mirror of
https://github.com/zama-ai/tfhe-rs.git
synced 2026-01-11 15:48:20 -05:00
Compare commits
310 Commits
gitbook-ed
...
gpu/hypers
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c721b0fdaf | ||
|
|
470667507d | ||
|
|
ac424136ac | ||
|
|
9576c5fd77 | ||
|
|
5df40597c2 | ||
|
|
c807bce207 | ||
|
|
26747828eb | ||
|
|
4c645267ca | ||
|
|
bea9b77090 | ||
|
|
d1fe49fa2f | ||
|
|
e5b3092414 | ||
|
|
30fc8c7c74 | ||
|
|
2c106e8f01 | ||
|
|
f868bb2397 | ||
|
|
691bff5970 | ||
|
|
555c984ab3 | ||
|
|
5b21363482 | ||
|
|
b021aa16d6 | ||
|
|
cda3f2b0ae | ||
|
|
50df70047e | ||
|
|
0e10acb9f0 | ||
|
|
3d369b0771 | ||
|
|
8ae9c16019 | ||
|
|
ed8a32d106 | ||
|
|
f9a3984c7e | ||
|
|
b6868e08d2 | ||
|
|
9ef3183d2e | ||
|
|
cdeb647629 | ||
|
|
88ff4d17cf | ||
|
|
daadb115aa | ||
|
|
971b0cf0b6 | ||
|
|
4c8528d70d | ||
|
|
865b1bdb7f | ||
|
|
7d2bb98893 | ||
|
|
d58dd56433 | ||
|
|
1fc3297af8 | ||
|
|
cc72594c0d | ||
|
|
3c39abed79 | ||
|
|
ab9cee529f | ||
|
|
f98bbd9146 | ||
|
|
0bad5c4b92 | ||
|
|
6360cbfdd1 | ||
|
|
d746eb8569 | ||
|
|
6ae6a49e0d | ||
|
|
1f8b310669 | ||
|
|
cb1110fc79 | ||
|
|
80836c5dfd | ||
|
|
1b6c26994a | ||
|
|
c20eccf248 | ||
|
|
31302e532c | ||
|
|
a11d690fd9 | ||
|
|
d76c58c38a | ||
|
|
5f1d6715ec | ||
|
|
1151a7c3ef | ||
|
|
5f975ff6f6 | ||
|
|
fb4b975c34 | ||
|
|
0e9301cc4f | ||
|
|
2469c0ffde | ||
|
|
2955f0acfd | ||
|
|
f5fb578858 | ||
|
|
61283254f0 | ||
|
|
0dce4b5e93 | ||
|
|
a296f33966 | ||
|
|
2db5ac5b3d | ||
|
|
292903a24a | ||
|
|
52bbb2d1e6 | ||
|
|
8d876a988e | ||
|
|
b57f4d6764 | ||
|
|
82ef2cc672 | ||
|
|
6535bd1cca | ||
|
|
8cd8f8c176 | ||
|
|
bcbab11950 | ||
|
|
3b291ac37d | ||
|
|
e2f6ddbd46 | ||
|
|
31e2949906 | ||
|
|
2bf23ae9fb | ||
|
|
edf41b5c84 | ||
|
|
98ba269c1d | ||
|
|
ffda4d3fbe | ||
|
|
4046df90e9 | ||
|
|
7e723f1ec2 | ||
|
|
13f7adec66 | ||
|
|
259d5b6827 | ||
|
|
4798ee17c4 | ||
|
|
1c8f6ce75d | ||
|
|
7f7591f1b4 | ||
|
|
d06f958990 | ||
|
|
b4619bb745 | ||
|
|
f911af6e18 | ||
|
|
48309ff773 | ||
|
|
06af752bfc | ||
|
|
73f8383def | ||
|
|
edca34c2c9 | ||
|
|
e6fd6823de | ||
|
|
ff8912bf66 | ||
|
|
86e5640e06 | ||
|
|
0136642f89 | ||
|
|
5a19114417 | ||
|
|
7fdcde0449 | ||
|
|
8a1cc3750b | ||
|
|
719bad6e7d | ||
|
|
a1483c6c9f | ||
|
|
c15e35782d | ||
|
|
55f666d323 | ||
|
|
155822bb99 | ||
|
|
1647634c8e | ||
|
|
26aa20a78a | ||
|
|
53b89fdfae | ||
|
|
5976ba51b1 | ||
|
|
de6db4bc9d | ||
|
|
de8568a5bb | ||
|
|
83e9671071 | ||
|
|
9efe4ac69e | ||
|
|
937c364c6d | ||
|
|
b40897adbe | ||
|
|
54ba8de83f | ||
|
|
20d92afaaf | ||
|
|
865b667ffd | ||
|
|
3b35cc8269 | ||
|
|
8e19bd1b79 | ||
|
|
4e5e30550b | ||
|
|
ca40c8673f | ||
|
|
9f70be9c95 | ||
|
|
dc44f5e517 | ||
|
|
6f954bb538 | ||
|
|
d3801446ff | ||
|
|
e81152a630 | ||
|
|
8c4675dc3e | ||
|
|
29fb4fbe77 | ||
|
|
f84c34c903 | ||
|
|
cc905a04c7 | ||
|
|
3fc791e813 | ||
|
|
d4f8fb8f57 | ||
|
|
68ce43d2f0 | ||
|
|
c5b9e5400a | ||
|
|
8167c85764 | ||
|
|
98bd45503c | ||
|
|
ed50042719 | ||
|
|
053d56a3d6 | ||
|
|
e5b117ca29 | ||
|
|
9de486f33c | ||
|
|
ccf879c9ae | ||
|
|
d3c1f91948 | ||
|
|
273dbe1b85 | ||
|
|
7ac061266f | ||
|
|
c1c56ab770 | ||
|
|
00dad37812 | ||
|
|
f94533d70d | ||
|
|
b7d7e68d0c | ||
|
|
e8135c207d | ||
|
|
601b200351 | ||
|
|
a0d5bf2fc2 | ||
|
|
58223dea09 | ||
|
|
1f3096b743 | ||
|
|
4a3d5d432a | ||
|
|
c6bfcd75a6 | ||
|
|
85dfd70c6b | ||
|
|
c720656340 | ||
|
|
1c209403a6 | ||
|
|
347fc9aaa7 | ||
|
|
198485b5fb | ||
|
|
bd7547c93d | ||
|
|
955495d714 | ||
|
|
902755c33c | ||
|
|
89f845fa4f | ||
|
|
9f89d2c09d | ||
|
|
ea0d146ed0 | ||
|
|
943ccdf450 | ||
|
|
f39896ac63 | ||
|
|
46a87c6f89 | ||
|
|
a5579532be | ||
|
|
41e1781226 | ||
|
|
697ce94ee2 | ||
|
|
a667b654ef | ||
|
|
1bff07b6eb | ||
|
|
59664e84c8 | ||
|
|
79dc101728 | ||
|
|
6828438898 | ||
|
|
a8f4cf7c29 | ||
|
|
30d2f5f66d | ||
|
|
112cc6f6c9 | ||
|
|
93581f7ee1 | ||
|
|
6e08e91109 | ||
|
|
75f0ad1d4b | ||
|
|
618758bd95 | ||
|
|
d770a271b3 | ||
|
|
80468494b2 | ||
|
|
26e5af542f | ||
|
|
f23b4f21dc | ||
|
|
b394da3dbb | ||
|
|
6007cd2c81 | ||
|
|
a6fdc46794 | ||
|
|
0134a4a0f2 | ||
|
|
68dfd96993 | ||
|
|
6811177178 | ||
|
|
753c7aa0d2 | ||
|
|
f38a9a9b4c | ||
|
|
c7f6eb0119 | ||
|
|
85da12c00f | ||
|
|
20b1427f72 | ||
|
|
716677f383 | ||
|
|
d09e5ab066 | ||
|
|
f8bfeb8927 | ||
|
|
67b543b6e7 | ||
|
|
b2cfe2765c | ||
|
|
8397637b24 | ||
|
|
42b7c2f403 | ||
|
|
b708abb10b | ||
|
|
e62808b2b4 | ||
|
|
62135791bf | ||
|
|
41c38d127b | ||
|
|
d55d68ec52 | ||
|
|
9faab7b9a6 | ||
|
|
ff539aab6b | ||
|
|
799829eab4 | ||
|
|
c30395daef | ||
|
|
ebce4fcfd4 | ||
|
|
85a428bb43 | ||
|
|
c4266bd610 | ||
|
|
76a7cd9b24 | ||
|
|
9baa54b636 | ||
|
|
863e0c275b | ||
|
|
cd13b40dbb | ||
|
|
1c8e88ebfd | ||
|
|
02bac34f1b | ||
|
|
4576508ccb | ||
|
|
7190dad1e3 | ||
|
|
18b9458401 | ||
|
|
747ade0a54 | ||
|
|
ada460b429 | ||
|
|
56f9b221eb | ||
|
|
52f3babde5 | ||
|
|
3ff5d551a9 | ||
|
|
0b1ea3b7dc | ||
|
|
e0fddc8ea7 | ||
|
|
5354cffd8e | ||
|
|
d258d1fcf4 | ||
|
|
7cecbb30b2 | ||
|
|
ece82c51a5 | ||
|
|
8c54c8200b | ||
|
|
b6bfe30065 | ||
|
|
d5c0c0242c | ||
|
|
6826b6b638 | ||
|
|
f0b4749aca | ||
|
|
eb4785001d | ||
|
|
16d6b2f75d | ||
|
|
9bdeb697ad | ||
|
|
b5615bb3ad | ||
|
|
37b94780b2 | ||
|
|
035a70d81f | ||
|
|
f5c971652d | ||
|
|
a0b75d9a37 | ||
|
|
90da50dc53 | ||
|
|
473a6a0f40 | ||
|
|
8f1a1da4e1 | ||
|
|
a3c07dedad | ||
|
|
5513d3a894 | ||
|
|
6ef0a2b4ef | ||
|
|
bba4bcee88 | ||
|
|
45befcaf40 | ||
|
|
97feefe2ed | ||
|
|
4ef8045a67 | ||
|
|
48f67fb427 | ||
|
|
bce3bf1733 | ||
|
|
253062c5aa | ||
|
|
b44ed91519 | ||
|
|
ddb010d8f1 | ||
|
|
8a9559c4d1 | ||
|
|
02265705fc | ||
|
|
7b4bb6ad55 | ||
|
|
fd084d50c5 | ||
|
|
f59cb6c632 | ||
|
|
c594734fcf | ||
|
|
f9669c3294 | ||
|
|
76665ab478 | ||
|
|
9b454abe2a | ||
|
|
da08115c10 | ||
|
|
8aec783dd9 | ||
|
|
4bf28b836a | ||
|
|
9df529bc59 | ||
|
|
71bff0963c | ||
|
|
eeaf45dbc7 | ||
|
|
353f279a9e | ||
|
|
8355ed5c10 | ||
|
|
84844bb4eb | ||
|
|
9b6e861f9b | ||
|
|
b73f24057d | ||
|
|
43c0799655 | ||
|
|
f94a63eedc | ||
|
|
35d65bcde7 | ||
|
|
0bfe59a656 | ||
|
|
ffe4c7135a | ||
|
|
a8f329fc75 | ||
|
|
11db96d394 | ||
|
|
ae8d48138c | ||
|
|
e912394b52 | ||
|
|
8958b6df98 | ||
|
|
aeb36ee14f | ||
|
|
b3976f2963 | ||
|
|
0d6e0c7224 | ||
|
|
bd26d0ecd6 | ||
|
|
16f457b57c | ||
|
|
6060882a7a | ||
|
|
3e2833ac64 | ||
|
|
bc85163c23 | ||
|
|
45b2548b17 | ||
|
|
0476ee0c3c | ||
|
|
8d77ea0a57 | ||
|
|
f10fa3f13c | ||
|
|
fd4e2059f4 |
2
.github/ISSUE_TEMPLATE/bug_report.md
vendored
2
.github/ISSUE_TEMPLATE/bug_report.md
vendored
@@ -1,6 +1,6 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Report a problem with concrete
|
||||
about: Report a problem with TFHE-rs
|
||||
title: ''
|
||||
labels: triage_required
|
||||
assignees: ''
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/feature_request.md
vendored
2
.github/ISSUE_TEMPLATE/feature_request.md
vendored
@@ -1,6 +1,6 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for concrete
|
||||
about: Suggest an idea for TFHE-rs
|
||||
title: ''
|
||||
labels: feature_request
|
||||
assignees: ''
|
||||
|
||||
9
.github/actionlint.yaml
vendored
Normal file
9
.github/actionlint.yaml
vendored
Normal file
@@ -0,0 +1,9 @@
|
||||
self-hosted-runner:
|
||||
# Labels of self-hosted runner in array of strings.
|
||||
labels:
|
||||
- m1mac
|
||||
- 4090-desktop
|
||||
# Configuration variables in array of strings defined in your repository or
|
||||
# organization. `null` means disabling configuration variables check.
|
||||
# Empty array means no configuration variable is allowed.
|
||||
config-variables: null
|
||||
34
.github/workflows/approve_label.yml
vendored
Normal file
34
.github/workflows/approve_label.yml
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
# Manage approved label in pull request
|
||||
name: PR approved label manager
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
pull_request_review:
|
||||
types: [submitted]
|
||||
|
||||
jobs:
|
||||
trigger-tests:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
pull-requests: write
|
||||
steps:
|
||||
- name: Get current labels
|
||||
uses: snnaplab/get-labels-action@f426df40304808ace3b5282d4f036515f7609576
|
||||
|
||||
# Remove label if a push is performed after an approval
|
||||
- name: Remove approved label
|
||||
if: ${{ github.event_name == 'pull_request' && contains(fromJSON(env.LABELS), 'approved') }}
|
||||
uses: actions-ecosystem/action-remove-labels@2ce5d41b4b6aa8503e285553f75ed56e0a40bae0
|
||||
with:
|
||||
# We use a PAT to have the same user (zama-bot) for label deletion as for creation.
|
||||
github_token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
labels: approved
|
||||
|
||||
# Add label only if the review is approved and if the label doesn't already exist
|
||||
- name: Add approved label
|
||||
uses: actions-ecosystem/action-add-labels@18f1af5e3544586314bbe15c0273249c770b2daf
|
||||
if: ${{ github.event_name == 'pull_request_review' && github.event.review.state == 'approved' && !contains(fromJSON(env.LABELS), 'approved') }}
|
||||
with:
|
||||
# We need to use a PAT to be able to trigger `labeled` event for the other workflow.
|
||||
github_token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
labels: approved
|
||||
111
.github/workflows/aws_tfhe_fast_tests.yml
vendored
111
.github/workflows/aws_tfhe_fast_tests.yml
vendored
@@ -5,71 +5,64 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
# All the inputs are provided by Slab
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "AWS instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "AWS instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "AWS instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: 'Slab request ID'
|
||||
type: string
|
||||
fork_repo:
|
||||
description: 'Name of forked repo as user/repo'
|
||||
type: string
|
||||
fork_git_sha:
|
||||
description: 'Git SHA to checkout from fork'
|
||||
type: string
|
||||
pull_request:
|
||||
|
||||
jobs:
|
||||
fast-tests:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_${{ inputs.instance_image_id }}_${{ inputs.instance_type }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ inputs.runner_name }}
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (fast-tests)
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
# Step used for log purpose.
|
||||
- name: Instance configuration used
|
||||
run: |
|
||||
echo "ID: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
echo "Fork repo: ${{ inputs.fork_repo }}"
|
||||
echo "Fork git sha: ${{ inputs.fork_git_sha }}"
|
||||
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
repository: ${{ inputs.fork_repo }}
|
||||
ref: ${{ inputs.fork_git_sha }}
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: aws
|
||||
profile: cpu-big
|
||||
|
||||
fast-tests:
|
||||
name: Fast CPU tests
|
||||
needs: setup-ec2
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Run concrete-csprng tests
|
||||
run: |
|
||||
make test_concrete_csprng
|
||||
|
||||
- name: Run tfhe-zk-pok tests
|
||||
run: |
|
||||
make test_zk_pok
|
||||
|
||||
- name: Run core tests
|
||||
run: |
|
||||
AVX512_SUPPORT=ON make test_core_crypto
|
||||
@@ -117,11 +110,31 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Fast AWS tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (fast-tests)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, fast-tests ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (fast-tests) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
75
.github/workflows/aws_tfhe_gpu_4090_tests.yml
vendored
Normal file
75
.github/workflows/aws_tfhe_gpu_4090_tests.yml
vendored
Normal file
@@ -0,0 +1,75 @@
|
||||
# Compile and test tfhe-cuda-backend on an RTX 4090 machine
|
||||
name: TFHE Cuda Backend - 4090 full tests
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
jobs:
|
||||
cuda-tests-linux:
|
||||
name: CUDA tests (RTX 4090)
|
||||
if: ${{ github.event_name == 'workflow_dispatch' || contains(github.event.label.name, '4090_test') }}
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ["self-hosted", "4090-desktop"]
|
||||
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
- name: Run fmt checks
|
||||
run: |
|
||||
make check_fmt_gpu
|
||||
|
||||
- name: Run clippy checks
|
||||
run: |
|
||||
make pcc_gpu
|
||||
|
||||
- name: Run core crypto, integer and internal CUDA backend tests
|
||||
run: |
|
||||
make test_gpu
|
||||
|
||||
- name: Run user docs tests
|
||||
run: |
|
||||
make test_user_doc_gpu
|
||||
|
||||
- name: Test C API
|
||||
run: |
|
||||
make test_c_api_gpu
|
||||
|
||||
- name: Run High Level API Tests
|
||||
run: |
|
||||
make test_high_level_api_gpu
|
||||
|
||||
- uses: actions-ecosystem/action-remove-labels@2ce5d41b4b6aa8503e285553f75ed56e0a40bae0
|
||||
if: ${{ always() && github.event_name == 'pull_request' }}
|
||||
with:
|
||||
labels: 4090_test
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "CUDA RTX 4090 tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
140
.github/workflows/aws_tfhe_gpu_tests.yml
vendored
140
.github/workflows/aws_tfhe_gpu_tests.yml
vendored
@@ -1,45 +1,47 @@
|
||||
# Compile and test Concrete-cuda on an AWS instance
|
||||
name: Concrete Cuda - Full tests
|
||||
# Compile and test tfhe-cuda-backend on an AWS instance
|
||||
name: TFHE Cuda Backend - Full tests
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
# All the inputs are provided by Slab
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "AWS instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "AWS instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "AWS instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: 'Slab request ID'
|
||||
type: string
|
||||
fork_repo:
|
||||
description: 'Name of forked repo as user/repo'
|
||||
type: string
|
||||
fork_git_sha:
|
||||
description: 'Git SHA to checkout from fork'
|
||||
type: string
|
||||
pull_request:
|
||||
|
||||
jobs:
|
||||
run-cuda-tests-linux:
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (cuda-tests)
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: aws
|
||||
profile: gpu-test
|
||||
|
||||
cuda-tests-linux:
|
||||
name: CUDA tests
|
||||
needs: setup-ec2
|
||||
concurrency:
|
||||
group: tfhe_cuda_backend_test-${{ github.ref }}
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
|
||||
name: Test code in EC2
|
||||
runs-on: ${{ inputs.runner_name }}
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
# explicit include-based build matrix, of known valid options
|
||||
@@ -52,31 +54,17 @@ jobs:
|
||||
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
|
||||
|
||||
steps:
|
||||
# Step used for log purpose.
|
||||
- name: Instance configuration used
|
||||
run: |
|
||||
echo "ID: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
echo "Fork repo: ${{ inputs.fork_repo }}"
|
||||
echo "Fork git sha: ${{ inputs.fork_git_sha }}"
|
||||
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@c85c95e3d7251135ab7dc9ce3241c5835cc595a9
|
||||
with:
|
||||
repository: ${{ inputs.fork_repo }}
|
||||
ref: ${{ inputs.fork_git_sha }}
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@be73d7920c329f220ce78e0234b8f96b7ae60248
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Export CUDA variables
|
||||
if: ${{ !cancelled() }}
|
||||
@@ -90,15 +78,65 @@ jobs:
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "HOME=/home/ubuntu";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Run fmt checks
|
||||
run: |
|
||||
make check_fmt_gpu
|
||||
|
||||
- name: Run clippy checks
|
||||
run: |
|
||||
make clippy_gpu
|
||||
make pcc_gpu
|
||||
|
||||
- name: Run all tests
|
||||
- name: Run core crypto, integer and internal CUDA backend tests
|
||||
run: |
|
||||
make test_gpu
|
||||
|
||||
- name: Run user docs tests
|
||||
run: |
|
||||
make test_user_doc_gpu
|
||||
|
||||
- name: Test C API
|
||||
run: |
|
||||
make test_c_api_gpu
|
||||
|
||||
- name: Run High Level API Tests
|
||||
run: |
|
||||
make test_high_level_api_gpu
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "CUDA AWS tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (cuda-tests)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, cuda-tests-linux ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (cuda-tests) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
111
.github/workflows/aws_tfhe_integer_tests.yml
vendored
111
.github/workflows/aws_tfhe_integer_tests.yml
vendored
@@ -4,66 +4,57 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
# All the inputs are provided by Slab
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "AWS instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "AWS instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "AWS instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: "Slab request ID"
|
||||
type: string
|
||||
fork_repo:
|
||||
description: "Name of forked repo as user/repo"
|
||||
type: string
|
||||
fork_git_sha:
|
||||
description: "Git SHA to checkout from fork"
|
||||
type: string
|
||||
pull_request:
|
||||
types: [ labeled ]
|
||||
|
||||
jobs:
|
||||
integer-tests:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_${{ inputs.instance_image_id }}_${{ inputs.instance_type }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ inputs.runner_name }}
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (unsigned-integer-tests)
|
||||
if: ${{ github.event_name == 'workflow_dispatch' || contains(github.event.label.name, 'approved') }}
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
# Step used for log purpose.
|
||||
- name: Instance configuration used
|
||||
run: |
|
||||
echo "ID: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
echo "Fork repo: ${{ inputs.fork_repo }}"
|
||||
echo "Fork git sha: ${{ inputs.fork_git_sha }}"
|
||||
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
repository: ${{ inputs.fork_repo }}
|
||||
ref: ${{ inputs.fork_git_sha }}
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: aws
|
||||
profile: cpu-big
|
||||
|
||||
unsigned-integer-tests:
|
||||
name: Unsigned integer tests
|
||||
needs: setup-ec2
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Gen Keys if required
|
||||
run: |
|
||||
@@ -84,11 +75,31 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Integer tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
SLACK_MESSAGE: "Unsigned Integer tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (unsigned-integer-tests)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, unsigned-integer-tests ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (unsigned-integer-tests) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
111
.github/workflows/aws_tfhe_signed_integer_tests.yml
vendored
111
.github/workflows/aws_tfhe_signed_integer_tests.yml
vendored
@@ -4,66 +4,57 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
# All the inputs are provided by Slab
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "AWS instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "AWS instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "AWS instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: "Slab request ID"
|
||||
type: string
|
||||
fork_repo:
|
||||
description: "Name of forked repo as user/repo"
|
||||
type: string
|
||||
fork_git_sha:
|
||||
description: "Git SHA to checkout from fork"
|
||||
type: string
|
||||
pull_request:
|
||||
types: [ labeled ]
|
||||
|
||||
jobs:
|
||||
multi-bit-tests:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_${{ inputs.instance_image_id }}_${{ inputs.instance_type }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ inputs.runner_name }}
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (signed-integer-tests)
|
||||
if: ${{ github.event_name == 'workflow_dispatch' || contains(github.event.label.name, 'approved') }}
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
# Step used for log purpose.
|
||||
- name: Instance configuration used
|
||||
run: |
|
||||
echo "ID: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
echo "Fork repo: ${{ inputs.fork_repo }}"
|
||||
echo "Fork git sha: ${{ inputs.fork_git_sha }}"
|
||||
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
repository: ${{ inputs.fork_repo }}
|
||||
ref: ${{ inputs.fork_git_sha }}
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: aws
|
||||
profile: cpu-big
|
||||
|
||||
signed-integer-tests:
|
||||
name: Signed integer tests
|
||||
needs: setup-ec2
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Gen Keys if required
|
||||
run: |
|
||||
@@ -88,11 +79,31 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Shortint tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
SLACK_MESSAGE: "Signed Integer tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (signed-integer-tests)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, signed-integer-tests ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (signed-integer-tests) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
115
.github/workflows/aws_tfhe_tests.yml
vendored
115
.github/workflows/aws_tfhe_tests.yml
vendored
@@ -4,71 +4,66 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
# All the inputs are provided by Slab
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "AWS instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "AWS instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "AWS instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: 'Slab request ID'
|
||||
type: string
|
||||
fork_repo:
|
||||
description: 'Name of forked repo as user/repo'
|
||||
type: string
|
||||
fork_git_sha:
|
||||
description: 'Git SHA to checkout from fork'
|
||||
type: string
|
||||
pull_request:
|
||||
types: [ labeled ]
|
||||
|
||||
jobs:
|
||||
shortint-tests:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_${{ inputs.instance_image_id }}_${{ inputs.instance_type }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ inputs.runner_name }}
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (cpu-tests)
|
||||
if: ${{ github.event_name == 'workflow_dispatch' || contains(github.event.label.name, 'approved') }}
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
# Step used for log purpose.
|
||||
- name: Instance configuration used
|
||||
run: |
|
||||
echo "ID: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
echo "Fork repo: ${{ inputs.fork_repo }}"
|
||||
echo "Fork git sha: ${{ inputs.fork_git_sha }}"
|
||||
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
repository: ${{ inputs.fork_repo }}
|
||||
ref: ${{ inputs.fork_git_sha }}
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: aws
|
||||
profile: cpu-big
|
||||
|
||||
cpu-tests:
|
||||
name: CPU tests
|
||||
needs: setup-ec2
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Run concrete-csprng tests
|
||||
run: |
|
||||
make test_concrete_csprng
|
||||
|
||||
- name: Run tfhe-zk-pok tests
|
||||
run: |
|
||||
make test_zk_pok
|
||||
|
||||
- name: Run core tests
|
||||
run: |
|
||||
AVX512_SUPPORT=ON make test_core_crypto
|
||||
@@ -110,11 +105,31 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Shortint tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
SLACK_MESSAGE: "CPU tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (cpu-tests)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, cpu-tests ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (cpu-tests) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
118
.github/workflows/aws_tfhe_wasm_tests.yml
vendored
118
.github/workflows/aws_tfhe_wasm_tests.yml
vendored
@@ -4,66 +4,65 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
# All the inputs are provided by Slab
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "AWS instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "AWS instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "AWS instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: 'Slab request ID'
|
||||
type: string
|
||||
fork_repo:
|
||||
description: 'Name of forked repo as user/repo'
|
||||
type: string
|
||||
fork_git_sha:
|
||||
description: 'Git SHA to checkout from fork'
|
||||
type: string
|
||||
pull_request:
|
||||
types: [ labeled ]
|
||||
|
||||
jobs:
|
||||
wasm-tests:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_${{ inputs.instance_image_id }}_${{ inputs.instance_type }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ inputs.runner_name }}
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (wasm-tests)
|
||||
if: ${{ github.event_name == 'workflow_dispatch' || contains(github.event.label.name, 'approved') }}
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
# Step used for log purpose.
|
||||
- name: Instance configuration used
|
||||
run: |
|
||||
echo "ID: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
echo "Fork repo: ${{ inputs.fork_repo }}"
|
||||
echo "Fork git sha: ${{ inputs.fork_git_sha }}"
|
||||
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
repository: ${{ inputs.fork_repo }}
|
||||
ref: ${{ inputs.fork_git_sha }}
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: aws
|
||||
profile: cpu-small
|
||||
|
||||
wasm-tests:
|
||||
name: WASM tests
|
||||
needs: setup-ec2
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Install Node
|
||||
run: |
|
||||
make install_node
|
||||
|
||||
- name: Run fmt checks
|
||||
run: |
|
||||
make check_fmt_js
|
||||
|
||||
- name: Run js on wasm API tests
|
||||
run: |
|
||||
@@ -71,17 +70,36 @@ jobs:
|
||||
|
||||
- name: Run parallel wasm tests
|
||||
run: |
|
||||
make install_node
|
||||
make ci_test_web_js_api_parallel
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "WASM tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (wasm-tests)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, wasm-tests ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (wasm-tests) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
19
.github/workflows/boolean_benchmark.yml
vendored
19
.github/workflows/boolean_benchmark.yml
vendored
@@ -32,6 +32,8 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-boolean-benchmarks:
|
||||
@@ -51,7 +53,7 @@ jobs:
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -61,14 +63,13 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON bench_boolean
|
||||
make bench_boolean
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
@@ -96,17 +97,17 @@ jobs:
|
||||
--append-results
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_boolean
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -125,11 +126,11 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Boolean benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Boolean benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
10
.github/workflows/cargo_build.yml
vendored
10
.github/workflows/cargo_build.yml
vendored
@@ -6,6 +6,8 @@ on:
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref }}
|
||||
@@ -17,11 +19,11 @@ jobs:
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-latest]
|
||||
os: [ubuntu-latest, macos-latest-large, windows-latest]
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
- uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Install and run newline linter checks
|
||||
if: matrix.os == 'ubuntu-latest'
|
||||
@@ -66,5 +68,9 @@ jobs:
|
||||
run: |
|
||||
make build_c_api
|
||||
|
||||
- name: Build coverage tests
|
||||
run: |
|
||||
make build_tfhe_coverage
|
||||
|
||||
# The wasm build check is a bit annoying to set-up here and is done during the tests in
|
||||
# aws_tfhe_tests.yml
|
||||
|
||||
27
.github/workflows/ci_lint.yml
vendored
Normal file
27
.github/workflows/ci_lint.yml
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
# Lint and check CI
|
||||
name: CI Lint and Checks
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
env:
|
||||
ACTIONLINT_VERSION: 1.6.27
|
||||
|
||||
jobs:
|
||||
lint-check:
|
||||
name: Lint and checks
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Get actionlint
|
||||
run: |
|
||||
bash <(curl https://raw.githubusercontent.com/rhysd/actionlint/main/scripts/download-actionlint.bash) ${{ env.ACTIONLINT_VERSION }}
|
||||
echo "f2ee6d561ce00fa93aab62a7791c1a0396ec7e8876b2a8f2057475816c550782 actionlint" > checksum
|
||||
sha256sum -c checksum
|
||||
ln -s "$(pwd)/actionlint" /usr/local/bin/
|
||||
|
||||
- name: Lint workflows
|
||||
run: |
|
||||
make lint_workflow
|
||||
29
.github/workflows/code_coverage.yml
vendored
29
.github/workflows/code_coverage.yml
vendored
@@ -4,6 +4,8 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
@@ -38,7 +40,7 @@ jobs:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_${{ inputs.instance_image_id }}_${{ inputs.instance_type }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ inputs.runner_name }}
|
||||
timeout-minutes: 1080
|
||||
timeout-minutes: 11520 # 8 days
|
||||
steps:
|
||||
# Step used for log purpose.
|
||||
- name: Instance configuration used
|
||||
@@ -51,7 +53,7 @@ jobs:
|
||||
echo "Fork git sha: ${{ inputs.fork_git_sha }}"
|
||||
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: ${{ inputs.fork_repo }}
|
||||
ref: ${{ inputs.fork_git_sha }}
|
||||
@@ -61,14 +63,13 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Check for file changes
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@62f4729b5df35e6e0e01265fa70a82ccaf196b4b
|
||||
uses: tj-actions/changed-files@2d756ea4c53f7f6b397767d8723b3a10a9f35bf2
|
||||
with:
|
||||
files_yaml: |
|
||||
tfhe:
|
||||
@@ -98,7 +99,7 @@ jobs:
|
||||
make test_shortint_cov
|
||||
|
||||
- name: Upload tfhe coverage to Codecov
|
||||
uses: codecov/codecov-action@eaaf4bedf32dbdc6b720b63067d99c4d77d6047d
|
||||
uses: codecov/codecov-action@7afa10ed9b269c561c2336fd862446844e0cbf71
|
||||
if: steps.changed-files.outputs.tfhe_any_changed == 'true'
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
@@ -106,10 +107,24 @@ jobs:
|
||||
fail_ci_if_error: true
|
||||
files: shortint/cobertura.xml,boolean/cobertura.xml,core_crypto/cobertura.xml,core_crypto_avx512/cobertura.xml
|
||||
|
||||
- name: Run integer coverage
|
||||
if: steps.changed-files.outputs.tfhe_any_changed == 'true'
|
||||
run: |
|
||||
make test_integer_cov
|
||||
|
||||
- name: Upload tfhe coverage to Codecov
|
||||
uses: codecov/codecov-action@7afa10ed9b269c561c2336fd862446844e0cbf71
|
||||
if: steps.changed-files.outputs.tfhe_any_changed == 'true'
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
directory: ./coverage/
|
||||
fail_ci_if_error: true
|
||||
files: integer/cobertura.xml
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Run PBS benchmarks on an AWS instance and return parsed results to Slab CI bot.
|
||||
name: PBS benchmarks
|
||||
# Run core crypto benchmarks on an AWS instance and return parsed results to Slab CI bot.
|
||||
name: Core crypto benchmarks
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
@@ -32,10 +32,12 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-pbs-benchmarks:
|
||||
name: Execute PBS benchmarks in EC2
|
||||
run-core-crypto-benchmarks:
|
||||
name: Execute core crypto benchmarks in EC2
|
||||
runs-on: ${{ github.event.inputs.runner_name }}
|
||||
if: ${{ !cancelled() }}
|
||||
steps:
|
||||
@@ -51,7 +53,7 @@ jobs:
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -61,14 +63,14 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON bench_pbs
|
||||
make bench_pbs
|
||||
make bench_ks
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
@@ -86,17 +88,17 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_pbs
|
||||
name: ${{ github.sha }}_core_crypto
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -115,11 +117,11 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "PBS benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "PBS benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
182
.github/workflows/core_crypto_gpu_benchmark.yml
vendored
Normal file
182
.github/workflows/core_crypto_gpu_benchmark.yml
vendored
Normal file
@@ -0,0 +1,182 @@
|
||||
# Run core crypto benchmarks on an AWS instance with CUDA and return parsed results to Slab CI bot.
|
||||
name: Core crypto GPU benchmarks
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
|
||||
jobs:
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (cuda-benchmarks)
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: hyperstack
|
||||
profile: gpu-bench
|
||||
|
||||
core-crypto-benchmarks:
|
||||
name: CUDA core crypto benchmarks
|
||||
needs: setup-ec2
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
# explicit include-based build matrix, of known valid options
|
||||
matrix:
|
||||
include:
|
||||
- os: ubuntu-22.04
|
||||
cuda: "12.2"
|
||||
gcc: 11
|
||||
env:
|
||||
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
|
||||
CMAKE_VERSION: 3.29.1
|
||||
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y checkinstall zlib1g-dev libssl-dev
|
||||
wget https://github.com/Kitware/CMake/releases/download/v${{ env.CMAKE_VERSION }}/cmake-${{ env.CMAKE_VERSION }}.tar.gz
|
||||
tar -zxvf cmake-${{ env.CMAKE_VERSION }}.tar.gz
|
||||
cd cmake-${{ env.CMAKE_VERSION }}
|
||||
./bootstrap
|
||||
make -j"$(nproc)"
|
||||
sudo make install
|
||||
|
||||
- name: Get benchmark date
|
||||
run: |
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up home
|
||||
# "Install rust" step require root user to have a HOME directory which is not set.
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
- name: Export CUDA variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
{
|
||||
echo "CUDA_PATH=$CUDA_PATH";
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
|
||||
} >> "${GITHUB_ENV}"
|
||||
echo "$CUDA_PATH/bin" >> "${GITHUB_PATH}"
|
||||
|
||||
# Specify the correct host compilers
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "HOME=/home/ubuntu";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make bench_pbs_gpu
|
||||
make bench_ks_gpu
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
COMMIT_DATE="$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})"
|
||||
COMMIT_HASH="$(git describe --tags --dirty)"
|
||||
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
|
||||
--database tfhe_rs \
|
||||
--hardware ${{ inputs.instance_type }} \
|
||||
--backend gpu \
|
||||
--project-version "${COMMIT_HASH}" \
|
||||
--branch ${{ github.ref_name }} \
|
||||
--commit-date "${COMMIT_DATE}" \
|
||||
--bench-date "${{ env.BENCH_DATE }}" \
|
||||
--name-suffix avx512 \
|
||||
--walk-subdirs \
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_core_crypto
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Computing HMac on downloaded artifact"
|
||||
SIGNATURE="$(slab/scripts/hmac_calculator.sh ${{ env.RESULTS_FILENAME }} '${{ secrets.JOB_SECRET }}')"
|
||||
echo "Sending results to Slab..."
|
||||
curl -v -k \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "X-Slab-Repository: ${{ github.repository }}" \
|
||||
-H "X-Slab-Command: store_data_v2" \
|
||||
-H "X-Hub-Signature-256: sha256=${SIGNATURE}" \
|
||||
-d @${{ env.RESULTS_FILENAME }} \
|
||||
${{ secrets.SLAB_URL }}
|
||||
|
||||
# FIXME This action needs docker to be installed on the machine beforehand.
|
||||
# - name: Slack Notification
|
||||
# if: ${{ failure() }}
|
||||
# continue-on-error: true
|
||||
# uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
# env:
|
||||
# SLACK_COLOR: ${{ job.status }}
|
||||
# SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
# SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
# SLACK_MESSAGE: "PBS GPU benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
# SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
# SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (cuda-benchmarks)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, core-crypto-benchmarks ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (cuda-benchmarks) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
74
.github/workflows/csprng_randomness_testing.yml
vendored
74
.github/workflows/csprng_randomness_testing.yml
vendored
@@ -1,74 +0,0 @@
|
||||
name: CSPRNG randomness testing Workflow
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
# All the inputs are provided by Slab
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "AWS instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "AWS instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "AWS instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: 'Slab request ID'
|
||||
type: string
|
||||
fork_repo:
|
||||
description: 'Name of forked repo as user/repo'
|
||||
type: string
|
||||
fork_git_sha:
|
||||
description: 'Git SHA to checkout from fork'
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
csprng-randomness-teting:
|
||||
name: CSPRNG randomness testing
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_${{ inputs.instance_image_id }}_${{ inputs.instance_type }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ inputs.runner_name }}
|
||||
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
with:
|
||||
repository: ${{ inputs.fork_repo }}
|
||||
ref: ${{ inputs.fork_git_sha }}
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Dieharder randomness test suite
|
||||
run: |
|
||||
make dieharder_csprng
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "concrete-csprng randomness check finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
94
.github/workflows/csprng_randomness_tests.yml
vendored
Normal file
94
.github/workflows/csprng_randomness_tests.yml
vendored
Normal file
@@ -0,0 +1,94 @@
|
||||
name: CSPRNG randomness testing Workflow
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
pull_request:
|
||||
types: [ labeled ]
|
||||
|
||||
|
||||
jobs:
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (csprng-randomness-tests)
|
||||
if: ${{ github.event_name == 'workflow_dispatch' || contains(github.event.label.name, 'approved') }}
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: aws
|
||||
profile: cpu-small
|
||||
|
||||
csprng-randomness-tests:
|
||||
name: CSPRNG randomness tests
|
||||
needs: setup-ec2
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
- name: Dieharder randomness test suite
|
||||
run: |
|
||||
make dieharder_csprng
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "concrete-csprng randomness check finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (csprng-randomness-tests)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, csprng-randomness-tests ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (csprng-randomness-tests) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
202
.github/workflows/gpu_4090_full_benchmark.yml
vendored
Normal file
202
.github/workflows/gpu_4090_full_benchmark.yml
vendored
Normal file
@@ -0,0 +1,202 @@
|
||||
# Run all benchmarks on an RTX 4090 machine and return parsed results to Slab CI bot.
|
||||
name: TFHE Cuda Backend - 4090 full benchmarks
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
schedule:
|
||||
# Weekly benchmarks will be triggered each Friday at 9p.m.
|
||||
- cron: "0 21 * * 5"
|
||||
|
||||
jobs:
|
||||
cuda-integer-benchmarks:
|
||||
name: Cuda integer benchmarks for all operations flavor (RTX 4090)
|
||||
if: ${{ github.event_name == 'workflow_dispatch' || github.event_name == 'schedule' || contains(github.event.label.name, '4090_bench') }}
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_cuda_integer_bench
|
||||
cancel-in-progress: true
|
||||
runs-on: ["self-hosted", "4090-desktop"]
|
||||
timeout-minutes: 1440 # 24 hours
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1
|
||||
matrix:
|
||||
command: [integer, integer_multi_bit]
|
||||
op_flavor: [default, unchecked]
|
||||
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Run integer benchmarks
|
||||
run: |
|
||||
make BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_${{ matrix.command }}_gpu
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
|
||||
--database tfhe_rs \
|
||||
--hardware "rtx4090" \
|
||||
--backend gpu \
|
||||
--project-version "${{ env.COMMIT_HASH }}" \
|
||||
--branch ${{ github.ref_name }} \
|
||||
--commit-date "${{ env.COMMIT_DATE }}" \
|
||||
--bench-date "${{ env.BENCH_DATE }}" \
|
||||
--walk-subdirs \
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_${{ matrix.command }}_${{ matrix.op_flavor }}
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Computing HMac on results file"
|
||||
SIGNATURE="$(slab/scripts/hmac_calculator.sh ${{ env.RESULTS_FILENAME }} '${{ secrets.JOB_SECRET }}')"
|
||||
echo "Sending results to Slab..."
|
||||
curl -v -k \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "X-Slab-Repository: ${{ github.repository }}" \
|
||||
-H "X-Slab-Command: store_data_v2" \
|
||||
-H "X-Hub-Signature-256: sha256=${SIGNATURE}" \
|
||||
-d @${{ env.RESULTS_FILENAME }} \
|
||||
${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "Integer RTX 4090 full benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
cuda-core-crypto-benchmarks:
|
||||
name: Cuda core crypto benchmarks (RTX 4090)
|
||||
if: ${{ github.event_name == 'workflow_dispatch' || github.event_name == 'schedule' || contains(github.event.label.name, '4090_bench') }}
|
||||
needs: cuda-integer-benchmarks
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}_cuda_core_crypto_bench
|
||||
cancel-in-progress: true
|
||||
runs-on: ["self-hosted", "4090-desktop"]
|
||||
timeout-minutes: 1440 # 24 hours
|
||||
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Run integer benchmarks
|
||||
run: |
|
||||
make bench_pbs_gpu
|
||||
make bench_ks_gpu
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
|
||||
--database tfhe_rs \
|
||||
--hardware "rtx4090" \
|
||||
--backend gpu \
|
||||
--project-version "${{ env.COMMIT_HASH }}" \
|
||||
--branch ${{ github.ref_name }} \
|
||||
--commit-date "${{ env.COMMIT_DATE }}" \
|
||||
--bench-date "${{ env.BENCH_DATE }}" \
|
||||
--walk-subdirs \
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_core_crypto
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Computing HMac on results file"
|
||||
SIGNATURE="$(slab/scripts/hmac_calculator.sh ${{ env.RESULTS_FILENAME }} '${{ secrets.JOB_SECRET }}')"
|
||||
echo "Sending results to Slab..."
|
||||
curl -v -k \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "X-Slab-Repository: ${{ github.repository }}" \
|
||||
-H "X-Slab-Command: store_data_v2" \
|
||||
-H "X-Hub-Signature-256: sha256=${SIGNATURE}" \
|
||||
-d @${{ env.RESULTS_FILENAME }} \
|
||||
${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ !success() && !cancelled() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "Core crypto RTX 4090 full benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
remove_github_label:
|
||||
name: Remove 4090 bench label
|
||||
if: ${{ always() && github.event_name == 'pull_request' }}
|
||||
needs: [cuda-integer-benchmarks, cuda-core-crypto-benchmarks]
|
||||
runs-on: ["self-hosted", "4090-desktop"]
|
||||
steps:
|
||||
- uses: actions-ecosystem/action-remove-labels@2ce5d41b4b6aa8503e285553f75ed56e0a40bae0
|
||||
with:
|
||||
labels: 4090_bench
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
21
.github/workflows/integer_benchmark.yml
vendored
21
.github/workflows/integer_benchmark.yml
vendored
@@ -25,6 +25,8 @@ env:
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
PARSE_INTEGER_BENCH_CSV_FILE: tfhe_rs_integer_benches_${{ github.sha }}.csv
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-integer-benchmarks:
|
||||
@@ -44,7 +46,7 @@ jobs:
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -54,14 +56,13 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON FAST_BENCH=TRUE bench_integer
|
||||
make FAST_BENCH=TRUE bench_integer
|
||||
|
||||
- name: Parse benchmarks to csv
|
||||
run: |
|
||||
@@ -69,7 +70,7 @@ jobs:
|
||||
parse_integer_benches
|
||||
|
||||
- name: Upload csv results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_csv_integer
|
||||
path: ${{ env.PARSE_INTEGER_BENCH_CSV_FILE }}
|
||||
@@ -90,17 +91,17 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_integer
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -119,11 +120,11 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Integer benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Integer benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
33
.github/workflows/integer_full_benchmark.yml
vendored
33
.github/workflows/integer_full_benchmark.yml
vendored
@@ -28,6 +28,8 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
prepare-matrix:
|
||||
@@ -39,17 +41,17 @@ jobs:
|
||||
- name: Weekly benchmarks
|
||||
if: ${{ github.event.inputs.user_inputs == 'weekly_benchmarks' }}
|
||||
run: |
|
||||
echo "OP_FLAVOR=[\"default\"]" >> ${GITHUB_ENV}
|
||||
echo "OP_FLAVOR=[\"default\"]" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Quarterly benchmarks
|
||||
if: ${{ github.event.inputs.user_inputs == 'quarterly_benchmarks' }}
|
||||
run: |
|
||||
echo "OP_FLAVOR=[\"default\", \"smart\", \"unchecked\", \"misc\"]" >> ${GITHUB_ENV}
|
||||
echo "OP_FLAVOR=[\"default\", \"smart\", \"unchecked\", \"misc\"]" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Set operation flavor output
|
||||
id: set_op_flavor
|
||||
run: |
|
||||
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> ${GITHUB_OUTPUT}
|
||||
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
integer-benchmarks:
|
||||
name: Execute integer benchmarks for all operations flavor
|
||||
@@ -72,15 +74,17 @@ jobs:
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})" >> "${GITHUB_ENV}"
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Set up home
|
||||
# "Install rust" step require root user to have a HOME directory which is not set.
|
||||
@@ -88,21 +92,20 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_${{ matrix.command }}
|
||||
make BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_${{ matrix.command }}
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
@@ -118,7 +121,7 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_${{ matrix.command }}_${{ matrix.op_flavor }}
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
@@ -145,11 +148,11 @@ jobs:
|
||||
steps:
|
||||
- name: Notify
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Integer full benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Integer full benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
134
.github/workflows/integer_gpu_benchmark.yml
vendored
134
.github/workflows/integer_gpu_benchmark.yml
vendored
@@ -2,35 +2,40 @@
|
||||
name: Integer GPU benchmarks
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "Instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "Instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "Instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: "Slab request ID"
|
||||
type: string
|
||||
pull_request:
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
PARSE_INTEGER_BENCH_CSV_FILE: tfhe_rs_integer_benches_${{ github.sha }}.csv
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-integer-benchmarks:
|
||||
name: Execute integer benchmarks in EC2
|
||||
runs-on: ${{ github.event.inputs.runner_name }}
|
||||
if: ${{ !cancelled() }}
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (cuda-benchmarks)
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: hyperstack
|
||||
profile: gpu-bench
|
||||
|
||||
cuda-integer-benchmarks:
|
||||
name: CUDA integer benchmarks
|
||||
needs: setup-ec2
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
# explicit include-based build matrix, of known valid options
|
||||
@@ -38,23 +43,29 @@ jobs:
|
||||
include:
|
||||
- os: ubuntu-22.04
|
||||
cuda: "12.2"
|
||||
gcc: 9
|
||||
gcc: 11
|
||||
env:
|
||||
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
|
||||
CMAKE_VERSION: 3.29.1
|
||||
|
||||
steps:
|
||||
- name: Instance configuration used
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "IDs: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
sudo apt update
|
||||
sudo apt install -y checkinstall zlib1g-dev libssl-dev
|
||||
wget https://github.com/Kitware/CMake/releases/download/v${{ env.CMAKE_VERSION }}/cmake-${{ env.CMAKE_VERSION }}.tar.gz
|
||||
tar -zxvf cmake-${{ env.CMAKE_VERSION }}.tar.gz
|
||||
cd cmake-${{ env.CMAKE_VERSION }}
|
||||
./bootstrap
|
||||
make -j"$(nproc)"
|
||||
sudo make install
|
||||
|
||||
- name: Get benchmark date
|
||||
run: |
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -64,31 +75,33 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Export CUDA variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
echo "CUDA_PATH=$CUDA_PATH" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "CUDA_PATH=$CUDA_PATH";
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
|
||||
} >> "${GITHUB_ENV}"
|
||||
echo "$CUDA_PATH/bin" >> "${GITHUB_PATH}"
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc" >> "${GITHUB_ENV}"
|
||||
|
||||
# Specify the correct host compilers
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON FAST_BENCH=TRUE BENCH_OP_FLAVOR=default bench_integer_gpu
|
||||
make FAST_BENCH=TRUE BENCH_OP_FLAVOR=default bench_integer_gpu
|
||||
|
||||
- name: Parse benchmarks to csv
|
||||
run: |
|
||||
@@ -96,7 +109,7 @@ jobs:
|
||||
parse_integer_benches
|
||||
|
||||
- name: Upload csv results artifact
|
||||
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_csv_integer
|
||||
path: ${{ env.PARSE_INTEGER_BENCH_CSV_FILE }}
|
||||
@@ -107,7 +120,7 @@ jobs:
|
||||
COMMIT_HASH="$(git describe --tags --dirty)"
|
||||
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
|
||||
--database tfhe_rs \
|
||||
--hardware ${{ inputs.instance_type }} \
|
||||
--hardware "n2-H100x1" \
|
||||
--backend gpu \
|
||||
--project-version "${COMMIT_HASH}" \
|
||||
--branch ${{ github.ref_name }} \
|
||||
@@ -118,17 +131,17 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_integer
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -144,14 +157,39 @@ jobs:
|
||||
-d @${{ env.RESULTS_FILENAME }} \
|
||||
${{ secrets.SLAB_URL }}
|
||||
|
||||
# FIXME This action needs docker to be installed on the machine beforehand.
|
||||
# - name: Slack Notification
|
||||
# if: ${{ !success() && !cancelled() }}
|
||||
# continue-on-error: true
|
||||
# uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
# env:
|
||||
# SLACK_COLOR: ${{ job.status }}
|
||||
# SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
# SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
# SLACK_MESSAGE: "Integer GPU benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
# SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
# SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (cuda-benchmarks)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, cuda-integer-benchmarks ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Integer GPU benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
SLACK_MESSAGE: "EC2 teardown (cuda-benchmarks) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
152
.github/workflows/integer_gpu_full_benchmark.yml
vendored
152
.github/workflows/integer_gpu_full_benchmark.yml
vendored
@@ -2,66 +2,80 @@
|
||||
name: Integer GPU full benchmarks
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "Instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "Instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "Instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: "Slab request ID"
|
||||
type: string
|
||||
pull_request:
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
integer-benchmarks:
|
||||
name: Execute integer benchmarks for all operations flavor
|
||||
runs-on: ${{ github.event.inputs.runner_name }}
|
||||
if: ${{ !cancelled() }}
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (cuda-full-benchmarks)
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: hyperstack
|
||||
profile: gpu-bench
|
||||
|
||||
cuda-integer-full-benchmarks:
|
||||
name: CUDA integer full benchmarks
|
||||
needs: setup-ec2
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
timeout-minutes: 1440 # 24 hours
|
||||
continue-on-error: true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1
|
||||
matrix:
|
||||
command: [ integer, integer_multi_bit]
|
||||
op_flavor: [ default, unchecked ]
|
||||
command: [integer, integer_multi_bit]
|
||||
op_flavor: [default, unchecked]
|
||||
# explicit include-based build matrix, of known valid options
|
||||
include:
|
||||
- os: ubuntu-22.04
|
||||
cuda: "12.2"
|
||||
gcc: 9
|
||||
gcc: 11
|
||||
env:
|
||||
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
|
||||
CMAKE_VERSION: 3.29.1
|
||||
|
||||
steps:
|
||||
- name: Instance configuration used
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "IDs: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
sudo apt update
|
||||
sudo apt install -y checkinstall zlib1g-dev libssl-dev
|
||||
wget https://github.com/Kitware/CMake/releases/download/v${{ env.CMAKE_VERSION }}/cmake-${{ env.CMAKE_VERSION }}.tar.gz
|
||||
tar -zxvf cmake-${{ env.CMAKE_VERSION }}.tar.gz
|
||||
cd cmake-${{ env.CMAKE_VERSION }}
|
||||
./bootstrap
|
||||
make -j"$(nproc)"
|
||||
sudo make install
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})" >> "${GITHUB_ENV}"
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Set up home
|
||||
# "Install rust" step require root user to have a HOME directory which is not set.
|
||||
@@ -69,44 +83,46 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Export CUDA variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
echo "CUDA_PATH=$CUDA_PATH" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "CUDA_PATH=$CUDA_PATH";
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
|
||||
} >> "${GITHUB_ENV}"
|
||||
echo "$CUDA_PATH/bin" >> "${GITHUB_PATH}"
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc" >> "${GITHUB_ENV}"
|
||||
|
||||
# Specify the correct host compilers
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_${{ matrix.command }}_gpu
|
||||
make BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_${{ matrix.command }}_gpu
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
|
||||
--database tfhe_rs \
|
||||
--hardware ${{ inputs.instance_type }} \
|
||||
--hardware "n2-H100x1" \
|
||||
--backend gpu \
|
||||
--project-version "${{ env.COMMIT_HASH }}" \
|
||||
--branch ${{ github.ref_name }} \
|
||||
@@ -117,7 +133,7 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_${{ matrix.command }}_${{ matrix.op_flavor }}
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
@@ -136,19 +152,39 @@ jobs:
|
||||
-d @${{ env.RESULTS_FILENAME }} \
|
||||
${{ secrets.SLAB_URL }}
|
||||
|
||||
slack-notification:
|
||||
name: Slack Notification
|
||||
runs-on: ${{ github.event.inputs.runner_name }}
|
||||
if: ${{ failure() }}
|
||||
needs: integer-benchmarks
|
||||
# FIXME This action needs docker to be installed on the machine beforehand.
|
||||
# - name: Slack Notification
|
||||
# if: ${{ !success() && !cancelled() }}
|
||||
# continue-on-error: true
|
||||
# uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
# env:
|
||||
# SLACK_COLOR: ${{ job.status }}
|
||||
# SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
# SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
# SLACK_MESSAGE: "Integer GPU full benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
# SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
# SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (cuda-full-benchmarks)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, cuda-integer-full-benchmarks ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Notify
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Integer GPU full benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
SLACK_MESSAGE: "EC2 teardown (cuda-full-benchmarks) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
@@ -25,6 +25,8 @@ env:
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
PARSE_INTEGER_BENCH_CSV_FILE: tfhe_rs_integer_benches_${{ github.sha }}.csv
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-integer-benchmarks:
|
||||
@@ -44,7 +46,7 @@ jobs:
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -54,14 +56,13 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Run multi-bit benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON FAST_BENCH=TRUE bench_integer_multi_bit
|
||||
make FAST_BENCH=TRUE bench_integer_multi_bit
|
||||
|
||||
- name: Parse benchmarks to csv
|
||||
run: |
|
||||
@@ -69,7 +70,7 @@ jobs:
|
||||
parse_integer_benches
|
||||
|
||||
- name: Upload csv results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_csv_integer
|
||||
path: ${{ env.PARSE_INTEGER_BENCH_CSV_FILE }}
|
||||
@@ -90,17 +91,17 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_integer
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -119,11 +120,11 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Integer benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Integer benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
@@ -1,61 +1,72 @@
|
||||
# Run integer benchmarks with multi-bit cryptographic parameters on an AWS instance and return parsed results to Slab CI bot.
|
||||
name: Integer Multi-bit benchmarks
|
||||
name: Integer GPU Multi-bit benchmarks
|
||||
|
||||
on:
|
||||
# Allows you to run this workflow manually from the Actions tab as an alternative.
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
instance_id:
|
||||
description: "Instance ID"
|
||||
type: string
|
||||
instance_image_id:
|
||||
description: "Instance AMI ID"
|
||||
type: string
|
||||
instance_type:
|
||||
description: "Instance product type"
|
||||
type: string
|
||||
runner_name:
|
||||
description: "Action runner name"
|
||||
type: string
|
||||
request_id:
|
||||
description: "Slab request ID"
|
||||
type: string
|
||||
pull_request:
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
PARSE_INTEGER_BENCH_CSV_FILE: tfhe_rs_integer_benches_${{ github.sha }}.csv
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-integer-benchmarks:
|
||||
name: Execute integer multi-bit benchmarks in EC2
|
||||
runs-on: ${{ github.event.inputs.runner_name }}
|
||||
if: ${{ !cancelled() }}
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (cuda-multi-bit-benchmarks)
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: hyperstack
|
||||
profile: gpu-bench
|
||||
|
||||
cuda-integer-multi-bit-benchmarks:
|
||||
name: CUDA integer multi-bit benchmarks
|
||||
needs: setup-ec2
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
timeout-minutes: 1440 # 24 hours
|
||||
strategy:
|
||||
fail-fast: false
|
||||
# explicit include-based build matrix, of known valid options
|
||||
matrix:
|
||||
include:
|
||||
- os: ubuntu-22.04
|
||||
cuda: "11.8"
|
||||
cuda_arch: "70"
|
||||
gcc: 9
|
||||
cuda: "12.2"
|
||||
gcc: 11
|
||||
env:
|
||||
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
|
||||
CMAKE_VERSION: 3.29.1
|
||||
|
||||
steps:
|
||||
- name: Instance configuration used
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "IDs: ${{ inputs.instance_id }}"
|
||||
echo "AMI: ${{ inputs.instance_image_id }}"
|
||||
echo "Type: ${{ inputs.instance_type }}"
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
sudo apt update
|
||||
sudo apt install -y checkinstall zlib1g-dev libssl-dev
|
||||
wget https://github.com/Kitware/CMake/releases/download/v${{ env.CMAKE_VERSION }}/cmake-${{ env.CMAKE_VERSION }}.tar.gz
|
||||
tar -zxvf cmake-${{ env.CMAKE_VERSION }}.tar.gz
|
||||
cd cmake-${{ env.CMAKE_VERSION }}
|
||||
./bootstrap
|
||||
make -j"$(nproc)"
|
||||
sudo make install
|
||||
|
||||
- name: Get benchmark date
|
||||
run: |
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -65,31 +76,33 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Export CUDA variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
echo "CUDA_PATH=$CUDA_PATH" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "CUDA_PATH=$CUDA_PATH";
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
|
||||
} >> "${GITHUB_ENV}"
|
||||
echo "$CUDA_PATH/bin" >> "${GITHUB_PATH}"
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc" >> "${GITHUB_ENV}"
|
||||
|
||||
# Specify the correct host compilers
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Run multi-bit benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON FAST_BENCH=TRUE BENCH_OP_FLAVOR=default bench_integer_multi_bit_gpu
|
||||
make FAST_BENCH=TRUE BENCH_OP_FLAVOR=default bench_integer_multi_bit_gpu
|
||||
|
||||
- name: Parse benchmarks to csv
|
||||
run: |
|
||||
@@ -97,7 +110,7 @@ jobs:
|
||||
parse_integer_benches
|
||||
|
||||
- name: Upload csv results artifact
|
||||
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_csv_integer
|
||||
path: ${{ env.PARSE_INTEGER_BENCH_CSV_FILE }}
|
||||
@@ -108,7 +121,7 @@ jobs:
|
||||
COMMIT_HASH="$(git describe --tags --dirty)"
|
||||
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
|
||||
--database tfhe_rs \
|
||||
--hardware ${{ inputs.instance_type }} \
|
||||
--hardware "n2-H100x1" \
|
||||
--backend gpu \
|
||||
--project-version "${COMMIT_HASH}" \
|
||||
--branch ${{ github.ref_name }} \
|
||||
@@ -119,17 +132,17 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_integer
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -145,14 +158,39 @@ jobs:
|
||||
-d @${{ env.RESULTS_FILENAME }} \
|
||||
${{ secrets.SLAB_URL }}
|
||||
|
||||
# FIXME This action needs docker to be installed on the machine beforehand.
|
||||
# - name: Slack Notification
|
||||
# if: ${{ !success() && !cancelled() }}
|
||||
# continue-on-error: true
|
||||
# uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
# env:
|
||||
# SLACK_COLOR: ${{ job.status }}
|
||||
# SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
# SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
# SLACK_MESSAGE: "Integer GPU benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
# SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
# SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (cuda-multi-bit-benchmarks)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, cuda-integer-multi-bit-benchmarks ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL_PRE_PROD }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Integer GPU benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
SLACK_MESSAGE: "EC2 teardown (cuda-multi-bit-benchmarks) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
15
.github/workflows/m1_tests.yml
vendored
15
.github/workflows/m1_tests.yml
vendored
@@ -14,6 +14,8 @@ on:
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RUSTFLAGS: "-C target-cpu=native"
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
FAST_TESTS: "TRUE"
|
||||
|
||||
@@ -25,15 +27,16 @@ jobs:
|
||||
cargo-builds:
|
||||
if: ${{ (github.event_name == 'schedule' && github.repository == 'zama-ai/tfhe-rs') || github.event_name == 'workflow_dispatch' || contains(github.event.label.name, 'm1_test') }}
|
||||
runs-on: ["self-hosted", "m1mac"]
|
||||
# 12 hours, default is 6 hours, hopefully this is more than enough
|
||||
timeout-minutes: 720
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
- uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Install latest stable
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
default: true
|
||||
|
||||
- name: Run pcc checks
|
||||
run: |
|
||||
@@ -71,6 +74,10 @@ jobs:
|
||||
run: |
|
||||
make test_concrete_csprng
|
||||
|
||||
- name: Run tfhe-zk-pok tests
|
||||
run: |
|
||||
make test_zk_pok
|
||||
|
||||
- name: Run core tests
|
||||
run: |
|
||||
make test_core_crypto
|
||||
@@ -130,7 +137,7 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ needs.cargo-builds.result != 'skipped' }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ needs.cargo-builds.result }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
|
||||
8
.github/workflows/make_release.yml
vendored
8
.github/workflows/make_release.yml
vendored
@@ -30,7 +30,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -49,7 +49,7 @@ jobs:
|
||||
|
||||
- name: Publish web package
|
||||
if: ${{ inputs.push_web_package }}
|
||||
uses: JS-DevTools/npm-publish@4b07b26a2f6e0a51846e1870223e545bae91c552
|
||||
uses: JS-DevTools/npm-publish@19c28f1ef146469e409470805ea4279d47c3d35c
|
||||
with:
|
||||
token: ${{ secrets.NPM_TOKEN }}
|
||||
package: tfhe/pkg/package.json
|
||||
@@ -65,7 +65,7 @@ jobs:
|
||||
|
||||
- name: Publish Node package
|
||||
if: ${{ inputs.push_node_package }}
|
||||
uses: JS-DevTools/npm-publish@4b07b26a2f6e0a51846e1870223e545bae91c552
|
||||
uses: JS-DevTools/npm-publish@19c28f1ef146469e409470805ea4279d47c3d35c
|
||||
with:
|
||||
token: ${{ secrets.NPM_TOKEN }}
|
||||
package: tfhe/pkg/package.json
|
||||
@@ -74,7 +74,7 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
|
||||
@@ -18,7 +18,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -32,7 +32,7 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
|
||||
129
.github/workflows/make_release_cuda.yml
vendored
Normal file
129
.github/workflows/make_release_cuda.yml
vendored
Normal file
@@ -0,0 +1,129 @@
|
||||
# Publish new release of tfhe-cuda-backend on crates.io.
|
||||
name: Publish CUDA release
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dry_run:
|
||||
description: "Dry-run"
|
||||
type: boolean
|
||||
default: true
|
||||
push_to_crates:
|
||||
description: "Push to crate"
|
||||
type: boolean
|
||||
default: true
|
||||
|
||||
env:
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
jobs:
|
||||
setup-ec2:
|
||||
name: Setup EC2 instance (publish-cuda-release)
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
runner-name: ${{ steps.start-instance.outputs.label }}
|
||||
steps:
|
||||
- name: Start instance
|
||||
id: start-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
backend: aws
|
||||
profile: gpu-test
|
||||
|
||||
publish-cuda-release:
|
||||
name: Publish CUDA Release
|
||||
needs: setup-ec2
|
||||
runs-on: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
# explicit include-based build matrix, of known valid options
|
||||
matrix:
|
||||
include:
|
||||
- os: ubuntu-22.04
|
||||
cuda: "12.2"
|
||||
gcc: 9
|
||||
env:
|
||||
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up home
|
||||
run: |
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
- name: Export CUDA variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
echo "$CUDA_PATH/bin" >> "${GITHUB_PATH}"
|
||||
{
|
||||
echo "CUDA_PATH=$CUDA_PATH";
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
# Specify the correct host compilers
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "HOME=/home/ubuntu";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Publish crate.io package
|
||||
if: ${{ inputs.push_to_crates }}
|
||||
env:
|
||||
CRATES_TOKEN: ${{ secrets.CARGO_REGISTRY_TOKEN }}
|
||||
DRY_RUN: ${{ inputs.dry_run && '--dry-run' || '' }}
|
||||
run: |
|
||||
cargo publish -p tfhe-cuda-backend --token ${{ env.CRATES_TOKEN }} ${{ env.DRY_RUN }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "tfhe-cuda-backend release finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
teardown-ec2:
|
||||
name: Teardown EC2 instance (publish-release)
|
||||
if: ${{ always() && needs.setup-ec2.result != 'skipped' }}
|
||||
needs: [ setup-ec2, publish-cuda-release ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Stop instance
|
||||
id: stop-instance
|
||||
uses: zama-ai/slab-github-runner@1dced74825027fe3d481392163ed8fc56813fb5d
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.SLAB_ACTION_TOKEN }}
|
||||
slab-url: ${{ secrets.SLAB_BASE_URL }}
|
||||
job-secret: ${{ secrets.JOB_SECRET }}
|
||||
label: ${{ needs.setup-ec2.outputs.runner-name }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "EC2 teardown (publish-cuda-release) finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
7
.github/workflows/parameters_check.yml
vendored
7
.github/workflows/parameters_check.yml
vendored
@@ -17,13 +17,14 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
|
||||
- name: Checkout lattice-estimator
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: malb/lattice-estimator
|
||||
path: lattice_estimator
|
||||
ref: '53508253629d3b5d31a2ad110e85dc69391ccb95'
|
||||
|
||||
- name: Install Sage
|
||||
run: |
|
||||
@@ -41,7 +42,7 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
|
||||
19
.github/workflows/shortint_benchmark.yml
vendored
19
.github/workflows/shortint_benchmark.yml
vendored
@@ -24,6 +24,8 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-shortint-benchmarks:
|
||||
@@ -43,7 +45,7 @@ jobs:
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -53,14 +55,13 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON bench_shortint
|
||||
make bench_shortint
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
@@ -88,17 +89,17 @@ jobs:
|
||||
--append-results
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_shortint
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -117,11 +118,11 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Shortint benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Shortint benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
27
.github/workflows/shortint_full_benchmark.yml
vendored
27
.github/workflows/shortint_full_benchmark.yml
vendored
@@ -32,6 +32,8 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
shortint-benchmarks:
|
||||
@@ -51,15 +53,17 @@ jobs:
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})" >> "${GITHUB_ENV}"
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Set up home
|
||||
# "Install rust" step require root user to have a HOME directory which is not set.
|
||||
@@ -67,21 +71,20 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_shortint
|
||||
make BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_shortint
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
@@ -112,7 +115,7 @@ jobs:
|
||||
--append-results
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_shortint_${{ matrix.op_flavor }}
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
@@ -139,11 +142,11 @@ jobs:
|
||||
steps:
|
||||
- name: Notify
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Shortint full benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Shortint full benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
21
.github/workflows/signed_integer_benchmark.yml
vendored
21
.github/workflows/signed_integer_benchmark.yml
vendored
@@ -25,6 +25,8 @@ env:
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
PARSE_INTEGER_BENCH_CSV_FILE: tfhe_rs_integer_benches_${{ github.sha }}.csv
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-integer-benchmarks:
|
||||
@@ -44,7 +46,7 @@ jobs:
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -54,14 +56,13 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON FAST_BENCH=TRUE bench_signed_integer
|
||||
make FAST_BENCH=TRUE bench_signed_integer
|
||||
|
||||
- name: Parse benchmarks to csv
|
||||
run: |
|
||||
@@ -69,7 +70,7 @@ jobs:
|
||||
parse_integer_benches
|
||||
|
||||
- name: Upload csv results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_csv_integer
|
||||
path: ${{ env.PARSE_INTEGER_BENCH_CSV_FILE }}
|
||||
@@ -90,17 +91,17 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_integer
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -119,11 +120,11 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Signed integer benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Signed integer benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
@@ -28,6 +28,8 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
integer-benchmarks:
|
||||
@@ -50,15 +52,17 @@ jobs:
|
||||
echo "Request ID: ${{ inputs.request_id }}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})" >> "${GITHUB_ENV}"
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)" >> "${GITHUB_ENV}"
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Set up home
|
||||
# "Install rust" step require root user to have a HOME directory which is not set.
|
||||
@@ -66,21 +70,20 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Run benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_signed_${{ matrix.command }}
|
||||
make BENCH_OP_FLAVOR=${{ matrix.op_flavor }} bench_signed_${{ matrix.command }}
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
@@ -96,7 +99,7 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_${{ matrix.command }}_${{ matrix.op_flavor }}
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
@@ -123,11 +126,11 @@ jobs:
|
||||
steps:
|
||||
- name: Notify
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Signed integer full benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Signed integer full benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
@@ -25,6 +25,8 @@ env:
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
PARSE_INTEGER_BENCH_CSV_FILE: tfhe_rs_integer_benches_${{ github.sha }}.csv
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-integer-benchmarks:
|
||||
@@ -44,7 +46,7 @@ jobs:
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -54,14 +56,13 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Run multi-bit benchmarks with AVX512
|
||||
run: |
|
||||
make AVX512_SUPPORT=ON FAST_BENCH=TRUE bench_signed_integer_multi_bit
|
||||
make FAST_BENCH=TRUE bench_signed_integer_multi_bit
|
||||
|
||||
- name: Parse benchmarks to csv
|
||||
run: |
|
||||
@@ -69,7 +70,7 @@ jobs:
|
||||
parse_integer_benches
|
||||
|
||||
- name: Upload csv results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_csv_integer
|
||||
path: ${{ env.PARSE_INTEGER_BENCH_CSV_FILE }}
|
||||
@@ -90,17 +91,17 @@ jobs:
|
||||
--throughput
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_integer
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -119,11 +120,11 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "Signed integer benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "Signed integer benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
22
.github/workflows/start_benchmarks.yml
vendored
22
.github/workflows/start_benchmarks.yml
vendored
@@ -32,8 +32,12 @@ on:
|
||||
description: "Run signed integer multi bit benches"
|
||||
type: boolean
|
||||
default: true
|
||||
pbs_bench:
|
||||
description: "Run PBS benches"
|
||||
core_crypto_bench:
|
||||
description: "Run core crypto benches"
|
||||
type: boolean
|
||||
default: true
|
||||
core_crypto_gpu_bench:
|
||||
description: "Run core crypto benches on GPU"
|
||||
type: boolean
|
||||
default: true
|
||||
wasm_client_bench:
|
||||
@@ -50,17 +54,17 @@ jobs:
|
||||
integer_bench, integer_multi_bit_bench,
|
||||
signed_integer_bench, signed_integer_multi_bit_bench,
|
||||
integer_gpu_bench, integer_multi_bit_gpu_bench,
|
||||
pbs_bench, wasm_client_bench ]
|
||||
core_crypto_bench, core_crypto_gpu_bench, wasm_client_bench ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Check for file changes
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@62f4729b5df35e6e0e01265fa70a82ccaf196b4b
|
||||
uses: tj-actions/changed-files@2d756ea4c53f7f6b397767d8723b3a10a9f35bf2
|
||||
with:
|
||||
files_yaml: |
|
||||
common_benches:
|
||||
@@ -98,20 +102,20 @@ jobs:
|
||||
- tfhe/src/integer/**
|
||||
- tfhe/benches/integer/signed_bench.rs
|
||||
- .github/workflows/signed_integer_multi_bit_benchmark.yml
|
||||
pbs_bench:
|
||||
core_crypto_bench:
|
||||
- tfhe/src/core_crypto/**
|
||||
- tfhe/benches/core_crypto/**
|
||||
- .github/workflows/pbs_benchmark.yml
|
||||
- .github/workflows/core_crypto_benchmark.yml
|
||||
wasm_client_bench:
|
||||
- tfhe/web_wasm_parallel_tests/**
|
||||
- .github/workflows/wasm_client_benchmark.yml
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Start AWS job in Slab
|
||||
# If manually triggered check that the current bench has been requested
|
||||
|
||||
11
.github/workflows/start_full_benchmarks.yml
vendored
11
.github/workflows/start_full_benchmarks.yml
vendored
@@ -24,21 +24,22 @@ jobs:
|
||||
if: ${{ (github.event_name == 'schedule' && github.repository == 'zama-ai/tfhe-rs') || github.event_name == 'workflow_dispatch' }}
|
||||
strategy:
|
||||
matrix:
|
||||
command: [ boolean_bench, shortint_full_bench, integer_full_bench, signed_integer_full_bench, integer_gpu_full_bench,
|
||||
pbs_bench, wasm_client_bench ]
|
||||
command: [ boolean_bench, shortint_full_bench,
|
||||
integer_full_bench, signed_integer_full_bench, integer_gpu_full_bench,
|
||||
core_crypto_bench, core_crypto_gpu_bench, wasm_client_bench ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Set benchmarks type as weekly
|
||||
if: (github.event_name == 'workflow_dispatch' && inputs.benchmark_type == 'weekly') || github.event.schedule == '0 1 * * 6'
|
||||
|
||||
8
.github/workflows/sync_on_push.yml
vendored
8
.github/workflows/sync_on_push.yml
vendored
@@ -13,11 +13,11 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Save repo
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: repo-archive
|
||||
path: '.'
|
||||
@@ -26,12 +26,12 @@ jobs:
|
||||
with:
|
||||
source_repo: "zama-ai/tfhe-rs"
|
||||
source_branch: "main"
|
||||
destination_repo: "https://${{ secrets.BOT_USERNAME }}:${{ secrets.CONCRETE_ACTIONS_TOKEN }}@github.com/${{ secrets.SYNC_DEST_REPO }}"
|
||||
destination_repo: "https://${{ secrets.BOT_USERNAME }}:${{ secrets.FHE_ACTIONS_TOKEN }}@github.com/${{ secrets.SYNC_DEST_REPO }}"
|
||||
destination_branch: "main"
|
||||
- name: git-sync tags
|
||||
uses: wei/git-sync@55c6b63b4f21607da0e9877ca9b4d11a29fc6d83
|
||||
with:
|
||||
source_repo: "zama-ai/tfhe-rs"
|
||||
source_branch: "refs/tags/*"
|
||||
destination_repo: "https://${{ secrets.BOT_USERNAME }}:${{ secrets.CONCRETE_ACTIONS_TOKEN }}@github.com/${{ secrets.SYNC_DEST_REPO }}"
|
||||
destination_repo: "https://${{ secrets.BOT_USERNAME }}:${{ secrets.FHE_ACTIONS_TOKEN }}@github.com/${{ secrets.SYNC_DEST_REPO }}"
|
||||
destination_branch: "refs/tags/*"
|
||||
|
||||
55
.github/workflows/trigger_aws_tests_on_pr.yml
vendored
55
.github/workflows/trigger_aws_tests_on_pr.yml
vendored
@@ -1,55 +0,0 @@
|
||||
# Trigger an AWS build each time commits are pushed to a pull request.
|
||||
name: PR AWS build trigger
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
pull_request_review:
|
||||
types: [submitted]
|
||||
|
||||
jobs:
|
||||
trigger-tests:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
pull-requests: write
|
||||
steps:
|
||||
- name: Get current labels
|
||||
uses: snnaplab/get-labels-action@f426df40304808ace3b5282d4f036515f7609576
|
||||
|
||||
- name: Remove approved label
|
||||
if: ${{ github.event_name == 'pull_request' && contains(fromJSON(env.LABELS), 'approved') }}
|
||||
uses: actions-ecosystem/action-remove-labels@2ce5d41b4b6aa8503e285553f75ed56e0a40bae0
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
labels: approved
|
||||
|
||||
- name: Launch fast tests
|
||||
if: ${{ github.event_name == 'pull_request' }}
|
||||
uses: mshick/add-pr-comment@a65df5f64fc741e91c59b8359a4bc56e57aaf5b1
|
||||
with:
|
||||
allow-repeats: true
|
||||
message: |
|
||||
@slab-ci cpu_fast_test
|
||||
@slab-ci gpu_test
|
||||
|
||||
- name: Add approved label
|
||||
uses: actions-ecosystem/action-add-labels@18f1af5e3544586314bbe15c0273249c770b2daf
|
||||
if: ${{ github.event_name == 'pull_request_review' && github.event.review.state == 'approved' && !contains(fromJSON(env.LABELS), 'approved') }}
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
labels: approved
|
||||
|
||||
# PR label 'approved' presence is checked to avoid running the full test suite several times
|
||||
# in case of multiple approvals without new commits in between.
|
||||
- name: Launch full tests suite
|
||||
if: ${{ github.event_name == 'pull_request_review' && github.event.review.state == 'approved' && !contains(fromJSON(env.LABELS), 'approved') }}
|
||||
uses: mshick/add-pr-comment@a65df5f64fc741e91c59b8359a4bc56e57aaf5b1
|
||||
with:
|
||||
allow-repeats: true
|
||||
message: |
|
||||
Pull Request has been approved :tada:
|
||||
Launching full test suite...
|
||||
@slab-ci cpu_test
|
||||
@slab-ci cpu_unsigned_integer_test
|
||||
@slab-ci cpu_signed_integer_test
|
||||
@slab-ci cpu_wasm_test
|
||||
@slab-ci csprng_randomness_testing
|
||||
17
.github/workflows/wasm_client_benchmark.yml
vendored
17
.github/workflows/wasm_client_benchmark.yml
vendored
@@ -32,6 +32,8 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
jobs:
|
||||
run-wasm-client-benchmarks:
|
||||
@@ -51,7 +53,7 @@ jobs:
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -61,10 +63,9 @@ jobs:
|
||||
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
uses: dtolnay/rust-toolchain@dc6353516c68da0f06325f42ad880f76a5e77ec9
|
||||
with:
|
||||
toolchain: nightly
|
||||
override: true
|
||||
|
||||
- name: Run benchmarks
|
||||
run: |
|
||||
@@ -97,17 +98,17 @@ jobs:
|
||||
--append-results
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@1eb3cb2b3e0f29609092a73eb033bb759a334595
|
||||
uses: actions/upload-artifact@5d5d22a31266ced268874388b861e4b58bb5c2f3
|
||||
with:
|
||||
name: ${{ github.sha }}_wasm
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936bae11
|
||||
uses: actions/checkout@9bb56186c3b09b4f86b1c65136769dd318469633
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
|
||||
token: ${{ secrets.FHE_ACTIONS_TOKEN }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
@@ -126,11 +127,11 @@ jobs:
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@b24d75fe0e728a4bf9fc42ee217caa686d141ee8
|
||||
uses: rtCamp/action-slack-notify@4e5fb42d249be6a45a298f3c9543b111b02f7907
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_MESSAGE: "WASM benchmarks failed. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_MESSAGE: "WASM benchmarks finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -19,3 +19,6 @@ dieharder_run.log
|
||||
|
||||
# Coverage reports
|
||||
/coverage/
|
||||
|
||||
# Cuda local build
|
||||
backends/tfhe-cuda-backend/cuda/cmake-build-debug/
|
||||
|
||||
10
Cargo.toml
10
Cargo.toml
@@ -1,6 +1,13 @@
|
||||
[workspace]
|
||||
resolver = "2"
|
||||
members = ["tfhe", "tasks", "apps/trivium", "concrete-csprng"]
|
||||
members = [
|
||||
"tfhe",
|
||||
"tfhe-zk-pok",
|
||||
"tasks",
|
||||
"apps/trivium",
|
||||
"concrete-csprng",
|
||||
"backends/tfhe-cuda-backend",
|
||||
]
|
||||
|
||||
[profile.bench]
|
||||
lto = "fat"
|
||||
@@ -17,3 +24,4 @@ lto = "off"
|
||||
inherits = "dev"
|
||||
opt-level = 3
|
||||
lto = "off"
|
||||
debug-assertions = false
|
||||
|
||||
282
Makefile
282
Makefile
@@ -3,6 +3,7 @@ OS:=$(shell uname)
|
||||
RS_CHECK_TOOLCHAIN:=$(shell cat toolchain.txt | tr -d '\n')
|
||||
CARGO_RS_CHECK_TOOLCHAIN:=+$(RS_CHECK_TOOLCHAIN)
|
||||
TARGET_ARCH_FEATURE:=$(shell ./scripts/get_arch_feature.sh)
|
||||
CPU_COUNT=$(shell ./scripts/cpu_count.sh)
|
||||
RS_BUILD_TOOLCHAIN:=stable
|
||||
CARGO_RS_BUILD_TOOLCHAIN:=+$(RS_BUILD_TOOLCHAIN)
|
||||
CARGO_PROFILE?=release
|
||||
@@ -17,6 +18,7 @@ FAST_TESTS?=FALSE
|
||||
FAST_BENCH?=FALSE
|
||||
BENCH_OP_FLAVOR?=DEFAULT
|
||||
NODE_VERSION=20
|
||||
FORWARD_COMPAT?=OFF
|
||||
# sed: -n, do not print input stream, -e means a script/expression
|
||||
# 1,/version/ indicates from the first line, to the line matching version at the start of the line
|
||||
# p indicates to print, so we keep only the start of the Cargo.toml until we hit the first version
|
||||
@@ -49,12 +51,18 @@ else
|
||||
COVERAGE_ONLY=
|
||||
endif
|
||||
|
||||
ifeq ($(FORWARD_COMPAT),ON)
|
||||
FORWARD_COMPAT_FEATURE=forward_compatibility
|
||||
else
|
||||
FORWARD_COMPAT_FEATURE=
|
||||
endif
|
||||
|
||||
# Variables used only for regex_engine example
|
||||
REGEX_STRING?=''
|
||||
REGEX_PATTERN?=''
|
||||
|
||||
# tfhe-cuda-backend
|
||||
TFHECUDA_SRC="backends/tfhe-cuda-backend/implementation"
|
||||
TFHECUDA_SRC=backends/tfhe-cuda-backend/cuda
|
||||
TFHECUDA_BUILD=$(TFHECUDA_SRC)/build
|
||||
|
||||
# Exclude these files from coverage reports
|
||||
@@ -112,7 +120,12 @@ install_wasm_pack: install_rs_build_toolchain
|
||||
|
||||
.PHONY: install_node # Install last version of NodeJS via nvm
|
||||
install_node:
|
||||
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/install.sh | $(SHELL)
|
||||
curl -o nvm_install.sh https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/install.sh
|
||||
@echo "2ed5e94ba12434370f0358800deb69f514e8bce90f13beb0e1b241d42c6abafd nvm_install.sh" > nvm_checksum
|
||||
@sha256sum -c nvm_checksum
|
||||
@rm nvm_checksum
|
||||
$(SHELL) nvm_install.sh
|
||||
@rm nvm_install.sh
|
||||
source ~/.bashrc
|
||||
$(SHELL) -i -c 'nvm install $(NODE_VERSION)' || \
|
||||
( echo "Unable to install node, unknown error." && exit 1 )
|
||||
@@ -137,24 +150,62 @@ check_linelint_installed:
|
||||
@printf "\n" | linelint - > /dev/null 2>&1 || \
|
||||
( echo "Unable to locate linelint. Try installing it: https://github.com/fernandrone/linelint/releases" && exit 1 )
|
||||
|
||||
.PHONY: check_actionlint_installed # Check if actionlint workflow linter is installed
|
||||
check_actionlint_installed:
|
||||
@actionlint --version > /dev/null 2>&1 || \
|
||||
( echo "Unable to locate actionlint. Try installing it: https://github.com/rhysd/actionlint/releases" && exit 1 )
|
||||
|
||||
.PHONY: check_nvm_installed # Check if Node Version Manager is installed
|
||||
check_nvm_installed:
|
||||
@source ~/.nvm/nvm.sh && nvm --version > /dev/null 2>&1 || \
|
||||
( echo "Unable to locate Node. Run 'make install_node'" && exit 1 )
|
||||
|
||||
.PHONY: fmt # Format rust code
|
||||
fmt: install_rs_check_toolchain
|
||||
cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" fmt
|
||||
|
||||
.PHONY: fmt_js # Format javascript code
|
||||
fmt_js: check_nvm_installed
|
||||
source ~/.nvm/nvm.sh && \
|
||||
nvm install $(NODE_VERSION) && \
|
||||
nvm use $(NODE_VERSION) && \
|
||||
$(MAKE) -C tfhe/web_wasm_parallel_tests fmt
|
||||
|
||||
.PHONY: fmt_gpu # Format rust and cuda code
|
||||
fmt_gpu: install_rs_check_toolchain
|
||||
cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" fmt
|
||||
cd "$(TFHECUDA_SRC)" && ./format_tfhe_cuda_backend.sh
|
||||
|
||||
.PHONY: fmt_c_tests # Format c tests
|
||||
fmt_c_tests:
|
||||
find tfhe/c_api_tests/ -regex '.*\.\(cpp\|hpp\|cu\|c\|h\)' -exec clang-format -style=file -i {} \;
|
||||
|
||||
.PHONY: check_fmt # Check rust code format
|
||||
check_fmt: install_rs_check_toolchain
|
||||
cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" fmt --check
|
||||
|
||||
.PHONY: clippy_gpu # Run clippy lints on the gpu backend
|
||||
.PHONY: check_fmt_c_tests # Check C tests format
|
||||
check_fmt_c_tests:
|
||||
find tfhe/c_api_tests/ -regex '.*\.\(cpp\|hpp\|cu\|c\|h\)' -exec clang-format --dry-run --Werror -style=file {} \;
|
||||
|
||||
.PHONY: check_fmt_gpu # Check rust and cuda code format
|
||||
check_fmt_gpu: install_rs_check_toolchain
|
||||
cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" fmt --check
|
||||
cd "$(TFHECUDA_SRC)" && ./format_tfhe_cuda_backend.sh -c
|
||||
|
||||
.PHONY: check_fmt_js # Check javascript code format
|
||||
check_fmt_js: check_nvm_installed
|
||||
source ~/.nvm/nvm.sh && \
|
||||
nvm install $(NODE_VERSION) && \
|
||||
nvm use $(NODE_VERSION) && \
|
||||
$(MAKE) -C tfhe/web_wasm_parallel_tests check_fmt
|
||||
|
||||
.PHONY: clippy_gpu # Run clippy lints on tfhe with "gpu" enabled
|
||||
clippy_gpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,shortint,gpu \
|
||||
-p tfhe -- --no-deps -D warnings
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache,gpu \
|
||||
--all-targets \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
|
||||
.PHONY: fix_newline # Fix newline at end of file issues to be UNIX compliant
|
||||
fix_newline: check_linelint_installed
|
||||
@@ -164,6 +215,10 @@ fix_newline: check_linelint_installed
|
||||
check_newline: check_linelint_installed
|
||||
linelint .
|
||||
|
||||
.PHONY: lint_workflow # Run static linter on GitHub workflows
|
||||
lint_workflow: check_actionlint_installed
|
||||
actionlint
|
||||
|
||||
.PHONY: clippy_core # Run clippy lints on core_crypto with and without experimental features
|
||||
clippy_core: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
@@ -172,6 +227,12 @@ clippy_core: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
--features=$(TARGET_ARCH_FEATURE),nightly-avx512 \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,nightly-avx512 \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_boolean # Run clippy lints enabling the boolean features
|
||||
clippy_boolean: install_rs_check_toolchain
|
||||
@@ -200,7 +261,7 @@ clippy: install_rs_check_toolchain
|
||||
.PHONY: clippy_c_api # Run clippy lints enabling the boolean, shortint and the C API
|
||||
clippy_c_api: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api,high-level-c-api \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_js_wasm_api # Run clippy lints enabling the boolean, shortint, integer and the js wasm API
|
||||
@@ -216,13 +277,13 @@ clippy_tasks:
|
||||
|
||||
.PHONY: clippy_trivium # Run clippy lints on Trivium app
|
||||
clippy_trivium: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
-p tfhe-trivium -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_all_targets # Run clippy lints on all targets (benches, examples, etc.)
|
||||
clippy_all_targets:
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache,zk-pok-experimental \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_concrete_csprng # Run clippy lints on concrete-csprng
|
||||
@@ -231,14 +292,24 @@ clippy_concrete_csprng:
|
||||
--features=$(TARGET_ARCH_FEATURE) \
|
||||
-p concrete-csprng -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_zk_pok # Run clippy lints on tfhe-zk-pok
|
||||
clippy_zk_pok:
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
-p tfhe-zk-pok -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_all # Run all clippy targets
|
||||
clippy_all: clippy clippy_boolean clippy_shortint clippy_integer clippy_all_targets clippy_c_api \
|
||||
clippy_js_wasm_api clippy_tasks clippy_core clippy_concrete_csprng clippy_trivium
|
||||
clippy_js_wasm_api clippy_tasks clippy_core clippy_concrete_csprng clippy_zk_pok clippy_trivium
|
||||
|
||||
.PHONY: clippy_fast # Run main clippy targets
|
||||
clippy_fast: clippy clippy_all_targets clippy_c_api clippy_js_wasm_api clippy_tasks clippy_core \
|
||||
clippy_concrete_csprng
|
||||
|
||||
.PHONY: clippy_cuda_backend # Run clippy lints on the tfhe-cuda-backend
|
||||
clippy_cuda_backend: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
-p tfhe-cuda-backend -- --no-deps -D warnings
|
||||
|
||||
.PHONY: build_core # Build core_crypto without experimental features
|
||||
build_core: install_rs_build_toolchain install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
|
||||
@@ -277,6 +348,11 @@ build_tfhe_full: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer -p $(TFHE_SPEC) --all-targets
|
||||
|
||||
.PHONY: build_tfhe_coverage # Build with test coverage enabled
|
||||
build_tfhe_coverage: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS) --cfg tarpaulin" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache -p $(TFHE_SPEC) --tests
|
||||
|
||||
.PHONY: symlink_c_libs_without_fingerprint # Link the .a and .so files without the changing hash part in target
|
||||
symlink_c_libs_without_fingerprint:
|
||||
@./scripts/symlink_c_libs_without_fingerprint.sh \
|
||||
@@ -286,22 +362,30 @@ symlink_c_libs_without_fingerprint:
|
||||
.PHONY: build_c_api # Build the C API for boolean, shortint and integer
|
||||
build_c_api: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api,high-level-c-api \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api,high-level-c-api,zk-pok-experimental,$(FORWARD_COMPAT_FEATURE) \
|
||||
-p $(TFHE_SPEC)
|
||||
@"$(MAKE)" symlink_c_libs_without_fingerprint
|
||||
|
||||
.PHONY: build_c_api_gpu # Build the C API for boolean, shortint and integer
|
||||
build_c_api_gpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api,high-level-c-api,zk-pok-experimental,gpu \
|
||||
-p $(TFHE_SPEC)
|
||||
@"$(MAKE)" symlink_c_libs_without_fingerprint
|
||||
|
||||
.PHONY: build_c_api_experimental_deterministic_fft # Build the C API for boolean, shortint and integer with experimental deterministic FFT
|
||||
build_c_api_experimental_deterministic_fft: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api,high-level-c-api,experimental-force_fft_algo_dif4 \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api,high-level-c-api,experimental-force_fft_algo_dif4,$(FORWARD_COMPAT_FEATURE) \
|
||||
-p $(TFHE_SPEC)
|
||||
@"$(MAKE)" symlink_c_libs_without_fingerprint
|
||||
|
||||
.PHONY: build_web_js_api # Build the js API targeting the web browser
|
||||
build_web_js_api: install_rs_build_toolchain install_wasm_pack
|
||||
cd tfhe && \
|
||||
RUSTFLAGS="$(WASM_RUSTFLAGS)" rustup run "$(RS_BUILD_TOOLCHAIN)" \
|
||||
wasm-pack build --release --target=web \
|
||||
-- --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api,integer-client-js-wasm-api
|
||||
-- --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api,integer-client-js-wasm-api,zk-pok-experimental
|
||||
|
||||
.PHONY: build_web_js_api_parallel # Build the js API targeting the web browser with parallelism support
|
||||
build_web_js_api_parallel: install_rs_check_toolchain install_wasm_pack
|
||||
@@ -309,7 +393,7 @@ build_web_js_api_parallel: install_rs_check_toolchain install_wasm_pack
|
||||
rustup component add rust-src --toolchain $(RS_CHECK_TOOLCHAIN) && \
|
||||
RUSTFLAGS="$(WASM_RUSTFLAGS) -C target-feature=+atomics,+bulk-memory,+mutable-globals" rustup run $(RS_CHECK_TOOLCHAIN) \
|
||||
wasm-pack build --release --target=web \
|
||||
-- --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api,integer-client-js-wasm-api,parallel-wasm-api \
|
||||
-- --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api,integer-client-js-wasm-api,parallel-wasm-api,zk-pok-experimental \
|
||||
-Z build-std=panic_abort,std
|
||||
|
||||
.PHONY: build_node_js_api # Build the js API targeting nodejs
|
||||
@@ -317,7 +401,7 @@ build_node_js_api: install_rs_build_toolchain install_wasm_pack
|
||||
cd tfhe && \
|
||||
RUSTFLAGS="$(WASM_RUSTFLAGS)" rustup run "$(RS_BUILD_TOOLCHAIN)" \
|
||||
wasm-pack build --release --target=nodejs \
|
||||
-- --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api,integer-client-js-wasm-api
|
||||
-- --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api,integer-client-js-wasm-api,zk-pok-experimental
|
||||
|
||||
.PHONY: build_concrete_csprng # Build concrete_csprng
|
||||
build_concrete_csprng: install_rs_build_toolchain
|
||||
@@ -327,10 +411,10 @@ build_concrete_csprng: install_rs_build_toolchain
|
||||
.PHONY: test_core_crypto # Run the tests of the core_crypto module including experimental ones
|
||||
test_core_crypto: install_rs_build_toolchain install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental -p $(TFHE_SPEC) -- core_crypto::
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,zk-pok-experimental -p $(TFHE_SPEC) -- core_crypto::
|
||||
@if [[ "$(AVX512_SUPPORT)" == "ON" ]]; then \
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,$(AVX512_FEATURE) -p $(TFHE_SPEC) -- core_crypto::; \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,zk-pok-experimental,$(AVX512_FEATURE) -p $(TFHE_SPEC) -- core_crypto::; \
|
||||
fi
|
||||
|
||||
.PHONY: test_core_crypto_cov # Run the tests of the core_crypto module with code coverage
|
||||
@@ -338,32 +422,40 @@ test_core_crypto_cov: install_rs_build_toolchain install_rs_check_toolchain inst
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) tarpaulin --profile $(CARGO_PROFILE) \
|
||||
--out xml --output-dir coverage/core_crypto --line --engine llvm --timeout 500 \
|
||||
--implicit-test-threads $(COVERAGE_EXCLUDED_FILES) \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,internal-keycache,__coverage \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,internal-keycache \
|
||||
-p $(TFHE_SPEC) -- core_crypto::
|
||||
@if [[ "$(AVX512_SUPPORT)" == "ON" ]]; then \
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) tarpaulin --profile $(CARGO_PROFILE) \
|
||||
--out xml --output-dir coverage/core_crypto_avx512 --line --engine llvm --timeout 500 \
|
||||
--implicit-test-threads $(COVERAGE_EXCLUDED_FILES) \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,internal-keycache,__coverage,$(AVX512_FEATURE) \
|
||||
-p $(TFHE_SPEC) -- core_crypto::; \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,internal-keycache,$(AVX512_FEATURE) \
|
||||
-p $(TFHE_SPEC) -- -Z unstable-options --report-time core_crypto::; \
|
||||
fi
|
||||
|
||||
.PHONY: test_cuda_backend # Run the internal tests of the CUDA backend
|
||||
test_cuda_backend:
|
||||
mkdir -p "$(TFHECUDA_BUILD)" && \
|
||||
cd "$(TFHECUDA_BUILD)" && \
|
||||
cmake .. -DCMAKE_BUILD_TYPE=Release -DTFHE_CUDA_BACKEND_BUILD_TESTS=ON && \
|
||||
make -j "$(CPU_COUNT)" && \
|
||||
make test
|
||||
|
||||
.PHONY: test_gpu # Run the tests of the core_crypto module including experimental on the gpu backend
|
||||
test_gpu: test_core_crypto_gpu test_integer_gpu
|
||||
test_gpu: test_core_crypto_gpu test_integer_gpu test_cuda_backend
|
||||
|
||||
.PHONY: test_core_crypto_gpu # Run the tests of the core_crypto module including experimental on the gpu backend
|
||||
test_core_crypto_gpu: install_rs_build_toolchain install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu -p tfhe -- core_crypto::gpu::
|
||||
--features=$(TARGET_ARCH_FEATURE),gpu -p $(TFHE_SPEC) -- core_crypto::gpu::
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --doc --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu -p tfhe -- core_crypto::gpu::
|
||||
--features=$(TARGET_ARCH_FEATURE),gpu -p $(TFHE_SPEC) -- core_crypto::gpu::
|
||||
|
||||
.PHONY: test_integer_gpu # Run the tests of the integer module including experimental on the gpu backend
|
||||
test_integer_gpu: install_rs_build_toolchain install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu -p tfhe -- integer::gpu::server_key::
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu -p $(TFHE_SPEC) -- integer::gpu::server_key::
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --doc --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu -p tfhe -- integer::gpu::server_key::
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu -p $(TFHE_SPEC) -- integer::gpu::server_key::
|
||||
|
||||
.PHONY: test_boolean # Run the tests of the boolean module
|
||||
test_boolean: install_rs_build_toolchain
|
||||
@@ -375,8 +467,8 @@ test_boolean_cov: install_rs_check_toolchain install_tarpaulin
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) tarpaulin --profile $(CARGO_PROFILE) \
|
||||
--out xml --output-dir coverage/boolean --line --engine llvm --timeout 500 \
|
||||
$(COVERAGE_EXCLUDED_FILES) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,internal-keycache,__coverage \
|
||||
-p $(TFHE_SPEC) -- boolean::
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,internal-keycache \
|
||||
-p $(TFHE_SPEC) -- -Z unstable-options --report-time boolean::
|
||||
|
||||
.PHONY: test_c_api_rs # Run the rust tests for the C API
|
||||
test_c_api_rs: install_rs_check_toolchain
|
||||
@@ -392,19 +484,23 @@ test_c_api_c: build_c_api
|
||||
.PHONY: test_c_api # Run all the tests for the C API
|
||||
test_c_api: test_c_api_rs test_c_api_c
|
||||
|
||||
.PHONY: test_c_api_gpu # Run the C tests for the C API
|
||||
test_c_api_gpu: build_c_api_gpu
|
||||
./scripts/c_api_tests.sh --gpu
|
||||
|
||||
.PHONY: test_shortint_ci # Run the tests for shortint ci
|
||||
test_shortint_ci: install_rs_build_toolchain install_cargo_nextest
|
||||
BIG_TESTS_INSTANCE="$(BIG_TESTS_INSTANCE)" \
|
||||
FAST_TESTS="$(FAST_TESTS)" \
|
||||
./scripts/shortint-tests.sh --rust-toolchain $(CARGO_RS_BUILD_TOOLCHAIN) \
|
||||
--cargo-profile "$(CARGO_PROFILE)"
|
||||
--cargo-profile "$(CARGO_PROFILE)" --tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_shortint_multi_bit_ci # Run the tests for shortint ci running only multibit tests
|
||||
test_shortint_multi_bit_ci: install_rs_build_toolchain install_cargo_nextest
|
||||
BIG_TESTS_INSTANCE="$(BIG_TESTS_INSTANCE)" \
|
||||
FAST_TESTS="$(FAST_TESTS)" \
|
||||
./scripts/shortint-tests.sh --rust-toolchain $(CARGO_RS_BUILD_TOOLCHAIN) \
|
||||
--cargo-profile "$(CARGO_PROFILE)" --multi-bit
|
||||
--cargo-profile "$(CARGO_PROFILE)" --multi-bit --tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_shortint # Run all the tests for shortint
|
||||
test_shortint: install_rs_build_toolchain
|
||||
@@ -416,15 +512,16 @@ test_shortint_cov: install_rs_check_toolchain install_tarpaulin
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) tarpaulin --profile $(CARGO_PROFILE) \
|
||||
--out xml --output-dir coverage/shortint --line --engine llvm --timeout 500 \
|
||||
$(COVERAGE_EXCLUDED_FILES) \
|
||||
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache,__coverage \
|
||||
-p $(TFHE_SPEC) -- shortint::
|
||||
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache \
|
||||
-p $(TFHE_SPEC) -- -Z unstable-options --report-time shortint::
|
||||
|
||||
.PHONY: test_integer_ci # Run the tests for integer ci
|
||||
test_integer_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
BIG_TESTS_INSTANCE="$(BIG_TESTS_INSTANCE)" \
|
||||
FAST_TESTS="$(FAST_TESTS)" \
|
||||
./scripts/integer-tests.sh --rust-toolchain $(CARGO_RS_CHECK_TOOLCHAIN) \
|
||||
--cargo-profile "$(CARGO_PROFILE)" --avx512-support "$(AVX512_SUPPORT)"
|
||||
--cargo-profile "$(CARGO_PROFILE)" --avx512-support "$(AVX512_SUPPORT)" \
|
||||
--tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_unsigned_integer_ci # Run the tests for unsigned integer ci
|
||||
test_unsigned_integer_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
@@ -432,7 +529,7 @@ test_unsigned_integer_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
FAST_TESTS="$(FAST_TESTS)" \
|
||||
./scripts/integer-tests.sh --rust-toolchain $(CARGO_RS_CHECK_TOOLCHAIN) \
|
||||
--cargo-profile "$(CARGO_PROFILE)" --avx512-support "$(AVX512_SUPPORT)" \
|
||||
--unsigned-only
|
||||
--unsigned-only --tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_signed_integer_ci # Run the tests for signed integer ci
|
||||
test_signed_integer_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
@@ -440,14 +537,15 @@ test_signed_integer_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
FAST_TESTS="$(FAST_TESTS)" \
|
||||
./scripts/integer-tests.sh --rust-toolchain $(CARGO_RS_CHECK_TOOLCHAIN) \
|
||||
--cargo-profile "$(CARGO_PROFILE)" --avx512-support "$(AVX512_SUPPORT)" \
|
||||
--signed-only
|
||||
--signed-only --tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_integer_multi_bit_ci # Run the tests for integer ci running only multibit tests
|
||||
test_integer_multi_bit_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
BIG_TESTS_INSTANCE="$(BIG_TESTS_INSTANCE)" \
|
||||
FAST_TESTS="$(FAST_TESTS)" \
|
||||
./scripts/integer-tests.sh --rust-toolchain $(CARGO_RS_CHECK_TOOLCHAIN) \
|
||||
--cargo-profile "$(CARGO_PROFILE)" --multi-bit --avx512-support "$(AVX512_SUPPORT)"
|
||||
--cargo-profile "$(CARGO_PROFILE)" --multi-bit --avx512-support "$(AVX512_SUPPORT)" \
|
||||
--tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_unsigned_integer_multi_bit_ci # Run the tests for nsigned integer ci running only multibit tests
|
||||
test_unsigned_integer_multi_bit_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
@@ -455,7 +553,7 @@ test_unsigned_integer_multi_bit_ci: install_rs_check_toolchain install_cargo_nex
|
||||
FAST_TESTS="$(FAST_TESTS)" \
|
||||
./scripts/integer-tests.sh --rust-toolchain $(CARGO_RS_CHECK_TOOLCHAIN) \
|
||||
--cargo-profile "$(CARGO_PROFILE)" --multi-bit --avx512-support "$(AVX512_SUPPORT)" \
|
||||
--unsigned-only
|
||||
--unsigned-only --tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_signed_integer_multi_bit_ci # Run the tests for nsigned integer ci running only multibit tests
|
||||
test_signed_integer_multi_bit_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
@@ -463,7 +561,7 @@ test_signed_integer_multi_bit_ci: install_rs_check_toolchain install_cargo_nexte
|
||||
FAST_TESTS="$(FAST_TESTS)" \
|
||||
./scripts/integer-tests.sh --rust-toolchain $(CARGO_RS_CHECK_TOOLCHAIN) \
|
||||
--cargo-profile "$(CARGO_PROFILE)" --multi-bit --avx512-support "$(AVX512_SUPPORT)" \
|
||||
--signed-only
|
||||
--signed-only --tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_safe_deserialization # Run the tests for safe deserialization
|
||||
test_safe_deserialization: install_rs_build_toolchain install_cargo_nextest
|
||||
@@ -475,18 +573,45 @@ test_integer: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache -p $(TFHE_SPEC) -- integer::
|
||||
|
||||
.PHONY: test_integer_cov # Run the tests of the integer module with code coverage
|
||||
test_integer_cov: install_rs_check_toolchain install_tarpaulin
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) tarpaulin --profile $(CARGO_PROFILE) \
|
||||
--out xml --output-dir coverage/integer --line --engine llvm --timeout 500 \
|
||||
--implicit-test-threads \
|
||||
--exclude-files $(COVERAGE_EXCLUDED_FILES) \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache \
|
||||
-p $(TFHE_SPEC) -- -Z unstable-options --report-time integer::
|
||||
|
||||
.PHONY: test_high_level_api # Run all the tests for high_level_api
|
||||
test_high_level_api: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache -p $(TFHE_SPEC) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache,zk-pok-experimental -p $(TFHE_SPEC) \
|
||||
-- high_level_api::
|
||||
|
||||
test_high_level_api_gpu: install_rs_build_toolchain install_cargo_nextest
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) nextest run --cargo-profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,gpu -p $(TFHE_SPEC) \
|
||||
-E "test(/high_level_api::.*gpu.*/)"
|
||||
|
||||
.PHONY: test_user_doc # Run tests from the .md documentation
|
||||
test_user_doc: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache -p $(TFHE_SPEC) \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache,pbs-stats,zk-pok-experimental \
|
||||
-p $(TFHE_SPEC) \
|
||||
-- test_user_docs::
|
||||
|
||||
.PHONY: test_user_doc_gpu # Run tests for GPU from the .md documentation
|
||||
test_user_doc_gpu: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache,gpu,zk-pok-experimental -p $(TFHE_SPEC) \
|
||||
-- test_user_docs::
|
||||
|
||||
.PHONY: test_fhe_strings # Run tests for fhe_strings example
|
||||
test_fhe_strings: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
--example fhe_strings \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer
|
||||
|
||||
.PHONY: test_regex_engine # Run tests for regex_engine example
|
||||
test_regex_engine: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
@@ -517,33 +642,46 @@ test_concrete_csprng:
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
--features=$(TARGET_ARCH_FEATURE) -p concrete-csprng
|
||||
|
||||
.PHONY: test_zk_pok # Run tfhe-zk-pok-experimental tests
|
||||
test_zk_pok:
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
-p tfhe-zk-pok
|
||||
|
||||
.PHONY: doc # Build rust doc
|
||||
doc: install_rs_check_toolchain
|
||||
@# Even though we are not in docs.rs, this allows to "just" build the doc
|
||||
DOCS_RS=1 \
|
||||
RUSTDOCFLAGS="--html-in-header katex-header.html" \
|
||||
cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" doc \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer --no-deps -p $(TFHE_SPEC)
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,gpu,internal-keycache,experimental --no-deps -p $(TFHE_SPEC)
|
||||
|
||||
.PHONY: docs # Build rust doc alias for doc
|
||||
docs: doc
|
||||
|
||||
.PHONY: lint_doc # Build rust doc with linting enabled
|
||||
lint_doc: install_rs_check_toolchain
|
||||
@# Even though we are not in docs.rs, this allows to "just" build the doc
|
||||
DOCS_RS=1 \
|
||||
RUSTDOCFLAGS="--html-in-header katex-header.html -Dwarnings" \
|
||||
cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" doc \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer -p tfhe --no-deps
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,gpu,internal-keycache,experimental -p $(TFHE_SPEC) --no-deps
|
||||
|
||||
.PHONY: lint_docs # Build rust doc with linting enabled alias for lint_doc
|
||||
lint_docs: lint_doc
|
||||
|
||||
.PHONY: format_doc_latex # Format the documentation latex equations to avoid broken rendering.
|
||||
format_doc_latex:
|
||||
cargo xtask format_latex_doc
|
||||
RUSTFLAGS="" cargo xtask format_latex_doc
|
||||
@"$(MAKE)" --no-print-directory fmt
|
||||
@printf "\n===============================\n\n"
|
||||
@printf "Please manually inspect changes made by format_latex_doc, rustfmt can break equations \
|
||||
if the line length is exceeded\n"
|
||||
@printf "\n===============================\n"
|
||||
|
||||
.PHONY: check_md_docs_are_tested # Checks that the rust codeblocks in our .md files are tested
|
||||
check_md_docs_are_tested:
|
||||
RUSTFLAGS="" cargo xtask check_tfhe_docs_are_tested
|
||||
|
||||
.PHONY: check_compile_tests # Build tests in debug without running them
|
||||
check_compile_tests:
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --no-run \
|
||||
@@ -555,6 +693,16 @@ check_compile_tests:
|
||||
./scripts/c_api_tests.sh --build-only; \
|
||||
fi
|
||||
|
||||
.PHONY: check_compile_tests_benches_gpu # Build tests in debug without running them
|
||||
check_compile_tests_benches_gpu: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --no-run \
|
||||
--features=$(TARGET_ARCH_FEATURE),experimental,boolean,shortint,integer,internal-keycache,gpu \
|
||||
-p $(TFHE_SPEC)
|
||||
mkdir -p "$(TFHECUDA_BUILD)" && \
|
||||
cd "$(TFHECUDA_BUILD)" && \
|
||||
cmake .. -DCMAKE_BUILD_TYPE=Debug -DTFHE_CUDA_BACKEND_BUILD_TESTS=ON -DTFHE_CUDA_BACKEND_BUILD_BENCHMARKS=ON && \
|
||||
make -j "$(CPU_COUNT)"
|
||||
|
||||
.PHONY: build_nodejs_test_docker # Build a docker image with tools to run nodejs tests for wasm API
|
||||
build_nodejs_test_docker:
|
||||
DOCKER_BUILDKIT=1 docker build --build-arg RUST_TOOLCHAIN="$(RS_BUILD_TOOLCHAIN)" \
|
||||
@@ -607,21 +755,21 @@ bench_integer: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" __TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) __TFHE_RS_FAST_BENCH=$(FAST_BENCH) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench integer-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,$(AVX512_FEATURE) -p $(TFHE_SPEC) --
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,nightly-avx512 -p $(TFHE_SPEC) --
|
||||
|
||||
.PHONY: bench_signed_integer # Run benchmarks for signed integer
|
||||
bench_signed_integer: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" __TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) __TFHE_RS_FAST_BENCH=$(FAST_BENCH) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench integer-signed-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,$(AVX512_FEATURE) -p $(TFHE_SPEC) --
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,nightly-avx512 -p $(TFHE_SPEC) --
|
||||
|
||||
.PHONY: bench_integer_gpu # Run benchmarks for integer on GPU backend
|
||||
bench_integer_gpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" __TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) __TFHE_RS_FAST_BENCH=$(FAST_BENCH) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench integer-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu,internal-keycache,$(AVX512_FEATURE) -p tfhe --
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu,internal-keycache,nightly-avx512 -p $(TFHE_SPEC) --
|
||||
|
||||
.PHONY: bench_integer_multi_bit # Run benchmarks for unsigned integer using multi-bit parameters
|
||||
bench_integer_multi_bit: install_rs_check_toolchain
|
||||
@@ -629,7 +777,7 @@ bench_integer_multi_bit: install_rs_check_toolchain
|
||||
__TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) __TFHE_RS_FAST_BENCH=$(FAST_BENCH) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench integer-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,$(AVX512_FEATURE) -p $(TFHE_SPEC) --
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,nightly-avx512 -p $(TFHE_SPEC) --
|
||||
|
||||
.PHONY: bench_signed_integer_multi_bit # Run benchmarks for signed integer using multi-bit parameters
|
||||
bench_signed_integer_multi_bit: install_rs_check_toolchain
|
||||
@@ -637,7 +785,7 @@ bench_signed_integer_multi_bit: install_rs_check_toolchain
|
||||
__TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) __TFHE_RS_FAST_BENCH=$(FAST_BENCH) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench integer-signed-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,$(AVX512_FEATURE) -p $(TFHE_SPEC) --
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,nightly-avx512 -p $(TFHE_SPEC) --
|
||||
|
||||
.PHONY: bench_integer_multi_bit_gpu # Run benchmarks for integer on GPU backend using multi-bit parameters
|
||||
bench_integer_multi_bit_gpu: install_rs_check_toolchain
|
||||
@@ -645,25 +793,25 @@ bench_integer_multi_bit_gpu: install_rs_check_toolchain
|
||||
__TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) __TFHE_RS_FAST_BENCH=$(FAST_BENCH) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench integer-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu,internal-keycache,$(AVX512_FEATURE) -p tfhe --
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,gpu,internal-keycache,nightly-avx512 -p $(TFHE_SPEC) --
|
||||
|
||||
.PHONY: bench_shortint # Run benchmarks for shortint
|
||||
bench_shortint: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" __TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench shortint-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache,$(AVX512_FEATURE) -p $(TFHE_SPEC)
|
||||
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache,nightly-avx512 -p $(TFHE_SPEC)
|
||||
|
||||
.PHONY: bench_oprf # Run benchmarks for shortint
|
||||
bench_oprf: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench oprf-shortint-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache,$(AVX512_FEATURE) -p tfhe
|
||||
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache,nightly-avx512 -p $(TFHE_SPEC)
|
||||
RUSTFLAGS="$(RUSTFLAGS)" \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench oprf-integer-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,$(AVX512_FEATURE) -p tfhe
|
||||
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,nightly-avx512 -p $(TFHE_SPEC)
|
||||
|
||||
|
||||
|
||||
@@ -673,20 +821,38 @@ bench_shortint_multi_bit: install_rs_check_toolchain
|
||||
__TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench shortint-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache,$(AVX512_FEATURE) -p $(TFHE_SPEC) --
|
||||
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache,nightly-avx512 -p $(TFHE_SPEC) --
|
||||
|
||||
|
||||
.PHONY: bench_boolean # Run benchmarks for boolean
|
||||
bench_boolean: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench boolean-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,internal-keycache,$(AVX512_FEATURE) -p $(TFHE_SPEC)
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,internal-keycache,nightly-avx512 -p $(TFHE_SPEC)
|
||||
|
||||
.PHONY: bench_pbs # Run benchmarks for PBS
|
||||
bench_pbs: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench pbs-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,internal-keycache,$(AVX512_FEATURE) -p $(TFHE_SPEC)
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,internal-keycache,nightly-avx512 -p $(TFHE_SPEC)
|
||||
|
||||
.PHONY: bench_pbs_gpu # Run benchmarks for PBS on GPU backend
|
||||
bench_pbs_gpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench pbs-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,gpu,internal-keycache,nightly-avx512 -p $(TFHE_SPEC)
|
||||
|
||||
.PHONY: bench_ks # Run benchmarks for keyswitch
|
||||
bench_ks: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench ks-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,internal-keycache,nightly-avx512 -p $(TFHE_SPEC)
|
||||
|
||||
.PHONY: bench_ks_gpu # Run benchmarks for PBS on GPU backend
|
||||
bench_ks_gpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench ks-bench \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,gpu,internal-keycache,nightly-avx512 -p $(TFHE_SPEC)
|
||||
|
||||
.PHONY: bench_web_js_api_parallel # Run benchmarks for the web wasm api
|
||||
bench_web_js_api_parallel: build_web_js_api_parallel
|
||||
@@ -703,7 +869,7 @@ ci_bench_web_js_api_parallel: build_web_js_api_parallel
|
||||
#
|
||||
.PHONY: gen_key_cache # Run the script to generate keys and cache them for shortint tests
|
||||
gen_key_cache: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) run --profile $(CARGO_PROFILE) \
|
||||
RUSTFLAGS="$(RUSTFLAGS) --cfg tarpaulin" cargo $(CARGO_RS_BUILD_TOOLCHAIN) run --profile $(CARGO_PROFILE) \
|
||||
--example generates_test_keys \
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,internal-keycache -- \
|
||||
$(MULTI_BIT_ONLY) $(COVERAGE_ONLY)
|
||||
@@ -776,13 +942,15 @@ sha256_bool: install_rs_check_toolchain
|
||||
--features=$(TARGET_ARCH_FEATURE),boolean
|
||||
|
||||
.PHONY: pcc # pcc stands for pre commit checks (except GPU)
|
||||
pcc: no_tfhe_typo no_dbg_log check_fmt lint_doc clippy_all check_compile_tests
|
||||
pcc: no_tfhe_typo no_dbg_log check_fmt lint_doc check_md_docs_are_tested clippy_all \
|
||||
check_compile_tests
|
||||
|
||||
.PHONY: pcc_gpu # pcc stands for pre commit checks for GPU compilation
|
||||
pcc_gpu: pcc clippy_gpu
|
||||
pcc_gpu: clippy_gpu clippy_cuda_backend check_compile_tests_benches_gpu
|
||||
|
||||
.PHONY: fpcc # pcc stands for pre commit checks, the f stands for fast
|
||||
fpcc: no_tfhe_typo no_dbg_log check_fmt lint_doc clippy_fast check_compile_tests
|
||||
fpcc: no_tfhe_typo no_dbg_log check_fmt lint_doc check_md_docs_are_tested clippy_fast \
|
||||
check_compile_tests
|
||||
|
||||
.PHONY: conformance # Automatically fix problems that can be fixed
|
||||
conformance: fix_newline fmt
|
||||
|
||||
205
README.md
205
README.md
@@ -1,37 +1,71 @@
|
||||
<p align="center">
|
||||
<!-- product name logo -->
|
||||
<img width=600 src="https://user-images.githubusercontent.com/5758427/231206749-8f146b97-3c5a-4201-8388-3ffa88580415.png">
|
||||
</p>
|
||||
<hr/>
|
||||
<p align="center">
|
||||
<a href="https://docs.zama.ai/tfhe-rs"> 📒 Read documentation</a> | <a href="https://zama.ai/community"> 💛 Community support</a>
|
||||
</p>
|
||||
<p align="center">
|
||||
<!-- Version badge using shields.io -->
|
||||
<a href="https://github.com/zama-ai/tfhe-rs/releases">
|
||||
<img src="https://img.shields.io/github/v/release/zama-ai/tfhe-rs?style=flat-square">
|
||||
</a>
|
||||
<!-- Zama Bounty Program -->
|
||||
<a href="https://github.com/zama-ai/bounty-program">
|
||||
<img src="https://img.shields.io/badge/Contribute-Zama%20Bounty%20Program-yellow?style=flat-square">
|
||||
</a>
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/zama-ai/tfhe-rs/assets/157474013/5283e0ba-da1e-43af-9f2a-c5221367a12b">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://github.com/zama-ai/tfhe-rs/assets/157474013/b94a8c96-7595-400b-9311-70765c706955">
|
||||
<img width=600 alt="Zama TFHE-rs">
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
<hr/>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://docs.zama.ai/tfhe-rs"> 📒 Documentation</a> | <a href="https://zama.ai/community"> 💛 Community support</a> | <a href="https://github.com/zama-ai/awesome-zama"> 📚 FHE resources by Zama</a>
|
||||
</p>
|
||||
|
||||
**TFHE-rs** is a pure Rust implementation of TFHE for boolean and integer
|
||||
arithmetics over encrypted data. It includes:
|
||||
- a **Rust** API
|
||||
- a **C** API
|
||||
- and a **client-side WASM** API
|
||||
|
||||
**TFHE-rs** is meant for developers and researchers who want full control over
|
||||
what they can do with TFHE, while not having to worry about the low level
|
||||
<p align="center">
|
||||
<a href="https://github.com/zama-ai/tfhe-rs/releases"><img src="https://img.shields.io/github/v/release/zama-ai/tfhe-rs?style=flat-square"></a>
|
||||
<a href="LICENSE"><img src="https://img.shields.io/badge/License-BSD--3--Clause--Clear-%23ffb243?style=flat-square"></a>
|
||||
<a href="https://github.com/zama-ai/bounty-program"><img src="https://img.shields.io/badge/Contribute-Zama%20Bounty%20Program-%23ffd208?style=flat-square"></a>
|
||||
</p>
|
||||
|
||||
## About
|
||||
|
||||
### What is TFHE-rs
|
||||
|
||||
**TFHE-rs** is a pure Rust implementation of TFHE for boolean and integer arithmetics over encrypted data.
|
||||
|
||||
It includes:
|
||||
- a **Rust** API
|
||||
- a **C** API
|
||||
- and a **client-side WASM** API
|
||||
|
||||
TFHE-rs is designed for developers and researchers who want full control over
|
||||
what they can do with TFHE, while not having to worry about the low-level
|
||||
implementation. The goal is to have a stable, simple, high-performance, and
|
||||
production-ready library for all the advanced features of TFHE.
|
||||
<br></br>
|
||||
|
||||
### Main features
|
||||
|
||||
- **Low-level cryptographic library** that implements Zama’s variant of TFHE, including programmable bootstrapping
|
||||
- **Implementation of the original TFHE boolean API** that can be used as a drop-in replacement for other TFHE libraries
|
||||
- **Short integer API** that enables exact, unbounded FHE integer arithmetics with up to 8 bits of message space
|
||||
- **Size-efficient public key encryption**
|
||||
- **Ciphertext and server key compression** for efficient data transfer
|
||||
- **Full Rust API, C bindings to the Rust High-Level API, and client-side Javascript API using WASM**.
|
||||
|
||||
*Learn more about TFHE-rs features in the [documentation](https://docs.zama.ai/tfhe-rs/readme).*
|
||||
<br></br>
|
||||
|
||||
## Table of Contents
|
||||
- **[Getting Started](#getting-started)**
|
||||
- [Cargo.toml configuration](#cargotoml-configuration)
|
||||
- [A simple example](#a-simple-example)
|
||||
- **[Resources](#resources)**
|
||||
- [TFHE deep dive](#tfhe-deep-dive)
|
||||
- [Tutorials](#tutorials)
|
||||
- [Documentation](#documentation)
|
||||
- **[Working with TFHE-rs](#working-with-tfhe-rs)**
|
||||
- [Disclaimers](#disclaimers)
|
||||
- [Citations](#citations)
|
||||
- [Contributing](#contributing)
|
||||
- [License](#license)
|
||||
- **[Support](#support)**
|
||||
<br></br>
|
||||
|
||||
## Getting Started
|
||||
The steps to run a first example are described below.
|
||||
|
||||
### Cargo.toml configuration
|
||||
To use the latest version of `TFHE-rs` in your project, you first need to add it as a dependency in your `Cargo.toml`:
|
||||
@@ -47,20 +81,24 @@ tfhe = { version = "*", features = ["boolean", "shortint", "integer", "x86_64-un
|
||||
```toml
|
||||
tfhe = { version = "*", features = ["boolean", "shortint", "integer", "aarch64-unix"] }
|
||||
```
|
||||
Note: users with ARM devices must compile `TFHE-rs` using a stable toolchain with version >= 1.72.
|
||||
|
||||
|
||||
+ For x86_64-based machines with the [`rdseed instruction`](https://en.wikipedia.org/wiki/RDRAND)
|
||||
running Windows:
|
||||
+ For x86_64-based machines with the [`rdseed instruction`](https://en.wikipedia.org/wiki/RDRAND) running Windows:
|
||||
|
||||
```toml
|
||||
tfhe = { version = "*", features = ["boolean", "shortint", "integer", "x86_64"] }
|
||||
```
|
||||
|
||||
Note: aarch64-based machines are not yet supported for Windows as it's currently missing an entropy source to be able to seed the [CSPRNGs](https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator) used in TFHE-rs.
|
||||
> [!Note]
|
||||
> Note: You need to use a Rust version >= 1.73 to compile TFHE-rs.
|
||||
|
||||
> [!Note]
|
||||
> Note: aarch64-based machines are not yet supported for Windows as it's currently missing an entropy source to be able to seed the [CSPRNGs](https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator) used in TFHE-rs.
|
||||
|
||||
## A simple example
|
||||
<p align="right">
|
||||
<a href="#about" > ↑ Back to top </a>
|
||||
</p>
|
||||
|
||||
### A simple example
|
||||
|
||||
Here is a full example:
|
||||
|
||||
@@ -93,13 +131,13 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
// Clear equivalent computations: 1344 * 5 = 6720
|
||||
let encrypted_res_mul = &encrypted_a * &encrypted_b;
|
||||
|
||||
// Clear equivalent computations: 1344 >> 5 = 42
|
||||
// Clear equivalent computations: 6720 >> 5 = 210
|
||||
encrypted_a = &encrypted_res_mul >> &encrypted_b;
|
||||
|
||||
// Clear equivalent computations: let casted_a = a as u8;
|
||||
let casted_a: FheUint8 = encrypted_a.cast_into();
|
||||
|
||||
// Clear equivalent computations: min(42, 7) = 7
|
||||
// Clear equivalent computations: min(210, 7) = 7
|
||||
let encrypted_res_min = &casted_a.min(&encrypted_c);
|
||||
|
||||
// Operation between clear and encrypted data:
|
||||
@@ -117,32 +155,70 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
To run this code, use the following command:
|
||||
<p align="center"> <code> cargo run --release </code> </p>
|
||||
|
||||
Note that when running code that uses `tfhe-rs`, it is highly recommended
|
||||
> [!Note]
|
||||
> Note that when running code that uses `TFHE-rs`, it is highly recommended
|
||||
to run in release mode with cargo's `--release` flag to have the best performances possible.
|
||||
|
||||
*Find an example with more explanations in [this part of the documentation](https://docs.zama.ai/tfhe-rs/getting-started/quick_start)*
|
||||
|
||||
## Contributing
|
||||
<p align="right">
|
||||
<a href="#about" > ↑ Back to top </a>
|
||||
</p>
|
||||
|
||||
There are two ways to contribute to TFHE-rs:
|
||||
|
||||
- you can open issues to report bugs or typos, or to suggest new ideas
|
||||
- you can ask to become an official contributor by emailing [hello@zama.ai](mailto:hello@zama.ai).
|
||||
(becoming an approved contributor involves signing our Contributor License Agreement (CLA))
|
||||
|
||||
Only approved contributors can send pull requests, so please make sure to get in touch before you do!
|
||||
## Resources
|
||||
|
||||
## Credits
|
||||
### TFHE deep dive
|
||||
- [TFHE Deep Dive - Part I - Ciphertext types](https://www.zama.ai/post/tfhe-deep-dive-part-1)
|
||||
- [TFHE Deep Dive - Part II - Encodings and linear leveled operations](https://www.zama.ai/post/tfhe-deep-dive-part-2)
|
||||
- [TFHE Deep Dive - Part III - Key switching and leveled multiplications](https://www.zama.ai/post/tfhe-deep-dive-part-3)
|
||||
- [TFHE Deep Dive - Part IV - Programmable Bootstrapping](https://www.zama.ai/post/tfhe-deep-dive-part-4)
|
||||
<br></br>
|
||||
|
||||
This library uses several dependencies and we would like to thank the contributors of those
|
||||
libraries.
|
||||
### Tutorials
|
||||
- [[Video tutorial] Implement signed integers using TFHE-rs ](https://www.zama.ai/post/video-tutorial-implement-signed-integers-ssing-tfhe-rs)
|
||||
- [Homomorphic parity bit](https://docs.zama.ai/tfhe-rs/tutorials/parity_bit)
|
||||
- [Homomorphic case changing on Ascii string](https://docs.zama.ai/tfhe-rs/tutorials/ascii_fhe_string)
|
||||
- [Boolean SHA256 with TFHE-rs](https://www.zama.ai/post/boolean-sha256-tfhe-rs)
|
||||
- [Dark market with TFHE-rs](https://www.zama.ai/post/dark-market-tfhe-rs)
|
||||
- [Regular expression engine with TFHE-rs](https://www.zama.ai/post/regex-engine-tfhe-rs)
|
||||
|
||||
## Need support?
|
||||
<a target="_blank" href="https://community.zama.ai">
|
||||
<img src="https://user-images.githubusercontent.com/5758427/231115030-21195b55-2629-4c01-9809-be5059243999.png">
|
||||
</a>
|
||||
*Explore more useful resources in [TFHE-rs tutorials](https://docs.zama.ai/tfhe-rs/tutorials) and [Awesome Zama repo](https://github.com/zama-ai/awesome-zama)*
|
||||
<br></br>
|
||||
### Documentation
|
||||
|
||||
## Citing TFHE-rs
|
||||
Full, comprehensive documentation is available here: [https://docs.zama.ai/tfhe-rs](https://docs.zama.ai/tfhe-rs).
|
||||
<p align="right">
|
||||
<a href="#about" > ↑ Back to top </a>
|
||||
</p>
|
||||
|
||||
|
||||
## Working with TFHE-rs
|
||||
|
||||
### Disclaimers
|
||||
|
||||
#### Security Estimation
|
||||
|
||||
Security estimations are done using the
|
||||
[Lattice Estimator](https://github.com/malb/lattice-estimator)
|
||||
with `red_cost_model = reduction.RC.BDGL16`.
|
||||
|
||||
When a new update is published in the Lattice Estimator, we update parameters accordingly.
|
||||
|
||||
### Security Model
|
||||
|
||||
The default parameters for the TFHE-rs library are chosen considering the IND-CPA security model, and are selected with a bootstrapping failure probability fixed at p_error = $2^{-40}$. In particular, it is assumed that the results of decrypted computations are not shared by the secret key owner with any third parties, as such an action can lead to leakage of the secret encryption key. If you are designing an application where decryptions must be shared, you will need to craft custom encryption parameters which are chosen in consideration of the IND-CPA^D security model [1].
|
||||
|
||||
[1] Li, Baiyu, et al. "Securing approximate homomorphic encryption using differential privacy." Annual International Cryptology Conference. Cham: Springer Nature Switzerland, 2022. https://eprint.iacr.org/2022/816.pdf
|
||||
|
||||
#### Side-Channel Attacks
|
||||
|
||||
Mitigation for side-channel attacks has not yet been implemented in TFHE-rs,
|
||||
and will be released in upcoming versions.
|
||||
<br></br>
|
||||
|
||||
### Citations
|
||||
To cite TFHE-rs in academic papers, please use the following entry:
|
||||
|
||||
```text
|
||||
@@ -154,22 +230,35 @@ To cite TFHE-rs in academic papers, please use the following entry:
|
||||
}
|
||||
```
|
||||
|
||||
## License
|
||||
### Contributing
|
||||
|
||||
This software is distributed under the BSD-3-Clause-Clear license. If you have any questions,
|
||||
please contact us at `hello@zama.ai`.
|
||||
There are two ways to contribute to TFHE-rs:
|
||||
|
||||
## Disclaimers
|
||||
- [Open issues](https://github.com/zama-ai/tfhe-rs/issues/new/choose) to report bugs and typos, or to suggest new ideas
|
||||
- Request to become an official contributor by emailing [hello@zama.ai](mailto:hello@zama.ai).
|
||||
|
||||
### Security Estimation
|
||||
Becoming an approved contributor involves signing our Contributor License Agreement (CLA). Only approved contributors can send pull requests, so please make sure to get in touch before you do!
|
||||
<br></br>
|
||||
|
||||
Security estimations are done using the
|
||||
[Lattice Estimator](https://github.com/malb/lattice-estimator)
|
||||
with `red_cost_model = reduction.RC.BDGL16`.
|
||||
### License
|
||||
This software is distributed under the **BSD-3-Clause-Clear** license. If you have any questions, please contact us at hello@zama.ai.
|
||||
<p align="right">
|
||||
<a href="#about" > ↑ Back to top </a>
|
||||
</p>
|
||||
|
||||
When a new update is published in the Lattice Estimator, we update parameters accordingly.
|
||||
|
||||
### Side-Channel Attacks
|
||||
## Support
|
||||
|
||||
Mitigation for side channel attacks have not yet been implemented in TFHE-rs,
|
||||
and will be released in upcoming versions.
|
||||
<a target="_blank" href="https://community.zama.ai">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/zama-ai/tfhe-rs/assets/157474013/08656d0a-3f44-4126-b8b6-8c601dff5380">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://github.com/zama-ai/tfhe-rs/assets/157474013/1c9c9308-50ac-4aab-a4b9-469bb8c536a4">
|
||||
<img alt="Support">
|
||||
</picture>
|
||||
</a>
|
||||
|
||||
🌟 If you find this project helpful or interesting, please consider giving it a star on GitHub! Your support helps to grow the community and motivates further development.
|
||||
|
||||
<p align="right">
|
||||
<a href="#about" > ↑ Back to top </a>
|
||||
</p>
|
||||
|
||||
@@ -15,7 +15,6 @@ Example of a Rust main below:
|
||||
```rust
|
||||
use tfhe::{ConfigBuilder, generate_keys, FheBool};
|
||||
use tfhe::prelude::*;
|
||||
|
||||
use tfhe_trivium::TriviumStream;
|
||||
|
||||
fn get_hexadecimal_string_from_lsb_first_stream(a: Vec<bool>) -> String {
|
||||
@@ -139,10 +138,8 @@ Example code:
|
||||
```rust
|
||||
use tfhe::shortint::prelude::*;
|
||||
use tfhe::shortint::CastingKey;
|
||||
|
||||
use tfhe::{ConfigBuilder, generate_keys, FheUint64};
|
||||
use tfhe::prelude::*;
|
||||
|
||||
use tfhe_trivium::TriviumStreamShortint;
|
||||
|
||||
fn test_shortint() {
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
use criterion::Criterion;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheBool};
|
||||
|
||||
use tfhe_trivium::KreyviumStream;
|
||||
|
||||
use criterion::Criterion;
|
||||
|
||||
pub fn kreyvium_bool_gen(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default().build();
|
||||
let (client_key, server_key) = generate_keys(config);
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
use criterion::Criterion;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheUint64, FheUint8};
|
||||
|
||||
use tfhe_trivium::{KreyviumStreamByte, TransCiphering};
|
||||
|
||||
use criterion::Criterion;
|
||||
|
||||
pub fn kreyvium_byte_gen(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default()
|
||||
.enable_function_evaluation()
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
use criterion::Criterion;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::shortint::prelude::*;
|
||||
use tfhe::shortint::KeySwitchingKey;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheUint64};
|
||||
|
||||
use tfhe_trivium::{KreyviumStreamShortint, TransCiphering};
|
||||
|
||||
use criterion::Criterion;
|
||||
|
||||
pub fn kreyvium_shortint_warmup(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default().build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
use criterion::Criterion;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheBool};
|
||||
|
||||
use tfhe_trivium::TriviumStream;
|
||||
|
||||
use criterion::Criterion;
|
||||
|
||||
pub fn trivium_bool_gen(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default().build();
|
||||
let (client_key, server_key) = generate_keys(config);
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
use criterion::Criterion;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheUint64, FheUint8};
|
||||
|
||||
use tfhe_trivium::{TransCiphering, TriviumStreamByte};
|
||||
|
||||
use criterion::Criterion;
|
||||
|
||||
pub fn trivium_byte_gen(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default().build();
|
||||
let (client_key, server_key) = generate_keys(config);
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
use criterion::Criterion;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::shortint::prelude::*;
|
||||
use tfhe::shortint::KeySwitchingKey;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheUint64};
|
||||
|
||||
use tfhe_trivium::{TransCiphering, TriviumStreamShortint};
|
||||
|
||||
use criterion::Criterion;
|
||||
|
||||
pub fn trivium_shortint_warmup(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default().build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
|
||||
@@ -2,12 +2,10 @@
|
||||
//! for the representation of the inner bits.
|
||||
|
||||
use crate::static_deque::StaticDeque;
|
||||
|
||||
use rayon::prelude::*;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{set_server_key, unset_server_key, FheBool, ServerKey};
|
||||
|
||||
use rayon::prelude::*;
|
||||
|
||||
/// Internal trait specifying which operations are necessary for KreyviumStream generic type
|
||||
pub trait KreyviumBoolInput<OpOutput>:
|
||||
Sized
|
||||
|
||||
@@ -2,12 +2,10 @@
|
||||
//! for the representation of the inner bits.
|
||||
|
||||
use crate::static_deque::{StaticByteDeque, StaticByteDequeInput};
|
||||
|
||||
use rayon::prelude::*;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{set_server_key, unset_server_key, FheUint8, ServerKey};
|
||||
|
||||
use rayon::prelude::*;
|
||||
|
||||
/// Internal trait specifying which operations are necessary for KreyviumStreamByte generic type
|
||||
pub trait KreyviumByteInput<OpOutput>:
|
||||
Sized
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
use crate::static_deque::StaticDeque;
|
||||
|
||||
use tfhe::shortint::prelude::*;
|
||||
|
||||
use rayon::prelude::*;
|
||||
use tfhe::shortint::prelude::*;
|
||||
|
||||
/// KreyviumStreamShortint: a struct implementing the Kreyvium stream cipher, using a generic
|
||||
/// Ciphertext for the internal representation of bits (intended to represent a single bit). To be
|
||||
@@ -36,7 +34,7 @@ impl KreyviumStreamShortint {
|
||||
let mut c_register: [Ciphertext; 111] = [0; 111].map(|x| sk.create_trivial(x));
|
||||
|
||||
for i in 0..93 {
|
||||
a_register[i] = key[128 - 93 + i].clone();
|
||||
a_register[i].clone_from(&key[128 - 93 + i]);
|
||||
}
|
||||
for i in 0..84 {
|
||||
b_register[i] = sk.create_trivial(iv[128 - 84 + i]);
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
use crate::{KreyviumStream, KreyviumStreamByte, KreyviumStreamShortint, TransCiphering};
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheBool, FheUint64, FheUint8};
|
||||
|
||||
use crate::{KreyviumStream, KreyviumStreamByte, KreyviumStreamShortint, TransCiphering};
|
||||
|
||||
// Values for these tests come from the github repo renaud1239/Kreyvium,
|
||||
// commit fd6828f68711276c25f55e605935028f5e843f43
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#[allow(clippy::module_inception)]
|
||||
mod static_deque;
|
||||
pub use static_deque::StaticDeque;
|
||||
|
||||
mod static_byte_deque;
|
||||
pub use static_byte_deque::{StaticByteDeque, StaticByteDequeInput};
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
//! This is pretending to store bits, and allows accessing bits in chunks of 8 consecutive.
|
||||
|
||||
use crate::static_deque::StaticDeque;
|
||||
|
||||
use tfhe::FheUint8;
|
||||
|
||||
/// Internal trait specifying which operations are needed by StaticByteDeque
|
||||
|
||||
@@ -2,12 +2,10 @@
|
||||
//! when trans ciphering is available to them.
|
||||
|
||||
use crate::{KreyviumStreamByte, KreyviumStreamShortint, TriviumStreamByte, TriviumStreamShortint};
|
||||
use tfhe::shortint::Ciphertext;
|
||||
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{set_server_key, unset_server_key, FheUint64, FheUint8, ServerKey};
|
||||
|
||||
use rayon::prelude::*;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::shortint::Ciphertext;
|
||||
use tfhe::{set_server_key, unset_server_key, FheUint64, FheUint8, ServerKey};
|
||||
|
||||
/// Triat specifying the interface for trans ciphering a FheUint64 object. Since it is meant
|
||||
/// to be used with stream ciphers, encryption and decryption are by default the same.
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
use crate::{TransCiphering, TriviumStream, TriviumStreamByte, TriviumStreamShortint};
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheBool, FheUint64, FheUint8};
|
||||
|
||||
use crate::{TransCiphering, TriviumStream, TriviumStreamByte, TriviumStreamShortint};
|
||||
|
||||
// Values for these tests come from the github repo cantora/avr-crypto-lib, commit 2a5b018,
|
||||
// file testvectors/trivium-80.80.test-vectors
|
||||
|
||||
|
||||
@@ -2,12 +2,10 @@
|
||||
//! for the representation of the inner bits.
|
||||
|
||||
use crate::static_deque::StaticDeque;
|
||||
|
||||
use rayon::prelude::*;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{set_server_key, unset_server_key, FheBool, ServerKey};
|
||||
|
||||
use rayon::prelude::*;
|
||||
|
||||
/// Internal trait specifying which operations are necessary for TriviumStream generic type
|
||||
pub trait TriviumBoolInput<OpOutput>:
|
||||
Sized
|
||||
|
||||
@@ -2,12 +2,10 @@
|
||||
//! for the representation of the inner bits.
|
||||
|
||||
use crate::static_deque::{StaticByteDeque, StaticByteDequeInput};
|
||||
|
||||
use rayon::prelude::*;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::{set_server_key, unset_server_key, FheUint8, ServerKey};
|
||||
|
||||
use rayon::prelude::*;
|
||||
|
||||
/// Internal trait specifying which operations are necessary for TriviumStreamByte generic type
|
||||
pub trait TriviumByteInput<OpOutput>:
|
||||
Sized
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
use crate::static_deque::StaticDeque;
|
||||
|
||||
use tfhe::shortint::prelude::*;
|
||||
|
||||
use rayon::prelude::*;
|
||||
use tfhe::shortint::prelude::*;
|
||||
|
||||
/// TriviumStreamShortint: a struct implementing the Trivium stream cipher, using a generic
|
||||
/// Ciphertext for the internal representation of bits (intended to represent a single bit). To be
|
||||
@@ -34,7 +32,7 @@ impl TriviumStreamShortint {
|
||||
let mut c_register: [Ciphertext; 111] = [0; 111].map(|x| sk.create_trivial(x));
|
||||
|
||||
for i in 0..80 {
|
||||
a_register[93 - 80 + i] = key[i].clone();
|
||||
a_register[93 - 80 + i].clone_from(&key[i]);
|
||||
b_register[84 - 80 + i] = sk.create_trivial(iv[i]);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tfhe-cuda-backend"
|
||||
version = "0.1.2"
|
||||
version = "0.2.0"
|
||||
edition = "2021"
|
||||
authors = ["Zama team"]
|
||||
license = "BSD-3-Clause-Clear"
|
||||
|
||||
@@ -30,17 +30,17 @@ The cryptographic operations it provides are:
|
||||
|
||||
## Build
|
||||
|
||||
The Cuda project held in `tfhe-cuda-backend` can be compiled independently from Concrete in the
|
||||
following way:
|
||||
The Cuda project held in `tfhe-cuda-backend` can be compiled independently from TFHE-rs in the following way:
|
||||
```
|
||||
git clone git@github.com:zama-ai/tfhe-rs
|
||||
cd backends/tfhe-cuda-backend/implementation
|
||||
cd backends/tfhe-cuda-backend/cuda
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
make
|
||||
```
|
||||
The compute capability is detected automatically (with the first GPU information) and set accordingly.
|
||||
If your machine does not have an available Nvidia GPU, the compilation will work if you have the nvcc compiler installed. The generated executable will target a 7.0 compute capability (sm_70).
|
||||
|
||||
## Links
|
||||
|
||||
|
||||
@@ -2,6 +2,12 @@ use std::env;
|
||||
use std::process::Command;
|
||||
|
||||
fn main() {
|
||||
if let Ok(val) = env::var("DOCS_RS") {
|
||||
if val.parse::<u32>() == Ok(1) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
println!("Build tfhe-cuda-backend");
|
||||
if env::consts::OS == "linux" {
|
||||
let output = Command::new("./get_os_name.sh").output().unwrap();
|
||||
|
||||
2
backends/tfhe-cuda-backend/cuda/.gitignore
vendored
Normal file
2
backends/tfhe-cuda-backend/cuda/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
/build/
|
||||
include/cuda_config.h
|
||||
@@ -1,5 +1,5 @@
|
||||
cmake_minimum_required(VERSION 3.24 FATAL_ERROR)
|
||||
project(tfhe_cuda_backend LANGUAGES CXX CUDA)
|
||||
project(tfhe_cuda_backend LANGUAGES CXX)
|
||||
|
||||
# See if the minimum CUDA version is available. If not, only enable documentation building.
|
||||
set(MINIMUM_SUPPORTED_CUDA_VERSION 10.0)
|
||||
@@ -56,11 +56,17 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
|
||||
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -Xcompiler ${OpenMP_CXX_FLAGS}")
|
||||
set(CMAKE_CUDA_ARCHITECTURES native)
|
||||
if(NOT CUDA_NVCC_FLAGS)
|
||||
set(CUDA_NVCC_FLAGS -arch=sm_70)
|
||||
if(${CUDA_SUCCESS})
|
||||
set(CMAKE_CUDA_ARCHITECTURES native)
|
||||
string(REPLACE "-arch=sm_" "" CUDA_ARCH "${ARCH}")
|
||||
set(CUDA_ARCH "${CUDA_ARCH}0")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES 70)
|
||||
set(CUDA_ARCH "700")
|
||||
endif()
|
||||
|
||||
add_compile_definitions(CUDA_ARCH=${CUDA_ARCH})
|
||||
|
||||
# in production, should use -arch=sm_70 --ptxas-options=-v to see register spills -lineinfo for better debugging
|
||||
set(CMAKE_CUDA_FLAGS
|
||||
"${CMAKE_CUDA_FLAGS} -ccbin ${CMAKE_CXX_COMPILER} -O3 \
|
||||
@@ -70,10 +76,13 @@ set(CMAKE_CUDA_FLAGS
|
||||
set(INCLUDE_DIR include)
|
||||
|
||||
add_subdirectory(src)
|
||||
enable_testing()
|
||||
add_subdirectory(tests_and_benchmarks)
|
||||
target_include_directories(tfhe_cuda_backend PRIVATE ${INCLUDE_DIR})
|
||||
|
||||
# This is required for rust cargo build
|
||||
install(TARGETS tfhe_cuda_backend DESTINATION .)
|
||||
|
||||
install(TARGETS tfhe_cuda_backend DESTINATION lib)
|
||||
|
||||
# Define a function to add a lint target.
|
||||
@@ -85,5 +94,3 @@ if(CPPLINT)
|
||||
set_target_properties(all_lint PROPERTIES EXCLUDE_FROM_ALL TRUE)
|
||||
# set_target_properties(all_lint PROPERTIES EXCLUDE_FROM_DEFAULT_BUILD TRUE)
|
||||
endif()
|
||||
|
||||
enable_testing()
|
||||
|
||||
@@ -1,6 +1,19 @@
|
||||
#!/bin/bash
|
||||
|
||||
find ./{include,src} -iregex '^.*\.\(cpp\|cu\|h\|cuh\)$' -print | xargs clang-format-15 -i -style='file'
|
||||
cmake-format -i CMakeLists.txt -c .cmake-format-config.py
|
||||
set -e
|
||||
|
||||
find ./{include,src} -type f -name "CMakeLists.txt" | xargs -I % sh -c 'cmake-format -i % -c .cmake-format-config.py'
|
||||
while getopts ":c" option; do
|
||||
case $option in
|
||||
c)
|
||||
# code to execute when flag1 is provided
|
||||
find ./{include,src,tests_and_benchmarks/include,tests_and_benchmarks/tests,tests_and_benchmarks/benchmarks} -iregex '^.*\.\(cpp\|cu\|h\|cuh\)$' -print | xargs clang-format-15 -i -style='file' --dry-run --Werror
|
||||
cmake-format -i CMakeLists.txt -c .cmake-format-config.py
|
||||
find ./{include,src,tests_and_benchmarks/include,tests_and_benchmarks/tests,tests_and_benchmarks/benchmarks} -type f -name "CMakeLists.txt" | xargs -I % sh -c 'cmake-format -i % -c .cmake-format-config.py'
|
||||
git diff --exit-code
|
||||
exit
|
||||
;;
|
||||
esac
|
||||
done
|
||||
find ./{include,src,tests_and_benchmarks/include,tests_and_benchmarks/tests,tests_and_benchmarks/benchmarks} -iregex '^.*\.\(cpp\|cu\|h\|cuh\)$' -print | xargs clang-format-15 -i -style='file'
|
||||
cmake-format -i CMakeLists.txt -c .cmake-format-config.py
|
||||
find ./{include,src,tests_and_benchmarks/include,tests_and_benchmarks/tests,tests_and_benchmarks/benchmarks} -type f -name "CMakeLists.txt" | xargs -I % sh -c 'cmake-format -i % -c .cmake-format-config.py'
|
||||
|
||||
@@ -1,118 +0,0 @@
|
||||
#ifndef CUDA_BOOTSTRAP_H
|
||||
#define CUDA_BOOTSTRAP_H
|
||||
|
||||
#include "device.h"
|
||||
#include <cstdint>
|
||||
|
||||
enum PBS_TYPE { MULTI_BIT = 0, LOW_LAT = 1, AMORTIZED = 2 };
|
||||
|
||||
extern "C" {
|
||||
void cuda_fourier_polynomial_mul(void *input1, void *input2, void *output,
|
||||
cuda_stream_t *stream,
|
||||
uint32_t polynomial_size,
|
||||
uint32_t total_polynomials);
|
||||
|
||||
void cuda_convert_lwe_bootstrap_key_32(void *dest, void *src,
|
||||
cuda_stream_t *stream,
|
||||
uint32_t input_lwe_dim,
|
||||
uint32_t glwe_dim, uint32_t level_count,
|
||||
uint32_t polynomial_size);
|
||||
|
||||
void cuda_convert_lwe_bootstrap_key_64(void *dest, void *src,
|
||||
cuda_stream_t *stream,
|
||||
uint32_t input_lwe_dim,
|
||||
uint32_t glwe_dim, uint32_t level_count,
|
||||
uint32_t polynomial_size);
|
||||
|
||||
void scratch_cuda_bootstrap_amortized_32(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t input_lwe_ciphertext_count,
|
||||
uint32_t max_shared_memory, bool allocate_gpu_memory);
|
||||
|
||||
void scratch_cuda_bootstrap_amortized_64(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t input_lwe_ciphertext_count,
|
||||
uint32_t max_shared_memory, bool allocate_gpu_memory);
|
||||
|
||||
void cuda_bootstrap_amortized_lwe_ciphertext_vector_32(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_lut_vectors, uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
void cuda_bootstrap_amortized_lwe_ciphertext_vector_64(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_lut_vectors, uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
void cleanup_cuda_bootstrap_amortized(cuda_stream_t *stream,
|
||||
int8_t **pbs_buffer);
|
||||
|
||||
void scratch_cuda_bootstrap_low_latency_32(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory,
|
||||
bool allocate_gpu_memory);
|
||||
|
||||
void scratch_cuda_bootstrap_low_latency_64(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory,
|
||||
bool allocate_gpu_memory);
|
||||
|
||||
void cuda_bootstrap_low_latency_lwe_ciphertext_vector_32(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_lut_vectors, uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
void cuda_bootstrap_low_latency_lwe_ciphertext_vector_64(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_lut_vectors, uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
void cleanup_cuda_bootstrap_low_latency(cuda_stream_t *stream,
|
||||
int8_t **pbs_buffer);
|
||||
|
||||
uint64_t get_buffer_size_bootstrap_amortized_64(
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory);
|
||||
|
||||
uint64_t get_buffer_size_bootstrap_low_latency_64(
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory);
|
||||
}
|
||||
|
||||
#ifdef __CUDACC__
|
||||
__device__ inline int get_start_ith_ggsw(int i, uint32_t polynomial_size,
|
||||
int glwe_dimension,
|
||||
uint32_t level_count);
|
||||
|
||||
template <typename T>
|
||||
__device__ T *get_ith_mask_kth_block(T *ptr, int i, int k, int level,
|
||||
uint32_t polynomial_size,
|
||||
int glwe_dimension, uint32_t level_count);
|
||||
|
||||
template <typename T>
|
||||
__device__ T *get_ith_body_kth_block(T *ptr, int i, int k, int level,
|
||||
uint32_t polynomial_size,
|
||||
int glwe_dimension, uint32_t level_count);
|
||||
|
||||
template <typename T>
|
||||
__device__ T *get_multi_bit_ith_lwe_gth_group_kth_block(
|
||||
T *ptr, int g, int i, int k, int level, uint32_t grouping_factor,
|
||||
uint32_t polynomial_size, uint32_t glwe_dimension, uint32_t level_count);
|
||||
|
||||
#endif
|
||||
|
||||
#endif // CUDA_BOOTSTRAP_H
|
||||
@@ -1,46 +0,0 @@
|
||||
#ifndef CUDA_MULTI_BIT_H
|
||||
#define CUDA_MULTI_BIT_H
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
extern "C" {
|
||||
void cuda_convert_lwe_multi_bit_bootstrap_key_64(
|
||||
void *dest, void *src, cuda_stream_t *stream, uint32_t input_lwe_dim,
|
||||
uint32_t glwe_dim, uint32_t level_count, uint32_t polynomial_size,
|
||||
uint32_t grouping_factor);
|
||||
|
||||
void cuda_multi_bit_pbs_lwe_ciphertext_vector_64(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t grouping_factor, uint32_t base_log, uint32_t level_count,
|
||||
uint32_t num_samples, uint32_t num_lut_vectors, uint32_t lwe_idx,
|
||||
uint32_t max_shared_memory, uint32_t chunk_size = 0);
|
||||
|
||||
void scratch_cuda_multi_bit_pbs_64(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t grouping_factor, uint32_t input_lwe_ciphertext_count,
|
||||
uint32_t max_shared_memory, bool allocate_gpu_memory,
|
||||
uint32_t chunk_size = 0);
|
||||
|
||||
void cleanup_cuda_multi_bit_pbs(cuda_stream_t *stream, int8_t **pbs_buffer);
|
||||
}
|
||||
#ifdef __CUDACC__
|
||||
__host__ uint32_t get_lwe_chunk_size(uint32_t lwe_dimension,
|
||||
uint32_t level_count,
|
||||
uint32_t glwe_dimension,
|
||||
uint32_t num_samples);
|
||||
|
||||
__host__ uint32_t get_average_lwe_chunk_size(uint32_t lwe_dimension,
|
||||
uint32_t level_count,
|
||||
uint32_t glwe_dimension,
|
||||
uint32_t ct_count);
|
||||
|
||||
__host__ uint64_t get_max_buffer_size_multibit_bootstrap(
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t max_input_lwe_ciphertext_count);
|
||||
#endif
|
||||
|
||||
#endif // CUDA_MULTI_BIT_H
|
||||
@@ -11,6 +11,22 @@
|
||||
|
||||
extern "C" {
|
||||
|
||||
#define check_cuda_error(ans) \
|
||||
{ cuda_error((ans), __FILE__, __LINE__); }
|
||||
inline void cuda_error(cudaError_t code, const char *file, int line) {
|
||||
if (code != cudaSuccess) {
|
||||
std::fprintf(stderr, "Cuda error: %s %s %d\n", cudaGetErrorString(code),
|
||||
file, line);
|
||||
std::abort();
|
||||
}
|
||||
}
|
||||
#define PANIC(format, ...) \
|
||||
{ \
|
||||
std::fprintf(stderr, "%s::%d::%s: panic.\n" format "\n", __FILE__, \
|
||||
__LINE__, __func__, ##__VA_ARGS__); \
|
||||
std::abort(); \
|
||||
}
|
||||
|
||||
struct cuda_stream_t {
|
||||
cudaStream_t stream;
|
||||
uint32_t gpu_index;
|
||||
@@ -18,68 +34,58 @@ struct cuda_stream_t {
|
||||
cuda_stream_t(uint32_t gpu_index) {
|
||||
this->gpu_index = gpu_index;
|
||||
|
||||
cudaStreamCreate(&stream);
|
||||
check_cuda_error(cudaStreamCreate(&stream));
|
||||
}
|
||||
|
||||
void release() {
|
||||
cudaSetDevice(gpu_index);
|
||||
cudaStreamDestroy(stream);
|
||||
check_cuda_error(cudaSetDevice(gpu_index));
|
||||
check_cuda_error(cudaStreamDestroy(stream));
|
||||
}
|
||||
|
||||
void synchronize() { cudaStreamSynchronize(stream); }
|
||||
void synchronize() { check_cuda_error(cudaStreamSynchronize(stream)); }
|
||||
};
|
||||
|
||||
cuda_stream_t *cuda_create_stream(uint32_t gpu_index);
|
||||
|
||||
int cuda_destroy_stream(cuda_stream_t *stream);
|
||||
void cuda_destroy_stream(cuda_stream_t *stream);
|
||||
|
||||
void *cuda_malloc(uint64_t size, uint32_t gpu_index);
|
||||
|
||||
void *cuda_malloc_async(uint64_t size, cuda_stream_t *stream);
|
||||
|
||||
int cuda_check_valid_malloc(uint64_t size, uint32_t gpu_index);
|
||||
void cuda_check_valid_malloc(uint64_t size, uint32_t gpu_index);
|
||||
|
||||
int cuda_check_support_cooperative_groups();
|
||||
bool cuda_check_support_cooperative_groups();
|
||||
|
||||
int cuda_memcpy_to_cpu(void *dest, const void *src, uint64_t size);
|
||||
void cuda_memcpy_async_to_gpu(void *dest, void *src, uint64_t size,
|
||||
cuda_stream_t *stream);
|
||||
|
||||
int cuda_memcpy_async_to_gpu(void *dest, void *src, uint64_t size,
|
||||
cuda_stream_t *stream);
|
||||
void cuda_memcpy_async_gpu_to_gpu(void *dest, void *src, uint64_t size,
|
||||
cuda_stream_t *stream);
|
||||
|
||||
int cuda_memcpy_async_gpu_to_gpu(void *dest, void *src, uint64_t size,
|
||||
cuda_stream_t *stream);
|
||||
void cuda_memcpy_async_to_cpu(void *dest, const void *src, uint64_t size,
|
||||
cuda_stream_t *stream);
|
||||
|
||||
int cuda_memcpy_to_gpu(void *dest, void *src, uint64_t size);
|
||||
|
||||
int cuda_memcpy_async_to_cpu(void *dest, const void *src, uint64_t size,
|
||||
cuda_stream_t *stream);
|
||||
|
||||
int cuda_memset_async(void *dest, uint64_t val, uint64_t size,
|
||||
cuda_stream_t *stream);
|
||||
void cuda_memset_async(void *dest, uint64_t val, uint64_t size,
|
||||
cuda_stream_t *stream);
|
||||
|
||||
int cuda_get_number_of_gpus();
|
||||
|
||||
int cuda_synchronize_device(uint32_t gpu_index);
|
||||
void cuda_synchronize_device(uint32_t gpu_index);
|
||||
|
||||
int cuda_drop(void *ptr, uint32_t gpu_index);
|
||||
void cuda_drop(void *ptr, uint32_t gpu_index);
|
||||
|
||||
int cuda_drop_async(void *ptr, cuda_stream_t *stream);
|
||||
void cuda_drop_async(void *ptr, cuda_stream_t *stream);
|
||||
|
||||
int cuda_get_max_shared_memory(uint32_t gpu_index);
|
||||
|
||||
int cuda_synchronize_stream(cuda_stream_t *stream);
|
||||
void cuda_synchronize_stream(cuda_stream_t *stream);
|
||||
|
||||
#define check_cuda_error(ans) \
|
||||
{ cuda_error((ans), __FILE__, __LINE__); }
|
||||
inline void cuda_error(cudaError_t code, const char *file, int line,
|
||||
bool abort = true) {
|
||||
if (code != cudaSuccess) {
|
||||
fprintf(stderr, "Cuda error: %s %s %d\n", cudaGetErrorString(code), file,
|
||||
line);
|
||||
if (abort)
|
||||
exit(code);
|
||||
}
|
||||
}
|
||||
void cuda_stream_add_callback(cuda_stream_t *stream,
|
||||
cudaStreamCallback_t callback, void *user_data);
|
||||
|
||||
void host_free_on_stream_callback(cudaStream_t stream, cudaError_t status,
|
||||
void *host_pointer);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,7 +1,7 @@
|
||||
#ifndef CUDA_LINALG_H_
|
||||
#define CUDA_LINALG_H_
|
||||
|
||||
#include "bootstrap.h"
|
||||
#include "programmable_bootstrap.h"
|
||||
#include <cstdint>
|
||||
#include <device.h>
|
||||
|
||||
|
||||
320
backends/tfhe-cuda-backend/cuda/include/programmable_bootstrap.h
Normal file
320
backends/tfhe-cuda-backend/cuda/include/programmable_bootstrap.h
Normal file
@@ -0,0 +1,320 @@
|
||||
#ifndef CUDA_BOOTSTRAP_H
|
||||
#define CUDA_BOOTSTRAP_H
|
||||
|
||||
#include "device.h"
|
||||
#include <cstdint>
|
||||
|
||||
enum PBS_TYPE { MULTI_BIT = 0, CLASSICAL = 1 };
|
||||
enum PBS_VARIANT { DEFAULT = 0, CG = 1 };
|
||||
|
||||
extern "C" {
|
||||
void cuda_fourier_polynomial_mul(void *input1, void *input2, void *output,
|
||||
cuda_stream_t *stream,
|
||||
uint32_t polynomial_size,
|
||||
uint32_t total_polynomials);
|
||||
|
||||
void cuda_convert_lwe_programmable_bootstrap_key_32(
|
||||
void *dest, void *src, cuda_stream_t *stream, uint32_t input_lwe_dim,
|
||||
uint32_t glwe_dim, uint32_t level_count, uint32_t polynomial_size);
|
||||
|
||||
void cuda_convert_lwe_programmable_bootstrap_key_64(
|
||||
void *dest, void *src, cuda_stream_t *stream, uint32_t input_lwe_dim,
|
||||
uint32_t glwe_dim, uint32_t level_count, uint32_t polynomial_size);
|
||||
|
||||
void scratch_cuda_programmable_bootstrap_amortized_32(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t input_lwe_ciphertext_count,
|
||||
uint32_t max_shared_memory, bool allocate_gpu_memory);
|
||||
|
||||
void scratch_cuda_programmable_bootstrap_amortized_64(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t input_lwe_ciphertext_count,
|
||||
uint32_t max_shared_memory, bool allocate_gpu_memory);
|
||||
|
||||
void cuda_programmable_bootstrap_amortized_lwe_ciphertext_vector_32(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_luts, uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
void cuda_programmable_bootstrap_amortized_lwe_ciphertext_vector_64(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_luts, uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
void cleanup_cuda_programmable_bootstrap_amortized(cuda_stream_t *stream,
|
||||
int8_t **pbs_buffer);
|
||||
|
||||
void scratch_cuda_programmable_bootstrap_32(
|
||||
cuda_stream_t *stream, int8_t **buffer, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory,
|
||||
bool allocate_gpu_memory);
|
||||
|
||||
void scratch_cuda_programmable_bootstrap_64(
|
||||
cuda_stream_t *stream, int8_t **buffer, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory,
|
||||
bool allocate_gpu_memory);
|
||||
|
||||
void cuda_programmable_bootstrap_lwe_ciphertext_vector_32(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_luts, uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
void cuda_programmable_bootstrap_lwe_ciphertext_vector_64(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_luts, uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
void cleanup_cuda_programmable_bootstrap(cuda_stream_t *stream,
|
||||
int8_t **pbs_buffer);
|
||||
|
||||
uint64_t get_buffer_size_programmable_bootstrap_amortized_64(
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory);
|
||||
|
||||
uint64_t get_buffer_size_programmable_bootstrap_64(
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_full_sm_programmable_bootstrap_step_one(
|
||||
uint32_t polynomial_size) {
|
||||
return sizeof(Torus) * polynomial_size + // accumulator_rotated
|
||||
sizeof(double2) * polynomial_size / 2; // accumulator fft
|
||||
}
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_full_sm_programmable_bootstrap_step_two(
|
||||
uint32_t polynomial_size) {
|
||||
return sizeof(Torus) * polynomial_size + // accumulator
|
||||
sizeof(double2) * polynomial_size / 2; // accumulator fft
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_partial_sm_programmable_bootstrap(uint32_t polynomial_size) {
|
||||
return sizeof(double2) * polynomial_size / 2; // accumulator fft
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_full_sm_programmable_bootstrap_cg(uint32_t polynomial_size) {
|
||||
return sizeof(Torus) * polynomial_size + // accumulator_rotated
|
||||
sizeof(Torus) * polynomial_size + // accumulator
|
||||
sizeof(double2) * polynomial_size / 2; // accumulator fft
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_partial_sm_programmable_bootstrap_cg(uint32_t polynomial_size) {
|
||||
return sizeof(double2) * polynomial_size / 2; // accumulator fft mask & body
|
||||
}
|
||||
|
||||
template <typename Torus, PBS_TYPE pbs_type> struct pbs_buffer;
|
||||
|
||||
template <typename Torus> struct pbs_buffer<Torus, PBS_TYPE::CLASSICAL> {
|
||||
int8_t *d_mem;
|
||||
|
||||
Torus *global_accumulator;
|
||||
double2 *global_accumulator_fft;
|
||||
|
||||
PBS_VARIANT pbs_variant;
|
||||
|
||||
pbs_buffer(cuda_stream_t *stream, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, PBS_VARIANT pbs_variant,
|
||||
bool allocate_gpu_memory) {
|
||||
this->pbs_variant = pbs_variant;
|
||||
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(stream->gpu_index);
|
||||
|
||||
if (allocate_gpu_memory) {
|
||||
switch (pbs_variant) {
|
||||
case PBS_VARIANT::DEFAULT: {
|
||||
uint64_t full_sm_step_one =
|
||||
get_buffer_size_full_sm_programmable_bootstrap_step_one<Torus>(
|
||||
polynomial_size);
|
||||
uint64_t full_sm_step_two =
|
||||
get_buffer_size_full_sm_programmable_bootstrap_step_two<Torus>(
|
||||
polynomial_size);
|
||||
uint64_t partial_sm =
|
||||
get_buffer_size_partial_sm_programmable_bootstrap<Torus>(
|
||||
polynomial_size);
|
||||
|
||||
uint64_t partial_dm_step_one = full_sm_step_one - partial_sm;
|
||||
uint64_t partial_dm_step_two = full_sm_step_two - partial_sm;
|
||||
uint64_t full_dm = full_sm_step_one;
|
||||
|
||||
uint64_t device_mem = 0;
|
||||
if (max_shared_memory < partial_sm) {
|
||||
device_mem = full_dm * input_lwe_ciphertext_count * level_count *
|
||||
(glwe_dimension + 1);
|
||||
} else if (max_shared_memory < full_sm_step_two) {
|
||||
device_mem =
|
||||
(partial_dm_step_two + partial_dm_step_one * level_count) *
|
||||
input_lwe_ciphertext_count * (glwe_dimension + 1);
|
||||
} else if (max_shared_memory < full_sm_step_one) {
|
||||
device_mem = partial_dm_step_one * input_lwe_ciphertext_count *
|
||||
level_count * (glwe_dimension + 1);
|
||||
}
|
||||
// Otherwise, both kernels run all in shared memory
|
||||
d_mem = (int8_t *)cuda_malloc_async(device_mem, stream);
|
||||
|
||||
global_accumulator_fft = (double2 *)cuda_malloc_async(
|
||||
(glwe_dimension + 1) * level_count * input_lwe_ciphertext_count *
|
||||
(polynomial_size / 2) * sizeof(double2),
|
||||
stream);
|
||||
|
||||
global_accumulator = (Torus *)cuda_malloc_async(
|
||||
(glwe_dimension + 1) * input_lwe_ciphertext_count *
|
||||
polynomial_size * sizeof(Torus),
|
||||
stream);
|
||||
} break;
|
||||
case PBS_VARIANT::CG: {
|
||||
uint64_t full_sm =
|
||||
get_buffer_size_full_sm_programmable_bootstrap_cg<Torus>(
|
||||
polynomial_size);
|
||||
uint64_t partial_sm =
|
||||
get_buffer_size_partial_sm_programmable_bootstrap_cg<Torus>(
|
||||
polynomial_size);
|
||||
|
||||
uint64_t partial_dm = full_sm - partial_sm;
|
||||
uint64_t full_dm = full_sm;
|
||||
uint64_t device_mem = 0;
|
||||
|
||||
if (max_shared_memory < partial_sm) {
|
||||
device_mem = full_dm * input_lwe_ciphertext_count * level_count *
|
||||
(glwe_dimension + 1);
|
||||
} else if (max_shared_memory < full_sm) {
|
||||
device_mem = partial_dm * input_lwe_ciphertext_count * level_count *
|
||||
(glwe_dimension + 1);
|
||||
}
|
||||
|
||||
// Otherwise, both kernels run all in shared memory
|
||||
d_mem = (int8_t *)cuda_malloc_async(device_mem, stream);
|
||||
|
||||
global_accumulator_fft = (double2 *)cuda_malloc_async(
|
||||
(glwe_dimension + 1) * level_count * input_lwe_ciphertext_count *
|
||||
polynomial_size / 2 * sizeof(double2),
|
||||
stream);
|
||||
} break;
|
||||
default:
|
||||
PANIC("Cuda error (PBS): unsupported implementation variant.")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void release(cuda_stream_t *stream) {
|
||||
cuda_drop_async(d_mem, stream);
|
||||
cuda_drop_async(global_accumulator_fft, stream);
|
||||
|
||||
if (pbs_variant == DEFAULT)
|
||||
cuda_drop_async(global_accumulator, stream);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t get_buffer_size_programmable_bootstrap_cg(
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory) {
|
||||
|
||||
uint64_t full_sm =
|
||||
get_buffer_size_full_sm_programmable_bootstrap_cg<Torus>(polynomial_size);
|
||||
uint64_t partial_sm =
|
||||
get_buffer_size_partial_sm_programmable_bootstrap_cg<Torus>(
|
||||
polynomial_size);
|
||||
uint64_t partial_dm = full_sm - partial_sm;
|
||||
uint64_t full_dm = full_sm;
|
||||
uint64_t device_mem = 0;
|
||||
if (max_shared_memory < partial_sm) {
|
||||
device_mem = full_dm * input_lwe_ciphertext_count * level_count *
|
||||
(glwe_dimension + 1);
|
||||
} else if (max_shared_memory < full_sm) {
|
||||
device_mem = partial_dm * input_lwe_ciphertext_count * level_count *
|
||||
(glwe_dimension + 1);
|
||||
}
|
||||
uint64_t buffer_size = device_mem + (glwe_dimension + 1) * level_count *
|
||||
input_lwe_ciphertext_count *
|
||||
polynomial_size / 2 * sizeof(double2);
|
||||
return buffer_size + buffer_size % sizeof(double2);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
bool has_support_to_cuda_programmable_bootstrap_cg(uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size,
|
||||
uint32_t level_count,
|
||||
uint32_t num_samples,
|
||||
uint32_t max_shared_memory);
|
||||
|
||||
template <typename Torus>
|
||||
void cuda_programmable_bootstrap_cg_lwe_ciphertext_vector(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_output_indexes,
|
||||
Torus *lut_vector, Torus *lut_vector_indexes, Torus *lwe_array_in,
|
||||
Torus *lwe_input_indexes, double2 *bootstrapping_key,
|
||||
pbs_buffer<Torus, CLASSICAL> *buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, uint32_t num_samples, uint32_t num_luts,
|
||||
uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
template <typename Torus>
|
||||
void cuda_programmable_bootstrap_lwe_ciphertext_vector(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_output_indexes,
|
||||
Torus *lut_vector, Torus *lut_vector_indexes, Torus *lwe_array_in,
|
||||
Torus *lwe_input_indexes, double2 *bootstrapping_key,
|
||||
pbs_buffer<Torus, CLASSICAL> *buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, uint32_t num_samples, uint32_t num_luts,
|
||||
uint32_t lwe_idx, uint32_t max_shared_memory);
|
||||
|
||||
template <typename Torus, typename STorus>
|
||||
void scratch_cuda_programmable_bootstrap_cg(
|
||||
cuda_stream_t *stream, pbs_buffer<Torus, CLASSICAL> **pbs_buffer,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory,
|
||||
bool allocate_gpu_memory);
|
||||
|
||||
template <typename Torus, typename STorus>
|
||||
void scratch_cuda_programmable_bootstrap(
|
||||
cuda_stream_t *stream, pbs_buffer<Torus, CLASSICAL> **buffer,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory,
|
||||
bool allocate_gpu_memory);
|
||||
|
||||
#ifdef __CUDACC__
|
||||
__device__ inline int get_start_ith_ggsw(int i, uint32_t polynomial_size,
|
||||
int glwe_dimension,
|
||||
uint32_t level_count);
|
||||
|
||||
template <typename T>
|
||||
__device__ T *get_ith_mask_kth_block(T *ptr, int i, int k, int level,
|
||||
uint32_t polynomial_size,
|
||||
int glwe_dimension, uint32_t level_count);
|
||||
|
||||
template <typename T>
|
||||
__device__ T *get_ith_body_kth_block(T *ptr, int i, int k, int level,
|
||||
uint32_t polynomial_size,
|
||||
int glwe_dimension, uint32_t level_count);
|
||||
|
||||
template <typename T>
|
||||
__device__ T *get_multi_bit_ith_lwe_gth_group_kth_block(
|
||||
T *ptr, int g, int i, int k, int level, uint32_t grouping_factor,
|
||||
uint32_t polynomial_size, uint32_t glwe_dimension, uint32_t level_count);
|
||||
|
||||
#endif
|
||||
|
||||
#endif // CUDA_BOOTSTRAP_H
|
||||
@@ -0,0 +1,241 @@
|
||||
#ifndef CUDA_MULTI_BIT_H
|
||||
#define CUDA_MULTI_BIT_H
|
||||
|
||||
#include "programmable_bootstrap.h"
|
||||
#include <cstdint>
|
||||
|
||||
extern "C" {
|
||||
|
||||
bool has_support_to_cuda_programmable_bootstrap_cg_multi_bit(
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t num_samples, uint32_t max_shared_memory);
|
||||
|
||||
void cuda_convert_lwe_multi_bit_programmable_bootstrap_key_64(
|
||||
void *dest, void *src, cuda_stream_t *stream, uint32_t input_lwe_dim,
|
||||
uint32_t glwe_dim, uint32_t level_count, uint32_t polynomial_size,
|
||||
uint32_t grouping_factor);
|
||||
|
||||
void scratch_cuda_multi_bit_programmable_bootstrap_64(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t grouping_factor, uint32_t input_lwe_ciphertext_count,
|
||||
uint32_t max_shared_memory, bool allocate_gpu_memory,
|
||||
uint32_t chunk_size = 0);
|
||||
|
||||
void cuda_multi_bit_programmable_bootstrap_lwe_ciphertext_vector_64(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t grouping_factor, uint32_t base_log, uint32_t level_count,
|
||||
uint32_t num_samples, uint32_t num_luts, uint32_t lwe_idx,
|
||||
uint32_t max_shared_memory, uint32_t lwe_chunk_size = 0);
|
||||
|
||||
void scratch_cuda_generic_multi_bit_programmable_bootstrap_64(
|
||||
cuda_stream_t *stream, int8_t **pbs_buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t grouping_factor, uint32_t input_lwe_ciphertext_count,
|
||||
uint32_t max_shared_memory, bool allocate_gpu_memory,
|
||||
uint32_t lwe_chunk_size = 0);
|
||||
|
||||
void cuda_generic_multi_bit_programmable_bootstrap_lwe_ciphertext_vector_64(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_output_indexes,
|
||||
void *lut_vector, void *lut_vector_indexes, void *lwe_array_in,
|
||||
void *lwe_input_indexes, void *bootstrapping_key, int8_t *pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t grouping_factor, uint32_t base_log, uint32_t level_count,
|
||||
uint32_t num_samples, uint32_t num_luts, uint32_t lwe_idx,
|
||||
uint32_t max_shared_memory, uint32_t lwe_chunk_size = 0);
|
||||
|
||||
void cleanup_cuda_multi_bit_programmable_bootstrap(cuda_stream_t *stream,
|
||||
int8_t **pbs_buffer);
|
||||
}
|
||||
|
||||
template <typename Torus, typename STorus>
|
||||
void scratch_cuda_cg_multi_bit_programmable_bootstrap(
|
||||
cuda_stream_t *stream, pbs_buffer<Torus, MULTI_BIT> **pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t grouping_factor,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory,
|
||||
bool allocate_gpu_memory, uint32_t lwe_chunk_size = 0);
|
||||
|
||||
template <typename Torus>
|
||||
void cuda_cg_multi_bit_programmable_bootstrap_lwe_ciphertext_vector(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_output_indexes,
|
||||
Torus *lut_vector, Torus *lut_vector_indexes, Torus *lwe_array_in,
|
||||
Torus *lwe_input_indexes, Torus *bootstrapping_key,
|
||||
pbs_buffer<Torus, MULTI_BIT> *pbs_buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t grouping_factor,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_luts, uint32_t lwe_idx, uint32_t max_shared_memory,
|
||||
uint32_t lwe_chunk_size = 0);
|
||||
|
||||
template <typename Torus, typename STorus>
|
||||
void scratch_cuda_multi_bit_programmable_bootstrap(
|
||||
cuda_stream_t *stream, pbs_buffer<Torus, MULTI_BIT> **pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t grouping_factor,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t max_shared_memory,
|
||||
bool allocate_gpu_memory, uint32_t lwe_chunk_size = 0);
|
||||
|
||||
template <typename Torus>
|
||||
void cuda_multi_bit_programmable_bootstrap_lwe_ciphertext_vector(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_output_indexes,
|
||||
Torus *lut_vector, Torus *lut_vector_indexes, Torus *lwe_array_in,
|
||||
Torus *lwe_input_indexes, Torus *bootstrapping_key,
|
||||
pbs_buffer<Torus, MULTI_BIT> *pbs_buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t grouping_factor,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples,
|
||||
uint32_t num_luts, uint32_t lwe_idx, uint32_t max_shared_memory,
|
||||
uint32_t lwe_chunk_size = 0);
|
||||
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_full_sm_multibit_programmable_bootstrap_keybundle(
|
||||
uint32_t polynomial_size);
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_full_sm_multibit_programmable_bootstrap_step_one(
|
||||
uint32_t polynomial_size);
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_full_sm_multibit_programmable_bootstrap_step_two(
|
||||
uint32_t polynomial_size);
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_partial_sm_multibit_programmable_bootstrap_step_one(
|
||||
uint32_t polynomial_size);
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_full_sm_cg_multibit_programmable_bootstrap(
|
||||
uint32_t polynomial_size);
|
||||
template <typename Torus>
|
||||
__host__ __device__ uint64_t
|
||||
get_buffer_size_partial_sm_cg_multibit_programmable_bootstrap(
|
||||
uint32_t polynomial_size);
|
||||
|
||||
template <typename Torus> struct pbs_buffer<Torus, PBS_TYPE::MULTI_BIT> {
|
||||
int8_t *d_mem_keybundle = NULL;
|
||||
int8_t *d_mem_acc_step_one = NULL;
|
||||
int8_t *d_mem_acc_step_two = NULL;
|
||||
int8_t *d_mem_acc_cg = NULL;
|
||||
|
||||
double2 *keybundle_fft;
|
||||
Torus *global_accumulator;
|
||||
double2 *global_accumulator_fft;
|
||||
|
||||
PBS_VARIANT pbs_variant;
|
||||
|
||||
pbs_buffer(cuda_stream_t *stream, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t lwe_chunk_size,
|
||||
PBS_VARIANT pbs_variant, bool allocate_gpu_memory) {
|
||||
this->pbs_variant = pbs_variant;
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(stream->gpu_index);
|
||||
|
||||
uint64_t full_sm_keybundle =
|
||||
get_buffer_size_full_sm_multibit_programmable_bootstrap_keybundle<
|
||||
Torus>(polynomial_size);
|
||||
uint64_t full_sm_accumulate_step_one =
|
||||
get_buffer_size_full_sm_multibit_programmable_bootstrap_step_one<Torus>(
|
||||
polynomial_size);
|
||||
uint64_t partial_sm_accumulate_step_one =
|
||||
get_buffer_size_partial_sm_multibit_programmable_bootstrap_step_one<
|
||||
Torus>(polynomial_size);
|
||||
uint64_t full_sm_accumulate_step_two =
|
||||
get_buffer_size_full_sm_multibit_programmable_bootstrap_step_two<Torus>(
|
||||
polynomial_size);
|
||||
uint64_t full_sm_cg_accumulate =
|
||||
get_buffer_size_full_sm_cg_multibit_programmable_bootstrap<Torus>(
|
||||
polynomial_size);
|
||||
uint64_t partial_sm_cg_accumulate =
|
||||
get_buffer_size_partial_sm_cg_multibit_programmable_bootstrap<Torus>(
|
||||
polynomial_size);
|
||||
|
||||
auto num_blocks_keybundle = input_lwe_ciphertext_count * lwe_chunk_size *
|
||||
(glwe_dimension + 1) * (glwe_dimension + 1) *
|
||||
level_count;
|
||||
auto num_blocks_acc_step_one =
|
||||
level_count * (glwe_dimension + 1) * input_lwe_ciphertext_count;
|
||||
auto num_blocks_acc_step_two =
|
||||
input_lwe_ciphertext_count * (glwe_dimension + 1);
|
||||
auto num_blocks_acc_cg =
|
||||
level_count * (glwe_dimension + 1) * input_lwe_ciphertext_count;
|
||||
|
||||
if (allocate_gpu_memory) {
|
||||
// Keybundle
|
||||
if (max_shared_memory < full_sm_keybundle)
|
||||
d_mem_keybundle = (int8_t *)cuda_malloc_async(
|
||||
num_blocks_keybundle * full_sm_keybundle, stream);
|
||||
|
||||
switch (pbs_variant) {
|
||||
case DEFAULT:
|
||||
// Accumulator step one
|
||||
if (max_shared_memory < partial_sm_accumulate_step_one)
|
||||
d_mem_acc_step_one = (int8_t *)cuda_malloc_async(
|
||||
num_blocks_acc_step_one * full_sm_accumulate_step_one, stream);
|
||||
else if (max_shared_memory < full_sm_accumulate_step_one)
|
||||
d_mem_acc_step_one = (int8_t *)cuda_malloc_async(
|
||||
num_blocks_acc_step_one * partial_sm_accumulate_step_one, stream);
|
||||
|
||||
// Accumulator step two
|
||||
if (max_shared_memory < full_sm_accumulate_step_two)
|
||||
d_mem_acc_step_two = (int8_t *)cuda_malloc_async(
|
||||
num_blocks_acc_step_two * full_sm_accumulate_step_two, stream);
|
||||
break;
|
||||
case CG:
|
||||
// Accumulator CG
|
||||
if (max_shared_memory < partial_sm_cg_accumulate)
|
||||
d_mem_acc_cg = (int8_t *)cuda_malloc_async(
|
||||
num_blocks_acc_cg * full_sm_cg_accumulate, stream);
|
||||
else if (max_shared_memory < full_sm_cg_accumulate)
|
||||
d_mem_acc_cg = (int8_t *)cuda_malloc_async(
|
||||
num_blocks_acc_cg * partial_sm_cg_accumulate, stream);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (PBS): unsupported implementation variant.")
|
||||
}
|
||||
|
||||
keybundle_fft = (double2 *)cuda_malloc_async(
|
||||
num_blocks_keybundle * (polynomial_size / 2) * sizeof(double2),
|
||||
stream);
|
||||
global_accumulator = (Torus *)cuda_malloc_async(
|
||||
num_blocks_acc_step_two * polynomial_size * sizeof(Torus), stream);
|
||||
global_accumulator_fft = (double2 *)cuda_malloc_async(
|
||||
num_blocks_acc_step_one * (polynomial_size / 2) * sizeof(double2),
|
||||
stream);
|
||||
}
|
||||
}
|
||||
|
||||
void release(cuda_stream_t *stream) {
|
||||
|
||||
if (d_mem_keybundle)
|
||||
cuda_drop_async(d_mem_keybundle, stream);
|
||||
switch (pbs_variant) {
|
||||
case DEFAULT:
|
||||
if (d_mem_acc_step_one)
|
||||
cuda_drop_async(d_mem_acc_step_one, stream);
|
||||
if (d_mem_acc_step_two)
|
||||
cuda_drop_async(d_mem_acc_step_two, stream);
|
||||
break;
|
||||
case CG:
|
||||
if (d_mem_acc_cg)
|
||||
cuda_drop_async(d_mem_acc_cg, stream);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (PBS): unsupported implementation variant.")
|
||||
}
|
||||
|
||||
cuda_drop_async(keybundle_fft, stream);
|
||||
cuda_drop_async(global_accumulator, stream);
|
||||
cuda_drop_async(global_accumulator_fft, stream);
|
||||
}
|
||||
};
|
||||
|
||||
#ifdef __CUDACC__
|
||||
|
||||
__host__ uint32_t get_lwe_chunk_size(uint32_t ct_count);
|
||||
|
||||
#endif
|
||||
|
||||
#endif // CUDA_MULTI_BIT_H
|
||||
@@ -13,10 +13,6 @@ set(SOURCES
|
||||
${CMAKE_SOURCE_DIR}/${INCLUDE_DIR}/vertical_packing.h)
|
||||
file(GLOB_RECURSE SOURCES "*.cu")
|
||||
add_library(tfhe_cuda_backend STATIC ${SOURCES})
|
||||
set_target_properties(
|
||||
tfhe_cuda_backend
|
||||
PROPERTIES CUDA_SEPARABLE_COMPILATION ON
|
||||
CUDA_RESOLVE_DEVICE_SYMBOLS ON
|
||||
CUDA_ARCHITECTURES native)
|
||||
set_target_properties(tfhe_cuda_backend PROPERTIES CUDA_SEPARABLE_COMPILATION ON CUDA_RESOLVE_DEVICE_SYMBOLS ON)
|
||||
target_link_libraries(tfhe_cuda_backend PUBLIC cudart OpenMP::OpenMP_CXX)
|
||||
target_include_directories(tfhe_cuda_backend PRIVATE .)
|
||||
|
||||
@@ -106,23 +106,23 @@ __host__ void cuda_keyswitch_lwe_ciphertext_vector(
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
constexpr int ideal_threads = 128;
|
||||
|
||||
int lwe_dim = lwe_dimension_out + 1;
|
||||
int lwe_size = lwe_dimension_out + 1;
|
||||
int lwe_lower, lwe_upper, cutoff;
|
||||
if (lwe_dim % ideal_threads == 0) {
|
||||
lwe_lower = lwe_dim / ideal_threads;
|
||||
lwe_upper = lwe_dim / ideal_threads;
|
||||
if (lwe_size % ideal_threads == 0) {
|
||||
lwe_lower = lwe_size / ideal_threads;
|
||||
lwe_upper = lwe_size / ideal_threads;
|
||||
cutoff = 0;
|
||||
} else {
|
||||
int y =
|
||||
ceil((double)lwe_dim / (double)ideal_threads) * ideal_threads - lwe_dim;
|
||||
int y = ceil((double)lwe_size / (double)ideal_threads) * ideal_threads -
|
||||
lwe_size;
|
||||
cutoff = ideal_threads - y;
|
||||
lwe_lower = lwe_dim / ideal_threads;
|
||||
lwe_upper = (int)ceil((double)lwe_dim / (double)ideal_threads);
|
||||
lwe_lower = lwe_size / ideal_threads;
|
||||
lwe_upper = (int)ceil((double)lwe_size / (double)ideal_threads);
|
||||
}
|
||||
|
||||
int lwe_size_after = (lwe_dimension_out + 1) * num_samples;
|
||||
int lwe_size_after = lwe_size * num_samples;
|
||||
|
||||
int shared_mem = sizeof(Torus) * (lwe_dimension_out + 1);
|
||||
int shared_mem = sizeof(Torus) * lwe_size;
|
||||
|
||||
cuda_memset_async(lwe_array_out, 0, sizeof(Torus) * lwe_size_after, stream);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
@@ -130,11 +130,7 @@ __host__ void cuda_keyswitch_lwe_ciphertext_vector(
|
||||
dim3 grid(num_samples, 1, 1);
|
||||
dim3 threads(ideal_threads, 1, 1);
|
||||
|
||||
// cudaFuncSetAttribute(keyswitch<Torus>,
|
||||
// cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||
// shared_mem);
|
||||
|
||||
keyswitch<<<grid, threads, shared_mem, stream->stream>>>(
|
||||
keyswitch<Torus><<<grid, threads, shared_mem, stream->stream>>>(
|
||||
lwe_array_out, lwe_output_indexes, lwe_array_in, lwe_input_indexes, ksk,
|
||||
lwe_dimension_in, lwe_dimension_out, base_log, level_count, lwe_lower,
|
||||
lwe_upper, cutoff);
|
||||
|
||||
@@ -4,25 +4,21 @@
|
||||
|
||||
/// Unsafe function to create a CUDA stream, must check first that GPU exists
|
||||
cuda_stream_t *cuda_create_stream(uint32_t gpu_index) {
|
||||
cudaSetDevice(gpu_index);
|
||||
check_cuda_error(cudaSetDevice(gpu_index));
|
||||
cuda_stream_t *stream = new cuda_stream_t(gpu_index);
|
||||
return stream;
|
||||
}
|
||||
|
||||
/// Unsafe function to destroy CUDA stream, must check first the GPU exists
|
||||
int cuda_destroy_stream(cuda_stream_t *stream) {
|
||||
stream->release();
|
||||
return 0;
|
||||
}
|
||||
void cuda_destroy_stream(cuda_stream_t *stream) { stream->release(); }
|
||||
|
||||
/// Unsafe function that will try to allocate even if gpu_index is invalid
|
||||
/// or if there's not enough memory. A safe wrapper around it must call
|
||||
/// cuda_check_valid_malloc() first
|
||||
void *cuda_malloc(uint64_t size, uint32_t gpu_index) {
|
||||
cudaSetDevice(gpu_index);
|
||||
check_cuda_error(cudaSetDevice(gpu_index));
|
||||
void *ptr;
|
||||
cudaMalloc((void **)&ptr, size);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
check_cuda_error(cudaMalloc((void **)&ptr, size));
|
||||
|
||||
return ptr;
|
||||
}
|
||||
@@ -30,7 +26,7 @@ void *cuda_malloc(uint64_t size, uint32_t gpu_index) {
|
||||
/// Allocates a size-byte array at the device memory. Tries to do it
|
||||
/// asynchronously.
|
||||
void *cuda_malloc_async(uint64_t size, cuda_stream_t *stream) {
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
check_cuda_error(cudaSetDevice(stream->gpu_index));
|
||||
void *ptr;
|
||||
|
||||
#ifndef CUDART_VERSION
|
||||
@@ -52,184 +48,88 @@ void *cuda_malloc_async(uint64_t size, cuda_stream_t *stream) {
|
||||
return ptr;
|
||||
}
|
||||
|
||||
/// Checks that allocation is valid
|
||||
/// 0: valid
|
||||
/// -1: invalid, not enough memory in device
|
||||
/// -2: invalid, gpu index doesn't exist
|
||||
int cuda_check_valid_malloc(uint64_t size, uint32_t gpu_index) {
|
||||
|
||||
if (gpu_index >= cuda_get_number_of_gpus()) {
|
||||
// error code: invalid gpu_index
|
||||
return -2;
|
||||
}
|
||||
cudaSetDevice(gpu_index);
|
||||
/// Check that allocation is valid
|
||||
void cuda_check_valid_malloc(uint64_t size, uint32_t gpu_index) {
|
||||
check_cuda_error(cudaSetDevice(gpu_index));
|
||||
size_t total_mem, free_mem;
|
||||
cudaMemGetInfo(&free_mem, &total_mem);
|
||||
check_cuda_error(cudaMemGetInfo(&free_mem, &total_mem));
|
||||
if (size > free_mem) {
|
||||
// error code: not enough memory
|
||||
return -1;
|
||||
PANIC("Cuda error: not enough memory on device. "
|
||||
"Available: %zu vs Requested: %lu",
|
||||
free_mem, size)
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Returns
|
||||
/// -> 0 if Cooperative Groups is not supported.
|
||||
/// -> 1 otherwise
|
||||
int cuda_check_support_cooperative_groups() {
|
||||
/// false if Cooperative Groups is not supported.
|
||||
/// true otherwise
|
||||
bool cuda_check_support_cooperative_groups() {
|
||||
int cooperative_groups_supported = 0;
|
||||
cudaDeviceGetAttribute(&cooperative_groups_supported,
|
||||
cudaDevAttrCooperativeLaunch, 0);
|
||||
check_cuda_error(cudaDeviceGetAttribute(&cooperative_groups_supported,
|
||||
cudaDevAttrCooperativeLaunch, 0));
|
||||
|
||||
return cooperative_groups_supported > 0;
|
||||
}
|
||||
|
||||
/// Tries to copy memory to the GPU asynchronously
|
||||
/// 0: success
|
||||
/// -1: error, invalid device pointer
|
||||
/// -2: error, gpu index doesn't exist
|
||||
/// -3: error, zero copy size
|
||||
int cuda_memcpy_async_to_gpu(void *dest, void *src, uint64_t size,
|
||||
cuda_stream_t *stream) {
|
||||
if (size == 0) {
|
||||
// error code: zero copy size
|
||||
return -3;
|
||||
}
|
||||
|
||||
if (stream->gpu_index >= cuda_get_number_of_gpus()) {
|
||||
// error code: invalid gpu_index
|
||||
return -2;
|
||||
}
|
||||
/// Copy memory to the GPU asynchronously
|
||||
void cuda_memcpy_async_to_gpu(void *dest, void *src, uint64_t size,
|
||||
cuda_stream_t *stream) {
|
||||
if (size == 0)
|
||||
return;
|
||||
cudaPointerAttributes attr;
|
||||
cudaPointerGetAttributes(&attr, dest);
|
||||
check_cuda_error(cudaPointerGetAttributes(&attr, dest));
|
||||
if (attr.device != stream->gpu_index && attr.type != cudaMemoryTypeDevice) {
|
||||
// error code: invalid device pointer
|
||||
return -1;
|
||||
PANIC("Cuda error: invalid device pointer in async copy to GPU.")
|
||||
}
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
check_cuda_error(cudaSetDevice(stream->gpu_index));
|
||||
check_cuda_error(
|
||||
cudaMemcpyAsync(dest, src, size, cudaMemcpyHostToDevice, stream->stream));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Tries to copy memory to the GPU synchronously
|
||||
/// 0: success
|
||||
/// -1: error, invalid device pointer
|
||||
/// -2: error, gpu index doesn't exist
|
||||
/// -3: error, zero copy size
|
||||
int cuda_memcpy_to_gpu(void *dest, void *src, uint64_t size) {
|
||||
if (size == 0) {
|
||||
// error code: zero copy size
|
||||
return -3;
|
||||
}
|
||||
|
||||
cudaPointerAttributes attr;
|
||||
cudaPointerGetAttributes(&attr, dest);
|
||||
if (attr.type != cudaMemoryTypeDevice) {
|
||||
// error code: invalid device pointer
|
||||
return -1;
|
||||
}
|
||||
|
||||
check_cuda_error(cudaMemcpy(dest, src, size, cudaMemcpyHostToDevice));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Tries to copy memory to the CPU synchronously
|
||||
/// 0: success
|
||||
/// -1: error, invalid device pointer
|
||||
/// -2: error, gpu index doesn't exist
|
||||
/// -3: error, zero copy size
|
||||
int cuda_memcpy_to_cpu(void *dest, void *src, uint64_t size) {
|
||||
if (size == 0) {
|
||||
// error code: zero copy size
|
||||
return -3;
|
||||
}
|
||||
|
||||
cudaPointerAttributes attr;
|
||||
cudaPointerGetAttributes(&attr, src);
|
||||
if (attr.type != cudaMemoryTypeDevice) {
|
||||
// error code: invalid device pointer
|
||||
return -1;
|
||||
}
|
||||
|
||||
check_cuda_error(cudaMemcpy(dest, src, size, cudaMemcpyDeviceToHost));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Tries to copy memory within a GPU asynchronously
|
||||
/// 0: success
|
||||
/// -1: error, invalid device pointer
|
||||
/// -2: error, gpu index doesn't exist
|
||||
/// -3: error, zero copy size
|
||||
int cuda_memcpy_async_gpu_to_gpu(void *dest, void *src, uint64_t size,
|
||||
cuda_stream_t *stream) {
|
||||
if (size == 0) {
|
||||
// error code: zero copy size
|
||||
return -3;
|
||||
}
|
||||
|
||||
if (stream->gpu_index >= cuda_get_number_of_gpus()) {
|
||||
// error code: invalid gpu_index
|
||||
return -2;
|
||||
}
|
||||
/// Copy memory within a GPU asynchronously
|
||||
void cuda_memcpy_async_gpu_to_gpu(void *dest, void *src, uint64_t size,
|
||||
cuda_stream_t *stream) {
|
||||
if (size == 0)
|
||||
return;
|
||||
cudaPointerAttributes attr_dest;
|
||||
cudaPointerGetAttributes(&attr_dest, dest);
|
||||
check_cuda_error(cudaPointerGetAttributes(&attr_dest, dest));
|
||||
if (attr_dest.device != stream->gpu_index &&
|
||||
attr_dest.type != cudaMemoryTypeDevice) {
|
||||
// error code: invalid device pointer
|
||||
return -1;
|
||||
PANIC("Cuda error: invalid dest device pointer in copy from GPU to GPU.")
|
||||
}
|
||||
cudaPointerAttributes attr_src;
|
||||
cudaPointerGetAttributes(&attr_src, src);
|
||||
check_cuda_error(cudaPointerGetAttributes(&attr_src, src));
|
||||
if (attr_src.device != stream->gpu_index &&
|
||||
attr_src.type != cudaMemoryTypeDevice) {
|
||||
// error code: invalid device pointer
|
||||
return -1;
|
||||
PANIC("Cuda error: invalid src device pointer in copy from GPU to GPU.")
|
||||
}
|
||||
if (attr_src.device != attr_dest.device) {
|
||||
// error code: different devices
|
||||
return -1;
|
||||
PANIC("Cuda error: different devices specified in copy from GPU to GPU.")
|
||||
}
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
check_cuda_error(cudaSetDevice(stream->gpu_index));
|
||||
check_cuda_error(cudaMemcpyAsync(dest, src, size, cudaMemcpyDeviceToDevice,
|
||||
stream->stream));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Synchronizes device
|
||||
/// 0: success
|
||||
/// -2: error, gpu index doesn't exist
|
||||
int cuda_synchronize_device(uint32_t gpu_index) {
|
||||
if (gpu_index >= cuda_get_number_of_gpus()) {
|
||||
// error code: invalid gpu_index
|
||||
return -2;
|
||||
}
|
||||
cudaSetDevice(gpu_index);
|
||||
cudaDeviceSynchronize();
|
||||
return 0;
|
||||
void cuda_synchronize_device(uint32_t gpu_index) {
|
||||
check_cuda_error(cudaSetDevice(gpu_index));
|
||||
check_cuda_error(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
int cuda_memset_async(void *dest, uint64_t val, uint64_t size,
|
||||
cuda_stream_t *stream) {
|
||||
if (size == 0) {
|
||||
// error code: zero copy size
|
||||
return -3;
|
||||
}
|
||||
|
||||
if (stream->gpu_index >= cuda_get_number_of_gpus()) {
|
||||
// error code: invalid gpu_index
|
||||
return -2;
|
||||
}
|
||||
void cuda_memset_async(void *dest, uint64_t val, uint64_t size,
|
||||
cuda_stream_t *stream) {
|
||||
if (size == 0)
|
||||
return;
|
||||
cudaPointerAttributes attr;
|
||||
cudaPointerGetAttributes(&attr, dest);
|
||||
check_cuda_error(cudaPointerGetAttributes(&attr, dest));
|
||||
if (attr.device != stream->gpu_index && attr.type != cudaMemoryTypeDevice) {
|
||||
// error code: invalid device pointer
|
||||
return -1;
|
||||
PANIC("Cuda error: invalid dest device pointer in cuda memset.")
|
||||
}
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
check_cuda_error(cudaSetDevice(stream->gpu_index));
|
||||
check_cuda_error(cudaMemsetAsync(dest, val, size, stream->stream));
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
@@ -242,12 +142,18 @@ __global__ void cuda_set_value_kernel(Torus *array, Torus value, Torus n) {
|
||||
template <typename Torus>
|
||||
void cuda_set_value_async(cudaStream_t *stream, Torus *d_array, Torus value,
|
||||
Torus n) {
|
||||
cudaPointerAttributes attr;
|
||||
check_cuda_error(cudaPointerGetAttributes(&attr, d_array));
|
||||
if (attr.type != cudaMemoryTypeDevice) {
|
||||
PANIC("Cuda error: invalid dest device pointer in cuda set value.")
|
||||
}
|
||||
int block_size = 256;
|
||||
int num_blocks = (n + block_size - 1) / block_size;
|
||||
|
||||
// Launch the kernel
|
||||
cuda_set_value_kernel<<<num_blocks, block_size, 0, *stream>>>(d_array, value,
|
||||
n);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
|
||||
/// Explicitly instantiate cuda_set_value_async for 32 and 64 bits
|
||||
@@ -256,57 +162,39 @@ template void cuda_set_value_async(cudaStream_t *stream, uint64_t *d_array,
|
||||
template void cuda_set_value_async(cudaStream_t *stream, uint32_t *d_array,
|
||||
uint32_t value, uint32_t n);
|
||||
|
||||
/// Tries to copy memory to the GPU asynchronously
|
||||
/// 0: success
|
||||
/// -1: error, invalid device pointer
|
||||
/// -2: error, gpu index doesn't exist
|
||||
/// -3: error, zero copy size
|
||||
int cuda_memcpy_async_to_cpu(void *dest, const void *src, uint64_t size,
|
||||
cuda_stream_t *stream) {
|
||||
if (size == 0) {
|
||||
// error code: zero copy size
|
||||
return -3;
|
||||
}
|
||||
|
||||
if (stream->gpu_index >= cuda_get_number_of_gpus()) {
|
||||
// error code: invalid gpu_index
|
||||
return -2;
|
||||
}
|
||||
/// Copy memory to the CPU asynchronously
|
||||
void cuda_memcpy_async_to_cpu(void *dest, const void *src, uint64_t size,
|
||||
cuda_stream_t *stream) {
|
||||
if (size == 0)
|
||||
return;
|
||||
cudaPointerAttributes attr;
|
||||
cudaPointerGetAttributes(&attr, src);
|
||||
check_cuda_error(cudaPointerGetAttributes(&attr, src));
|
||||
if (attr.device != stream->gpu_index && attr.type != cudaMemoryTypeDevice) {
|
||||
// error code: invalid device pointer
|
||||
return -1;
|
||||
PANIC("Cuda error: invalid src device pointer in copy to CPU async.")
|
||||
}
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
check_cuda_error(cudaSetDevice(stream->gpu_index));
|
||||
check_cuda_error(
|
||||
cudaMemcpyAsync(dest, src, size, cudaMemcpyDeviceToHost, stream->stream));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Return number of GPUs available
|
||||
int cuda_get_number_of_gpus() {
|
||||
int num_gpus;
|
||||
cudaGetDeviceCount(&num_gpus);
|
||||
check_cuda_error(cudaGetDeviceCount(&num_gpus));
|
||||
return num_gpus;
|
||||
}
|
||||
|
||||
/// Drop a cuda array
|
||||
int cuda_drop(void *ptr, uint32_t gpu_index) {
|
||||
if (gpu_index >= cuda_get_number_of_gpus()) {
|
||||
// error code: invalid gpu_index
|
||||
return -2;
|
||||
}
|
||||
cudaSetDevice(gpu_index);
|
||||
void cuda_drop(void *ptr, uint32_t gpu_index) {
|
||||
check_cuda_error(cudaSetDevice(gpu_index));
|
||||
check_cuda_error(cudaFree(ptr));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Drop a cuda array. Tries to do it asynchronously
|
||||
int cuda_drop_async(void *ptr, cuda_stream_t *stream) {
|
||||
/// Drop a cuda array asynchronously, if supported on the device
|
||||
void cuda_drop_async(void *ptr, cuda_stream_t *stream) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
check_cuda_error(cudaSetDevice(stream->gpu_index));
|
||||
#ifndef CUDART_VERSION
|
||||
#error CUDART_VERSION Undefined!
|
||||
#elif (CUDART_VERSION >= 11020)
|
||||
@@ -323,28 +211,28 @@ int cuda_drop_async(void *ptr, cuda_stream_t *stream) {
|
||||
#else
|
||||
check_cuda_error(cudaFree(ptr));
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// Get the maximum size for the shared memory
|
||||
int cuda_get_max_shared_memory(uint32_t gpu_index) {
|
||||
if (gpu_index >= cuda_get_number_of_gpus()) {
|
||||
// error code: invalid gpu_index
|
||||
return -2;
|
||||
}
|
||||
cudaSetDevice(gpu_index);
|
||||
cudaDeviceProp prop;
|
||||
cudaGetDeviceProperties(&prop, gpu_index);
|
||||
check_cuda_error(cudaSetDevice(gpu_index));
|
||||
int max_shared_memory = 0;
|
||||
if (prop.major >= 6) {
|
||||
max_shared_memory = prop.sharedMemPerMultiprocessor;
|
||||
} else {
|
||||
max_shared_memory = prop.sharedMemPerBlock;
|
||||
}
|
||||
cudaDeviceGetAttribute(&max_shared_memory, cudaDevAttrMaxSharedMemoryPerBlock,
|
||||
gpu_index);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
return max_shared_memory;
|
||||
}
|
||||
|
||||
int cuda_synchronize_stream(cuda_stream_t *stream) {
|
||||
stream->synchronize();
|
||||
return 0;
|
||||
void cuda_synchronize_stream(cuda_stream_t *stream) { stream->synchronize(); }
|
||||
|
||||
void cuda_stream_add_callback(cuda_stream_t *stream,
|
||||
cudaStreamCallback_t callback, void *user_data) {
|
||||
|
||||
check_cuda_error(
|
||||
cudaStreamAddCallback(stream->stream, callback, user_data, 0));
|
||||
}
|
||||
|
||||
void host_free_on_stream_callback(cudaStream_t stream, cudaError_t status,
|
||||
void *host_pointer) {
|
||||
free(host_pointer);
|
||||
}
|
||||
|
||||
@@ -181,7 +181,7 @@ template <class params> __device__ void NSMFFT_direct(double2 *A) {
|
||||
// from level 8, we need to check size of params degree, because we support
|
||||
// minimum actual polynomial size = 256, when compressed size is halfed and
|
||||
// minimum supported compressed size is 128, so we always need first 7
|
||||
// levels of butterfy operation, since butterfly levels are hardcoded
|
||||
// levels of butterfly operation, since butterfly levels are hardcoded
|
||||
// we need to check if polynomial size is big enough to require specific level
|
||||
// of butterfly.
|
||||
if constexpr (params::degree >= 256) {
|
||||
@@ -353,7 +353,7 @@ template <class params> __device__ void NSMFFT_inverse(double2 *A) {
|
||||
|
||||
// compressed size = 8192 is actual polynomial size = 16384.
|
||||
// twiddles for this size can't fit in constant memory so
|
||||
// butterfly operation for this level acess device memory to fetch
|
||||
// butterfly operation for this level access device memory to fetch
|
||||
// twiddles
|
||||
if constexpr (params::degree >= 8192) {
|
||||
// level 13
|
||||
@@ -484,7 +484,7 @@ template <class params> __device__ void NSMFFT_inverse(double2 *A) {
|
||||
// below level 8, we don't need to check size of params degree, because we
|
||||
// support minimum actual polynomial size = 256, when compressed size is
|
||||
// halfed and minimum supported compressed size is 128, so we always need
|
||||
// last 7 levels of butterfy operation, since butterfly levels are hardcoded
|
||||
// last 7 levels of butterfly operation, since butterfly levels are hardcoded
|
||||
// we don't need to check if polynomial size is big enough to require
|
||||
// specific level of butterfly.
|
||||
// level 7
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
|
||||
/*
|
||||
* 'negtwiddles' are stored in constant memory for faster access times
|
||||
* because of it's limitied size, only twiddles for up to 2^12 polynomial size
|
||||
* because of it's limited size, only twiddles for up to 2^12 polynomial size
|
||||
* can be stored there, twiddles for 2^13 are stored in device memory
|
||||
* 'negtwiddles13'
|
||||
*/
|
||||
|
||||
@@ -5,8 +5,8 @@
|
||||
#include "device.h"
|
||||
#include "integer.cuh"
|
||||
#include "integer.h"
|
||||
#include "pbs/bootstrap_low_latency.cuh"
|
||||
#include "pbs/bootstrap_multibit.cuh"
|
||||
#include "pbs/programmable_bootstrap_classic.cuh"
|
||||
#include "pbs/programmable_bootstrap_multibit.cuh"
|
||||
#include "polynomial/functions.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
#include <omp.h>
|
||||
@@ -44,6 +44,7 @@ __host__ void scratch_cuda_integer_radix_bitop_kb(
|
||||
uint32_t num_radix_blocks, int_radix_params params, BITOP_TYPE op,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
*mem_ptr = new int_bitop_buffer<Torus>(stream, op, params, num_radix_blocks,
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
|
||||
@@ -10,6 +10,7 @@ __host__ void zero_out_if(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
int_zero_out_if_buffer<Torus> *mem_ptr,
|
||||
int_radix_lut<Torus> *predicate, void *bsk,
|
||||
Torus *ksk, uint32_t num_radix_blocks) {
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem_ptr->params;
|
||||
|
||||
int big_lwe_size = params.big_lwe_dimension + 1;
|
||||
@@ -28,8 +29,8 @@ __host__ void zero_out_if(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
|
||||
device_pack_bivariate_blocks<<<num_blocks, num_threads, 0,
|
||||
stream->stream>>>(
|
||||
lwe_array_out_block, lwe_array_input_block, lwe_condition,
|
||||
predicate->lwe_indexes, params.big_lwe_dimension,
|
||||
lwe_array_out_block, predicate->lwe_indexes_in, lwe_array_input_block,
|
||||
lwe_condition, predicate->lwe_indexes_in, params.big_lwe_dimension,
|
||||
params.message_modulus, 1);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
@@ -94,6 +95,7 @@ __host__ void scratch_cuda_integer_radix_cmux_kb(
|
||||
std::function<Torus(Torus)> predicate_lut_f, uint32_t num_radix_blocks,
|
||||
int_radix_params params, bool allocate_gpu_memory) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
*mem_ptr = new int_cmux_buffer<Torus>(stream, predicate_lut_f, params,
|
||||
num_radix_blocks, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
@@ -5,8 +5,8 @@ void scratch_cuda_integer_radix_comparison_kb_64(
|
||||
uint32_t polynomial_size, uint32_t big_lwe_dimension,
|
||||
uint32_t small_lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t lwe_ciphertext_count, uint32_t message_modulus,
|
||||
uint32_t carry_modulus, PBS_TYPE pbs_type, COMPARISON_TYPE op_type,
|
||||
uint32_t num_radix_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, COMPARISON_TYPE op_type, bool is_signed,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
@@ -17,9 +17,9 @@ void scratch_cuda_integer_radix_comparison_kb_64(
|
||||
switch (op_type) {
|
||||
case EQ:
|
||||
case NE:
|
||||
scratch_cuda_integer_radix_equality_check_kb<uint64_t>(
|
||||
stream, (int_comparison_buffer<uint64_t> **)mem_ptr,
|
||||
lwe_ciphertext_count, params, op_type, allocate_gpu_memory);
|
||||
scratch_cuda_integer_radix_comparison_check_kb<uint64_t>(
|
||||
stream, (int_comparison_buffer<uint64_t> **)mem_ptr, num_radix_blocks,
|
||||
params, op_type, false, allocate_gpu_memory);
|
||||
break;
|
||||
case GT:
|
||||
case GE:
|
||||
@@ -27,9 +27,9 @@ void scratch_cuda_integer_radix_comparison_kb_64(
|
||||
case LE:
|
||||
case MAX:
|
||||
case MIN:
|
||||
scratch_cuda_integer_radix_difference_check_kb<uint64_t>(
|
||||
stream, (int_comparison_buffer<uint64_t> **)mem_ptr,
|
||||
lwe_ciphertext_count, params, op_type, allocate_gpu_memory);
|
||||
scratch_cuda_integer_radix_comparison_check_kb<uint64_t>(
|
||||
stream, (int_comparison_buffer<uint64_t> **)mem_ptr, num_radix_blocks,
|
||||
params, op_type, is_signed, allocate_gpu_memory);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -37,7 +37,7 @@ void scratch_cuda_integer_radix_comparison_kb_64(
|
||||
void cuda_comparison_integer_radix_ciphertext_kb_64(
|
||||
cuda_stream_t *stream, void *lwe_array_out, void *lwe_array_1,
|
||||
void *lwe_array_2, int8_t *mem_ptr, void *bsk, void *ksk,
|
||||
uint32_t lwe_ciphertext_count) {
|
||||
uint32_t num_radix_blocks) {
|
||||
|
||||
int_comparison_buffer<uint64_t> *buffer =
|
||||
(int_comparison_buffer<uint64_t> *)mem_ptr;
|
||||
@@ -48,7 +48,7 @@ void cuda_comparison_integer_radix_ciphertext_kb_64(
|
||||
stream, static_cast<uint64_t *>(lwe_array_out),
|
||||
static_cast<uint64_t *>(lwe_array_1),
|
||||
static_cast<uint64_t *>(lwe_array_2), buffer, bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_ciphertext_count);
|
||||
static_cast<uint64_t *>(ksk), num_radix_blocks);
|
||||
break;
|
||||
case GT:
|
||||
case GE:
|
||||
@@ -59,7 +59,7 @@ void cuda_comparison_integer_radix_ciphertext_kb_64(
|
||||
static_cast<uint64_t *>(lwe_array_1),
|
||||
static_cast<uint64_t *>(lwe_array_2), buffer,
|
||||
buffer->diff_buffer->operator_f, bsk, static_cast<uint64_t *>(ksk),
|
||||
lwe_ciphertext_count);
|
||||
num_radix_blocks);
|
||||
break;
|
||||
case MAX:
|
||||
case MIN:
|
||||
@@ -67,10 +67,10 @@ void cuda_comparison_integer_radix_ciphertext_kb_64(
|
||||
stream, static_cast<uint64_t *>(lwe_array_out),
|
||||
static_cast<uint64_t *>(lwe_array_1),
|
||||
static_cast<uint64_t *>(lwe_array_2), buffer, bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_ciphertext_count);
|
||||
static_cast<uint64_t *>(ksk), num_radix_blocks);
|
||||
break;
|
||||
default:
|
||||
printf("Not implemented\n");
|
||||
PANIC("Cuda error: integer operation not supported")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -8,8 +8,8 @@
|
||||
#include "integer/cmux.cuh"
|
||||
#include "integer/negation.cuh"
|
||||
#include "integer/scalar_addition.cuh"
|
||||
#include "pbs/bootstrap_low_latency.cuh"
|
||||
#include "pbs/bootstrap_multibit.cuh"
|
||||
#include "pbs/programmable_bootstrap_classic.cuh"
|
||||
#include "pbs/programmable_bootstrap_multibit.cuh"
|
||||
#include "types/complex/operations.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
|
||||
@@ -37,6 +37,7 @@ __host__ void accumulate_all_blocks(cuda_stream_t *stream, Torus *output,
|
||||
Torus *input, uint32_t lwe_dimension,
|
||||
uint32_t num_radix_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
int num_blocks = 0, num_threads = 0;
|
||||
int num_entries = (lwe_dimension + 1);
|
||||
getNumBlocksAndThreads(num_entries, 512, num_blocks, num_threads);
|
||||
@@ -46,6 +47,13 @@ __host__ void accumulate_all_blocks(cuda_stream_t *stream, Torus *output,
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
|
||||
/* This takes an array of lwe ciphertexts, where each is an encryption of
|
||||
* either 0 or 1.
|
||||
*
|
||||
* It writes in lwe_array_out a single lwe ciphertext encrypting 1 if all input
|
||||
* blocks are 1 otherwise the block encrypts 0
|
||||
*
|
||||
*/
|
||||
template <typename Torus>
|
||||
__host__ void
|
||||
are_all_comparisons_block_true(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
@@ -53,6 +61,7 @@ are_all_comparisons_block_true(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
int_comparison_buffer<Torus> *mem_ptr, void *bsk,
|
||||
Torus *ksk, uint32_t num_radix_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
@@ -62,24 +71,25 @@ are_all_comparisons_block_true(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
|
||||
auto are_all_block_true_buffer =
|
||||
mem_ptr->eq_buffer->are_all_block_true_buffer;
|
||||
auto tmp_out = are_all_block_true_buffer->tmp_out;
|
||||
|
||||
uint32_t total_modulus = message_modulus * carry_modulus;
|
||||
uint32_t max_value = total_modulus - 1;
|
||||
|
||||
cuda_memcpy_async_gpu_to_gpu(
|
||||
lwe_array_out, lwe_array_in,
|
||||
tmp_out, lwe_array_in,
|
||||
num_radix_blocks * (big_lwe_dimension + 1) * sizeof(Torus), stream);
|
||||
|
||||
int lut_num_blocks = 0;
|
||||
uint32_t remaining_blocks = num_radix_blocks;
|
||||
while (remaining_blocks > 1) {
|
||||
|
||||
while (remaining_blocks > 0) {
|
||||
// Split in max_value chunks
|
||||
uint32_t chunk_length = std::min(max_value, remaining_blocks);
|
||||
int num_chunks = remaining_blocks / chunk_length;
|
||||
|
||||
// Since all blocks encrypt either 0 or 1, we can sum max_value of them
|
||||
// as in the worst case we will be adding `max_value` ones
|
||||
auto input_blocks = lwe_array_out;
|
||||
auto input_blocks = tmp_out;
|
||||
auto accumulator = are_all_block_true_buffer->tmp_block_accumulated;
|
||||
for (int i = 0; i < num_chunks; i++) {
|
||||
accumulate_all_blocks(stream, accumulator, input_blocks,
|
||||
@@ -90,35 +100,109 @@ are_all_comparisons_block_true(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
input_blocks += (big_lwe_dimension + 1) * chunk_length;
|
||||
}
|
||||
accumulator = are_all_block_true_buffer->tmp_block_accumulated;
|
||||
auto is_equal_to_num_blocks_map =
|
||||
&are_all_block_true_buffer->is_equal_to_lut_map;
|
||||
|
||||
// Selects a LUT
|
||||
int_radix_lut<Torus> *lut;
|
||||
if (are_all_block_true_buffer->op == COMPARISON_TYPE::NE) {
|
||||
// is_non_zero_lut_buffer LUT
|
||||
lut = mem_ptr->eq_buffer->is_non_zero_lut;
|
||||
} else if (chunk_length == max_value) {
|
||||
// is_max_value LUT
|
||||
lut = are_all_block_true_buffer->is_max_value_lut;
|
||||
} else {
|
||||
// is_equal_to_num_blocks LUT
|
||||
lut = are_all_block_true_buffer->is_equal_to_num_blocks_lut;
|
||||
if (chunk_length != lut_num_blocks) {
|
||||
if ((*is_equal_to_num_blocks_map).find(chunk_length) !=
|
||||
(*is_equal_to_num_blocks_map).end()) {
|
||||
// The LUT is already computed
|
||||
lut = (*is_equal_to_num_blocks_map)[chunk_length];
|
||||
} else {
|
||||
// LUT needs to be computed
|
||||
auto new_lut = new int_radix_lut<Torus>(stream, params, max_value,
|
||||
num_radix_blocks, true);
|
||||
|
||||
auto is_equal_to_num_blocks_lut_f = [max_value,
|
||||
chunk_length](Torus x) -> Torus {
|
||||
return (x & max_value) == chunk_length;
|
||||
};
|
||||
generate_device_accumulator<Torus>(
|
||||
stream, lut->lut, glwe_dimension, polynomial_size, message_modulus,
|
||||
carry_modulus, is_equal_to_num_blocks_lut_f);
|
||||
stream, new_lut->lut, glwe_dimension, polynomial_size,
|
||||
message_modulus, carry_modulus, is_equal_to_num_blocks_lut_f);
|
||||
|
||||
// We don't have to generate this lut again
|
||||
lut_num_blocks = chunk_length;
|
||||
(*is_equal_to_num_blocks_map)[chunk_length] = new_lut;
|
||||
lut = new_lut;
|
||||
}
|
||||
}
|
||||
|
||||
// Applies the LUT
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, lwe_array_out, accumulator, bsk, ksk, num_chunks, lut);
|
||||
if (remaining_blocks == 1) {
|
||||
// In the last iteration we copy the output to the final address
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, lwe_array_out, accumulator, bsk, ksk, 1, lut);
|
||||
return;
|
||||
} else {
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, tmp_out, accumulator, bsk, ksk, num_chunks, lut);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* This takes an array of lwe ciphertexts, where each is an encryption of
|
||||
* either 0 or 1.
|
||||
*
|
||||
* It writes in lwe_array_out a single lwe ciphertext encrypting 1 if at least
|
||||
* one input ciphertext encrypts 1 otherwise encrypts 0
|
||||
*/
|
||||
template <typename Torus>
|
||||
__host__ void is_at_least_one_comparisons_block_true(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
int_comparison_buffer<Torus> *mem_ptr, void *bsk, Torus *ksk,
|
||||
uint32_t num_radix_blocks) {
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto message_modulus = params.message_modulus;
|
||||
auto carry_modulus = params.carry_modulus;
|
||||
|
||||
auto buffer = mem_ptr->eq_buffer->are_all_block_true_buffer;
|
||||
|
||||
uint32_t total_modulus = message_modulus * carry_modulus;
|
||||
uint32_t max_value = total_modulus - 1;
|
||||
|
||||
cuda_memcpy_async_gpu_to_gpu(
|
||||
mem_ptr->tmp_lwe_array_out, lwe_array_in,
|
||||
num_radix_blocks * (big_lwe_dimension + 1) * sizeof(Torus), stream);
|
||||
|
||||
uint32_t remaining_blocks = num_radix_blocks;
|
||||
while (remaining_blocks > 0) {
|
||||
// Split in max_value chunks
|
||||
uint32_t chunk_length = std::min(max_value, remaining_blocks);
|
||||
int num_chunks = remaining_blocks / chunk_length;
|
||||
|
||||
// Since all blocks encrypt either 0 or 1, we can sum max_value of them
|
||||
// as in the worst case we will be adding `max_value` ones
|
||||
auto input_blocks = mem_ptr->tmp_lwe_array_out;
|
||||
auto accumulator = buffer->tmp_block_accumulated;
|
||||
for (int i = 0; i < num_chunks; i++) {
|
||||
accumulate_all_blocks(stream, accumulator, input_blocks,
|
||||
big_lwe_dimension, chunk_length);
|
||||
|
||||
accumulator += (big_lwe_dimension + 1);
|
||||
remaining_blocks -= (chunk_length - 1);
|
||||
input_blocks += (big_lwe_dimension + 1) * chunk_length;
|
||||
}
|
||||
accumulator = buffer->tmp_block_accumulated;
|
||||
|
||||
// Selects a LUT
|
||||
int_radix_lut<Torus> *lut = mem_ptr->eq_buffer->is_non_zero_lut;
|
||||
|
||||
// Applies the LUT
|
||||
if (remaining_blocks == 1) {
|
||||
// In the last iteration we copy the output to the final address
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, lwe_array_out, accumulator, bsk, ksk, 1, lut);
|
||||
return;
|
||||
} else {
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, mem_ptr->tmp_lwe_array_out, accumulator, bsk, ksk, num_chunks,
|
||||
lut);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -145,8 +229,9 @@ template <typename Torus>
|
||||
__host__ void host_compare_with_zero_equality(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
int_comparison_buffer<Torus> *mem_ptr, void *bsk, Torus *ksk,
|
||||
int32_t num_radix_blocks) {
|
||||
int32_t num_radix_blocks, int_radix_lut<Torus> *zero_comparison) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto message_modulus = params.message_modulus;
|
||||
@@ -175,7 +260,6 @@ __host__ void host_compare_with_zero_equality(
|
||||
num_sum_blocks = 1;
|
||||
} else {
|
||||
uint32_t remainder_blocks = num_radix_blocks;
|
||||
|
||||
auto sum_i = sum;
|
||||
auto chunk = lwe_array_in;
|
||||
while (remainder_blocks > 1) {
|
||||
@@ -189,21 +273,15 @@ __host__ void host_compare_with_zero_equality(
|
||||
remainder_blocks -= (chunk_size - 1);
|
||||
|
||||
// Update operands
|
||||
chunk += chunk_size * big_lwe_size;
|
||||
chunk += (chunk_size - 1) * big_lwe_size;
|
||||
sum_i += big_lwe_size;
|
||||
}
|
||||
}
|
||||
|
||||
auto is_equal_to_zero_lut = mem_ptr->diff_buffer->is_zero_lut;
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, sum, sum, bsk, ksk, num_sum_blocks, is_equal_to_zero_lut);
|
||||
stream, sum, sum, bsk, ksk, num_sum_blocks, zero_comparison);
|
||||
are_all_comparisons_block_true(stream, lwe_array_out, sum, mem_ptr, bsk, ksk,
|
||||
num_sum_blocks);
|
||||
|
||||
// The result will be in the two first block. Everything else is
|
||||
// garbage.
|
||||
cuda_memset_async(lwe_array_out + big_lwe_size, 0,
|
||||
big_lwe_size_bytes * (num_radix_blocks - 1), stream);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
@@ -212,11 +290,9 @@ __host__ void host_integer_radix_equality_check_kb(
|
||||
Torus *lwe_array_2, int_comparison_buffer<Torus> *mem_ptr, void *bsk,
|
||||
Torus *ksk, uint32_t num_radix_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto eq_buffer = mem_ptr->eq_buffer;
|
||||
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
|
||||
// Applies the LUT for the comparison operation
|
||||
auto comparisons = mem_ptr->tmp_block_comparisons;
|
||||
integer_radix_apply_bivariate_lookup_table_kb(
|
||||
@@ -225,26 +301,10 @@ __host__ void host_integer_radix_equality_check_kb(
|
||||
|
||||
// This takes a Vec of blocks, where each block is either 0 or 1.
|
||||
//
|
||||
// It return a block encrypting 1 if all input blocks are 1
|
||||
// It returns a block encrypting 1 if all input blocks are 1
|
||||
// otherwise the block encrypts 0
|
||||
are_all_comparisons_block_true(stream, lwe_array_out, comparisons, mem_ptr,
|
||||
bsk, ksk, num_radix_blocks);
|
||||
|
||||
// Zero all blocks but the first
|
||||
size_t big_lwe_size = big_lwe_dimension + 1;
|
||||
size_t big_lwe_size_bytes = big_lwe_size * sizeof(Torus);
|
||||
cuda_memset_async(lwe_array_out + big_lwe_size, 0,
|
||||
big_lwe_size_bytes * (num_radix_blocks - 1), stream);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void scratch_cuda_integer_radix_equality_check_kb(
|
||||
cuda_stream_t *stream, int_comparison_buffer<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params, COMPARISON_TYPE op,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
*mem_ptr = new int_comparison_buffer<Torus>(
|
||||
stream, op, params, num_radix_blocks, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
@@ -302,6 +362,7 @@ tree_sign_reduction(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
std::function<Torus(Torus)> sign_handler_f, void *bsk,
|
||||
Torus *ksk, uint32_t num_radix_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = tree_buffer->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
@@ -378,38 +439,45 @@ __host__ void host_integer_radix_difference_check_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_left,
|
||||
Torus *lwe_array_right, int_comparison_buffer<Torus> *mem_ptr,
|
||||
std::function<Torus(Torus)> reduction_lut_f, void *bsk, Torus *ksk,
|
||||
uint32_t total_num_radix_blocks) {
|
||||
uint32_t num_radix_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto diff_buffer = mem_ptr->diff_buffer;
|
||||
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto big_lwe_size = big_lwe_dimension + 1;
|
||||
auto message_modulus = params.message_modulus;
|
||||
auto carry_modulus = params.carry_modulus;
|
||||
|
||||
uint32_t num_radix_blocks = total_num_radix_blocks;
|
||||
uint32_t packed_num_radix_blocks = num_radix_blocks;
|
||||
auto lhs = lwe_array_left;
|
||||
auto rhs = lwe_array_right;
|
||||
if (carry_modulus == message_modulus) {
|
||||
if (carry_modulus >= message_modulus) {
|
||||
// Packing is possible
|
||||
// Pack inputs
|
||||
Torus *packed_left = diff_buffer->tmp_packed_left;
|
||||
Torus *packed_right = diff_buffer->tmp_packed_right;
|
||||
// In case the ciphertext is signed, the sign block and the one before it
|
||||
// are handled separately
|
||||
if (mem_ptr->is_signed) {
|
||||
packed_num_radix_blocks -= 2;
|
||||
}
|
||||
pack_blocks(stream, packed_left, lwe_array_left, big_lwe_dimension,
|
||||
num_radix_blocks, message_modulus);
|
||||
packed_num_radix_blocks, message_modulus);
|
||||
pack_blocks(stream, packed_right, lwe_array_right, big_lwe_dimension,
|
||||
num_radix_blocks, message_modulus);
|
||||
packed_num_radix_blocks, message_modulus);
|
||||
// From this point we have half number of blocks
|
||||
num_radix_blocks /= 2;
|
||||
packed_num_radix_blocks /= 2;
|
||||
|
||||
// Clean noise
|
||||
auto cleaning_lut = mem_ptr->cleaning_lut;
|
||||
auto identity_lut = mem_ptr->identity_lut;
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
stream, packed_left, packed_left, bsk, ksk, num_radix_blocks,
|
||||
cleaning_lut);
|
||||
stream, packed_left, packed_left, bsk, ksk, packed_num_radix_blocks,
|
||||
identity_lut);
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
stream, packed_right, packed_right, bsk, ksk, num_radix_blocks,
|
||||
cleaning_lut);
|
||||
stream, packed_right, packed_right, bsk, ksk, packed_num_radix_blocks,
|
||||
identity_lut);
|
||||
|
||||
lhs = packed_left;
|
||||
rhs = packed_right;
|
||||
@@ -420,31 +488,78 @@ __host__ void host_integer_radix_difference_check_kb(
|
||||
// - 1 if lhs == rhs
|
||||
// - 2 if lhs > rhs
|
||||
auto comparisons = mem_ptr->tmp_block_comparisons;
|
||||
compare_radix_blocks_kb(stream, comparisons, lhs, rhs, mem_ptr, bsk, ksk,
|
||||
num_radix_blocks);
|
||||
auto num_comparisons = 0;
|
||||
if (!mem_ptr->is_signed) {
|
||||
// Compare packed blocks, or simply the total number of radix blocks in the
|
||||
// inputs
|
||||
compare_radix_blocks_kb(stream, comparisons, lhs, rhs, mem_ptr, bsk, ksk,
|
||||
packed_num_radix_blocks);
|
||||
num_comparisons = packed_num_radix_blocks;
|
||||
} else {
|
||||
// Packing is possible
|
||||
if (carry_modulus >= message_modulus) {
|
||||
// Compare (num_radix_blocks - 2) / 2 packed blocks
|
||||
compare_radix_blocks_kb(stream, comparisons, lhs, rhs, mem_ptr, bsk, ksk,
|
||||
packed_num_radix_blocks);
|
||||
|
||||
// Compare the last block before the sign block separately
|
||||
auto identity_lut = mem_ptr->identity_lut;
|
||||
Torus *last_left_block_before_sign_block =
|
||||
diff_buffer->tmp_packed_left + packed_num_radix_blocks * big_lwe_size;
|
||||
Torus *last_right_block_before_sign_block =
|
||||
diff_buffer->tmp_packed_right +
|
||||
packed_num_radix_blocks * big_lwe_size;
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
stream, last_left_block_before_sign_block,
|
||||
lwe_array_left + (num_radix_blocks - 2) * big_lwe_size, bsk, ksk, 1,
|
||||
identity_lut);
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
stream, last_right_block_before_sign_block,
|
||||
lwe_array_right + (num_radix_blocks - 2) * big_lwe_size, bsk, ksk, 1,
|
||||
identity_lut);
|
||||
compare_radix_blocks_kb(
|
||||
stream, comparisons + packed_num_radix_blocks * big_lwe_size,
|
||||
last_left_block_before_sign_block, last_right_block_before_sign_block,
|
||||
mem_ptr, bsk, ksk, 1);
|
||||
// Compare the sign block separately
|
||||
integer_radix_apply_bivariate_lookup_table_kb(
|
||||
stream, comparisons + (packed_num_radix_blocks + 1) * big_lwe_size,
|
||||
lwe_array_left + (num_radix_blocks - 1) * big_lwe_size,
|
||||
lwe_array_right + (num_radix_blocks - 1) * big_lwe_size, bsk, ksk, 1,
|
||||
mem_ptr->signed_lut);
|
||||
num_comparisons = packed_num_radix_blocks + 2;
|
||||
|
||||
} else {
|
||||
compare_radix_blocks_kb(stream, comparisons, lwe_array_left,
|
||||
lwe_array_right, mem_ptr, bsk, ksk,
|
||||
num_radix_blocks - 1);
|
||||
// Compare the sign block separately
|
||||
integer_radix_apply_bivariate_lookup_table_kb(
|
||||
stream, comparisons + (num_radix_blocks - 1) * big_lwe_size,
|
||||
lwe_array_left + (num_radix_blocks - 1) * big_lwe_size,
|
||||
lwe_array_right + (num_radix_blocks - 1) * big_lwe_size, bsk, ksk, 1,
|
||||
mem_ptr->signed_lut);
|
||||
num_comparisons = num_radix_blocks;
|
||||
}
|
||||
}
|
||||
|
||||
// Reduces a vec containing radix blocks that encrypts a sign
|
||||
// (inferior, equal, superior) to one single radix block containing the
|
||||
// final sign
|
||||
tree_sign_reduction(stream, lwe_array_out, comparisons,
|
||||
mem_ptr->diff_buffer->tree_buffer, reduction_lut_f, bsk,
|
||||
ksk, num_radix_blocks);
|
||||
|
||||
// The result will be in the first block. Everything else is garbage.
|
||||
size_t big_lwe_size = big_lwe_dimension + 1;
|
||||
size_t big_lwe_size_bytes = big_lwe_size * sizeof(Torus);
|
||||
cuda_memset_async(lwe_array_out + big_lwe_size, 0,
|
||||
(total_num_radix_blocks - 1) * big_lwe_size_bytes, stream);
|
||||
ksk, num_comparisons);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void scratch_cuda_integer_radix_difference_check_kb(
|
||||
__host__ void scratch_cuda_integer_radix_comparison_check_kb(
|
||||
cuda_stream_t *stream, int_comparison_buffer<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params, COMPARISON_TYPE op,
|
||||
bool allocate_gpu_memory) {
|
||||
bool is_signed, bool allocate_gpu_memory) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
*mem_ptr = new int_comparison_buffer<Torus>(
|
||||
stream, op, params, num_radix_blocks, allocate_gpu_memory);
|
||||
stream, op, params, num_radix_blocks, is_signed, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
@@ -454,10 +569,11 @@ host_integer_radix_maxmin_kb(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
int_comparison_buffer<Torus> *mem_ptr, void *bsk,
|
||||
Torus *ksk, uint32_t total_num_radix_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
// Compute the sign
|
||||
host_integer_radix_difference_check_kb(
|
||||
stream, mem_ptr->tmp_lwe_array_out, lwe_array_left, lwe_array_right,
|
||||
mem_ptr, mem_ptr->cleaning_lut_f, bsk, ksk, total_num_radix_blocks);
|
||||
mem_ptr, mem_ptr->identity_lut_f, bsk, ksk, total_num_radix_blocks);
|
||||
|
||||
// Selector
|
||||
host_integer_radix_cmux_kb(
|
||||
|
||||
@@ -59,7 +59,9 @@ void cuda_full_propagation_64_inplace(
|
||||
ks_level, pbs_base_log, pbs_level, grouping_factor, num_blocks);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
PANIC("Cuda error (full propagation inplace): unsupported polynomial size. "
|
||||
"Supported N's are powers of two"
|
||||
" in the interval [256..16384].")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -86,13 +88,26 @@ void cleanup_cuda_full_propagation(cuda_stream_t *stream,
|
||||
cuda_drop_async(mem_ptr->lut_buffer, stream);
|
||||
cuda_drop_async(mem_ptr->lut_indexes, stream);
|
||||
|
||||
cuda_drop_async(mem_ptr->pbs_buffer, stream);
|
||||
cuda_drop_async(mem_ptr->lwe_indexes, stream);
|
||||
|
||||
cuda_drop_async(mem_ptr->tmp_small_lwe_vector, stream);
|
||||
cuda_drop_async(mem_ptr->tmp_big_lwe_vector, stream);
|
||||
|
||||
switch (mem_ptr->pbs_type) {
|
||||
case CLASSICAL: {
|
||||
auto x = (pbs_buffer<uint64_t, CLASSICAL> *)(mem_ptr->pbs_buffer);
|
||||
x->release(stream);
|
||||
} break;
|
||||
case MULTI_BIT: {
|
||||
auto x = (pbs_buffer<uint64_t, MULTI_BIT> *)(mem_ptr->pbs_buffer);
|
||||
x->release(stream);
|
||||
} break;
|
||||
default:
|
||||
PANIC("Cuda error (PBS): unsupported implementation variant.")
|
||||
}
|
||||
}
|
||||
|
||||
void scratch_cuda_propagate_single_carry_low_latency_kb_64_inplace(
|
||||
void scratch_cuda_propagate_single_carry_kb_64_inplace(
|
||||
cuda_stream_t *stream, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t big_lwe_dimension,
|
||||
uint32_t small_lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
@@ -105,22 +120,23 @@ void scratch_cuda_propagate_single_carry_low_latency_kb_64_inplace(
|
||||
ks_base_log, pbs_level, pbs_base_log, grouping_factor,
|
||||
message_modulus, carry_modulus);
|
||||
|
||||
scratch_cuda_propagate_single_carry_low_latency_kb_inplace(
|
||||
scratch_cuda_propagate_single_carry_kb_inplace(
|
||||
stream, (int_sc_prop_memory<uint64_t> **)mem_ptr, num_blocks, params,
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_propagate_single_carry_low_latency_kb_64_inplace(
|
||||
cuda_stream_t *stream, void *lwe_array, int8_t *mem_ptr, void *bsk,
|
||||
void *ksk, uint32_t num_blocks) {
|
||||
host_propagate_single_carry_low_latency<uint64_t>(
|
||||
void cuda_propagate_single_carry_kb_64_inplace(cuda_stream_t *stream,
|
||||
void *lwe_array, int8_t *mem_ptr,
|
||||
void *bsk, void *ksk,
|
||||
uint32_t num_blocks) {
|
||||
host_propagate_single_carry<uint64_t>(
|
||||
stream, static_cast<uint64_t *>(lwe_array),
|
||||
(int_sc_prop_memory<uint64_t> *)mem_ptr, bsk,
|
||||
static_cast<uint64_t *>(ksk), num_blocks);
|
||||
}
|
||||
|
||||
void cleanup_cuda_propagate_single_carry_low_latency(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
void cleanup_cuda_propagate_single_carry(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
int_sc_prop_memory<uint64_t> *mem_ptr =
|
||||
(int_sc_prop_memory<uint64_t> *)(*mem_ptr_void);
|
||||
mem_ptr->release(stream);
|
||||
|
||||
@@ -7,83 +7,12 @@
|
||||
#include "integer/scalar_addition.cuh"
|
||||
#include "linear_algebra.h"
|
||||
#include "linearalgebra/addition.cuh"
|
||||
#include "pbs/bootstrap_low_latency.cuh"
|
||||
#include "pbs/bootstrap_multibit.cuh"
|
||||
#include "polynomial/functions.cuh"
|
||||
#include "programmable_bootstrap.h"
|
||||
#include "utils/helper.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
#include <functional>
|
||||
|
||||
template <typename Torus>
|
||||
void execute_pbs(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
Torus *lwe_output_indexes, Torus *lut_vector,
|
||||
Torus *lut_vector_indexes, Torus *lwe_array_in,
|
||||
Torus *lwe_input_indexes, void *bootstrapping_key,
|
||||
int8_t *pbs_buffer, uint32_t glwe_dimension,
|
||||
uint32_t lwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count,
|
||||
uint32_t grouping_factor, uint32_t input_lwe_ciphertext_count,
|
||||
uint32_t num_lut_vectors, uint32_t lwe_idx,
|
||||
uint32_t max_shared_memory, PBS_TYPE pbs_type) {
|
||||
if (sizeof(Torus) == sizeof(uint32_t)) {
|
||||
// 32 bits
|
||||
switch (pbs_type) {
|
||||
case MULTI_BIT:
|
||||
printf("multibit\n");
|
||||
printf("Error: 32-bit multibit PBS is not supported.\n");
|
||||
break;
|
||||
case LOW_LAT:
|
||||
cuda_bootstrap_low_latency_lwe_ciphertext_vector_32(
|
||||
stream, lwe_array_out, lwe_output_indexes, lut_vector,
|
||||
lut_vector_indexes, lwe_array_in, lwe_input_indexes,
|
||||
bootstrapping_key, pbs_buffer, lwe_dimension, glwe_dimension,
|
||||
polynomial_size, base_log, level_count, input_lwe_ciphertext_count,
|
||||
num_lut_vectors, lwe_idx, max_shared_memory);
|
||||
break;
|
||||
case AMORTIZED:
|
||||
cuda_bootstrap_amortized_lwe_ciphertext_vector_32(
|
||||
stream, lwe_array_out, lwe_output_indexes, lut_vector,
|
||||
lut_vector_indexes, lwe_array_in, lwe_input_indexes,
|
||||
bootstrapping_key, pbs_buffer, lwe_dimension, glwe_dimension,
|
||||
polynomial_size, base_log, level_count, input_lwe_ciphertext_count,
|
||||
num_lut_vectors, lwe_idx, max_shared_memory);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// 64 bits
|
||||
switch (pbs_type) {
|
||||
case MULTI_BIT:
|
||||
cuda_multi_bit_pbs_lwe_ciphertext_vector_64(
|
||||
stream, lwe_array_out, lwe_output_indexes, lut_vector,
|
||||
lut_vector_indexes, lwe_array_in, lwe_input_indexes,
|
||||
bootstrapping_key, pbs_buffer, lwe_dimension, glwe_dimension,
|
||||
polynomial_size, grouping_factor, base_log, level_count,
|
||||
input_lwe_ciphertext_count, num_lut_vectors, lwe_idx,
|
||||
max_shared_memory);
|
||||
break;
|
||||
case LOW_LAT:
|
||||
cuda_bootstrap_low_latency_lwe_ciphertext_vector_64(
|
||||
stream, lwe_array_out, lwe_output_indexes, lut_vector,
|
||||
lut_vector_indexes, lwe_array_in, lwe_input_indexes,
|
||||
bootstrapping_key, pbs_buffer, lwe_dimension, glwe_dimension,
|
||||
polynomial_size, base_log, level_count, input_lwe_ciphertext_count,
|
||||
num_lut_vectors, lwe_idx, max_shared_memory);
|
||||
break;
|
||||
case AMORTIZED:
|
||||
cuda_bootstrap_amortized_lwe_ciphertext_vector_64(
|
||||
stream, lwe_array_out, lwe_output_indexes, lut_vector,
|
||||
lut_vector_indexes, lwe_array_in, lwe_input_indexes,
|
||||
bootstrapping_key, pbs_buffer, lwe_dimension, glwe_dimension,
|
||||
polynomial_size, base_log, level_count, input_lwe_ciphertext_count,
|
||||
num_lut_vectors, lwe_idx, max_shared_memory);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// function rotates right radix ciphertext with specific value
|
||||
// grid is one dimensional
|
||||
// blockIdx.x represents x_th block of radix ciphertext
|
||||
@@ -133,35 +62,40 @@ __global__ void radix_blocks_rotate_left(Torus *dst, Torus *src, uint32_t value,
|
||||
// polynomial_size threads
|
||||
template <typename Torus>
|
||||
__global__ void
|
||||
device_pack_bivariate_blocks(Torus *lwe_array_out, Torus *lwe_array_1,
|
||||
Torus *lwe_array_2, Torus *lwe_indexes,
|
||||
uint32_t lwe_dimension, uint32_t message_modulus,
|
||||
uint32_t num_blocks) {
|
||||
device_pack_bivariate_blocks(Torus *lwe_array_out, Torus *lwe_indexes_out,
|
||||
Torus *lwe_array_1, Torus *lwe_array_2,
|
||||
Torus *lwe_indexes_in, uint32_t lwe_dimension,
|
||||
uint32_t shift, uint32_t num_blocks) {
|
||||
int tid = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (tid < num_blocks * (lwe_dimension + 1)) {
|
||||
int block_id = tid / (lwe_dimension + 1);
|
||||
int coeff_id = tid % (lwe_dimension + 1);
|
||||
|
||||
int pos = lwe_indexes[block_id] * (lwe_dimension + 1) + coeff_id;
|
||||
lwe_array_out[pos] = lwe_array_1[pos] * message_modulus + lwe_array_2[pos];
|
||||
int pos_in = lwe_indexes_in[block_id] * (lwe_dimension + 1) + coeff_id;
|
||||
int pos_out = lwe_indexes_out[block_id] * (lwe_dimension + 1) + coeff_id;
|
||||
lwe_array_out[pos_out] = lwe_array_1[pos_in] * shift + lwe_array_2[pos_in];
|
||||
}
|
||||
}
|
||||
|
||||
/* Combine lwe_array_1 and lwe_array_2 so that each block m1 and m2
|
||||
* becomes out = m1 * shift + m2
|
||||
*/
|
||||
template <typename Torus>
|
||||
__host__ void pack_bivariate_blocks(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
Torus *lwe_array_1, Torus *lwe_array_2,
|
||||
Torus *lwe_indexes, uint32_t lwe_dimension,
|
||||
uint32_t message_modulus,
|
||||
Torus *lwe_indexes_out, Torus *lwe_array_1,
|
||||
Torus *lwe_array_2, Torus *lwe_indexes_in,
|
||||
uint32_t lwe_dimension, uint32_t shift,
|
||||
uint32_t num_radix_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
// Left message is shifted
|
||||
int num_blocks = 0, num_threads = 0;
|
||||
int num_entries = num_radix_blocks * (lwe_dimension + 1);
|
||||
getNumBlocksAndThreads(num_entries, 512, num_blocks, num_threads);
|
||||
device_pack_bivariate_blocks<<<num_blocks, num_threads, 0, stream->stream>>>(
|
||||
lwe_array_out, lwe_array_1, lwe_array_2, lwe_indexes, lwe_dimension,
|
||||
message_modulus, num_radix_blocks);
|
||||
lwe_array_out, lwe_indexes_out, lwe_array_1, lwe_array_2, lwe_indexes_in,
|
||||
lwe_dimension, shift, num_radix_blocks);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
|
||||
@@ -169,6 +103,7 @@ template <typename Torus>
|
||||
__host__ void integer_radix_apply_univariate_lookup_table_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in, void *bsk,
|
||||
Torus *ksk, uint32_t num_radix_blocks, int_radix_lut<Torus> *lut) {
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
// apply_lookup_table
|
||||
auto params = lut->params;
|
||||
auto pbs_type = params.pbs_type;
|
||||
@@ -184,16 +119,16 @@ __host__ void integer_radix_apply_univariate_lookup_table_kb(
|
||||
|
||||
// Compute Keyswitch-PBS
|
||||
cuda_keyswitch_lwe_ciphertext_vector(
|
||||
stream, lut->tmp_lwe_after_ks, lut->lwe_indexes, lwe_array_in,
|
||||
lut->lwe_indexes, ksk, big_lwe_dimension, small_lwe_dimension,
|
||||
stream, lut->tmp_lwe_after_ks, lut->lwe_trivial_indexes, lwe_array_in,
|
||||
lut->lwe_indexes_in, ksk, big_lwe_dimension, small_lwe_dimension,
|
||||
ks_base_log, ks_level, num_radix_blocks);
|
||||
|
||||
execute_pbs(stream, lwe_array_out, lut->lwe_indexes, lut->lut,
|
||||
lut->lut_indexes, lut->tmp_lwe_after_ks, lut->lwe_indexes, bsk,
|
||||
lut->pbs_buffer, glwe_dimension, small_lwe_dimension,
|
||||
polynomial_size, pbs_base_log, pbs_level, grouping_factor,
|
||||
num_radix_blocks, 1, 0,
|
||||
cuda_get_max_shared_memory(stream->gpu_index), pbs_type);
|
||||
execute_pbs<Torus>(stream, lwe_array_out, lut->lwe_indexes_out, lut->lut,
|
||||
lut->lut_indexes, lut->tmp_lwe_after_ks,
|
||||
lut->lwe_trivial_indexes, bsk, lut->buffer, glwe_dimension,
|
||||
small_lwe_dimension, polynomial_size, pbs_base_log,
|
||||
pbs_level, grouping_factor, num_radix_blocks, 1, 0,
|
||||
cuda_get_max_shared_memory(stream->gpu_index), pbs_type);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
@@ -201,22 +136,40 @@ __host__ void integer_radix_apply_bivariate_lookup_table_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_1,
|
||||
Torus *lwe_array_2, void *bsk, Torus *ksk, uint32_t num_radix_blocks,
|
||||
int_radix_lut<Torus> *lut) {
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
// apply_lookup_table_bivariate
|
||||
|
||||
auto params = lut->params;
|
||||
auto pbs_type = params.pbs_type;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto small_lwe_dimension = params.small_lwe_dimension;
|
||||
auto ks_level = params.ks_level;
|
||||
auto ks_base_log = params.ks_base_log;
|
||||
auto pbs_level = params.pbs_level;
|
||||
auto pbs_base_log = params.pbs_base_log;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
auto grouping_factor = params.grouping_factor;
|
||||
auto message_modulus = params.message_modulus;
|
||||
|
||||
// Left message is shifted
|
||||
pack_bivariate_blocks(stream, lut->tmp_lwe_before_ks, lwe_array_1,
|
||||
lwe_array_2, lut->lwe_indexes, big_lwe_dimension,
|
||||
message_modulus, num_radix_blocks);
|
||||
auto lwe_array_pbs_in = lut->tmp_lwe_before_ks;
|
||||
pack_bivariate_blocks(stream, lwe_array_pbs_in, lut->lwe_trivial_indexes,
|
||||
lwe_array_1, lwe_array_2, lut->lwe_indexes_in,
|
||||
big_lwe_dimension, message_modulus, num_radix_blocks);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
// Apply LUT
|
||||
integer_radix_apply_univariate_lookup_table_kb(stream, lwe_array_out,
|
||||
lut->tmp_lwe_before_ks, bsk,
|
||||
ksk, num_radix_blocks, lut);
|
||||
cuda_keyswitch_lwe_ciphertext_vector(
|
||||
stream, lut->tmp_lwe_after_ks, lut->lwe_trivial_indexes, lwe_array_pbs_in,
|
||||
lut->lwe_trivial_indexes, ksk, big_lwe_dimension, small_lwe_dimension,
|
||||
ks_base_log, ks_level, num_radix_blocks);
|
||||
|
||||
execute_pbs<Torus>(stream, lwe_array_out, lut->lwe_indexes_out, lut->lut,
|
||||
lut->lut_indexes, lut->tmp_lwe_after_ks,
|
||||
lut->lwe_trivial_indexes, bsk, lut->buffer, glwe_dimension,
|
||||
small_lwe_dimension, polynomial_size, pbs_base_log,
|
||||
pbs_level, grouping_factor, num_radix_blocks, 1, 0,
|
||||
cuda_get_max_shared_memory(stream->gpu_index), pbs_type);
|
||||
}
|
||||
|
||||
// Rotates the slice in-place such that the first mid elements of the slice move
|
||||
@@ -303,13 +256,13 @@ void generate_device_accumulator_bivariate(
|
||||
generate_lookup_table_bivariate<Torus>(h_lut, glwe_dimension, polynomial_size,
|
||||
message_modulus, carry_modulus, f);
|
||||
|
||||
// copy host lut and tvi to device
|
||||
// copy host lut and lut_indexes to device
|
||||
cuda_memcpy_async_to_gpu(
|
||||
acc_bivariate, h_lut,
|
||||
(glwe_dimension + 1) * polynomial_size * sizeof(Torus), stream);
|
||||
|
||||
cuda_synchronize_stream(stream);
|
||||
free(h_lut);
|
||||
// Release memory when possible
|
||||
cuda_stream_add_callback(stream, host_free_on_stream_callback, h_lut);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -335,17 +288,17 @@ void generate_device_accumulator(cuda_stream_t *stream, Torus *acc,
|
||||
generate_lookup_table<Torus>(h_lut, glwe_dimension, polynomial_size,
|
||||
message_modulus, carry_modulus, f);
|
||||
|
||||
// copy host lut and tvi to device
|
||||
// copy host lut and lut_indexes to device
|
||||
cuda_memcpy_async_to_gpu(
|
||||
acc, h_lut, (glwe_dimension + 1) * polynomial_size * sizeof(Torus),
|
||||
stream);
|
||||
|
||||
cuda_synchronize_stream(stream);
|
||||
free(h_lut);
|
||||
// Release memory when possible
|
||||
cuda_stream_add_callback(stream, host_free_on_stream_callback, h_lut);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
void scratch_cuda_propagate_single_carry_low_latency_kb_inplace(
|
||||
void scratch_cuda_propagate_single_carry_kb_inplace(
|
||||
cuda_stream_t *stream, int_sc_prop_memory<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params,
|
||||
bool allocate_gpu_memory) {
|
||||
@@ -355,28 +308,25 @@ void scratch_cuda_propagate_single_carry_low_latency_kb_inplace(
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
void host_propagate_single_carry_low_latency(cuda_stream_t *stream,
|
||||
Torus *lwe_array,
|
||||
int_sc_prop_memory<Torus> *mem,
|
||||
void *bsk, Torus *ksk,
|
||||
uint32_t num_blocks) {
|
||||
void host_propagate_single_carry(cuda_stream_t *stream, Torus *lwe_array,
|
||||
int_sc_prop_memory<Torus> *mem, void *bsk,
|
||||
Torus *ksk, uint32_t num_blocks) {
|
||||
auto params = mem->params;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
auto message_modulus = params.message_modulus;
|
||||
auto big_lwe_size = glwe_dimension * polynomial_size + 1;
|
||||
auto big_lwe_size_bytes = big_lwe_size * sizeof(Torus);
|
||||
|
||||
auto generates_or_propagates = mem->generates_or_propagates;
|
||||
auto step_output = mem->step_output;
|
||||
|
||||
auto test_vector_array = mem->test_vector_array;
|
||||
auto lut_carry_propagation_sum = mem->lut_carry_propagation_sum;
|
||||
auto luts_array = mem->luts_array;
|
||||
auto luts_carry_propagation_sum = mem->luts_carry_propagation_sum;
|
||||
auto message_acc = mem->message_acc;
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, generates_or_propagates, lwe_array, bsk, ksk, num_blocks,
|
||||
test_vector_array);
|
||||
luts_array);
|
||||
|
||||
// compute prefix sum with hillis&steele
|
||||
|
||||
@@ -392,7 +342,7 @@ void host_propagate_single_carry_low_latency(cuda_stream_t *stream,
|
||||
|
||||
integer_radix_apply_bivariate_lookup_table_kb<Torus>(
|
||||
stream, cur_blocks, cur_blocks, prev_blocks, bsk, ksk, cur_total_blocks,
|
||||
lut_carry_propagation_sum);
|
||||
luts_carry_propagation_sum);
|
||||
|
||||
cuda_memcpy_async_gpu_to_gpu(&generates_or_propagates[space * big_lwe_size],
|
||||
cur_blocks,
|
||||
@@ -411,13 +361,71 @@ void host_propagate_single_carry_low_latency(cuda_stream_t *stream,
|
||||
stream, lwe_array, lwe_array, bsk, ksk, num_blocks, message_acc);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
void host_propagate_single_sub_borrow(cuda_stream_t *stream, Torus *overflowed,
|
||||
Torus *lwe_array,
|
||||
int_single_borrow_prop_memory<Torus> *mem,
|
||||
void *bsk, Torus *ksk,
|
||||
uint32_t num_blocks) {
|
||||
auto params = mem->params;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
auto big_lwe_size = glwe_dimension * polynomial_size + 1;
|
||||
auto big_lwe_size_bytes = big_lwe_size * sizeof(Torus);
|
||||
|
||||
auto generates_or_propagates = mem->generates_or_propagates;
|
||||
auto step_output = mem->step_output;
|
||||
|
||||
auto luts_array = mem->luts_array;
|
||||
auto luts_carry_propagation_sum = mem->luts_borrow_propagation_sum;
|
||||
auto message_acc = mem->message_acc;
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, generates_or_propagates, lwe_array, bsk, ksk, num_blocks,
|
||||
luts_array);
|
||||
|
||||
// compute prefix sum with hillis&steele
|
||||
int num_steps = ceil(log2((double)num_blocks));
|
||||
int space = 1;
|
||||
cuda_memcpy_async_gpu_to_gpu(step_output, generates_or_propagates,
|
||||
big_lwe_size_bytes * num_blocks, stream);
|
||||
|
||||
for (int step = 0; step < num_steps; step++) {
|
||||
auto cur_blocks = &step_output[space * big_lwe_size];
|
||||
auto prev_blocks = generates_or_propagates;
|
||||
int cur_total_blocks = num_blocks - space;
|
||||
|
||||
integer_radix_apply_bivariate_lookup_table_kb<Torus>(
|
||||
stream, cur_blocks, cur_blocks, prev_blocks, bsk, ksk, cur_total_blocks,
|
||||
luts_carry_propagation_sum);
|
||||
|
||||
cuda_memcpy_async_gpu_to_gpu(&generates_or_propagates[space * big_lwe_size],
|
||||
cur_blocks,
|
||||
big_lwe_size_bytes * cur_total_blocks, stream);
|
||||
space *= 2;
|
||||
}
|
||||
|
||||
cuda_memcpy_async_gpu_to_gpu(
|
||||
overflowed, &generates_or_propagates[big_lwe_size * (num_blocks - 1)],
|
||||
big_lwe_size_bytes, stream);
|
||||
|
||||
radix_blocks_rotate_right<<<num_blocks, 256, 0, stream->stream>>>(
|
||||
step_output, generates_or_propagates, 1, num_blocks, big_lwe_size);
|
||||
cuda_memset_async(step_output, 0, big_lwe_size_bytes, stream);
|
||||
|
||||
host_subtraction(stream, lwe_array, lwe_array, step_output,
|
||||
glwe_dimension * polynomial_size, num_blocks);
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, lwe_array, lwe_array, bsk, ksk, num_blocks, message_acc);
|
||||
}
|
||||
|
||||
/*
|
||||
* input_blocks: input radix ciphertext propagation will happen inplace
|
||||
* acc_message_carry: list of two lut s, [(message_acc), (carry_acc)]
|
||||
* tvi_message_carry: tvi for message and carry, should always be {0, 1}
|
||||
* small_lwe_vector: output of keyswitch should have
|
||||
* size = 2 * (lwe_dimension + 1) * sizeof(Torus)
|
||||
* big_lwe_vector: output of pbs should have
|
||||
* lut_indexes_message_carry: lut_indexes for message and carry, should always
|
||||
* be {0, 1} small_lwe_vector: output of keyswitch should have size = 2 *
|
||||
* (lwe_dimension + 1) * sizeof(Torus) big_lwe_vector: output of pbs should have
|
||||
* size = 2 * (glwe_dimension * polynomial_size + 1) * sizeof(Torus)
|
||||
*/
|
||||
template <typename Torus, typename STorus, class params>
|
||||
@@ -474,31 +482,12 @@ void scratch_cuda_full_propagation(
|
||||
uint32_t message_modulus, uint32_t carry_modulus, PBS_TYPE pbs_type,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
// PBS
|
||||
int8_t *pbs_buffer;
|
||||
if (pbs_type == MULTI_BIT) {
|
||||
uint32_t lwe_chunk_size = get_average_lwe_chunk_size(
|
||||
lwe_dimension, pbs_level, glwe_dimension, num_radix_blocks);
|
||||
// Only 64 bits is supported
|
||||
scratch_cuda_multi_bit_pbs_64(stream, &pbs_buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, pbs_level,
|
||||
grouping_factor, num_radix_blocks,
|
||||
cuda_get_max_shared_memory(stream->gpu_index),
|
||||
allocate_gpu_memory, lwe_chunk_size);
|
||||
} else {
|
||||
// Classic
|
||||
// We only use low latency for classic mode
|
||||
if (sizeof(Torus) == sizeof(uint32_t))
|
||||
scratch_cuda_bootstrap_low_latency_32(
|
||||
stream, &pbs_buffer, glwe_dimension, polynomial_size, pbs_level,
|
||||
num_radix_blocks, cuda_get_max_shared_memory(stream->gpu_index),
|
||||
allocate_gpu_memory);
|
||||
else
|
||||
scratch_cuda_bootstrap_low_latency_64(
|
||||
stream, &pbs_buffer, glwe_dimension, polynomial_size, pbs_level,
|
||||
num_radix_blocks, cuda_get_max_shared_memory(stream->gpu_index),
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
execute_scratch_pbs<Torus>(stream, &pbs_buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, pbs_level, grouping_factor,
|
||||
num_radix_blocks,
|
||||
cuda_get_max_shared_memory(stream->gpu_index),
|
||||
pbs_type, allocate_gpu_memory);
|
||||
|
||||
// LUT
|
||||
Torus *lut_buffer;
|
||||
@@ -551,8 +540,8 @@ void scratch_cuda_full_propagation(
|
||||
h_lwe_indexes[i] = i;
|
||||
cuda_memcpy_async_to_gpu(lwe_indexes, h_lwe_indexes, lwe_indexes_size,
|
||||
stream);
|
||||
cuda_synchronize_stream(stream);
|
||||
free(h_lwe_indexes);
|
||||
cuda_stream_add_callback(stream, host_free_on_stream_callback,
|
||||
h_lwe_indexes);
|
||||
}
|
||||
|
||||
// Temporary arrays
|
||||
@@ -598,7 +587,7 @@ __global__ void device_pack_blocks(Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
packed_block[tid] = lsb_block[tid] + factor * msb_block[tid];
|
||||
}
|
||||
|
||||
if (num_radix_blocks % 2 != 0) {
|
||||
if (num_radix_blocks % 2 == 1) {
|
||||
// We couldn't pack the last block, so we just copy it
|
||||
Torus *lsb_block =
|
||||
lwe_array_in + (num_radix_blocks - 1) * (lwe_dimension + 1);
|
||||
@@ -621,7 +610,11 @@ template <typename Torus>
|
||||
__host__ void pack_blocks(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
Torus *lwe_array_in, uint32_t lwe_dimension,
|
||||
uint32_t num_radix_blocks, uint32_t factor) {
|
||||
assert(lwe_array_out != lwe_array_in);
|
||||
if (lwe_array_out == lwe_array_in)
|
||||
PANIC("Cuda error in pack blocks: input and output pointers must be "
|
||||
"different.");
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
|
||||
int num_blocks = 0, num_threads = 0;
|
||||
int num_entries = (lwe_dimension + 1);
|
||||
@@ -651,6 +644,7 @@ create_trivial_radix(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
uint32_t num_radix_blocks, uint32_t num_scalar_blocks,
|
||||
uint64_t message_modulus, uint64_t carry_modulus) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
size_t radix_size = (lwe_dimension + 1) * num_radix_blocks;
|
||||
cuda_memset_async(lwe_array_out, 0, radix_size * sizeof(Torus), stream);
|
||||
|
||||
@@ -674,4 +668,107 @@ create_trivial_radix(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
|
||||
/**
|
||||
* Each bit in lwe_array_in becomes a lwe ciphertext in lwe_array_out
|
||||
* Thus, lwe_array_out must be allocated with num_radix_blocks * bits_per_block
|
||||
* * (lwe_dimension+1) * sizeeof(Torus) bytes
|
||||
*/
|
||||
template <typename Torus>
|
||||
__host__ void extract_n_bits(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
Torus *lwe_array_in, void *bsk, Torus *ksk,
|
||||
uint32_t num_radix_blocks, uint32_t bits_per_block,
|
||||
int_bit_extract_luts_buffer<Torus> *bit_extract) {
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
stream, lwe_array_out, lwe_array_in, bsk, ksk,
|
||||
num_radix_blocks * bits_per_block, bit_extract->lut);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void reduce_signs(cuda_stream_t *stream, Torus *signs_array_out,
|
||||
Torus *signs_array_in,
|
||||
int_comparison_buffer<Torus> *mem_ptr,
|
||||
std::function<Torus(Torus)> sign_handler_f,
|
||||
void *bsk, Torus *ksk, uint32_t num_sign_blocks) {
|
||||
|
||||
auto diff_buffer = mem_ptr->diff_buffer;
|
||||
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
auto message_modulus = params.message_modulus;
|
||||
auto carry_modulus = params.carry_modulus;
|
||||
|
||||
std::function<Torus(Torus)> reduce_two_orderings_function =
|
||||
[diff_buffer, sign_handler_f](Torus x) -> Torus {
|
||||
int msb = (x >> 2) & 3;
|
||||
int lsb = x & 3;
|
||||
|
||||
return diff_buffer->tree_buffer->block_selector_f(msb, lsb);
|
||||
};
|
||||
|
||||
auto signs_a = diff_buffer->tmp_signs_a;
|
||||
auto signs_b = diff_buffer->tmp_signs_b;
|
||||
|
||||
cuda_memcpy_async_gpu_to_gpu(
|
||||
signs_a, signs_array_in,
|
||||
(big_lwe_dimension + 1) * num_sign_blocks * sizeof(Torus), stream);
|
||||
if (num_sign_blocks > 2) {
|
||||
auto lut = diff_buffer->reduce_signs_lut;
|
||||
generate_device_accumulator<Torus>(
|
||||
stream, lut->lut, glwe_dimension, polynomial_size, message_modulus,
|
||||
carry_modulus, reduce_two_orderings_function);
|
||||
|
||||
while (num_sign_blocks > 2) {
|
||||
pack_blocks(stream, signs_b, signs_a, big_lwe_dimension, num_sign_blocks,
|
||||
4);
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
stream, signs_a, signs_b, bsk, ksk, num_sign_blocks / 2, lut);
|
||||
|
||||
auto last_block_signs_b =
|
||||
signs_b + (num_sign_blocks / 2) * (big_lwe_dimension + 1);
|
||||
auto last_block_signs_a =
|
||||
signs_a + (num_sign_blocks / 2) * (big_lwe_dimension + 1);
|
||||
if (num_sign_blocks % 2 == 1)
|
||||
cuda_memcpy_async_gpu_to_gpu(last_block_signs_a, last_block_signs_b,
|
||||
(big_lwe_dimension + 1) * sizeof(Torus),
|
||||
stream);
|
||||
|
||||
num_sign_blocks = (num_sign_blocks / 2) + (num_sign_blocks % 2);
|
||||
}
|
||||
}
|
||||
|
||||
if (num_sign_blocks == 2) {
|
||||
std::function<Torus(Torus)> final_lut_f =
|
||||
[reduce_two_orderings_function, sign_handler_f](Torus x) -> Torus {
|
||||
Torus final_sign = reduce_two_orderings_function(x);
|
||||
return sign_handler_f(final_sign);
|
||||
};
|
||||
|
||||
auto lut = diff_buffer->reduce_signs_lut;
|
||||
generate_device_accumulator<Torus>(stream, lut->lut, glwe_dimension,
|
||||
polynomial_size, message_modulus,
|
||||
carry_modulus, final_lut_f);
|
||||
|
||||
pack_blocks(stream, signs_b, signs_a, big_lwe_dimension, 2, 4);
|
||||
integer_radix_apply_univariate_lookup_table_kb(stream, signs_array_out,
|
||||
signs_b, bsk, ksk, 1, lut);
|
||||
|
||||
} else {
|
||||
|
||||
std::function<Torus(Torus)> final_lut_f =
|
||||
[mem_ptr, sign_handler_f](Torus x) -> Torus {
|
||||
return sign_handler_f(x & 3);
|
||||
};
|
||||
|
||||
auto lut = mem_ptr->diff_buffer->reduce_signs_lut;
|
||||
generate_device_accumulator<Torus>(stream, lut->lut, glwe_dimension,
|
||||
polynomial_size, message_modulus,
|
||||
carry_modulus, final_lut_f);
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb(stream, signs_array_out,
|
||||
signs_a, bsk, ksk, 1, lut);
|
||||
}
|
||||
}
|
||||
#endif // TFHE_RS_INTERNAL_INTEGER_CUH
|
||||
|
||||
@@ -1,5 +1,66 @@
|
||||
#include "integer/multiplication.cuh"
|
||||
|
||||
/*
|
||||
* when adding chunk_size times terms together, there might be some blocks
|
||||
* where addition have not happened or degree is zero, in that case we don't
|
||||
* need to apply lookup table, so we find the indexes of the blocks where
|
||||
* addition happened and store them inside h_lwe_idx_in, from same block
|
||||
* might be extracted message and carry(if it is not the last block), so
|
||||
* one block id might have two output id and we store them in h_lwe_idx_out
|
||||
* blocks that do not require applying lookup table might be copied on both
|
||||
* message and carry side or be replaced with zero ciphertexts, indexes of such
|
||||
* blocks are stored inside h_smart_copy_in as input ids and h_smart_copy_out
|
||||
* as output ids, -1 value as an input id means that zero ciphertext will be
|
||||
* copied on output index.
|
||||
*/
|
||||
void generate_ids_update_degrees(int *terms_degree, size_t *h_lwe_idx_in,
|
||||
size_t *h_lwe_idx_out,
|
||||
int32_t *h_smart_copy_in,
|
||||
int32_t *h_smart_copy_out, size_t ch_amount,
|
||||
uint32_t num_radix, uint32_t num_blocks,
|
||||
size_t chunk_size, size_t message_max,
|
||||
size_t &total_count, size_t &message_count,
|
||||
size_t &carry_count, size_t &sm_copy_count) {
|
||||
for (size_t c_id = 0; c_id < ch_amount; c_id++) {
|
||||
auto cur_chunk = &terms_degree[c_id * chunk_size * num_blocks];
|
||||
for (size_t r_id = 0; r_id < num_blocks; r_id++) {
|
||||
size_t new_degree = 0;
|
||||
for (size_t chunk_id = 0; chunk_id < chunk_size; chunk_id++) {
|
||||
new_degree += cur_chunk[chunk_id * num_blocks + r_id];
|
||||
}
|
||||
|
||||
if (new_degree > message_max) {
|
||||
h_lwe_idx_in[message_count] = c_id * num_blocks + r_id;
|
||||
h_lwe_idx_out[message_count] = c_id * num_blocks + r_id;
|
||||
message_count++;
|
||||
} else {
|
||||
h_smart_copy_in[sm_copy_count] = c_id * num_blocks + r_id;
|
||||
h_smart_copy_out[sm_copy_count] = c_id * num_blocks + r_id;
|
||||
sm_copy_count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < sm_copy_count; i++) {
|
||||
h_smart_copy_in[i] = -1;
|
||||
h_smart_copy_out[i] = h_smart_copy_out[i] + ch_amount * num_blocks + 1;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < message_count; i++) {
|
||||
if (h_lwe_idx_in[i] % num_blocks != num_blocks - 1) {
|
||||
h_lwe_idx_in[message_count + carry_count] = h_lwe_idx_in[i];
|
||||
h_lwe_idx_out[message_count + carry_count] =
|
||||
ch_amount * num_blocks + h_lwe_idx_in[i] + 1;
|
||||
carry_count++;
|
||||
} else {
|
||||
h_smart_copy_in[sm_copy_count] = -1;
|
||||
h_smart_copy_out[sm_copy_count] =
|
||||
h_lwe_idx_in[i] - (num_blocks - 1) + ch_amount * num_blocks;
|
||||
sm_copy_count++;
|
||||
}
|
||||
}
|
||||
|
||||
total_count = message_count + carry_count;
|
||||
}
|
||||
/*
|
||||
* This scratch function allocates the necessary amount of data on the GPU for
|
||||
* the integer radix multiplication in keyswitch->bootstrap order.
|
||||
@@ -13,9 +74,9 @@ void scratch_cuda_integer_mult_radix_ciphertext_kb_64(
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
polynomial_size, lwe_dimension, ks_level, ks_base_log,
|
||||
pbs_level, pbs_base_log, grouping_factor,
|
||||
message_modulus, carry_modulus);
|
||||
polynomial_size * glwe_dimension, lwe_dimension,
|
||||
ks_level, ks_base_log, pbs_level, pbs_base_log,
|
||||
grouping_factor, message_modulus, carry_modulus);
|
||||
|
||||
switch (polynomial_size) {
|
||||
case 2048:
|
||||
@@ -24,7 +85,8 @@ void scratch_cuda_integer_mult_radix_ciphertext_kb_64(
|
||||
allocate_gpu_memory);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
PANIC("Cuda error (integer multiplication): unsupported polynomial size. "
|
||||
"Only N = 2048 is supported")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -75,7 +137,8 @@ void cuda_integer_mult_radix_ciphertext_kb_64(
|
||||
num_blocks);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
PANIC("Cuda error (integer multiplication): unsupported polynomial size. "
|
||||
"Only N = 2048 is supported")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -87,21 +150,92 @@ void cleanup_cuda_integer_mult(cuda_stream_t *stream, int8_t **mem_ptr_void) {
|
||||
mem_ptr->release(stream);
|
||||
}
|
||||
|
||||
void cuda_small_scalar_multiplication_integer_radix_ciphertext_64_inplace(
|
||||
cuda_stream_t *stream, void *lwe_array, uint64_t scalar,
|
||||
uint32_t lwe_dimension, uint32_t lwe_ciphertext_count) {
|
||||
void scratch_cuda_integer_radix_sum_ciphertexts_vec_kb_64(
|
||||
cuda_stream_t *stream, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t lwe_dimension, uint32_t ks_level,
|
||||
uint32_t ks_base_log, uint32_t pbs_level, uint32_t pbs_base_log,
|
||||
uint32_t grouping_factor, uint32_t num_blocks_in_radix,
|
||||
uint32_t max_num_radix_in_vec, uint32_t message_modulus,
|
||||
uint32_t carry_modulus, PBS_TYPE pbs_type, bool allocate_gpu_memory) {
|
||||
|
||||
cuda_small_scalar_multiplication_integer_radix_ciphertext_64(
|
||||
stream, lwe_array, lwe_array, scalar, lwe_dimension,
|
||||
lwe_ciphertext_count);
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
glwe_dimension * polynomial_size, lwe_dimension,
|
||||
ks_level, ks_base_log, pbs_level, pbs_base_log,
|
||||
grouping_factor, message_modulus, carry_modulus);
|
||||
scratch_cuda_integer_sum_ciphertexts_vec_kb<uint64_t>(
|
||||
stream, (int_sum_ciphertexts_vec_memory<uint64_t> **)mem_ptr,
|
||||
num_blocks_in_radix, max_num_radix_in_vec, params, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_small_scalar_multiplication_integer_radix_ciphertext_64(
|
||||
cuda_stream_t *stream, void *output_lwe_array, void *input_lwe_array,
|
||||
uint64_t scalar, uint32_t lwe_dimension, uint32_t lwe_ciphertext_count) {
|
||||
void cuda_integer_radix_sum_ciphertexts_vec_kb_64(
|
||||
cuda_stream_t *stream, void *radix_lwe_out, void *radix_lwe_vec,
|
||||
uint32_t num_radix_in_vec, int8_t *mem_ptr, void *bsk, void *ksk,
|
||||
uint32_t num_blocks_in_radix) {
|
||||
|
||||
host_integer_small_scalar_mult_radix(
|
||||
stream, static_cast<uint64_t *>(output_lwe_array),
|
||||
static_cast<uint64_t *>(input_lwe_array), scalar, lwe_dimension,
|
||||
lwe_ciphertext_count);
|
||||
auto mem = (int_sum_ciphertexts_vec_memory<uint64_t> *)mem_ptr;
|
||||
|
||||
int *terms_degree =
|
||||
(int *)malloc(num_blocks_in_radix * num_radix_in_vec * sizeof(int));
|
||||
|
||||
for (int i = 0; i < num_radix_in_vec * num_blocks_in_radix; i++) {
|
||||
terms_degree[i] = mem->params.message_modulus - 1;
|
||||
}
|
||||
|
||||
switch (mem->params.polynomial_size) {
|
||||
case 512:
|
||||
host_integer_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<512>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_vec), terms_degree, bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks_in_radix,
|
||||
num_radix_in_vec);
|
||||
break;
|
||||
case 1024:
|
||||
host_integer_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<1024>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_vec), terms_degree, bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks_in_radix,
|
||||
num_radix_in_vec);
|
||||
break;
|
||||
case 2048:
|
||||
host_integer_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<2048>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_vec), terms_degree, bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks_in_radix,
|
||||
num_radix_in_vec);
|
||||
break;
|
||||
case 4096:
|
||||
host_integer_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<4096>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_vec), terms_degree, bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks_in_radix,
|
||||
num_radix_in_vec);
|
||||
break;
|
||||
case 8192:
|
||||
host_integer_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<8192>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_vec), terms_degree, bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks_in_radix,
|
||||
num_radix_in_vec);
|
||||
break;
|
||||
case 16384:
|
||||
host_integer_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<16384>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_vec), terms_degree, bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks_in_radix,
|
||||
num_radix_in_vec);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (integer sum ciphertexts): unsupported polynomial size. "
|
||||
"Only N = 512, 1024, 2048, 4096, 8192, 16384 is supported")
|
||||
}
|
||||
|
||||
free(terms_degree);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_sum_ciphertexts_vec(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
int_sum_ciphertexts_vec_memory<uint64_t> *mem_ptr =
|
||||
(int_sum_ciphertexts_vec_memory<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release(stream);
|
||||
}
|
||||
|
||||
@@ -6,16 +6,12 @@
|
||||
#include <cuda_runtime.h>
|
||||
#endif
|
||||
|
||||
#include "bootstrap.h"
|
||||
#include "bootstrap_multibit.h"
|
||||
#include "crypto/keyswitch.cuh"
|
||||
#include "device.h"
|
||||
#include "integer.h"
|
||||
#include "integer/integer.cuh"
|
||||
#include "linear_algebra.h"
|
||||
#include "pbs/bootstrap_amortized.cuh"
|
||||
#include "pbs/bootstrap_low_latency.cuh"
|
||||
#include "pbs/bootstrap_multibit.cuh"
|
||||
#include "programmable_bootstrap.h"
|
||||
#include "utils/helper.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
#include <fstream>
|
||||
@@ -25,6 +21,24 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
template <typename Torus>
|
||||
__global__ void smart_copy(Torus *dst, Torus *src, int32_t *id_out,
|
||||
int32_t *id_in, size_t lwe_size) {
|
||||
size_t tid = threadIdx.x;
|
||||
size_t b_id = blockIdx.x;
|
||||
size_t stride = blockDim.x;
|
||||
|
||||
auto input_id = id_in[b_id];
|
||||
auto output_id = id_out[b_id];
|
||||
|
||||
auto cur_src = (input_id >= 0) ? &src[input_id * lwe_size] : nullptr;
|
||||
auto cur_dst = &dst[output_id * lwe_size];
|
||||
|
||||
for (int i = tid; i < lwe_size; i += stride) {
|
||||
cur_dst[i] = (input_id >= 0) ? cur_src[i] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus, class params>
|
||||
__global__ void
|
||||
all_shifted_lhs_rhs(Torus *radix_lwe_left, Torus *lsb_ciphertext,
|
||||
@@ -78,98 +92,37 @@ all_shifted_lhs_rhs(Torus *radix_lwe_left, Torus *lsb_ciphertext,
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
void compress_device_array_with_map(cuda_stream_t *stream, Torus *src,
|
||||
Torus *dst, int *S, int *F, int num_blocks,
|
||||
uint32_t map_size, uint32_t unit_size,
|
||||
int &total_copied, bool is_message) {
|
||||
for (int i = 0; i < map_size; i++) {
|
||||
int s_index = i * num_blocks + S[i];
|
||||
int number_of_unit = F[i] - S[i] + is_message;
|
||||
auto cur_dst = &dst[total_copied * unit_size];
|
||||
auto cur_src = &src[s_index * unit_size];
|
||||
size_t copy_size = unit_size * number_of_unit * sizeof(Torus);
|
||||
cuda_memcpy_async_gpu_to_gpu(cur_dst, cur_src, copy_size, stream);
|
||||
total_copied += number_of_unit;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
void extract_message_carry_to_full_radix(cuda_stream_t *stream, Torus *src,
|
||||
Torus *dst, int *S, int *F,
|
||||
uint32_t map_size, uint32_t unit_size,
|
||||
int &total_copied,
|
||||
int &total_radix_copied,
|
||||
int num_blocks, bool is_message) {
|
||||
size_t radix_size = unit_size * num_blocks;
|
||||
for (int i = 0; i < map_size; i++) {
|
||||
auto cur_dst_radix = &dst[total_radix_copied * radix_size];
|
||||
|
||||
int s_index = S[i];
|
||||
int number_of_unit = F[i] - s_index + is_message;
|
||||
|
||||
if (!is_message) {
|
||||
int zero_block_count = num_blocks - number_of_unit;
|
||||
cuda_memset_async(cur_dst_radix, 0,
|
||||
zero_block_count * unit_size * sizeof(Torus), stream);
|
||||
s_index = zero_block_count;
|
||||
}
|
||||
|
||||
auto cur_dst = &cur_dst_radix[s_index * unit_size];
|
||||
auto cur_src = &src[total_copied * unit_size];
|
||||
|
||||
size_t copy_size = unit_size * number_of_unit * sizeof(Torus);
|
||||
cuda_memcpy_async_gpu_to_gpu(cur_dst, cur_src, copy_size, stream);
|
||||
total_copied += number_of_unit;
|
||||
++total_radix_copied;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus, class params>
|
||||
__global__ void tree_add_chunks(Torus *result_blocks, Torus *input_blocks,
|
||||
uint32_t chunk_size, uint32_t num_blocks) {
|
||||
uint32_t chunk_size, uint32_t block_size,
|
||||
uint32_t num_blocks) {
|
||||
|
||||
extern __shared__ Torus result[];
|
||||
size_t stride = blockDim.x;
|
||||
size_t chunk_id = blockIdx.x;
|
||||
size_t chunk_elem_size = chunk_size * num_blocks * (params::degree + 1);
|
||||
size_t radix_elem_size = num_blocks * (params::degree + 1);
|
||||
size_t chunk_elem_size = chunk_size * num_blocks * block_size;
|
||||
size_t radix_elem_size = num_blocks * block_size;
|
||||
auto src_chunk = &input_blocks[chunk_id * chunk_elem_size];
|
||||
auto dst_radix = &result_blocks[chunk_id * radix_elem_size];
|
||||
size_t block_stride = blockIdx.y * (params::degree + 1);
|
||||
size_t block_stride = blockIdx.y * block_size;
|
||||
auto dst_block = &dst_radix[block_stride];
|
||||
|
||||
// init shared mem with first radix of chunk
|
||||
size_t tid = threadIdx.x;
|
||||
for (int i = 0; i < params::opt; i++) {
|
||||
result[tid] = src_chunk[block_stride + tid];
|
||||
tid += params::degree / params::opt;
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
result[params::degree] = src_chunk[block_stride + params::degree];
|
||||
for (int i = tid; i < block_size; i += stride) {
|
||||
result[i] = src_chunk[block_stride + i];
|
||||
}
|
||||
|
||||
// accumulate rest of the radixes
|
||||
for (int r_id = 1; r_id < chunk_size; r_id++) {
|
||||
auto cur_src_radix = &src_chunk[r_id * radix_elem_size];
|
||||
tid = threadIdx.x;
|
||||
for (int i = 0; i < params::opt; i++) {
|
||||
result[tid] += cur_src_radix[block_stride + tid];
|
||||
tid += params::degree / params::opt;
|
||||
}
|
||||
if (threadIdx.x == 0) {
|
||||
result[params::degree] += cur_src_radix[block_stride + params::degree];
|
||||
for (int i = tid; i < block_size; i += stride) {
|
||||
result[i] += cur_src_radix[block_stride + i];
|
||||
}
|
||||
}
|
||||
|
||||
// put result from shared mem to global mem
|
||||
tid = threadIdx.x;
|
||||
for (int i = 0; i < params::opt; i++) {
|
||||
dst_block[tid] = result[tid];
|
||||
tid += params::degree / params::opt;
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst_block[params::degree] = result[params::degree];
|
||||
for (int i = tid; i < block_size; i += stride) {
|
||||
dst_block[i] = result[i];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -220,6 +173,142 @@ __global__ void fill_radix_from_lsb_msb(Torus *result_blocks, Torus *lsb_blocks,
|
||||
(process_msb) ? cur_msb_ct[params::degree] : 0;
|
||||
}
|
||||
}
|
||||
template <typename Torus>
|
||||
__host__ void scratch_cuda_integer_sum_ciphertexts_vec_kb(
|
||||
cuda_stream_t *stream, int_sum_ciphertexts_vec_memory<Torus> **mem_ptr,
|
||||
uint32_t num_blocks_in_radix, uint32_t max_num_radix_in_vec,
|
||||
int_radix_params params, bool allocate_gpu_memory) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
size_t sm_size = (params.big_lwe_dimension + 1) * sizeof(Torus);
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
tree_add_chunks<Torus>, cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||
sm_size));
|
||||
cudaFuncSetCacheConfig(tree_add_chunks<Torus>, cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
*mem_ptr = new int_sum_ciphertexts_vec_memory<Torus>(
|
||||
stream, params, num_blocks_in_radix, max_num_radix_in_vec,
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
|
||||
template <typename Torus, class params>
|
||||
__host__ void host_integer_sum_ciphertexts_vec_kb(
|
||||
cuda_stream_t *stream, Torus *radix_lwe_out, Torus *terms,
|
||||
int *terms_degree, void *bsk, uint64_t *ksk,
|
||||
int_sum_ciphertexts_vec_memory<uint64_t> *mem_ptr,
|
||||
uint32_t num_blocks_in_radix, uint32_t num_radix_in_vec) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto new_blocks = mem_ptr->new_blocks;
|
||||
auto old_blocks = mem_ptr->old_blocks;
|
||||
auto small_lwe_vector = mem_ptr->small_lwe_vector;
|
||||
|
||||
auto luts_message_carry = mem_ptr->luts_message_carry;
|
||||
|
||||
auto lwe_indexes_in = luts_message_carry->lwe_indexes_in;
|
||||
auto lwe_indexes_out = luts_message_carry->lwe_indexes_out;
|
||||
|
||||
auto d_smart_copy_in = mem_ptr->d_smart_copy_in;
|
||||
auto d_smart_copy_out = mem_ptr->d_smart_copy_out;
|
||||
|
||||
auto message_modulus = mem_ptr->params.message_modulus;
|
||||
auto carry_modulus = mem_ptr->params.carry_modulus;
|
||||
auto num_blocks = num_blocks_in_radix;
|
||||
auto big_lwe_size = mem_ptr->params.big_lwe_dimension + 1;
|
||||
auto glwe_dimension = mem_ptr->params.glwe_dimension;
|
||||
auto polynomial_size = mem_ptr->params.polynomial_size;
|
||||
auto lwe_dimension = mem_ptr->params.small_lwe_dimension;
|
||||
auto big_lwe_dimension = mem_ptr->params.big_lwe_dimension;
|
||||
|
||||
if (old_blocks != terms) {
|
||||
cuda_memcpy_async_gpu_to_gpu(old_blocks, terms,
|
||||
num_blocks_in_radix * num_radix_in_vec *
|
||||
big_lwe_size * sizeof(Torus),
|
||||
stream);
|
||||
}
|
||||
|
||||
size_t r = num_radix_in_vec;
|
||||
size_t total_modulus = message_modulus * carry_modulus;
|
||||
size_t message_max = message_modulus - 1;
|
||||
size_t chunk_size = (total_modulus - 1) / message_max;
|
||||
|
||||
size_t h_lwe_idx_in[r * num_blocks];
|
||||
size_t h_lwe_idx_out[r * num_blocks];
|
||||
int32_t h_smart_copy_in[r * num_blocks];
|
||||
int32_t h_smart_copy_out[r * num_blocks];
|
||||
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(stream->gpu_index);
|
||||
|
||||
while (r > 2) {
|
||||
size_t cur_total_blocks = r * num_blocks;
|
||||
size_t ch_amount = r / chunk_size;
|
||||
if (!ch_amount)
|
||||
ch_amount++;
|
||||
dim3 add_grid(ch_amount, num_blocks, 1);
|
||||
size_t sm_size = big_lwe_size * sizeof(Torus);
|
||||
|
||||
tree_add_chunks<Torus><<<add_grid, 512, sm_size, stream->stream>>>(
|
||||
new_blocks, old_blocks, min(r, chunk_size), big_lwe_size, num_blocks);
|
||||
|
||||
size_t total_count = 0;
|
||||
size_t message_count = 0;
|
||||
size_t carry_count = 0;
|
||||
size_t sm_copy_count = 0;
|
||||
|
||||
generate_ids_update_degrees(
|
||||
terms_degree, h_lwe_idx_in, h_lwe_idx_out, h_smart_copy_in,
|
||||
h_smart_copy_out, ch_amount, r, num_blocks, chunk_size, message_max,
|
||||
total_count, message_count, carry_count, sm_copy_count);
|
||||
|
||||
size_t copy_size = total_count * sizeof(Torus);
|
||||
cuda_memcpy_async_to_gpu(lwe_indexes_in, h_lwe_idx_in, copy_size, stream);
|
||||
cuda_memcpy_async_to_gpu(lwe_indexes_out, h_lwe_idx_out, copy_size, stream);
|
||||
copy_size = sm_copy_count * sizeof(int32_t);
|
||||
cuda_memcpy_async_to_gpu(d_smart_copy_in, h_smart_copy_in, copy_size,
|
||||
stream);
|
||||
cuda_memcpy_async_to_gpu(d_smart_copy_out, h_smart_copy_out, copy_size,
|
||||
stream);
|
||||
|
||||
smart_copy<<<sm_copy_count, 256, 0, stream->stream>>>(
|
||||
new_blocks, new_blocks, d_smart_copy_out, d_smart_copy_in,
|
||||
big_lwe_size);
|
||||
|
||||
if (carry_count > 0)
|
||||
cuda_set_value_async<Torus>(
|
||||
&(stream->stream), luts_message_carry->get_lut_indexes(message_count),
|
||||
1, carry_count);
|
||||
|
||||
cuda_keyswitch_lwe_ciphertext_vector(
|
||||
stream, small_lwe_vector, lwe_indexes_in, new_blocks, lwe_indexes_in,
|
||||
ksk, polynomial_size * glwe_dimension, lwe_dimension,
|
||||
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level, message_count);
|
||||
|
||||
execute_pbs<Torus>(
|
||||
stream, new_blocks, lwe_indexes_out, luts_message_carry->lut,
|
||||
luts_message_carry->lut_indexes, small_lwe_vector, lwe_indexes_in, bsk,
|
||||
luts_message_carry->buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, mem_ptr->params.pbs_base_log,
|
||||
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor, total_count,
|
||||
2, 0, max_shared_memory, mem_ptr->params.pbs_type);
|
||||
|
||||
int rem_blocks = (r > chunk_size) ? r % chunk_size * num_blocks : 0;
|
||||
int new_blocks_created = 2 * ch_amount * num_blocks;
|
||||
copy_size = rem_blocks * big_lwe_size * sizeof(Torus);
|
||||
|
||||
auto cur_dst = &new_blocks[new_blocks_created * big_lwe_size];
|
||||
auto cur_src = &old_blocks[(cur_total_blocks - rem_blocks) * big_lwe_size];
|
||||
cuda_memcpy_async_gpu_to_gpu(cur_dst, cur_src, copy_size, stream);
|
||||
std::swap(new_blocks, old_blocks);
|
||||
r = (new_blocks_created + rem_blocks) / num_blocks;
|
||||
}
|
||||
|
||||
host_addition(stream, radix_lwe_out, old_blocks,
|
||||
&old_blocks[num_blocks * big_lwe_size], big_lwe_dimension,
|
||||
num_blocks);
|
||||
|
||||
host_propagate_single_carry<Torus>(stream, radix_lwe_out, mem_ptr->scp_mem,
|
||||
bsk, ksk, num_blocks);
|
||||
}
|
||||
|
||||
template <typename Torus, typename STorus, class params>
|
||||
__host__ void host_integer_mult_radix_kb(
|
||||
@@ -227,6 +316,7 @@ __host__ void host_integer_mult_radix_kb(
|
||||
uint64_t *radix_lwe_right, void *bsk, uint64_t *ksk,
|
||||
int_mul_memory<Torus> *mem_ptr, uint32_t num_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto glwe_dimension = mem_ptr->params.glwe_dimension;
|
||||
auto polynomial_size = mem_ptr->params.polynomial_size;
|
||||
auto lwe_dimension = mem_ptr->params.small_lwe_dimension;
|
||||
@@ -234,7 +324,6 @@ __host__ void host_integer_mult_radix_kb(
|
||||
auto carry_modulus = mem_ptr->params.carry_modulus;
|
||||
|
||||
int big_lwe_dimension = glwe_dimension * polynomial_size;
|
||||
int big_lwe_size = big_lwe_dimension + 1;
|
||||
|
||||
// 'vector_result_lsb' contains blocks from all possible right shifts of
|
||||
// radix_lwe_left, only nonzero blocks are kept
|
||||
@@ -277,26 +366,10 @@ __host__ void host_integer_mult_radix_kb(
|
||||
// lwe_dimension +1 coefficients
|
||||
auto small_lwe_vector = mem_ptr->small_lwe_vector;
|
||||
|
||||
// buffer to keep pbs result for num_blocks^2 lwe_ciphertext
|
||||
// in total it has num_blocks^2 big lwe ciphertexts with
|
||||
// glwe_dimension * polynomial_size + 1 coefficients
|
||||
auto lwe_pbs_out_array = mem_ptr->lwe_pbs_out_array;
|
||||
|
||||
// it contains two test vector, first for lsb extraction,
|
||||
// it contains two lut, first for lsb extraction,
|
||||
// second for msb extraction, with total length =
|
||||
// 2 * (glwe_dimension + 1) * polynomial_size
|
||||
auto test_vector_array = mem_ptr->test_vector_array;
|
||||
|
||||
// accumulator to extract message
|
||||
// with length (glwe_dimension + 1) * polynomial_size
|
||||
auto test_vector_message = mem_ptr->test_vector_message;
|
||||
|
||||
// accumulator to extract carry
|
||||
// with length (glwe_dimension + 1) * polynomial_size
|
||||
auto test_vector_carry = mem_ptr->test_vector_carry;
|
||||
|
||||
// to be used as default indexing
|
||||
auto lwe_indexes = test_vector_array->lwe_indexes;
|
||||
auto luts_array = mem_ptr->luts_array;
|
||||
|
||||
auto vector_result_lsb = &vector_result_sb[0];
|
||||
auto vector_result_msb =
|
||||
@@ -316,7 +389,7 @@ __host__ void host_integer_mult_radix_kb(
|
||||
|
||||
integer_radix_apply_bivariate_lookup_table_kb<Torus>(
|
||||
stream, block_mul_res, block_mul_res, vector_result_sb, bsk, ksk,
|
||||
total_block_count, test_vector_array);
|
||||
total_block_count, luts_array);
|
||||
|
||||
vector_result_lsb = &block_mul_res[0];
|
||||
vector_result_msb = &block_mul_res[lsb_vector_block_count *
|
||||
@@ -329,144 +402,22 @@ __host__ void host_integer_mult_radix_kb(
|
||||
lsb_vector_block_count, msb_vector_block_count,
|
||||
num_blocks);
|
||||
|
||||
auto new_blocks = block_mul_res;
|
||||
auto old_blocks = vector_result_sb;
|
||||
|
||||
// amount of current radixes after block_mul
|
||||
size_t r = 2 * num_blocks;
|
||||
|
||||
size_t total_modulus = message_modulus * carry_modulus;
|
||||
size_t message_max = message_modulus - 1;
|
||||
size_t chunk_size = (total_modulus - 1) / message_max;
|
||||
size_t ch_amount = r / chunk_size;
|
||||
|
||||
int terms_degree[r * num_blocks];
|
||||
int f_b[ch_amount];
|
||||
int l_b[ch_amount];
|
||||
|
||||
int terms_degree[2 * num_blocks * num_blocks];
|
||||
for (int i = 0; i < num_blocks * num_blocks; i++) {
|
||||
size_t r_id = i / num_blocks;
|
||||
size_t b_id = i % num_blocks;
|
||||
terms_degree[i] = (b_id >= r_id) ? 3 : 0;
|
||||
terms_degree[i] = (b_id >= r_id) ? message_modulus - 1 : 0;
|
||||
}
|
||||
auto terms_degree_msb = &terms_degree[num_blocks * num_blocks];
|
||||
for (int i = 0; i < num_blocks * num_blocks; i++) {
|
||||
size_t r_id = i / num_blocks;
|
||||
size_t b_id = i % num_blocks;
|
||||
terms_degree_msb[i] = (b_id > r_id) ? 2 : 0;
|
||||
terms_degree_msb[i] = (b_id > r_id) ? message_modulus - 2 : 0;
|
||||
}
|
||||
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(stream->gpu_index);
|
||||
while (r > chunk_size) {
|
||||
int cur_total_blocks = r * num_blocks;
|
||||
ch_amount = r / chunk_size;
|
||||
dim3 add_grid(ch_amount, num_blocks, 1);
|
||||
size_t sm_size = big_lwe_size * sizeof(Torus);
|
||||
cuda_memset_async(new_blocks, 0,
|
||||
ch_amount * num_blocks * big_lwe_size * sizeof(Torus),
|
||||
stream);
|
||||
|
||||
tree_add_chunks<Torus, params><<<add_grid, 256, sm_size, stream->stream>>>(
|
||||
new_blocks, old_blocks, chunk_size, num_blocks);
|
||||
|
||||
for (int c_id = 0; c_id < ch_amount; c_id++) {
|
||||
auto cur_chunk = &terms_degree[c_id * chunk_size * num_blocks];
|
||||
int mx = 0;
|
||||
int mn = num_blocks;
|
||||
for (int r_id = 1; r_id < chunk_size; r_id++) {
|
||||
auto cur_radix = &cur_chunk[r_id * num_blocks];
|
||||
for (int i = 0; i < num_blocks; i++) {
|
||||
if (cur_radix[i]) {
|
||||
mn = min(mn, i);
|
||||
mx = max(mx, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
f_b[c_id] = mn;
|
||||
l_b[c_id] = mx;
|
||||
}
|
||||
|
||||
int total_copied = 0;
|
||||
int message_count = 0;
|
||||
int carry_count = 0;
|
||||
compress_device_array_with_map<Torus>(stream, new_blocks, old_blocks, f_b,
|
||||
l_b, num_blocks, ch_amount,
|
||||
big_lwe_size, total_copied, true);
|
||||
|
||||
message_count = total_copied;
|
||||
compress_device_array_with_map<Torus>(stream, new_blocks, old_blocks, f_b,
|
||||
l_b, num_blocks, ch_amount,
|
||||
big_lwe_size, total_copied, false);
|
||||
carry_count = total_copied - message_count;
|
||||
|
||||
auto message_blocks_vector = old_blocks;
|
||||
auto carry_blocks_vector =
|
||||
&old_blocks[message_count * (glwe_dimension * polynomial_size + 1)];
|
||||
|
||||
cuda_keyswitch_lwe_ciphertext_vector(
|
||||
stream, small_lwe_vector, lwe_indexes, old_blocks, lwe_indexes, ksk,
|
||||
polynomial_size * glwe_dimension, lwe_dimension,
|
||||
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level, total_copied);
|
||||
|
||||
execute_pbs<Torus>(
|
||||
stream, message_blocks_vector, lwe_indexes, test_vector_message->lut,
|
||||
test_vector_message->lut_indexes, small_lwe_vector, lwe_indexes, bsk,
|
||||
test_vector_message->pbs_buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, mem_ptr->params.pbs_base_log,
|
||||
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
|
||||
message_count, 1, 0, max_shared_memory, mem_ptr->params.pbs_type);
|
||||
|
||||
execute_pbs<Torus>(stream, carry_blocks_vector, lwe_indexes,
|
||||
test_vector_carry->lut, test_vector_carry->lut_indexes,
|
||||
&small_lwe_vector[message_count * (lwe_dimension + 1)],
|
||||
lwe_indexes, bsk, test_vector_carry->pbs_buffer,
|
||||
glwe_dimension, lwe_dimension, polynomial_size,
|
||||
mem_ptr->params.pbs_base_log, mem_ptr->params.pbs_level,
|
||||
mem_ptr->params.grouping_factor, carry_count, 1, 0,
|
||||
max_shared_memory, mem_ptr->params.pbs_type);
|
||||
|
||||
int rem_blocks = r % chunk_size * num_blocks;
|
||||
int new_blocks_created = 2 * ch_amount * num_blocks;
|
||||
int copy_size = rem_blocks * big_lwe_size * sizeof(Torus);
|
||||
|
||||
auto cur_dst = &new_blocks[new_blocks_created * big_lwe_size];
|
||||
auto cur_src = &old_blocks[(cur_total_blocks - rem_blocks) * big_lwe_size];
|
||||
cuda_memcpy_async_gpu_to_gpu(cur_dst, cur_src, copy_size, stream);
|
||||
|
||||
total_copied = 0;
|
||||
int total_radix_copied = 0;
|
||||
extract_message_carry_to_full_radix<Torus>(
|
||||
stream, old_blocks, new_blocks, f_b, l_b, ch_amount, big_lwe_size,
|
||||
total_copied, total_radix_copied, num_blocks, true);
|
||||
extract_message_carry_to_full_radix<Torus>(
|
||||
stream, old_blocks, new_blocks, f_b, l_b, ch_amount, big_lwe_size,
|
||||
total_copied, total_radix_copied, num_blocks, false);
|
||||
|
||||
std::swap(new_blocks, old_blocks);
|
||||
r = (new_blocks_created + rem_blocks) / num_blocks;
|
||||
}
|
||||
|
||||
dim3 add_grid(1, num_blocks, 1);
|
||||
size_t sm_size = big_lwe_size * sizeof(Torus);
|
||||
cuda_memset_async(radix_lwe_out, 0, num_blocks * big_lwe_size * sizeof(Torus),
|
||||
stream);
|
||||
tree_add_chunks<Torus, params><<<add_grid, 256, sm_size, stream->stream>>>(
|
||||
radix_lwe_out, old_blocks, r, num_blocks);
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, vector_result_sb, radix_lwe_out, bsk, ksk, num_blocks,
|
||||
test_vector_message);
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, &block_mul_res[big_lwe_size], radix_lwe_out, bsk, ksk, num_blocks,
|
||||
test_vector_carry);
|
||||
|
||||
cuda_memset_async(block_mul_res, 0, big_lwe_size * sizeof(Torus), stream);
|
||||
|
||||
host_addition(stream, radix_lwe_out, vector_result_sb, block_mul_res,
|
||||
big_lwe_size, num_blocks);
|
||||
|
||||
host_propagate_single_carry_low_latency<Torus>(
|
||||
stream, radix_lwe_out, mem_ptr->scp_mem, bsk, ksk, num_blocks);
|
||||
host_integer_sum_ciphertexts_vec_kb<Torus, params>(
|
||||
stream, radix_lwe_out, vector_result_sb, terms_degree, bsk, ksk,
|
||||
mem_ptr->sum_ciphertexts_mem, num_blocks, 2 * num_blocks);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
@@ -474,166 +425,16 @@ __host__ void scratch_cuda_integer_mult_radix_ciphertext_kb(
|
||||
cuda_stream_t *stream, int_mul_memory<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params,
|
||||
bool allocate_gpu_memory) {
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
size_t sm_size = (params.big_lwe_dimension + 1) * sizeof(Torus);
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
tree_add_chunks<Torus>, cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||
sm_size));
|
||||
cudaFuncSetCacheConfig(tree_add_chunks<Torus>, cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
*mem_ptr = new int_mul_memory<Torus>(stream, params, num_radix_blocks,
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
|
||||
// Function to apply lookup table,
|
||||
// It has two mode
|
||||
// lsb_msb_mode == true - extracts lsb and msb
|
||||
// lsb_msb_mode == false - extracts message and carry
|
||||
template <typename Torus, typename STorus, class params>
|
||||
void apply_lookup_table(Torus *input_ciphertexts, Torus *output_ciphertexts,
|
||||
int_mul_memory<Torus> *mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t lwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t pbs_base_log, uint32_t pbs_level,
|
||||
uint32_t ks_base_log, uint32_t ks_level,
|
||||
uint32_t grouping_factor,
|
||||
uint32_t lsb_message_blocks_count,
|
||||
uint32_t msb_carry_blocks_count,
|
||||
uint32_t max_shared_memory, bool lsb_msb_mode) {
|
||||
|
||||
int total_blocks_count = lsb_message_blocks_count + msb_carry_blocks_count;
|
||||
int gpu_n = mem_ptr->p2p_gpu_count;
|
||||
if (total_blocks_count < gpu_n)
|
||||
gpu_n = total_blocks_count;
|
||||
int gpu_blocks_count = total_blocks_count / gpu_n;
|
||||
int big_lwe_size = glwe_dimension * polynomial_size + 1;
|
||||
// int small_lwe_size = lwe_dimension + 1;
|
||||
|
||||
#pragma omp parallel for num_threads(gpu_n)
|
||||
for (int i = 0; i < gpu_n; i++) {
|
||||
cudaSetDevice(i);
|
||||
auto this_stream = mem_ptr->streams[i];
|
||||
// Index where input and output blocks start for current gpu
|
||||
int big_lwe_start_index = i * gpu_blocks_count * big_lwe_size;
|
||||
|
||||
// Last gpu might have extra blocks to process if total blocks number is not
|
||||
// divisible by gpu_n
|
||||
if (i == gpu_n - 1) {
|
||||
gpu_blocks_count += total_blocks_count % gpu_n;
|
||||
}
|
||||
|
||||
int can_access_peer;
|
||||
cudaDeviceCanAccessPeer(&can_access_peer, i, 0);
|
||||
if (i == 0) {
|
||||
check_cuda_error(
|
||||
cudaMemcpyAsync(mem_ptr->pbs_output_multi_gpu[i],
|
||||
&input_ciphertexts[big_lwe_start_index],
|
||||
gpu_blocks_count * big_lwe_size * sizeof(Torus),
|
||||
cudaMemcpyDeviceToDevice, *this_stream));
|
||||
} else if (can_access_peer) {
|
||||
check_cuda_error(cudaMemcpyPeerAsync(
|
||||
mem_ptr->pbs_output_multi_gpu[i], i,
|
||||
&input_ciphertexts[big_lwe_start_index], 0,
|
||||
gpu_blocks_count * big_lwe_size * sizeof(Torus), *this_stream));
|
||||
} else {
|
||||
// Uses host memory as middle ground
|
||||
cuda_memcpy_async_to_cpu(mem_ptr->device_to_device_buffer[i],
|
||||
&input_ciphertexts[big_lwe_start_index],
|
||||
gpu_blocks_count * big_lwe_size * sizeof(Torus),
|
||||
this_stream, i);
|
||||
cuda_memcpy_async_to_gpu(
|
||||
mem_ptr->pbs_output_multi_gpu[i], mem_ptr->device_to_device_buffer[i],
|
||||
gpu_blocks_count * big_lwe_size * sizeof(Torus), this_stream, i);
|
||||
}
|
||||
|
||||
// when lsb and msb have to be extracted
|
||||
// for first lsb_count blocks we need lsb_acc
|
||||
// for last msb_count blocks we need msb_acc
|
||||
// when message and carry have tobe extracted
|
||||
// for first message_count blocks we need message_acc
|
||||
// for last carry_count blocks we need carry_acc
|
||||
Torus *cur_tvi;
|
||||
if (lsb_msb_mode) {
|
||||
cur_tvi = (big_lwe_start_index < lsb_message_blocks_count)
|
||||
? mem_ptr->tvi_lsb_multi_gpu[i]
|
||||
: mem_ptr->tvi_msb_multi_gpu[i];
|
||||
|
||||
} else {
|
||||
cur_tvi = (big_lwe_start_index < lsb_message_blocks_count)
|
||||
? mem_ptr->tvi_message_multi_gpu[i]
|
||||
: mem_ptr->tvi_carry_multi_gpu[i];
|
||||
}
|
||||
|
||||
// execute keyswitch on a current gpu with corresponding input and output
|
||||
// blocks pbs_output_multi_gpu[i] is an input for keyswitch and
|
||||
// pbs_input_multi_gpu[i] is an output for keyswitch
|
||||
cuda_keyswitch_lwe_ciphertext_vector(
|
||||
this_stream, i, mem_ptr->pbs_input_multi_gpu[i],
|
||||
mem_ptr->pbs_output_multi_gpu[i], mem_ptr->ksk_multi_gpu[i],
|
||||
polynomial_size * glwe_dimension, lwe_dimension, ks_base_log, ks_level,
|
||||
gpu_blocks_count);
|
||||
|
||||
// execute pbs on a current gpu with corresponding input and output
|
||||
cuda_multi_bit_pbs_lwe_ciphertext_vector_64(
|
||||
this_stream, i, mem_ptr->pbs_output_multi_gpu[i],
|
||||
mem_ptr->test_vector_multi_gpu[i], cur_tvi,
|
||||
mem_ptr->pbs_input_multi_gpu[i], mem_ptr->bsk_multi_gpu[i],
|
||||
mem_ptr->pbs_buffer_multi_gpu[i], lwe_dimension, glwe_dimension,
|
||||
polynomial_size, grouping_factor, pbs_base_log, pbs_level,
|
||||
grouping_factor, gpu_blocks_count, 2, 0, max_shared_memory);
|
||||
|
||||
// lookup table is applied and now data from current gpu have to be copied
|
||||
// back to gpu_0 in 'output_ciphertexts' buffer
|
||||
if (i == 0) {
|
||||
check_cuda_error(
|
||||
cudaMemcpyAsync(&output_ciphertexts[big_lwe_start_index],
|
||||
mem_ptr->pbs_output_multi_gpu[i],
|
||||
gpu_blocks_count * big_lwe_size * sizeof(Torus),
|
||||
cudaMemcpyDeviceToDevice, *this_stream));
|
||||
} else if (can_access_peer) {
|
||||
check_cuda_error(cudaMemcpyPeerAsync(
|
||||
&output_ciphertexts[big_lwe_start_index], 0,
|
||||
mem_ptr->pbs_output_multi_gpu[i], i,
|
||||
gpu_blocks_count * big_lwe_size * sizeof(Torus), *this_stream));
|
||||
} else {
|
||||
// Uses host memory as middle ground
|
||||
cuda_memcpy_async_to_cpu(
|
||||
mem_ptr->device_to_device_buffer[i], mem_ptr->pbs_output_multi_gpu[i],
|
||||
gpu_blocks_count * big_lwe_size * sizeof(Torus), this_stream, i);
|
||||
cuda_memcpy_async_to_gpu(&output_ciphertexts[big_lwe_start_index],
|
||||
mem_ptr->device_to_device_buffer[i],
|
||||
gpu_blocks_count * big_lwe_size * sizeof(Torus),
|
||||
this_stream, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void device_small_scalar_radix_multiplication(T *output_lwe_array,
|
||||
T *input_lwe_array,
|
||||
T scalar,
|
||||
uint32_t lwe_dimension,
|
||||
uint32_t num_blocks) {
|
||||
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int lwe_size = lwe_dimension + 1;
|
||||
if (index < num_blocks * lwe_size) {
|
||||
// Here we take advantage of the wrapping behaviour of uint
|
||||
output_lwe_array[index] = input_lwe_array[index] * scalar;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__host__ void host_integer_small_scalar_mult_radix(
|
||||
cuda_stream_t *stream, T *output_lwe_array, T *input_lwe_array, T scalar,
|
||||
uint32_t input_lwe_dimension, uint32_t input_lwe_ciphertext_count) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
// lwe_size includes the presence of the body
|
||||
// whereas lwe_dimension is the number of elements in the mask
|
||||
int lwe_size = input_lwe_dimension + 1;
|
||||
// Create a 1-dimensional grid of threads
|
||||
int num_blocks = 0, num_threads = 0;
|
||||
int num_entries = input_lwe_ciphertext_count * lwe_size;
|
||||
getNumBlocksAndThreads(num_entries, 512, num_blocks, num_threads);
|
||||
dim3 grid(num_blocks, 1, 1);
|
||||
dim3 thds(num_threads, 1, 1);
|
||||
|
||||
device_small_scalar_radix_multiplication<<<grid, thds, 0, stream->stream>>>(
|
||||
output_lwe_array, input_lwe_array, scalar, input_lwe_dimension,
|
||||
input_lwe_ciphertext_count);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -10,3 +10,91 @@ void cuda_negate_integer_radix_ciphertext_64_inplace(
|
||||
lwe_ciphertext_count, message_modulus,
|
||||
carry_modulus);
|
||||
}
|
||||
|
||||
void scratch_cuda_integer_radix_overflowing_sub_kb_64(
|
||||
cuda_stream_t *stream, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t big_lwe_dimension,
|
||||
uint32_t small_lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, bool allocate_gpu_memory) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
big_lwe_dimension, small_lwe_dimension, ks_level,
|
||||
ks_base_log, pbs_level, pbs_base_log, grouping_factor,
|
||||
message_modulus, carry_modulus);
|
||||
|
||||
scratch_cuda_integer_overflowing_sub_kb<uint64_t>(
|
||||
stream, (int_overflowing_sub_memory<uint64_t> **)mem_ptr, num_blocks,
|
||||
params, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_integer_radix_overflowing_sub_kb_64(
|
||||
cuda_stream_t *stream, void *radix_lwe_out, void *radix_lwe_overflowed,
|
||||
void *radix_lwe_left, void *radix_lwe_right, int8_t *mem_ptr, void *bsk,
|
||||
void *ksk, uint32_t num_blocks) {
|
||||
|
||||
auto mem = (int_overflowing_sub_memory<uint64_t> *)mem_ptr;
|
||||
|
||||
switch (mem->params.polynomial_size) {
|
||||
case 512:
|
||||
host_integer_overflowing_sub_kb<uint64_t, AmortizedDegree<512>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_overflowed),
|
||||
static_cast<uint64_t *>(radix_lwe_left),
|
||||
static_cast<uint64_t *>(radix_lwe_right), bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks);
|
||||
break;
|
||||
case 1024:
|
||||
host_integer_overflowing_sub_kb<uint64_t, AmortizedDegree<1024>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_overflowed),
|
||||
static_cast<uint64_t *>(radix_lwe_left),
|
||||
static_cast<uint64_t *>(radix_lwe_right), bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks);
|
||||
break;
|
||||
case 2048:
|
||||
host_integer_overflowing_sub_kb<uint64_t, AmortizedDegree<2048>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_overflowed),
|
||||
static_cast<uint64_t *>(radix_lwe_left),
|
||||
static_cast<uint64_t *>(radix_lwe_right), bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks);
|
||||
break;
|
||||
case 4096:
|
||||
host_integer_overflowing_sub_kb<uint64_t, AmortizedDegree<4096>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_overflowed),
|
||||
static_cast<uint64_t *>(radix_lwe_left),
|
||||
static_cast<uint64_t *>(radix_lwe_right), bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks);
|
||||
break;
|
||||
case 8192:
|
||||
host_integer_overflowing_sub_kb<uint64_t, AmortizedDegree<8192>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_overflowed),
|
||||
static_cast<uint64_t *>(radix_lwe_left),
|
||||
static_cast<uint64_t *>(radix_lwe_right), bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks);
|
||||
break;
|
||||
case 16384:
|
||||
host_integer_overflowing_sub_kb<uint64_t, AmortizedDegree<16384>>(
|
||||
stream, static_cast<uint64_t *>(radix_lwe_out),
|
||||
static_cast<uint64_t *>(radix_lwe_overflowed),
|
||||
static_cast<uint64_t *>(radix_lwe_left),
|
||||
static_cast<uint64_t *>(radix_lwe_right), bsk,
|
||||
static_cast<uint64_t *>(ksk), mem, num_blocks);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (integer overflowing sub): unsupported polynomial size. "
|
||||
"Only N = 512, 1024, 2048, 4096, 8192, 16384 is supported")
|
||||
}
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_overflowing_sub(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
int_overflowing_sub_memory<uint64_t> *mem_ptr =
|
||||
(int_overflowing_sub_memory<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release(stream);
|
||||
}
|
||||
|
||||
@@ -6,9 +6,20 @@
|
||||
#include <cuda_runtime.h>
|
||||
#endif
|
||||
|
||||
#include "crypto/keyswitch.cuh"
|
||||
#include "device.h"
|
||||
#include "integer.h"
|
||||
#include "integer/integer.cuh"
|
||||
#include "linear_algebra.h"
|
||||
#include "programmable_bootstrap.h"
|
||||
#include "utils/helper.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <omp.h>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
template <typename Torus>
|
||||
__global__ void
|
||||
@@ -76,4 +87,32 @@ __host__ void host_integer_radix_negation(cuda_stream_t *stream, Torus *output,
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void scratch_cuda_integer_overflowing_sub_kb(
|
||||
cuda_stream_t *stream, int_overflowing_sub_memory<Torus> **mem_ptr,
|
||||
uint32_t num_blocks, int_radix_params params, bool allocate_gpu_memory) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
*mem_ptr = new int_overflowing_sub_memory<Torus>(stream, params, num_blocks,
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
|
||||
template <typename Torus, class params>
|
||||
__host__ void host_integer_overflowing_sub_kb(
|
||||
cuda_stream_t *stream, Torus *radix_lwe_out, Torus *radix_lwe_overflowed,
|
||||
Torus *radix_lwe_left, Torus *radix_lwe_right, void *bsk, uint64_t *ksk,
|
||||
int_overflowing_sub_memory<uint64_t> *mem_ptr, uint32_t num_blocks) {
|
||||
|
||||
auto radix_params = mem_ptr->params;
|
||||
|
||||
host_unchecked_sub_with_correcting_term(
|
||||
stream, radix_lwe_out, radix_lwe_left, radix_lwe_right,
|
||||
radix_params.big_lwe_dimension, num_blocks, radix_params.message_modulus,
|
||||
radix_params.carry_modulus, radix_params.message_modulus - 1);
|
||||
|
||||
host_propagate_single_sub_borrow<Torus>(
|
||||
stream, radix_lwe_overflowed, radix_lwe_out, mem_ptr->borrow_prop_mem,
|
||||
bsk, ksk, num_blocks);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -11,6 +11,7 @@ __host__ void host_integer_radix_scalar_bitop_kb(
|
||||
int_bitop_buffer<Torus> *mem_ptr, void *bsk, Torus *ksk,
|
||||
uint32_t num_radix_blocks, BITOP_TYPE op) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto lut = mem_ptr->lut;
|
||||
auto params = lut->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
@@ -19,7 +20,6 @@ __host__ void host_integer_radix_scalar_bitop_kb(
|
||||
|
||||
if (num_clear_blocks == 0) {
|
||||
if (op == SCALAR_BITAND) {
|
||||
auto lwe_array_out_block = lwe_array_out + num_clear_blocks * lwe_size;
|
||||
cuda_memset_async(lwe_array_out, 0,
|
||||
num_radix_blocks * lwe_size * sizeof(Torus), stream);
|
||||
} else {
|
||||
@@ -28,7 +28,6 @@ __host__ void host_integer_radix_scalar_bitop_kb(
|
||||
stream);
|
||||
}
|
||||
} else {
|
||||
auto lut_buffer = lut->lut;
|
||||
// We have all possible LUTs pre-computed and we use the decomposed scalar
|
||||
// as index to recover the right one
|
||||
cuda_memcpy_async_gpu_to_gpu(lut->lut_indexes, clear_blocks,
|
||||
@@ -38,7 +37,7 @@ __host__ void host_integer_radix_scalar_bitop_kb(
|
||||
stream, lwe_array_out, lwe_array_input, bsk, ksk, num_clear_blocks,
|
||||
lut);
|
||||
|
||||
if (op == SCALAR_BITAND) {
|
||||
if (op == SCALAR_BITAND && num_clear_blocks < num_radix_blocks) {
|
||||
auto lwe_array_out_block = lwe_array_out + num_clear_blocks * lwe_size;
|
||||
cuda_memset_async(lwe_array_out_block, 0,
|
||||
(num_radix_blocks - num_clear_blocks) * lwe_size *
|
||||
|
||||
@@ -8,17 +8,14 @@ void cuda_scalar_comparison_integer_radix_ciphertext_kb_64(
|
||||
int_comparison_buffer<uint64_t> *buffer =
|
||||
(int_comparison_buffer<uint64_t> *)mem_ptr;
|
||||
switch (buffer->op) {
|
||||
// case EQ:
|
||||
// case NE:
|
||||
// host_integer_radix_equality_check_kb<uint64_t>(
|
||||
// stream, static_cast<uint64_t *>(lwe_array_out),
|
||||
// static_cast<uint64_t *>(lwe_array_1),
|
||||
// static_cast<uint64_t *>(lwe_array_2), buffer, bsk,
|
||||
// static_cast<uint64_t *>(ksk), glwe_dimension, polynomial_size,
|
||||
// big_lwe_dimension, small_lwe_dimension, ks_level, ks_base_log,
|
||||
// pbs_level, pbs_base_log, grouping_factor, lwe_ciphertext_count,
|
||||
// message_modulus, carry_modulus);
|
||||
// break;
|
||||
case EQ:
|
||||
case NE:
|
||||
host_integer_radix_scalar_equality_check_kb<uint64_t>(
|
||||
stream, static_cast<uint64_t *>(lwe_array_out),
|
||||
static_cast<uint64_t *>(lwe_array_in),
|
||||
static_cast<uint64_t *>(scalar_blocks), buffer, bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_ciphertext_count, num_scalar_blocks);
|
||||
break;
|
||||
case GT:
|
||||
case GE:
|
||||
case LT:
|
||||
@@ -39,6 +36,6 @@ void cuda_scalar_comparison_integer_radix_ciphertext_kb_64(
|
||||
static_cast<uint64_t *>(ksk), lwe_ciphertext_count, num_scalar_blocks);
|
||||
break;
|
||||
default:
|
||||
printf("Not implemented\n");
|
||||
PANIC("Cuda error: integer operation not supported")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,12 +5,13 @@
|
||||
#include <omp.h>
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
__host__ void integer_radix_unsigned_scalar_difference_check_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
Torus *scalar_blocks, int_comparison_buffer<Torus> *mem_ptr,
|
||||
std::function<Torus(Torus)> sign_handler_f, void *bsk, Torus *ksk,
|
||||
uint32_t total_num_radix_blocks, uint32_t total_num_scalar_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
@@ -21,7 +22,6 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
auto diff_buffer = mem_ptr->diff_buffer;
|
||||
|
||||
size_t big_lwe_size = big_lwe_dimension + 1;
|
||||
size_t big_lwe_size_bytes = big_lwe_size * sizeof(Torus);
|
||||
|
||||
// Reducing the signs is the bottleneck of the comparison algorithms,
|
||||
// however if the scalar case there is an improvement:
|
||||
@@ -46,9 +46,9 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
if (total_num_scalar_blocks == 0) {
|
||||
// We only have to compare blocks with zero
|
||||
// means scalar is zero
|
||||
host_compare_with_zero_equality(stream, mem_ptr->tmp_lwe_array_out,
|
||||
lwe_array_in, mem_ptr, bsk, ksk,
|
||||
total_num_radix_blocks);
|
||||
host_compare_with_zero_equality(
|
||||
stream, mem_ptr->tmp_lwe_array_out, lwe_array_in, mem_ptr, bsk, ksk,
|
||||
total_num_radix_blocks, mem_ptr->is_zero_lut);
|
||||
|
||||
auto scalar_last_leaf_lut_f = [sign_handler_f](Torus x) -> Torus {
|
||||
x = (x == 1 ? IS_EQUAL : IS_SUPERIOR);
|
||||
@@ -64,12 +64,6 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, lwe_array_out, mem_ptr->tmp_lwe_array_out, bsk, ksk, 1, lut);
|
||||
|
||||
// The result will be in the two first block. Everything else is
|
||||
// garbage.
|
||||
cuda_memset_async(lwe_array_out + big_lwe_size, 0,
|
||||
big_lwe_size_bytes * (total_num_radix_blocks - 1),
|
||||
stream);
|
||||
|
||||
} else if (total_num_scalar_blocks < total_num_radix_blocks) {
|
||||
// We have to handle both part of the work described above
|
||||
|
||||
@@ -77,15 +71,14 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
uint32_t num_msb_radix_blocks =
|
||||
total_num_radix_blocks - num_lsb_radix_blocks;
|
||||
|
||||
auto lsb = lwe_array_in;
|
||||
auto msb = lwe_array_in + num_lsb_radix_blocks * big_lwe_size;
|
||||
|
||||
auto lwe_array_lsb_out = mem_ptr->tmp_lwe_array_out;
|
||||
auto lwe_array_msb_out = lwe_array_lsb_out + big_lwe_size;
|
||||
|
||||
cuda_synchronize_stream(stream);
|
||||
auto lsb_stream = diff_buffer->lsb_stream;
|
||||
auto msb_stream = diff_buffer->msb_stream;
|
||||
auto lsb_stream = mem_ptr->lsb_stream;
|
||||
auto msb_stream = mem_ptr->msb_stream;
|
||||
|
||||
#pragma omp parallel sections
|
||||
{
|
||||
@@ -120,7 +113,7 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
// final sign
|
||||
tree_sign_reduction(lsb_stream, lwe_array_lsb_out, comparisons,
|
||||
mem_ptr->diff_buffer->tree_buffer,
|
||||
mem_ptr->cleaning_lut_f, bsk, ksk,
|
||||
mem_ptr->identity_lut_f, bsk, ksk,
|
||||
num_lsb_radix_blocks);
|
||||
}
|
||||
#pragma omp section
|
||||
@@ -128,8 +121,8 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
//////////////
|
||||
// msb
|
||||
host_compare_with_zero_equality(msb_stream, lwe_array_msb_out, msb,
|
||||
mem_ptr, bsk, ksk,
|
||||
num_msb_radix_blocks);
|
||||
mem_ptr, bsk, ksk, num_msb_radix_blocks,
|
||||
mem_ptr->is_zero_lut);
|
||||
}
|
||||
}
|
||||
cuda_synchronize_stream(lsb_stream);
|
||||
@@ -155,10 +148,6 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
stream, lwe_array_out, lwe_array_lsb_out, lwe_array_msb_out, bsk, ksk,
|
||||
1, lut);
|
||||
|
||||
// The result will be in the first block. Everything else is garbage.
|
||||
cuda_memset_async(lwe_array_out + big_lwe_size, 0,
|
||||
(total_num_radix_blocks - 1) * big_lwe_size_bytes,
|
||||
stream);
|
||||
} else {
|
||||
// We only have to do the regular comparison
|
||||
// And not the part where we compare most significant blocks with zeros
|
||||
@@ -166,8 +155,6 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
uint32_t num_lsb_radix_blocks = total_num_radix_blocks;
|
||||
uint32_t num_scalar_blocks = total_num_scalar_blocks;
|
||||
|
||||
auto lsb = lwe_array_in;
|
||||
|
||||
Torus *lhs = diff_buffer->tmp_packed_left;
|
||||
Torus *rhs = diff_buffer->tmp_packed_right;
|
||||
|
||||
@@ -194,11 +181,344 @@ __host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
tree_sign_reduction(stream, lwe_array_out, comparisons,
|
||||
mem_ptr->diff_buffer->tree_buffer, sign_handler_f, bsk,
|
||||
ksk, num_lsb_radix_blocks);
|
||||
}
|
||||
}
|
||||
|
||||
// The result will be in the first block. Everything else is garbage.
|
||||
cuda_memset_async(lwe_array_out + big_lwe_size, 0,
|
||||
(total_num_radix_blocks - 1) * big_lwe_size_bytes,
|
||||
stream);
|
||||
template <typename Torus>
|
||||
__host__ void integer_radix_signed_scalar_difference_check_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
Torus *scalar_blocks, int_comparison_buffer<Torus> *mem_ptr,
|
||||
std::function<Torus(Torus)> sign_handler_f, void *bsk, Torus *ksk,
|
||||
uint32_t total_num_radix_blocks, uint32_t total_num_scalar_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
auto message_modulus = params.message_modulus;
|
||||
auto carry_modulus = params.carry_modulus;
|
||||
|
||||
auto diff_buffer = mem_ptr->diff_buffer;
|
||||
|
||||
size_t big_lwe_size = big_lwe_dimension + 1;
|
||||
|
||||
// Reducing the signs is the bottleneck of the comparison algorithms,
|
||||
// however if the scalar case there is an improvement:
|
||||
//
|
||||
// The idea is to reduce the number of signs block we have to
|
||||
// reduce. We can do that by splitting the comparison problem in two parts.
|
||||
//
|
||||
// - One part where we compute the signs block between the scalar with just
|
||||
// enough blocks
|
||||
// from the ciphertext that can represent the scalar value
|
||||
//
|
||||
// - The other part is to compare the ciphertext blocks not considered for the
|
||||
// sign
|
||||
// computation with zero, and create a single sign block from that.
|
||||
//
|
||||
// The smaller the scalar value is compared to the ciphertext num bits
|
||||
// encrypted, the more the comparisons with zeros we have to do, and the less
|
||||
// signs block we will have to reduce.
|
||||
//
|
||||
// This will create a speedup as comparing a bunch of blocks with 0
|
||||
// is faster
|
||||
if (total_num_scalar_blocks == 0) {
|
||||
// We only have to compare blocks with zero
|
||||
// means scalar is zero
|
||||
Torus *are_all_msb_zeros = mem_ptr->tmp_lwe_array_out;
|
||||
host_compare_with_zero_equality(stream, are_all_msb_zeros, lwe_array_in,
|
||||
mem_ptr, bsk, ksk, total_num_radix_blocks,
|
||||
mem_ptr->is_zero_lut);
|
||||
Torus *sign_block =
|
||||
lwe_array_in + (total_num_radix_blocks - 1) * big_lwe_size;
|
||||
|
||||
auto sign_bit_pos = (int)std::log2(message_modulus) - 1;
|
||||
|
||||
auto scalar_last_leaf_with_respect_to_zero_lut_f =
|
||||
[sign_handler_f, sign_bit_pos,
|
||||
message_modulus](Torus sign_block) -> Torus {
|
||||
sign_block %= message_modulus;
|
||||
int sign_bit_is_set = (sign_block >> sign_bit_pos) == 1;
|
||||
CMP_ORDERING sign_block_ordering;
|
||||
if (sign_bit_is_set) {
|
||||
sign_block_ordering = CMP_ORDERING::IS_INFERIOR;
|
||||
} else if (sign_block != 0) {
|
||||
sign_block_ordering = CMP_ORDERING::IS_SUPERIOR;
|
||||
} else {
|
||||
sign_block_ordering = CMP_ORDERING::IS_EQUAL;
|
||||
}
|
||||
|
||||
return sign_block_ordering;
|
||||
};
|
||||
|
||||
auto block_selector_f = mem_ptr->diff_buffer->tree_buffer->block_selector_f;
|
||||
auto scalar_bivariate_last_leaf_lut_f =
|
||||
[scalar_last_leaf_with_respect_to_zero_lut_f, sign_handler_f,
|
||||
block_selector_f](Torus are_all_zeros, Torus sign_block) -> Torus {
|
||||
// "re-code" are_all_zeros as an ordering value
|
||||
if (are_all_zeros == 1) {
|
||||
are_all_zeros = CMP_ORDERING::IS_EQUAL;
|
||||
} else {
|
||||
are_all_zeros = CMP_ORDERING::IS_SUPERIOR;
|
||||
};
|
||||
|
||||
return sign_handler_f(block_selector_f(
|
||||
scalar_last_leaf_with_respect_to_zero_lut_f(sign_block),
|
||||
are_all_zeros));
|
||||
};
|
||||
|
||||
auto lut = mem_ptr->diff_buffer->tree_buffer->tree_last_leaf_scalar_lut;
|
||||
generate_device_accumulator_bivariate<Torus>(
|
||||
stream, lut->lut, glwe_dimension, polynomial_size, message_modulus,
|
||||
carry_modulus, scalar_bivariate_last_leaf_lut_f);
|
||||
|
||||
integer_radix_apply_bivariate_lookup_table_kb(
|
||||
stream, lwe_array_out, are_all_msb_zeros, sign_block, bsk, ksk, 1, lut);
|
||||
|
||||
} else if (total_num_scalar_blocks < total_num_radix_blocks) {
|
||||
// We have to handle both part of the work described above
|
||||
// And the sign bit is located in the most_significant_blocks
|
||||
|
||||
uint32_t num_lsb_radix_blocks = total_num_scalar_blocks;
|
||||
uint32_t num_msb_radix_blocks =
|
||||
total_num_radix_blocks - num_lsb_radix_blocks;
|
||||
auto msb = lwe_array_in + num_lsb_radix_blocks * big_lwe_size;
|
||||
|
||||
auto lwe_array_lsb_out = mem_ptr->tmp_lwe_array_out;
|
||||
auto lwe_array_msb_out = lwe_array_lsb_out + big_lwe_size;
|
||||
|
||||
cuda_synchronize_stream(stream);
|
||||
auto lsb_stream = mem_ptr->lsb_stream;
|
||||
auto msb_stream = mem_ptr->msb_stream;
|
||||
|
||||
#pragma omp parallel sections
|
||||
{
|
||||
// Both sections may be executed in parallel
|
||||
#pragma omp section
|
||||
{
|
||||
//////////////
|
||||
// lsb
|
||||
Torus *lhs = diff_buffer->tmp_packed_left;
|
||||
Torus *rhs = diff_buffer->tmp_packed_right;
|
||||
|
||||
pack_blocks(lsb_stream, lhs, lwe_array_in, big_lwe_dimension,
|
||||
num_lsb_radix_blocks, message_modulus);
|
||||
pack_blocks(lsb_stream, rhs, scalar_blocks, 0, total_num_scalar_blocks,
|
||||
message_modulus);
|
||||
|
||||
// From this point we have half number of blocks
|
||||
num_lsb_radix_blocks /= 2;
|
||||
num_lsb_radix_blocks += (total_num_scalar_blocks % 2);
|
||||
|
||||
// comparisons will be assigned
|
||||
// - 0 if lhs < rhs
|
||||
// - 1 if lhs == rhs
|
||||
// - 2 if lhs > rhs
|
||||
|
||||
auto comparisons = mem_ptr->tmp_block_comparisons;
|
||||
scalar_compare_radix_blocks_kb(lsb_stream, comparisons, lhs, rhs,
|
||||
mem_ptr, bsk, ksk, num_lsb_radix_blocks);
|
||||
|
||||
// Reduces a vec containing radix blocks that encrypts a sign
|
||||
// (inferior, equal, superior) to one single radix block containing the
|
||||
// final sign
|
||||
tree_sign_reduction(lsb_stream, lwe_array_lsb_out, comparisons,
|
||||
mem_ptr->diff_buffer->tree_buffer,
|
||||
mem_ptr->identity_lut_f, bsk, ksk,
|
||||
num_lsb_radix_blocks);
|
||||
}
|
||||
#pragma omp section
|
||||
{
|
||||
//////////////
|
||||
// msb
|
||||
// We remove the last block (which is the sign)
|
||||
Torus *are_all_msb_zeros = lwe_array_msb_out;
|
||||
host_compare_with_zero_equality(msb_stream, are_all_msb_zeros, msb,
|
||||
mem_ptr, bsk, ksk, num_msb_radix_blocks,
|
||||
mem_ptr->is_zero_lut);
|
||||
|
||||
auto sign_bit_pos = (int)log2(message_modulus) - 1;
|
||||
|
||||
auto lut_f = [mem_ptr, sign_bit_pos](Torus sign_block,
|
||||
Torus msb_are_zeros) {
|
||||
bool sign_bit_is_set = (sign_block >> sign_bit_pos) == 1;
|
||||
CMP_ORDERING sign_block_ordering;
|
||||
if (sign_bit_is_set) {
|
||||
sign_block_ordering = CMP_ORDERING::IS_INFERIOR;
|
||||
} else if (sign_block != 0) {
|
||||
sign_block_ordering = CMP_ORDERING::IS_SUPERIOR;
|
||||
} else {
|
||||
sign_block_ordering = CMP_ORDERING::IS_EQUAL;
|
||||
}
|
||||
|
||||
CMP_ORDERING msb_ordering;
|
||||
if (msb_are_zeros == 1)
|
||||
msb_ordering = CMP_ORDERING::IS_EQUAL;
|
||||
else
|
||||
msb_ordering = CMP_ORDERING::IS_SUPERIOR;
|
||||
|
||||
return mem_ptr->diff_buffer->tree_buffer->block_selector_f(
|
||||
sign_block_ordering, msb_ordering);
|
||||
};
|
||||
|
||||
auto signed_msb_lut = mem_ptr->signed_msb_lut;
|
||||
generate_device_accumulator_bivariate<Torus>(
|
||||
msb_stream, signed_msb_lut->lut, params.glwe_dimension,
|
||||
params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, lut_f);
|
||||
|
||||
Torus *sign_block = msb + (num_msb_radix_blocks - 1) * big_lwe_size;
|
||||
integer_radix_apply_bivariate_lookup_table_kb(
|
||||
msb_stream, lwe_array_msb_out, sign_block, are_all_msb_zeros, bsk,
|
||||
ksk, 1, signed_msb_lut);
|
||||
}
|
||||
}
|
||||
cuda_synchronize_stream(lsb_stream);
|
||||
cuda_synchronize_stream(msb_stream);
|
||||
|
||||
//////////////
|
||||
// Reduce the two blocks into one final
|
||||
reduce_signs(stream, lwe_array_out, lwe_array_lsb_out, mem_ptr,
|
||||
sign_handler_f, bsk, ksk, 2);
|
||||
|
||||
} else {
|
||||
// We only have to do the regular comparison
|
||||
// And not the part where we compare most significant blocks with zeros
|
||||
// total_num_radix_blocks == total_num_scalar_blocks
|
||||
uint32_t num_lsb_radix_blocks = total_num_radix_blocks;
|
||||
|
||||
cuda_synchronize_stream(stream);
|
||||
auto lsb_stream = mem_ptr->lsb_stream;
|
||||
auto msb_stream = mem_ptr->msb_stream;
|
||||
|
||||
auto lwe_array_ct_out = mem_ptr->tmp_lwe_array_out;
|
||||
auto lwe_array_sign_out =
|
||||
lwe_array_ct_out + (num_lsb_radix_blocks / 2) * big_lwe_size;
|
||||
#pragma omp parallel sections
|
||||
{
|
||||
// Both sections may be executed in parallel
|
||||
#pragma omp section
|
||||
{
|
||||
Torus *lhs = diff_buffer->tmp_packed_left;
|
||||
Torus *rhs = diff_buffer->tmp_packed_right;
|
||||
|
||||
pack_blocks(lsb_stream, lhs, lwe_array_in, big_lwe_dimension,
|
||||
num_lsb_radix_blocks - 1, message_modulus);
|
||||
pack_blocks(lsb_stream, rhs, scalar_blocks, 0, num_lsb_radix_blocks - 1,
|
||||
message_modulus);
|
||||
|
||||
// From this point we have half number of blocks
|
||||
num_lsb_radix_blocks /= 2;
|
||||
|
||||
// comparisons will be assigned
|
||||
// - 0 if lhs < rhs
|
||||
// - 1 if lhs == rhs
|
||||
// - 2 if lhs > rhs
|
||||
scalar_compare_radix_blocks_kb(lsb_stream, lwe_array_ct_out, lhs, rhs,
|
||||
mem_ptr, bsk, ksk, num_lsb_radix_blocks);
|
||||
}
|
||||
#pragma omp section
|
||||
{
|
||||
Torus *encrypted_sign_block =
|
||||
lwe_array_in + (total_num_radix_blocks - 1) * big_lwe_size;
|
||||
Torus *scalar_sign_block =
|
||||
scalar_blocks + (total_num_scalar_blocks - 1);
|
||||
|
||||
auto trivial_sign_block = mem_ptr->tmp_trivial_sign_block;
|
||||
create_trivial_radix(msb_stream, trivial_sign_block, scalar_sign_block,
|
||||
big_lwe_dimension, 1, 1, message_modulus,
|
||||
carry_modulus);
|
||||
|
||||
integer_radix_apply_bivariate_lookup_table_kb(
|
||||
msb_stream, lwe_array_sign_out, encrypted_sign_block,
|
||||
trivial_sign_block, bsk, ksk, 1, mem_ptr->signed_lut);
|
||||
}
|
||||
}
|
||||
cuda_synchronize_stream(lsb_stream);
|
||||
cuda_synchronize_stream(msb_stream);
|
||||
|
||||
// Reduces a vec containing radix blocks that encrypts a sign
|
||||
// (inferior, equal, superior) to one single radix block containing the
|
||||
// final sign
|
||||
reduce_signs(stream, lwe_array_out, lwe_array_ct_out, mem_ptr,
|
||||
sign_handler_f, bsk, ksk, num_lsb_radix_blocks + 1);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void integer_radix_signed_scalar_maxmin_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
Torus *scalar_blocks, int_comparison_buffer<Torus> *mem_ptr, void *bsk,
|
||||
Torus *ksk, uint32_t total_num_radix_blocks,
|
||||
uint32_t total_num_scalar_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem_ptr->params;
|
||||
// Calculates the difference sign between the ciphertext and the scalar
|
||||
// - 0 if lhs < rhs
|
||||
// - 1 if lhs == rhs
|
||||
// - 2 if lhs > rhs
|
||||
auto sign = mem_ptr->tmp_lwe_array_out;
|
||||
integer_radix_signed_scalar_difference_check_kb(
|
||||
stream, sign, lwe_array_in, scalar_blocks, mem_ptr,
|
||||
mem_ptr->identity_lut_f, bsk, ksk, total_num_radix_blocks,
|
||||
total_num_scalar_blocks);
|
||||
|
||||
// There is no optimized CMUX for scalars, so we convert to a trivial
|
||||
// ciphertext
|
||||
auto lwe_array_left = lwe_array_in;
|
||||
auto lwe_array_right = mem_ptr->tmp_block_comparisons;
|
||||
|
||||
create_trivial_radix(stream, lwe_array_right, scalar_blocks,
|
||||
params.big_lwe_dimension, total_num_radix_blocks,
|
||||
total_num_scalar_blocks, params.message_modulus,
|
||||
params.carry_modulus);
|
||||
|
||||
// Selector
|
||||
// CMUX for Max or Min
|
||||
host_integer_radix_cmux_kb(stream, lwe_array_out, sign, lwe_array_left,
|
||||
lwe_array_right, mem_ptr->cmux_buffer, bsk, ksk,
|
||||
total_num_radix_blocks);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_scalar_difference_check_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
Torus *scalar_blocks, int_comparison_buffer<Torus> *mem_ptr,
|
||||
std::function<Torus(Torus)> sign_handler_f, void *bsk, Torus *ksk,
|
||||
uint32_t total_num_radix_blocks, uint32_t total_num_scalar_blocks) {
|
||||
|
||||
if (mem_ptr->is_signed) {
|
||||
// is signed and scalar is positive
|
||||
integer_radix_signed_scalar_difference_check_kb(
|
||||
stream, lwe_array_out, lwe_array_in, scalar_blocks, mem_ptr,
|
||||
sign_handler_f, bsk, ksk, total_num_radix_blocks,
|
||||
total_num_scalar_blocks);
|
||||
} else {
|
||||
integer_radix_unsigned_scalar_difference_check_kb(
|
||||
stream, lwe_array_out, lwe_array_in, scalar_blocks, mem_ptr,
|
||||
sign_handler_f, bsk, ksk, total_num_radix_blocks,
|
||||
total_num_scalar_blocks);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_signed_scalar_maxmin_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
Torus *scalar_blocks, int_comparison_buffer<Torus> *mem_ptr, void *bsk,
|
||||
Torus *ksk, uint32_t total_num_radix_blocks,
|
||||
uint32_t total_num_scalar_blocks) {
|
||||
|
||||
if (mem_ptr->is_signed) {
|
||||
// is signed and scalar is positive
|
||||
integer_radix_signed_scalar_maxmin_kb(
|
||||
stream, lwe_array_out, lwe_array_in, scalar_blocks, mem_ptr, bsk, ksk,
|
||||
total_num_radix_blocks, total_num_scalar_blocks);
|
||||
} else {
|
||||
integer_radix_unsigned_scalar_maxmin_kb(
|
||||
stream, lwe_array_out, lwe_array_in, scalar_blocks, mem_ptr, bsk, ksk,
|
||||
total_num_radix_blocks, total_num_scalar_blocks);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -209,17 +529,9 @@ scalar_compare_radix_blocks_kb(cuda_stream_t *stream, Torus *lwe_array_out,
|
||||
int_comparison_buffer<Torus> *mem_ptr, void *bsk,
|
||||
Torus *ksk, uint32_t num_radix_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem_ptr->params;
|
||||
auto pbs_type = params.pbs_type;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto small_lwe_dimension = params.small_lwe_dimension;
|
||||
auto ks_level = params.ks_level;
|
||||
auto ks_base_log = params.ks_base_log;
|
||||
auto pbs_level = params.pbs_level;
|
||||
auto pbs_base_log = params.pbs_base_log;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
auto grouping_factor = params.grouping_factor;
|
||||
auto message_modulus = params.message_modulus;
|
||||
auto carry_modulus = params.carry_modulus;
|
||||
|
||||
@@ -267,6 +579,7 @@ __host__ void host_integer_radix_scalar_maxmin_kb(
|
||||
Torus *ksk, uint32_t total_num_radix_blocks,
|
||||
uint32_t total_num_scalar_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem_ptr->params;
|
||||
|
||||
// Calculates the difference sign between the ciphertext and the scalar
|
||||
@@ -276,7 +589,7 @@ __host__ void host_integer_radix_scalar_maxmin_kb(
|
||||
auto sign = mem_ptr->tmp_lwe_array_out;
|
||||
host_integer_radix_scalar_difference_check_kb(
|
||||
stream, sign, lwe_array_in, scalar_blocks, mem_ptr,
|
||||
mem_ptr->cleaning_lut_f, bsk, ksk, total_num_radix_blocks,
|
||||
mem_ptr->identity_lut_f, bsk, ksk, total_num_radix_blocks,
|
||||
total_num_scalar_blocks);
|
||||
|
||||
// There is no optimized CMUX for scalars, so we convert to a trivial
|
||||
@@ -295,4 +608,108 @@ __host__ void host_integer_radix_scalar_maxmin_kb(
|
||||
stream, lwe_array_out, mem_ptr->tmp_lwe_array_out, lwe_array_left,
|
||||
lwe_array_right, mem_ptr->cmux_buffer, bsk, ksk, total_num_radix_blocks);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_scalar_equality_check_kb(
|
||||
cuda_stream_t *stream, Torus *lwe_array_out, Torus *lwe_array_in,
|
||||
Torus *scalar_blocks, int_comparison_buffer<Torus> *mem_ptr, void *bsk,
|
||||
Torus *ksk, uint32_t num_radix_blocks, uint32_t num_scalar_blocks) {
|
||||
|
||||
auto params = mem_ptr->params;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto message_modulus = params.message_modulus;
|
||||
|
||||
auto eq_buffer = mem_ptr->eq_buffer;
|
||||
|
||||
size_t big_lwe_size = big_lwe_dimension + 1;
|
||||
|
||||
auto scalar_comparison_luts = eq_buffer->scalar_comparison_luts;
|
||||
|
||||
uint32_t num_halved_scalar_blocks =
|
||||
(num_scalar_blocks / 2) + (num_scalar_blocks % 2);
|
||||
|
||||
uint32_t num_lsb_radix_blocks =
|
||||
std::min(num_radix_blocks, 2 * num_halved_scalar_blocks);
|
||||
uint32_t num_msb_radix_blocks = num_radix_blocks - num_lsb_radix_blocks;
|
||||
uint32_t num_halved_lsb_radix_blocks =
|
||||
(num_lsb_radix_blocks / 2) + (num_lsb_radix_blocks % 2);
|
||||
|
||||
auto lsb = lwe_array_in;
|
||||
auto msb = lwe_array_in + big_lwe_size * num_lsb_radix_blocks;
|
||||
|
||||
auto lwe_array_lsb_out = mem_ptr->tmp_lwe_array_out;
|
||||
auto lwe_array_msb_out =
|
||||
lwe_array_lsb_out + big_lwe_size * num_halved_lsb_radix_blocks;
|
||||
|
||||
cuda_synchronize_stream(stream);
|
||||
|
||||
auto lsb_stream = mem_ptr->lsb_stream;
|
||||
auto msb_stream = mem_ptr->msb_stream;
|
||||
|
||||
#pragma omp parallel sections
|
||||
{
|
||||
// Both sections may be executed in parallel
|
||||
#pragma omp section
|
||||
{
|
||||
if (num_halved_scalar_blocks > 0) {
|
||||
auto packed_blocks = mem_ptr->tmp_packed_input;
|
||||
auto packed_scalar =
|
||||
packed_blocks + big_lwe_size * num_halved_lsb_radix_blocks;
|
||||
|
||||
pack_blocks(lsb_stream, packed_blocks, lsb, big_lwe_dimension,
|
||||
num_lsb_radix_blocks, message_modulus);
|
||||
pack_blocks(lsb_stream, packed_scalar, scalar_blocks, 0,
|
||||
num_scalar_blocks, message_modulus);
|
||||
|
||||
cuda_memcpy_async_gpu_to_gpu(
|
||||
scalar_comparison_luts->lut_indexes, packed_scalar,
|
||||
num_halved_scalar_blocks * sizeof(Torus), lsb_stream);
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
lsb_stream, lwe_array_lsb_out, packed_blocks, bsk, ksk,
|
||||
num_halved_lsb_radix_blocks, scalar_comparison_luts);
|
||||
}
|
||||
}
|
||||
#pragma omp section
|
||||
{
|
||||
//////////////
|
||||
// msb
|
||||
if (num_msb_radix_blocks > 0) {
|
||||
int_radix_lut<Torus> *msb_lut;
|
||||
switch (mem_ptr->op) {
|
||||
case COMPARISON_TYPE::EQ:
|
||||
msb_lut = mem_ptr->is_zero_lut;
|
||||
break;
|
||||
case COMPARISON_TYPE::NE:
|
||||
msb_lut = mem_ptr->eq_buffer->is_non_zero_lut;
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error: integer operation not supported")
|
||||
}
|
||||
|
||||
host_compare_with_zero_equality(msb_stream, lwe_array_msb_out, msb,
|
||||
mem_ptr, bsk, ksk, num_msb_radix_blocks,
|
||||
msb_lut);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cuda_synchronize_stream(lsb_stream);
|
||||
cuda_synchronize_stream(msb_stream);
|
||||
|
||||
switch (mem_ptr->op) {
|
||||
case COMPARISON_TYPE::EQ:
|
||||
are_all_comparisons_block_true(
|
||||
stream, lwe_array_out, lwe_array_lsb_out, mem_ptr, bsk, ksk,
|
||||
num_halved_scalar_blocks + (num_msb_radix_blocks > 0));
|
||||
break;
|
||||
case COMPARISON_TYPE::NE:
|
||||
is_at_least_one_comparisons_block_true(
|
||||
stream, lwe_array_out, lwe_array_lsb_out, mem_ptr, bsk, ksk,
|
||||
num_halved_scalar_blocks + (num_msb_radix_blocks > 0));
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error: integer operation not supported")
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
89
backends/tfhe-cuda-backend/cuda/src/integer/scalar_mul.cu
Normal file
89
backends/tfhe-cuda-backend/cuda/src/integer/scalar_mul.cu
Normal file
@@ -0,0 +1,89 @@
|
||||
#include "integer/scalar_mul.cuh"
|
||||
|
||||
void scratch_cuda_integer_scalar_mul_kb_64(
|
||||
cuda_stream_t *stream, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t lwe_dimension, uint32_t ks_level,
|
||||
uint32_t ks_base_log, uint32_t pbs_level, uint32_t pbs_base_log,
|
||||
uint32_t grouping_factor, uint32_t num_blocks, uint32_t message_modulus,
|
||||
uint32_t carry_modulus, PBS_TYPE pbs_type, bool allocate_gpu_memory) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
glwe_dimension * polynomial_size, lwe_dimension,
|
||||
ks_level, ks_base_log, pbs_level, pbs_base_log,
|
||||
grouping_factor, message_modulus, carry_modulus);
|
||||
|
||||
scratch_cuda_integer_radix_scalar_mul_kb<uint64_t>(
|
||||
stream, (int_scalar_mul_buffer<uint64_t> **)mem_ptr, num_blocks, params,
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_scalar_multiplication_integer_radix_ciphertext_64_inplace(
|
||||
cuda_stream_t *stream, void *lwe_array, uint64_t *decomposed_scalar,
|
||||
uint64_t *has_at_least_one_set, int8_t *mem, void *bsk, void *ksk,
|
||||
uint32_t lwe_dimension, uint32_t polynomial_size, uint32_t message_modulus,
|
||||
uint32_t num_blocks, uint32_t num_scalars) {
|
||||
|
||||
switch (polynomial_size) {
|
||||
case 512:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<512>>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), decomposed_scalar,
|
||||
has_at_least_one_set,
|
||||
reinterpret_cast<int_scalar_mul_buffer<uint64_t> *>(mem), bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_dimension, message_modulus,
|
||||
num_blocks, num_scalars);
|
||||
break;
|
||||
case 1024:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<1024>>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), decomposed_scalar,
|
||||
has_at_least_one_set,
|
||||
reinterpret_cast<int_scalar_mul_buffer<uint64_t> *>(mem), bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_dimension, message_modulus,
|
||||
num_blocks, num_scalars);
|
||||
break;
|
||||
case 2048:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<2048>>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), decomposed_scalar,
|
||||
has_at_least_one_set,
|
||||
reinterpret_cast<int_scalar_mul_buffer<uint64_t> *>(mem), bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_dimension, message_modulus,
|
||||
num_blocks, num_scalars);
|
||||
break;
|
||||
case 4096:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<4096>>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), decomposed_scalar,
|
||||
has_at_least_one_set,
|
||||
reinterpret_cast<int_scalar_mul_buffer<uint64_t> *>(mem), bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_dimension, message_modulus,
|
||||
num_blocks, num_scalars);
|
||||
break;
|
||||
case 8192:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<8192>>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), decomposed_scalar,
|
||||
has_at_least_one_set,
|
||||
reinterpret_cast<int_scalar_mul_buffer<uint64_t> *>(mem), bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_dimension, message_modulus,
|
||||
num_blocks, num_scalars);
|
||||
break;
|
||||
case 16384:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<16384>>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), decomposed_scalar,
|
||||
has_at_least_one_set,
|
||||
reinterpret_cast<int_scalar_mul_buffer<uint64_t> *>(mem), bsk,
|
||||
static_cast<uint64_t *>(ksk), lwe_dimension, message_modulus,
|
||||
num_blocks, num_scalars);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (scalar multiplication): unsupported polynomial size. "
|
||||
"Only N = 512, 1024, 2048, 4096, 8192, 16384 are supported.")
|
||||
}
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_scalar_mul(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
int_scalar_mul_buffer<uint64_t> *mem_ptr =
|
||||
(int_scalar_mul_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release(stream);
|
||||
}
|
||||
136
backends/tfhe-cuda-backend/cuda/src/integer/scalar_mul.cuh
Normal file
136
backends/tfhe-cuda-backend/cuda/src/integer/scalar_mul.cuh
Normal file
@@ -0,0 +1,136 @@
|
||||
#ifndef CUDA_INTEGER_SCALAR_MUL_CUH
|
||||
#define CUDA_INTEGER_SCALAR_MUL_CUH
|
||||
|
||||
#ifdef __CDT_PARSER__
|
||||
#undef __CUDA_RUNTIME_H__
|
||||
#include <cuda_runtime.h>
|
||||
#endif
|
||||
|
||||
#include "device.h"
|
||||
#include "integer.h"
|
||||
#include "multiplication.cuh"
|
||||
#include "scalar_shifts.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
#include <stdio.h>
|
||||
|
||||
template <typename T>
|
||||
__global__ void device_small_scalar_radix_multiplication(T *output_lwe_array,
|
||||
T *input_lwe_array,
|
||||
T scalar,
|
||||
uint32_t lwe_dimension,
|
||||
uint32_t num_blocks) {
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int lwe_size = lwe_dimension + 1;
|
||||
if (index < num_blocks * lwe_size) {
|
||||
// Here we take advantage of the wrapping behaviour of uint
|
||||
output_lwe_array[index] = input_lwe_array[index] * scalar;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__host__ void scratch_cuda_integer_radix_scalar_mul_kb(
|
||||
cuda_stream_t *stream, int_scalar_mul_buffer<T> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
size_t sm_size = (params.big_lwe_dimension + 1) * sizeof(T);
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
tree_add_chunks<T>, cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||
sm_size));
|
||||
cudaFuncSetCacheConfig(tree_add_chunks<T>, cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
*mem_ptr = new int_scalar_mul_buffer<T>(stream, params, num_radix_blocks,
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
|
||||
template <typename T, class params>
|
||||
__host__ void host_integer_scalar_mul_radix(
|
||||
cuda_stream_t *stream, T *lwe_array, T *decomposed_scalar,
|
||||
T *has_at_least_one_set, int_scalar_mul_buffer<T> *mem, void *bsk, T *ksk,
|
||||
uint32_t input_lwe_dimension, uint32_t message_modulus,
|
||||
uint32_t num_radix_blocks, uint32_t num_scalars) {
|
||||
|
||||
if (num_radix_blocks == 0 | num_scalars == 0)
|
||||
return;
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
// lwe_size includes the presence of the body
|
||||
// whereas lwe_dimension is the number of elements in the mask
|
||||
uint32_t lwe_size = input_lwe_dimension + 1;
|
||||
uint32_t lwe_size_bytes = lwe_size * sizeof(T);
|
||||
uint32_t msg_bits = (uint32_t)std::log2(message_modulus);
|
||||
uint32_t num_ciphertext_bits = msg_bits * num_radix_blocks;
|
||||
|
||||
T *preshifted_buffer = mem->preshifted_buffer;
|
||||
T *all_shifted_buffer = mem->all_shifted_buffer;
|
||||
|
||||
for (size_t shift_amount = 0; shift_amount < msg_bits; shift_amount++) {
|
||||
T *ptr = preshifted_buffer + shift_amount * lwe_size * num_radix_blocks;
|
||||
if (has_at_least_one_set[shift_amount] == 1) {
|
||||
cuda_memcpy_async_gpu_to_gpu(ptr, lwe_array,
|
||||
lwe_size_bytes * num_radix_blocks, stream);
|
||||
host_integer_radix_logical_scalar_shift_kb_inplace(
|
||||
stream, ptr, shift_amount, mem->logical_scalar_shift_buffer, bsk, ksk,
|
||||
num_radix_blocks);
|
||||
} else {
|
||||
// create trivial assign for value = 0
|
||||
cuda_memset_async(ptr, 0, num_radix_blocks * lwe_size_bytes, stream);
|
||||
}
|
||||
}
|
||||
size_t j = 0;
|
||||
for (size_t i = 0; i < min(num_scalars, num_ciphertext_bits); i++) {
|
||||
if (decomposed_scalar[i] == 1) {
|
||||
// Perform a block shift
|
||||
T *preshifted_radix_ct =
|
||||
preshifted_buffer + (i % msg_bits) * num_radix_blocks * lwe_size;
|
||||
T *block_shift_buffer =
|
||||
all_shifted_buffer + j * num_radix_blocks * lwe_size;
|
||||
radix_blocks_rotate_right<<<num_radix_blocks, 256, 0, stream->stream>>>(
|
||||
block_shift_buffer, preshifted_radix_ct, i / msg_bits,
|
||||
num_radix_blocks, lwe_size);
|
||||
// create trivial assign for value = 0
|
||||
cuda_memset_async(block_shift_buffer, 0, (i / msg_bits) * lwe_size_bytes,
|
||||
stream);
|
||||
j++;
|
||||
}
|
||||
}
|
||||
|
||||
if (j == 0) {
|
||||
// lwe array = 0
|
||||
cuda_memset_async(lwe_array, 0, num_radix_blocks * lwe_size_bytes, stream);
|
||||
} else {
|
||||
int terms_degree[j * num_radix_blocks];
|
||||
for (int i = 0; i < j * num_radix_blocks; i++) {
|
||||
terms_degree[i] = message_modulus - 1;
|
||||
}
|
||||
host_integer_sum_ciphertexts_vec_kb<T, params>(
|
||||
stream, lwe_array, all_shifted_buffer, terms_degree, bsk, ksk,
|
||||
mem->sum_ciphertexts_vec_mem, num_radix_blocks, j);
|
||||
}
|
||||
}
|
||||
|
||||
// Small scalar_mul is used in shift/rotate
|
||||
template <typename T>
|
||||
__host__ void host_integer_small_scalar_mul_radix(
|
||||
cuda_stream_t *stream, T *output_lwe_array, T *input_lwe_array, T scalar,
|
||||
uint32_t input_lwe_dimension, uint32_t input_lwe_ciphertext_count) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
// lwe_size includes the presence of the body
|
||||
// whereas lwe_dimension is the number of elements in the mask
|
||||
int lwe_size = input_lwe_dimension + 1;
|
||||
// Create a 1-dimensional grid of threads
|
||||
int num_blocks = 0, num_threads = 0;
|
||||
int num_entries = input_lwe_ciphertext_count * lwe_size;
|
||||
getNumBlocksAndThreads(num_entries, 512, num_blocks, num_threads);
|
||||
dim3 grid(num_blocks, 1, 1);
|
||||
dim3 thds(num_threads, 1, 1);
|
||||
|
||||
device_small_scalar_radix_multiplication<<<grid, thds, 0, stream->stream>>>(
|
||||
output_lwe_array, input_lwe_array, scalar, input_lwe_dimension,
|
||||
input_lwe_ciphertext_count);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
#endif
|
||||
@@ -6,7 +6,8 @@ void scratch_cuda_integer_radix_scalar_rotate_kb_64(
|
||||
uint32_t small_lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, SHIFT_TYPE shift_type, bool allocate_gpu_memory) {
|
||||
PBS_TYPE pbs_type, SHIFT_OR_ROTATE_TYPE shift_type,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
big_lwe_dimension, small_lwe_dimension, ks_level,
|
||||
@@ -14,8 +15,8 @@ void scratch_cuda_integer_radix_scalar_rotate_kb_64(
|
||||
message_modulus, carry_modulus);
|
||||
|
||||
scratch_cuda_integer_radix_scalar_rotate_kb<uint64_t>(
|
||||
stream, (int_shift_buffer<uint64_t> **)mem_ptr, num_blocks, params,
|
||||
shift_type, allocate_gpu_memory);
|
||||
stream, (int_logical_scalar_shift_buffer<uint64_t> **)mem_ptr, num_blocks,
|
||||
params, shift_type, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_integer_radix_scalar_rotate_kb_64_inplace(cuda_stream_t *stream,
|
||||
@@ -26,15 +27,15 @@ void cuda_integer_radix_scalar_rotate_kb_64_inplace(cuda_stream_t *stream,
|
||||
|
||||
host_integer_radix_scalar_rotate_kb_inplace<uint64_t>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), n,
|
||||
(int_shift_buffer<uint64_t> *)mem_ptr, bsk, static_cast<uint64_t *>(ksk),
|
||||
num_blocks);
|
||||
(int_logical_scalar_shift_buffer<uint64_t> *)mem_ptr, bsk,
|
||||
static_cast<uint64_t *>(ksk), num_blocks);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_scalar_rotate(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
|
||||
int_shift_buffer<uint64_t> *mem_ptr =
|
||||
(int_shift_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
int_logical_scalar_shift_buffer<uint64_t> *mem_ptr =
|
||||
(int_logical_scalar_shift_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release(stream);
|
||||
}
|
||||
|
||||
@@ -5,40 +5,30 @@
|
||||
#include "device.h"
|
||||
#include "integer.cuh"
|
||||
#include "integer.h"
|
||||
#include "pbs/bootstrap_low_latency.cuh"
|
||||
#include "pbs/bootstrap_multibit.cuh"
|
||||
#include "types/complex/operations.cuh"
|
||||
#include "utils/helper.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
|
||||
#ifndef CUDA_INTEGER_SHIFT_OPS_CUH
|
||||
#define CUDA_INTEGER_SHIFT_OPS_CUH
|
||||
|
||||
#include "crypto/keyswitch.cuh"
|
||||
#include "device.h"
|
||||
#include "integer.cuh"
|
||||
#include "integer.h"
|
||||
#include "pbs/bootstrap_low_latency.cuh"
|
||||
#include "pbs/bootstrap_multibit.cuh"
|
||||
#include "pbs/programmable_bootstrap_classic.cuh"
|
||||
#include "pbs/programmable_bootstrap_multibit.cuh"
|
||||
#include "types/complex/operations.cuh"
|
||||
#include "utils/helper.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void scratch_cuda_integer_radix_scalar_rotate_kb(
|
||||
cuda_stream_t *stream, int_shift_buffer<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params, SHIFT_TYPE shift_type,
|
||||
bool allocate_gpu_memory) {
|
||||
cuda_stream_t *stream, int_logical_scalar_shift_buffer<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params,
|
||||
SHIFT_OR_ROTATE_TYPE shift_type, bool allocate_gpu_memory) {
|
||||
|
||||
*mem_ptr = new int_shift_buffer<Torus>(stream, shift_type, params,
|
||||
num_radix_blocks, allocate_gpu_memory);
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
*mem_ptr = new int_logical_scalar_shift_buffer<Torus>(
|
||||
stream, shift_type, params, num_radix_blocks, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_scalar_rotate_kb_inplace(
|
||||
cuda_stream_t *stream, Torus *lwe_array, uint32_t n,
|
||||
int_shift_buffer<Torus> *mem, void *bsk, Torus *ksk, uint32_t num_blocks) {
|
||||
int_logical_scalar_shift_buffer<Torus> *mem, void *bsk, Torus *ksk,
|
||||
uint32_t num_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem->params;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
@@ -109,6 +99,4 @@ __host__ void host_integer_radix_scalar_rotate_kb_inplace(
|
||||
}
|
||||
}
|
||||
|
||||
#endif // CUDA_SCALAR_OPS_CUH
|
||||
|
||||
#endif // CUDA_INTEGER_SCALAR_ROTATE_OPS_CUH
|
||||
|
||||
@@ -1,38 +1,90 @@
|
||||
#include "scalar_shifts.cuh"
|
||||
|
||||
void scratch_cuda_integer_radix_scalar_shift_kb_64(
|
||||
void scratch_cuda_integer_radix_logical_scalar_shift_kb_64(
|
||||
cuda_stream_t *stream, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t big_lwe_dimension,
|
||||
uint32_t small_lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, SHIFT_TYPE shift_type, bool allocate_gpu_memory) {
|
||||
PBS_TYPE pbs_type, SHIFT_OR_ROTATE_TYPE shift_type,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
big_lwe_dimension, small_lwe_dimension, ks_level,
|
||||
ks_base_log, pbs_level, pbs_base_log, grouping_factor,
|
||||
message_modulus, carry_modulus);
|
||||
|
||||
scratch_cuda_integer_radix_scalar_shift_kb<uint64_t>(
|
||||
stream, (int_shift_buffer<uint64_t> **)mem_ptr, num_blocks, params,
|
||||
shift_type, allocate_gpu_memory);
|
||||
scratch_cuda_integer_radix_logical_scalar_shift_kb<uint64_t>(
|
||||
stream, (int_logical_scalar_shift_buffer<uint64_t> **)mem_ptr, num_blocks,
|
||||
params, shift_type, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_integer_radix_scalar_shift_kb_64_inplace(
|
||||
/// The logical scalar shift is the one used for unsigned integers, and
|
||||
/// for the left scalar shift. It is constituted of a rotation, followed by
|
||||
/// the application of a PBS onto the rotated blocks up to num_blocks -
|
||||
/// rotations - 1 The remaining blocks are padded with zeros
|
||||
void cuda_integer_radix_logical_scalar_shift_kb_64_inplace(
|
||||
cuda_stream_t *stream, void *lwe_array, uint32_t shift, int8_t *mem_ptr,
|
||||
void *bsk, void *ksk, uint32_t num_blocks) {
|
||||
|
||||
host_integer_radix_scalar_shift_kb_inplace<uint64_t>(
|
||||
host_integer_radix_logical_scalar_shift_kb_inplace<uint64_t>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), shift,
|
||||
(int_shift_buffer<uint64_t> *)mem_ptr, bsk, static_cast<uint64_t *>(ksk),
|
||||
num_blocks);
|
||||
(int_logical_scalar_shift_buffer<uint64_t> *)mem_ptr, bsk,
|
||||
static_cast<uint64_t *>(ksk), num_blocks);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_scalar_shift(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
void scratch_cuda_integer_radix_arithmetic_scalar_shift_kb_64(
|
||||
cuda_stream_t *stream, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t big_lwe_dimension,
|
||||
uint32_t small_lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, SHIFT_OR_ROTATE_TYPE shift_type,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
int_shift_buffer<uint64_t> *mem_ptr =
|
||||
(int_shift_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
big_lwe_dimension, small_lwe_dimension, ks_level,
|
||||
ks_base_log, pbs_level, pbs_base_log, grouping_factor,
|
||||
message_modulus, carry_modulus);
|
||||
|
||||
scratch_cuda_integer_radix_arithmetic_scalar_shift_kb<uint64_t>(
|
||||
stream, (int_arithmetic_scalar_shift_buffer<uint64_t> **)mem_ptr,
|
||||
num_blocks, params, shift_type, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
/// The arithmetic scalar shift is the one used for the signed right shift.
|
||||
/// It is constituted of a rotation, followed by
|
||||
/// the application of a PBS onto the rotated blocks up to num_blocks -
|
||||
/// rotations - 2 The last rotated block has another PBS applied, as it is the
|
||||
/// sign block, and a second PBS is also applied to it to compute the padding
|
||||
/// block, which is copied onto all remaining blocks instead of padding with
|
||||
/// zeros as would be done in the logical shift.
|
||||
void cuda_integer_radix_arithmetic_scalar_shift_kb_64_inplace(
|
||||
cuda_stream_t *stream, void *lwe_array, uint32_t shift, int8_t *mem_ptr,
|
||||
void *bsk, void *ksk, uint32_t num_blocks) {
|
||||
|
||||
host_integer_radix_arithmetic_scalar_shift_kb_inplace<uint64_t>(
|
||||
stream, static_cast<uint64_t *>(lwe_array), shift,
|
||||
(int_arithmetic_scalar_shift_buffer<uint64_t> *)mem_ptr, bsk,
|
||||
static_cast<uint64_t *>(ksk), num_blocks);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_logical_scalar_shift(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
int_logical_scalar_shift_buffer<uint64_t> *mem_ptr =
|
||||
(int_logical_scalar_shift_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release(stream);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_arithmetic_scalar_shift(cuda_stream_t *stream,
|
||||
int8_t **mem_ptr_void) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
int_arithmetic_scalar_shift_buffer<uint64_t> *mem_ptr =
|
||||
(int_arithmetic_scalar_shift_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release(stream);
|
||||
}
|
||||
|
||||
@@ -1,31 +1,35 @@
|
||||
#ifndef CUDA_INTEGER_SHIFT_OPS_CUH
|
||||
#define CUDA_INTEGER_SHIFT_OPS_CUH
|
||||
#ifndef CUDA_INTEGER_SCALAR_SHIFT_OPS_CUH
|
||||
#define CUDA_INTEGER_SCALAR_SHIFT_OPS_CUH
|
||||
|
||||
#include "crypto/keyswitch.cuh"
|
||||
#include "device.h"
|
||||
#include "integer.cuh"
|
||||
#include "integer.h"
|
||||
#include "pbs/bootstrap_low_latency.cuh"
|
||||
#include "pbs/bootstrap_multibit.cuh"
|
||||
#include "pbs/programmable_bootstrap_classic.cuh"
|
||||
#include "pbs/programmable_bootstrap_multibit.cuh"
|
||||
#include "types/complex/operations.cuh"
|
||||
#include "utils/helper.cuh"
|
||||
#include "utils/kernel_dimensions.cuh"
|
||||
#include <omp.h>
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void scratch_cuda_integer_radix_scalar_shift_kb(
|
||||
cuda_stream_t *stream, int_shift_buffer<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params, SHIFT_TYPE shift_type,
|
||||
bool allocate_gpu_memory) {
|
||||
__host__ void scratch_cuda_integer_radix_logical_scalar_shift_kb(
|
||||
cuda_stream_t *stream, int_logical_scalar_shift_buffer<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params,
|
||||
SHIFT_OR_ROTATE_TYPE shift_type, bool allocate_gpu_memory) {
|
||||
|
||||
*mem_ptr = new int_shift_buffer<Torus>(stream, shift_type, params,
|
||||
num_radix_blocks, allocate_gpu_memory);
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
*mem_ptr = new int_logical_scalar_shift_buffer<Torus>(
|
||||
stream, shift_type, params, num_radix_blocks, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_scalar_shift_kb_inplace(
|
||||
__host__ void host_integer_radix_logical_scalar_shift_kb_inplace(
|
||||
cuda_stream_t *stream, Torus *lwe_array, uint32_t shift,
|
||||
int_shift_buffer<Torus> *mem, void *bsk, Torus *ksk, uint32_t num_blocks) {
|
||||
int_logical_scalar_shift_buffer<Torus> *mem, void *bsk, Torus *ksk,
|
||||
uint32_t num_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem->params;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
@@ -44,10 +48,10 @@ __host__ void host_integer_radix_scalar_shift_kb_inplace(
|
||||
size_t rotations = std::min(shift / num_bits_in_block, (size_t)num_blocks);
|
||||
size_t shift_within_block = shift % num_bits_in_block;
|
||||
|
||||
Torus *rotated_buffer = mem->tmp_rotated;
|
||||
Torus *full_rotated_buffer = mem->tmp_rotated;
|
||||
Torus *rotated_buffer = &full_rotated_buffer[big_lwe_size];
|
||||
|
||||
auto lut_bivariate = mem->lut_buffers_bivariate[shift_within_block - 1];
|
||||
auto lut_univariate = mem->lut_buffers_univariate[shift_within_block];
|
||||
|
||||
// rotate right all the blocks in radix ciphertext
|
||||
// copy result in new buffer
|
||||
@@ -68,23 +72,15 @@ __host__ void host_integer_radix_scalar_shift_kb_inplace(
|
||||
return;
|
||||
}
|
||||
|
||||
// check if we have enough blocks for partial processing
|
||||
if (rotations < num_blocks - 1) {
|
||||
auto partial_current_blocks = &lwe_array[(rotations + 1) * big_lwe_size];
|
||||
auto partial_previous_blocks = &lwe_array[rotations * big_lwe_size];
|
||||
auto partial_current_blocks = &lwe_array[rotations * big_lwe_size];
|
||||
auto partial_previous_blocks =
|
||||
&full_rotated_buffer[rotations * big_lwe_size];
|
||||
|
||||
size_t partial_block_count = num_blocks - rotations - 1;
|
||||
size_t partial_block_count = num_blocks - rotations;
|
||||
|
||||
integer_radix_apply_bivariate_lookup_table_kb<Torus>(
|
||||
stream, partial_current_blocks, partial_current_blocks,
|
||||
partial_previous_blocks, bsk, ksk, partial_block_count,
|
||||
lut_bivariate);
|
||||
}
|
||||
|
||||
auto rest = &lwe_array[rotations * big_lwe_size];
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, rest, rest, bsk, ksk, 1, lut_univariate);
|
||||
integer_radix_apply_bivariate_lookup_table_kb<Torus>(
|
||||
stream, partial_current_blocks, partial_current_blocks,
|
||||
partial_previous_blocks, bsk, ksk, partial_block_count, lut_bivariate);
|
||||
|
||||
} else {
|
||||
// right shift
|
||||
@@ -102,23 +98,138 @@ __host__ void host_integer_radix_scalar_shift_kb_inplace(
|
||||
return;
|
||||
}
|
||||
|
||||
// check if we have enough blocks for partial processing
|
||||
if (rotations < num_blocks - 1) {
|
||||
auto partial_current_blocks = lwe_array;
|
||||
auto partial_next_blocks = &lwe_array[big_lwe_size];
|
||||
auto partial_current_blocks = lwe_array;
|
||||
auto partial_next_blocks = &rotated_buffer[big_lwe_size];
|
||||
|
||||
size_t partial_block_count = num_blocks - rotations - 1;
|
||||
size_t partial_block_count = num_blocks - rotations;
|
||||
|
||||
integer_radix_apply_bivariate_lookup_table_kb<Torus>(
|
||||
stream, partial_current_blocks, partial_current_blocks,
|
||||
partial_next_blocks, bsk, ksk, partial_block_count, lut_bivariate);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void scratch_cuda_integer_radix_arithmetic_scalar_shift_kb(
|
||||
cuda_stream_t *stream, int_arithmetic_scalar_shift_buffer<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params,
|
||||
SHIFT_OR_ROTATE_TYPE shift_type, bool allocate_gpu_memory) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
*mem_ptr = new int_arithmetic_scalar_shift_buffer<Torus>(
|
||||
stream, shift_type, params, num_radix_blocks, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_arithmetic_scalar_shift_kb_inplace(
|
||||
cuda_stream_t *stream, Torus *lwe_array, uint32_t shift,
|
||||
int_arithmetic_scalar_shift_buffer<Torus> *mem, void *bsk, Torus *ksk,
|
||||
uint32_t num_blocks) {
|
||||
|
||||
cudaSetDevice(stream->gpu_index);
|
||||
auto params = mem->params;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
auto message_modulus = params.message_modulus;
|
||||
|
||||
size_t big_lwe_size = glwe_dimension * polynomial_size + 1;
|
||||
size_t big_lwe_size_bytes = big_lwe_size * sizeof(Torus);
|
||||
|
||||
size_t num_bits_in_block = (size_t)log2(message_modulus);
|
||||
size_t total_num_bits = num_bits_in_block * num_blocks;
|
||||
shift = shift % total_num_bits;
|
||||
|
||||
if (shift == 0) {
|
||||
return;
|
||||
}
|
||||
size_t rotations = std::min(shift / num_bits_in_block, (size_t)num_blocks);
|
||||
size_t shift_within_block = shift % num_bits_in_block;
|
||||
|
||||
Torus *rotated_buffer = mem->tmp_rotated;
|
||||
Torus *padding_block = &rotated_buffer[num_blocks * big_lwe_size];
|
||||
Torus *last_block_copy = &padding_block[big_lwe_size];
|
||||
|
||||
auto lut_univariate_shift_last_block =
|
||||
mem->lut_buffers_univariate[shift_within_block - 1];
|
||||
auto lut_univariate_padding_block =
|
||||
mem->lut_buffers_univariate[num_bits_in_block - 1];
|
||||
auto lut_bivariate = mem->lut_buffers_bivariate[shift_within_block - 1];
|
||||
|
||||
if (mem->shift_type == RIGHT_SHIFT) {
|
||||
radix_blocks_rotate_left<<<num_blocks, 256, 0, stream->stream>>>(
|
||||
rotated_buffer, lwe_array, rotations, num_blocks, big_lwe_size);
|
||||
cuda_memcpy_async_gpu_to_gpu(lwe_array, rotated_buffer,
|
||||
num_blocks * big_lwe_size_bytes, stream);
|
||||
|
||||
if (num_bits_in_block == 1) {
|
||||
// if there is only 1 bit in the msg part, it means shift_within block is
|
||||
// 0 thus only rotations is required.
|
||||
|
||||
// We still need to pad with the value of the sign bit.
|
||||
// And here since a block only has 1 bit of message
|
||||
// we can optimize things by not doing the pbs to extract this sign bit
|
||||
|
||||
Torus *block_src =
|
||||
rotated_buffer + (num_blocks - rotations - 1) * big_lwe_size;
|
||||
Torus *block_dest =
|
||||
rotated_buffer + (num_blocks - rotations) * big_lwe_size;
|
||||
for (uint i = 0; i < num_blocks; i++) {
|
||||
cuda_memcpy_async_gpu_to_gpu(block_dest, block_src, big_lwe_size_bytes,
|
||||
stream);
|
||||
block_dest += big_lwe_size;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// In the arithmetic shift case we have to pad with the value of the sign
|
||||
// bit. This creates the need for a different shifting lut than in the
|
||||
// logical shift case. We also need another PBS to create the padding block.
|
||||
Torus *last_block = lwe_array + (num_blocks - rotations - 1) * big_lwe_size;
|
||||
cuda_memcpy_async_gpu_to_gpu(last_block_copy,
|
||||
rotated_buffer + (num_blocks - rotations - 1) *
|
||||
big_lwe_size,
|
||||
big_lwe_size_bytes, stream);
|
||||
auto partial_current_blocks = lwe_array;
|
||||
auto partial_next_blocks = &rotated_buffer[big_lwe_size];
|
||||
size_t partial_block_count = num_blocks - rotations;
|
||||
if (shift_within_block != 0 && rotations != num_blocks) {
|
||||
integer_radix_apply_bivariate_lookup_table_kb<Torus>(
|
||||
stream, partial_current_blocks, partial_current_blocks,
|
||||
partial_next_blocks, bsk, ksk, partial_block_count, lut_bivariate);
|
||||
}
|
||||
// Since our CPU threads will be working on different streams we shall
|
||||
// assert the work in the main stream is completed
|
||||
stream->synchronize();
|
||||
#pragma omp parallel sections
|
||||
{
|
||||
// All sections may be executed in parallel
|
||||
#pragma omp section
|
||||
{
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
mem->local_stream_1, padding_block, last_block_copy, bsk, ksk, 1,
|
||||
lut_univariate_padding_block);
|
||||
// Replace blocks 'pulled' from the left with the correct padding block
|
||||
for (uint i = 0; i < rotations; i++) {
|
||||
cuda_memcpy_async_gpu_to_gpu(
|
||||
lwe_array + (num_blocks - rotations + i) * big_lwe_size,
|
||||
padding_block, big_lwe_size_bytes, mem->local_stream_1);
|
||||
}
|
||||
}
|
||||
#pragma omp section
|
||||
{
|
||||
if (shift_within_block != 0 && rotations != num_blocks) {
|
||||
integer_radix_apply_univariate_lookup_table_kb(
|
||||
mem->local_stream_2, last_block, last_block_copy, bsk, ksk, 1,
|
||||
lut_univariate_shift_last_block);
|
||||
}
|
||||
}
|
||||
}
|
||||
cuda_synchronize_stream(mem->local_stream_1);
|
||||
cuda_synchronize_stream(mem->local_stream_2);
|
||||
|
||||
// The right-most block is done separately as it does not
|
||||
// need to recuperate the shifted bits from its right neighbour.
|
||||
auto last_block = &lwe_array[(num_blocks - rotations - 1) * big_lwe_size];
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
stream, last_block, last_block, bsk, ksk, 1, lut_univariate);
|
||||
} else {
|
||||
PANIC("Cuda error (scalar shift): left scalar shift is never of the "
|
||||
"arithmetic type")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user