1234 Commits

Author SHA1 Message Date
chenyu
4aab16ca6a bert script cleanup and assert nan loss (#9851) 2025-04-11 05:41:49 -04:00
chenyu
8c6299bced move hand_coded_optimizations to heuristic.py [pr] (#9844)
* move hand_coded_optimizations to heuristic.py [pr]

also folded all long lines

* make a copy and rename self -> k

* fix test
2025-04-10 23:40:16 -04:00
chenyu
995d20673a increase bert TRAIN_STEPS for mi300x (#9833)
got a few non converged ones so try to increase steps. we need >= 90% runs to converge
2025-04-10 08:25:09 -04:00
chenyu
817746b30e add contiguous to EmbeddingBert output (#9829)
for some reason with random dropout it creates different ast on each device. And search embedding is slow. This workaround saved 6 minutes setup time on mi300x (25->19) and resulted in similar speed
2025-04-10 04:31:19 -04:00
chenyu
a0b72f066a don't free intermediate for bert mi300x (#9824) 2025-04-10 01:48:34 -04:00
chenyu
2e1002e179 EVAL_BS=96 and BEAM=3 for bert green (#9819)
19m -> 13m setup and same end to end time
2025-04-09 22:37:27 -04:00
chenyu
8fe83385ec add system json for mi300x mlperf (#9786)
* add system json for mi300x mlperf

```
python3 -m mlperf_logging.system_desc_checker examples/mlperf/training_submission_v5.0/tinycorp/systems/tinybox_8xMI300X.json training 4.1.0
INFO -   System description checker passed for tinybox 8xMI300X
```

also removed the rocm from tinybox_red since we are not using it

* update mlperf-logging version
2025-04-08 06:36:44 -04:00
chenyu
4cc7422769 use AM driver in bert mlperf (#9775)
we should commit to use AM. it's 7ms slower python time now
2025-04-07 23:40:27 -04:00
Francis Lata
f8fe15e64e move BoxCoder to mlperf helpers (#9773) 2025-04-07 20:27:06 -04:00
chenyu
7c4a739fe4 full script for bert mi300x (#9772) 2025-04-07 11:41:31 -04:00
chenyu
3069ebfad1 use BERT_LAYERS=2 in bert init (#9769)
save 5 minut scheduling in setup so we can fit more search
2025-04-07 07:46:37 -04:00
Francis Lata
71b8890dd6 use validation dataloader inside retinanet eval (#9747) 2025-04-05 16:46:55 -04:00
chenyu
5a04f4d4ba revert bert hparams for green and red (#9744)
did more runs and it's not really better and not worth the change. only useful for BS=1024
2025-04-05 07:38:01 -04:00
chenyu
640ff681c3 rename bert script to 8xMI300X (#9734)
and adds a script for single MI300X
2025-04-03 23:36:24 -04:00
chenyu
6b3480ec70 update mi300x bert haparams (#9716)
* update mi300x bert haparams

borrowed from previous submission that also did BS=1024

* update
2025-04-03 22:30:00 -04:00
chenyu
a6fec2f5ae dev_run for bert on mi300x (#9706) 2025-04-02 21:12:55 -04:00
George Hotz
4514fd91c1 more stuff from DSP (#9689)
* more good stuff from dsp branch

* test pkl imagenet
2025-04-02 15:27:48 +08:00
George Hotz
6f812d3f2f fixes from the dsp branch + 12500 lines (#9683)
* fixes from the dsp branch

* more changes

* those are gep pushing
2025-04-02 13:07:17 +08:00
chenyu
f7cb2e8da3 bert dev_beam for mi300x box (#9648)
* bert dev_beam for mi300x box

* terminate BENCHMARK properly
2025-03-31 08:35:51 -04:00
chenyu
d8d7ac1bb1 fix bert free_intermediates (#9633)
fix when only run eval `TRAIN=0 BERT_SIZE=tiny examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_green/dev_beam.sh`
2025-03-30 22:42:52 -04:00
chenyu
a187dfd3df bert BEAM_UOPS_MAX 3000->4000 (#9603)
more stable for the final step time

green 410ms (master) -> 397ms (BEAM=4) -> 392ms (this)
red 561ms (master) -> 550ms (this)
2025-03-27 11:58:47 -04:00
chenyu
62888614f6 lower bert eval bs to 24 (#9590)
oom during eval
2025-03-26 21:25:23 -04:00
Andrey
7b865ed03d use tuple in isinstance for type checking (#9583) 2025-03-26 19:36:48 +08:00
qazal
c03dadfcb9 add TORCHVIZ=1 to beautiful_mnist_torch (#9576) 2025-03-26 11:17:08 +08:00
qazal
93bcb974c5 select torch device in examples/beautiful_mnist_torch.py (#9575) 2025-03-26 11:01:25 +08:00
George Hotz
74d98eafb8 add onnx frontend stub [pr] (#9558) 2025-03-24 12:24:34 +08:00
chenyu
c965f4c20b update bert config (#9555)
BEAM 4->5 for green, 2% faster
use AMD driver instead of AM for red, 5% faster
2025-03-23 16:14:41 -04:00
Francis Lata
1a1087e3a0 cleanups on losses and dataset tests (#9538) 2025-03-21 17:03:18 -04:00
Francis Lata
8cbe4009fc RetinaNet losses (#9536)
* add sigmoid_focal_loss and l1_loss

* update ref implementation comment
2025-03-21 15:52:54 -04:00
chenyu
b46b8ee15e add a flag to log when beam surpassed max limit [pr] (#9533) 2025-03-21 13:37:02 -04:00
Francis Lata
eb95825eea RetinaNet dataloader (#9442)
* retinanet dataloader

* remove batch_size from generate_anchors

* refactor kits19 dataset tests

* add tests for dataloader

* fix testing setup and cleanups

* remove unused import
2025-03-21 13:36:41 -04:00
George Hotz
8e555c586c switch quantization to unsigned/unsigned + add Ops.REDUCE (#9527)
* switch quantization to unsigned/unsigned + add Ops.REDUCE

* tests

* nhwc + replay pkl
2025-03-21 17:02:37 +08:00
George Hotz
865f23dd7b olmoe memory usage cleanups 2025-03-19 12:28:18 +08:00
chenyu
1ea4876dfa olmoe touchups (#9499)
GlobalCounters.reset() and only validate if temperature is 0
2025-03-18 15:25:45 -04:00
geohotstan
f7506c6c25 JIT OLMoE (#9396)
* jit the forward

* might timeout, idk just send it

* this is dumb

* naive bitonic lol

* idk if this is correct, but that squeeze before is definitly not

* vectorized bitonic sort, but still slow

* yay 1 layer is correct

* alright its pretty good

* good enough

* rerun CI

* nit improve comment
2025-03-18 14:49:02 -04:00
hooved
5500887eed improve reproducibility of WebGPU CI puppeteer test (#9496)
* try to make CI test fail with slow JS import

* prevent race between model import and reference

* revert artificial delay in JS module import
2025-03-18 09:27:38 -04:00
chenyu
f53be010d7 lower bert learning rate (#9481)
slightly better. first sub 3hr run https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/0or96ink/overview
2025-03-17 10:49:56 -04:00
chenyu
d2cfbd8a4d bert lower learning rate and total steps (#9466)
closer to the other submission with BS=240. converged with 10% less epochs
2025-03-16 17:21:20 -04:00
chenyu
4992958dae update bert beam params (#9423)
BEAM_MIN_PROGRESS=5 for setup speed
2025-03-12 13:00:41 -04:00
chenyu
22fc0a2e36 bert sum acc in half (#9412)
also BS=96
2025-03-11 23:03:15 -04:00
chenyu
01e8b60911 acc_dtype -> dtype (#9402)
matched numpy and torch
2025-03-10 16:05:30 -04:00
George Hotz
25847080f0 olmoe (from stream, wip) (#9390)
* olmoest working (but not)

* it's correct

* compare ropes

* old code wasn't wrong

* default device

* no metal

* fix permute

* working

* more minimal
2025-03-10 13:46:33 +08:00
hooved
304afe0d55 tinychat in browser, Part 3: browser app (#9276)
* load llama3-1B to WEBGPU device

* include compile script for loading llama3 to WEBGPU

* parametrize max_context in build_transformer fxn

* jit_model with two different args sets

* compile for webgpu, split weights

* load model weight parts in browser

* export all tensors from initialized transformer

* run transformer inference in browser

* enable tiktoken with llama bpe in browser

* count total tokens on client with tiktoken.js

* full client-side chat streaming, eliminate server

* revert change that enabled jitting with 2 argsets

* llama without Variable or cache_kv, for webgpu

* have client use mask tokens / whole context

* cleanup staged weights

* add tiktoken.js build script, README

* export CLANG for Q6_k to float32 decompression

* fix and test exported CLANG code for Q6_k to fp32

* revert changes to jit and export_model

* isolate clang export

* test Q6_K to float32 decompression in browser

* gguf_load now also returns t_infos and data_start

* prepare llama-1B Q6_K gguf chunks for browser

* cache and decompress quantized llama in browser

* enable separate deployment of large files

* fix kv cache and symbolic with llama wgpu

* eliminate browser lag during decompression

* hash metadata and weight chunks

* delete obsolete indexeddb cache to free disk

* add progress bar, track model download/decompress

* refactor progress callback

* skip buffer hash verification for speed

* Display progress for entire loading scope

* Report page load errors to user

* actually display errors

* skip prompt tokens already seen by model

* skip prefilling with last assistant message tokens

* on page load tell user if webgpu not enabled

* push deployed URL root to window.history

* make note of bug sources with TODO items

* isolate bug in CLANG with BEAM=2

* remove clang_bug.py from diff

* decompress q6k to f32 on webgpu instead of clang

* remove unused code

* inter-weight decomp with larger wgpu kernels

* parallelize decompression submissions

* refactor dequantize scheduling

* add progress bar back

* fix bug

* temp fix for loading GGUF Q6_K to fp16 not fp32

* fix rendering of exported CLANG

* remove weight casts, sketch js functions for clang

* get symbolic vars from jit_cache for model export

* include symbolic vars in exported CLANG

* render js for clang transformer

* toggle clang/webgpu deployment; refactor decomp

* compile and render clang Q6_K->fp16 and int8 quant

* fix rendered clang for abs(fp16), to work in wasm

* simplify clang js wrapping

* run compiled clang in worker

* prepare llama weights in workers, q6k to int8/fp16

* tinychat on clang in browser, f32/int8 weights

* move wasm inference to (now flexible) worker

* don't load redundant embeddings

* modest wasm perf gain with compile flags

* set default backend, enable backend choice/backup

* render symbolic vars in exported WEBGPU

* quantize webgpu llama to int8/f32

* improve UX arising from rendered WEBGPU

* clean up webgpu launch

* new weights split: smaller chunks, tinygrad quant.

* switch webgpu inference to int8 quant

* remove unneeded clang decompression

* eliminate unneeded kv cache transfer to wasm

* use 1 worker for simplified clang decompression

* display launch errors

* refactor: stream load weight chunks to WebGPU

* show loading chunk completion

* quantize embeddings to int8

* test float16 as input for quantization

* webgpu: use f16 source, int8 embed, eliminate q6k

* simplify split weights prep: all from state_dict

* revert change to nn.state.gguf_load

* remove unneeded decompression from webgpu client

* remove unneeded code

* decrease dl chunks from 47 to 16 MiB

* improve stability of webgpu loading on mobile

* autodetect mobile, improve load stability

* refactor: progress closure

* refactor: one unified progress bar

* remove unneeded code

* revert changes to tinygrad core library

* enforce ios18.3 nerfed max buf size

* BEAM=3 webgpu

* cache integrity, mobile save throttling

* improve mobile UX - no autozoom on prompt box

* clang: int8 from f16, remove q6k

* reduce concurrent dls on mobile to 2 for stability

* refactor: wasm backend with stream loading

* prevent race between wasm load and indexedb save

* split wasm kernels into separate modules

* js wrapper for multiple wasm module inference

* revert multi-module wasm to single module

* make mobile wasm load more stable/fast

* refactor: copy weights into wasm without crashes

* fix bug in download queue; increase mobile dls

* refactor exported clang wrapper, split weights

* remove unnecessary code

* greatly improve int8 quant quality with rounding

* eliminate mobile throttling

* increase webgpu context to 4096 tokens

* export webgpu js functions

* enable separate hosted weights for mobile/pc

* enable prompt-thread switching during generation

* stop generation when max_context is reached

* show progress bar for prefill

* tell user if webgpu fails, while wasm loads

* make loading messages more concise

* update font

* revert changes to tinychat python app launch

* cleanup quantization, add scale_dtype param

* cleanup kv cache code

* cleanup compile code

* link tok_embeddings with output in webgpu export

* refactor: export_model webgpu: symbolic vars

* refactor: export_model weight loading

* forgot to commit export_model.py

* change CLANG to CPU

* deal with pylint incorrectly failing tests

* simplify f-strings for older CI python version

* fix pre-python3.12 parser errors

* [Int32Array] not Int32Array

* cleanup webgpu compile after refactor export_model

* refactor WASM export into export_model

* merge WebGPU/WASM compile scripts

* simplify max_contexts for local deployment

* fix parser issues and whitespace

* deduplicate variable defs for non-wasm clang export

* cleanup code

* cleanup compile scripts

* simplify wasm inference wrapping

* simplify webgpu symbolic vars export

* refactor: unify export of symbolic variables

* simplify WASM export

* simplify clang/wasm export

* update README and build scripts

* separate files for browser/python apps

* restore original python tinychat app files

* browser and python tinychats share assets

* minor cleanup

* isolate app layer diff

* add .gitignore for generated files

* validate CPU/WEBGPU models in python

* prevent infinite generation if validation fails

* check if exported weight files are unique

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2025-03-07 15:07:33 +08:00
chenyu
2af129c078 bert corealize multiple outputs (#9359)
1% faster step
2025-03-05 10:58:37 -05:00
chenyu
ad72269f08 bert put eval copy and getting lr in jit (#9350) 2025-03-04 20:57:03 -05:00
chenyu
9eb45eb629 add a flag to skip bert train (#9349) 2025-03-04 17:13:00 -05:00
hooved
01f7a4fadc tinychat in browser, Part 2: model export (#9274)
* load llama3-1B to WEBGPU device

* include compile script for loading llama3 to WEBGPU

* parametrize max_context in build_transformer fxn

* jit_model with two different args sets

* compile for webgpu, split weights

* load model weight parts in browser

* export all tensors from initialized transformer

* run transformer inference in browser

* enable tiktoken with llama bpe in browser

* count total tokens on client with tiktoken.js

* full client-side chat streaming, eliminate server

* revert change that enabled jitting with 2 argsets

* llama without Variable or cache_kv, for webgpu

* have client use mask tokens / whole context

* cleanup staged weights

* add tiktoken.js build script, README

* export CLANG for Q6_k to float32 decompression

* fix and test exported CLANG code for Q6_k to fp32

* revert changes to jit and export_model

* isolate clang export

* test Q6_K to float32 decompression in browser

* gguf_load now also returns t_infos and data_start

* prepare llama-1B Q6_K gguf chunks for browser

* cache and decompress quantized llama in browser

* enable separate deployment of large files

* fix kv cache and symbolic with llama wgpu

* eliminate browser lag during decompression

* hash metadata and weight chunks

* delete obsolete indexeddb cache to free disk

* add progress bar, track model download/decompress

* refactor progress callback

* skip buffer hash verification for speed

* Display progress for entire loading scope

* Report page load errors to user

* actually display errors

* skip prompt tokens already seen by model

* skip prefilling with last assistant message tokens

* on page load tell user if webgpu not enabled

* push deployed URL root to window.history

* make note of bug sources with TODO items

* isolate bug in CLANG with BEAM=2

* remove clang_bug.py from diff

* decompress q6k to f32 on webgpu instead of clang

* remove unused code

* inter-weight decomp with larger wgpu kernels

* parallelize decompression submissions

* refactor dequantize scheduling

* add progress bar back

* fix bug

* temp fix for loading GGUF Q6_K to fp16 not fp32

* fix rendering of exported CLANG

* remove weight casts, sketch js functions for clang

* get symbolic vars from jit_cache for model export

* include symbolic vars in exported CLANG

* render js for clang transformer

* toggle clang/webgpu deployment; refactor decomp

* compile and render clang Q6_K->fp16 and int8 quant

* fix rendered clang for abs(fp16), to work in wasm

* simplify clang js wrapping

* run compiled clang in worker

* prepare llama weights in workers, q6k to int8/fp16

* tinychat on clang in browser, f32/int8 weights

* move wasm inference to (now flexible) worker

* don't load redundant embeddings

* modest wasm perf gain with compile flags

* set default backend, enable backend choice/backup

* render symbolic vars in exported WEBGPU

* quantize webgpu llama to int8/f32

* improve UX arising from rendered WEBGPU

* clean up webgpu launch

* new weights split: smaller chunks, tinygrad quant.

* switch webgpu inference to int8 quant

* remove unneeded clang decompression

* eliminate unneeded kv cache transfer to wasm

* use 1 worker for simplified clang decompression

* display launch errors

* refactor: stream load weight chunks to WebGPU

* show loading chunk completion

* quantize embeddings to int8

* test float16 as input for quantization

* webgpu: use f16 source, int8 embed, eliminate q6k

* simplify split weights prep: all from state_dict

* revert change to nn.state.gguf_load

* remove unneeded decompression from webgpu client

* remove unneeded code

* decrease dl chunks from 47 to 16 MiB

* improve stability of webgpu loading on mobile

* autodetect mobile, improve load stability

* refactor: progress closure

* refactor: one unified progress bar

* remove unneeded code

* revert changes to tinygrad core library

* enforce ios18.3 nerfed max buf size

* BEAM=3 webgpu

* cache integrity, mobile save throttling

* improve mobile UX - no autozoom on prompt box

* clang: int8 from f16, remove q6k

* reduce concurrent dls on mobile to 2 for stability

* refactor: wasm backend with stream loading

* prevent race between wasm load and indexedb save

* split wasm kernels into separate modules

* js wrapper for multiple wasm module inference

* revert multi-module wasm to single module

* make mobile wasm load more stable/fast

* refactor: copy weights into wasm without crashes

* fix bug in download queue; increase mobile dls

* refactor exported clang wrapper, split weights

* remove unnecessary code

* greatly improve int8 quant quality with rounding

* eliminate mobile throttling

* increase webgpu context to 4096 tokens

* export webgpu js functions

* enable separate hosted weights for mobile/pc

* enable prompt-thread switching during generation

* stop generation when max_context is reached

* show progress bar for prefill

* tell user if webgpu fails, while wasm loads

* make loading messages more concise

* update font

* revert changes to tinychat python app launch

* cleanup quantization, add scale_dtype param

* cleanup kv cache code

* cleanup compile code

* link tok_embeddings with output in webgpu export

* refactor: export_model webgpu: symbolic vars

* refactor: export_model weight loading

* forgot to commit export_model.py

* change CLANG to CPU

* deal with pylint incorrectly failing tests

* simplify f-strings for older CI python version

* fix pre-python3.12 parser errors

* [Int32Array] not Int32Array

* cleanup webgpu compile after refactor export_model

* refactor WASM export into export_model

* merge WebGPU/WASM compile scripts

* simplify max_contexts for local deployment

* fix parser issues and whitespace

* deduplicate variable defs for non-wasm clang export

* cleanup code

* cleanup compile scripts

* simplify wasm inference wrapping

* simplify webgpu symbolic vars export

* refactor: unify export of symbolic variables

* simplify WASM export

* simplify clang/wasm export

* update README and build scripts

* separate files for browser/python apps

* restore original python tinychat app files

* browser and python tinychats share assets

* minor cleanup

* isolate compile/export model

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2025-03-04 15:53:30 +08:00
George Hotz
0d4ba7dd87 import tinygrad.frontend.torch (#9337)
* import tinygrad.frontend.torch

* type ignore
2025-03-04 00:15:29 +08:00
qazal
845814f396 revert buffer_view change (#9311)
* Revert "BUFFER_VIEW is a node in the kernel graph + delete ViewOp (#9298)"

This reverts commit 3210b656b6.

* Revert "substitute ast from kernel op [pr] (#9293)"

This reverts commit 5a9c788ae6.
2025-03-01 11:00:12 +01:00
qazal
3210b656b6 BUFFER_VIEW is a node in the kernel graph + delete ViewOp (#9298) 2025-02-28 12:15:04 +02:00