mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
clean up test
This commit is contained in:
@@ -6,7 +6,6 @@ from tinygrad.tensor import Tensor
|
||||
from tinygrad.utils import layer_init_uniform, fetch_mnist
|
||||
import tinygrad.optim as optim
|
||||
from tqdm import trange
|
||||
np.random.seed(1337)
|
||||
|
||||
# load the mnist dataset
|
||||
X_train, Y_train, X_test, Y_test = fetch_mnist()
|
||||
@@ -21,7 +20,6 @@ class TinyBobNet:
|
||||
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
||||
|
||||
# create a model with a conv layer
|
||||
# perfect if you like slow speeds and very little accuracy gains
|
||||
class TinyConvNet:
|
||||
def __init__(self):
|
||||
conv = 7
|
||||
@@ -36,65 +34,67 @@ class TinyConvNet:
|
||||
x = x.reshape(Tensor(np.array((x.shape[0], -1))))
|
||||
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
||||
|
||||
def train(model, optim, steps, BS=128):
|
||||
losses, accuracies = [], []
|
||||
for i in (t := trange(steps)):
|
||||
samp = np.random.randint(0, X_train.shape[0], size=(BS))
|
||||
|
||||
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
|
||||
Y = Y_train[samp]
|
||||
y = np.zeros((len(samp),10), np.float32)
|
||||
# correct loss for NLL, torch NLL loss returns one per row
|
||||
y[range(y.shape[0]),Y] = -10.0
|
||||
y = Tensor(y)
|
||||
|
||||
# network
|
||||
out = model.forward(x)
|
||||
|
||||
# NLL loss function
|
||||
loss = out.mul(y).mean()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
cat = np.argmax(out.data, axis=1)
|
||||
accuracy = (cat == Y).mean()
|
||||
|
||||
# printing
|
||||
loss = loss.data
|
||||
losses.append(loss)
|
||||
accuracies.append(accuracy)
|
||||
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
|
||||
|
||||
def evaluate(model):
|
||||
def numpy_eval():
|
||||
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
|
||||
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
|
||||
return (Y_test == Y_test_preds).mean()
|
||||
|
||||
accuracy = numpy_eval()
|
||||
print("test set accuracy is %f" % accuracy)
|
||||
assert accuracy > 0.95
|
||||
|
||||
class TestMNIST(unittest.TestCase):
|
||||
def test_mnist(self):
|
||||
def train(model, optim, steps, BS=128):
|
||||
losses, accuracies = [], []
|
||||
for i in (t := trange(steps)):
|
||||
samp = np.random.randint(0, X_train.shape[0], size=(BS))
|
||||
|
||||
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
|
||||
Y = Y_train[samp]
|
||||
y = np.zeros((len(samp),10), np.float32)
|
||||
# correct loss for NLL, torch NLL loss returns one per row
|
||||
y[range(y.shape[0]),Y] = -10.0
|
||||
y = Tensor(y)
|
||||
|
||||
# network
|
||||
out = model.forward(x)
|
||||
|
||||
# NLL loss function
|
||||
loss = out.mul(y).mean()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
cat = np.argmax(out.data, axis=1)
|
||||
accuracy = (cat == Y).mean()
|
||||
|
||||
# printing
|
||||
loss = loss.data
|
||||
losses.append(loss)
|
||||
accuracies.append(accuracy)
|
||||
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
|
||||
|
||||
def evaluate(model):
|
||||
def numpy_eval():
|
||||
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
|
||||
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
|
||||
return (Y_test == Y_test_preds).mean()
|
||||
|
||||
accuracy = numpy_eval()
|
||||
print("test set accuracy is %f" % accuracy)
|
||||
assert accuracy > 0.95
|
||||
|
||||
# models
|
||||
def test_mnist_conv(self):
|
||||
np.random.seed(1337)
|
||||
model = TinyConvNet()
|
||||
optimizer = optim.Adam([model.c1, model.l1, model.l2], lr=0.001)
|
||||
steps = 400
|
||||
train(model, optimizer, steps)
|
||||
train(model, optimizer, steps=400)
|
||||
evaluate(model)
|
||||
|
||||
def test_mnist_sgd(self):
|
||||
np.random.seed(1337)
|
||||
model = TinyBobNet()
|
||||
steps = 1000
|
||||
optimizer = optim.SGD([model.l1, model.l2], lr=0.001)
|
||||
train(model, optimizer, steps)
|
||||
train(model, optimizer, steps=1000)
|
||||
evaluate(model)
|
||||
|
||||
def test_mnist_rmsprop(self):
|
||||
np.random.seed(1337)
|
||||
model = TinyBobNet()
|
||||
optimizer = optim.RMSprop([model.l1, model.l2], lr=0.001)
|
||||
train(model, optimizer, steps)
|
||||
train(model, optimizer, steps=1000)
|
||||
evaluate(model)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user