications. The SDK allow you to load tools defined in Toolbox and use them
as standard Go tools within popular orchestration frameworks
or your custom code.
This simplifies the process of incorporating external functionalities (like
Databases or APIs) managed by Toolbox into your GenAI applications.
<!-- TOC -->
- [Overview](#overview)
- [Which Package Should I Use?](#which-package-should-i-use)
- [Available Packages](#available-packages)
- [Getting Started](#getting-started)
<!-- /TOC -->
## Overview
The MCP Toolbox service provides a centralized way to manage and expose tools
@@ -57,58 +22,4 @@ The Go SDK act as clients for that service. They handle the communication needed
By using the SDK, you can easily leverage your Toolbox-managed tools directly
within your Go applications or AI orchestration frameworks.
## Which Package Should I Use?
Choosing the right package depends on how you are building your application:
- [`core`](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/core):
This is a framework agnostic way to connect the tools to popular frameworks
like Google GenAI, LangChain, etc.
- [`tbadk`](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/tbadk):
This package provides a way to connect tools to ADK Go.
- [`tbgenkit`](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/tbgenkit):
This package provides a functionality to convert the Tool fetched using the core package
into a Genkit Go compatible tool.
## Available Packages
This repository hosts the following Go packages. See the package-specific
README for detailed installation and usage instructions:
| Package | Target Use Case | Integration | Path | Details (README) |
| :------ | :----------| :---------- | :---------------------- | :---------- |
| `core` | Framework-agnostic / Custom applications | Use directly / Custom | `core/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/core/README.md) |
| `tbadk` | ADK Go | Use directly | `tbadk/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/tbadk/README.md) |
| `tbgenkit` | Genkit Go | Along with core | `tbgenkit/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/tbgenkit/README.md) |
## Getting Started
To get started using Toolbox tools with an application, follow these general steps:
1. **Set up and Run the Toolbox Service:**
Before using the SDKs, you need the MCP Toolbox server running. Follow
the instructions here: [**Toolbox Getting Started
Guide**](https://github.com/googleapis/genai-toolbox?tab=readme-ov-file#getting-started)
2. **Install the Appropriate SDK:**
Choose the package based on your needs (see "[Which Package Should I Use?](#which-package-should-i-use)" above)
Use this command to install the SDK module
```bash
# For the core, framework-agnostic SDK
go get github.com/googleapis/mcp-toolbox-sdk-go
```
3. **Use the SDK:**
Consult the README for your chosen package (linked in the "[Available
Packages](#available-packages)" section above) for detailed instructions on
how to connect the client, load tool definitions, invoke tools, configure
authentication/binding, and integrate them into your application or
framework.
[Github](https://github.com/googleapis/mcp-toolbox-sdk-go)

View File

@@ -1,148 +0,0 @@
---
title: "tbGenkit Package"
linkTitle: "tbGenkit"
type: docs
weight: 1
---
![MCP Toolbox Logo](https://raw.githubusercontent.com/googleapis/genai-toolbox/main/logo.png)
# MCP Toolbox TBGenkit Package
[![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
This package allows you to seamlessly integrate the functionalities of
[Toolbox](https://github.com/googleapis/genai-toolbox) allowing you to load and
use tools defined in the service as standard Genkit Tools within your Genkit Go
applications.
This simplifies integrating external functionalities (like APIs, databases, or
custom logic) managed by the Toolbox into your workflows, especially those
involving Large Language Models (LLMs).
<!-- TOC ignore:true -->
<!-- TOC -->
- [Installation](#installation)
- [Quickstart](#quickstart)
- [Convert Toolbox Tool to a Genkit Tool](#convert-toolbox-tool-to-a-genkit-tool)
- [Contributing](#contributing)
- [License](#license)
- [Support](#support)
- [Samples for Reference](#samples-for-reference)
<!-- /TOC -->
## Installation
```bash
go get github.com/googleapis/mcp-toolbox-sdk-go
```
This SDK is supported on Go version 1.24.4 and higher.
## Quickstart
For more information on how to load a ToolboxTool, see [the core package](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/core)
## Convert Toolbox Tool to a Genkit Tool
```go
"github.com/googleapis/mcp-toolbox-sdk-go/tbgenkit"
func main() {
// Assuming the toolbox tool is loaded
// Make sure to add error checks for debugging
ctx := context.Background()
g, err := genkit.Init(ctx)
genkitTool, err := tbgenkit.ToGenkitTool(toolboxTool, g)
}
```
For end-to-end example on how to use Toolbox with Genkit Go, check out the [/samples/](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/tbgenkit/samples) folder
# Contributing
Contributions are welcome! Please refer to the [DEVELOPER.md](/DEVELOPER.md)
file for guidelines on how to set up a development environment and run tests.
# License
This project is licensed under the Apache License 2.0. See the
[LICENSE](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/LICENSE) file for details.
# Support
If you encounter issues or have questions, check the existing [GitHub Issues](https://github.com/googleapis/genai-toolbox/issues) for the main Toolbox project.
# Samples for Reference
<details>
<summary>Genkit Go</summary>
```go
//This sample contains a complete example on how to integrate MCP Toolbox Go SDK with Genkit Go using the tbgenkit package.
package main
import (
"context"
"fmt"
"log"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
"github.com/googleapis/mcp-toolbox-sdk-go/tbgenkit"
"github.com/firebase/genkit/go/ai"
"github.com/firebase/genkit/go/genkit"
"github.com/firebase/genkit/go/plugins/googlegenai"
)
func main() {
ctx := context.Background()
toolboxClient, err := core.NewToolboxClient("http://127.0.0.1:5000")
if err != nil {
log.Fatalf("Failed to create Toolbox client: %v", err)
}
// Load the tools using the MCP Toolbox SDK.
tools, err := toolboxClient.LoadToolset("my-toolset", ctx)
if err != nil {
log.Fatalf("Failed to load tools: %v\nMake sure your Toolbox server is running and the tool is configured.", err)
}
// Initialize genkit
g := genkit.Init(ctx,
genkit.WithPlugins(&googlegenai.GoogleAI{}),
genkit.WithDefaultModel("googleai/gemini-1.5-flash"),
)
// Convert your tool to a Genkit tool.
genkitTools := make([]ai.Tool, len(tools))
for i, tool := range tools {
newTool, err := tbgenkit.ToGenkitTool(tool, g)
if err != nil {
log.Fatalf("Failed to convert tool: %v\n", err)
}
genkitTools[i] = newTool
}
toolRefs := make([]ai.ToolRef, len(genkitTools))
for i, tool := range genkitTools {
toolRefs[i] = tool
}
// Generate llm response using prompts and tools.
resp, err := genkit.Generate(ctx, g,
ai.WithPrompt("Find hotels in Basel with Basel in it's name."),
ai.WithTools(toolRefs...),
)
if err != nil {
log.Fatalf("%v\n", err)
}
fmt.Println(resp.Text())
}
```
</details>

View File

@@ -22,4 +22,36 @@ These Python SDKs act as clients for that service. They handle the communication
By using these SDKs, you can easily leverage your Toolbox-managed tools directly
within your Python applications or AI orchestration frameworks.
[Github](https://github.com/googleapis/mcp-toolbox-sdk-python)
## Which Package Should I Use?
Choosing the right package depends on how you are building your application:
* [`toolbox-langchain`](langchain):
Use this package if you are building your application using the LangChain or
LangGraph frameworks. It provides tools that are directly compatible with the
LangChain ecosystem (`BaseTool` interface), simplifying integration.
* [`toolbox-llamaindex`](llamaindex):
Use this package if you are building your application using the LlamaIndex framework.
It provides tools that are directly compatible with the
LlamaIndex ecosystem (`BaseTool` interface), simplifying integration.
* [`toolbox-core`](core):
Use this package if you are not using LangChain/LangGraph or any other
orchestration framework, or if you need a framework-agnostic way to interact
with Toolbox tools (e.g., for custom orchestration logic or direct use in
Python scripts).
## Available Packages
This repository hosts the following Python packages. See the package-specific
README for detailed installation and usage instructions:
| Package | Target Use Case | Integration | Path | Details (README) | PyPI Status |
| :------ | :---------- | :---------- | :---------------------- | :---------- | :---------
| `toolbox-core` | Framework-agnostic / Custom applications | Use directly / Custom | `packages/toolbox-core/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-core/README.md) | ![pypi version](https://img.shields.io/pypi/v/toolbox-core.svg) |
| `toolbox-langchain` | LangChain / LangGraph applications | LangChain / LangGraph | `packages/toolbox-langchain/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-langchain/README.md) | ![pypi version](https://img.shields.io/pypi/v/toolbox-langchain.svg) |
| `toolbox-llamaindex` | LlamaIndex applications | LlamaIndex | `packages/toolbox-llamaindex/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-llamaindex/README.md) | ![pypi version](https://img.shields.io/pypi/v/toolbox-llamaindex.svg) |
{{< notice note >}}
Source code for [python-sdk](https://github.com/googleapis/mcp-toolbox-sdk-python)
{{< /notice >}}

View File

@@ -0,0 +1,279 @@
---
title: "Adk"
type: docs
weight: 8
description: >
MCP Toolbox ADK SDK for integrating functionalities of MCP Toolbox into your apps.
---
## Overview
The `toolbox-adk` package provides a Python interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.
## Installation
```bash
pip install toolbox-adk
```
## Usage
The primary entry point is the `ToolboxToolset`, which loads tools from a remote Toolbox server and adapts them for use with ADK agents.
{{< notice note>}}
The `ToolboxToolset` in this package mirrors the `ToolboxToolset` in the [`adk-python`](https://github.com/google/adk-python) package. The `adk-python` version is a shim that delegates all functionality to this implementation.
{{< /notice >}}
```python
from toolbox_adk import ToolboxToolset
from google.adk.agents import Agent
# Create the Toolset
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000"
)
# Use in your ADK Agent
agent = Agent(tools=[toolset])
```
## Transport Protocols
The SDK supports multiple transport protocols for communicating with the Toolbox server. By default, the client uses the latest supported version of the **Model Context Protocol (MCP)**.
You can explicitly select a protocol using the `protocol` option during toolset initialization. This is useful if you need to use the native Toolbox HTTP protocol or pin the client to a specific legacy version of MCP.
{{< notice note>}}
* **Native Toolbox Transport**: This uses the service's native **REST over HTTP** API.
* **MCP Transports**: These options use the **Model Context Protocol over HTTP**.
{{< /notice >}}
### Supported Protocols
| Constant | Description |
| :--- | :--- |
| `Protocol.MCP` | **(Default)** Alias for the default MCP version (currently `2025-06-18`). |
| `Protocol.TOOLBOX` | The native Toolbox HTTP protocol. |
| `Protocol.MCP_v20251125` | MCP Protocol version 2025-11-25. |
| `Protocol.MCP_v20250618` | MCP Protocol version 2025-06-18. |
| `Protocol.MCP_v20250326` | MCP Protocol version 2025-03-26. |
| `Protocol.MCP_v20241105` | MCP Protocol version 2024-11-05. |
### Example
If you wish to use the native Toolbox protocol:
```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.TOOLBOX
)
```
If you want to pin the MCP Version 2025-03-26:
```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.MCP_v20250326
)
```
{{< notice tip>}}
By default, it uses **Toolbox Identity** (no authentication), which is suitable for local development.
For production environments (Cloud Run, GKE) or accessing protected resources, see the [Authentication](#authentication) section for strategies like Workload Identity or OAuth2.
{{< /notice >}}
## Authentication
The `ToolboxToolset` requires credentials to authenticate with the Toolbox server. You can configure these credentials using the `CredentialStrategy` factory methods.
The strategies handle two main types of authentication:
* **Client-to-Server**: Securing the connection to the Toolbox server (e.g., Workload Identity, API keys).
* **User Identity**: Authenticating the end-user for specific tools (e.g., 3-legged OAuth).
### 1. Workload Identity (ADC)
*Recommended for Cloud Run, GKE, or local development with `gcloud auth login`.*
Uses the agent's Application Default Credentials (ADC) to generate an OIDC token. This is the standard way for one service to authenticate to another on Google Cloud.
```python
from toolbox_adk import CredentialStrategy, ToolboxToolset
# target_audience: The URL of your Toolbox server
creds = CredentialStrategy.workload_identity(target_audience="https://my-toolbox-service.run.app")
toolset = ToolboxToolset(
server_url="https://my-toolbox-service.run.app",
credentials=creds
)
```
### 2. User Identity (OAuth2)
*Recommended for tools that act on behalf of the user.*
Configures the ADK-native interactive 3-legged OAuth flow to get consent and credentials from the end-user at runtime. This strategy is passed to the `ToolboxToolset` just like any other credential strategy.
```python
from toolbox_adk import CredentialStrategy, ToolboxToolset
creds = CredentialStrategy.user_identity(
client_id="YOUR_CLIENT_ID",
client_secret="YOUR_CLIENT_SECRET",
scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
# The toolset will now initiate OAuth flows when required by tools
toolset = ToolboxToolset(
server_url="...",
credentials=creds
)
```
### 3. API Key
*Use a static API key passed in a specific header (default: `X-API-Key`).*
```python
from toolbox_adk import CredentialStrategy
# Default header: X-API-Key
creds = CredentialStrategy.api_key(key="my-secret-key")
# Custom header
creds = CredentialStrategy.api_key(key="my-secret-key", header_name="X-My-Header")
```
### 4. HTTP Bearer Token
*Manually supply a static bearer token.*
```python
from toolbox_adk import CredentialStrategy
creds = CredentialStrategy.manual_token(token="your-static-bearer-token")
```
### 5. Manual Google Credentials
*Use an existing `google.auth.credentials.Credentials` object.*
```python
from toolbox_adk import CredentialStrategy
import google.auth
creds_obj, _ = google.auth.default()
creds = CredentialStrategy.manual_credentials(credentials=creds_obj)
```
### 6. Toolbox Identity (No Auth)
*Use this if your Toolbox server does not require authentication (e.g., local development).*
```python
from toolbox_adk import CredentialStrategy
creds = CredentialStrategy.toolbox_identity()
```
### 7. Native ADK Integration
*Convert ADK-native `AuthConfig` or `AuthCredential` objects.*
```python
from toolbox_adk import CredentialStrategy
# From AuthConfig
creds = CredentialStrategy.from_adk_auth_config(auth_config)
# From AuthCredential + AuthScheme
creds = CredentialStrategy.from_adk_credentials(auth_credential, scheme)
```
### 8. Tool-Specific Authentication
*Resolve authentication tokens dynamically for specific tools.*
Some tools may define their own authentication requirements (e.g., Salesforce OAuth, GitHub PAT) via `authSources` in their schema. You can provide a mapping of getters to resolve these tokens at runtime.
```python
async def get_salesforce_token():
# Fetch token from secret manager or reliable source
return "sf-access-token"
toolset = ToolboxToolset(
server_url="...",
auth_token_getters={
"salesforce-auth": get_salesforce_token, # Async callable
"github-pat": lambda: "my-pat-token" # Sync callable or static lambda
}
)
```
## Advanced Configuration
### Additional Headers
You can inject custom headers into every request made to the Toolbox server. This is useful for passing tracing IDs, API keys, or other metadata.
```python
toolset = ToolboxToolset(
server_url="...",
additional_headers={
"X-Trace-ID": "12345",
"X-My-Header": lambda: get_dynamic_header_value() # Can be a callable
}
)
```
### Global Parameter Binding
Bind values to tool parameters globally across all loaded tools. These values will be **fixed** and **hidden** from the LLM.
* **Schema Hiding**: The bound parameters are removed from the tool schema sent to the model, simplifying the context window.
* **Auto-Injection**: The values are automatically injected into the tool arguments during execution.
```python
toolset = ToolboxToolset(
server_url="...",
bound_params={
# 'region' will be removed from the LLM schema and injected automatically
"region": "us-central1",
"api_key": lambda: get_api_key() # Can be a callable
}
)
```
### Usage with Hooks
You can attach `pre_hook` and `post_hook` functions to execute logic before and after every tool invocation.
{{< notice note>}}
The `pre_hook` can modify `context.arguments` to dynamically alter the inputs passed to the tool.
{{< /notice >}}
```python
from google.adk.tools.tool_context import ToolContext
from typing import Any, Dict, Optional
async def log_start(context: ToolContext, args: Dict[str, Any]):
print(f"Starting tool with args: {args}")
# context is the ADK ToolContext
# Example: Inject or modify arguments
# args["user_id"] = "123"
async def log_end(context: ToolContext, args: Dict[str, Any], result: Optional[Any], error: Optional[Exception]):
print("Finished tool execution")
# Inspect result or error
if error:
print(f"Tool failed: {error}")
else:
print(f"Tool succeeded with result: {result}")
toolset = ToolboxToolset(
server_url="...",
pre_hook=log_start,
post_hook=log_end
)
```