Commit Graph

1009 Commits

Author SHA1 Message Date
George Hotz
74d98eafb8 add onnx frontend stub [pr] (#9558) 2025-03-24 12:24:34 +08:00
chenyu
c965f4c20b update bert config (#9555)
BEAM 4->5 for green, 2% faster
use AMD driver instead of AM for red, 5% faster
2025-03-23 16:14:41 -04:00
Francis Lata
1a1087e3a0 cleanups on losses and dataset tests (#9538) 2025-03-21 17:03:18 -04:00
Francis Lata
8cbe4009fc RetinaNet losses (#9536)
* add sigmoid_focal_loss and l1_loss

* update ref implementation comment
2025-03-21 15:52:54 -04:00
chenyu
b46b8ee15e add a flag to log when beam surpassed max limit [pr] (#9533) 2025-03-21 13:37:02 -04:00
Francis Lata
eb95825eea RetinaNet dataloader (#9442)
* retinanet dataloader

* remove batch_size from generate_anchors

* refactor kits19 dataset tests

* add tests for dataloader

* fix testing setup and cleanups

* remove unused import
2025-03-21 13:36:41 -04:00
George Hotz
8e555c586c switch quantization to unsigned/unsigned + add Ops.REDUCE (#9527)
* switch quantization to unsigned/unsigned + add Ops.REDUCE

* tests

* nhwc + replay pkl
2025-03-21 17:02:37 +08:00
George Hotz
865f23dd7b olmoe memory usage cleanups 2025-03-19 12:28:18 +08:00
chenyu
1ea4876dfa olmoe touchups (#9499)
GlobalCounters.reset() and only validate if temperature is 0
2025-03-18 15:25:45 -04:00
geohotstan
f7506c6c25 JIT OLMoE (#9396)
* jit the forward

* might timeout, idk just send it

* this is dumb

* naive bitonic lol

* idk if this is correct, but that squeeze before is definitly not

* vectorized bitonic sort, but still slow

* yay 1 layer is correct

* alright its pretty good

* good enough

* rerun CI

* nit improve comment
2025-03-18 14:49:02 -04:00
hooved
5500887eed improve reproducibility of WebGPU CI puppeteer test (#9496)
* try to make CI test fail with slow JS import

* prevent race between model import and reference

* revert artificial delay in JS module import
2025-03-18 09:27:38 -04:00
chenyu
f53be010d7 lower bert learning rate (#9481)
slightly better. first sub 3hr run https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/0or96ink/overview
2025-03-17 10:49:56 -04:00
chenyu
d2cfbd8a4d bert lower learning rate and total steps (#9466)
closer to the other submission with BS=240. converged with 10% less epochs
2025-03-16 17:21:20 -04:00
chenyu
4992958dae update bert beam params (#9423)
BEAM_MIN_PROGRESS=5 for setup speed
2025-03-12 13:00:41 -04:00
chenyu
22fc0a2e36 bert sum acc in half (#9412)
also BS=96
2025-03-11 23:03:15 -04:00
chenyu
01e8b60911 acc_dtype -> dtype (#9402)
matched numpy and torch
2025-03-10 16:05:30 -04:00
George Hotz
25847080f0 olmoe (from stream, wip) (#9390)
* olmoest working (but not)

* it's correct

* compare ropes

* old code wasn't wrong

* default device

* no metal

* fix permute

* working

* more minimal
2025-03-10 13:46:33 +08:00
hooved
304afe0d55 tinychat in browser, Part 3: browser app (#9276)
* load llama3-1B to WEBGPU device

* include compile script for loading llama3 to WEBGPU

* parametrize max_context in build_transformer fxn

* jit_model with two different args sets

* compile for webgpu, split weights

* load model weight parts in browser

* export all tensors from initialized transformer

* run transformer inference in browser

* enable tiktoken with llama bpe in browser

* count total tokens on client with tiktoken.js

* full client-side chat streaming, eliminate server

* revert change that enabled jitting with 2 argsets

* llama without Variable or cache_kv, for webgpu

* have client use mask tokens / whole context

* cleanup staged weights

* add tiktoken.js build script, README

* export CLANG for Q6_k to float32 decompression

* fix and test exported CLANG code for Q6_k to fp32

* revert changes to jit and export_model

* isolate clang export

* test Q6_K to float32 decompression in browser

* gguf_load now also returns t_infos and data_start

* prepare llama-1B Q6_K gguf chunks for browser

* cache and decompress quantized llama in browser

* enable separate deployment of large files

* fix kv cache and symbolic with llama wgpu

* eliminate browser lag during decompression

* hash metadata and weight chunks

* delete obsolete indexeddb cache to free disk

* add progress bar, track model download/decompress

* refactor progress callback

* skip buffer hash verification for speed

* Display progress for entire loading scope

* Report page load errors to user

* actually display errors

* skip prompt tokens already seen by model

* skip prefilling with last assistant message tokens

* on page load tell user if webgpu not enabled

* push deployed URL root to window.history

* make note of bug sources with TODO items

* isolate bug in CLANG with BEAM=2

* remove clang_bug.py from diff

* decompress q6k to f32 on webgpu instead of clang

* remove unused code

* inter-weight decomp with larger wgpu kernels

* parallelize decompression submissions

* refactor dequantize scheduling

* add progress bar back

* fix bug

* temp fix for loading GGUF Q6_K to fp16 not fp32

* fix rendering of exported CLANG

* remove weight casts, sketch js functions for clang

* get symbolic vars from jit_cache for model export

* include symbolic vars in exported CLANG

* render js for clang transformer

* toggle clang/webgpu deployment; refactor decomp

* compile and render clang Q6_K->fp16 and int8 quant

* fix rendered clang for abs(fp16), to work in wasm

* simplify clang js wrapping

* run compiled clang in worker

* prepare llama weights in workers, q6k to int8/fp16

* tinychat on clang in browser, f32/int8 weights

* move wasm inference to (now flexible) worker

* don't load redundant embeddings

* modest wasm perf gain with compile flags

* set default backend, enable backend choice/backup

* render symbolic vars in exported WEBGPU

* quantize webgpu llama to int8/f32

* improve UX arising from rendered WEBGPU

* clean up webgpu launch

* new weights split: smaller chunks, tinygrad quant.

* switch webgpu inference to int8 quant

* remove unneeded clang decompression

* eliminate unneeded kv cache transfer to wasm

* use 1 worker for simplified clang decompression

* display launch errors

* refactor: stream load weight chunks to WebGPU

* show loading chunk completion

* quantize embeddings to int8

* test float16 as input for quantization

* webgpu: use f16 source, int8 embed, eliminate q6k

* simplify split weights prep: all from state_dict

* revert change to nn.state.gguf_load

* remove unneeded decompression from webgpu client

* remove unneeded code

* decrease dl chunks from 47 to 16 MiB

* improve stability of webgpu loading on mobile

* autodetect mobile, improve load stability

* refactor: progress closure

* refactor: one unified progress bar

* remove unneeded code

* revert changes to tinygrad core library

* enforce ios18.3 nerfed max buf size

* BEAM=3 webgpu

* cache integrity, mobile save throttling

* improve mobile UX - no autozoom on prompt box

* clang: int8 from f16, remove q6k

* reduce concurrent dls on mobile to 2 for stability

* refactor: wasm backend with stream loading

* prevent race between wasm load and indexedb save

* split wasm kernels into separate modules

* js wrapper for multiple wasm module inference

* revert multi-module wasm to single module

* make mobile wasm load more stable/fast

* refactor: copy weights into wasm without crashes

* fix bug in download queue; increase mobile dls

* refactor exported clang wrapper, split weights

* remove unnecessary code

* greatly improve int8 quant quality with rounding

* eliminate mobile throttling

* increase webgpu context to 4096 tokens

* export webgpu js functions

* enable separate hosted weights for mobile/pc

* enable prompt-thread switching during generation

* stop generation when max_context is reached

* show progress bar for prefill

* tell user if webgpu fails, while wasm loads

* make loading messages more concise

* update font

* revert changes to tinychat python app launch

* cleanup quantization, add scale_dtype param

* cleanup kv cache code

* cleanup compile code

* link tok_embeddings with output in webgpu export

* refactor: export_model webgpu: symbolic vars

* refactor: export_model weight loading

* forgot to commit export_model.py

* change CLANG to CPU

* deal with pylint incorrectly failing tests

* simplify f-strings for older CI python version

* fix pre-python3.12 parser errors

* [Int32Array] not Int32Array

* cleanup webgpu compile after refactor export_model

* refactor WASM export into export_model

* merge WebGPU/WASM compile scripts

* simplify max_contexts for local deployment

* fix parser issues and whitespace

* deduplicate variable defs for non-wasm clang export

* cleanup code

* cleanup compile scripts

* simplify wasm inference wrapping

* simplify webgpu symbolic vars export

* refactor: unify export of symbolic variables

* simplify WASM export

* simplify clang/wasm export

* update README and build scripts

* separate files for browser/python apps

* restore original python tinychat app files

* browser and python tinychats share assets

* minor cleanup

* isolate app layer diff

* add .gitignore for generated files

* validate CPU/WEBGPU models in python

* prevent infinite generation if validation fails

* check if exported weight files are unique

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2025-03-07 15:07:33 +08:00
chenyu
2af129c078 bert corealize multiple outputs (#9359)
1% faster step
2025-03-05 10:58:37 -05:00
chenyu
ad72269f08 bert put eval copy and getting lr in jit (#9350) 2025-03-04 20:57:03 -05:00
chenyu
9eb45eb629 add a flag to skip bert train (#9349) 2025-03-04 17:13:00 -05:00
hooved
01f7a4fadc tinychat in browser, Part 2: model export (#9274)
* load llama3-1B to WEBGPU device

* include compile script for loading llama3 to WEBGPU

* parametrize max_context in build_transformer fxn

* jit_model with two different args sets

* compile for webgpu, split weights

* load model weight parts in browser

* export all tensors from initialized transformer

* run transformer inference in browser

* enable tiktoken with llama bpe in browser

* count total tokens on client with tiktoken.js

* full client-side chat streaming, eliminate server

* revert change that enabled jitting with 2 argsets

* llama without Variable or cache_kv, for webgpu

* have client use mask tokens / whole context

* cleanup staged weights

* add tiktoken.js build script, README

* export CLANG for Q6_k to float32 decompression

* fix and test exported CLANG code for Q6_k to fp32

* revert changes to jit and export_model

* isolate clang export

* test Q6_K to float32 decompression in browser

* gguf_load now also returns t_infos and data_start

* prepare llama-1B Q6_K gguf chunks for browser

* cache and decompress quantized llama in browser

* enable separate deployment of large files

* fix kv cache and symbolic with llama wgpu

* eliminate browser lag during decompression

* hash metadata and weight chunks

* delete obsolete indexeddb cache to free disk

* add progress bar, track model download/decompress

* refactor progress callback

* skip buffer hash verification for speed

* Display progress for entire loading scope

* Report page load errors to user

* actually display errors

* skip prompt tokens already seen by model

* skip prefilling with last assistant message tokens

* on page load tell user if webgpu not enabled

* push deployed URL root to window.history

* make note of bug sources with TODO items

* isolate bug in CLANG with BEAM=2

* remove clang_bug.py from diff

* decompress q6k to f32 on webgpu instead of clang

* remove unused code

* inter-weight decomp with larger wgpu kernels

* parallelize decompression submissions

* refactor dequantize scheduling

* add progress bar back

* fix bug

* temp fix for loading GGUF Q6_K to fp16 not fp32

* fix rendering of exported CLANG

* remove weight casts, sketch js functions for clang

* get symbolic vars from jit_cache for model export

* include symbolic vars in exported CLANG

* render js for clang transformer

* toggle clang/webgpu deployment; refactor decomp

* compile and render clang Q6_K->fp16 and int8 quant

* fix rendered clang for abs(fp16), to work in wasm

* simplify clang js wrapping

* run compiled clang in worker

* prepare llama weights in workers, q6k to int8/fp16

* tinychat on clang in browser, f32/int8 weights

* move wasm inference to (now flexible) worker

* don't load redundant embeddings

* modest wasm perf gain with compile flags

* set default backend, enable backend choice/backup

* render symbolic vars in exported WEBGPU

* quantize webgpu llama to int8/f32

* improve UX arising from rendered WEBGPU

* clean up webgpu launch

* new weights split: smaller chunks, tinygrad quant.

* switch webgpu inference to int8 quant

* remove unneeded clang decompression

* eliminate unneeded kv cache transfer to wasm

* use 1 worker for simplified clang decompression

* display launch errors

* refactor: stream load weight chunks to WebGPU

* show loading chunk completion

* quantize embeddings to int8

* test float16 as input for quantization

* webgpu: use f16 source, int8 embed, eliminate q6k

* simplify split weights prep: all from state_dict

* revert change to nn.state.gguf_load

* remove unneeded decompression from webgpu client

* remove unneeded code

* decrease dl chunks from 47 to 16 MiB

* improve stability of webgpu loading on mobile

* autodetect mobile, improve load stability

* refactor: progress closure

* refactor: one unified progress bar

* remove unneeded code

* revert changes to tinygrad core library

* enforce ios18.3 nerfed max buf size

* BEAM=3 webgpu

* cache integrity, mobile save throttling

* improve mobile UX - no autozoom on prompt box

* clang: int8 from f16, remove q6k

* reduce concurrent dls on mobile to 2 for stability

* refactor: wasm backend with stream loading

* prevent race between wasm load and indexedb save

* split wasm kernels into separate modules

* js wrapper for multiple wasm module inference

* revert multi-module wasm to single module

* make mobile wasm load more stable/fast

* refactor: copy weights into wasm without crashes

* fix bug in download queue; increase mobile dls

* refactor exported clang wrapper, split weights

* remove unnecessary code

* greatly improve int8 quant quality with rounding

* eliminate mobile throttling

* increase webgpu context to 4096 tokens

* export webgpu js functions

* enable separate hosted weights for mobile/pc

* enable prompt-thread switching during generation

* stop generation when max_context is reached

* show progress bar for prefill

* tell user if webgpu fails, while wasm loads

* make loading messages more concise

* update font

* revert changes to tinychat python app launch

* cleanup quantization, add scale_dtype param

* cleanup kv cache code

* cleanup compile code

* link tok_embeddings with output in webgpu export

* refactor: export_model webgpu: symbolic vars

* refactor: export_model weight loading

* forgot to commit export_model.py

* change CLANG to CPU

* deal with pylint incorrectly failing tests

* simplify f-strings for older CI python version

* fix pre-python3.12 parser errors

* [Int32Array] not Int32Array

* cleanup webgpu compile after refactor export_model

* refactor WASM export into export_model

* merge WebGPU/WASM compile scripts

* simplify max_contexts for local deployment

* fix parser issues and whitespace

* deduplicate variable defs for non-wasm clang export

* cleanup code

* cleanup compile scripts

* simplify wasm inference wrapping

* simplify webgpu symbolic vars export

* refactor: unify export of symbolic variables

* simplify WASM export

* simplify clang/wasm export

* update README and build scripts

* separate files for browser/python apps

* restore original python tinychat app files

* browser and python tinychats share assets

* minor cleanup

* isolate compile/export model

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2025-03-04 15:53:30 +08:00
George Hotz
0d4ba7dd87 import tinygrad.frontend.torch (#9337)
* import tinygrad.frontend.torch

* type ignore
2025-03-04 00:15:29 +08:00
qazal
845814f396 revert buffer_view change (#9311)
* Revert "BUFFER_VIEW is a node in the kernel graph + delete ViewOp (#9298)"

This reverts commit 3210b656b6.

* Revert "substitute ast from kernel op [pr] (#9293)"

This reverts commit 5a9c788ae6.
2025-03-01 11:00:12 +01:00
qazal
3210b656b6 BUFFER_VIEW is a node in the kernel graph + delete ViewOp (#9298) 2025-02-28 12:15:04 +02:00
ZwX1616
c977781b3c no numpy change if no NPY (#9281)
* skip np change check if no NPY

* use any
2025-02-28 09:32:35 +08:00
hooved
3b9950241e tinychat in browser, Part 1: llama (#9273)
* load llama3-1B to WEBGPU device

* include compile script for loading llama3 to WEBGPU

* parametrize max_context in build_transformer fxn

* jit_model with two different args sets

* compile for webgpu, split weights

* load model weight parts in browser

* export all tensors from initialized transformer

* run transformer inference in browser

* enable tiktoken with llama bpe in browser

* count total tokens on client with tiktoken.js

* full client-side chat streaming, eliminate server

* revert change that enabled jitting with 2 argsets

* llama without Variable or cache_kv, for webgpu

* have client use mask tokens / whole context

* cleanup staged weights

* add tiktoken.js build script, README

* export CLANG for Q6_k to float32 decompression

* fix and test exported CLANG code for Q6_k to fp32

* revert changes to jit and export_model

* isolate clang export

* test Q6_K to float32 decompression in browser

* gguf_load now also returns t_infos and data_start

* prepare llama-1B Q6_K gguf chunks for browser

* cache and decompress quantized llama in browser

* enable separate deployment of large files

* fix kv cache and symbolic with llama wgpu

* eliminate browser lag during decompression

* hash metadata and weight chunks

* delete obsolete indexeddb cache to free disk

* add progress bar, track model download/decompress

* refactor progress callback

* skip buffer hash verification for speed

* Display progress for entire loading scope

* Report page load errors to user

* actually display errors

* skip prompt tokens already seen by model

* skip prefilling with last assistant message tokens

* on page load tell user if webgpu not enabled

* push deployed URL root to window.history

* make note of bug sources with TODO items

* isolate bug in CLANG with BEAM=2

* remove clang_bug.py from diff

* decompress q6k to f32 on webgpu instead of clang

* remove unused code

* inter-weight decomp with larger wgpu kernels

* parallelize decompression submissions

* refactor dequantize scheduling

* add progress bar back

* fix bug

* temp fix for loading GGUF Q6_K to fp16 not fp32

* fix rendering of exported CLANG

* remove weight casts, sketch js functions for clang

* get symbolic vars from jit_cache for model export

* include symbolic vars in exported CLANG

* render js for clang transformer

* toggle clang/webgpu deployment; refactor decomp

* compile and render clang Q6_K->fp16 and int8 quant

* fix rendered clang for abs(fp16), to work in wasm

* simplify clang js wrapping

* run compiled clang in worker

* prepare llama weights in workers, q6k to int8/fp16

* tinychat on clang in browser, f32/int8 weights

* move wasm inference to (now flexible) worker

* don't load redundant embeddings

* modest wasm perf gain with compile flags

* set default backend, enable backend choice/backup

* render symbolic vars in exported WEBGPU

* quantize webgpu llama to int8/f32

* improve UX arising from rendered WEBGPU

* clean up webgpu launch

* new weights split: smaller chunks, tinygrad quant.

* switch webgpu inference to int8 quant

* remove unneeded clang decompression

* eliminate unneeded kv cache transfer to wasm

* use 1 worker for simplified clang decompression

* display launch errors

* refactor: stream load weight chunks to WebGPU

* show loading chunk completion

* quantize embeddings to int8

* test float16 as input for quantization

* webgpu: use f16 source, int8 embed, eliminate q6k

* simplify split weights prep: all from state_dict

* revert change to nn.state.gguf_load

* remove unneeded decompression from webgpu client

* remove unneeded code

* decrease dl chunks from 47 to 16 MiB

* improve stability of webgpu loading on mobile

* autodetect mobile, improve load stability

* refactor: progress closure

* refactor: one unified progress bar

* remove unneeded code

* revert changes to tinygrad core library

* enforce ios18.3 nerfed max buf size

* BEAM=3 webgpu

* cache integrity, mobile save throttling

* improve mobile UX - no autozoom on prompt box

* clang: int8 from f16, remove q6k

* reduce concurrent dls on mobile to 2 for stability

* refactor: wasm backend with stream loading

* prevent race between wasm load and indexedb save

* split wasm kernels into separate modules

* js wrapper for multiple wasm module inference

* revert multi-module wasm to single module

* make mobile wasm load more stable/fast

* refactor: copy weights into wasm without crashes

* fix bug in download queue; increase mobile dls

* refactor exported clang wrapper, split weights

* remove unnecessary code

* greatly improve int8 quant quality with rounding

* eliminate mobile throttling

* increase webgpu context to 4096 tokens

* export webgpu js functions

* enable separate hosted weights for mobile/pc

* enable prompt-thread switching during generation

* stop generation when max_context is reached

* show progress bar for prefill

* tell user if webgpu fails, while wasm loads

* make loading messages more concise

* update font

* revert changes to tinychat python app launch

* cleanup quantization, add scale_dtype param

* cleanup kv cache code

* cleanup compile code

* link tok_embeddings with output in webgpu export

* refactor: export_model webgpu: symbolic vars

* refactor: export_model weight loading

* forgot to commit export_model.py

* change CLANG to CPU

* deal with pylint incorrectly failing tests

* simplify f-strings for older CI python version

* fix pre-python3.12 parser errors

* [Int32Array] not Int32Array

* cleanup webgpu compile after refactor export_model

* refactor WASM export into export_model

* merge WebGPU/WASM compile scripts

* simplify max_contexts for local deployment

* fix parser issues and whitespace

* deduplicate variable defs for non-wasm clang export

* cleanup code

* cleanup compile scripts

* simplify wasm inference wrapping

* simplify webgpu symbolic vars export

* refactor: unify export of symbolic variables

* simplify WASM export

* simplify clang/wasm export

* update README and build scripts

* separate files for browser/python apps

* restore original python tinychat app files

* browser and python tinychats share assets

* minor cleanup

* isolate diffs to llama files

* minor cleanup

* set default scale_dtype

* set default scale_dtype for NF4 quantization

* make quantization of tok_embeds optional

* match output with tok_embeds if not quantizing

* minor change
2025-02-27 15:57:37 -05:00
George Hotz
67ba073c55 hotfix: test accuracy in beautiful_mnist_torch 2025-02-27 11:18:59 +08:00
Francis Lata
86b737a120 leakyrelu to leaky_relu (#9270) 2025-02-26 13:22:08 -05:00
George Hotz
3f4eb9006a test for device mismatch [pr] (#9250)
* test for device mismatch [pr]

* fix bert
2025-02-26 13:06:33 +08:00
chenyu
979e84f30e RESET_STEP in bert setup and beam (#9248)
running dev_beam migh OOM without it but runs fine in real run.
2025-02-25 19:15:10 -05:00
chenyu
6610ad58ab hotfix bert no shard with only one device (#9243)
`LLVM=1 BERT_SIZE="tiny" DEFAULT_FLOAT=HALF BENCHMARK=5 MODEL="bert" python3 examples/mlperf/model_train.py` runs for me with this. it should not failed with single device shard though
2025-02-25 09:05:11 -05:00
nimlgen
b4c3780df0 hotfix: interop example (#9237)
* hotfix: interop example

* rm this

* fix

* fix ci mps

* atol rtol

* no uaf
2025-02-25 10:32:00 +03:00
chenyu
8c7be428e5 update bert BS to 78 (#9236)
fits 78 now. about 215 tflops on green
2025-02-24 22:47:35 -05:00
nimlgen
56288243e6 metal PyTorch interop (#9229)
* add from_blob support to mps cuda

* objc_id

* metal pytorch interop

* fix comments

---------

Co-authored-by: George Hotz <geohot@gmail.com>
2025-02-24 22:36:08 +03:00
nimlgen
1d06d61b16 from_blob for cuda (#9223)
* from_blob for cuda

* maybe docs?

* minor docs

* example

* waiting 9224

---------

Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
2025-02-24 14:02:06 +03:00
George Hotz
24615db5f5 hotfix: torch cuda interop example 2025-02-24 09:02:48 +00:00
ShikChen
05e3202fba remove unused memsize_to_str and minor cleanups [pr] (#9211)
* fix edge cases in memsize_to_str()

Inputs <= 1 now return "0.00 B" for 0 and "1.00 B" for 1, avoiding an
IndexError. Also, memsize_to_str(1000) now returns "1.00 KB" instead of
"1000.00 B".

Replaced the list comprehension with a next(...) generator for conciseness
and efficiency.

* simplify code using idiomatic python

- Remove the unused `memsize_to_str()` function in helpers.
- Use a tuple for checking multiple string prefixes/suffixes.
- Avoid unnecessary list construction by using iterables directly.
- Check None in @diskcache to ensure proper caching of falsy values.

* revert generators back to list comprehension

Sometimes building list first could be faster. Keep it as is.
2025-02-23 09:58:37 -05:00
George Hotz
4e6665bda5 different way to write torch backend (#9197)
* different way to write torch backend

* both backends

* more work

* simpler code

* more work

* test both

* imply unwrap/wrap

* FORWARD_ONLY=1 TINY_BACKEND=1 python3 test/test_ops.py TestOps.test_add works

* ready to start making test_ops work in torch backend

* backward pass, TINY_BACKEND=1 python3 test/test_ops.py TestOps.test_add works

* FORWARD_ONLY=1 TINY_BACKEND=1 python3 test/test_ops.py TestOps.test_simple_conv2d works

* matmul backward is broken with as_strided
2025-02-22 14:42:26 +08:00
George Hotz
e87be0131e torch backend start (#9191)
* start torch backend

* progress

* ugh, you need cpp crap

* 1+1 works

* 1+1 works

* becoming a real backend

* ready to merge?
2025-02-21 16:57:28 +08:00
chenyu
2e7c2780a9 CLANG -> CPU (#9189) 2025-02-20 18:03:09 -05:00
chenyu
3b37cc898b add bert tiny config (#9177)
set with BERT_SIZE=tiny. easier to study embedding and fusion
2025-02-19 14:57:03 -05:00
chenyu
975c318dbc bert use int32 for input ids (#9173)
original data was int32 for these. float might have caused precision issues
2025-02-19 08:17:27 -05:00
chenyu
ff05bff221 put bert data shard inside jit (#9160)
python time 45ms -> 9ms, it was spending time to schedule the shard

also init bert data on CLANG since it's from numpy, so we don't create the tensor on default device then shard into GPUS
2025-02-18 10:36:54 -05:00
chenyu
5dc1257ce0 clean up bert fake data iterator [pr] (#9145)
reuse the same get_data_bert path in setup and real run
2025-02-17 20:03:38 -05:00
George Hotz
7eea9b639d hotfix: add replay_pkl debugging env 2025-02-17 17:34:58 +08:00
George Hotz
4672d9af73 actual tests for the dsp backend [pr] (#9102)
* actual tests for the dsp backend [pr]

* fix name
2025-02-15 15:17:56 +08:00
chenyu
81597ddd96 increase lr for bert (#9098)
had one run that converged better https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/u66tv2hh/overview
2025-02-14 19:10:35 -05:00
chenyu
b58e7b1898 zero out the weight in bert init run (#9076)
`DEFAULT_FLOAT=HALF BENCHMARK=10 BS=66 EVAL_BS=6 GPUS=6 MODEL=bert python3 examples/mlperf/model_train.py` no longer oom. I think the buffer of random init weights caused the oom.
2025-02-14 08:40:41 -05:00
chenyu
9e91898941 bert eval at the end of training (#9070)
always eval at the last epoch
2025-02-13 16:29:44 -05:00