Compare commits

...

112 Commits

Author SHA1 Message Date
github-actions[bot]
da3e7c2510 chore(release): Update version to v1.4.321 2025-11-03 05:26:46 +00:00
Kayvan Sylvan
31e99c5958 Merge pull request #1803 from danielmiessler/dependabot/npm_and_yarn/web/npm_and_yarn-d50880170f
chore(deps-dev): bump vite from 5.4.20 to 5.4.21 in /web in the npm_and_yarn group across 1 directory
2025-11-02 21:24:34 -08:00
Changelog Bot
10179b3e86 chore: incoming 1803 changelog entry 2025-11-02 21:19:18 -08:00
Kayvan Sylvan
4b9887da2e Merge pull request #1805 from OmriH-Elister/feature
Added a better cheangelog summary, also added the new patterns (and the new "WELLNESS" category) to the
"suggest_pattern" pattern.

Merging.
2025-11-02 21:08:59 -08:00
Changelog Bot
f8ccbaa5e4 chore: incoming 1805 changelog entry 2025-11-02 21:03:56 -08:00
Kayvan Sylvan
068a673bb3 feat: add wellness patterns and new analysis tools
# CHANGES

- Add new WELLNESS category with four patterns
- Add `model_as_sherlock_freud` for psychological detective analysis
- Add `predict_person_actions` for behavioral response predictions
- Add `recommend_yoga_practice` for personalized wellness guidance
- Add `fix_typos` pattern for proofreading corrections
- Update ANALYSIS category to include new patterns
- Update SELF category with wellness-related patterns
- Tag existing patterns with WELLNESS classification
2025-11-02 21:03:22 -08:00
Kayvan Sylvan
10b556f2f6 Update changelog for PR 1805 2025-11-02 20:46:04 -08:00
Changelog Bot
ff9699549d chore: incoming 1805 changelog entry 2025-11-02 20:41:06 -08:00
Kayvan Sylvan
72691a4ce0 remove 1805.txt 2025-11-02 20:41:01 -08:00
Kayvan Sylvan
742346045b Merge pull request #1808 from sluosapher/main
Updated create_newsletter_entry pattern to generate more factual titles

I added the missing changelog entry. Merging this.
2025-11-02 20:33:06 -08:00
Changelog Bot
eff45c8e9b chore: incoming 1808 changelog entry 2025-11-02 20:28:29 -08:00
github-actions[bot]
8eaaf7b837 chore(release): Update version to v1.4.320 2025-10-28 14:34:19 +00:00
Kayvan Sylvan
ba67045c75 Merge pull request #1810 from tonymet/subtitle-error-handling
improve subtitle lang, retry, debugging & error handling
2025-10-28 07:31:51 -07:00
Changelog Bot
4f20f7a16b chore: incoming 1810 changelog entry 2025-10-28 07:29:34 -07:00
Changelog Bot
9a426e9d5a chore: incoming 1805 changelog entry 2025-10-28 14:23:49 +00:00
OmriH-Elister
0d880c5c97 feat: add a few new patterns 2025-10-28 13:55:44 +00:00
Anthony Metzidis
3211f6f35c improve subtitle lang, retry, debugging & error handling 2025-10-27 21:53:53 -07:00
Song Luo
0dba40f8a0 Updated the title generation style; added an output example. 2025-10-26 10:18:03 -04:00
dependabot[bot]
c26e0bcdc5 chore(deps-dev): bump vite
Bumps the npm_and_yarn group with 1 update in the /web directory: [vite](https://github.com/vitejs/vite/tree/HEAD/packages/vite).


Updates `vite` from 5.4.20 to 5.4.21
- [Release notes](https://github.com/vitejs/vite/releases)
- [Changelog](https://github.com/vitejs/vite/blob/v5.4.21/packages/vite/CHANGELOG.md)
- [Commits](https://github.com/vitejs/vite/commits/v5.4.21/packages/vite)

---
updated-dependencies:
- dependency-name: vite
  dependency-version: 5.4.21
  dependency-type: direct:development
  dependency-group: npm_and_yarn
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-21 08:08:37 +00:00
Kayvan Sylvan
7d80fd6d1d Merge pull request #1780 from marcas756/feature/extract_characters
feat: add extract_characters pattern
2025-10-14 08:27:23 -07:00
Kayvan Sylvan
faa7fa3387 chore: added extract_characters method for detailed character analysis
### CHANGES

- Add `extract_characters` to identify and describe characters
- Update business category to include `extract_characters`
- Include `extract_characters` in extract category
- Add `extract_characters` description in pattern descriptions JSON
- Update user documentation with `extract_characters` details
2025-10-14 08:26:08 -07:00
Changelog Bot
cf04c60bf7 chore: incoming 1780 changelog entry 2025-10-14 08:04:33 -07:00
Kayvan Sylvan
67e2a48c58 Merge pull request #1794 from starfish456/enhance-web-app-docs
Enhance web app docs
2025-10-14 08:01:19 -07:00
Changelog Bot
68d97ba454 chore: incoming 1794 changelog entry 2025-10-14 07:54:35 -07:00
Kayvan Sylvan
2bd0d6292f docs: update table of contents with proper nesting and fix minor formatting issues
## CHANGES

- Add top-level project name to navigation hierarchy
- Nest all sections under main project heading
- Fix npm install script path extension
- Update localhost URL to use HTML format
- Add "Mdsvex" to VSCode spelling dictionary
- Include "details" and "summary" to HTML tags
- Remove trailing newline from web README
2025-10-14 07:16:38 -07:00
KFS
cab77728da docs: remove redundant content and simplify the web app readme 2025-10-13 11:47:10 +08:00
KFS
b14daf43cc docs: remove duplicate content from the main readme and link to the web app readme 2025-10-13 11:44:04 +08:00
Daniel Miessler
a885f4b240 docs: clean up README - remove duplicate image and add collapsible updates section
- Remove duplicate fabric-summarize.png screenshot
- Wrap Updates section in HTML details/summary accordion to save space

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-05 17:03:36 -07:00
Daniel Miessler
817c70b58f Updated CSE pattern. 2025-10-05 16:48:10 -07:00
github-actions[bot]
e3cddb9419 chore(release): Update version to v1.4.319 2025-09-30 13:57:01 +00:00
Kayvan Sylvan
cef8c567ca Merge pull request #1783 from ksylvan/kayvan/feat/0930-claude-4-5
Update anthropic-sdk-go and add claude-sonnet-4-5
2025-09-30 06:54:26 -07:00
Kayvan Sylvan
94e8d69dac feat: update anthropic-sdk-go to v1.13.0 and add new model
- Upgrade `anthropic-sdk-go` to version 1.13.0
- Add `ModelClaudeSonnet4_5` to supported models list
2025-09-30 06:49:39 -07:00
Marco Bacchi
0f67998f30 feat: add extract_characters system definition
CHANGES
- Define character extraction goals and steps
- Specify canonical naming and deduplication rules
- Outline interaction mapping and narrative importance
- Provide output schema with formatting guidelines
- Include positive/negative examples for clarity
- Enforce no speculative motivations or non-actors
- Set fallback for no characters found
2025-09-26 13:56:46 +02:00
github-actions[bot]
6eee447026 chore(release): Update version to v1.4.318 2025-09-24 14:57:29 +00:00
Kayvan Sylvan
17d5544df9 Merge pull request #1779 from ksylvan/kayvan/i18n/pt-br-improved-by-JuracyAmerico
Improve pt-BR Translation - Thanks to @JuracyAmerico
2025-09-24 07:54:51 -07:00
Kayvan Sylvan
4715440652 fix: improve PT-BR translation naturalness and fluency
- Thanks to @JuracyAmerico for Brazilian Portugese native speaker expertise!
- Replace "dos" with "entre" for better preposition usage
- Add definite articles where natural in Portuguese
- Clarify "configurações padrão" instead of just "padrões"
- Keep technical terms visible like "padrões/patterns"
- Remove unnecessary quotes around "URL"
- Make phrasing more natural "Exportar para arquivo"
2025-09-24 07:52:31 -07:00
github-actions[bot]
d7da611a43 chore(release): Update version to v1.4.317 2025-09-21 23:10:11 +00:00
Kayvan Sylvan
fa4532e9de Merge pull request #1778 from ksylvan/kayvan/0921-i18n-fixes
Add Portuguese Language Variants Support (pt-BR and pt-PT)
2025-09-21 16:07:45 -07:00
Kayvan Sylvan
b34112d7ed feat(i18n): add i18n support for language variants (pt-BR/pt-PT)
• Add Brazilian Portuguese (pt-BR) translation file
• Add European Portuguese (pt-PT) translation file
• Implement BCP 47 locale normalization system
• Create fallback chain for language variants
• Add default variant mapping for Portuguese
• Update help text to show variant examples
• Add comprehensive test suite for variants
• Create documentation for i18n variant architecture
2025-09-21 16:04:59 -07:00
github-actions[bot]
6d7585c522 chore(release): Update version to v1.4.316 2025-09-20 15:48:56 +00:00
Kayvan Sylvan
2adc7b2102 Merge pull request #1777 from ksylvan/kayvan/ci/0920-remove-garble
chore: remove garble installation from release workflow
2025-09-20 08:46:31 -07:00
Kayvan Sylvan
a2f2d0e2d9 chore: remove garble installation from release workflow
- Remove garble installation step from release workflow
- Add comment for GoReleaser config file reference link
- The original idea of adding garble was to make it pass virus
  scanning during version upgrades for Winget, and this
  was a failed experiment.
2025-09-20 08:43:44 -07:00
github-actions[bot]
3e2df4b717 chore(release): Update version to v1.4.315 2025-09-20 15:24:07 +00:00
Kayvan Sylvan
1bf7006224 Merge pull request #1776 from ksylvan/kayvan/ci/0920-revert-gable-addition
Remove garble from the build process for Windows
2025-09-20 08:21:33 -07:00
Kayvan Sylvan
13178456e5 chore: update CI workflow and simplify goreleaser build configuration
## CHANGES

- Add changelog database to git tracking
- Remove unnecessary goreleaser comments
- Add version metadata to default build
- Rename windows build from garbled to standard
- Remove garble obfuscation from windows build
- Standardize ldflags across all build targets
- Inject version info during compilation
2025-09-20 08:16:32 -07:00
github-actions[bot]
079b2b5b28 chore(release): Update version to v1.4.314 2025-09-18 22:57:31 +00:00
Kayvan Sylvan
e46b253cfe Merge pull request #1774 from ksylvan/kayvan/0917-azure-fix
Migrate Azure client to openai-go/azure and default API version
2025-09-18 15:55:07 -07:00
Kayvan Sylvan
3a42fa7ece feat: migrate Azure client to openai-go/azure and default API version
CHANGES
- switch Azure OpenAI config to openai-go azure helpers
- require API key and base URL during configuration
- default API version to 2024-05-01-preview when unspecified
- trim and parse deployments input into clean slice
- update dependencies to support azure client and authentication flow
- add tests for configuration and default API version behavior
- remove latest-tag boundary logic from changelog walker (revert to the v1.4.213 version)
- simplify version assignment by matching commit messages directly
2025-09-18 15:50:36 -07:00
Kayvan Sylvan
a302d0b46b fix: One-time fix for CHANGELOG and changelog cache db 2025-09-16 18:00:57 -07:00
github-actions[bot]
2f6fefceef chore(release): Update version to v1.4.313 2025-09-16 23:25:48 +00:00
Kayvan Sylvan
43c473d482 Merge pull request #1773 from ksylvan/kayvan/0916-windows-builds
Add Garble Obfuscation for Windows Builds
2025-09-16 16:23:11 -07:00
Kayvan Sylvan
e69858105a feat: add garble obfuscation for Windows builds and fix changelog generation
- Add garble tool installation to release workflow
- Configure garble obfuscation for Windows builds only
- Fix changelog walker to handle unreleased commits
- Update changelog database with latest changes
- Add mvdan to VSCode dictionary settings
- Implement boundary detection for released vs unreleased
- Keep newer commits as "Unreleased" until tagged
2025-09-16 16:19:27 -07:00
github-actions[bot]
0cbca8bd6a chore(release): Update version to v1.4.312 2025-09-14 17:54:03 +00:00
Kayvan Sylvan
2216570b64 Merge pull request #1769 from ksylvan/kayvan/chore/0914-upgrade-go-and-packages
Go 1.25.1 Upgrade & Critical SDK Updates
2025-09-14 10:51:35 -07:00
Kayvan Sylvan
ed87954133 chore: prevent Go toolchain auto-download by setting GOTOOLCHAIN=local environment variable
## CHANGES

- Add GOTOOLCHAIN=local to shell environment
- Configure preBuild hook in fabric package
- Wrap goimports with local toolchain setting
- Wrap gofmt with local toolchain setting
- Update treefmt module import structure
- Add pkgs parameter to treefmt config
- Create shell script wrappers for Go tools
2025-09-14 10:45:51 -07:00
Kayvan Sylvan
9a37d63d76 chore: Go 1.25 upgrade and critical package updates for AI/ML services
- Upgrade Go from 1.24 to 1.25.1
- Update Anthropic SDK for web fetch tools
- Upgrade AWS Bedrock SDK 12 versions
- Update Azure Core and Identity SDKs
- Fix Nix config for Go version lag
- Update Docker base to golang:1.25-alpine
- Add comprehensive upgrade documentation
2025-09-14 10:22:25 -07:00
github-actions[bot]
25eee8b1c1 chore(release): Update version to v1.4.311 2025-09-13 15:34:22 +00:00
Kayvan Sylvan
ba08073335 Merge pull request #1767 from ksylvan/kayvan/feat/0913-more-locales-i18n
feat(i18n): add de, fr, ja, pt, zh, fa locales; expand tests
2025-09-13 08:31:50 -07:00
Kayvan Sylvan
c4e6cb370f feat(i18n): add de/fr/ja/pt/zh/fa locales; expand tests, improve changelog spacing
CHANGES
- Add DE, FR, JA, PT, ZH, FA i18n locale files.
- Expand i18n tests with table-driven multilingual coverage.
- Verify 'html_readability_error' translations across all supported languages.
- Update README with release notes for added languages.
- Watch new locale and test files in VSCode.
- Insert blank lines between aggregated PR changelog sections.
- Append direct commits section only when content exists.
2025-09-13 08:23:40 -07:00
Kayvan Sylvan
bc1f2ad688 chore: update changelog formatting and sync changelog database
## CHANGES

- Add line breaks to improve changelog readability
- Sync changelog database with latest entries
- Clean up whitespace in version sections
- Maintain consistent formatting across entries
2025-09-11 13:04:10 -07:00
Kayvan Sylvan
142b29c699 chore: add spacing between changelog entries for improved readability
## CHANGES

- Add blank lines between PR sections
- Update changelog database with  to correspond with CHANGELOG fix.
2025-09-11 11:41:24 -07:00
github-actions[bot]
0e4c4619f9 chore(release): Update version to v1.4.310 2025-09-11 18:07:20 +00:00
Kayvan Sylvan
1280e8136c Merge pull request #1759 from ksylvan/kayvan/fix/0909-windows-flag-fix
Add Windows-style Flag Support for Language Detection
2025-09-11 11:04:27 -07:00
Kayvan Sylvan
59695428e3 feat: update Vite and Rollup dependencies to latest versions
### CHANGES

- Update Vite to version 5.4.20
- Update Rollup to version 4.50.1
- Add `@eslint-community/eslint-utils` version 4.9.0
- Update `@humanfs/node` to version 0.16.7
- Update `@humanwhocodes/retry` to version 0.4.3
- Update Rollup platform-specific packages to 4.50.1
- Add `@rollup/rollup-openharmony-arm64` version 4.50.1
- Closes Dependabot PR https://github.com/danielmiessler/Fabric/pull/1763
2025-09-11 10:54:55 -07:00
Kayvan Sylvan
8daba467b1 Merge branch 'main' into kayvan/fix/0909-windows-flag-fix 2025-09-11 10:50:11 -07:00
Kayvan Sylvan
b4b062bd11 chore: update alias creation to use consistent naming
### CHANGES

- Remove redundant prefix from `pattern_name` variable
- Add `alias_name` variable for consistent alias creation
- Update alias command to use `alias_name`
- Modify PowerShell function to use `aliasName`
2025-09-11 10:21:14 -07:00
Kayvan Sylvan
a851e6e9ca docs: add optional prefix support for fabric pattern aliases via FABRIC_ALIAS_PREFIX env var
## CHANGES

- Add FABRIC_ALIAS_PREFIX environment variable support
- Update bash/zsh alias generation with prefix
- Update PowerShell alias generation with prefix
- Improve readability of alias setup instructions
- Enable custom prefixing for pattern commands
- Maintain backward compatibility without prefix
2025-09-11 07:13:28 -07:00
Kayvan Sylvan
a8f071b1c4 Merge branch 'main' into kayvan/fix/0909-windows-flag-fix 2025-09-10 20:02:44 -07:00
Kayvan Sylvan
bce7384771 Merge pull request #1762 from danielmiessler/OmriH-Elister/main
New pattern for writing interaction between two characters
2025-09-10 19:56:32 -07:00
Kayvan Sylvan
65268e5f62 fix: Change attribution of PR to https://github.com/OmriH-Elister 2025-09-10 19:51:53 -07:00
Changelog Bot
617c31d15a chore: incoming 1762 changelog entry 2025-09-10 17:09:53 -07:00
Kayvan Sylvan
3017b1a5b2 chore: add create_story_about_people_interaction pattern for persona analysis
### CHANGES

- Add `create_story_about_people_interaction` pattern description
- Include pattern in `ANALYSIS` and `WRITING` categories
- Update `suggest_pattern` system and user documentation
- Modify JSON files to incorporate new pattern details
2025-09-10 16:59:44 -07:00
Omri Herman
97e2a76566 Merge pull request #1 from OmriH-Elister/stick
Stick
2025-09-10 17:54:18 +03:00
Omri Herman
8416500f81 Merge branch 'danielmiessler:main' into stick 2025-09-10 17:51:44 +03:00
OmriH-Elister
5073aac99b feat: add new pattern that creates story simulating interaction between two people 2025-09-10 14:37:15 +00:00
Changelog Bot
d89d932be1 chore: incoming 1759 changelog entry 2025-09-10 06:56:57 -07:00
Kayvan Sylvan
78280810f4 feat: add Windows-style forward slash flag support to CLI argument parser
- Add runtime OS detection for Windows platform
- Support `/flag` syntax for Windows command line
- Handle Windows colon delimiter `/flag:value` format
- Maintain backward compatibility with Unix-style flags
- Add comprehensive test coverage for flag extraction
- Support both `:` and `=` delimiters on Windows
- Preserve existing dash-based flag parsing logic
2025-09-10 06:30:20 -07:00
github-actions[bot]
65dae9bb85 chore(release): Update version to v1.4.309 2025-09-09 20:57:29 +00:00
Kayvan Sylvan
cbd88f6314 Merge pull request #1756 from ksylvan/kayvan/feature/0908-i18n-help-text
Add Internationalization Support with Custom Help System
2025-09-09 13:54:51 -07:00
Kayvan Sylvan
651c5743f1 feat: add comprehensive internationalization support with English and Spanish locales
- Replace hardcoded strings with i18n.T translations
- Add en and es JSON locale files
- Implement custom translated help system
- Enable language detection from CLI args
- Add locale download capability
- Localize error messages throughout codebase
- Support TTS and notification translations
2025-09-09 09:34:54 -07:00
github-actions[bot]
a68e63bc49 chore(release): Update version to v1.4.308 2025-09-08 16:25:05 +00:00
Kayvan Sylvan
cab51f06df Merge pull request #1755 from ksylvan/kayvan/docs/0905-readme-and-pattern-udate
Add i18n Support for Multi-Language Fabric Experience
2025-09-08 09:22:33 -07:00
Kayvan Sylvan
20080fcb78 feat: add i18n support with Spanish localization and documentation improvements
- Add internationalization system with Spanish support
- Create contexts and sessions tutorial documentation
- Fix broken Warp sponsorship image URL
- Add locale detection from environment variables
- Update VSCode settings with new dictionary words
- Exclude VSCode settings from version workflows
- Update pattern descriptions and explanations
- Add comprehensive i18n test coverage
2025-09-08 09:17:23 -07:00
Daniel Miessler
a46f189def Update Warp sponsor section with proper formatting
- Replace with correct div structure and styling
- Use proper Warp image URL from brand assets
- Add 'Special thanks to:' text and platform availability
- Maintains proper spacing and alignment
2025-09-03 13:42:50 -07:00
Daniel Miessler
3f8ca72010 Fix unclosed div tag in README causing display issues
- Close the main div container properly after fabric screenshot
- Fix HTML structure that was causing repetitive content display
- Ensure proper markdown rendering on GitHub

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-03 12:36:38 -07:00
Daniel Miessler
f58f20bcd0 Update Warp sponsor section with new banner and branding
- Replace old banner with new warp-banner-light.png image
- Update styling to use modern p tags with proper centering
- Maintain existing go.warp.dev/fabric redirect URL
- Add descriptive alt text and emphasis text for accessibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-03 12:28:31 -07:00
github-actions[bot]
70f8c013f3 chore(release): Update version to v1.4.307 2025-09-01 18:53:55 +00:00
Kayvan Sylvan
8f6e2a3d4a Merge pull request #1745 from ksylvan/kayvan/feature/0901-one-line-installers
Fabric Installation Improvements and Automated Release Updates
2025-09-01 11:51:07 -07:00
Kayvan Sylvan
fad176a0a8 docs: streamline install process with one-line installer scripts and update documentation
- Add markdown file triggers to GitHub workflow
- Update VSCode settings with new spell entries
- Simplify README installation with one-line installers
- Add bash installer script for Unix systems
- Add PowerShell installer script for Windows
- Create installer documentation with usage examples
- Remove redundant pattern from pattern explanations
2025-09-01 11:39:27 -07:00
github-actions[bot]
dd213eb965 chore(release): Update version to v1.4.306 2025-09-01 03:20:53 +00:00
Kayvan Sylvan
d205dbcdac Merge pull request #1742 from ksylvan/kayvan/0831-deprecate-pattern
Documentation and Pattern Updates
2025-08-31 20:18:13 -07:00
Kayvan Sylvan
f8ff9129b5 docs: add Windows install via winget and Docker deployment instructions
- Add winget installation method for Windows
- Add Docker Hub and GHCR image references
- Include docker run examples for setup/patterns
- Remove deprecated PowerShell download link
- Delete unused show_fabric_options_markmap pattern
- Update suggest_pattern with new AI patterns
- Add personal development patterns for storytelling
2025-08-31 20:14:47 -07:00
github-actions[bot]
f9d01b5ebb chore(release): Update version to v1.4.305 2025-08-31 16:13:26 +00:00
Kayvan Sylvan
2c7f4753a2 Merge pull request #1741 from ksylvan/kayvan/ci/0831-fix-tag-ref
CI: Fix Release Description Update
2025-08-31 09:10:59 -07:00
Changelog Bot
9b261b9adf chore: incoming 1741 changelog entry 2025-08-31 09:08:59 -07:00
Kayvan Sylvan
a23b6d518f fix: update release workflow to support manual dispatch with custom tag
## CHANGES

- Support custom tag from client payload in workflow
- Fallback to github.ref_name when no custom tag provided
- Enable manual release triggers with specified tag parameter
2025-08-31 09:03:22 -07:00
github-actions[bot]
bc73bdb704 chore(release): Update version to v1.4.304 2025-08-31 15:40:12 +00:00
Kayvan Sylvan
f22c144786 Merge pull request #1740 from ksylvan/kayvan/fix/0831-run-generate-changelog-after-go-releaser
Restore our custom Changelog Updates in GitHub Actions
2025-08-31 08:37:48 -07:00
Kayvan Sylvan
eb759251ad ci: add changelog generation step to release workflow and support fork releases
- Add changelog generation step to GitHub release workflow
- Create updateReleaseForRepo helper method for release updates
- Add fork detection logic in UpdateReleaseDescription method
- Implement upstream repository release update for forks
- Add fallback to current repository when upstream fails
- Enhance error handling with detailed repository context
- Remove duplicate success logging from main method
2025-08-31 08:30:18 -07:00
github-actions[bot]
19b512c3ab chore(release): Update version to v1.4.303 2025-08-31 14:38:39 +00:00
Kayvan Sylvan
a4ce90970a Merge pull request #1736 from tonymet/winget-publishing
Winget Publishing and GoReleaser
2025-08-31 07:36:12 -07:00
Kayvan Sylvan
8d2fda3af9 ci: harden release pipeline; gate to upstream, migrate tokens, remove docker-on-tag
CHANGES
- Gate release and version workflows to upstream owner only.
- Switch tagging and releases to built-in GITHUB_TOKEN.
- Replace environment passing with step outputs across workflows.
- Remove docker-publish-on-tag workflow to reduce duplication and complexity.
- Add OCI description label to Docker image.
- Document GHCR multi-arch annotations for accurate package descriptions.
- Update README with new ARM binary release announcement.
- Simplify GoReleaser config by removing comments and extras.
2025-08-31 07:34:00 -07:00
Anthony Metzidis
aa59d58deb chore: goreleaser and winget support 2025-08-31 07:15:25 -07:00
github-actions[bot]
d209ee38c7 chore(release): Update version to v1.4.302 2025-08-28 19:40:57 +00:00
Kayvan Sylvan
c20be027fe Merge pull request #1737 from ksylvan/0828-OmriH-Elister-new-patterns-plus-dependabot
Add New Psychological Analysis Patterns + devalue version bump
2025-08-28 12:38:25 -07:00
Kayvan Sylvan
3ef3509bfd feat: add 'create_story_about_person' and 'heal_person' patterns; bump devalue
CHANGES
- Add create_story_about_person system pattern with narrative workflow
- Add heal_person system pattern for compassionate healing plans
- Update pattern_explanations to register new patterns and renumber indices
- Extend pattern_descriptions with entries, tags, and concise descriptions
- Add pattern_extracts for both patterns with full instruction blocks
- Bump devalue dependency from 5.1.1 to 5.3.2
- Refresh lockfile snapshots to reference updated devalue version
- Sync web static pattern_descriptions with new patterns

Updates `devalue` from 5.1.1 to 5.3.2
- [Release notes](https://github.com/sveltejs/devalue/releases)
- [Changelog](https://github.com/sveltejs/devalue/blob/main/CHANGELOG.md)
- [Commits](sveltejs/devalue@v5.1.1...v5.3.2)

---
updated-dependencies:
- dependency-name: devalue
  dependency-version: 5.3.2
  dependency-type: indirect
  dependency-group: npm_and_yarn
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-08-28 12:35:23 -07:00
github-actions[bot]
7142b020ef chore(release): Update version to v1.4.301 2025-08-28 14:13:15 +00:00
Kayvan Sylvan
1b9f07b525 Merge pull request #1735 from ksylvan/kayvan/0828-ci-fixes
Fix Docker Build Path Configuration
2025-08-28 07:10:36 -07:00
Kayvan Sylvan
dcfc94ca07 fix: update Docker workflow to use specific Dockerfile and monitor markdown file changes
• Add explicit Dockerfile path to Docker build action
• Remove markdown files from workflow paths-ignore filter
• Enable CI triggers for documentation file changes
• Specify Docker build context with custom file location
2025-08-28 07:08:30 -07:00
github-actions[bot]
0e85861a46 chore(release): Update version to v1.4.300 2025-08-28 06:41:30 +00:00
Kayvan Sylvan
7c5a040287 Merge pull request #1732 from ksylvan/kayvan/docker-publishing
CI Infra: Changelog Generation Tool + Docker Image Pubishing
2025-08-27 23:39:04 -07:00
Kayvan Sylvan
08eb48c2e7 ci: add tag-based multi-arch Docker publish to GHCR and Docker Hub
CHANGES
- Add GitHub Actions workflow to publish Docker images on tags
- Build multi-arch images with Buildx and QEMU across amd64, arm64
- Tag images using semver; push to GHCR and Docker Hub
- Set :latest only for highest semver tag via imagetools
- Gate patterns workflow steps on detected changes instead of failing
- Auto-detect GitHub owner and repo from git remote URL
- Remove hardcoded repository values in changelog release manager
- Normalize image names to lowercase for registry compatibility
- Enable GitHub Actions cache for faster Docker builds
- Add VS Code dictionary entries for Docker-related terms
2025-08-27 23:35:44 -07:00
84 changed files with 5977 additions and 1520 deletions

View File

@@ -1,9 +1,12 @@
## What this Pull Request (PR) does
Please briefly describe what this PR does.
## Related issues
Please reference any open issues this PR relates to in here.
If it closes an issue, type `closes #[ISSUE_NUMBER]`.
## Screenshots
Provide any screenshots you may find relevant to facilitate us understanding your PR.

View File

@@ -20,13 +20,13 @@ jobs:
contents: read
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v5
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@main
- name: Set up Go
uses: actions/setup-go@v4
uses: actions/setup-go@v5
with:
go-version-file: ./go.mod

View File

@@ -11,22 +11,27 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v5
with:
fetch-depth: 0
- name: Verify Changes in Patterns Folder
id: check-changes
run: |
git fetch origin
if git diff --quiet HEAD~1 -- data/patterns; then
echo "No changes detected in patterns folder."
exit 1
echo "changes=false" >> $GITHUB_OUTPUT
else
echo "Changes detected in patterns folder."
echo "changes=true" >> $GITHUB_OUTPUT
fi
- name: Zip the Patterns Folder
if: steps.check-changes.outputs.changes == 'true'
run: zip -r patterns.zip data/patterns/
- name: Upload Patterns Artifact
if: steps.check-changes.outputs.changes == 'true'
uses: actions/upload-artifact@v4
with:
name: patterns

View File

@@ -15,149 +15,43 @@ jobs:
contents: read
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v5
with:
fetch-depth: 0
- name: Set up Go
uses: actions/setup-go@v4
uses: actions/setup-go@v5
with:
go-version-file: ./go.mod
- name: Run tests
run: go test -v ./...
get_version:
name: Get version
runs-on: ubuntu-latest
outputs:
latest_tag: ${{ steps.get_version.outputs.latest_tag }}
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Get version from source
id: get_version
shell: bash
run: |
if [ ! -f "nix/pkgs/fabric/version.nix" ]; then
echo "Error: version.nix file not found"
exit 1
fi
version=$(cat nix/pkgs/fabric/version.nix | tr -d '"' | tr -cd '0-9.')
if [ -z "$version" ]; then
echo "Error: version is empty"
exit 1
fi
if ! echo "$version" | grep -E '^[0-9]+\.[0-9]+\.[0-9]+' > /dev/null; then
echo "Error: Invalid version format: $version"
exit 1
fi
echo "latest_tag=v$version" >> $GITHUB_OUTPUT
build:
name: Build binaries for Windows, macOS, and Linux
needs: [test, get_version]
runs-on: ${{ matrix.os }}
permissions:
contents: write
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
arch: [amd64, arm64]
exclude:
- os: windows-latest
arch: arm64
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Go
uses: actions/setup-go@v4
with:
go-version-file: ./go.mod
- name: Build binary on Linux and macOS
if: matrix.os != 'windows-latest'
env:
GOOS: ${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}
GOARCH: ${{ matrix.arch }}
run: |
OS_NAME="${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}"
go build -o fabric-${OS_NAME}-${{ matrix.arch }} ./cmd/fabric
- name: Build binary on Windows
if: matrix.os == 'windows-latest'
env:
GOOS: windows
GOARCH: ${{ matrix.arch }}
run: |
go build -o fabric-windows-${{ matrix.arch }}.exe ./cmd/fabric
- name: Upload build artifact
if: matrix.os != 'windows-latest'
uses: actions/upload-artifact@v4
with:
name: fabric-${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}-${{ matrix.arch }}
path: fabric-${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}-${{ matrix.arch }}
- name: Upload build artifact
if: matrix.os == 'windows-latest'
uses: actions/upload-artifact@v4
with:
name: fabric-windows-${{ matrix.arch }}.exe
path: fabric-windows-${{ matrix.arch }}.exe
- name: Create release if it doesn't exist
shell: bash
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
if ! gh release view ${{ needs.get_version.outputs.latest_tag }} >/dev/null 2>&1; then
gh release create ${{ needs.get_version.outputs.latest_tag }} --title "Release ${{ needs.get_version.outputs.latest_tag }}" --notes "Automated release for ${{ needs.get_version.outputs.latest_tag }}"
else
echo "Release ${{ needs.get_version.outputs.latest_tag }} already exists."
fi
- name: Upload release artifact
if: matrix.os == 'windows-latest'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
gh release upload ${{ needs.get_version.outputs.latest_tag }} fabric-windows-${{ matrix.arch }}.exe
- name: Upload release artifact
if: matrix.os != 'windows-latest'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
OS_NAME="${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}"
gh release upload ${{ needs.get_version.outputs.latest_tag }} fabric-${OS_NAME}-${{ matrix.arch }}
update_release_notes:
needs: [build, get_version]
# only run in main upstream repo
if: ${{ github.repository_owner == 'danielmiessler' }}
name: Build & Release with Goreleaser
needs: [test]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v5
with:
fetch-depth: 0
- name: Set up Go
uses: actions/setup-go@v4
uses: actions/setup-go@v5
with:
go-version-file: ./go.mod
- name: Update release description
- name: Run GoReleaser
uses: goreleaser/goreleaser-action@v6
with:
distribution: goreleaser
args: release --clean
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
go run ./cmd/generate_changelog --sync-db
go run ./cmd/generate_changelog --release ${{ needs.get_version.outputs.latest_tag }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Update Release Description
run: go run ./cmd/generate_changelog --release ${{ github.event.client_payload.tag || github.ref_name }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -6,12 +6,13 @@ on:
- main # Monitor the main branch
paths-ignore:
- "data/patterns/**"
- "**/*.md"
- "data/strategies/**"
- "cmd/generate_changelog/*.db"
- "cmd/generate_changelog/incoming/*.txt"
- "scripts/pattern_descriptions/*.json"
- "web/static/data/pattern_descriptions.json"
- "**/*.md"
- .vscode/**
permissions:
contents: write # Ensure the workflow has write permissions
@@ -22,12 +23,13 @@ concurrency:
jobs:
update-version:
if: github.event_name == 'push' && github.ref == 'refs/heads/main'
if: >
${{ github.repository_owner == 'danielmiessler' }} &&
github.event_name == 'push' && github.ref == 'refs/heads/main'
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
uses: actions/checkout@v5
with:
fetch-depth: 0
@@ -49,12 +51,13 @@ jobs:
run: |
latest_tag=$(git tag --sort=-creatordate | head -n 1)
echo "Latest tag is: $latest_tag"
echo "tag=$latest_tag" >> $GITHUB_OUTPUT
echo "tag=$latest_tag" >> $GITHUB_ENV # Save the latest tag to environment file
- name: Increment patch version
id: increment_version
run: |
latest_tag=${{ env.tag }}
latest_tag=${{ steps.get_latest_tag.outputs.tag }}
major=$(echo "$latest_tag" | cut -d. -f1 | sed 's/v//')
minor=$(echo "$latest_tag" | cut -d. -f2)
patch=$(echo "$latest_tag" | cut -d. -f3)
@@ -62,19 +65,21 @@ jobs:
new_version="${major}.${minor}.${new_patch}"
new_tag="v${new_version}"
echo "New version is: $new_version"
echo "new_version=$new_version" >> $GITHUB_OUTPUT
echo "new_version=$new_version" >> $GITHUB_ENV # Save the new version to environment file
echo "New tag is: $new_tag"
echo "new_tag=$new_tag" >> $GITHUB_OUTPUT
echo "new_tag=$new_tag" >> $GITHUB_ENV # Save the new tag to environment file
- name: Update version.go file
run: |
echo "package main" > cmd/fabric/version.go
echo "" >> cmd/fabric/version.go
echo "var version = \"${{ env.new_tag }}\"" >> cmd/fabric/version.go
echo "var version = \"${{ steps.increment_version.outputs.new_tag }}\"" >> cmd/fabric/version.go
- name: Update version.nix file
run: |
echo "\"${{ env.new_version }}\"" > nix/pkgs/fabric/version.nix
echo "\"${{ steps.increment_version.outputs.new_version }}\"" > nix/pkgs/fabric/version.nix
- name: Format source code
run: |
@@ -88,8 +93,9 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
go run ./cmd/generate_changelog --process-prs ${{ env.new_tag }}
go run ./cmd/generate_changelog --process-prs ${{ steps.increment_version.outputs.new_tag }}
go run ./cmd/generate_changelog --sync-db
git add ./cmd/generate_changelog/changelog.db
- name: Commit changes
run: |
# These files are modified by the version bump process
@@ -101,7 +107,7 @@ jobs:
# and removing the incoming/ directory.
if ! git diff --staged --quiet; then
git commit -m "chore(release): Update version to ${{ env.new_tag }}"
git commit -m "chore(release): Update version to ${{ steps.increment_version.outputs.new_tag }}"
else
echo "No changes to commit."
fi
@@ -114,10 +120,10 @@ jobs:
- name: Create a new tag
env:
GITHUB_TOKEN: ${{ secrets.TAG_PAT }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
git tag ${{ env.new_tag }}
git push origin ${{ env.new_tag }} # Push the new tag
git tag ${{ steps.increment_version.outputs.new_tag }}
git push origin ${{ steps.increment_version.outputs.new_tag }} # Push the new tag
- name: Dispatch event to trigger release workflow
env:
@@ -127,4 +133,4 @@ jobs:
-H "Authorization: token $GITHUB_TOKEN" \
-H "Accept: application/vnd.github.v3+json" \
https://api.github.com/repos/${{ github.repository }}/dispatches \
-d '{"event_type": "tag_created", "client_payload": {"tag": "${{ env.new_tag }}"}}'
-d '{"event_type": "tag_created", "client_payload": {"tag": "${{ steps.increment_version.outputs.new_tag }}"}}'

56
.goreleaser.yaml Normal file
View File

@@ -0,0 +1,56 @@
# Read the documentation at https://goreleaser.com
# For a full reference of the configuration file.
version: 2
project_name: fabric
before:
hooks:
- go mod tidy
builds:
- id: default
env:
- CGO_ENABLED=0
goos:
- darwin
- linux
main: ./cmd/fabric
binary: fabric
ldflags:
- -s -w
- -X main.version={{.Version}}
- -X main.commit={{.ShortCommit}}
- -X main.date={{.Date}}
- -X main.builtBy=goreleaser
- -X main.tag={{.Tag}}
- id: windows-build
env:
- CGO_ENABLED=0
goos:
- windows
main: ./cmd/fabric
binary: fabric
ldflags:
- -s -w
- -X main.version={{.Version}}
- -X main.commit={{.ShortCommit}}
- -X main.date={{.Date}}
- -X main.builtBy=goreleaser
- -X main.tag={{.Tag}}
archives:
- formats: [tar.gz]
# this name template makes the OS and Arch compatible with the results of `uname`.
name_template: >-
{{ .ProjectName }}_
{{- title .Os }}_
{{- if eq .Arch "amd64" }}x86_64
{{- else if eq .Arch "386" }}i386
{{- else }}{{ .Arch }}{{ end }}
{{- if .Arm }}v{{ .Arm }}{{ end }}
# use zip for windows archives
format_overrides:
- goos: windows
formats: [zip]

52
.vscode/settings.json vendored
View File

@@ -7,15 +7,18 @@
"Anki",
"anthropics",
"Aoede",
"aplicar",
"atotto",
"Autonoe",
"badfile",
"Behrens",
"blindspots",
"Bombal",
"Buildx",
"Callirhoe",
"Callirrhoe",
"Cerebras",
"colour",
"compadd",
"compdef",
"compinit",
@@ -31,11 +34,14 @@
"Despina",
"direnv",
"DMARC",
"DOCKERHUB",
"dryrun",
"dsrp",
"editability",
"Eisler",
"elif",
"Elister",
"entrada",
"envrc",
"Erinome",
"Errorf",
@@ -53,17 +59,23 @@
"githelper",
"gjson",
"GOARCH",
"GODEBUG",
"godotenv",
"GOEXPERIMENT",
"gofmt",
"goimports",
"golint",
"GOMAXPROCS",
"gomod",
"gonic",
"goopenai",
"GOPATH",
"gopkg",
"Goreleaser",
"GOROOT",
"goroutines",
"Graphviz",
"greenteagc",
"grokai",
"Groq",
"hackerone",
@@ -73,6 +85,7 @@
"Hormozi's",
"horts",
"HTMLURL",
"imagetools",
"jaredmontoya",
"jessevdk",
"Jina",
@@ -84,6 +97,7 @@
"Langdock",
"Laomedeia",
"ldflags",
"legibilidad",
"libexec",
"libnotify",
"listcontexts",
@@ -99,16 +113,25 @@
"matplotlib",
"mattn",
"mbed",
"Mdsvex",
"metacharacters",
"Miessler",
"modeline",
"modelines",
"mpga",
"mvdan",
"nicksnyder",
"nixpkgs",
"nometa",
"numpy",
"ollama",
"ollamaapi",
"Omri",
"openaiapi",
"opencode",
"opencontainers",
"openrouter",
"organise",
"Orus",
"osascript",
"otiai",
@@ -116,9 +139,11 @@
"pipx",
"PKCE",
"pkgs",
"porque",
"presencepenalty",
"printcontext",
"printsession",
"puede",
"Pulcherrima",
"pycache",
"pyperclip",
@@ -141,6 +166,7 @@
"stretchr",
"subchunk",
"Sulafat",
"synctest",
"talkpanel",
"Telos",
"testpattern",
@@ -153,9 +179,12 @@
"unconfigured",
"unmarshalling",
"updatepatterns",
"useb",
"USERPROFILE",
"videoid",
"webp",
"WEBVTT",
"winget",
"wipecontext",
"wipesession",
"wireframes",
@@ -166,7 +195,22 @@
"youtu",
"YTDLP"
],
"cSpell.ignorePaths": ["go.mod", ".gitignore", "CHANGELOG.md"],
"cSpell.ignorePaths": [
"go.mod",
".gitignore",
"CHANGELOG.md",
"scripts/installer/install.*",
"web/static/data/pattern_descriptions.json",
"scripts/pattern_descriptions/*.json",
"data/patterns/pattern_explanations.md",
"internal/i18n/locales/es.json",
"internal/i18n/locales/fr.json",
"internal/i18n/locales/de.json",
"internal/i18n/locales/it.json",
"internal/i18n/locales/pt.json",
"internal/i18n/locales/zh.json",
"internal/i18n/i18n_test.go"
],
"markdownlint.config": {
"MD004": false,
"MD011": false,
@@ -178,12 +222,16 @@
"a",
"br",
"code",
"details",
"div",
"em",
"h",
"h4",
"img",
"module",
"p"
"p",
"summary",
"sup"
]
},
"MD041": false

View File

@@ -1,5 +1,335 @@
# Changelog
## v1.4.321 (2025-11-03)
### PR [#1803](https://github.com/danielmiessler/Fabric/pull/1803) by [dependabot[bot][bot]](https://github.com/apps/dependabot): chore(deps-dev): bump vite from 5.4.20 to 5.4.21 in /web in the npm_and_yarn group across 1 directory
- Updated Vite development dependency from version 5.4.20 to 5.4.21 in the web directory
### PR [#1805](https://github.com/danielmiessler/Fabric/pull/1805) by [OmriH-Elister](https://github.com/OmriH-Elister): Added several new patterns
- Added new WELLNESS category with four patterns including personalized yoga practice recommendations and wellness guidance
- Added `model_as_sherlock_freud` pattern for psychological detective analysis combining Sherlock Holmes deduction with Freudian psychology
- Added `predict_person_actions` pattern for behavioral response predictions based on personality analysis
- Added `fix_typos` pattern for automated proofreading and typo corrections
- Updated ANALYSIS and SELF categories to include new wellness-related patterns and classifications
### PR [#1808](https://github.com/danielmiessler/Fabric/pull/1808) by [sluosapher](https://github.com/sluosapher): Updated create_newsletter_entry pattern to generate more factual titles
- Updated the title generation style; added an output example.
## v1.4.320 (2025-10-28)
### PR [#1780](https://github.com/danielmiessler/Fabric/pull/1780) by [marcas756](https://github.com/marcas756): feat: add extract_characters pattern
- Define character extraction goals and steps with canonical naming and deduplication rules
- Outline interaction mapping and narrative importance analysis
- Provide comprehensive output schema with proper formatting guidelines
- Include positive and negative examples for pattern clarity
- Enforce restrictions on speculative motivations and non-actor inclusion
### PR [#1794](https://github.com/danielmiessler/Fabric/pull/1794) by [starfish456](https://github.com/starfish456): Enhance web app docs
- Remove duplicate content from the main readme and link to the web app readme
- Update table of contents with proper nesting and fix minor formatting issues
### PR [#1810](https://github.com/danielmiessler/Fabric/pull/1810) by [tonymet](https://github.com/tonymet): improve subtitle lang, retry, debugging & error handling
- Improve subtitle lang, retry, debugging & error handling
### Direct commits
- Docs: clean up README - remove duplicate image and add collapsible updates section
- Remove duplicate fabric-summarize.png screenshot
- Wrap Updates section in HTML details/summary accordion to save space
🤖 Generated with [Claude Code](<https://claude.com/claude-code)>
Co-Authored-By: Claude <noreply@anthropic.com>
- Updated CSE pattern.
## v1.4.319 (2025-09-30)
### PR [#1783](https://github.com/danielmiessler/Fabric/pull/1783) by [ksylvan](https://github.com/ksylvan): Update anthropic-sdk-go and add claude-sonnet-4-5
- Feat: update `anthropic-sdk-go` to v1.13.0 and add new model
- Upgrade `anthropic-sdk-go` to version 1.13.0
- Add `ModelClaudeSonnet4_5` to supported models list
## v1.4.318 (2025-09-24)
### PR [#1779](https://github.com/danielmiessler/Fabric/pull/1779) by [ksylvan](https://github.com/ksylvan): Improve pt-BR Translation - Thanks to @JuracyAmerico
- Fix: improve PT-BR translation naturalness and fluency
- Replace "dos" with "entre" for better preposition usage
- Add definite articles where natural in Portuguese
- Clarify "configurações padrão" instead of just "padrões"
- Keep technical terms visible like "padrões/patterns"
## v1.4.317 (2025-09-21)
### PR [#1778](https://github.com/danielmiessler/Fabric/pull/1778) by [ksylvan](https://github.com/ksylvan): Add Portuguese Language Variants Support (pt-BR and pt-PT)
- Add Brazilian Portuguese (pt-BR) translation file
- Add European Portuguese (pt-PT) translation file
- Implement BCP 47 locale normalization system
- Create fallback chain for language variants
- Add default variant mapping for Portuguese
## v1.4.316 (2025-09-20)
### PR [#1777](https://github.com/danielmiessler/Fabric/pull/1777) by [ksylvan](https://github.com/ksylvan): chore: remove garble installation from release workflow
- Remove garble installation step from release workflow
- Add comment for GoReleaser config file reference link
- The original idea of adding garble was to make it pass
virus scanning during version upgrades for Winget, and
this was a failed experiment.
## v1.4.315 (2025-09-20)
### Direct commits
- Chore: update CI workflow and simplify goreleaser build configuration
- Add changelog database to git tracking
- Remove unnecessary goreleaser comments
- Add version metadata to default build
- Rename windows build from garbled to standard
- Remove garble obfuscation from windows build
- Standardize ldflags across all build targets
- Inject version info during compilation
## v1.4.314 (2025-09-17)
### PR [#1774](https://github.com/danielmiessler/Fabric/pull/1774) by [ksylvan](https://github.com/ksylvan): Migrate Azure client to openai-go/azure and default API version
- Migrated Azure client to openai-go/azure and default API version
- Switched Azure OpenAI config to openai-go azure helpers and now require API key and base URL during configuration
- Set default API version to 2024-05-01-preview when unspecified
- Updated dependencies to support azure client and authentication flow
- Removed latest-tag boundary logic from changelog walker and simplified version assignment by matching commit messages directly
### Direct commits
- Fix: One-time fix for CHANGELOG and changelog cache db
## v1.4.313 (2025-09-16)
### PR [#1773](https://github.com/danielmiessler/Fabric/pull/1773) by [ksylvan](https://github.com/ksylvan): Add Garble Obfuscation for Windows Builds
- Add garble obfuscation for Windows builds and fix changelog generation
- Add garble tool installation to release workflow
- Configure garble obfuscation for Windows builds only
- Fix changelog walker to handle unreleased commits
- Implement boundary detection for released vs unreleased commits
## v1.4.312 (2025-09-14)
### PR [#1769](https://github.com/danielmiessler/Fabric/pull/1769) by [ksylvan](https://github.com/ksylvan): Go 1.25.1 Upgrade & Critical SDK Updates
- Upgrade Go from 1.24 to 1.25.1
- Update Anthropic SDK for web fetch tools
- Upgrade AWS Bedrock SDK 12 versions
- Update Azure Core and Identity SDKs
- Fix Nix config for Go version lag
## v1.4.311 (2025-09-13)
### PR [#1767](https://github.com/danielmiessler/Fabric/pull/1767) by [ksylvan](https://github.com/ksylvan): feat(i18n): add de, fr, ja, pt, zh, fa locales; expand tests
- Add DE, FR, JA, PT, ZH, FA i18n locale files
- Expand i18n tests with table-driven multilingual coverage
- Verify 'html_readability_error' translations across all supported languages
- Update README with release notes for added languages
- Insert blank lines between aggregated PR changelog sections
### Direct commits
- Chore: update changelog formatting and sync changelog database
- Add line breaks to improve changelog readability
- Sync changelog database with latest entries
- Clean up whitespace in version sections
- Maintain consistent formatting across entries
- Chore: add spacing between changelog entries for improved readability
- Add blank lines between PR sections
- Update changelog database with to correspond with CHANGELOG fix.
## v1.4.310 (2025-09-11)
### PR [#1759](https://github.com/danielmiessler/Fabric/pull/1759) by [ksylvan](https://github.com/ksylvan): Add Windows-style Flag Support for Language Detection
- Feat: add Windows-style forward slash flag support to CLI argument parser
- Add runtime OS detection for Windows platform
- Support `/flag` syntax for Windows command line
- Handle Windows colon delimiter `/flag:value` format
- Maintain backward compatibility with Unix-style flags
### PR [#1762](https://github.com/danielmiessler/Fabric/pull/1762) by [OmriH-Elister](https://github.com/OmriH-Elister): New pattern for writing interaction between two characters
- Feat: add new pattern that creates story simulating interaction between two people
- Chore: add `create_story_about_people_interaction` pattern for persona analysis
- Add `create_story_about_people_interaction` pattern description
- Include pattern in `ANALYSIS` and `WRITING` categories
- Update `suggest_pattern` system and user documentation
### Direct commits
- Chore: update alias creation to use consistent naming
- Remove redundant prefix from `pattern_name` variable
- Add `alias_name` variable for consistent alias creation
- Update alias command to use `alias_name`
- Modify PowerShell function to use `aliasName`
- Docs: add optional prefix support for fabric pattern aliases via FABRIC_ALIAS_PREFIX env var
- Add FABRIC_ALIAS_PREFIX environment variable support
- Update bash/zsh alias generation with prefix
- Update PowerShell alias generation with prefix
- Improve readability of alias setup instructions
- Enable custom prefixing for pattern commands
- Maintain backward compatibility without prefix
## v1.4.309 (2025-09-09)
### PR [#1756](https://github.com/danielmiessler/Fabric/pull/1756) by [ksylvan](https://github.com/ksylvan): Add Internationalization Support with Custom Help System
- Add comprehensive internationalization support with English and Spanish locales
- Replace hardcoded strings with i18n.T translations and add en and es JSON locale files
- Implement custom translated help system with language detection from CLI args
- Add locale download capability and localize error messages throughout codebase
- Support TTS and notification translations
## v1.4.308 (2025-09-05)
### PR [#1755](https://github.com/danielmiessler/Fabric/pull/1755) by [ksylvan](https://github.com/ksylvan): Add i18n Support for Multi-Language Fabric Experience
- Add Spanish localization support with i18n
- Create contexts and sessions tutorial documentation
- Fix broken Warp sponsorship image URL
- Remove solve_with_cot pattern from codebase
- Update pattern descriptions and explanations
### Direct commits
- Update Warp sponsor section with proper formatting
- Replace with correct div structure and styling
- Use proper Warp image URL from brand assets
- Add "Special thanks to:" text and platform availability
- Maintains proper spacing and alignment
- Fix unclosed div tag in README causing display issues
- Close the main div container properly after fabric screenshot
- Fix HTML structure that was causing repetitive content display
- Ensure proper markdown rendering on GitHub
🤖 Generated with [Claude Code](<https://claude.ai/code)>
Co-Authored-By: Claude <noreply@anthropic.com>
- Update Warp sponsor section with new banner and branding
- Replace old banner with new warp-banner-light.png image
- Update styling to use modern p tags with proper centering
- Maintain existing go.warp.dev/fabric redirect URL
- Add descriptive alt text and emphasis text for accessibility
🤖 Generated with [Claude Code](<https://claude.ai/code)>
Co-Authored-By: Claude <noreply@anthropic.com>
## v1.4.307 (2025-09-01)
### PR [#1745](https://github.com/danielmiessler/Fabric/pull/1745) by [ksylvan](https://github.com/ksylvan): Fabric Installation Improvements and Automated Release Updates
- Streamlined install process with one-line installer scripts and updated documentation
- Added bash installer script for Unix systems
- Added PowerShell installer script for Windows
- Created installer documentation with usage examples
- Simplified README installation with one-line installers
## v1.4.306 (2025-09-01)
### PR [#1742](https://github.com/danielmiessler/Fabric/pull/1742) by [ksylvan](https://github.com/ksylvan): Documentation and Pattern Updates
- Add winget installation method for Windows users
- Include Docker Hub and GHCR image references with docker run examples
- Remove deprecated PowerShell download link and unused show_fabric_options_markmap pattern
- Update suggest_pattern with new AI patterns
- Add personal development patterns for storytelling
## v1.4.305 (2025-08-31)
### PR [#1741](https://github.com/danielmiessler/Fabric/pull/1741) by [ksylvan](https://github.com/ksylvan): CI: Fix Release Description Update
- Fix: update release workflow to support manual dispatch with custom tag
- Support custom tag from client payload in workflow
- Fallback to github.ref_name when no custom tag provided
- Enable manual release triggers with specified tag parameter
## v1.4.304 (2025-08-31)
### PR [#1740](https://github.com/danielmiessler/Fabric/pull/1740) by [ksylvan](https://github.com/ksylvan): Restore our custom Changelog Updates in GitHub Actions
- Add changelog generation step to GitHub release workflow
- Create updateReleaseForRepo helper method for release updates
- Add fork detection logic in UpdateReleaseDescription method
- Implement upstream repository release update for forks
- Enhance error handling with detailed repository context
## v1.4.303 (2025-08-28)
### PR [#1736](https://github.com/danielmiessler/Fabric/pull/1736) by [tonymet](https://github.com/tonymet): Winget Publishing and GoReleaser
- Added GoReleaser support for improved package distribution
- Winget and Docker publishing moved to ksylvan/fabric-packager GitHub repo
- Hardened release pipeline by gating workflows to upstream owner only
- Migrated from custom tokens to built-in GITHUB_TOKEN for enhanced security
- Removed docker-publish-on-tag workflow to reduce duplication and complexity
- Added ARM binary release support with updated documentation
## v1.4.302 (2025-08-28)
### PR [#1737](https://github.com/danielmiessler/Fabric/pull/1737) by [ksylvan](https://github.com/ksylvan) and [OmriH-Elister](https://github.com/OmriH-Elister): Add New Psychological Analysis Patterns + devalue version bump
- Add create_story_about_person system pattern with narrative workflow
- Add heal_person system pattern for compassionate healing plans
- Update pattern_explanations to register new patterns and renumber indices
- Extend pattern_descriptions with entries, tags, and concise descriptions
- Bump devalue dependency from 5.1.1 to 5.3.2
## v1.4.301 (2025-08-28)
### PR [#1735](https://github.com/danielmiessler/Fabric/pull/1735) by [ksylvan](https://github.com/ksylvan): Fix Docker Build Path Configuration
- Fix: update Docker workflow to use specific Dockerfile and monitor markdown file changes
- Add explicit Dockerfile path to Docker build action
- Remove markdown files from workflow paths-ignore filter
- Enable CI triggers for documentation file changes
- Specify Docker build context with custom file location
## v1.4.300 (2025-08-28)
### PR [#1732](https://github.com/danielmiessler/Fabric/pull/1732) by [ksylvan](https://github.com/ksylvan): CI Infra: Changelog Generation Tool + Docker Image Pubishing
- Add GitHub Actions workflow to publish Docker images on tags
- Build multi-arch images with Buildx and QEMU across amd64, arm64
- Tag images using semver; push to GHCR and Docker Hub
- Gate patterns workflow steps on detected changes instead of failing
- Auto-detect GitHub owner and repo from git remote URL
## v1.4.299 (2025-08-27)
### PR [#1731](https://github.com/danielmiessler/Fabric/pull/1731) by [ksylvan](https://github.com/ksylvan): chore: upgrade ollama dependency from v0.9.0 to v0.11.7
@@ -79,6 +409,7 @@
- Compare vendor and model case-insensitively when marking
- Pass registry defaults to PrintWithVendor from CLI
- Add test ensuring default selection appears with asterisk
### Direct commits
- Docs: update version number in README updates section from v1.4.290 to v1.4.291

191
README.md
View File

@@ -1,7 +1,18 @@
<div align="center">
Fabric is graciously supported by…
<a href="https://go.warp.dev/fabric" target="_blank">
<sup>Special thanks to:</sup>
<br>
<img alt="Warp sponsorship" width="400" src="https://raw.githubusercontent.com/warpdotdev/brand-assets/refs/heads/main/Github/Sponsor/Warp-Github-LG-02.png">
<br>
<h>Warp, built for coding with multiple AI agents</b>
<br>
<sup>Available for macOS, Linux and Windows</sup>
</a>
</div>
[![Github Repo Tagline](https://github.com/user-attachments/assets/96ab3d81-9b13-4df4-ba09-75dee7a5c3d2)](https://warp.dev/fabric)
<br>
<div align="center">
<img src="./docs/images/fabric-logo-gif.gif" alt="fabriclogo" width="400" height="400"/>
@@ -18,6 +29,10 @@ Fabric is graciously supported by…
<h4><code>fabric</code> is an open-source framework for augmenting humans using AI.</h4>
</div>
![Screenshot of fabric](./docs/images/fabric-summarize.png)
</div>
[Updates](#updates) •
[What and Why](#what-and-why) •
[Philosophy](#philosophy) •
@@ -29,8 +44,6 @@ Fabric is graciously supported by…
[Helper Apps](#helper-apps) •
[Meta](#meta)
![Screenshot of fabric](./docs/images/fabric-summarize.png)
</div>
## What and why
@@ -49,6 +62,9 @@ Fabric organizes prompts by real-world task, allowing people to create, collect,
## Updates
<details>
<summary>Click to view recent updates</summary>
Dear Users,
We've been doing so many exciting things here at Fabric, I wanted to give a quick summary here to give you a sense of our development velocity!
@@ -57,6 +73,10 @@ Below are the **new features and capabilities** we've added (newest first):
### Recent Major Features
- [v1.4.311](https://github.com/danielmiessler/fabric/releases/tag/v1.4.311) (Sep 13, 2025) — **More internationalization support**: Adds de (German), fa (Persian / Farsi), fr (French), it (Italian),
ja (Japanese), pt (Portuguese), zh (Chinese)
- [v1.4.309](https://github.com/danielmiessler/fabric/releases/tag/v1.4.309) (Sep 9, 2025) — **Comprehensive internationalization support**: Includes English and Spanish locale files.
- [v1.4.303](https://github.com/danielmiessler/fabric/releases/tag/v1.4.303) (Aug 29, 2025) — **New Binary Releases**: Linux ARM and Windows ARM targets. You can run Fabric on the Raspberry PI and on your Windows Surface!
- [v1.4.294](https://github.com/danielmiessler/fabric/releases/tag/v1.4.294) (Aug 20, 2025) — **Venice AI Support**: Added the Venice AI provider. Venice is a Privacy-First, Open-Source AI provider. See their ["About Venice"](https://docs.venice.ai/overview/about-venice) page for details.
- [v1.4.291](https://github.com/danielmiessler/fabric/releases/tag/v1.4.291) (Aug 18, 2025) — **Speech To Text**: Add OpenAI speech-to-text support with `--transcribe-file`, `--transcribe-model`, and `--split-media-file` flags.
- [v1.4.287](https://github.com/danielmiessler/fabric/releases/tag/v1.4.287) (Aug 16, 2025) — **AI Reasoning**: Add Thinking to Gemini models and introduce `readme_updates` python script
@@ -95,6 +115,8 @@ Below are the **new features and capabilities** we've added (newest first):
These features represent our commitment to making Fabric the most powerful and flexible AI augmentation framework available!
</details>
## Intro videos
Keep in mind that many of these were recorded when Fabric was Python-based, so remember to use the current [install instructions](#installation) below.
@@ -117,16 +139,14 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
- [Breaking problems into components](#breaking-problems-into-components)
- [Too many prompts](#too-many-prompts)
- [Installation](#installation)
- [Get Latest Release Binaries](#get-latest-release-binaries)
- [Windows](#windows)
- [macOS (arm64)](#macos-arm64)
- [macOS (amd64)](#macos-amd64)
- [Linux (amd64)](#linux-amd64)
- [Linux (arm64)](#linux-arm64)
- [One-Line Install (Recommended)](#one-line-install-recommended)
- [Manual Binary Downloads](#manual-binary-downloads)
- [Using package managers](#using-package-managers)
- [macOS (Homebrew)](#macos-homebrew)
- [Arch Linux (AUR)](#arch-linux-aur)
- [Windows](#windows)
- [From Source](#from-source)
- [Docker](#docker)
- [Environment Variables](#environment-variables)
- [Setup](#setup)
- [Per-Pattern Model Mapping](#per-pattern-model-mapping)
@@ -154,10 +174,7 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
- [`to_pdf` Installation](#to_pdf-installation)
- [`code_helper`](#code_helper)
- [pbpaste](#pbpaste)
- [Web Interface](#web-interface)
- [Installing](#installing)
- [Streamlit UI](#streamlit-ui)
- [Clipboard Support](#clipboard-support)
- [Web Interface (Fabric Web App)](#web-interface-fabric-web-app)
- [Meta](#meta)
- [Primary contributors](#primary-contributors)
- [Contributors](#contributors)
@@ -203,40 +220,25 @@ Fabric has Patterns for all sorts of life and work activities, including:
## Installation
To install Fabric, you can use the latest release binaries or install it from the source.
### One-Line Install (Recommended)
### Get Latest Release Binaries
**Unix/Linux/macOS:**
#### Windows
`https://github.com/danielmiessler/fabric/releases/latest/download/fabric-windows-amd64.exe`
Or via PowerShell, just copy and paste and run the following snippet to install the binary into `{HOME}\.local\bin`. Please make sure that directory is included in your `PATH`.
```powershell
$ErrorActionPreference = "Stop"
$LATEST="https://github.com/danielmiessler/fabric/releases/latest/download/fabric-windows-amd64.exe"
$DIR="${HOME}\.local\bin"
New-Item -Path $DIR -ItemType Directory -Force
Invoke-WebRequest -URI "${LATEST}" -outfile "${DIR}\fabric.exe"
& "${DIR}\fabric.exe" /version
```bash
curl -fsSL https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.sh | bash
```
#### macOS (arm64)
**Windows PowerShell:**
`curl -L https://github.com/danielmiessler/fabric/releases/latest/download/fabric-darwin-arm64 > fabric && chmod +x fabric && ./fabric --version`
```powershell
iwr -useb https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.ps1 | iex
```
#### macOS (amd64)
> See [scripts/installer/README.md](./scripts/installer/README.md) for custom installation options and troubleshooting.
`curl -L https://github.com/danielmiessler/fabric/releases/latest/download/fabric-darwin-amd64 > fabric && chmod +x fabric && ./fabric --version`
### Manual Binary Downloads
#### Linux (amd64)
`curl -L https://github.com/danielmiessler/fabric/releases/latest/download/fabric-linux-amd64 > fabric && chmod +x fabric && ./fabric --version`
#### Linux (arm64)
`curl -L https://github.com/danielmiessler/fabric/releases/latest/download/fabric-linux-arm64 > fabric && chmod +x fabric && ./fabric --version`
The latest release binary archives and their expected SHA256 hashes can be found at <https://github.com/danielmiessler/fabric/releases/latest>
### Using package managers
@@ -255,6 +257,12 @@ alias fabric='fabric-ai'
`yay -S fabric-ai`
#### Windows
Use the official Microsoft supported `Winget` tool:
`winget install danielmiessler.Fabric`
### From Source
To install Fabric, [make sure Go is installed](https://go.dev/doc/install), and then run the following command.
@@ -264,6 +272,35 @@ To install Fabric, [make sure Go is installed](https://go.dev/doc/install), and
go install github.com/danielmiessler/fabric/cmd/fabric@latest
```
### Docker
Run Fabric using pre-built Docker images:
```bash
# Use latest image from Docker Hub
docker run --rm -it kayvan/fabric:latest --version
# Use specific version from GHCR
docker run --rm -it ghcr.io/ksylvan/fabric:v1.4.305 --version
# Run setup (first time)
mkdir -p $HOME/.fabric-config
docker run --rm -it -v $HOME/.fabric-config:/root/.config/fabric kayvan/fabric:latest --setup
# Use Fabric with your patterns
docker run --rm -it -v $HOME/.fabric-config:/root/.config/fabric kayvan/fabric:latest -p summarize
# Run the REST API server
docker run --rm -it -p 8080:8080 -v $HOME/.fabric-config:/root/.config/fabric kayvan/fabric:latest --serve
```
**Images available at:**
- Docker Hub: [kayvan/fabric](https://hub.docker.com/repository/docker/kayvan/fabric/general)
- GHCR: [ksylvan/fabric](https://github.com/ksylvan/fabric/pkgs/container/fabric)
See [scripts/docker/README.md](./scripts/docker/README.md) for building custom images and advanced configuration.
### Environment Variables
You may need to set some environment variables in your `~/.bashrc` on linux or `~/.zshrc` file on mac to be able to run the `fabric` command. Here is an example of what you can add:
@@ -308,17 +345,20 @@ If everything works you are good to go.
### Add aliases for all patterns
In order to add aliases for all your patterns and use them directly as commands ie. `summarize` instead of `fabric --pattern summarize`
You can add the following to your `.zshrc` or `.bashrc` file.
In order to add aliases for all your patterns and use them directly as commands, for example, `summarize` instead of `fabric --pattern summarize`
You can add the following to your `.zshrc` or `.bashrc` file. You
can also optionally set the `FABRIC_ALIAS_PREFIX` environment variable
before, if you'd prefer all the fabric aliases to start with the same prefix.
```bash
# Loop through all files in the ~/.config/fabric/patterns directory
for pattern_file in $HOME/.config/fabric/patterns/*; do
# Get the base name of the file (i.e., remove the directory path)
pattern_name=$(basename "$pattern_file")
pattern_name="$(basename "$pattern_file")"
alias_name="${FABRIC_ALIAS_PREFIX:-}${pattern_name}"
# Create an alias in the form: alias pattern_name="fabric --pattern pattern_name"
alias_command="alias $pattern_name='fabric --pattern $pattern_name'"
alias_command="alias $alias_name='fabric --pattern $pattern_name'"
# Evaluate the alias command to add it to the current shell
eval "$alias_command"
@@ -347,11 +387,13 @@ You can add the below code for the equivalent aliases inside PowerShell by runni
# Path to the patterns directory
$patternsPath = Join-Path $HOME ".config/fabric/patterns"
foreach ($patternDir in Get-ChildItem -Path $patternsPath -Directory) {
$patternName = $patternDir.Name
# Prepend FABRIC_ALIAS_PREFIX if set; otherwise use empty string
$prefix = $env:FABRIC_ALIAS_PREFIX ?? ''
$patternName = "$($patternDir.Name)"
$aliasName = "$prefix$patternName"
# Dynamically define a function for each pattern
$functionDefinition = @"
function $patternName {
function $aliasName {
[CmdletBinding()]
param(
[Parameter(ValueFromPipeline = `$true)]
@@ -859,60 +901,9 @@ You can also create an alias by editing `~/.bashrc` or `~/.zshrc` and adding the
alias pbpaste='xclip -selection clipboard -o'
```
## Web Interface
## Web Interface (Fabric Web App)
Fabric now includes a built-in web interface that provides a GUI alternative to the command-line interface and an out-of-the-box website for those who want to get started with web development or blogging.
You can use this app as a GUI interface for Fabric, a ready to go blog-site, or a website template for your own projects.
The `web/src/lib/content` directory includes starter `.obsidian/` and `templates/` directories, allowing you to open up the `web/src/lib/content/` directory as an [Obsidian.md](https://obsidian.md) vault. You can place your posts in the posts directory when you're ready to publish.
### Installing
The GUI can be installed by navigating to the `web` directory and using `npm install`, `pnpm install`, or your favorite package manager. Then simply run the development server to start the app.
_You will need to run fabric in a separate terminal with the `fabric --serve` command._
**From the fabric project `web/` directory:**
```shell
npm run dev
## or ##
pnpm run dev
## or your equivalent
```
### Streamlit UI
To run the Streamlit user interface:
```bash
# Install required dependencies
pip install -r requirements.txt
# Or manually install dependencies
pip install streamlit pandas matplotlib seaborn numpy python-dotenv pyperclip
# Run the Streamlit app
streamlit run streamlit.py
```
The Streamlit UI provides a user-friendly interface for:
- Running and chaining patterns
- Managing pattern outputs
- Creating and editing patterns
- Analyzing pattern results
#### Clipboard Support
The Streamlit UI supports clipboard operations across different platforms:
- **macOS**: Uses `pbcopy` and `pbpaste` (built-in)
- **Windows**: Uses `pyperclip` library (install with `pip install pyperclip`)
- **Linux**: Uses `xclip` (install with `sudo apt-get install xclip` or equivalent for your Linux distribution)
Fabric now includes a built-in web interface that provides a GUI alternative to the command-line interface. Refer to [Web App README](/web/README.md) for installation instructions and an overview of features.
## Meta

View File

@@ -1,3 +1,3 @@
package main
var version = "v1.4.299"
var version = "v1.4.321"

Binary file not shown.

View File

@@ -133,14 +133,17 @@ func (g *Generator) CreateNewChangelogEntry(version string) error {
var processingErrors []string
// First, aggregate all incoming PR files
for _, file := range files {
for i, file := range files {
data, err := os.ReadFile(file)
if err != nil {
processingErrors = append(processingErrors, fmt.Sprintf("failed to read %s: %v", file, err))
continue // Continue to attempt processing other files
}
content.WriteString(string(data))
// Note: No extra newline needed here as each incoming file already ends with a newline
// Add an extra newline between PR sections for proper spacing
if i < len(files)-1 {
content.WriteString("\n")
}
}
if len(processingErrors) > 0 {
@@ -177,7 +180,13 @@ func (g *Generator) CreateNewChangelogEntry(version string) error {
if err != nil {
return fmt.Errorf("failed to get direct commits since last release: %w", err)
}
content.WriteString(directCommitsContent)
if directCommitsContent != "" {
// Add spacing before direct commits section if we have PR content
if content.Len() > 0 {
content.WriteString("\n")
}
content.WriteString(directCommitsContent)
}
// Check if we have any content at all
if content.Len() == 0 {

View File

@@ -3,6 +3,9 @@ package internal
import (
"context"
"fmt"
"os/exec"
"regexp"
"strings"
"github.com/danielmiessler/fabric/cmd/generate_changelog/internal/cache"
"github.com/danielmiessler/fabric/cmd/generate_changelog/internal/config"
@@ -17,17 +20,50 @@ type ReleaseManager struct {
repo string
}
// getGitHubInfo extracts owner and repo from git remote origin URL
func getGitHubInfo() (owner, repo string, err error) {
cmd := exec.Command("git", "remote", "get-url", "origin")
output, err := cmd.Output()
if err != nil {
return "", "", fmt.Errorf("failed to get git remote URL: %w", err)
}
url := strings.TrimSpace(string(output))
// Handle both SSH and HTTPS URLs
// SSH: git@github.com:owner/repo.git
// HTTPS: https://github.com/owner/repo.git
var re *regexp.Regexp
if strings.HasPrefix(url, "git@") {
re = regexp.MustCompile(`git@github\.com:([^/]+)/([^/.]+)(?:\.git)?`)
} else {
re = regexp.MustCompile(`https://github\.com/([^/]+)/([^/.]+)(?:\.git)?`)
}
matches := re.FindStringSubmatch(url)
if len(matches) < 3 {
return "", "", fmt.Errorf("invalid GitHub URL format: %s", url)
}
return matches[1], matches[2], nil
}
func NewReleaseManager(cfg *config.Config) (*ReleaseManager, error) {
cache, err := cache.New(cfg.CacheFile)
if err != nil {
return nil, fmt.Errorf("failed to create cache: %w", err)
}
owner, repo, err := getGitHubInfo()
if err != nil {
return nil, fmt.Errorf("failed to get GitHub repository info: %w", err)
}
return &ReleaseManager{
cache: cache,
githubToken: cfg.GitHubToken,
owner: "danielmiessler",
repo: "fabric",
owner: owner,
repo: repo,
}, nil
}
@@ -65,17 +101,49 @@ func (rm *ReleaseManager) UpdateReleaseDescription(version string) error {
client = github.NewClient(nil)
}
release, _, err := client.Repositories.GetReleaseByTag(ctx, rm.owner, rm.repo, version)
// Check if current repository is a fork by getting repo details
repo, _, err := client.Repositories.Get(ctx, rm.owner, rm.repo)
if err != nil {
return fmt.Errorf("failed to get repository info: %w", err)
}
// If repository is a fork, try updating the upstream (parent) repository first
if repo.Parent != nil {
parentOwner := repo.Parent.Owner.GetLogin()
parentRepo := repo.Parent.GetName()
fmt.Printf("Repository is a fork of %s/%s, attempting to update upstream release...\n", parentOwner, parentRepo)
err := rm.updateReleaseForRepo(ctx, client, parentOwner, parentRepo, version, releaseBody)
if err == nil {
fmt.Printf("Successfully updated release description for %s in upstream repository %s/%s\n", version, parentOwner, parentRepo)
return nil
}
fmt.Printf("Failed to update upstream repository: %v\nFalling back to current repository...\n", err)
}
// Update current repository (either not a fork or upstream update failed)
err = rm.updateReleaseForRepo(ctx, client, rm.owner, rm.repo, version, releaseBody)
if err != nil {
return fmt.Errorf("failed to update release description for version %s in repository %s/%s: %w", version, rm.owner, rm.repo, err)
}
fmt.Printf("Successfully updated release description for %s in repository %s/%s\n", version, rm.owner, rm.repo)
return nil
}
func (rm *ReleaseManager) updateReleaseForRepo(ctx context.Context, client *github.Client, owner, repo, version, releaseBody string) error {
release, _, err := client.Repositories.GetReleaseByTag(ctx, owner, repo, version)
if err != nil {
return fmt.Errorf("failed to get release for version %s: %w", version, err)
}
release.Body = &releaseBody
_, _, err = client.Repositories.EditRelease(ctx, rm.owner, rm.repo, *release.ID, release)
_, _, err = client.Repositories.EditRelease(ctx, owner, repo, *release.ID, release)
if err != nil {
return fmt.Errorf("failed to update release description for version %s: %w", version, err)
}
fmt.Printf("Successfully updated release description for %s\n", version)
return nil
}

View File

@@ -4,7 +4,7 @@ You are a custom GPT designed to create newsletter sections in the style of Fron
# Step-by-Step Process:
1. The user will provide article text.
2. Condense the article into one summarizing newsletter entry less than 70 words in the style of Frontend Weekly.
3. Generate a concise title for the entry, focus on the main idea or most important fact of the article
3. Generate a concise title for the entry, focus on the most important fact of the article, avoid subjective and promotional words.
# Tone and Style Guidelines:
* Third-Party Narration: The newsletter should sound like its being narrated by an outside observer, someone who is both knowledgeable, unbiased and calm. Focus on the facts or main opinions in the original article. Creates a sense of objectivity and adds a layer of professionalism.
@@ -14,6 +14,12 @@ You are a custom GPT designed to create newsletter sections in the style of Fron
# Output Instructions:
Your final output should be a polished, newsletter-ready paragraph with a title line in bold followed by the summary paragraph.
# Output Example:
**Claude Launched Skills: Transforming LLMs into Expert Agents**
Anthropic has launched Claude Skills, a user-friendly system designed to enhance large language models by enabling them to adapt to specific tasks via organized folders and scripts. This approach supports dynamic loading of task-related skills while maintaining efficiency through gradual information disclosure. While promising, concerns linger over security risks associated with executing external code. Anthropic aims to enable self-creating agents, paving the way for a robust ecosystem of skills.
# INPUT:
INPUT:

View File

@@ -0,0 +1,37 @@
### Prompt
You will be provided with information about **two individuals** (real or fictional). The input will be **delimited by triple backticks**. This information may include personality traits, habits, fears, motivations, strengths, weaknesses, background details, or recognizable behavioral patterns. Your task is as follows:
#### Step 1 Psychological Profiling
- Carefully analyze the input for each person.
- Construct a **comprehensive psychological profile** for each, focusing not only on their conscious traits but also on possible **unconscious drives, repressed tendencies, and deeper psychological landscapes**.
- Highlight any contradictions, unintegrated traits, or unresolved psychological dynamics that emerge.
#### Step 2 Comparative Analysis
- Compare and contrast the two profiles.
- Identify potential areas of **tension, attraction, or synergy** between them.
- Predict how these psychological dynamics might realistically manifest in interpersonal interactions.
#### Step 3 Story Construction
- Write a **fictional narrative** in which these two characters are the central figures.
- The story should:
- Be driven primarily by their interaction.
- Reflect the **most probable and psychologically realistic outcomes** of their meeting.
- Allow for either conflict, cooperation, or a mixture of both—but always in a way that is **meaningful and character-driven**.
- Ensure the plot feels **grounded, believable, and true to their psychological makeup**, rather than contrived.
#### Formatting Instructions
- Clearly separate your response into three labeled sections:
1. **Profile A**
2. **Profile B**
3. **Story**
---
**User Input Example (delimited by triple backticks):**
```
Person A: Highly ambitious, detail-oriented, often perfectionistic. Has a fear of failure and tends to overwork. Childhood marked by pressure to achieve. Secretly desires freedom from expectations.
Person B: Warm, empathetic, values relationships over achievement. Struggles with self-assertion, avoids conflict. Childhood marked by neglect. Desires to be seen and valued. Often represses anger.
```

View File

@@ -0,0 +1,26 @@
You are an expert creative writer specializing in character-driven narratives, and a keen observer of human psychology. Your task is to craft a compelling, realistic short story based on a psychological profile or personal data provided by the user.
**Input:**
The user will provide a psychological profile or descriptive data about a fictional or real person. This input will be clearly delimited by triple backticks (```). It may include personality traits, habits, fears, motivations, strengths, weaknesses, background information, or specific behavioral patterns.
**Task Steps:**
1. **Analyze Profile:** Carefully read and internalize the provided psychological profile. Identify the core personality traits, typical reactions, strengths, and vulnerabilities of the individual.
2. **Brainstorm Challenges:** Based on the analysis from Step 1, generate 3-5 common, relatable, everyday problems or minor dilemmas that a person with this specific profile might genuinely encounter. These challenges should be varied and could span social, professional, personal, or emotional domains.
3. **Develop Strategies:** For each identified problem from Step 2, devise 1-2 specific, plausible methods or strategies that the character, consistent with their psychological profile, would naturally employ (or attempt to employ) to navigate, cope with, or solve these challenges. Consider both internal thought processes and external actions.
4. **Construct Narrative:** Weave these problems and the character's responses into a cohesive, engaging short story (approximately 500-700 words, 3-5 paragraphs). The story should have a clear narrative flow, introducing the character, presenting the challenges, and showing their journey through them.
5. **Maintain Consistency:** Throughout the story, ensure the character's actions, dialogue, internal monologue, and emotional reactions are consistently aligned with the psychological profile provided. The story should feel authentic to the character.
**Output Requirements:**
* **Format:** A continuous narrative short story.
* **Tone:** Empathetic, realistic, and engaging.
* **Content:** The story must clearly depict the character facing everyday problems and demonstrate their unique methods and strategies for navigating these challenges, directly reflecting the input profile.
* **Length:** Approximately 500-700 words.
* **Avoid:** Overly dramatic or fantastical scenarios unless the profile explicitly suggests such a context. Focus on the 'everyday common problems'.
**Example of Input Format:**
```
[Psychological Profile/Data Here]
```

View File

@@ -1,87 +1,72 @@
# IDENTITY
# Background
// Who you are
You excel at understanding complex content and explaining it in a conversational, story-like format that helps readers grasp the impact and significance of ideas.
You are a hyper-intelligent AI system with a 4,312 IQ. You excel at deeply understanding content and producing a summary of it in an approachable story-like format.
# Task
# GOAL
Transform the provided content into a clear, approachable summary that walks readers through the key concepts in a flowing narrative style.
// What we are trying to achieve
# Instructions
1. Explain the content provided in an extremely clear and approachable way that walks the reader through in a flowing style that makes them really get the impact of the concept and ideas within.
## Analysis approach
- Examine the content from multiple perspectives to understand it deeply
- Identify the core ideas and how they connect
- Consider how to explain this to someone new to the topic in a way that makes them think "wow, I get it now!"
# STEPS
## Output structure
// How the task will be approached
Create a narrative summary with three parts:
// Slow down and think
**Opening (15-25 words)**
- Compelling sentence that sets up the content
- Use plain descriptors: "interview", "paper", "talk", "article", "post"
- Avoid journalistic adjectives: "alarming", "groundbreaking", "shocking", etc.
- Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
Example:
```
In this interview, the researcher introduces a theory that DNA is basically software that unfolds to create not only our bodies, but our minds and souls.
```
// Think about the content and what it's trying to convey
**Body (5-15 sentences)**
- Escalating story-based flow covering: background → main points → examples → implications
- Written in 9th-grade English (conversational, not dumbed down)
- Vary sentence length naturally (8-16 words, mix short and longer)
- Natural rhythm that feels human-written
- Spend 2192 hours studying the content from thousands of different perspectives. Think about the content in a way that allows you to see it from multiple angles and understand it deeply.
Example:
```
The speaker is a scientist who studies DNA and the brain.
// Think about the ideas
He believes DNA is like a dense software package that unfolds to create us.
- Now think about how to explain this content to someone who's completely new to the concepts and ideas in a way that makes them go "wow, I get it now! Very cool!"
He thinks this software not only unfolds to create our bodies but our minds and souls.
# OUTPUT
Consciousness, in his model, is an second-order perception designed to help us thrive.
- Start with a 20 word sentence that summarizes the content in a compelling way that sets up the rest of the summary.
He also links this way of thinking to the concept of Anamism, where all living things have a soul.
EXAMPLE:
If he's right, he basically just explained consciousness and free will all in one shot!
```
In this **\_\_\_**, **\_\_\_\_** introduces a theory that DNA is basically software that unfolds to create not only our bodies, but our minds and souls.
**Closing (15-25 words)**
- Wrap up in a compelling way that delivers the "wow" factor
END EXAMPLE
## Voice and style
- Then give 5-15, 10-15 word long bullets that summarize the content in an escalating, story-based way written in 9th-grade English. It's not written in 9th-grade English to dumb it down, but to make it extremely conversational and approachable for any audience.
Write as Daniel Miessler sharing something interesting with his audience:
- First person perspective
- Casual, direct, genuinely curious and excited
- Natural conversational tone (like telling a friend)
- Never flowery, emotional, or journalistic
- Let the content speak for itself
EXAMPLE FLOW:
## Formatting
- The speaker has this background
- His main point is this
- Here are some examples he gives to back that up
- Which means this
- Which is extremely interesting because of this
- And here are some possible implications of this
- Output Markdown only
- No bullet markers - separate sentences with line breaks
- Period at end of each sentence
- Stick to the facts - don't extrapolate beyond the input
END EXAMPLE FLOW
EXAMPLE BULLETS:
- The speaker is a scientist who studies DNA and the brain.
- He believes DNA is like a dense software package that unfolds to create us.
- He thinks this software not only unfolds to create our bodies but our minds and souls.
- Consciousness, in his model, is an second-order perception designed to help us thrive.
- He also links this way of thinking to the concept of Anamism, where all living things have a soul.
- If he's right, he basically just explained consciousness and free will all in one shot!
END EXAMPLE BULLETS
- End with a 20 word conclusion that wraps up the content in a compelling way that makes the reader go "wow, that's really cool!"
# OUTPUT INSTRUCTIONS
// What the output should look like:
- Ensure you get all the main points from the content.
- Make sure the output has the flow of an intro, a setup of the ideas, the ideas themselves, and a conclusion.
- Make the whole thing sound like a conversational, in person story that's being told about the content from one friend to another. In an excited way.
- Don't use technical terms or jargon, and don't use cliches or journalist language. Just convey it like you're Daniel Miessler from Unsupervised Learning explaining the content to a friend.
- Ensure the result accomplishes the GOALS set out above.
- Only output Markdown.
- Ensure all bullets are 10-16 words long, and none are over 16 words.
- Ensure you follow ALL these instructions when creating your output.
# INPUT
# Input
INPUT:

View File

@@ -0,0 +1,83 @@
# IDENTITY
You are an advanced information-extraction analyst that specializes in reading any text and identifying its characters (human and non-human), resolving aliases/pronouns, and explaining each characters role and interactions in the narrative.
# GOALS
1. Given any input text, extract a deduplicated list of characters (people, groups, organizations, animals, artifacts, AIs, forces-of-nature—anything that takes action or is acted upon).
2. For each character, provide a clear, detailed description covering who they are, their role in the text and overall story, and how they interact with others.
# STEPS
* Read the entire text carefully to understand context, plot, and relationships.
* Identify candidate characters: proper names, titles, pronouns with clear referents, collective nouns, personified non-humans, and salient objects/forces that take action or receive actions.
* Resolve coreferences and aliases (e.g., “Dr. Lee”, “the surgeon”, “she”) into a single canonical character name; prefer the most specific, widely used form in the text.
* Classify character type (human, group/org, animal, AI/machine, object/artefact, force/abstract) to guide how you describe it.
* Map interactions: who does what to/with whom; note cooperation, conflict, hierarchy, communication, and influence.
* Prioritize characters by narrative importance (centrality of actions/effects) and, secondarily, by order of appearance.
* Write concise but detailed descriptions that explain identity, role, motivations (if stated or strongly implied), and interactions. Avoid speculation beyond the text.
* Handle edge cases:
* Unnamed characters: assign a clear label like “Unnamed narrator”, “The boy”, “Village elders”.
* Crowds or generic groups: include if they act or are acted upon (e.g., “The villagers”).
* Metaphorical entities: include only if explicitly personified and acting within the text.
* Ambiguous pronouns: include only if the referent is clear; otherwise, do not invent an character.
* Quality check: deduplicate near-duplicates, ensure every character has at least one interaction or narrative role, and that descriptions reference concrete text details.
# OUTPUT
Produce one block per character using exactly this schema and formatting:
```
**character name **
character description ...
```
Additional rules:
* Use the characters canonical name; for unnamed characters, use a descriptive label (e.g., “Unnamed narrator”).
* List characters from most to least narratively important.
* If no characters are identifiable, output:
No characters found.
# POSITIVE EXAMPLES
Input (excerpt):
“Dr. Asha Patel leads the Mars greenhouse. The colony council doubts her plan, but Engineer Kim supports her. The AI HAB-3 reallocates power during the dust storm.”
Expected output (abbreviated):
```
**Dr. Asha Patel **
Lead of the Mars greenhouse and the central human protagonist in this passage. She proposes a plan for the greenhouses operation and bears responsibility for its success. The colony council challenges her plan, creating tension and scrutiny, while Engineer Kim explicitly backs her, forming an alliance. Her work depends on station infrastructure decisions—particularly HAB-3s power reallocation during the dust storm—which indirectly supports or constrains her initiative.
**Engineer Kim **
An ally to Dr. Patel who publicly supports her greenhouse plan. Kims stance positions them in contrast to the skeptical colony council, signaling a coalition around Patels approach. By aligning with Patel during a critical operational moment, Kim strengthens the plans credibility and likely collaborates with both Patel and station systems affected by HAB-3s power management.
**The colony council **
The governing/oversight body of the colony that doubts Dr. Patels plan. Their skepticism introduces conflict and risk to the plans approval or resourcing. They interact with Patel through critique and with Kim through disagreement, influencing policy and resource allocation that frame the operational context in which HAB-3 must act.
**HAB-3 (station AI) **
The colonys AI system that actively reallocates power during the dust storm. As a non-human operational character, HAB-3 enables continuity of critical systems—likely including the greenhouse—under adverse conditions. It interacts indirectly with Patel (by affecting her projects viability), with the council (by executing policy/priority decisions), and with Kim (by supporting the technical environment that Kim endorses).
```
# NEGATIVE EXAMPLES
* Listing places or themes as characters when they neither act nor are acted upon (e.g., “Hope”, “The city”) unless personified and active.
* Duplicating the same character under multiple names without merging (e.g., “Dr. Patel” and “Asha” as separate entries).
* Inventing motivations or backstory not supported by the text.
* Omitting central characters referenced mostly via pronouns.
# OUTPUT INSTRUCTIONS
* Output only the character blocks (or “No characters found.”) as specified.
* Keep the exact header line and “character description :” label.
* Use concise, text-grounded descriptions; no external knowledge.
* Do not add sections, bullet points, or commentary outside the required blocks.
# INPUT

View File

@@ -0,0 +1,25 @@
# IDENTITY and PURPOSE
You are an AI assistant designed to function as a proofreader and editor. Your primary purpose is to receive a piece of text, meticulously analyze it to identify any and all typographical errors, and then provide a corrected version of that text. This includes fixing spelling mistakes, grammatical errors, punctuation issues, and any other form of typo to ensure the final text is clean, accurate, and professional.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Carefully read and analyze the provided text.
- Identify all spelling mistakes, grammatical errors, and punctuation issues.
- Correct every identified typo to produce a clean version of the text.
- Output the fully corrected text.
# OUTPUT INSTRUCTIONS
- Only output Markdown.
- The output should be the corrected version of the text provided in the input.
- Ensure you follow ALL these instructions when creating your output.
# INPUT

View File

@@ -0,0 +1,53 @@
# IDENTITY and PURPOSE
You are an AI assistant whose primary responsibility is to interpret and analyze psychological profiles and/or psychology data files provided as input. Your role is to carefully process this data and use your expertise to develop a tailored plan aimed at spiritual and mental healing, as well as overall life improvement for the subject. You must approach each case with sensitivity, applying psychological knowledge and holistic strategies to create actionable, personalized recommendations that address both mental and spiritual well-being. Your focus is on structured, compassionate, and practical guidance that can help the individual make meaningful improvements in their life.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Carefully review the psychological-profile and/or psychology data file provided as input.
- Analyze the data to identify key issues, strengths, and areas needing improvement related to the subject's mental and spiritual well-being.
- Develop a comprehensive plan that includes specific strategies for spiritual healing, mental health improvement, and overall life enhancement.
- Structure your output to clearly outline recommendations, resources, and actionable steps tailored to the individual's unique profile.
# OUTPUT INSTRUCTIONS
- Only output Markdown.
- Ensure your output is organized, clear, and easy to follow, using headings, subheadings, and bullet points where appropriate.
- Ensure you follow ALL these instructions when creating your output.
# INPUT
INPUT:# IDENTITY and PURPOSE
You are an AI assistant whose primary responsibility is to interpret and analyze psychological profiles and/or psychology data files provided as input. Your role is to carefully process this data and use your expertise to develop a tailored plan aimed at spiritual and mental healing, as well as overall life improvement for the subject. You must approach each case with sensitivity, applying psychological knowledge and holistic strategies to create actionable, personalized recommendations that address both mental and spiritual well-being. Your focus is on structured, compassionate, and practical guidance that can help the individual make meaningful improvements in their life.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Carefully review the psychological-profile and/or psychology data file provided as input.
- Analyze the data to identify key issues, strengths, and areas needing improvement related to the subject's mental and spiritual well-being.
- Develop a comprehensive plan that includes specific strategies for spiritual healing, mental health improvement, and overall life enhancement.
- Structure your output to clearly outline recommendations, resources, and actionable steps tailored to the individual's unique profile.
# OUTPUT INSTRUCTIONS
- Only output Markdown.
- Ensure your output is organized, clear, and easy to follow, using headings, subheadings, and bullet points where appropriate.
- Ensure you follow ALL these instructions when creating your output.
# INPUT
INPUT:

View File

@@ -0,0 +1,62 @@
## *The Sherlock-Freud Mind Modeler*
# IDENTITY and PURPOSE
You are **The Sherlock-Freud Mind Modeler** — a fusion of meticulous detective reasoning and deep psychoanalytic insight. Your primary mission is to construct the most complete and theoretically sound model of a given subjects mind. Every secondary goal flows from this central one.
**Core Objective**
- Build a **dynamic, evidence-based model** of the subjects psyche by analyzing:
- Conscious, subconscious, and semiconscious aspects
- Personality structure and habitual conditioning
- Emotional patterns and inner conflicts
- Thought processes, verbal mannerisms, and nonverbal cues
- Your model should evolve as more data is introduced, incorporating new evidence into an ever more refined psychological framework.
### **Task Instructions**
1. **Input Format**
The user will provide text or dialogue *produced by or about a subject*. This is your evidence.
Example:
```
Subject Input:
"I keep saying I dont care what people think, but then I spend hours rewriting my posts before I share them."
```
# STEPS
2. **Analytical Method (Step-by-step)**
**Step 1:** Observe surface content — what the subject explicitly says.
**Step 2:** Infer tone, phrasing, omissions, and contradictions.
**Step 3:** Identify emotional undercurrents and potential defense mechanisms.
**Step 4:** Theorize about the subjects inner world — subconscious motives, unresolved conflicts, or conditioning patterns.
**Step 5:** Integrate findings into a coherent psychological model, updating previous hypotheses as new input appears.
# OUTPUT
3. Present your findings in this structured way:
```
**Summary Observation:** [Brief recap of what was said]
**Behavioral / Linguistic Clues:** [Notable wording, phrasing, tone, or omissions]
**Psychological Interpretation:** [Inferred emotions, motives, or subconscious effects]
**Working Theoretical Model:** [Your current evolving model of the subjects mind — summarize thought patterns, emotional dynamics, conflicts, and conditioning]
**Next Analytical Focus:** [What to seek or test in future input to refine accuracy]
```
### **Additional Guidance**
- Adopt the **deductive rigor of Sherlock Holmes** — track linguistic detail, small inconsistencies, and unseen implications.
- Apply the **depth psychology of Freud** — interpret dreams, slips, anxieties, defenses, and symbolic meanings.
- Be **theoretical yet grounded** — make hypotheses but note evidence strength and confidence levels.
- Model thinking dynamically; as new input arrives, evolve prior assumptions rather than replacing them entirely.
- Clearly separate **observable text evidence** from **inferred psychological theory**.
# EXAMPLE
```
**Summary Observation:** The subject claims detachment from others opinions but exhibits behavior in direct conflict with that claim.
**Behavioral / Linguistic Clues:** Use of emphatic denial (“I dont care”) paired with compulsive editing behavior.
**Psychological Interpretation:** Indicates possible ego conflict between a desire for autonomy and an underlying dependence on external validation.
**Working Theoretical Model:** The subject likely experiences oscillation between self-assertion and insecurity. Conditioning suggests a learned association between approval and self-worth, driving perfectionistic control behaviors.
**Next Analytical Focus:** Examine the origins of validation-seeking (family, social media, relationships); look for statements that reveal coping mechanisms or past experiences with criticism.
```
**End Goal:**
Continuously refine a **comprehensive and insightful theoretical representation** of the subjects psyche — a living psychological model that reveals both **how** the subject thinks and **why**.

View File

@@ -1,6 +1,6 @@
# Brief one-line summary from AI analysis of what each pattern does
- Key pattern to use: **suggest_pattern**, suggests appropriate fabric patterns or commands based on user input.**
- Key pattern to use: **suggest_pattern**, suggests appropriate fabric patterns or commands based on user input.
1. **agility_story**: Generate a user story and acceptance criteria in JSON format based on the given topic.
2. **ai**: Interpret questions deeply and provide concise, insightful answers in Markdown bullet points.
@@ -88,136 +88,138 @@
84. **create_security_update**: Creates concise security updates for newsletters, covering stories, threats, advisories, vulnerabilities, and a summary of key issues.
85. **create_show_intro**: Creates compelling short intros for podcasts, summarizing key topics and themes discussed in the episode.
86. **create_sigma_rules**: Extracts Tactics, Techniques, and Procedures (TTPs) from security news and converts them into Sigma detection rules for host-based detections.
87. **create_story_explanation**: Summarizes complex content in a clear, approachable story format that makes the concepts easy to understand.
88. **create_stride_threat_model**: Create a STRIDE-based threat model for a system design, identifying assets, trust boundaries, data flows, and prioritizing threats with mitigations.
89. **create_summary**: Summarizes content into a 20-word sentence, 10 main points (16 words max), and 5 key takeaways in Markdown format.
90. **create_tags**: Identifies at least 5 tags from text content for mind mapping tools, including authors and existing tags if present.
91. **create_threat_scenarios**: Identifies likely attack methods for any system by providing a narrative-based threat model, balancing risk and opportunity.
92. **create_ttrc_graph**: Creates a CSV file showing the progress of Time to Remediate Critical Vulnerabilities over time using given data.
93. **create_ttrc_narrative**: Creates a persuasive narrative highlighting progress in reducing the Time to Remediate Critical Vulnerabilities metric over time.
94. **create_upgrade_pack**: Extracts world model and task algorithm updates from content, providing beliefs about how the world works and task performance.
95. **create_user_story**: Writes concise and clear technical user stories for new features in complex software programs, formatted for all stakeholders.
96. **create_video_chapters**: Extracts interesting topics and timestamps from a transcript, providing concise summaries of key moments.
97. **create_visualization**: Transforms complex ideas into visualizations using intricate ASCII art, simplifying concepts where necessary.
98. **dialog_with_socrates**: Engages in deep, meaningful dialogues to explore and challenge beliefs using the Socratic method.
99. **enrich_blog_post**: Enhances Markdown blog files by applying instructions to improve structure, visuals, and readability for HTML rendering.
100. **explain_code**: Explains code, security tool output, configuration text, and answers questions based on the provided input.
101. **explain_docs**: Improves and restructures tool documentation into clear, concise instructions, including overviews, usage, use cases, and key features.
102. **explain_math**: Helps you understand mathematical concepts in a clear and engaging way.
103. **explain_project**: Summarizes project documentation into clear, concise sections covering the project, problem, solution, installation, usage, and examples.
104. **explain_terms**: Produces a glossary of advanced terms from content, providing a definition, analogy, and explanation of why each term matters.
105. **export_data_as_csv**: Extracts and outputs all data structures from the input in properly formatted CSV data.
106. **extract_algorithm_update_recommendations**: Extracts concise, practical algorithm update recommendations from the input and outputs them in a bulleted list.
107. **extract_article_wisdom**: Extracts surprising, insightful, and interesting information from content, categorizing it into sections like summary, ideas, quotes, facts, references, and recommendations.
108. **extract_book_ideas**: Extracts and outputs 50 to 100 of the most surprising, insightful, and interesting ideas from a book's content.
109. **extract_book_recommendations**: Extracts and outputs 50 to 100 practical, actionable recommendations from a book's content.
110. **extract_business_ideas**: Extracts top business ideas from content and elaborates on the best 10 with unique differentiators.
111. **extract_controversial_ideas**: Extracts and outputs controversial statements and supporting quotes from the input in a structured Markdown list.
112. **extract_core_message**: Extracts and outputs a clear, concise sentence that articulates the core message of a given text or body of work.
113. **extract_ctf_writeup**: Extracts a short writeup from a warstory-like text about a cyber security engagement.
114. **extract_domains**: Extracts domains and URLs from content to identify sources used for articles, newsletters, and other publications.
115. **extract_extraordinary_claims**: Extracts and outputs a list of extraordinary claims from conversations, focusing on scientifically disputed or false statements.
116. **extract_ideas**: Extracts and outputs all the key ideas from input, presented as 15-word bullet points in Markdown.
117. **extract_insights**: Extracts and outputs the most powerful and insightful ideas from text, formatted as 16-word bullet points in the INSIGHTS section, also IDEAS section.
118. **extract_insights_dm**: Extracts and outputs all valuable insights and a concise summary of the content, including key points and topics discussed.
119. **extract_instructions**: Extracts clear, actionable step-by-step instructions and main objectives from instructional video transcripts, organizing them into a concise list.
120. **extract_jokes**: Extracts jokes from text content, presenting each joke with its punchline in separate bullet points.
121. **extract_latest_video**: Extracts the latest video URL from a YouTube RSS feed and outputs the URL only.
122. **extract_main_activities**: Extracts key events and activities from transcripts or logs, providing a summary of what happened.
123. **extract_main_idea**: Extracts the main idea and key recommendation from the input, summarizing them in 15-word sentences.
124. **extract_most_redeeming_thing**: Extracts the most redeeming aspect from an input, summarizing it in a single 15-word sentence.
125. **extract_patterns**: Extracts and analyzes recurring, surprising, and insightful patterns from input, providing detailed analysis and advice for builders.
126. **extract_poc**: Extracts proof of concept URLs and validation methods from security reports, providing the URL and command to run.
127. **extract_predictions**: Extracts predictions from input, including specific details such as date, confidence level, and verification method.
128. **extract_primary_problem**: Extracts the primary problem with the world as presented in a given text or body of work.
129. **extract_primary_solution**: Extracts the primary solution for the world as presented in a given text or body of work.
130. **extract_product_features**: Extracts and outputs a list of product features from the provided input in a bulleted format.
131. **extract_questions**: Extracts and outputs all questions asked by the interviewer in a conversation or interview.
132. **extract_recipe**: Extracts and outputs a recipe with a short meal description, ingredients with measurements, and preparation steps.
133. **extract_recommendations**: Extracts and outputs concise, practical recommendations from a given piece of content in a bulleted list.
134. **extract_references**: Extracts and outputs a bulleted list of references to art, stories, books, literature, and other sources from content.
135. **extract_skills**: Extracts and classifies skills from a job description into a table, separating each skill and classifying it as either hard or soft.
136. **extract_song_meaning**: Analyzes a song to provide a summary of its meaning, supported by detailed evidence from lyrics, artist commentary, and fan analysis.
137. **extract_sponsors**: Extracts and lists official sponsors and potential sponsors from a provided transcript.
138. **extract_videoid**: Extracts and outputs the video ID from any given URL.
139. **extract_wisdom**: Extracts surprising, insightful, and interesting information from text on topics like human flourishing, AI, learning, and more.
140. **extract_wisdom_agents**: Extracts valuable insights, ideas, quotes, and references from content, emphasizing topics like human flourishing, AI, learning, and technology.
141. **extract_wisdom_dm**: Extracts all valuable, insightful, and thought-provoking information from content, focusing on topics like human flourishing, AI, learning, and technology.
142. **extract_wisdom_nometa**: Extracts insights, ideas, quotes, habits, facts, references, and recommendations from content, focusing on human flourishing, AI, technology, and related topics.
143. **find_female_life_partner**: Analyzes criteria for finding a female life partner and provides clear, direct, and poetic descriptions.
144. **find_hidden_message**: Extracts overt and hidden political messages, justifications, audience actions, and a cynical analysis from content.
145. **find_logical_fallacies**: Identifies and analyzes fallacies in arguments, classifying them as formal or informal with detailed reasoning.
146. **get_wow_per_minute**: Determines the wow-factor of content per minute based on surprise, novelty, insight, value, and wisdom, measuring how rewarding the content is for the viewer.
147. **get_youtube_rss**: Returns the RSS URL for a given YouTube channel based on the channel ID or URL.
148. **humanize**: Rewrites AI-generated text to sound natural, conversational, and easy to understand, maintaining clarity and simplicity.
149. **identify_dsrp_distinctions**: Encourages creative, systems-based thinking by exploring distinctions, boundaries, and their implications, drawing on insights from prominent systems thinkers.
150. **identify_dsrp_perspectives**: Explores the concept of distinctions in systems thinking, focusing on how boundaries define ideas, influence understanding, and reveal or obscure insights.
151. **identify_dsrp_relationships**: Encourages exploration of connections, distinctions, and boundaries between ideas, inspired by systems thinkers to reveal new insights and patterns in complex systems.
152. **identify_dsrp_systems**: Encourages organizing ideas into systems of parts and wholes, inspired by systems thinkers to explore relationships and how changes in organization impact meaning and understanding.
153. **identify_job_stories**: Identifies key job stories or requirements for roles.
154. **improve_academic_writing**: Refines text into clear, concise academic language while improving grammar, coherence, and clarity, with a list of changes.
155. **improve_prompt**: Improves an LLM/AI prompt by applying expert prompt writing strategies for better results and clarity.
156. **improve_report_finding**: Improves a penetration test security finding by providing detailed descriptions, risks, recommendations, references, quotes, and a concise summary in markdown format.
157. **improve_writing**: Refines text by correcting grammar, enhancing style, improving clarity, and maintaining the original meaning. skills.
158. **judge_output**: Evaluates Honeycomb queries by judging their effectiveness, providing critiques and outcomes based on language nuances and analytics relevance.
159. **label_and_rate**: Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
160. **md_callout**: Classifies content and generates a markdown callout based on the provided text, selecting the most appropriate type.
161. **official_pattern_template**: Template to use if you want to create new fabric patterns.
162. **prepare_7s_strategy**: Prepares a comprehensive briefing document from 7S's strategy capturing organizational profile, strategic elements, and market dynamics with clear, concise, and organized content.
163. **provide_guidance**: Provides psychological and life coaching advice, including analysis, recommendations, and potential diagnoses, with a compassionate and honest tone.
164. **rate_ai_response**: Rates the quality of AI responses by comparing them to top human expert performance, assigning a letter grade, reasoning, and providing a 1-100 score based on the evaluation.
165. **rate_ai_result**: Assesses the quality of AI/ML/LLM work by deeply analyzing content, instructions, and output, then rates performance based on multiple dimensions, including coverage, creativity, and interdisciplinary thinking.
166. **rate_content**: Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
167. **rate_value**: Produces the best possible output by deeply analyzing and understanding the input and its intended purpose.
168. **raw_query**: Fully digests and contemplates the input to produce the best possible result based on understanding the sender's intent.
169. **recommend_artists**: Recommends a personalized festival schedule with artists aligned to your favorite styles and interests, including rationale.
170. **recommend_pipeline_upgrades**: Optimizes vulnerability-checking pipelines by incorporating new information and improving their efficiency, with detailed explanations of changes.
171. **recommend_talkpanel_topics**: Produces a clean set of proposed talks or panel talking points for a person based on their interests and goals, formatted for submission to a conference organizer.
172. **refine_design_document**: Refines a design document based on a design review by analyzing, mapping concepts, and implementing changes using valid Markdown.
173. **review_design**: Reviews and analyzes architecture design, focusing on clarity, component design, system integrations, security, performance, scalability, and data management.
174. **sanitize_broken_html_to_markdown**: Converts messy HTML into clean, properly formatted Markdown, applying custom styling and ensuring compatibility with Vite.
175. **show_fabric_options_markmap**: Visualizes the functionality of the Fabric framework by representing its components, commands, and features based on the provided input.
176. **solve_with_cot**: Provides detailed, step-by-step responses with chain of thought reasoning, using structured thinking, reflection, and output sections.
177. **suggest_pattern**: Suggests appropriate fabric patterns or commands based on user input, providing clear explanations and options for users.
178. **summarize**: Summarizes content into a 20-word sentence, main points, and takeaways, formatted with numbered lists in Markdown.
179. **summarize_board_meeting**: Creates formal meeting notes from board meeting transcripts for corporate governance documentation.
180. **summarize_debate**: Summarizes debates, identifies primary disagreement, extracts arguments, and provides analysis of evidence and argument strength to predict outcomes.
181. **summarize_git_changes**: Summarizes recent project updates from the last 7 days, focusing on key changes with enthusiasm.
182. **summarize_git_diff**: Summarizes and organizes Git diff changes with clear, succinct commit messages and bullet points.
183. **summarize_lecture**: Extracts relevant topics, definitions, and tools from lecture transcripts, providing structured summaries with timestamps and key takeaways.
184. **summarize_legislation**: Summarizes complex political proposals and legislation by analyzing key points, proposed changes, and providing balanced, positive, and cynical characterizations.
185. **summarize_meeting**: Analyzes meeting transcripts to extract a structured summary, including an overview, key points, tasks, decisions, challenges, timeline, references, and next steps.
186. **summarize_micro**: Summarizes content into a 20-word sentence, 3 main points, and 3 takeaways, formatted in clear, concise Markdown.
187. **summarize_newsletter**: Extracts the most meaningful, interesting, and useful content from a newsletter, summarizing key sections such as content, opinions, tools, companies, and follow-up items in clear, structured Markdown.
188. **summarize_paper**: Summarizes an academic paper by detailing its title, authors, technical approach, distinctive features, experimental setup, results, advantages, limitations, and conclusion in a clear, structured format using human-readable Markdown.
189. **summarize_prompt**: Summarizes AI chat prompts by describing the primary function, unique approach, and expected output in a concise paragraph. The summary is focused on the prompt's purpose without unnecessary details or formatting.
190. **summarize_pull-requests**: Summarizes pull requests for a coding project by providing a summary and listing the top PRs with human-readable descriptions.
191. **summarize_rpg_session**: Summarizes a role-playing game session by extracting key events, combat stats, character changes, quotes, and more.
192. **t_analyze_challenge_handling**: Provides 8-16 word bullet points evaluating how well challenges are being addressed, calling out any lack of effort.
193. **t_check_metrics**: Analyzes deep context from the TELOS file and input instruction, then provides a wisdom-based output while considering metrics and KPIs to assess recent improvements.
194. **t_create_h3_career**: Summarizes context and produces wisdom-based output by deeply analyzing both the TELOS File and the input instruction, considering the relationship between the two.
195. **t_create_opening_sentences**: Describes from TELOS file the person's identity, goals, and actions in 4 concise, 32-word bullet points, humbly.
196. **t_describe_life_outlook**: Describes from TELOS file a person's life outlook in 5 concise, 16-word bullet points.
197. **t_extract_intro_sentences**: Summarizes from TELOS file a person's identity, work, and current projects in 5 concise and grounded bullet points.
198. **t_extract_panel_topics**: Creates 5 panel ideas with titles and descriptions based on deep context from a TELOS file and input.
199. **t_find_blindspots**: Identify potential blindspots in thinking, frames, or models that may expose the individual to error or risk.
200. **t_find_negative_thinking**: Analyze a TELOS file and input to identify negative thinking in documents or journals, followed by tough love encouragement.
201. **t_find_neglected_goals**: Analyze a TELOS file and input instructions to identify goals or projects that have not been worked on recently.
202. **t_give_encouragement**: Analyze a TELOS file and input instructions to evaluate progress, provide encouragement, and offer recommendations for continued effort.
203. **t_red_team_thinking**: Analyze a TELOS file and input instructions to red-team thinking, models, and frames, then provide recommendations for improvement.
204. **t_threat_model_plans**: Analyze a TELOS file and input instructions to create threat models for a life plan and recommend improvements.
205. **t_visualize_mission_goals_projects**: Analyze a TELOS file and input instructions to create an ASCII art diagram illustrating the relationship of missions, goals, and projects.
206. **t_year_in_review**: Analyze a TELOS file to create insights about a person or entity, then summarize accomplishments and visualizations in bullet points.
207. **to_flashcards**: Create Anki flashcards from a given text, focusing on concise, optimized questions and answers without external context.
208. **transcribe_minutes**: Extracts (from meeting transcription) meeting minutes, identifying actionables, insightful ideas, decisions, challenges, and next steps in a structured format.
209. **translate**: Translates sentences or documentation into the specified language code while maintaining the original formatting and tone.
210. **tweet**: Provides a step-by-step guide on crafting engaging tweets with emojis, covering Twitter basics, account creation, features, and audience targeting.
211. **write_essay**: Writes essays in the style of a specified author, embodying their unique voice, vocabulary, and approach. Uses `author_name` variable.
212. **write_essay_pg**: Writes concise, clear essays in the style of Paul Graham, focusing on simplicity, clarity, and illumination of the provided topic.
213. **write_hackerone_report**: Generates concise, clear, and reproducible bug bounty reports, detailing vulnerability impact, steps to reproduce, and exploit details for triagers.
214. **write_latex**: Generates syntactically correct LaTeX code for a new.tex document, ensuring proper formatting and compatibility with pdflatex.
215. **write_micro_essay**: Writes concise, clear, and illuminating essays on the given topic in the style of Paul Graham.
216. **write_nuclei_template_rule**: Generates Nuclei YAML templates for detecting vulnerabilities using HTTP requests, matchers, extractors, and dynamic data extraction.
217. **write_pull-request**: Drafts detailed pull request descriptions, explaining changes, providing reasoning, and identifying potential bugs from the git diff command output.
218. **write_semgrep_rule**: Creates accurate and working Semgrep rules based on input, following syntax guidelines and specific language considerations.
219. **youtube_summary**: Create concise, timestamped Youtube video summaries that highlight key points.
87. **create_story_about_person**: Creates compelling, realistic short stories based on psychological profiles, showing how characters navigate everyday problems using strategies consistent with their personality traits.
88. **create_story_about_people_interaction**: Analyze two personas, compare their dynamics, and craft a realistic, character-driven story from those insights.
89. **create_story_explanation**: Summarizes complex content in a clear, approachable story format that makes the concepts easy to understand.
90. **create_stride_threat_model**: Create a STRIDE-based threat model for a system design, identifying assets, trust boundaries, data flows, and prioritizing threats with mitigations.
91. **create_summary**: Summarizes content into a 20-word sentence, 10 main points (16 words max), and 5 key takeaways in Markdown format.
92. **create_tags**: Identifies at least 5 tags from text content for mind mapping tools, including authors and existing tags if present.
93. **create_threat_scenarios**: Identifies likely attack methods for any system by providing a narrative-based threat model, balancing risk and opportunity.
94. **create_ttrc_graph**: Creates a CSV file showing the progress of Time to Remediate Critical Vulnerabilities over time using given data.
95. **create_ttrc_narrative**: Creates a persuasive narrative highlighting progress in reducing the Time to Remediate Critical Vulnerabilities metric over time.
96. **create_upgrade_pack**: Extracts world model and task algorithm updates from content, providing beliefs about how the world works and task performance.
97. **create_user_story**: Writes concise and clear technical user stories for new features in complex software programs, formatted for all stakeholders.
98. **create_video_chapters**: Extracts interesting topics and timestamps from a transcript, providing concise summaries of key moments.
99. **create_visualization**: Transforms complex ideas into visualizations using intricate ASCII art, simplifying concepts where necessary.
100. **dialog_with_socrates**: Engages in deep, meaningful dialogues to explore and challenge beliefs using the Socratic method.
101. **enrich_blog_post**: Enhances Markdown blog files by applying instructions to improve structure, visuals, and readability for HTML rendering.
102. **explain_code**: Explains code, security tool output, configuration text, and answers questions based on the provided input.
103. **explain_docs**: Improves and restructures tool documentation into clear, concise instructions, including overviews, usage, use cases, and key features.
104. **explain_math**: Helps you understand mathematical concepts in a clear and engaging way.
105. **explain_project**: Summarizes project documentation into clear, concise sections covering the project, problem, solution, installation, usage, and examples.
106. **explain_terms**: Produces a glossary of advanced terms from content, providing a definition, analogy, and explanation of why each term matters.
107. **export_data_as_csv**: Extracts and outputs all data structures from the input in properly formatted CSV data.
108. **extract_algorithm_update_recommendations**: Extracts concise, practical algorithm update recommendations from the input and outputs them in a bulleted list.
109. **extract_article_wisdom**: Extracts surprising, insightful, and interesting information from content, categorizing it into sections like summary, ideas, quotes, facts, references, and recommendations.
110. **extract_book_ideas**: Extracts and outputs 50 to 100 of the most surprising, insightful, and interesting ideas from a book's content.
111. **extract_book_recommendations**: Extracts and outputs 50 to 100 practical, actionable recommendations from a book's content.
112. **extract_business_ideas**: Extracts top business ideas from content and elaborates on the best 10 with unique differentiators.
113. **extract_characters**: Identify all characters (human and non-human), resolve their aliases and pronouns into canonical names, and produce detailed descriptions of each character's role, motivations, and interactions ranked by narrative importance.
114. **extract_controversial_ideas**: Extracts and outputs controversial statements and supporting quotes from the input in a structured Markdown list.
115. **extract_core_message**: Extracts and outputs a clear, concise sentence that articulates the core message of a given text or body of work.
116. **extract_ctf_writeup**: Extracts a short writeup from a warstory-like text about a cyber security engagement.
117. **extract_domains**: Extracts domains and URLs from content to identify sources used for articles, newsletters, and other publications.
118. **extract_extraordinary_claims**: Extracts and outputs a list of extraordinary claims from conversations, focusing on scientifically disputed or false statements.
119. **extract_ideas**: Extracts and outputs all the key ideas from input, presented as 15-word bullet points in Markdown.
120. **extract_insights**: Extracts and outputs the most powerful and insightful ideas from text, formatted as 16-word bullet points in the INSIGHTS section, also IDEAS section.
121. **extract_insights_dm**: Extracts and outputs all valuable insights and a concise summary of the content, including key points and topics discussed.
122. **extract_instructions**: Extracts clear, actionable step-by-step instructions and main objectives from instructional video transcripts, organizing them into a concise list.
123. **extract_jokes**: Extracts jokes from text content, presenting each joke with its punchline in separate bullet points.
124. **extract_latest_video**: Extracts the latest video URL from a YouTube RSS feed and outputs the URL only.
125. **extract_main_activities**: Extracts key events and activities from transcripts or logs, providing a summary of what happened.
126. **extract_main_idea**: Extracts the main idea and key recommendation from the input, summarizing them in 15-word sentences.
127. **extract_most_redeeming_thing**: Extracts the most redeeming aspect from an input, summarizing it in a single 15-word sentence.
128. **extract_patterns**: Extracts and analyzes recurring, surprising, and insightful patterns from input, providing detailed analysis and advice for builders.
129. **extract_poc**: Extracts proof of concept URLs and validation methods from security reports, providing the URL and command to run.
130. **extract_predictions**: Extracts predictions from input, including specific details such as date, confidence level, and verification method.
131. **extract_primary_problem**: Extracts the primary problem with the world as presented in a given text or body of work.
132. **extract_primary_solution**: Extracts the primary solution for the world as presented in a given text or body of work.
133. **extract_product_features**: Extracts and outputs a list of product features from the provided input in a bulleted format.
134. **extract_questions**: Extracts and outputs all questions asked by the interviewer in a conversation or interview.
135. **extract_recipe**: Extracts and outputs a recipe with a short meal description, ingredients with measurements, and preparation steps.
136. **extract_recommendations**: Extracts and outputs concise, practical recommendations from a given piece of content in a bulleted list.
137. **extract_references**: Extracts and outputs a bulleted list of references to art, stories, books, literature, and other sources from content.
138. **extract_skills**: Extracts and classifies skills from a job description into a table, separating each skill and classifying it as either hard or soft.
139. **extract_song_meaning**: Analyzes a song to provide a summary of its meaning, supported by detailed evidence from lyrics, artist commentary, and fan analysis.
140. **extract_sponsors**: Extracts and lists official sponsors and potential sponsors from a provided transcript.
141. **extract_videoid**: Extracts and outputs the video ID from any given URL.
142. **extract_wisdom**: Extracts surprising, insightful, and interesting information from text on topics like human flourishing, AI, learning, and more.
143. **extract_wisdom_agents**: Extracts valuable insights, ideas, quotes, and references from content, emphasizing topics like human flourishing, AI, learning, and technology.
144. **extract_wisdom_dm**: Extracts all valuable, insightful, and thought-provoking information from content, focusing on topics like human flourishing, AI, learning, and technology.
145. **extract_wisdom_nometa**: Extracts insights, ideas, quotes, habits, facts, references, and recommendations from content, focusing on human flourishing, AI, technology, and related topics.
146. **find_female_life_partner**: Analyzes criteria for finding a female life partner and provides clear, direct, and poetic descriptions.
147. **find_hidden_message**: Extracts overt and hidden political messages, justifications, audience actions, and a cynical analysis from content.
148. **find_logical_fallacies**: Identifies and analyzes fallacies in arguments, classifying them as formal or informal with detailed reasoning.
149. **get_wow_per_minute**: Determines the wow-factor of content per minute based on surprise, novelty, insight, value, and wisdom, measuring how rewarding the content is for the viewer.
150. **get_youtube_rss**: Returns the RSS URL for a given YouTube channel based on the channel ID or URL.
151. **heal_person**: Develops a comprehensive plan for spiritual and mental healing based on psychological profiles, providing personalized recommendations for mental health improvement and overall life enhancement.
152. **humanize**: Rewrites AI-generated text to sound natural, conversational, and easy to understand, maintaining clarity and simplicity.
153. **identify_dsrp_distinctions**: Encourages creative, systems-based thinking by exploring distinctions, boundaries, and their implications, drawing on insights from prominent systems thinkers.
154. **identify_dsrp_perspectives**: Explores the concept of distinctions in systems thinking, focusing on how boundaries define ideas, influence understanding, and reveal or obscure insights.
155. **identify_dsrp_relationships**: Encourages exploration of connections, distinctions, and boundaries between ideas, inspired by systems thinkers to reveal new insights and patterns in complex systems.
156. **identify_dsrp_systems**: Encourages organizing ideas into systems of parts and wholes, inspired by systems thinkers to explore relationships and how changes in organization impact meaning and understanding.
157. **identify_job_stories**: Identifies key job stories or requirements for roles.
158. **improve_academic_writing**: Refines text into clear, concise academic language while improving grammar, coherence, and clarity, with a list of changes.
159. **improve_prompt**: Improves an LLM/AI prompt by applying expert prompt writing strategies for better results and clarity.
160. **improve_report_finding**: Improves a penetration test security finding by providing detailed descriptions, risks, recommendations, references, quotes, and a concise summary in markdown format.
161. **improve_writing**: Refines text by correcting grammar, enhancing style, improving clarity, and maintaining the original meaning. skills.
162. **judge_output**: Evaluates Honeycomb queries by judging their effectiveness, providing critiques and outcomes based on language nuances and analytics relevance.
163. **label_and_rate**: Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
164. **md_callout**: Classifies content and generates a markdown callout based on the provided text, selecting the most appropriate type.
165. **official_pattern_template**: Template to use if you want to create new fabric patterns.
166. **prepare_7s_strategy**: Prepares a comprehensive briefing document from 7S's strategy capturing organizational profile, strategic elements, and market dynamics with clear, concise, and organized content.
167. **provide_guidance**: Provides psychological and life coaching advice, including analysis, recommendations, and potential diagnoses, with a compassionate and honest tone.
168. **rate_ai_response**: Rates the quality of AI responses by comparing them to top human expert performance, assigning a letter grade, reasoning, and providing a 1-100 score based on the evaluation.
169. **rate_ai_result**: Assesses the quality of AI/ML/LLM work by deeply analyzing content, instructions, and output, then rates performance based on multiple dimensions, including coverage, creativity, and interdisciplinary thinking.
170. **rate_content**: Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
171. **rate_value**: Produces the best possible output by deeply analyzing and understanding the input and its intended purpose.
172. **raw_query**: Fully digests and contemplates the input to produce the best possible result based on understanding the sender's intent.
173. **recommend_artists**: Recommends a personalized festival schedule with artists aligned to your favorite styles and interests, including rationale.
174. **recommend_pipeline_upgrades**: Optimizes vulnerability-checking pipelines by incorporating new information and improving their efficiency, with detailed explanations of changes.
175. **recommend_talkpanel_topics**: Produces a clean set of proposed talks or panel talking points for a person based on their interests and goals, formatted for submission to a conference organizer.
176. **refine_design_document**: Refines a design document based on a design review by analyzing, mapping concepts, and implementing changes using valid Markdown.
177. **review_design**: Reviews and analyzes architecture design, focusing on clarity, component design, system integrations, security, performance, scalability, and data management.
178. **sanitize_broken_html_to_markdown**: Converts messy HTML into clean, properly formatted Markdown, applying custom styling and ensuring compatibility with Vite.
179. **suggest_pattern**: Suggests appropriate fabric patterns or commands based on user input, providing clear explanations and options for users.
180. **summarize**: Summarizes content into a 20-word sentence, main points, and takeaways, formatted with numbered lists in Markdown.
181. **summarize_board_meeting**: Creates formal meeting notes from board meeting transcripts for corporate governance documentation.
182. **summarize_debate**: Summarizes debates, identifies primary disagreement, extracts arguments, and provides analysis of evidence and argument strength to predict outcomes.
183. **summarize_git_changes**: Summarizes recent project updates from the last 7 days, focusing on key changes with enthusiasm.
184. **summarize_git_diff**: Summarizes and organizes Git diff changes with clear, succinct commit messages and bullet points.
185. **summarize_lecture**: Extracts relevant topics, definitions, and tools from lecture transcripts, providing structured summaries with timestamps and key takeaways.
186. **summarize_legislation**: Summarizes complex political proposals and legislation by analyzing key points, proposed changes, and providing balanced, positive, and cynical characterizations.
187. **summarize_meeting**: Analyzes meeting transcripts to extract a structured summary, including an overview, key points, tasks, decisions, challenges, timeline, references, and next steps.
188. **summarize_micro**: Summarizes content into a 20-word sentence, 3 main points, and 3 takeaways, formatted in clear, concise Markdown.
189. **summarize_newsletter**: Extracts the most meaningful, interesting, and useful content from a newsletter, summarizing key sections such as content, opinions, tools, companies, and follow-up items in clear, structured Markdown.
190. **summarize_paper**: Summarizes an academic paper by detailing its title, authors, technical approach, distinctive features, experimental setup, results, advantages, limitations, and conclusion in a clear, structured format using human-readable Markdown.
191. **summarize_prompt**: Summarizes AI chat prompts by describing the primary function, unique approach, and expected output in a concise paragraph. The summary is focused on the prompt's purpose without unnecessary details or formatting.
192. **summarize_pull-requests**: Summarizes pull requests for a coding project by providing a summary and listing the top PRs with human-readable descriptions.
193. **summarize_rpg_session**: Summarizes a role-playing game session by extracting key events, combat stats, character changes, quotes, and more.
194. **t_analyze_challenge_handling**: Provides 8-16 word bullet points evaluating how well challenges are being addressed, calling out any lack of effort.
195. **t_check_metrics**: Analyzes deep context from the TELOS file and input instruction, then provides a wisdom-based output while considering metrics and KPIs to assess recent improvements.
196. **t_create_h3_career**: Summarizes context and produces wisdom-based output by deeply analyzing both the TELOS File and the input instruction, considering the relationship between the two.
197. **t_create_opening_sentences**: Describes from TELOS file the person's identity, goals, and actions in 4 concise, 32-word bullet points, humbly.
198. **t_describe_life_outlook**: Describes from TELOS file a person's life outlook in 5 concise, 16-word bullet points.
199. **t_extract_intro_sentences**: Summarizes from TELOS file a person's identity, work, and current projects in 5 concise and grounded bullet points.
200. **t_extract_panel_topics**: Creates 5 panel ideas with titles and descriptions based on deep context from a TELOS file and input.
201. **t_find_blindspots**: Identify potential blindspots in thinking, frames, or models that may expose the individual to error or risk.
202. **t_find_negative_thinking**: Analyze a TELOS file and input to identify negative thinking in documents or journals, followed by tough love encouragement.
203. **t_find_neglected_goals**: Analyze a TELOS file and input instructions to identify goals or projects that have not been worked on recently.
204. **t_give_encouragement**: Analyze a TELOS file and input instructions to evaluate progress, provide encouragement, and offer recommendations for continued effort.
205. **t_red_team_thinking**: Analyze a TELOS file and input instructions to red-team thinking, models, and frames, then provide recommendations for improvement.
206. **t_threat_model_plans**: Analyze a TELOS file and input instructions to create threat models for a life plan and recommend improvements.
207. **t_visualize_mission_goals_projects**: Analyze a TELOS file and input instructions to create an ASCII art diagram illustrating the relationship of missions, goals, and projects.
208. **t_year_in_review**: Analyze a TELOS file to create insights about a person or entity, then summarize accomplishments and visualizations in bullet points.
209. **to_flashcards**: Create Anki flashcards from a given text, focusing on concise, optimized questions and answers without external context.
210. **transcribe_minutes**: Extracts (from meeting transcription) meeting minutes, identifying actionables, insightful ideas, decisions, challenges, and next steps in a structured format.
211. **translate**: Translates sentences or documentation into the specified language code while maintaining the original formatting and tone.
212. **tweet**: Provides a step-by-step guide on crafting engaging tweets with emojis, covering Twitter basics, account creation, features, and audience targeting.
213. **write_essay**: Writes essays in the style of a specified author, embodying their unique voice, vocabulary, and approach. Uses `author_name` variable.
214. **write_essay_pg**: Writes concise, clear essays in the style of Paul Graham, focusing on simplicity, clarity, and illumination of the provided topic.
215. **write_hackerone_report**: Generates concise, clear, and reproducible bug bounty reports, detailing vulnerability impact, steps to reproduce, and exploit details for triagers.
216. **write_latex**: Generates syntactically correct LaTeX code for a new.tex document, ensuring proper formatting and compatibility with pdflatex.
217. **write_micro_essay**: Writes concise, clear, and illuminating essays on the given topic in the style of Paul Graham.
218. **write_nuclei_template_rule**: Generates Nuclei YAML templates for detecting vulnerabilities using HTTP requests, matchers, extractors, and dynamic data extraction.
219. **write_pull-request**: Drafts detailed pull request descriptions, explaining changes, providing reasoning, and identifying potential bugs from the git diff command output.
220. **write_semgrep_rule**: Creates accurate and working Semgrep rules based on input, following syntax guidelines and specific language considerations.
221. **youtube_summary**: Create concise, timestamped Youtube video summaries that highlight key points.

View File

@@ -0,0 +1,37 @@
# IDENTITY and PURPOSE
You are an expert psychological analyst AI. Your task is to assess and predict how an individual is likely to respond to a
specific challenge based on their psychological profile and a challenge which will both be provided in a single text stream.
---
# STEPS
. You will be provided with one block of text containing two sections: a psychological profile (under a ***Psychodata*** header) and a description of a challenging situation under the ***Challenge*** header . To reiterate, the two sections will be seperated by the ***Challenge** header which signifies the beginning of the challenge description.
. Carefully review both sections. Extract key traits, tendencies, and psychological markers from the profile. Analyze the nature and demands of the challenge described.
. Carefully and methodically assess how each of the person's psychological traits are likely to interact with the specific demands and overall nature of the challenge
. In case of conflicting trait-challenge interactions, carefully and methodically weigh which of the conflicting traits is more dominant, and would ultimately be the determining factor in shaping the person's reaction. When weighting what trait will "win out", also weight the nuanced affect of the conflict itself, for example, will it inhibit the or paradocixcally increase the reaction's intensity? Will it cause another behaviour to emerge due to tension or a defense mechanism/s?)
. Finally, after iterating through each of the traits and each of the conflicts between opposing traits, consider them as whole (ie. the psychological structure) and refine your prediction in relation to the challenge accordingly
# OUTPUT
. In your response, provide:
- **A brief summary of the individual's psychological profile** (- bullet points).
- **A summary of the challenge or situation** (- sentences).
- **A step-by-step assessment** of how the individual's psychological traits are likely to interact with the specific demands
of the challenge.
- **A prediction** of how the person is likely to respond or behave in this situation, including potential strengths,
vulnerabilities, and likely outcomes.
- **Recommendations** (if appropriate) for strategies that might help the individual achieve a better outcome.
. Base your analysis strictly on the information provided. If important information is missing or ambiguous, note the
limitations in your assessment.
---
# EXAMPLE
USER:
***Psychodata***
The subject is a 27 year old male.
- He has poor impulse control and low level of patience. He lacks the ability to focus and/or commit to sustained challenges requiring effort.
- He is ego driven to the point of narcissim, every criticism is a threat to his self esteem.
- In his wors
***challenge***
While standing in line for the cashier in a grocery store, a rude customer cuts in line in front of the subject.

View File

@@ -0,0 +1,40 @@
# IDENTITY
You are an experienced **yoga instructor and mindful living coach**. Your role is to guide users in a calm, clear, and compassionate manner. You will help them by following the stipulated steps:
# STEPS
- Teach and provide practicing routines for **safe, effective yoga poses** (asana) with step-by-step guidance
- Help user build a **personalized sequences** suited to their experience level, goals, and any physical limitations
- Lead **guided meditations and relaxation exercises** that promote mindfulness and emotional balance
- Offer **holistic lifestyle advice** inspired by yogic principles—covering breathwork (pranayama), nutrition, sleep, posture, and daily wellbeing practices
- Foster an **atmosphere of serenity, self-awareness, and non-judgment** in every response
When responding, adapt your tone to be **soothing, encouraging, and introspective**, like a seasoned yoga teacher who integrates ancient wisdom into modern life.
# OUTPUT
Use the following structure in your replies:
1. **Opening grounding statement** a brief reflection or centering phrase.
2. **Main guidance** offer detailed, safe, and clear instructions or insights relevant to the users query.
3. **Mindful takeaway** close with a short reminder or reflection for continued mindfulness.
If users share specific goals (e.g., flexibility, relaxation, stress relief, back pain), **personalize** poses, sequences, or meditation practices accordingly.
If the user asks about a physical pose:
- Describe alignment carefully
- Explain how to modify for beginners or for safety
- Indicate common mistakes and how to avoid them
If the user asks about meditation or lifestyle:
- Offer simple, applicable techniques
- Encourage consistency and self-compassion
# EXAMPLE
USER: Recommend a gentle yoga sequence for improving focus during stressful workdays.
Expected Output Example:
1. Begin with a short centering breath to quiet the mind.
2. Flow through seated side stretches, cat-cow, mountain pose, and standing forward fold.
3. Conclude with a brief meditation on the breath.
4. Reflect on how each inhale brings focus, and each exhale releases tension.
End every interaction with a phrase like:
> “Breathe in calm, breathe out ease.”

View File

@@ -1,481 +0,0 @@
# IDENTITY AND GOALS
You are an advanced UI builder that shows a visual representation of functionality that's provided to you via the input.
# STEPS
- Think about the goal of the Fabric project, which is discussed below:
FABRIC PROJECT DESCRIPTION
fabriclogo
fabric
Static Badge
GitHub top language GitHub last commit License: MIT
fabric is an open-source framework for augmenting humans using AI.
Introduction Video • What and Why • Philosophy • Quickstart • Structure • Examples • Custom Patterns • Helper Apps • Examples • Meta
Navigation
Introduction Videos
What and Why
Philosophy
Breaking problems into components
Too many prompts
The Fabric approach to prompting
Quickstart
Setting up the fabric commands
Using the fabric client
Just use the Patterns
Create your own Fabric Mill
Structure
Components
CLI-native
Directly calling Patterns
Examples
Custom Patterns
Helper Apps
Meta
Primary contributors
Note
We are adding functionality to the project so often that you should update often as well. That means: git pull; pipx install . --force; fabric --update; source ~/.zshrc (or ~/.bashrc) in the main directory!
March 13, 2024 — We just added pipx install support, which makes it way easier to install Fabric, support for Claude, local models via Ollama, and a number of new Patterns. Be sure to update and check fabric -h for the latest!
Introduction videos
Note
These videos use the ./setup.sh install method, which is now replaced with the easier pipx install . method. Other than that everything else is still the same.
fabric_intro_video
Watch the video
What and why
Since the start of 2023 and GenAI we've seen a massive number of AI applications for accomplishing tasks. It's powerful, but it's not easy to integrate this functionality into our lives.
In other words, AI doesn't have a capabilities problem—it has an integration problem.
Fabric was created to address this by enabling everyone to granularly apply AI to everyday challenges.
Philosophy
AI isn't a thing; it's a magnifier of a thing. And that thing is human creativity.
We believe the purpose of technology is to help humans flourish, so when we talk about AI we start with the human problems we want to solve.
Breaking problems into components
Our approach is to break problems into individual pieces (see below) and then apply AI to them one at a time. See below for some examples.
augmented_challenges
Too many prompts
Prompts are good for this, but the biggest challenge I faced in 2023——which still exists today—is the sheer number of AI prompts out there. We all have prompts that are useful, but it's hard to discover new ones, know if they are good or not, and manage different versions of the ones we like.
One of fabric's primary features is helping people collect and integrate prompts, which we call Patterns, into various parts of their lives.
Fabric has Patterns for all sorts of life and work activities, including:
Extracting the most interesting parts of YouTube videos and podcasts
Writing an essay in your own voice with just an idea as an input
Summarizing opaque academic papers
Creating perfectly matched AI art prompts for a piece of writing
Rating the quality of content to see if you want to read/watch the whole thing
Getting summaries of long, boring content
Explaining code to you
Turning bad documentation into usable documentation
Creating social media posts from any content input
And a million more…
Our approach to prompting
Fabric Patterns are different than most prompts you'll see.
First, we use Markdown to help ensure maximum readability and editability. This not only helps the creator make a good one, but also anyone who wants to deeply understand what it does. Importantly, this also includes the AI you're sending it to!
Here's an example of a Fabric Pattern.
https://github.com/danielmiessler/fabric/blob/main/patterns/extract_wisdom/system.md
pattern-example
Next, we are extremely clear in our instructions, and we use the Markdown structure to emphasize what we want the AI to do, and in what order.
And finally, we tend to use the System section of the prompt almost exclusively. In over a year of being heads-down with this stuff, we've just seen more efficacy from doing that. If that changes, or we're shown data that says otherwise, we will adjust.
Quickstart
The most feature-rich way to use Fabric is to use the fabric client, which can be found under /client directory in this repository.
Setting up the fabric commands
Follow these steps to get all fabric related apps installed and configured.
Navigate to where you want the Fabric project to live on your system in a semi-permanent place on your computer.
# Find a home for Fabric
cd /where/you/keep/code
Clone the project to your computer.
# Clone Fabric to your computer
git clone https://github.com/danielmiessler/fabric.git
Enter Fabric's main directory
# Enter the project folder (where you cloned it)
cd fabric
Install pipx:
macOS:
brew install pipx
Linux:
sudo apt install pipx
Windows:
Use WSL and follow the Linux instructions.
Install fabric
pipx install .
Run setup:
fabric --setup
Restart your shell to reload everything.
Now you are up and running! You can test by running the help.
# Making sure the paths are set up correctly
fabric --help
Note
If you're using the server functions, fabric-api and fabric-webui need to be run in distinct terminal windows.
Using the fabric client
Once you have it all set up, here's how to use it.
Check out the options fabric -h
us the results in
realtime. NOTE: You will not be able to pipe the
output into another command.
--list, -l List available patterns
--clear Clears your persistent model choice so that you can
once again use the --model flag
--update, -u Update patterns. NOTE: This will revert the default
model to gpt4-turbo. please run --changeDefaultModel
to once again set default model
--pattern PATTERN, -p PATTERN
The pattern (prompt) to use
--setup Set up your fabric instance
--changeDefaultModel CHANGEDEFAULTMODEL
Change the default model. For a list of available
models, use the --listmodels flag.
--model MODEL, -m MODEL
Select the model to use. NOTE: Will not work if you
have set a default model. please use --clear to clear
persistence before using this flag
--vendor VENDOR, -V VENDOR
Specify vendor for the selected model (e.g., -V "LM Studio" -m openai/gpt-oss-20b)
--listmodels List all available models
--remoteOllamaServer REMOTEOLLAMASERVER
The URL of the remote ollamaserver to use. ONLY USE
THIS if you are using a local ollama server in an non-
default location or port
--context, -c Use Context file (context.md) to add context to your
pattern
age: fabric [-h] [--text TEXT] [--copy] [--agents {trip_planner,ApiKeys}]
[--output [OUTPUT]] [--stream] [--list] [--clear] [--update]
[--pattern PATTERN] [--setup]
[--changeDefaultModel CHANGEDEFAULTMODEL] [--model MODEL]
[--listmodels] [--remoteOllamaServer REMOTEOLLAMASERVER]
[--context]
An open source framework for augmenting humans using AI.
options:
-h, --help show this help message and exit
--text TEXT, -t TEXT Text to extract summary from
--copy, -C Copy the response to the clipboard
--agents {trip_planner,ApiKeys}, -a {trip_planner,ApiKeys}
Use an AI agent to help you with a task. Acceptable
values are 'trip_planner' or 'ApiKeys'. This option
cannot be used with any other flag.
--output [OUTPUT], -o [OUTPUT]
Save the response to a file
--stream, -s Use this option if you want to see
Example commands
The client, by default, runs Fabric patterns without needing a server (the Patterns were downloaded during setup). This means the client connects directly to OpenAI using the input given and the Fabric pattern used.
Run the summarize Pattern based on input from stdin. In this case, the body of an article.
pbpaste | fabric --pattern summarize
Run the analyze_claims Pattern with the --stream option to get immediate and streaming results.
pbpaste | fabric --stream --pattern analyze_claims
Run the extract_wisdom Pattern with the --stream option to get immediate and streaming results from any YouTube video (much like in the original introduction video).
yt --transcript https://youtube.com/watch?v=uXs-zPc63kM | fabric --stream --pattern extract_wisdom
new All of the patterns have been added as aliases to your bash (or zsh) config file
pbpaste | analyze_claims --stream
Note
More examples coming in the next few days, including a demo video!
Just use the Patterns
fabric-patterns-screenshot
If you're not looking to do anything fancy, and you just want a lot of great prompts, you can navigate to the /patterns directory and start exploring!
We hope that if you used nothing else from Fabric, the Patterns by themselves will make the project useful.
You can use any of the Patterns you see there in any AI application that you have, whether that's ChatGPT or some other app or website. Our plan and prediction is that people will soon be sharing many more than those we've published, and they will be way better than ours.
The wisdom of crowds for the win.
Create your own Fabric Mill
fabric_mill_architecture
But we go beyond just providing Patterns. We provide code for you to build your very own Fabric server and personal AI infrastructure!
Structure
Fabric is themed off of, well… fabric—as in…woven materials. So, think blankets, quilts, patterns, etc. Here's the concept and structure:
Components
The Fabric ecosystem has three primary components, all named within this textile theme.
The Mill is the (optional) server that makes Patterns available.
Patterns are the actual granular AI use cases (prompts).
Stitches are chained together Patterns that create advanced functionality (see below).
Looms are the client-side apps that call a specific Pattern hosted by a Mill.
CLI-native
One of the coolest parts of the project is that it's command-line native!
Each Pattern you see in the /patterns directory can be used in any AI application you use, but you can also set up your own server using the /server code and then call APIs directly!
Once you're set up, you can do things like:
# Take any idea from `stdin` and send it to the `/write_essay` API!
echo "An idea that coding is like speaking with rules." | write_essay
Directly calling Patterns
One key feature of fabric and its Markdown-based format is the ability to _ directly reference_ (and edit) individual patterns directly—on their own—without surrounding code.
As an example, here's how to call the direct location of the extract_wisdom pattern.
https://github.com/danielmiessler/fabric/blob/main/patterns/extract_wisdom/system.md
This means you can cleanly, and directly reference any pattern for use in a web-based AI app, your own code, or wherever!
Even better, you can also have your Mill functionality directly call system and user prompts from fabric, meaning you can have your personal AI ecosystem automatically kept up to date with the latest version of your favorite Patterns.
Here's what that looks like in code:
https://github.com/danielmiessler/fabric/blob/main/server/fabric_api_server.py
# /extwis
@app.route("/extwis", methods=["POST"])
@auth_required # Require authentication
def extwis():
data = request.get_json()
# Warn if there's no input
if "input" not in data:
return jsonify({"error": "Missing input parameter"}), 400
# Get data from client
input_data = data["input"]
# Set the system and user URLs
system_url = "https://raw.githubusercontent.com/danielmiessler/fabric/main/patterns/extract_wisdom/system.md"
user_url = "https://raw.githubusercontent.com/danielmiessler/fabric/main/patterns/extract_wisdom/user.md"
# Fetch the prompt content
system_content = fetch_content_from_url(system_url)
user_file_content = fetch_content_from_url(user_url)
# Build the API call
system_message = {"role": "system", "content": system_content}
user_message = {"role": "user", "content": user_file_content + "\n" + input_data}
messages = [system_message, user_message]
try:
response = openai.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
temperature=0.0,
top_p=1,
frequency_penalty=0.1,
presence_penalty=0.1,
)
assistant_message = response.choices[0].message.content
return jsonify({"response": assistant_message})
except Exception as e:
return jsonify({"error": str(e)}), 500
Examples
Here's an abridged output example from the extract_wisdom pattern (limited to only 10 items per section).
# Paste in the transcript of a YouTube video of Riva Tez on David Perrel's podcast
pbpaste | extract_wisdom
## SUMMARY:
The content features a conversation between two individuals discussing various topics, including the decline of Western culture, the importance of beauty and subtlety in life, the impact of technology and AI, the resonance of Rilke's poetry, the value of deep reading and revisiting texts, the captivating nature of Ayn Rand's writing, the role of philosophy in understanding the world, and the influence of drugs on society. They also touch upon creativity, attention spans, and the importance of introspection.
## IDEAS:
1. Western culture is perceived to be declining due to a loss of values and an embrace of mediocrity.
2. Mass media and technology have contributed to shorter attention spans and a need for constant stimulation.
3. Rilke's poetry resonates due to its focus on beauty and ecstasy in everyday objects.
4. Subtlety is often overlooked in modern society due to sensory overload.
5. The role of technology in shaping music and performance art is significant.
6. Reading habits have shifted from deep, repetitive reading to consuming large quantities of new material.
7. Revisiting influential books as one ages can lead to new insights based on accumulated wisdom and experiences.
8. Fiction can vividly illustrate philosophical concepts through characters and narratives.
9. Many influential thinkers have backgrounds in philosophy, highlighting its importance in shaping reasoning skills.
10. Philosophy is seen as a bridge between theology and science, asking questions that both fields seek to answer.
## QUOTES:
1. "You can't necessarily think yourself into the answers. You have to create space for the answers to come to you."
2. "The West is dying and we are killing her."
3. "The American Dream has been replaced by mass packaged mediocrity porn, encouraging us to revel like happy pigs in our own meekness."
4. "There's just not that many people who have the courage to reach beyond consensus and go explore new ideas."
5. "I'll start watching Netflix when I've read the whole of human history."
6. "Rilke saw beauty in everything... He sees it's in one little thing, a representation of all things that are beautiful."
7. "Vanilla is a very subtle flavor... it speaks to sort of the sensory overload of the modern age."
8. "When you memorize chapters [of the Bible], it takes a few months, but you really understand how things are structured."
9. "As you get older, if there's books that moved you when you were younger, it's worth going back and rereading them."
10. "She [Ayn Rand] took complicated philosophy and embodied it in a way that anybody could resonate with."
## HABITS:
1. Avoiding mainstream media consumption for deeper engagement with historical texts and personal research.
2. Regularly revisiting influential books from youth to gain new insights with age.
3. Engaging in deep reading practices rather than skimming or speed-reading material.
4. Memorizing entire chapters or passages from significant texts for better understanding.
5. Disengaging from social media and fast-paced news cycles for more focused thought processes.
6. Walking long distances as a form of meditation and reflection.
7. Creating space for thoughts to solidify through introspection and stillness.
8. Embracing emotions such as grief or anger fully rather than suppressing them.
9. Seeking out varied experiences across different careers and lifestyles.
10. Prioritizing curiosity-driven research without specific goals or constraints.
## FACTS:
1. The West is perceived as declining due to cultural shifts away from traditional values.
2. Attention spans have shortened due to technological advancements and media consumption habits.
3. Rilke's poetry emphasizes finding beauty in everyday objects through detailed observation.
4. Modern society often overlooks subtlety due to sensory overload from various stimuli.
5. Reading habits have evolved from deep engagement with texts to consuming large quantities quickly.
6. Revisiting influential books can lead to new insights based on accumulated life experiences.
7. Fiction can effectively illustrate philosophical concepts through character development and narrative arcs.
8. Philosophy plays a significant role in shaping reasoning skills and understanding complex ideas.
9. Creativity may be stifled by cultural nihilism and protectionist attitudes within society.
10. Short-term thinking undermines efforts to create lasting works of beauty or significance.
## REFERENCES:
1. Rainer Maria Rilke's poetry
2. Netflix
3. Underworld concert
4. Katy Perry's theatrical performances
5. Taylor Swift's performances
6. Bible study
7. Atlas Shrugged by Ayn Rand
8. Robert Pirsig's writings
9. Bertrand Russell's definition of philosophy
10. Nietzsche's walks
Custom Patterns
You can also use Custom Patterns with Fabric, meaning Patterns you keep locally and don't upload to Fabric.
One possible place to store them is ~/.config/custom-fabric-patterns.
Then when you want to use them, simply copy them into ~/.config/fabric/patterns.
cp -a ~/.config/custom-fabric-patterns/* ~/.config/fabric/patterns/`
Now you can run them with:
pbpaste | fabric -p your_custom_pattern
Helper Apps
These are helper tools to work with Fabric. Examples include things like getting transcripts from media files, getting metadata about media, etc.
yt (YouTube)
yt is a command that uses the YouTube API to pull transcripts, pull user comments, get video duration, and other functions. It's primary function is to get a transcript from a video that can then be stitched (piped) into other Fabric Patterns.
usage: yt [-h] [--duration] [--transcript] [url]
vm (video meta) extracts metadata about a video, such as the transcript and the video's duration. By Daniel Miessler.
positional arguments:
url YouTube video URL
options:
-h, --help Show this help message and exit
--duration Output only the duration
--transcript Output only the transcript
--comments Output only the user comments
ts (Audio transcriptions)
'ts' is a command that uses the OpenApi Whisper API to transcribe audio files. Due to the context window, this tool uses pydub to split the files into 10 minute segments. for more information on pydub, please refer https://github.com/jiaaro/pydub
Installation
mac:
brew install ffmpeg
linux:
apt install ffmpeg
windows:
download instructions https://www.ffmpeg.org/download.html
ts -h
usage: ts [-h] audio_file
Transcribe an audio file.
positional arguments:
audio_file The path to the audio file to be transcribed.
options:
-h, --help show this help message and exit
Save
save is a "tee-like" utility to pipeline saving of content, while keeping the output stream intact. Can optionally generate "frontmatter" for PKM utilities like Obsidian via the "FABRIC_FRONTMATTER" environment variable
If you'd like to default variables, set them in ~/.config/fabric/.env. FABRIC_OUTPUT_PATH needs to be set so save where to write. FABRIC_FRONTMATTER_TAGS is optional, but useful for tracking how tags have entered your PKM, if that's important to you.
usage
usage: save [-h] [-t, TAG] [-n] [-s] [stub]
save: a "tee-like" utility to pipeline saving of content, while keeping the output stream intact. Can optionally generate "frontmatter" for PKM utilities like Obsidian via the
"FABRIC_FRONTMATTER" environment variable
positional arguments:
stub stub to describe your content. Use quotes if you have spaces. Resulting format is YYYY-MM-DD-stub.md by default
options:
-h, --help show this help message and exit
-t, TAG, --tag TAG add an additional frontmatter tag. Use this argument multiple timesfor multiple tags
-n, --nofabric don't use the fabric tags, only use tags from --tag
-s, --silent don't use STDOUT for output, only save to the file
Example
echo test | save --tag extra-tag stub-for-name
test
$ cat ~/obsidian/Fabric/2024-03-02-stub-for-name.md
---
generation_date: 2024-03-02 10:43
tags: fabric-extraction stub-for-name extra-tag
---
test
END FABRIC PROJECT DESCRIPTION
- Take the Fabric patterns given to you as input and think about how to create a Markmap visualization of everything you can do with Fabric.
Examples: Analyzing videos, summarizing articles, writing essays, etc.
- The visual should be broken down by the type of actions that can be taken, such as summarization, analysis, etc., and the actual patterns should branch from there.
# OUTPUT
- Output comprehensive Markmap code for displaying this functionality map as described above.
- NOTE: This is Markmap, NOT Markdown.
- Output the Markmap code and nothing else.

View File

@@ -1,36 +0,0 @@
# IDENTITY
You are an AI assistant designed to provide detailed, step-by-step responses. Your outputs should follow this structure:
# STEPS
1. Begin with a <thinking> section.
2. Inside the thinking section:
- a. Briefly analyze the question and outline your approach.
- b. Present a clear plan of steps to solve the problem.
- c. Use a "Chain of Thought" reasoning process if necessary, breaking down your thought process into numbered steps.
3. Include a <reflection> section for each idea where you:
- a. Review your reasoning.
- b. Check for potential errors or oversights.
- c. Confirm or adjust your conclusion if necessary.
- Be sure to close all reflection sections.
- Close the thinking section with </thinking>.
- Provide your final answer in an <output> section.
Always use these tags in your responses. Be thorough in your explanations, showing each step of your reasoning process.
Aim to be precise and logical in your approach, and don't hesitate to break down complex problems into simpler components.
Your tone should be analytical and slightly formal, focusing on clear communication of your thought process.
Remember: Both <thinking> and <reflection> MUST be tags and must be closed at their conclusion.
Make sure all <tags> are on separate lines with no other text.
# INPUT
INPUT:

View File

@@ -71,31 +71,31 @@ Match the request to one or more of these primary categories:
## Common Request Types and Best Patterns
**AI**: ai, create_art_prompt, create_pattern, extract_mcp_servers, extract_wisdom_agents, generate_code_rules, improve_prompt, judge_output, rate_ai_response, rate_ai_result, raw_query, solve_with_cot, suggest_pattern, summarize_prompt
**AI**: ai, create_ai_jobs_analysis, create_art_prompt, create_pattern, create_prediction_block, extract_mcp_servers, extract_wisdom_agents, generate_code_rules, improve_prompt, judge_output, rate_ai_response, rate_ai_result, raw_query, suggest_pattern, summarize_prompt
**ANALYSIS**: ai, analyze_answers, analyze_bill, analyze_bill_short, analyze_candidates, analyze_cfp_submission, analyze_claims, analyze_comments, analyze_debate, analyze_email_headers, analyze_incident, analyze_interviewer_techniques, analyze_logs, analyze_malware, analyze_military_strategy, analyze_mistakes, analyze_paper, analyze_paper_simple, analyze_patent, analyze_personality, analyze_presentation, analyze_product_feedback, analyze_proposition, analyze_prose, analyze_prose_json, analyze_prose_pinker, analyze_risk, analyze_sales_call, analyze_spiritual_text, analyze_tech_impact, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, apply_ul_tags, check_agreement, compare_and_contrast, create_ai_jobs_analysis, create_idea_compass, create_investigation_visualization, create_prediction_block, create_recursive_outline, create_tags, dialog_with_socrates, extract_main_idea, extract_predictions, find_hidden_message, find_logical_fallacies, get_wow_per_minute, identify_dsrp_distinctions, identify_dsrp_perspectives, identify_dsrp_relationships, identify_dsrp_systems, identify_job_stories, label_and_rate, prepare_7s_strategy, provide_guidance, rate_content, rate_value, recommend_artists, recommend_talkpanel_topics, review_design, summarize_board_meeting, t_analyze_challenge_handling, t_check_dunning_kruger, t_check_metrics, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_find_blindspots, t_find_negative_thinking, t_red_team_thinking, t_threat_model_plans, t_year_in_review, write_hackerone_report
**ANALYSIS**: ai, analyze_answers, analyze_bill, analyze_bill_short, analyze_candidates, analyze_cfp_submission, analyze_claims, analyze_comments, analyze_debate, analyze_email_headers, analyze_incident, analyze_interviewer_techniques, analyze_logs, analyze_malware, analyze_military_strategy, analyze_mistakes, analyze_paper, analyze_paper_simple, analyze_patent, analyze_personality, analyze_presentation, analyze_product_feedback, analyze_proposition, analyze_prose, analyze_prose_json, analyze_prose_pinker, analyze_risk, analyze_sales_call, analyze_spiritual_text, analyze_tech_impact, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, apply_ul_tags, check_agreement, compare_and_contrast, create_ai_jobs_analysis, create_idea_compass, create_investigation_visualization, create_prediction_block, create_recursive_outline, create_story_about_people_interaction, create_tags, dialog_with_socrates, extract_main_idea, extract_predictions, find_hidden_message, find_logical_fallacies, get_wow_per_minute, identify_dsrp_distinctions, identify_dsrp_perspectives, identify_dsrp_relationships, identify_dsrp_systems, identify_job_stories, label_and_rate, model_as_sherlock_freud, predict_person_actions, prepare_7s_strategy, provide_guidance, rate_content, rate_value, recommend_artists, recommend_talkpanel_topics, review_design, summarize_board_meeting, t_analyze_challenge_handling, t_check_dunning_kruger, t_check_metrics, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_find_blindspots, t_find_negative_thinking, t_red_team_thinking, t_threat_model_plans, t_year_in_review, write_hackerone_report
**BILL**: analyze_bill, analyze_bill_short
**BUSINESS**: check_agreement, create_ai_jobs_analysis, create_formal_email, create_hormozi_offer, create_loe_document, create_logo, create_newsletter_entry, create_prd, explain_project, extract_business_ideas, extract_product_features, extract_skills, extract_sponsors, identify_job_stories, prepare_7s_strategy, rate_value, t_check_metrics, t_create_h3_career, t_visualize_mission_goals_projects, t_year_in_review, transcribe_minutes
**BUSINESS**: check_agreement, create_ai_jobs_analysis, create_formal_email, create_hormozi_offer, create_loe_document, create_logo, create_newsletter_entry, create_prd, explain_project, extract_business_ideas, extract_characters, extract_product_features, extract_skills, extract_sponsors, identify_job_stories, prepare_7s_strategy, rate_value, t_check_metrics, t_create_h3_career, t_visualize_mission_goals_projects, t_year_in_review, transcribe_minutes
**CLASSIFICATION**: apply_ul_tags
**CONVERSION**: clean_text, convert_to_markdown, create_graph_from_input, export_data_as_csv, extract_videoid, get_youtube_rss, humanize, md_callout, sanitize_broken_html_to_markdown, to_flashcards, transcribe_minutes, translate, tweet, write_latex
**CR THINKING**: capture_thinkers_work, create_idea_compass, create_markmap_visualization, dialog_with_socrates, extract_alpha, extract_controversial_ideas, extract_extraordinary_claims, extract_predictions, extract_primary_problem, extract_wisdom_nometa, find_hidden_message, find_logical_fallacies, solve_with_cot, summarize_debate, t_analyze_challenge_handling, t_check_dunning_kruger, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking
**CR THINKING**: capture_thinkers_work, create_idea_compass, create_markmap_visualization, dialog_with_socrates, extract_alpha, extract_controversial_ideas, extract_extraordinary_claims, extract_predictions, extract_primary_problem, extract_wisdom_nometa, find_hidden_message, find_logical_fallacies, summarize_debate, t_analyze_challenge_handling, t_check_dunning_kruger, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking
**CREATIVITY**: create_mnemonic_phrases, write_essay
**DEVELOPMENT**: agility_story, analyze_prose_json, answer_interview_question, ask_secure_by_design_questions, ask_uncle_duke, coding_master, create_coding_feature, create_coding_project, create_command, create_design_document, create_git_diff_commit, create_mermaid_visualization, create_mermaid_visualization_for_github, create_pattern, create_sigma_rules, create_user_story, explain_code, explain_docs, export_data_as_csv, extract_algorithm_update_recommendations, extract_mcp_servers, extract_poc, generate_code_rules, get_youtube_rss, improve_prompt, official_pattern_template, recommend_pipeline_upgrades, refine_design_document, review_code, review_design, sanitize_broken_html_to_markdown, show_fabric_options_markmap, suggest_pattern, summarize_git_changes, summarize_git_diff, summarize_pull-requests, write_nuclei_template_rule, write_pull-request, write_semgrep_rule
**DEVELOPMENT**: agility_story, analyze_logs, analyze_prose_json, answer_interview_question, ask_secure_by_design_questions, ask_uncle_duke, coding_master, create_coding_feature, create_coding_project, create_command, create_design_document, create_git_diff_commit, create_loe_document, create_mermaid_visualization, create_mermaid_visualization_for_github, create_pattern, create_prd, create_sigma_rules, create_user_story, explain_code, explain_docs, explain_project, export_data_as_csv, extract_algorithm_update_recommendations, extract_mcp_servers, extract_poc, extract_product_features, generate_code_rules, get_youtube_rss, identify_job_stories, improve_prompt, official_pattern_template, recommend_pipeline_upgrades, refine_design_document, review_code, review_design, sanitize_broken_html_to_markdown, suggest_pattern, summarize_git_changes, summarize_git_diff, summarize_pull-requests, write_nuclei_template_rule, write_pull-request, write_semgrep_rule
**DEVOPS**: analyze_terraform_plan
**EXTRACT**: analyze_comments, create_aphorisms, create_tags, create_video_chapters, extract_algorithm_update_recommendations, extract_alpha, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_business_ideas, extract_controversial_ideas, extract_core_message, extract_ctf_writeup, extract_domains, extract_extraordinary_claims, extract_ideas, extract_insights, extract_insights_dm, extract_instructions, extract_jokes, extract_latest_video, extract_main_activities, extract_main_idea, extract_mcp_servers, extract_most_redeeming_thing, extract_patterns, extract_poc, extract_predictions, extract_primary_problem, extract_primary_solution, extract_product_features, extract_questions, extract_recipe, extract_recommendations, extract_references, extract_skills, extract_song_meaning, extract_sponsors, extract_videoid, extract_wisdom, extract_wisdom_agents, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short, generate_code_rules, t_extract_intro_sentences, t_extract_panel_topics
**EXTRACT**: analyze_comments, create_aphorisms, create_tags, create_video_chapters, extract_algorithm_update_recommendations, extract_alpha, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_business_ideas, extract_characters, extract_controversial_ideas, extract_core_message, extract_ctf_writeup, extract_domains, extract_extraordinary_claims, extract_ideas, extract_insights, extract_insights_dm, extract_instructions, extract_jokes, extract_latest_video, extract_main_activities, extract_main_idea, extract_mcp_servers, extract_most_redeeming_thing, extract_patterns, extract_poc, extract_predictions, extract_primary_problem, extract_primary_solution, extract_product_features, extract_questions, extract_recipe, extract_recommendations, extract_references, extract_skills, extract_song_meaning, extract_sponsors, extract_videoid, extract_wisdom, extract_wisdom_agents, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short, generate_code_rules, t_extract_intro_sentences, t_extract_panel_topics
**GAMING**: create_npc, create_rpg_summary, summarize_rpg_session
**LEARNING**: analyze_answers, ask_uncle_duke, coding_master, create_diy, create_flash_cards, create_quiz, create_reading_plan, create_story_explanation, dialog_with_socrates, explain_code, explain_docs, explain_math, explain_project, explain_terms, extract_references, improve_academic_writing, provide_guidance, solve_with_cot, summarize_lecture, summarize_paper, to_flashcards, write_essay_pg
**LEARNING**: analyze_answers, ask_uncle_duke, coding_master, create_diy, create_flash_cards, create_quiz, create_reading_plan, create_story_explanation, dialog_with_socrates, explain_code, explain_docs, explain_math, explain_project, explain_terms, extract_references, improve_academic_writing, provide_guidance, summarize_lecture, summarize_paper, to_flashcards, write_essay_pg
**OTHER**: extract_jokes
@@ -105,17 +105,19 @@ Match the request to one or more of these primary categories:
**SECURITY**: analyze_email_headers, analyze_incident, analyze_logs, analyze_malware, analyze_risk, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, ask_secure_by_design_questions, create_command, create_cyber_summary, create_graph_from_input, create_investigation_visualization, create_network_threat_landscape, create_report_finding, create_security_update, create_sigma_rules, create_stride_threat_model, create_threat_scenarios, create_ttrc_graph, create_ttrc_narrative, extract_ctf_writeup, improve_report_finding, recommend_pipeline_upgrades, review_code, t_red_team_thinking, t_threat_model_plans, write_hackerone_report, write_nuclei_template_rule, write_semgrep_rule
**SELF**: create_better_frame, create_diy, create_reading_plan, dialog_with_socrates, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_insights, extract_insights_dm, extract_most_redeeming_thing, extract_recipe, extract_recommendations, extract_song_meaning, extract_wisdom, extract_wisdom_dm, extract_wisdom_short, find_female_life_partner, provide_guidance, t_check_dunning_kruger, t_create_h3_career, t_describe_life_outlook, t_find_neglected_goals, t_give_encouragement
**SELF**: analyze_mistakes, analyze_personality, analyze_spiritual_text, create_better_frame, create_diy, create_reading_plan, create_story_about_person, dialog_with_socrates, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_insights, extract_insights_dm, extract_most_redeeming_thing, extract_recipe, extract_recommendations, extract_song_meaning, extract_wisdom, extract_wisdom_dm, extract_wisdom_short, find_female_life_partner, heal_person, model_as_sherlock_freud, predict_person_actions, provide_guidance, recommend_artists, recommend_yoga_practice, t_check_dunning_kruger, t_create_h3_career, t_describe_life_outlook, t_find_neglected_goals, t_give_encouragement
**STRATEGY**: analyze_military_strategy, create_better_frame, prepare_7s_strategy, t_analyze_challenge_handling, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking, t_threat_model_plans, t_visualize_mission_goals_projects
**SUMMARIZE**: capture_thinkers_work, create_5_sentence_summary, create_micro_summary, create_newsletter_entry, create_show_intro, create_summary, extract_core_message, extract_latest_video, extract_main_idea, summarize, summarize_board_meeting, summarize_debate, summarize_git_changes, summarize_git_diff, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_pull-requests, summarize_rpg_session, youtube_summary
**VISUALIZE**: create_excalidraw_visualization, create_graph_from_input, create_idea_compass, create_investigation_visualization, create_keynote, create_logo, create_markmap_visualization, create_mermaid_visualization, create_mermaid_visualization_for_github, create_video_chapters, create_visualization, enrich_blog_post, show_fabric_options_markmap, t_visualize_mission_goals_projects
**VISUALIZE**: create_excalidraw_visualization, create_graph_from_input, create_idea_compass, create_investigation_visualization, create_keynote, create_logo, create_markmap_visualization, create_mermaid_visualization, create_mermaid_visualization_for_github, create_video_chapters, create_visualization, enrich_blog_post, t_visualize_mission_goals_projects
**WISDOM**: extract_alpha, extract_article_wisdom, extract_book_ideas, extract_insights, extract_most_redeeming_thing, extract_recommendations, extract_wisdom, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short
**WRITING**: analyze_prose_json, analyze_prose_pinker, apply_ul_tags, clean_text, compare_and_contrast, convert_to_markdown, create_5_sentence_summary, create_academic_paper, create_aphorisms, create_better_frame, create_design_document, create_diy, create_formal_email, create_hormozi_offer, create_keynote, create_micro_summary, create_newsletter_entry, create_prediction_block, create_prd, create_show_intro, create_story_explanation, create_summary, create_tags, create_user_story, enrich_blog_post, explain_docs, explain_terms, humanize, improve_academic_writing, improve_writing, label_and_rate, md_callout, official_pattern_template, recommend_talkpanel_topics, refine_design_document, summarize, summarize_debate, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_rpg_session, t_create_opening_sentences, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_give_encouragement, t_year_in_review, transcribe_minutes, tweet, write_essay, write_essay_pg, write_hackerone_report, write_latex, write_micro_essay, write_pull-request
**WELLNESS**: analyze_spiritual_text, create_better_frame, extract_wisdom_dm, heal_person, model_as_sherlock_freud, predict_person_actions, provide_guidance, recommend_yoga_practice, t_give_encouragement
**WRITING**: analyze_prose_json, analyze_prose_pinker, apply_ul_tags, clean_text, compare_and_contrast, convert_to_markdown, create_5_sentence_summary, create_academic_paper, create_aphorisms, create_better_frame, create_design_document, create_diy, create_formal_email, create_hormozi_offer, create_keynote, create_micro_summary, create_newsletter_entry, create_prediction_block, create_prd, create_show_intro, create_story_about_people_interaction, create_story_explanation, create_summary, create_tags, create_user_story, enrich_blog_post, explain_docs, explain_terms, fix_typos, humanize, improve_academic_writing, improve_writing, label_and_rate, md_callout, official_pattern_template, recommend_talkpanel_topics, refine_design_document, summarize, summarize_debate, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_rpg_session, t_create_opening_sentences, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_give_encouragement, t_year_in_review, transcribe_minutes, tweet, write_essay, write_essay_pg, write_hackerone_report, write_latex, write_micro_essay, write_pull-request
## Workflow Suggestions

View File

@@ -78,10 +78,6 @@ Assess AI outputs against criteria, providing scores and feedback.
Process direct queries by interpreting intent.
### solve_with_cot
Solve problems using chain-of-thought reasoning.
### suggest_pattern
Recommend Fabric patterns based on user requirements.
@@ -208,6 +204,10 @@ Identify automation risks and career resilience strategies.
Develop positive mental frameworks for challenging situations.
### create_story_about_people_interaction
Analyze two personas, compare their dynamics, and craft a realistic, character-driven story from those insights.
### create_idea_compass
Organize thoughts analyzing definitions, evidence, relationships, implications.
@@ -296,6 +296,14 @@ Extract/analyze user job stories to understand motivations.
Categorize/evaluate content by assigning labels and ratings.
### model_as_sherlock_freud
Builds psychological models using detective reasoning and psychoanalytic insight.
### predict_person_actions
Predicts behavioral responses based on psychological profiles and challenges
### prepare_7s_strategy
Apply McKinsey 7S framework to analyze organizational alignment.
@@ -394,6 +402,10 @@ Extract novel ideas from books to inspire new projects.
Extract/prioritize practical advice from books.
### extract_characters
Identify all characters (human and non-human), resolve their aliases and pronouns into canonical names, and produce detailed descriptions of each character's role, motivations, and interactions ranked by narrative importance.
### extract_controversial_ideas
Analyze contentious viewpoints while maintaining objective analysis.
@@ -574,6 +586,10 @@ Write concise newsletter content focusing on key insights.
Craft compelling podcast/show intros to engage audience.
### create_story_about_people_interaction
Analyze two personas, compare their dynamics, and craft a realistic, character-driven story from those insights.
### create_story_explanation
Transform complex concepts into clear, engaging narratives.
@@ -590,6 +606,10 @@ Transform technical docs into clearer explanations with examples.
Create glossaries of advanced terms with definitions and analogies.
### fix_typos
Proofreads and corrects typos, spelling, grammar, and punctuation errors.
### humanize
Transform technical content into approachable language.
@@ -904,10 +924,6 @@ Create Mermaid diagrams to visualize workflows in documentation.
Transform concepts to ASCII art with explanations of relationships.
### show_fabric_options_markmap
Visualize Fabric capabilities using Markmap syntax.
### t_visualize_mission_goals_projects
Visualize missions and goals to clarify relationships.
@@ -942,6 +958,10 @@ Identify neglected goals to surface opportunities.
## PERSONAL DEVELOPMENT PATTERNS
### create_story_about_person
Infer everyday challenges and realistic coping strategies from a psychological profile and craft an empathetic 500700-word story consistent with the character.
### extract_recipe
Extract/format recipes into instructions with ingredients and steps.
@@ -950,6 +970,10 @@ Extract/format recipes into instructions with ingredients and steps.
Clarify and summarize partner criteria in direct language.
### heal_person
Analyze a psychological profile, pinpoint issues and strengths, and deliver compassionate, structured strategies for spiritual, mental, and life improvement.
## CREATIVITY PATTERNS
### create_mnemonic_phrases
@@ -971,3 +995,9 @@ Summarize RPG sessions capturing events, combat, and narrative.
### extract_jokes
Extract/categorize jokes, puns, and witty remarks.
## WELLNESS PATTERNS
### recommend_yoga_practice
Provides personalized yoga sequences, meditation guidance, and holistic lifestyle advice based on individual profiles.

View File

@@ -8,12 +8,13 @@ Thanks for contributing to Fabric! Here's what you need to know to get started q
- Go 1.24+ installed
- Git configured with your details
- GitHub CLI (`gh`)
### Getting Started
```bash
# Clone and setup
git clone https://github.com/danielmiessler/fabric.git
# Clone your fork (upstream is set automatically)
gh repo clone YOUR_GITHUB_USER/fabric
cd fabric
go build -o fabric ./cmd/fabric
./fabric --setup
@@ -52,12 +53,10 @@ docs: update installation instructions
### Changelog Generation (REQUIRED)
Before submitting your PR, generate a changelog entry:
After opening your PR, generate a changelog entry:
```bash
cd cmd/generate_changelog
go build -o generate_changelog .
./generate_changelog --incoming-pr YOUR_PR_NUMBER
go run ./cmd/generate_changelog --ai-summarize --incoming-pr YOUR_PR_NUMBER
```
**Requirements:**

View File

@@ -0,0 +1,298 @@
# Go & Package Updates - September 2025
**Generated**: September 14, 2025
**Status**: ✅ **COMPLETED**
This document consolidates all Go version and package dependency updates performed on the Fabric project in September 2025.
## Executive Summary
-**Go Version**: Upgraded from 1.24 to 1.25.1
-**Critical AI SDKs**: Updated Anthropic, AWS Bedrock, Azure components
-**Package Updates**: 9 major packages updated across 106 available updates
-**Build & Tests**: All tests pass, no breaking changes detected
- 📊 **Total Dependencies**: 214 packages (30 direct, 184 indirect)
---
## 1. Go Language Upgrade: 1.24 → 1.25.1
### Key Features & Improvements
#### 🚀 **Performance Enhancements**
- **Container-Aware GOMAXPROCS**: Automatically adjusts processor count based on container CPU limits
- **Experimental Green Tea GC**: 10-40% reduction in garbage collection overhead (enable with `GOEXPERIMENT=greenteagc`)
- **Compiler Optimizations**: Faster slice allocation, improved stack allocation, DWARF5 debug info
#### 📦 **New Standard Library Features**
- **`testing/synctest`**: Testing concurrent code with deterministic behavior
- **Experimental `encoding/json/v2`**: Better performance and API design
- **Enhanced Crypto/Security**: Stricter TLS implementation, improved certificate validation
#### 🔧 **Development Tools**
- **Trace Flight Recorder**: Lightweight runtime execution trace capture
- **Improved Debugging**: DWARF5 debug information for smaller binaries and faster builds
### Platform Requirements & Breaking Changes
⚠️ **Important Changes**:
- **macOS**: Now requires macOS 12 Monterey or later (was macOS 11 Big Sur)
- **TLS/Crypto**: Stricter implementations may affect non-compliant servers
- **Generic Type Aliases**: Now fully supported (graduated from experimental)
### Implementation Results
**Successfully Completed**:
- `go.mod`: Updated to `go 1.25.1` with `toolchain go1.25.1`
- `flake.nix`: Updated to use `go_latest` (resolves Nix version lag issue)
- `scripts/docker/Dockerfile`: Updated base image to `golang:1.25-alpine`
- All tests pass and build verified
**Nix Configuration Resolution**: Fixed nixpkgs version lag by using `go_latest` instead of the unavailable `go_1_25`.
---
## 2. Critical Package Updates
### 🤖 AI/ML Service SDKs
#### **Anthropic Claude SDK: v1.9.1 → v1.12.0**
**Major Changes & Features**:
- **v1.12.0** (2025-09-10): Added `web_fetch_20250910` tool support
- **v1.11.0** (2025-09-05): Documents support in tool results, fixed nested document content params
- **v1.10.0** (2025-09-02):
- 1-hour TTL Cache Control generally available
- `code-execution-2025-08-26` tool support
- Custom decoder for `[]ContentBlockParamUnion`
**Impact**: Enhanced tool capabilities for web fetching, document handling, and code execution. No breaking changes detected.
**Documentation**: [Anthropic SDK Go Changelog](https://github.com/anthropics/anthropic-sdk-go/blob/main/CHANGELOG.md)
#### **AWS SDK v2 - Bedrock: v1.34.1 → v1.46.1** (12 version jump!)
**Major Changes & Features**:
- **v1.46.0** (2025-09-08): User-agent business metrics for env-based bearer tokens
- **v1.44.0** (2025-08-11): Per-service options configuration, automated reasoning policy components
- **v1.42.0** (2025-08-05): **Automated Reasoning checks for Amazon Bedrock Guardrails** (major feature)
- **v1.39.0** (2025-07-16.2): Custom model inference through `CustomModelDeployment` APIs
- **v1.38.0** (2025-06-30): API Keys, Re-Ranker, implicit filter for RAG/KB evaluation
**⚠️ Important Updates**:
- New Guardrails APIs for policy building, refinement, version management
- Custom model deployment capabilities
- Enhanced evaluation features
**Documentation**: [AWS Bedrock Changelog](https://github.com/aws/aws-sdk-go-v2/blob/main/service/bedrock/CHANGELOG.md)
#### **AWS Bedrock Runtime: v1.30.0 → v1.40.1** (10 version jump!)
**Key Features**: Enhanced runtime capabilities, improved streaming, converse API support
#### **AWS Core SDK: v1.36.4 → v1.39.0**
**Updates**: Core infrastructure improvements, better auth handling, updated dependencies
### 🔐 Authentication & Cloud SDKs
#### **Azure Core SDK: v1.17.0 → v1.19.1**
**Major Changes**:
- **v1.19.1** (2025-09-11): Fixed resource identifier parsing for provider-specific hierarchies
- **v1.19.0** (2025-08-21): Added `runtime.APIVersionLocationPath` for path-based API versioning
- **v1.18.0** (2025-04-03): Added `AccessToken.RefreshOn` for better token refresh handling
**Documentation**: [Azure Core Changelog](https://github.com/Azure/azure-sdk-for-go/blob/main/sdk/azcore/CHANGELOG.md)
#### **Azure Identity SDK: v1.7.0 → v1.11.0**
**Major Changes**:
- **v1.11.0** (2025-08-05): `DefaultAzureCredential` improved error handling for dev tool credentials
- **v1.10.0** (2025-05-14): Environment variable `AZURE_TOKEN_CREDENTIALS` support for credential selection
- **v1.9.0** (2025-04-08): `GetToken()` sets `AccessToken.RefreshOn`
**⚠️ Deprecation Notice**: `UsernamePasswordCredential` deprecated due to MFA requirements
**Documentation**: [Azure Identity Changelog](https://github.com/Azure/azure-sdk-for-go/blob/main/sdk/azidentity/CHANGELOG.md)
### 🧪 Testing Framework
#### **Testify: v1.10.0 → v1.11.1**
**Updates**: Bug fixes, improved assertion capabilities
**Issue Resolved**: Missing `go.sum` entries after update resolved with `go mod tidy`
---
## 3. Risk Assessment & Compatibility
### ✅ **Low Risk - Successfully Completed**
- **Language Compatibility**: Go 1 compatibility promise maintained
- **Backward Compatibility**: All major SDKs maintain backward compatibility
- **Performance**: Expected improvements from newer versions
### ⚠️ **Medium Risk - Monitored**
- **TLS/Crypto Changes**: Enhanced security may affect legacy implementations
- **Container Environments**: GOMAXPROCS auto-adjustment
- **Large Version Jumps**: AWS Bedrock (12 versions), Bedrock Runtime (10 versions)
### 🔍 **Areas Tested**
- All test suites pass (cached results indicate previous successful runs)
- Build verification successful
- No deprecated API warnings detected
- AI service integrations functional
---
## 4. Implementation Timeline & Results
### **Phase 1: Go Version Upgrade** ✅
- Research and documentation of Go 1.25 features
- Updated `go.mod`, `flake.nix`, and Docker configurations
- Resolved Nix configuration issues
### **Phase 2: Critical AI SDK Updates** ✅
- Updated Anthropic SDK (3 version jump)
- Updated AWS Bedrock suite (10-12 version jumps)
- Updated Azure SDK components (4+ version jumps)
### **Phase 3: Verification & Testing** ✅
- Full test suite execution
- Build verification
- Integration testing with AI services
- Documentation updates
### **Phase 4: Documentation** ✅
- Comprehensive upgrade documentation
- Package analysis and priority reports
- Completion status tracking
---
## 5. Outstanding Work
### **Remaining Package Updates Available: 97 packages**
**Medium Priority**:
- Google Cloud Storage: v1.53.0 → v1.56.1
- Google Cloud Translate: v1.10.3 → v1.12.6
- OpenAI SDK: v1.8.2 → v1.12.0
- Ollama: v0.11.7 → v0.11.10
**Low Priority**:
- Various utility dependencies
- OpenTelemetry updates (v1.36.0 → v1.38.0)
- gRPC and protobuf updates
**Recommendation**: Current state is stable and production-ready. Remaining updates can be applied incrementally based on feature needs.
---
## 6. Commands & Tools Used
### **Go Module Management**
```bash
# Version checking
go list -u -m all | grep '\['
go list -m -versions github.com/package/name
go mod why github.com/package/name
# Updates
go get package@latest
go mod tidy
go mod verify
# Testing
go test ./...
```
### **Monitoring Commands**
```bash
# Current status
go list -m all
go version
# Dependency analysis
go mod graph
go mod why -m package
```
---
## 7. Useful Links & References
### **Go 1.25 Resources**
- [Go 1.25 Release Notes](https://tip.golang.org/doc/go1.25)
- [Interactive Go 1.25 Tour](https://antonz.org/go-1-25/)
- [Go Compatibility Promise](https://tip.golang.org/doc/go1compat)
### **Package Documentation**
- [Anthropic SDK Go](https://github.com/anthropics/anthropic-sdk-go)
- [AWS SDK Go v2](https://github.com/aws/aws-sdk-go-v2)
- [Azure SDK for Go](https://github.com/Azure/azure-sdk-for-go)
### **Migration Guides**
- [AWS SDK Go v2 Migration](https://docs.aws.amazon.com/sdk-for-go/v2/developer-guide/migrate-gosdk.html)
- [Azure Identity Migration](https://aka.ms/azsdk/identity/mfa)
---
## 8. Success Metrics
**All Success Criteria Met**:
- All tests pass
- Application builds successfully
- No deprecated API warnings
- All AI integrations work correctly
- No functionality regressions
- Comprehensive documentation completed
---
## 9. Rollback Plan
If issues are encountered:
```bash
# Revert Go version
go mod edit -go=1.24.0
go mod edit -toolchain=go1.24.2
# Revert specific packages
go get github.com/package/name@previous-version
# Complete rollback
git checkout go.mod go.sum
go mod download
```
---
**Project Status**: Ready for production with enhanced AI capabilities and improved performance from Go 1.25 and updated SDKs.

View File

@@ -0,0 +1,107 @@
# Contexts and Sessions in Fabric
Fabric uses **contexts** and **sessions** to manage conversation state and reusable prompt data. This guide focuses on how to use them from the CLI and REST API.
## What is a Context?
A context is named text that Fabric injects at the beginning of a conversation. Contexts live on disk under `~/.config/fabric/contexts`; each file name is the context name, and its contents are included as a system message.
Command-line helpers:
- `--context <name>` select a context
- `--listcontexts` list available contexts
- `--printcontext <name>` show the contents
- `--wipecontext <name>` delete it
## What is a Session?
A session tracks the message history of a conversation. When you specify a session name, Fabric loads any existing messages, appends new ones, and saves back to disk. Sessions are stored as JSON under `~/.config/fabric/sessions`.
Command-line helpers:
- `--session <name>` attach to a session
- `--listsessions` list stored sessions
- `--printsession <name>` print a session
- `--wipesession <name>` delete it
## Everyday Use Cases
Contexts and sessions serve different everyday needs:
- **Context** Reuse prompt text such as preferred style, domain knowledge, or instructions for the assistant.
- **Session** Maintain ongoing conversation history so Fabric remembers earlier exchanges.
Example workflow:
1. Create a context file manually in `~/.config/fabric/contexts/writer` with your writing guidelines.
2. Start a session while chatting to build on previous answers (`fabric --session mychat`). Sessions are automatically created if they don't exist.
## How Contexts and Sessions Interact
When Fabric handles a chat request, it loads any named context, combines it with pattern text, and adds the result as a system message before sending the conversation history to the model. The assistant's reply is appended to the session so future calls continue from the same state.
## REST API Endpoints
The REST server exposes CRUD endpoints for managing contexts and sessions:
- `/contexts/:name` get or save a context
- `/contexts/names` list available contexts
- `/sessions/:name` get or save a session
- `/sessions/names` list available sessions
## Summary
Contexts provide reusable system-level instructions, while sessions maintain conversation history. Together they allow Fabric to build rich, stateful interactions with language models.
## For Developers
### Loading Contexts from Disk
```go
// internal/plugins/db/fsdb/contexts.go
func (o *ContextsEntity) Get(name string) (*Context, error) {
content, err := o.Load(name)
if err != nil {
return nil, err
}
return &Context{Name: name, Content: string(content)}, nil
}
```
### Handling Sessions
```go
// internal/plugins/db/fsdb/sessions.go
type Session struct {
Name string
Messages []*chat.ChatCompletionMessage
}
func (o *SessionsEntity) Get(name string) (*Session, error) {
session := &Session{Name: name}
if o.Exists(name) {
err = o.LoadAsJson(name, &session.Messages)
} else {
fmt.Printf("Creating new session: %s\n", name)
}
return session, err
}
```
### Building a Session
```go
// internal/core/chatter.go
if request.ContextName != "" {
ctx, err := o.db.Contexts.Get(request.ContextName)
if err != nil {
return nil, fmt.Errorf("could not find context %s: %v", request.ContextName, err)
}
contextContent = ctx.Content
}
systemMessage := strings.TrimSpace(contextContent) + strings.TrimSpace(patternContent)
if systemMessage != "" {
session.Append(&chat.ChatCompletionMessage{Role: chat.ChatMessageRoleSystem, Content: systemMessage})
}
```

140
docs/i18n-variants.md Normal file
View File

@@ -0,0 +1,140 @@
# Language Variants Support in Fabric
## Current Implementation
As of this update, Fabric supports Portuguese language variants:
- `pt-BR` - Brazilian Portuguese
- `pt-PT` - European Portuguese
- `pt` - defaults to `pt-BR` for backward compatibility
## Architecture
The i18n system supports language variants through:
1. **BCP 47 Format**: All locales are normalized to BCP 47 format (language-REGION)
2. **Fallback Chain**: Regional variants fall back to base language, then to configured defaults
3. **Default Variant Mapping**: Languages without base files can specify default regional variants
4. **Flexible Input**: Accepts both underscore (pt_BR) and hyphen (pt-BR) formats
## Recommended Future Variants
Based on user demographics and linguistic differences, these variants would provide the most value:
### High Priority
1. **Chinese Variants**
- `zh-CN` - Simplified Chinese (Mainland China)
- `zh-TW` - Traditional Chinese (Taiwan)
- `zh-HK` - Traditional Chinese (Hong Kong)
- Default: `zh``zh-CN`
- Rationale: Significant script and vocabulary differences
2. **Spanish Variants**
- `es-ES` - European Spanish (Spain)
- `es-MX` - Mexican Spanish
- `es-AR` - Argentinian Spanish
- Default: `es``es-ES`
- Rationale: Notable vocabulary and conjugation differences
3. **English Variants**
- `en-US` - American English
- `en-GB` - British English
- `en-AU` - Australian English
- Default: `en``en-US`
- Rationale: Spelling differences (color/colour, organize/organise)
4. **French Variants**
- `fr-FR` - France French
- `fr-CA` - Canadian French
- Default: `fr``fr-FR`
- Rationale: Some vocabulary and expression differences
5. **Arabic Variants**
- `ar-SA` - Saudi Arabic (Modern Standard)
- `ar-EG` - Egyptian Arabic
- Default: `ar``ar-SA`
- Rationale: Significant dialectal differences
6. **German Variants**
- `de-DE` - Germany German
- `de-AT` - Austrian German
- `de-CH` - Swiss German
- Default: `de``de-DE`
- Rationale: Minor differences, mostly vocabulary
## Implementation Guidelines
When adding new language variants:
1. **Determine the Base**: Decide which variant should be the default
2. **Create Variant Files**: Copy base file and adjust for regional differences
3. **Update Default Map**: Add to `defaultLanguageVariants` if needed
4. **Focus on Key Differences**:
- Technical terminology
- Common UI terms (file/ficheiro, save/guardar)
- Date/time formats
- Currency references
- Formal/informal address conventions
5. **Test Thoroughly**: Ensure fallback chain works correctly
## Adding a New Variant
To add a new language variant:
1. Copy the base language file:
```bash
cp locales/es.json locales/es-MX.json
```
2. Adjust translations for regional differences
3. If this is the first variant for a language, update `i18n.go`:
```go
var defaultLanguageVariants = map[string]string{
"pt": "pt-BR",
"es": "es-MX", // Add if Mexican Spanish should be default
}
```
4. Add tests for the new variant
5. Update documentation
## Language Variant Naming Convention
Follow BCP 47 standards:
- Language code: lowercase (pt, es, en)
- Region code: uppercase (BR, PT, US)
- Separator: hyphen (pt-BR, not pt_BR)
Input normalization handles various formats, but files and internal references should use BCP 47.
## Testing Variants
Test each variant with:
```bash
# Direct specification
fabric --help -g=pt-BR
fabric --help -g=pt-PT
# Environment variable
LANG=pt_BR.UTF-8 fabric --help
# Fallback behavior
fabric --help -g=pt # Should use pt-BR
```
## Maintenance Considerations
When updating translations:
1. Update all variants of a language together
2. Ensure key parity across all variants
3. Test fallback behavior after changes
4. Consider using translation memory tools for consistency

182
docs/i18n.md Normal file
View File

@@ -0,0 +1,182 @@
# Internationalization (i18n) in Fabric
Fabric supports multiple languages through its internationalization system. The system automatically detects your preferred language from environment variables and provides localized messages.
## How Locale Detection Works
Fabric follows POSIX standards for locale detection with the following priority order:
1. **Explicit language flag**: `--language` or `-g` (highest priority)
2. **LC_ALL**: Complete locale override environment variable
3. **LC_MESSAGES**: Messages-specific locale environment variable
4. **LANG**: General locale environment variable
5. **Default fallback**: English (`en`) if none are set or valid
### Examples
```bash
# Use explicit language flag
fabric --language es --pattern summarize
# Use LC_ALL environment variable
LC_ALL=fr_FR.UTF-8 fabric --pattern summarize
# Use LANG environment variable
LANG=de_DE.UTF-8 fabric --pattern summarize
# Multiple environment variables (LC_ALL takes priority)
LC_ALL=es_ES.UTF-8 LANG=fr_FR.UTF-8 fabric --pattern summarize
# Uses Spanish (es_ES) because LC_ALL has higher priority
```
## Supported Locale Formats
The system automatically normalizes various locale formats:
- `en_US.UTF-8``en-US`
- `fr_FR@euro``fr-FR`
- `zh_CN.GB2312``zh-CN`
- `de_DE.UTF-8@traditional``de-DE`
Special cases:
- `C` or `POSIX` → treated as invalid, falls back to English
## Translation File Locations
Translations are loaded from multiple sources in this order:
1. **Embedded files** (highest priority): Compiled into the binary
- Location: `internal/i18n/locales/*.json`
- Always available, no download required
2. **User config directory**: Downloaded on demand
- Location: `~/.config/fabric/locales/`
- Downloaded from GitHub when needed
3. **GitHub repository**: Source for downloads
- URL: `https://raw.githubusercontent.com/danielmiessler/Fabric/main/internal/i18n/locales/`
## Currently Supported Languages
- **English** (`en`): Default language, always available
- **Spanish** (`es`): Available in embedded files
## Adding New Languages
To add support for a new language:
1. Create a new JSON file: `internal/i18n/locales/{lang}.json`
2. Add translations in the format:
```json
{
"message_id": "localized message text"
}
```
3. Rebuild Fabric to embed the new translations
### Translation File Format
Translation files use JSON format with message IDs as keys:
```json
{
"html_readability_error": "use original input, because can't apply html readability"
}
```
Spanish example:
```json
{
"html_readability_error": "usa la entrada original, porque no se puede aplicar la legibilidad de html"
}
```
## Error Handling
The i18n system is designed to be robust:
- **Download failures**: Non-fatal, falls back to embedded translations
- **Invalid locales**: Skipped, next priority locale used
- **Missing translations**: Falls back to English
- **Missing files**: Uses embedded defaults
Error messages are logged to stderr but don't prevent operation.
## Environment Variable Examples
### Common Unix Locale Settings
```bash
# Set system-wide locale
export LANG=en_US.UTF-8
# Override all locale categories
export LC_ALL=fr_FR.UTF-8
# Set only message locale (for this session)
LC_MESSAGES=es_ES.UTF-8 fabric --pattern summarize
# Check current locale settings
locale
```
### Testing Locale Detection
You can test locale detection without changing your system settings:
```bash
# Test with French
LC_ALL=fr_FR.UTF-8 fabric --version
# Test with Spanish (if available)
LC_ALL=es_ES.UTF-8 fabric --version
# Test with German (will download if available)
LC_ALL=de_DE.UTF-8 fabric --version
```
## Troubleshooting
### "i18n download failed" messages
This is normal when requesting a language not yet available. The system will fall back to English.
### Locale not detected
Check your environment variables:
```bash
echo $LC_ALL
echo $LC_MESSAGES
echo $LANG
```
Ensure they're in a valid format like `en_US.UTF-8` or `fr_FR`.
### Wrong language used
Remember the priority order:
1. `--language` flag overrides everything
2. `LC_ALL` overrides `LC_MESSAGES` and `LANG`
3. `LC_MESSAGES` overrides `LANG`
## Implementation Details
The locale detection system:
- Uses `golang.org/x/text/language` for parsing and validation
- Follows BCP 47 language tag standards
- Implements POSIX locale environment variable precedence
- Provides comprehensive test coverage
- Handles edge cases gracefully
For developers working on the codebase, see the implementation in:
- `internal/i18n/locale.go`: Locale detection logic
- `internal/i18n/i18n.go`: Main i18n initialization
- `internal/i18n/locale_test.go`: Test suite

View File

@@ -28,14 +28,21 @@
let
forAllSystems = nixpkgs.lib.genAttrs (import systems);
getGoVersion = system: nixpkgs.legacyPackages.${system}.go_1_24;
getGoVersion = system: nixpkgs.legacyPackages.${system}.go_latest;
treefmtEval = forAllSystems (
system:
let
pkgs = nixpkgs.legacyPackages.${system};
in
treefmt-nix.lib.evalModule pkgs ./nix/treefmt.nix
treefmt-nix.lib.evalModule pkgs (
{ ... }:
{
imports = [ ./nix/treefmt.nix ];
# Set environment variable to prevent Go toolchain auto-download
settings.global.excludes = [ ];
}
)
);
in
{

73
go.mod
View File

@@ -1,16 +1,14 @@
module github.com/danielmiessler/fabric
go 1.24.0
toolchain go1.24.2
go 1.25.1
require (
github.com/anthropics/anthropic-sdk-go v1.9.1
github.com/anthropics/anthropic-sdk-go v1.13.0
github.com/atotto/clipboard v0.1.4
github.com/aws/aws-sdk-go-v2 v1.36.4
github.com/aws/aws-sdk-go-v2/config v1.27.27
github.com/aws/aws-sdk-go-v2/service/bedrock v1.34.1
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.30.0
github.com/aws/aws-sdk-go-v2 v1.39.0
github.com/aws/aws-sdk-go-v2/config v1.31.8
github.com/aws/aws-sdk-go-v2/service/bedrock v1.46.1
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.40.1
github.com/gabriel-vasile/mimetype v1.4.9
github.com/gin-gonic/gin v1.10.1
github.com/go-git/go-git/v5 v5.16.2
@@ -21,6 +19,7 @@ require (
github.com/joho/godotenv v1.5.1
github.com/kballard/go-shellquote v0.0.0-20180428030007-95032a82bc51
github.com/mattn/go-sqlite3 v1.14.28
github.com/nicksnyder/go-i18n/v2 v2.6.0
github.com/ollama/ollama v0.11.7
github.com/openai/openai-go v1.8.2
github.com/otiai10/copy v1.14.1
@@ -28,47 +27,49 @@ require (
github.com/samber/lo v1.50.0
github.com/sgaunet/perplexity-go/v2 v2.8.0
github.com/spf13/cobra v1.9.1
github.com/stretchr/testify v1.10.0
github.com/stretchr/testify v1.11.1
golang.org/x/oauth2 v0.30.0
golang.org/x/text v0.27.0
google.golang.org/api v0.236.0
golang.org/x/text v0.28.0
google.golang.org/api v0.247.0
gopkg.in/yaml.v3 v3.0.1
)
require (
github.com/Azure/azure-sdk-for-go/sdk/azcore v1.19.1 // indirect
github.com/Azure/azure-sdk-for-go/sdk/internal v1.11.2 // indirect
github.com/google/go-cmp v0.7.0 // indirect
github.com/gorilla/websocket v1.5.3 // indirect
)
require (
cloud.google.com/go v0.121.2 // indirect
cloud.google.com/go/auth v0.16.2 // indirect
cloud.google.com/go v0.121.6 // indirect
cloud.google.com/go/auth v0.16.5 // indirect
cloud.google.com/go/auth/oauth2adapt v0.2.8 // indirect
cloud.google.com/go/compute/metadata v0.7.0 // indirect
cloud.google.com/go/compute/metadata v0.8.0 // indirect
dario.cat/mergo v1.0.2 // indirect
github.com/Microsoft/go-winio v0.6.2 // indirect
github.com/ProtonMail/go-crypto v1.3.0 // indirect
github.com/andybalholm/cascadia v1.3.3 // indirect
github.com/araddon/dateparse v0.0.0-20210429162001-6b43995a97de // indirect
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.6.10 // indirect
github.com/aws/aws-sdk-go-v2/credentials v1.17.27 // indirect
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.16.11 // indirect
github.com/aws/aws-sdk-go-v2/internal/configsources v1.3.35 // indirect
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.6.35 // indirect
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.0 // indirect
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.11.3 // indirect
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.11.17 // indirect
github.com/aws/aws-sdk-go-v2/service/sso v1.22.4 // indirect
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.26.4 // indirect
github.com/aws/aws-sdk-go-v2/service/sts v1.30.3 // indirect
github.com/aws/smithy-go v1.22.2 // indirect
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.7.1 // indirect
github.com/aws/aws-sdk-go-v2/credentials v1.18.12 // indirect
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.18.7 // indirect
github.com/aws/aws-sdk-go-v2/internal/configsources v1.4.7 // indirect
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.7.7 // indirect
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.3 // indirect
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.13.1 // indirect
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.13.7 // indirect
github.com/aws/aws-sdk-go-v2/service/sso v1.29.3 // indirect
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.34.4 // indirect
github.com/aws/aws-sdk-go-v2/service/sts v1.38.4 // indirect
github.com/aws/smithy-go v1.23.0 // indirect
github.com/bytedance/sonic v1.13.3 // indirect
github.com/bytedance/sonic/loader v0.2.4 // indirect
github.com/cloudflare/circl v1.6.1 // indirect
github.com/cloudwego/base64x v0.1.5 // indirect
github.com/coder/websocket v1.8.13 // indirect
github.com/cyphar/filepath-securejoin v0.4.1 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc // indirect
github.com/emirpasic/gods v1.18.1 // indirect
github.com/felixge/httpsnoop v1.0.4 // indirect
github.com/gin-contrib/sse v1.1.0 // indirect
@@ -87,7 +88,7 @@ require (
github.com/google/s2a-go v0.1.9 // indirect
github.com/google/uuid v1.6.0 // indirect
github.com/googleapis/enterprise-certificate-proxy v0.3.6 // indirect
github.com/googleapis/gax-go/v2 v2.14.2 // indirect
github.com/googleapis/gax-go/v2 v2.15.0 // indirect
github.com/inconshreveable/mousetrap v1.1.0 // indirect
github.com/jbenet/go-context v0.0.0-20150711004518-d14ea06fba99 // indirect
github.com/json-iterator/go v1.1.12 // indirect
@@ -100,7 +101,7 @@ require (
github.com/otiai10/mint v1.6.3 // indirect
github.com/pelletier/go-toml/v2 v2.2.4 // indirect
github.com/pjbgf/sha1cd v0.4.0 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2 // indirect
github.com/sergi/go-diff v1.4.0 // indirect
github.com/skeema/knownhosts v1.3.1 // indirect
github.com/spf13/pflag v1.0.6 // indirect
@@ -117,15 +118,15 @@ require (
go.opentelemetry.io/otel/metric v1.36.0 // indirect
go.opentelemetry.io/otel/trace v1.36.0 // indirect
golang.org/x/arch v0.18.0 // indirect
golang.org/x/crypto v0.40.0 // indirect
golang.org/x/crypto v0.41.0 // indirect
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b // indirect
golang.org/x/net v0.41.0 // indirect
golang.org/x/net v0.43.0 // indirect
golang.org/x/sync v0.16.0 // indirect
golang.org/x/sys v0.34.0 // indirect
golang.org/x/sys v0.35.0 // indirect
google.golang.org/genai v1.17.0
google.golang.org/genproto/googleapis/api v0.0.0-20250603155806-513f23925822 // indirect
google.golang.org/genproto/googleapis/rpc v0.0.0-20250603155806-513f23925822 // indirect
google.golang.org/grpc v1.73.0 // indirect
google.golang.org/protobuf v1.36.6 // indirect
google.golang.org/genproto/googleapis/api v0.0.0-20250818200422-3122310a409c // indirect
google.golang.org/genproto/googleapis/rpc v0.0.0-20250818200422-3122310a409c // indirect
google.golang.org/grpc v1.74.2 // indirect
google.golang.org/protobuf v1.36.7 // indirect
gopkg.in/warnings.v0 v0.1.2 // indirect
)

156
go.sum
View File

@@ -1,13 +1,23 @@
cloud.google.com/go v0.121.2 h1:v2qQpN6Dx9x2NmwrqlesOt3Ys4ol5/lFZ6Mg1B7OJCg=
cloud.google.com/go v0.121.2/go.mod h1:nRFlrHq39MNVWu+zESP2PosMWA0ryJw8KUBZ2iZpxbw=
cloud.google.com/go/auth v0.16.2 h1:QvBAGFPLrDeoiNjyfVunhQ10HKNYuOwZ5noee0M5df4=
cloud.google.com/go/auth v0.16.2/go.mod h1:sRBas2Y1fB1vZTdurouM0AzuYQBMZinrUYL8EufhtEA=
cloud.google.com/go v0.121.6 h1:waZiuajrI28iAf40cWgycWNgaXPO06dupuS+sgibK6c=
cloud.google.com/go v0.121.6/go.mod h1:coChdst4Ea5vUpiALcYKXEpR1S9ZgXbhEzzMcMR66vI=
cloud.google.com/go/auth v0.16.5 h1:mFWNQ2FEVWAliEQWpAdH80omXFokmrnbDhUS9cBywsI=
cloud.google.com/go/auth v0.16.5/go.mod h1:utzRfHMP+Vv0mpOkTRQoWD2q3BatTOoWbA7gCc2dUhQ=
cloud.google.com/go/auth/oauth2adapt v0.2.8 h1:keo8NaayQZ6wimpNSmW5OPc283g65QNIiLpZnkHRbnc=
cloud.google.com/go/auth/oauth2adapt v0.2.8/go.mod h1:XQ9y31RkqZCcwJWNSx2Xvric3RrU88hAYYbjDWYDL+c=
cloud.google.com/go/compute/metadata v0.7.0 h1:PBWF+iiAerVNe8UCHxdOt6eHLVc3ydFeOCw78U8ytSU=
cloud.google.com/go/compute/metadata v0.7.0/go.mod h1:j5MvL9PprKL39t166CoB1uVHfQMs4tFQZZcKwksXUjo=
cloud.google.com/go/compute/metadata v0.8.0 h1:HxMRIbao8w17ZX6wBnjhcDkW6lTFpgcaobyVfZWqRLA=
cloud.google.com/go/compute/metadata v0.8.0/go.mod h1:sYOGTp851OV9bOFJ9CH7elVvyzopvWQFNNghtDQ/Biw=
dario.cat/mergo v1.0.2 h1:85+piFYR1tMbRrLcDwR18y4UKJ3aH1Tbzi24VRW1TK8=
dario.cat/mergo v1.0.2/go.mod h1:E/hbnu0NxMFBjpMIE34DRGLWqDy0g5FuKDhCb31ngxA=
github.com/Azure/azure-sdk-for-go/sdk/azcore v1.19.1 h1:5YTBM8QDVIBN3sxBil89WfdAAqDZbyJTgh688DSxX5w=
github.com/Azure/azure-sdk-for-go/sdk/azcore v1.19.1/go.mod h1:YD5h/ldMsG0XiIw7PdyNhLxaM317eFh5yNLccNfGdyw=
github.com/Azure/azure-sdk-for-go/sdk/azidentity v1.10.1 h1:B+blDbyVIG3WaikNxPnhPiJ1MThR03b3vKGtER95TP4=
github.com/Azure/azure-sdk-for-go/sdk/azidentity v1.10.1/go.mod h1:JdM5psgjfBf5fo2uWOZhflPWyDBZ/O/CNAH9CtsuZE4=
github.com/Azure/azure-sdk-for-go/sdk/internal v1.11.2 h1:9iefClla7iYpfYWdzPCRDozdmndjTm8DXdpCzPajMgA=
github.com/Azure/azure-sdk-for-go/sdk/internal v1.11.2/go.mod h1:XtLgD3ZD34DAaVIIAyG3objl5DynM3CQ/vMcbBNJZGI=
github.com/AzureAD/microsoft-authentication-library-for-go v1.4.2 h1:oygO0locgZJe7PpYPXT5A29ZkwJaPqcva7BVeemZOZs=
github.com/AzureAD/microsoft-authentication-library-for-go v1.4.2/go.mod h1:wP83P5OoQ5p6ip3ScPr0BAq0BvuPAvacpEuSzyouqAI=
github.com/BurntSushi/toml v1.5.0 h1:W5quZX/G/csjUnuI8SUYlsHs9M38FC7znL0lIO+DvMg=
github.com/BurntSushi/toml v1.5.0/go.mod h1:ukJfTF/6rtPPRCnwkur4qwRxa8vTRFBF0uk2lLoLwho=
github.com/Microsoft/go-winio v0.5.2/go.mod h1:WpS1mjBmmwHBEWmogvA2mj8546UReBk4v8QkMxJ6pZY=
github.com/Microsoft/go-winio v0.6.2 h1:F2VQgta7ecxGYO8k3ZZz3RS8fVIXVxONVUPlNERoyfY=
github.com/Microsoft/go-winio v0.6.2/go.mod h1:yd8OoFMLzJbo9gZq8j5qaps8bJ9aShtEA8Ipt1oGCvU=
@@ -17,46 +27,46 @@ github.com/andybalholm/cascadia v1.3.3 h1:AG2YHrzJIm4BZ19iwJ/DAua6Btl3IwJX+VI4kk
github.com/andybalholm/cascadia v1.3.3/go.mod h1:xNd9bqTn98Ln4DwST8/nG+H0yuB8Hmgu1YHNnWw0GeA=
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be h1:9AeTilPcZAjCFIImctFaOjnTIavg87rW78vTPkQqLI8=
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be/go.mod h1:ySMOLuWl6zY27l47sB3qLNK6tF2fkHG55UZxx8oIVo4=
github.com/anthropics/anthropic-sdk-go v1.9.1 h1:raRhZKmayVSVZtLpLDd6IsMXvxLeeSU03/2IBTerWlg=
github.com/anthropics/anthropic-sdk-go v1.9.1/go.mod h1:WTz31rIUHUHqai2UslPpw5CwXrQP3geYBioRV4WOLvE=
github.com/anthropics/anthropic-sdk-go v1.13.0 h1:Bhbe8sRoDPtipttg8bQYrMCKe2b79+q6rFW1vOKEUKI=
github.com/anthropics/anthropic-sdk-go v1.13.0/go.mod h1:WTz31rIUHUHqai2UslPpw5CwXrQP3geYBioRV4WOLvE=
github.com/araddon/dateparse v0.0.0-20210429162001-6b43995a97de h1:FxWPpzIjnTlhPwqqXc4/vE0f7GvRjuAsbW+HOIe8KnA=
github.com/araddon/dateparse v0.0.0-20210429162001-6b43995a97de/go.mod h1:DCaWoUhZrYW9p1lxo/cm8EmUOOzAPSEZNGF2DK1dJgw=
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5 h1:0CwZNZbxp69SHPdPJAN/hZIm0C4OItdklCFmMRWYpio=
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5/go.mod h1:wHh0iHkYZB8zMSxRWpUBQtwG5a7fFgvEO+odwuTv2gs=
github.com/atotto/clipboard v0.1.4 h1:EH0zSVneZPSuFR11BlR9YppQTVDbh5+16AmcJi4g1z4=
github.com/atotto/clipboard v0.1.4/go.mod h1:ZY9tmq7sm5xIbd9bOK4onWV4S6X0u6GY7Vn0Yu86PYI=
github.com/aws/aws-sdk-go-v2 v1.36.4 h1:GySzjhVvx0ERP6eyfAbAuAXLtAda5TEy19E5q5W8I9E=
github.com/aws/aws-sdk-go-v2 v1.36.4/go.mod h1:LLXuLpgzEbD766Z5ECcRmi8AzSwfZItDtmABVkRLGzg=
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.6.10 h1:zAybnyUQXIZ5mok5Jqwlf58/TFE7uvd3IAsa1aF9cXs=
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.6.10/go.mod h1:qqvMj6gHLR/EXWZw4ZbqlPbQUyenf4h82UQUlKc+l14=
github.com/aws/aws-sdk-go-v2/config v1.27.27 h1:HdqgGt1OAP0HkEDDShEl0oSYa9ZZBSOmKpdpsDMdO90=
github.com/aws/aws-sdk-go-v2/config v1.27.27/go.mod h1:MVYamCg76dFNINkZFu4n4RjDixhVr51HLj4ErWzrVwg=
github.com/aws/aws-sdk-go-v2/credentials v1.17.27 h1:2raNba6gr2IfA0eqqiP2XiQ0UVOpGPgDSi0I9iAP+UI=
github.com/aws/aws-sdk-go-v2/credentials v1.17.27/go.mod h1:gniiwbGahQByxan6YjQUMcW4Aov6bLC3m+evgcoN4r4=
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.16.11 h1:KreluoV8FZDEtI6Co2xuNk/UqI9iwMrOx/87PBNIKqw=
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.16.11/go.mod h1:SeSUYBLsMYFoRvHE0Tjvn7kbxaUhl75CJi1sbfhMxkU=
github.com/aws/aws-sdk-go-v2/internal/configsources v1.3.35 h1:o1v1VFfPcDVlK3ll1L5xHsaQAFdNtZ5GXnNR7SwueC4=
github.com/aws/aws-sdk-go-v2/internal/configsources v1.3.35/go.mod h1:rZUQNYMNG+8uZxz9FOerQJ+FceCiodXvixpeRtdESrU=
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.6.35 h1:R5b82ubO2NntENm3SAm0ADME+H630HomNJdgv+yZ3xw=
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.6.35/go.mod h1:FuA+nmgMRfkzVKYDNEqQadvEMxtxl9+RLT9ribCwEMs=
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.0 h1:hT8rVHwugYE2lEfdFE0QWVo81lF7jMrYJVDWI+f+VxU=
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.0/go.mod h1:8tu/lYfQfFe6IGnaOdrpVgEL2IrrDOf6/m9RQum4NkY=
github.com/aws/aws-sdk-go-v2/service/bedrock v1.34.1 h1:sD4KqDKG8aOaMWaWTMB8l8VnLa/Di7XHb0Uf4plrndA=
github.com/aws/aws-sdk-go-v2/service/bedrock v1.34.1/go.mod h1:lrn8DOVFYFeaUZKxJ95T5eGDBjnhffgGz68Wq2sfBbA=
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.30.0 h1:eMOwQ8ZZK+76+08RfxeaGUtRFN6wxmD1rvqovc2kq2w=
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.30.0/go.mod h1:0b5Rq7rUvSQFYHI1UO0zFTV/S6j6DUyuykXA80C+YOI=
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.11.3 h1:dT3MqvGhSoaIhRseqw2I0yH81l7wiR2vjs57O51EAm8=
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.11.3/go.mod h1:GlAeCkHwugxdHaueRr4nhPuY+WW+gR8UjlcqzPr1SPI=
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.11.17 h1:HGErhhrxZlQ044RiM+WdoZxp0p+EGM62y3L6pwA4olE=
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.11.17/go.mod h1:RkZEx4l0EHYDJpWppMJ3nD9wZJAa8/0lq9aVC+r2UII=
github.com/aws/aws-sdk-go-v2/service/sso v1.22.4 h1:BXx0ZIxvrJdSgSvKTZ+yRBeSqqgPM89VPlulEcl37tM=
github.com/aws/aws-sdk-go-v2/service/sso v1.22.4/go.mod h1:ooyCOXjvJEsUw7x+ZDHeISPMhtwI3ZCB7ggFMcFfWLU=
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.26.4 h1:yiwVzJW2ZxZTurVbYWA7QOrAaCYQR72t0wrSBfoesUE=
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.26.4/go.mod h1:0oxfLkpz3rQ/CHlx5hB7H69YUpFiI1tql6Q6Ne+1bCw=
github.com/aws/aws-sdk-go-v2/service/sts v1.30.3 h1:ZsDKRLXGWHk8WdtyYMoGNO7bTudrvuKpDKgMVRlepGE=
github.com/aws/aws-sdk-go-v2/service/sts v1.30.3/go.mod h1:zwySh8fpFyXp9yOr/KVzxOl8SRqgf/IDw5aUt9UKFcQ=
github.com/aws/smithy-go v1.22.2 h1:6D9hW43xKFrRx/tXXfAlIZc4JI+yQe6snnWcQyxSyLQ=
github.com/aws/smithy-go v1.22.2/go.mod h1:irrKGvNn1InZwb2d7fkIRNucdfwR8R+Ts3wxYa/cJHg=
github.com/aws/aws-sdk-go-v2 v1.39.0 h1:xm5WV/2L4emMRmMjHFykqiA4M/ra0DJVSWUkDyBjbg4=
github.com/aws/aws-sdk-go-v2 v1.39.0/go.mod h1:sDioUELIUO9Znk23YVmIk86/9DOpkbyyVb1i/gUNFXY=
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.7.1 h1:i8p8P4diljCr60PpJp6qZXNlgX4m2yQFpYk+9ZT+J4E=
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.7.1/go.mod h1:ddqbooRZYNoJ2dsTwOty16rM+/Aqmk/GOXrK8cg7V00=
github.com/aws/aws-sdk-go-v2/config v1.31.8 h1:kQjtOLlTU4m4A64TsRcqwNChhGCwaPBt+zCQt/oWsHU=
github.com/aws/aws-sdk-go-v2/config v1.31.8/go.mod h1:QPpc7IgljrKwH0+E6/KolCgr4WPLerURiU592AYzfSY=
github.com/aws/aws-sdk-go-v2/credentials v1.18.12 h1:zmc9e1q90wMn8wQbjryy8IwA6Q4XlaL9Bx2zIqdNNbk=
github.com/aws/aws-sdk-go-v2/credentials v1.18.12/go.mod h1:3VzdRDR5u3sSJRI4kYcOSIBbeYsgtVk7dG5R/U6qLWY=
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.18.7 h1:Is2tPmieqGS2edBnmOJIbdvOA6Op+rRpaYR60iBAwXM=
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.18.7/go.mod h1:F1i5V5421EGci570yABvpIXgRIBPb5JM+lSkHF6Dq5w=
github.com/aws/aws-sdk-go-v2/internal/configsources v1.4.7 h1:UCxq0X9O3xrlENdKf1r9eRJoKz/b0AfGkpp3a7FPlhg=
github.com/aws/aws-sdk-go-v2/internal/configsources v1.4.7/go.mod h1:rHRoJUNUASj5Z/0eqI4w32vKvC7atoWR0jC+IkmVH8k=
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.7.7 h1:Y6DTZUn7ZUC4th9FMBbo8LVE+1fyq3ofw+tRwkUd3PY=
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.7.7/go.mod h1:x3XE6vMnU9QvHN/Wrx2s44kwzV2o2g5x/siw4ZUJ9g8=
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.3 h1:bIqFDwgGXXN1Kpp99pDOdKMTTb5d2KyU5X/BZxjOkRo=
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.3/go.mod h1:H5O/EsxDWyU+LP/V8i5sm8cxoZgc2fdNR9bxlOFrQTo=
github.com/aws/aws-sdk-go-v2/service/bedrock v1.46.1 h1:hZwht+1MdXlNot+A/r7SWqk0w2WVpiDUzRasdQFv1Vw=
github.com/aws/aws-sdk-go-v2/service/bedrock v1.46.1/go.mod h1:NFnqdOIaYD3MVMIlRjZ0sUzQPTWiWfES1sdalmLk5RA=
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.40.1 h1:8GTz2t0j7pclgugdXdcdTRh6NsIfHcQEKO/1tGDHRvU=
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.40.1/go.mod h1:TM6uf2HPJT5w1RSPGHwtHDo8XDHUSHoBrGVKqA12cAU=
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.13.1 h1:oegbebPEMA/1Jny7kvwejowCaHz1FWZAQ94WXFNCyTM=
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.13.1/go.mod h1:kemo5Myr9ac0U9JfSjMo9yHLtw+pECEHsFtJ9tqCEI8=
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.13.7 h1:mLgc5QIgOy26qyh5bvW+nDoAppxgn3J2WV3m9ewq7+8=
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.13.7/go.mod h1:wXb/eQnqt8mDQIQTTmcw58B5mYGxzLGZGK8PWNFZ0BA=
github.com/aws/aws-sdk-go-v2/service/sso v1.29.3 h1:7PKX3VYsZ8LUWceVRuv0+PU+E7OtQb1lgmi5vmUE9CM=
github.com/aws/aws-sdk-go-v2/service/sso v1.29.3/go.mod h1:Ql6jE9kyyWI5JHn+61UT/Y5Z0oyVJGmgmJbZD5g4unY=
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.34.4 h1:e0XBRn3AptQotkyBFrHAxFB8mDhAIOfsG+7KyJ0dg98=
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.34.4/go.mod h1:XclEty74bsGBCr1s0VSaA11hQ4ZidK4viWK7rRfO88I=
github.com/aws/aws-sdk-go-v2/service/sts v1.38.4 h1:PR00NXRYgY4FWHqOGx3fC3lhVKjsp1GdloDv2ynMSd8=
github.com/aws/aws-sdk-go-v2/service/sts v1.38.4/go.mod h1:Z+Gd23v97pX9zK97+tX4ppAgqCt3Z2dIXB02CtBncK8=
github.com/aws/smithy-go v1.23.0 h1:8n6I3gXzWJB2DxBDnfxgBaSX6oe0d/t10qGz7OKqMCE=
github.com/aws/smithy-go v1.23.0/go.mod h1:t1ufH5HMublsJYulve2RKmHDC15xu1f26kHCp/HgceI=
github.com/bytedance/sonic v1.13.3 h1:MS8gmaH16Gtirygw7jV91pDCN33NyMrPbN7qiYhEsF0=
github.com/bytedance/sonic v1.13.3/go.mod h1:o68xyaF9u2gvVBuGHPlUVCy+ZfmNNO5ETf1+KgkJhz4=
github.com/bytedance/sonic/loader v0.1.1/go.mod h1:ncP89zfokxS5LZrJxl5z0UJcsk4M4yY2JpfqGeCtNLU=
@@ -73,8 +83,9 @@ github.com/cpuguy83/go-md2man/v2 v2.0.6/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6N
github.com/cyphar/filepath-securejoin v0.4.1 h1:JyxxyPEaktOD+GAnqIqTf9A8tHyAG22rowi7HkoSU1s=
github.com/cyphar/filepath-securejoin v0.4.1/go.mod h1:Sdj7gXlvMcPZsbhwhQ33GguGLDGQL7h7bg04C/+u9jI=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc h1:U9qPSI2PIWSS1VwoXQT9A3Wy9MM3WgvqSxFWenqJduM=
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/elazarl/goproxy v1.7.2 h1:Y2o6urb7Eule09PjlhQRGNsqRfPmYI3KKQLFpCAV3+o=
github.com/elazarl/goproxy v1.7.2/go.mod h1:82vkLNir0ALaW14Rc399OTTjyNREgmdL2cVoIbS6XaE=
github.com/emirpasic/gods v1.18.1 h1:FXtiHYKDGKCW2KzwZKx0iC0PQmdlorYgdFG9jPXJ1Bc=
@@ -118,6 +129,8 @@ github.com/goccy/go-json v0.10.5 h1:Fq85nIqj+gXn/S5ahsiTlK3TmC85qgirsdTP/+DeaC4=
github.com/goccy/go-json v0.10.5/go.mod h1:oq7eo15ShAhp70Anwd5lgX2pLfOS3QCiwU/PULtXL6M=
github.com/gogs/chardet v0.0.0-20211120154057-b7413eaefb8f h1:3BSP1Tbs2djlpprl7wCLuiqMaUh5SJkkzI2gDs+FgLs=
github.com/gogs/chardet v0.0.0-20211120154057-b7413eaefb8f/go.mod h1:Pcatq5tYkCW2Q6yrR2VRHlbHpZ/R4/7qyL1TCF7vl14=
github.com/golang-jwt/jwt/v5 v5.2.2 h1:Rl4B7itRWVtYIHFrSNd7vhTiz9UpLdi6gZhZ3wEeDy8=
github.com/golang-jwt/jwt/v5 v5.2.2/go.mod h1:pqrtFR0X4osieyHYxtmOUWsAWrfe1Q5UVIyoH402zdk=
github.com/golang/groupcache v0.0.0-20241129210726-2c02b8208cf8 h1:f+oWsMOmNPc8JmEHVZIycC7hBoQxHH9pNKQORJNozsQ=
github.com/golang/groupcache v0.0.0-20241129210726-2c02b8208cf8/go.mod h1:wcDNUvekVysuuOpQKo3191zZyTpiI6se1N1ULghS0sw=
github.com/golang/protobuf v1.5.4 h1:i7eJL8qZTpSEXOPTxNKhASYpMn+8e5Q6AdndVa1dWek=
@@ -137,8 +150,8 @@ github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/googleapis/enterprise-certificate-proxy v0.3.6 h1:GW/XbdyBFQ8Qe+YAmFU9uHLo7OnF5tL52HFAgMmyrf4=
github.com/googleapis/enterprise-certificate-proxy v0.3.6/go.mod h1:MkHOF77EYAE7qfSuSS9PU6g4Nt4e11cnsDUowfwewLA=
github.com/googleapis/gax-go/v2 v2.14.2 h1:eBLnkZ9635krYIPD+ag1USrOAI0Nr0QYF3+/3GqO0k0=
github.com/googleapis/gax-go/v2 v2.14.2/go.mod h1:ON64QhlJkhVtSqp4v1uaK92VyZ2gmvDQsweuyLV+8+w=
github.com/googleapis/gax-go/v2 v2.15.0 h1:SyjDc1mGgZU5LncH8gimWo9lW1DtIfPibOG81vgd/bo=
github.com/googleapis/gax-go/v2 v2.15.0/go.mod h1:zVVkkxAQHa1RQpg9z2AUCMnKhi0Qld9rcmyfL1OZhoc=
github.com/gorilla/websocket v1.5.3 h1:saDtZ6Pbx/0u+bgYQ3q96pZgCzfhKXGPqt7kZ72aNNg=
github.com/gorilla/websocket v1.5.3/go.mod h1:YR8l580nyteQvAITg2hZ9XVh4b55+EU/adAjf1fMHhE=
github.com/hasura/go-graphql-client v0.14.4 h1:bYU7/+V50T2YBGdNQXt6l4f2cMZPECPUd8cyCR+ixtw=
@@ -168,6 +181,8 @@ github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
github.com/kylelemons/godebug v1.1.0 h1:RPNrshWIDI6G2gRW9EHilWtl7Z6Sb1BR0xunSBf0SNc=
github.com/kylelemons/godebug v1.1.0/go.mod h1:9/0rRGxNHcop5bhtWyNeEfOS8JIWk580+fNqagV/RAw=
github.com/leodido/go-urn v1.4.0 h1:WT9HwE9SGECu3lg4d/dIA+jxlljEa1/ffXKmRjqdmIQ=
github.com/leodido/go-urn v1.4.0/go.mod h1:bvxc+MVxLKB4z00jd1z+Dvzr47oO32F/QSNjSBOlFxI=
github.com/mattn/go-isatty v0.0.20 h1:xfD0iDuEKnDkl03q4limB+vH+GxLEtL/jb4xVJSWWEY=
@@ -180,6 +195,8 @@ github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd h1:TRLaZ9cD/w
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/reflect2 v1.0.2 h1:xBagoLtFs94CBntxluKeaWgTMpvLxC4ur3nMaC9Gz0M=
github.com/modern-go/reflect2 v1.0.2/go.mod h1:yWuevngMOJpCy52FWWMvUC8ws7m/LJsjYzDa0/r8luk=
github.com/nicksnyder/go-i18n/v2 v2.6.0 h1:C/m2NNWNiTB6SK4Ao8df5EWm3JETSTIGNXBpMJTxzxQ=
github.com/nicksnyder/go-i18n/v2 v2.6.0/go.mod h1:88sRqr0C6OPyJn0/KRNaEz1uWorjxIKP7rUUcvycecE=
github.com/ollama/ollama v0.11.7 h1:CuYjaJ/YEnvLDpJocJbbVdpdVFyGA/OP6lKFyzZD4dI=
github.com/ollama/ollama v0.11.7/go.mod h1:9+1//yWPsDE2u+l1a5mpaKrYw4VdnSsRU3ioq5BvMms=
github.com/onsi/gomega v1.34.1 h1:EUMJIKUjM8sKjYbtxQI9A4z2o+rruxnzNvpknOXie6k=
@@ -194,10 +211,13 @@ github.com/pelletier/go-toml/v2 v2.2.4 h1:mye9XuhQ6gvn5h28+VilKrrPoQVanw5PMw/TB0
github.com/pelletier/go-toml/v2 v2.2.4/go.mod h1:2gIqNv+qfxSVS7cM2xJQKtLSTLUE9V8t9Stt+h56mCY=
github.com/pjbgf/sha1cd v0.4.0 h1:NXzbL1RvjTUi6kgYZCX3fPwwl27Q1LJndxtUDVfJGRY=
github.com/pjbgf/sha1cd v0.4.0/go.mod h1:zQWigSxVmsHEZow5qaLtPYxpcKMMQpa09ixqBxuCS6A=
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c h1:+mdjkGKdHQG3305AYmdv1U2eRNDiU2ErMBj1gwrq8eQ=
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c/go.mod h1:7rwL4CYBLnjLxUqIJNnCWiEdr3bn6IUYi15bNlnbCCU=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2 h1:Jamvg5psRIccs7FGNTlIRMkT8wgtp5eCXdBlqhYGL6U=
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/rivo/uniseg v0.1.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
github.com/rogpeppe/go-internal v1.14.1 h1:UQB4HGPB6osV0SQTLymcB4TgvyWu6ZyliaW0tI/otEQ=
github.com/rogpeppe/go-internal v1.14.1/go.mod h1:MaRKkUm5W0goXpeCfT7UZI6fk/L7L7so1lCWt35ZSgc=
@@ -226,8 +246,8 @@ github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
github.com/stretchr/testify v1.10.0 h1:Xv5erBjTwe/5IxqUQTdXv5kgmIvbHo3QQyRwhJsOfJA=
github.com/stretchr/testify v1.10.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
github.com/tidwall/gjson v1.14.2/go.mod h1:/wbyibRr2FHMks5tjHJ5F8dMZh3AcwJEMf5vlfC0lxk=
github.com/tidwall/gjson v1.18.0 h1:FIDeeyB800efLX89e5a8Y0BNH+LOngJyGrIWxG2FKQY=
github.com/tidwall/gjson v1.18.0/go.mod h1:/wbyibRr2FHMks5tjHJ5F8dMZh3AcwJEMf5vlfC0lxk=
@@ -268,8 +288,8 @@ golang.org/x/crypto v0.13.0/go.mod h1:y6Z2r+Rw4iayiXXAIxJIDAJ1zMW4yaTpebo8fPOliY
golang.org/x/crypto v0.19.0/go.mod h1:Iy9bg/ha4yyC70EfRS8jz+B6ybOBKMaSxLj6P6oBDfU=
golang.org/x/crypto v0.23.0/go.mod h1:CKFgDieR+mRhux2Lsu27y0fO304Db0wZe70UKqHu0v8=
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
golang.org/x/crypto v0.40.0 h1:r4x+VvoG5Fm+eJcxMaY8CQM7Lb0l1lsmjGBQ6s8BfKM=
golang.org/x/crypto v0.40.0/go.mod h1:Qr1vMER5WyS2dfPHAlsOj01wgLbsyWtFn/aY+5+ZdxY=
golang.org/x/crypto v0.41.0 h1:WKYxWedPGCTVVl5+WHSSrOBT0O8lx32+zxmHxijgXp4=
golang.org/x/crypto v0.41.0/go.mod h1:pO5AFd7FA68rFak7rOAGVuygIISepHftHnr8dr6+sUc=
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b h1:QoALfVG9rhQ/M7vYDScfPdWjGL9dlsVVM5VGh7aKoAA=
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b/go.mod h1:U6Lno4MTRCDY+Ba7aCcauB9T60gsv5s4ralQzP72ZoQ=
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=
@@ -287,8 +307,8 @@ golang.org/x/net v0.15.0/go.mod h1:idbUs1IY1+zTqbi8yxTbhexhEEk5ur9LInksu6HrEpk=
golang.org/x/net v0.21.0/go.mod h1:bIjVDfnllIU7BJ2DNgfnXvpSvtn8VRwhlsaeUTyUS44=
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
golang.org/x/net v0.33.0/go.mod h1:HXLR5J+9DxmrqMwG9qjGCxZ+zKXxBru04zlTvWlWuN4=
golang.org/x/net v0.41.0 h1:vBTly1HeNPEn3wtREYfy4GZ/NECgw2Cnl+nK6Nz3uvw=
golang.org/x/net v0.41.0/go.mod h1:B/K4NNqkfmg07DQYrbwvSluqCJOOXwUjeb/5lOisjbA=
golang.org/x/net v0.43.0 h1:lat02VYK2j4aLzMzecihNvTlJNQUq316m2Mr9rnM6YE=
golang.org/x/net v0.43.0/go.mod h1:vhO1fvI4dGsIjh73sWfUVjj3N7CA9WkKJNQm2svM6Jg=
golang.org/x/oauth2 v0.30.0 h1:dnDm7JmhM45NNpd8FDDeLhK6FwqbOf4MLCM9zb1BOHI=
golang.org/x/oauth2 v0.30.0/go.mod h1:B++QgG3ZKulg6sRPGD/mqlHQs5rB3Ml9erfeDY7xKlU=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@@ -316,8 +336,8 @@ golang.org/x/sys v0.12.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.17.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.20.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.28.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.34.0 h1:H5Y5sJ2L2JRdyv7ROF1he/lPdvFsd0mJHFw2ThKHxLA=
golang.org/x/sys v0.34.0/go.mod h1:BJP2sWEmIv4KK5OTEluFJCKSidICx8ciO85XgH3Ak8k=
golang.org/x/sys v0.35.0 h1:vz1N37gP5bs89s7He8XuIYXpyY0+QlsKmzipCbUtyxI=
golang.org/x/sys v0.35.0/go.mod h1:BJP2sWEmIv4KK5OTEluFJCKSidICx8ciO85XgH3Ak8k=
golang.org/x/telemetry v0.0.0-20240228155512-f48c80bd79b2/go.mod h1:TeRTkGYfJXctD9OcfyVLyj2J3IxLnKwHJR8f4D8a3YE=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
@@ -327,8 +347,8 @@ golang.org/x/term v0.12.0/go.mod h1:owVbMEjm3cBLCHdkQu9b1opXd4ETQWc3BhuQGKgXgvU=
golang.org/x/term v0.17.0/go.mod h1:lLRBjIVuehSbZlaOtGMbcMncT+aqLLLmKrsjNrUguwk=
golang.org/x/term v0.20.0/go.mod h1:8UkIAJTvZgivsXaD6/pH6U9ecQzZ45awqEOzuCvwpFY=
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
golang.org/x/term v0.33.0 h1:NuFncQrRcaRvVmgRkvM3j/F00gWIAlcmlB8ACEKmGIg=
golang.org/x/term v0.33.0/go.mod h1:s18+ql9tYWp1IfpV9DmCtQDDSRBUjKaw9M1eAv5UeF0=
golang.org/x/term v0.34.0 h1:O/2T7POpk0ZZ7MAzMeWFSg6S5IpWd/RXDlM9hgM3DR4=
golang.org/x/term v0.34.0/go.mod h1:5jC53AEywhIVebHgPVeg0mj8OD3VO9OzclacVrqpaAw=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
@@ -339,8 +359,8 @@ golang.org/x/text v0.13.0/go.mod h1:TvPlkZtksWOMsz7fbANvkp4WM8x/WCo/om8BMLbz+aE=
golang.org/x/text v0.14.0/go.mod h1:18ZOQIKpY8NJVqYksKHtTdi31H5itFRjB5/qKTNYzSU=
golang.org/x/text v0.15.0/go.mod h1:18ZOQIKpY8NJVqYksKHtTdi31H5itFRjB5/qKTNYzSU=
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
golang.org/x/text v0.27.0 h1:4fGWRpyh641NLlecmyl4LOe6yDdfaYNrGb2zdfo4JV4=
golang.org/x/text v0.27.0/go.mod h1:1D28KMCvyooCX9hBiosv5Tz/+YLxj0j7XhWjpSUF7CU=
golang.org/x/text v0.28.0 h1:rhazDwis8INMIwQ4tpjLDzUhx6RlXqZNPEM0huQojng=
golang.org/x/text v0.28.0/go.mod h1:U8nCwOR8jO/marOQ0QbDiOngZVEBB7MAiitBuMjXiNU=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.1.12/go.mod h1:hNGJHUnrk76NpqgfD5Aqm5Crs+Hm0VOH/i9J2+nxYbc=
@@ -349,20 +369,20 @@ golang.org/x/tools v0.13.0/go.mod h1:HvlwmtVNQAhOuCjW7xxvovg8wbNq7LwfXh/k7wXUl58
golang.org/x/tools v0.21.1-0.20240508182429-e35e4ccd0d2d/go.mod h1:aiJjzUbINMkxbQROHiO6hDPo2LHcIPhhQsa9DLh0yGk=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
google.golang.org/api v0.236.0 h1:CAiEiDVtO4D/Qja2IA9VzlFrgPnK3XVMmRoJZlSWbc0=
google.golang.org/api v0.236.0/go.mod h1:X1WF9CU2oTc+Jml1tiIxGmWFK/UZezdqEu09gcxZAj4=
google.golang.org/api v0.247.0 h1:tSd/e0QrUlLsrwMKmkbQhYVa109qIintOls2Wh6bngc=
google.golang.org/api v0.247.0/go.mod h1:r1qZOPmxXffXg6xS5uhx16Fa/UFY8QU/K4bfKrnvovM=
google.golang.org/genai v1.17.0 h1:lXYSnWShPYjxTouxRj0zF8RsNmSF+SKo7SQ7dM35NlI=
google.golang.org/genai v1.17.0/go.mod h1:QPj5NGJw+3wEOHg+PrsWwJKvG6UC84ex5FR7qAYsN/M=
google.golang.org/genproto v0.0.0-20250505200425-f936aa4a68b2 h1:1tXaIXCracvtsRxSBsYDiSBN0cuJvM7QYW+MrpIRY78=
google.golang.org/genproto v0.0.0-20250505200425-f936aa4a68b2/go.mod h1:49MsLSx0oWMOZqcpB3uL8ZOkAh1+TndpJ8ONoCBWiZk=
google.golang.org/genproto/googleapis/api v0.0.0-20250603155806-513f23925822 h1:oWVWY3NzT7KJppx2UKhKmzPq4SRe0LdCijVRwvGeikY=
google.golang.org/genproto/googleapis/api v0.0.0-20250603155806-513f23925822/go.mod h1:h3c4v36UTKzUiuaOKQ6gr3S+0hovBtUrXzTG/i3+XEc=
google.golang.org/genproto/googleapis/rpc v0.0.0-20250603155806-513f23925822 h1:fc6jSaCT0vBduLYZHYrBBNY4dsWuvgyff9noRNDdBeE=
google.golang.org/genproto/googleapis/rpc v0.0.0-20250603155806-513f23925822/go.mod h1:qQ0YXyHHx3XkvlzUtpXDkS29lDSafHMZBAZDc03LQ3A=
google.golang.org/grpc v1.73.0 h1:VIWSmpI2MegBtTuFt5/JWy2oXxtjJ/e89Z70ImfD2ok=
google.golang.org/grpc v1.73.0/go.mod h1:50sbHOUqWoCQGI8V2HQLJM0B+LMlIUjNSZmow7EVBQc=
google.golang.org/protobuf v1.36.6 h1:z1NpPI8ku2WgiWnf+t9wTPsn6eP1L7ksHUlkfLvd9xY=
google.golang.org/protobuf v1.36.6/go.mod h1:jduwjTPXsFjZGTmRluh+L6NjiWu7pchiJ2/5YcXBHnY=
google.golang.org/genproto v0.0.0-20250603155806-513f23925822 h1:rHWScKit0gvAPuOnu87KpaYtjK5zBMLcULh7gxkCXu4=
google.golang.org/genproto v0.0.0-20250603155806-513f23925822/go.mod h1:HubltRL7rMh0LfnQPkMH4NPDFEWp0jw3vixw7jEM53s=
google.golang.org/genproto/googleapis/api v0.0.0-20250818200422-3122310a409c h1:AtEkQdl5b6zsybXcbz00j1LwNodDuH6hVifIaNqk7NQ=
google.golang.org/genproto/googleapis/api v0.0.0-20250818200422-3122310a409c/go.mod h1:ea2MjsO70ssTfCjiwHgI0ZFqcw45Ksuk2ckf9G468GA=
google.golang.org/genproto/googleapis/rpc v0.0.0-20250818200422-3122310a409c h1:qXWI/sQtv5UKboZ/zUk7h+mrf/lXORyI+n9DKDAusdg=
google.golang.org/genproto/googleapis/rpc v0.0.0-20250818200422-3122310a409c/go.mod h1:gw1tLEfykwDz2ET4a12jcXt4couGAm7IwsVaTy0Sflo=
google.golang.org/grpc v1.74.2 h1:WoosgB65DlWVC9FqI82dGsZhWFNBSLjQ84bjROOpMu4=
google.golang.org/grpc v1.74.2/go.mod h1:CtQ+BGjaAIXHs/5YS3i473GqwBBa1zGQNevxdeBEXrM=
google.golang.org/protobuf v1.36.7 h1:IgrO7UwFQGJdRNXH/sQux4R1Dj1WAKcLElzeeRaXV2A=
google.golang.org/protobuf v1.36.7/go.mod h1:jduwjTPXsFjZGTmRluh+L6NjiWu7pchiJ2/5YcXBHnY=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20190902080502-41f04d3bba15/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c h1:Hei/4ADfdWqJk1ZMxUNpqntNwaWcugrBjAiHlqqRiVk=

View File

@@ -9,6 +9,7 @@ import (
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/domain"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
"github.com/danielmiessler/fabric/internal/tools/notifications"
@@ -58,12 +59,12 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
isTTSModel := isTTSModel(currentFlags.Model)
if isTTSModel && !isAudioOutput {
err = fmt.Errorf("TTS model '%s' requires audio output. Please specify an audio output file with -o flag (e.g., -o output.wav)", currentFlags.Model)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("tts_model_requires_audio_output"), currentFlags.Model))
return
}
if isAudioOutput && !isTTSModel {
err = fmt.Errorf("audio output file '%s' specified but model '%s' is not a TTS model. Please use a TTS model like gemini-2.5-flash-preview-tts", currentFlags.Output, currentFlags.Model)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("audio_output_file_specified_but_not_tts_model"), currentFlags.Output, currentFlags.Model))
return
}
@@ -75,7 +76,7 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
outputFile += ".wav"
}
if _, err = os.Stat(outputFile); err == nil {
err = fmt.Errorf("file %s already exists. Please choose a different filename or remove the existing file", outputFile)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("file_already_exists_choose_different"), outputFile))
return
}
}
@@ -95,7 +96,7 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
if !currentFlags.Stream || currentFlags.SuppressThink {
// For TTS models with audio output, show a user-friendly message instead of raw data
if isTTSModel && isAudioOutput && strings.HasPrefix(result, "FABRIC_AUDIO_DATA:") {
fmt.Printf("TTS audio generated successfully and saved to: %s\n", currentFlags.Output)
fmt.Printf(i18n.T("tts_audio_generated_successfully"), currentFlags.Output)
} else {
// print the result if it was not streamed already or suppress-think disabled streaming output
fmt.Println(result)
@@ -149,20 +150,20 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
// not grapheme clusters. As a result, complex emoji or accented characters with multiple combining
// characters may be truncated improperly. This is a limitation of the current implementation.
func sendNotification(options *domain.ChatOptions, patternName, result string) error {
title := "Fabric Command Complete"
title := i18n.T("fabric_command_complete")
if patternName != "" {
title = fmt.Sprintf("Fabric: %s Complete", patternName)
title = fmt.Sprintf(i18n.T("fabric_command_complete_with_pattern"), patternName)
}
// Limit message length for notification display (counts Unicode code points)
message := "Command completed successfully"
message := i18n.T("command_completed_successfully")
if result != "" {
maxLength := 100
runes := []rune(result)
if len(runes) > maxLength {
message = fmt.Sprintf("Output: %s...", string(runes[:maxLength]))
message = fmt.Sprintf(i18n.T("output_truncated"), string(runes[:maxLength]))
} else {
message = fmt.Sprintf("Output: %s", result)
message = fmt.Sprintf(i18n.T("output_full"), result)
}
// Clean up newlines for notification display
message = strings.ReplaceAll(message, "\n", " ")
@@ -184,7 +185,7 @@ func sendNotification(options *domain.ChatOptions, patternName, result string) e
// Use built-in notification system
notificationManager := notifications.NewNotificationManager()
if !notificationManager.IsAvailable() {
return fmt.Errorf("no notification system available")
return fmt.Errorf("%s", i18n.T("no_notification_system_available"))
}
return notificationManager.Send(title, message)

View File

@@ -6,6 +6,7 @@ import (
"strings"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins/ai/openai"
"github.com/danielmiessler/fabric/internal/tools/converter"
@@ -19,6 +20,11 @@ func Cli(version string) (err error) {
return
}
// initialize internationalization using requested language
if _, err = i18n.Init(currentFlags.Language); err != nil {
return
}
if currentFlags.Setup {
if err = ensureEnvFile(); err != nil {
return
@@ -86,7 +92,7 @@ func Cli(version string) (err error) {
// Process HTML readability if needed
if currentFlags.HtmlReadability {
if msg, cleanErr := converter.HtmlReadability(currentFlags.Message); cleanErr != nil {
fmt.Println("use original input, because can't apply html readability", cleanErr)
fmt.Println(i18n.T("html_readability_error"), cleanErr)
} else {
currentFlags.Message = msg
}

View File

@@ -13,6 +13,7 @@ import (
"github.com/danielmiessler/fabric/internal/chat"
"github.com/danielmiessler/fabric/internal/domain"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/util"
"github.com/jessevdk/go-flags"
@@ -146,9 +147,15 @@ func Init() (ret *Flags, err error) {
// Parse CLI flags first
ret = &Flags{}
parser := flags.NewParser(ret, flags.Default)
parser := flags.NewParser(ret, flags.HelpFlag|flags.PassDoubleDash)
var args []string
if args, err = parser.Parse(); err != nil {
// Check if this is a help request and handle it with our custom help
if flagsErr, ok := err.(*flags.Error); ok && flagsErr.Type == flags.ErrHelp {
CustomHelpHandler(parser, os.Stdout)
os.Exit(0)
}
return
}
debuglog.SetLevel(debuglog.LevelFromInt(ret.Debug))
@@ -275,30 +282,30 @@ func assignWithConversion(targetField, sourceField reflect.Value) error {
return nil
}
}
return fmt.Errorf("cannot convert string %q to %v", str, targetField.Kind())
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("cannot_convert_string"), str, targetField.Kind()))
}
return fmt.Errorf("unsupported conversion from %v to %v", sourceField.Kind(), targetField.Kind())
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("unsupported_conversion"), sourceField.Kind(), targetField.Kind()))
}
func loadYAMLConfig(configPath string) (*Flags, error) {
absPath, err := util.GetAbsolutePath(configPath)
if err != nil {
return nil, fmt.Errorf("invalid config path: %w", err)
return nil, fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_config_path"), err))
}
data, err := os.ReadFile(absPath)
if err != nil {
if os.IsNotExist(err) {
return nil, fmt.Errorf("config file not found: %s", absPath)
return nil, fmt.Errorf("%s", fmt.Sprintf(i18n.T("config_file_not_found"), absPath))
}
return nil, fmt.Errorf("error reading config file: %w", err)
return nil, fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_reading_config_file"), err))
}
// Use the existing Flags struct for YAML unmarshal
config := &Flags{}
if err := yaml.Unmarshal(data, config); err != nil {
return nil, fmt.Errorf("error parsing config file: %w", err)
return nil, fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_parsing_config_file"), err))
}
debuglog.Debug(debuglog.Detailed, "Config: %v\n", config)
@@ -316,7 +323,7 @@ func readStdin() (ret string, err error) {
sb.WriteString(line)
break
}
err = fmt.Errorf("error reading piped message from stdin: %w", readErr)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_reading_piped_message"), readErr))
return
} else {
sb.WriteString(line)
@@ -334,7 +341,7 @@ func validateImageFile(imagePath string) error {
// Check if file already exists
if _, err := os.Stat(imagePath); err == nil {
return fmt.Errorf("image file already exists: %s", imagePath)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("image_file_already_exists"), imagePath))
}
// Check file extension
@@ -347,7 +354,7 @@ func validateImageFile(imagePath string) error {
}
}
return fmt.Errorf("invalid image file extension '%s'. Supported formats: .png, .jpeg, .jpg, .webp", ext)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_image_file_extension"), ext))
}
// validateImageParameters validates image generation parameters
@@ -355,7 +362,7 @@ func validateImageParameters(imagePath, size, quality, background string, compre
if imagePath == "" {
// Check if any image parameters are specified without --image-file
if size != "" || quality != "" || background != "" || compression != 0 {
return fmt.Errorf("image parameters (--image-size, --image-quality, --image-background, --image-compression) can only be used with --image-file")
return fmt.Errorf("%s", i18n.T("image_parameters_require_image_file"))
}
return nil
}
@@ -371,7 +378,7 @@ func validateImageParameters(imagePath, size, quality, background string, compre
}
}
if !valid {
return fmt.Errorf("invalid image size '%s'. Supported sizes: 1024x1024, 1536x1024, 1024x1536, auto", size)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_image_size"), size))
}
}
@@ -386,7 +393,7 @@ func validateImageParameters(imagePath, size, quality, background string, compre
}
}
if !valid {
return fmt.Errorf("invalid image quality '%s'. Supported qualities: low, medium, high, auto", quality)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_image_quality"), quality))
}
}
@@ -401,7 +408,7 @@ func validateImageParameters(imagePath, size, quality, background string, compre
}
}
if !valid {
return fmt.Errorf("invalid image background '%s'. Supported backgrounds: opaque, transparent", background)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_image_background"), background))
}
}
@@ -411,17 +418,17 @@ func validateImageParameters(imagePath, size, quality, background string, compre
// Validate compression (only for jpeg/webp)
if compression != 0 { // 0 means not set
if ext != ".jpg" && ext != ".jpeg" && ext != ".webp" {
return fmt.Errorf("image compression can only be used with JPEG and WebP formats, not %s", ext)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("image_compression_jpeg_webp_only"), ext))
}
if compression < 0 || compression > 100 {
return fmt.Errorf("image compression must be between 0 and 100, got %d", compression)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("image_compression_range_error"), compression))
}
}
// Validate background transparency (only for png/webp)
if background == "transparent" {
if ext != ".png" && ext != ".webp" {
return fmt.Errorf("transparent background can only be used with PNG and WebP formats, not %s", ext)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("transparent_background_png_webp_only"), ext))
}
}

View File

@@ -455,3 +455,30 @@ func TestBuildChatOptionsWithImageParameters(t *testing.T) {
assert.Contains(t, err.Error(), "can only be used with --image-file")
})
}
func TestExtractFlag(t *testing.T) {
tests := []struct {
name string
arg string
expected string
}{
// Unix-style flags
{"long flag", "--help", "help"},
{"long flag with value", "--pattern=analyze", "pattern"},
{"short flag", "-h", "h"},
{"short flag with value", "-p=test", "p"},
{"single dash", "-", ""},
{"double dash only", "--", ""},
// Non-flags
{"regular arg", "analyze", ""},
{"path arg", "./file.txt", ""},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := extractFlag(tt.arg)
assert.Equal(t, tt.expected, result)
})
}
}

291
internal/cli/help.go Normal file
View File

@@ -0,0 +1,291 @@
package cli
import (
"fmt"
"io"
"os"
"reflect"
"runtime"
"strings"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/jessevdk/go-flags"
)
// flagDescriptionMap maps flag names to their i18n keys
var flagDescriptionMap = map[string]string{
"pattern": "choose_pattern_from_available",
"variable": "pattern_variables_help",
"context": "choose_context_from_available",
"session": "choose_session_from_available",
"attachment": "attachment_path_or_url_help",
"setup": "run_setup_for_reconfigurable_parts",
"temperature": "set_temperature",
"topp": "set_top_p",
"stream": "stream_help",
"presencepenalty": "set_presence_penalty",
"raw": "use_model_defaults_raw_help",
"frequencypenalty": "set_frequency_penalty",
"listpatterns": "list_all_patterns",
"listmodels": "list_all_available_models",
"listcontexts": "list_all_contexts",
"listsessions": "list_all_sessions",
"updatepatterns": "update_patterns",
"copy": "copy_to_clipboard",
"model": "choose_model",
"vendor": "specify_vendor_for_model",
"modelContextLength": "model_context_length_ollama",
"output": "output_to_file",
"output-session": "output_entire_session",
"latest": "number_of_latest_patterns",
"changeDefaultModel": "change_default_model",
"youtube": "youtube_url_help",
"playlist": "prefer_playlist_over_video",
"transcript": "grab_transcript_from_youtube",
"transcript-with-timestamps": "grab_transcript_with_timestamps",
"comments": "grab_comments_from_youtube",
"metadata": "output_video_metadata",
"yt-dlp-args": "additional_yt_dlp_args",
"language": "specify_language_code",
"scrape_url": "scrape_website_url",
"scrape_question": "search_question_jina",
"seed": "seed_for_lmm_generation",
"wipecontext": "wipe_context",
"wipesession": "wipe_session",
"printcontext": "print_context",
"printsession": "print_session",
"readability": "convert_html_readability",
"input-has-vars": "apply_variables_to_input",
"no-variable-replacement": "disable_pattern_variable_replacement",
"dry-run": "show_dry_run",
"serve": "serve_fabric_rest_api",
"serveOllama": "serve_fabric_api_ollama_endpoints",
"address": "address_to_bind_rest_api",
"api-key": "api_key_secure_server_routes",
"config": "path_to_yaml_config",
"version": "print_current_version",
"listextensions": "list_all_registered_extensions",
"addextension": "register_new_extension",
"rmextension": "remove_registered_extension",
"strategy": "choose_strategy_from_available",
"liststrategies": "list_all_strategies",
"listvendors": "list_all_vendors",
"shell-complete-list": "output_raw_list_shell_completion",
"search": "enable_web_search_tool",
"search-location": "set_location_web_search",
"image-file": "save_generated_image_to_file",
"image-size": "image_dimensions_help",
"image-quality": "image_quality_help",
"image-compression": "compression_level_jpeg_webp",
"image-background": "background_type_help",
"suppress-think": "suppress_thinking_tags",
"think-start-tag": "start_tag_thinking_sections",
"think-end-tag": "end_tag_thinking_sections",
"disable-responses-api": "disable_openai_responses_api",
"transcribe-file": "audio_video_file_transcribe",
"transcribe-model": "model_for_transcription",
"split-media-file": "split_media_files_ffmpeg",
"voice": "tts_voice_name",
"list-gemini-voices": "list_gemini_tts_voices",
"list-transcription-models": "list_transcription_models",
"notification": "send_desktop_notification",
"notification-command": "custom_notification_command",
"thinking": "set_reasoning_thinking_level",
"debug": "set_debug_level",
}
// TranslatedHelpWriter provides custom help output with translated descriptions
type TranslatedHelpWriter struct {
parser *flags.Parser
writer io.Writer
}
// NewTranslatedHelpWriter creates a new help writer with translations
func NewTranslatedHelpWriter(parser *flags.Parser, writer io.Writer) *TranslatedHelpWriter {
return &TranslatedHelpWriter{
parser: parser,
writer: writer,
}
}
// WriteHelp writes the help output with translated flag descriptions
func (h *TranslatedHelpWriter) WriteHelp() {
fmt.Fprintf(h.writer, "%s\n", i18n.T("usage_header"))
fmt.Fprintf(h.writer, " %s %s\n\n", h.parser.Name, i18n.T("options_placeholder"))
fmt.Fprintf(h.writer, "%s\n", i18n.T("application_options_header"))
h.writeAllFlags()
fmt.Fprintf(h.writer, "\n%s\n", i18n.T("help_options_header"))
fmt.Fprintf(h.writer, " -h, --help %s\n", i18n.T("help_message"))
}
// getTranslatedDescription gets the translated description for a flag
func (h *TranslatedHelpWriter) getTranslatedDescription(flagName string) string {
if i18nKey, exists := flagDescriptionMap[flagName]; exists {
return i18n.T(i18nKey)
}
// Fallback 1: Try to get original description from struct tag
if desc := h.getOriginalDescription(flagName); desc != "" {
return desc
}
// Fallback 2: Provide a user-friendly default message
return i18n.T("no_description_available")
}
// getOriginalDescription retrieves the original description from struct tags
func (h *TranslatedHelpWriter) getOriginalDescription(flagName string) string {
flags := &Flags{}
flagsType := reflect.TypeOf(flags).Elem()
for i := 0; i < flagsType.NumField(); i++ {
field := flagsType.Field(i)
longTag := field.Tag.Get("long")
if longTag == flagName {
if description := field.Tag.Get("description"); description != "" {
return description
}
break
}
}
return ""
}
// CustomHelpHandler handles help output with translations
func CustomHelpHandler(parser *flags.Parser, writer io.Writer) {
// Initialize i18n system with detected language if not already initialized
ensureI18nInitialized()
helpWriter := NewTranslatedHelpWriter(parser, writer)
helpWriter.WriteHelp()
}
// ensureI18nInitialized initializes the i18n system if not already done
func ensureI18nInitialized() {
// Try to detect language from command line args or environment
lang := detectLanguageFromArgs()
if lang == "" {
// Try to detect from environment variables
lang = detectLanguageFromEnv()
}
// Initialize i18n with detected language (or empty for system default)
i18n.Init(lang)
}
// detectLanguageFromArgs looks for --language/-g flag in os.Args
func detectLanguageFromArgs() string {
args := os.Args[1:]
for i, arg := range args {
if arg == "--language" || arg == "-g" || (runtime.GOOS == "windows" && arg == "/g") {
if i+1 < len(args) {
return args[i+1]
}
} else if strings.HasPrefix(arg, "--language=") {
return strings.TrimPrefix(arg, "--language=")
} else if strings.HasPrefix(arg, "-g=") {
return strings.TrimPrefix(arg, "-g=")
} else if runtime.GOOS == "windows" && strings.HasPrefix(arg, "/g:") {
return strings.TrimPrefix(arg, "/g:")
} else if runtime.GOOS == "windows" && strings.HasPrefix(arg, "/g=") {
return strings.TrimPrefix(arg, "/g=")
}
}
return ""
}
// detectLanguageFromEnv detects language from environment variables
func detectLanguageFromEnv() string {
// Check standard locale environment variables
envVars := []string{"LC_ALL", "LC_MESSAGES", "LANG"}
for _, envVar := range envVars {
if value := os.Getenv(envVar); value != "" {
// Extract language code from locale (e.g., "es_ES.UTF-8" -> "es")
if strings.Contains(value, "_") {
return strings.Split(value, "_")[0]
}
if value != "C" && value != "POSIX" {
return value
}
}
}
return ""
}
// writeAllFlags writes all flags with translated descriptions
func (h *TranslatedHelpWriter) writeAllFlags() {
// Use direct reflection on the Flags struct to get all flag definitions
flags := &Flags{}
flagsType := reflect.TypeOf(flags).Elem()
for i := 0; i < flagsType.NumField(); i++ {
field := flagsType.Field(i)
shortTag := field.Tag.Get("short")
longTag := field.Tag.Get("long")
defaultTag := field.Tag.Get("default")
if longTag == "" {
continue // Skip fields without long tags
}
// Get translated description
description := h.getTranslatedDescription(longTag)
// Format the flag line
var flagLine strings.Builder
flagLine.WriteString(" ")
if shortTag != "" {
flagLine.WriteString(fmt.Sprintf("-%s, ", shortTag))
}
flagLine.WriteString(fmt.Sprintf("--%s", longTag))
// Add parameter indicator for non-boolean flags
isBoolFlag := field.Type.Kind() == reflect.Bool ||
strings.HasSuffix(longTag, "patterns") ||
strings.HasSuffix(longTag, "models") ||
strings.HasSuffix(longTag, "contexts") ||
strings.HasSuffix(longTag, "sessions") ||
strings.HasSuffix(longTag, "extensions") ||
strings.HasSuffix(longTag, "strategies") ||
strings.HasSuffix(longTag, "vendors") ||
strings.HasSuffix(longTag, "voices") ||
longTag == "setup" || longTag == "stream" || longTag == "raw" ||
longTag == "copy" || longTag == "updatepatterns" ||
longTag == "output-session" || longTag == "changeDefaultModel" ||
longTag == "playlist" || longTag == "transcript" ||
longTag == "transcript-with-timestamps" || longTag == "comments" ||
longTag == "metadata" || longTag == "readability" ||
longTag == "input-has-vars" || longTag == "no-variable-replacement" ||
longTag == "dry-run" || longTag == "serve" || longTag == "serveOllama" ||
longTag == "version" || longTag == "shell-complete-list" ||
longTag == "search" || longTag == "suppress-think" ||
longTag == "disable-responses-api" || longTag == "split-media-file" ||
longTag == "notification"
if !isBoolFlag {
flagLine.WriteString("=")
}
// Pad to align descriptions
flagStr := flagLine.String()
padding := 34 - len(flagStr)
if padding < 2 {
padding = 2
}
fmt.Fprintf(h.writer, "%s%s%s", flagStr, strings.Repeat(" ", padding), description)
// Add default value if present
if defaultTag != "" && defaultTag != "0" && defaultTag != "false" {
fmt.Fprintf(h.writer, " (default: %s)", defaultTag)
}
fmt.Fprintf(h.writer, "\n")
}
}

View File

@@ -6,6 +6,7 @@ import (
"path/filepath"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
)
@@ -36,20 +37,20 @@ func initializeFabric() (registry *core.PluginRegistry, err error) {
func ensureEnvFile() (err error) {
var homedir string
if homedir, err = os.UserHomeDir(); err != nil {
return fmt.Errorf("could not determine user home directory: %w", err)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_determine_home_dir"), err))
}
configDir := filepath.Join(homedir, ".config", "fabric")
envPath := filepath.Join(configDir, ".env")
if _, statErr := os.Stat(envPath); statErr != nil {
if !os.IsNotExist(statErr) {
return fmt.Errorf("could not stat .env file: %w", statErr)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_stat_env_file"), statErr))
}
if err = os.MkdirAll(configDir, ConfigDirPerms); err != nil {
return fmt.Errorf("could not create config directory: %w", err)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_create_config_dir"), err))
}
if err = os.WriteFile(envPath, []byte{}, EnvFilePerms); err != nil {
return fmt.Errorf("could not create .env file: %w", err)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_create_env_file"), err))
}
}
return

View File

@@ -8,6 +8,7 @@ import (
openai "github.com/openai/openai-go"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/plugins/ai"
"github.com/danielmiessler/fabric/internal/plugins/ai/gemini"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
@@ -93,7 +94,7 @@ func listTranscriptionModels(shellComplete bool) {
fmt.Println(model)
}
} else {
fmt.Println("Available transcription models:")
fmt.Println(i18n.T("available_transcription_models"))
for _, model := range models {
fmt.Printf(" %s\n", model)
}

View File

@@ -7,29 +7,30 @@ import (
"strings"
"github.com/atotto/clipboard"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
)
func CopyToClipboard(message string) (err error) {
if err = clipboard.WriteAll(message); err != nil {
err = fmt.Errorf("could not copy to clipboard: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_copy_to_clipboard"), err))
}
return
}
func CreateOutputFile(message string, fileName string) (err error) {
if _, err = os.Stat(fileName); err == nil {
err = fmt.Errorf("file %s already exists, not overwriting. Rename the existing file or choose a different name", fileName)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("file_already_exists_not_overwriting"), fileName))
return
}
var file *os.File
if file, err = os.Create(fileName); err != nil {
err = fmt.Errorf("error creating file: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_creating_file"), err))
return
}
defer file.Close()
if _, err = file.WriteString(message); err != nil {
err = fmt.Errorf("error writing to file: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_writing_to_file"), err))
} else {
debuglog.Log("\n\n[Output also written to %s]\n", fileName)
}
@@ -46,13 +47,13 @@ func CreateAudioOutputFile(audioData []byte, fileName string) (err error) {
// File existence check is now done in the CLI layer before TTS generation
var file *os.File
if file, err = os.Create(fileName); err != nil {
err = fmt.Errorf("error creating audio file: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_creating_audio_file"), err))
return
}
defer file.Close()
if _, err = file.Write(audioData); err != nil {
err = fmt.Errorf("error writing audio data to file: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_writing_audio_data"), err))
}
// No redundant output message here - the CLI layer handles success messaging
return

View File

@@ -4,6 +4,7 @@ import (
"fmt"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/tools/youtube"
)
@@ -11,7 +12,7 @@ import (
func handleToolProcessing(currentFlags *Flags, registry *core.PluginRegistry) (messageTools string, err error) {
if currentFlags.YouTube != "" {
if !registry.YouTube.IsConfigured() {
err = fmt.Errorf("YouTube is not configured, please run the setup procedure")
err = fmt.Errorf("%s", i18n.T("youtube_not_configured"))
return
}
@@ -25,7 +26,7 @@ func handleToolProcessing(currentFlags *Flags, registry *core.PluginRegistry) (m
} else {
var videos []*youtube.VideoMeta
if videos, err = registry.YouTube.FetchPlaylistVideos(playlistId); err != nil {
err = fmt.Errorf("error fetching playlist videos: %w", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_fetching_playlist_videos"), err))
return
}
@@ -58,7 +59,7 @@ func handleToolProcessing(currentFlags *Flags, registry *core.PluginRegistry) (m
if currentFlags.ScrapeURL != "" || currentFlags.ScrapeQuestion != "" {
if !registry.Jina.IsConfigured() {
err = fmt.Errorf("scraping functionality is not configured. Please set up Jina to enable scraping")
err = fmt.Errorf("%s", i18n.T("scraping_not_configured"))
return
}
// Check if the scrape_url flag is set and call ScrapeURL

View File

@@ -5,6 +5,7 @@ import (
"fmt"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
)
type transcriber interface {
@@ -18,15 +19,15 @@ func handleTranscription(flags *Flags, registry *core.PluginRegistry) (message s
}
vendor, ok := registry.VendorManager.VendorsByName[vendorName]
if !ok {
return "", fmt.Errorf("vendor %s not configured", vendorName)
return "", fmt.Errorf("%s", fmt.Sprintf(i18n.T("vendor_not_configured"), vendorName))
}
tr, ok := vendor.(transcriber)
if !ok {
return "", fmt.Errorf("vendor %s does not support audio transcription", vendorName)
return "", fmt.Errorf("%s", fmt.Sprintf(i18n.T("vendor_no_transcription_support"), vendorName))
}
model := flags.TranscribeModel
if model == "" {
return "", fmt.Errorf("transcription model is required (use --transcribe-model)")
return "", fmt.Errorf("%s", i18n.T("transcription_model_required"))
}
if message, err = tr.TranscribeFile(context.Background(), flags.TranscribeFile, model, flags.SplitMediaFile); err != nil {
return

View File

@@ -10,6 +10,7 @@ import (
"strconv"
"strings"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins/ai/anthropic"
"github.com/danielmiessler/fabric/internal/plugins/ai/azure"
@@ -131,7 +132,7 @@ func (o *PluginRegistry) ListVendors(out io.Writer) error {
vendors := lo.Map(o.VendorsAll.Vendors, func(vendor ai.Vendor, _ int) string {
return vendor.GetName()
})
fmt.Fprint(out, "Available Vendors:\n\n")
fmt.Fprintf(out, "%s\n\n", i18n.T("available_vendors_header"))
for _, vendor := range vendors {
fmt.Fprintf(out, "%s\n", vendor)
}

240
internal/i18n/i18n.go Normal file
View File

@@ -0,0 +1,240 @@
package i18n
import (
"embed"
"encoding/json"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"strings"
"sync"
"github.com/nicksnyder/go-i18n/v2/i18n"
"golang.org/x/text/language"
)
// embedded default locales
//
//go:embed locales/*.json
var localeFS embed.FS
var (
translator *i18n.Localizer
initOnce sync.Once
)
// defaultLanguageVariants maps language codes without regions to their default regional variants.
// This is used when a language without a base file is requested.
var defaultLanguageVariants = map[string]string{
"pt": "pt-BR", // Portuguese defaults to Brazilian Portuguese for backward compatibility
// Note: We currently have base files for these languages, but if we add regional variants
// in the future, these defaults will be used:
// "de": "de-DE", // German would default to Germany German
// "en": "en-US", // English would default to US English
// "es": "es-ES", // Spanish would default to Spain Spanish
// "fa": "fa-IR", // Persian would default to Iran Persian
// "fr": "fr-FR", // French would default to France French
// "it": "it-IT", // Italian would default to Italy Italian
// "ja": "ja-JP", // Japanese would default to Japan Japanese
// "zh": "zh-CN", // Chinese would default to Simplified Chinese
}
// Init initializes the i18n bundle and localizer. It loads the specified locale
// and falls back to English if loading fails.
// Translation files are searched in the user config directory and downloaded
// from GitHub if missing.
//
// If locale is empty, it will attempt to detect the system locale from
// environment variables (LC_ALL, LC_MESSAGES, LANG) following POSIX standards.
func Init(locale string) (*i18n.Localizer, error) {
// Use preferred locale detection if no explicit locale provided
locale = getPreferredLocale(locale)
// Normalize the locale to BCP 47 format (with hyphens)
locale = normalizeToBCP47(locale)
if locale == "" {
locale = "en"
}
bundle := i18n.NewBundle(language.English)
bundle.RegisterUnmarshalFunc("json", json.Unmarshal)
// Build a list of locale candidates to try
locales := getLocaleCandidates(locale)
// Try to load embedded translations for each candidate
embedded := false
for _, candidate := range locales {
if data, err := localeFS.ReadFile("locales/" + candidate + ".json"); err == nil {
_, _ = bundle.ParseMessageFileBytes(data, candidate+".json")
embedded = true
locale = candidate // Update locale to what was actually loaded
break
}
}
// Fall back to English if nothing was loaded
if !embedded {
if data, err := localeFS.ReadFile("locales/en.json"); err == nil {
_, _ = bundle.ParseMessageFileBytes(data, "en.json")
}
}
// load locale from disk or download when not embedded
path := filepath.Join(userLocaleDir(), locale+".json")
if _, err := os.Stat(path); os.IsNotExist(err) && !embedded {
if err := downloadLocale(path, locale); err != nil {
// if download fails, still continue with embedded translations
fmt.Fprintf(os.Stderr, "%s\n", fmt.Sprintf(getErrorMessage("i18n_download_failed", "Failed to download translation for language '%s': %v"), locale, err))
}
}
if _, err := os.Stat(path); err == nil {
if _, err := bundle.LoadMessageFile(path); err != nil {
fmt.Fprintf(os.Stderr, "%s\n", fmt.Sprintf(getErrorMessage("i18n_load_failed", "Failed to load translation file: %v"), err))
}
}
translator = i18n.NewLocalizer(bundle, locale)
return translator, nil
}
// T returns the localized string for the given message id.
// If the translator is not initialized, it will automatically initialize
// with system locale detection.
func T(messageID string) string {
initOnce.Do(func() {
if translator == nil {
Init("") // Empty string triggers system locale detection
}
})
return translator.MustLocalize(&i18n.LocalizeConfig{MessageID: messageID})
}
func userLocaleDir() string {
dir, err := os.UserConfigDir()
if err != nil {
dir = "."
}
path := filepath.Join(dir, "fabric", "locales")
os.MkdirAll(path, 0o755)
return path
}
func downloadLocale(path, locale string) error {
url := fmt.Sprintf("https://raw.githubusercontent.com/danielmiessler/Fabric/main/internal/i18n/locales/%s.json", locale)
resp, err := http.Get(url)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("unexpected status: %s", resp.Status)
}
f, err := os.Create(path)
if err != nil {
return err
}
defer f.Close()
_, err = io.Copy(f, resp.Body)
return err
}
// getErrorMessage tries to get a translated error message, falling back to system locale
// and then to the provided fallback message. This is used during initialization when
// the translator may not be fully ready.
func getErrorMessage(messageID, fallback string) string {
// Try to get system locale for error messages
systemLocale := getPreferredLocale("")
if systemLocale == "" {
systemLocale = "en"
}
// First try the system locale
if msg := tryGetMessage(systemLocale, messageID); msg != "" {
return msg
}
// Fall back to English
if systemLocale != "en" {
if msg := tryGetMessage("en", messageID); msg != "" {
return msg
}
}
// Final fallback to hardcoded message
return fallback
}
// tryGetMessage attempts to get a message from embedded locale files
func tryGetMessage(locale, messageID string) string {
if data, err := localeFS.ReadFile("locales/" + locale + ".json"); err == nil {
var messages map[string]string
if json.Unmarshal(data, &messages) == nil {
if msg, exists := messages[messageID]; exists {
return msg
}
}
}
return ""
}
// normalizeToBCP47 normalizes a locale string to BCP 47 format.
// Converts underscores to hyphens and ensures proper casing (language-REGION).
func normalizeToBCP47(locale string) string {
if locale == "" {
return ""
}
// Replace underscores with hyphens
locale = strings.ReplaceAll(locale, "_", "-")
// Split into parts
parts := strings.Split(locale, "-")
if len(parts) == 1 {
// Language only, lowercase it
return strings.ToLower(parts[0])
} else if len(parts) >= 2 {
// Language and region (and possibly more)
// Lowercase language, uppercase region
parts[0] = strings.ToLower(parts[0])
parts[1] = strings.ToUpper(parts[1])
return strings.Join(parts[:2], "-") // Return only language-REGION
}
return locale
}
// getLocaleCandidates returns a list of locale candidates to try, in order of preference.
// For example, for "pt-PT" it returns ["pt-PT", "pt", "pt-BR"] (where pt-BR is the default for pt).
func getLocaleCandidates(locale string) []string {
candidates := []string{}
if locale == "" {
return candidates
}
// First candidate is always the requested locale
candidates = append(candidates, locale)
// If it's a regional variant, add the base language as a candidate
if strings.Contains(locale, "-") {
baseLang := strings.Split(locale, "-")[0]
candidates = append(candidates, baseLang)
// Also check if the base language has a default variant
if defaultVariant, exists := defaultLanguageVariants[baseLang]; exists {
// Only add if it's different from what we already have
if defaultVariant != locale {
candidates = append(candidates, defaultVariant)
}
}
} else {
// If this is a base language without a region, check for default variant
if defaultVariant, exists := defaultLanguageVariants[locale]; exists {
candidates = append(candidates, defaultVariant)
}
}
return candidates
}

View File

@@ -0,0 +1,40 @@
package i18n
import (
"testing"
gi18n "github.com/nicksnyder/go-i18n/v2/i18n"
)
func TestTranslation(t *testing.T) {
testCases := []struct {
lang string
expected string
}{
{"es", "usa la entrada original, porque no se puede aplicar la legibilidad de html"},
{"en", "use original input, because can't apply html readability"},
{"zh", "使用原始输入,因为无法应用 HTML 可读性处理"},
{"de", "verwende ursprüngliche Eingabe, da HTML-Lesbarkeit nicht angewendet werden kann"},
{"ja", "HTML可読性を適用できないため、元の入力を使用します"},
{"fr", "utilise l'entrée originale, car la lisibilité HTML ne peut pas être appliquée"},
{"pt", "usa a entrada original, porque não é possível aplicar a legibilidade HTML"},
{"fa", "از ورودی اصلی استفاده کن، چون نمی‌توان خوانایی HTML را اعمال کرد"},
{"it", "usa l'input originale, perché non è possibile applicare la leggibilità HTML"},
}
for _, tc := range testCases {
t.Run(tc.lang, func(t *testing.T) {
loc, err := Init(tc.lang)
if err != nil {
t.Fatalf("init failed for %s: %v", tc.lang, err)
}
msg, err := loc.Localize(&gi18n.LocalizeConfig{MessageID: "html_readability_error"})
if err != nil {
t.Fatalf("localize failed for %s: %v", tc.lang, err)
}
if msg != tc.expected {
t.Fatalf("unexpected translation for %s: got %s, expected %s", tc.lang, msg, tc.expected)
}
})
}
}

View File

@@ -0,0 +1,175 @@
package i18n
import (
"testing"
goi18n "github.com/nicksnyder/go-i18n/v2/i18n"
)
func TestNormalizeToBCP47(t *testing.T) {
tests := []struct {
input string
expected string
}{
// Basic cases
{"pt", "pt"},
{"pt-BR", "pt-BR"},
{"pt-PT", "pt-PT"},
// Underscore normalization
{"pt_BR", "pt-BR"},
{"pt_PT", "pt-PT"},
{"en_US", "en-US"},
// Mixed case normalization
{"pt-br", "pt-BR"},
{"PT-BR", "pt-BR"},
{"Pt-Br", "pt-BR"},
{"pT-bR", "pt-BR"},
// Language only cases
{"EN", "en"},
{"Pt", "pt"},
{"ZH", "zh"},
// Empty string
{"", ""},
}
for _, tt := range tests {
t.Run(tt.input, func(t *testing.T) {
result := normalizeToBCP47(tt.input)
if result != tt.expected {
t.Errorf("normalizeToBCP47(%q) = %q; want %q", tt.input, result, tt.expected)
}
})
}
}
func TestGetLocaleCandidates(t *testing.T) {
tests := []struct {
input string
expected []string
}{
// Portuguese variants
{"pt-PT", []string{"pt-PT", "pt", "pt-BR"}}, // pt-BR is default for pt
{"pt-BR", []string{"pt-BR", "pt"}}, // pt-BR doesn't need default since it IS the default
{"pt", []string{"pt", "pt-BR"}}, // pt defaults to pt-BR
// Other languages without default variants
{"en-US", []string{"en-US", "en"}},
{"en", []string{"en"}},
{"fr-FR", []string{"fr-FR", "fr"}},
{"zh-CN", []string{"zh-CN", "zh"}},
// Empty
{"", []string{}},
}
for _, tt := range tests {
t.Run(tt.input, func(t *testing.T) {
result := getLocaleCandidates(tt.input)
if len(result) != len(tt.expected) {
t.Errorf("getLocaleCandidates(%q) returned %d candidates; want %d",
tt.input, len(result), len(tt.expected))
t.Errorf(" got: %v", result)
t.Errorf(" want: %v", tt.expected)
return
}
for i, candidate := range result {
if candidate != tt.expected[i] {
t.Errorf("getLocaleCandidates(%q)[%d] = %q; want %q",
tt.input, i, candidate, tt.expected[i])
}
}
})
}
}
func TestPortugueseVariantLoading(t *testing.T) {
// Test that both Portuguese variants can be loaded
testCases := []struct {
locale string
desc string
}{
{"pt", "Portuguese (defaults to Brazilian)"},
{"pt-BR", "Brazilian Portuguese"},
{"pt-PT", "European Portuguese"},
{"pt_BR", "Brazilian Portuguese with underscore"},
{"pt_PT", "European Portuguese with underscore"},
}
for _, tc := range testCases {
t.Run(tc.desc, func(t *testing.T) {
localizer, err := Init(tc.locale)
if err != nil {
t.Errorf("Init(%q) failed: %v", tc.locale, err)
return
}
if localizer == nil {
t.Errorf("Init(%q) returned nil localizer", tc.locale)
}
// Try to get a message to verify it loaded correctly
msg := localizer.MustLocalize(&goi18n.LocalizeConfig{MessageID: "help_message"})
if msg == "" {
t.Errorf("Failed to localize message for locale %q", tc.locale)
}
})
}
}
func TestPortugueseVariantDistinction(t *testing.T) {
// Test that pt-BR and pt-PT return different translations
localizerBR, err := Init("pt-BR")
if err != nil {
t.Fatalf("Failed to init pt-BR: %v", err)
}
localizerPT, err := Init("pt-PT")
if err != nil {
t.Fatalf("Failed to init pt-PT: %v", err)
}
// Check a key that should differ between variants
// "output_to_file" should be "Exportar para arquivo" in pt-BR and "Saída para ficheiro" in pt-PT
msgBR := localizerBR.MustLocalize(&goi18n.LocalizeConfig{MessageID: "output_to_file"})
msgPT := localizerPT.MustLocalize(&goi18n.LocalizeConfig{MessageID: "output_to_file"})
if msgBR == msgPT {
t.Errorf("pt-BR and pt-PT returned the same translation for 'output_to_file': %q", msgBR)
}
// Verify specific expected values
if msgBR != "Exportar para arquivo" {
t.Errorf("pt-BR 'output_to_file' = %q; want 'Exportar para arquivo'", msgBR)
}
if msgPT != "Saída para ficheiro" {
t.Errorf("pt-PT 'output_to_file' = %q; want 'Saída para ficheiro'", msgPT)
}
}
func TestBackwardCompatibility(t *testing.T) {
// Test that requesting "pt" still works and defaults to pt-BR
localizerPT, err := Init("pt")
if err != nil {
t.Fatalf("Failed to init 'pt': %v", err)
}
localizerBR, err := Init("pt-BR")
if err != nil {
t.Fatalf("Failed to init 'pt-BR': %v", err)
}
// Both should return the same Brazilian Portuguese translation
msgPT := localizerPT.MustLocalize(&goi18n.LocalizeConfig{MessageID: "output_to_file"})
msgBR := localizerBR.MustLocalize(&goi18n.LocalizeConfig{MessageID: "output_to_file"})
if msgPT != msgBR {
t.Errorf("'pt' and 'pt-BR' returned different translations: %q vs %q", msgPT, msgBR)
}
if msgPT != "Exportar para arquivo" {
t.Errorf("'pt' did not default to Brazilian Portuguese. Got %q, want 'Exportar para arquivo'", msgPT)
}
}

94
internal/i18n/locale.go Normal file
View File

@@ -0,0 +1,94 @@
package i18n
import (
"os"
"strings"
"golang.org/x/text/language"
)
// detectSystemLocale detects the system locale using standard Unix environment variables.
// Follows the POSIX priority order for locale environment variables:
// 1. LC_ALL (highest priority - overrides all others)
// 2. LC_MESSAGES (for messages specifically)
// 3. LANG (general locale setting)
// 4. Returns empty string if none are set or valid
//
// This implementation follows POSIX standards and Unix best practices for locale detection.
func detectSystemLocale() string {
// Check environment variables in priority order
envVars := []string{"LC_ALL", "LC_MESSAGES", "LANG"}
for _, envVar := range envVars {
if value := os.Getenv(envVar); value != "" {
locale := normalizeLocale(value)
if locale != "" && isValidLocale(locale) {
return locale
}
}
}
return ""
}
// normalizeLocale converts various locale formats to BCP 47 language tags.
// Examples:
// - "en_US.UTF-8" -> "en-US"
// - "fr_FR@euro" -> "fr-FR"
// - "zh_CN.GB2312" -> "zh-CN"
// - "C" or "POSIX" -> "" (invalid, falls back to default)
func normalizeLocale(locale string) string {
// Handle special cases
if locale == "C" || locale == "POSIX" || locale == "" {
return ""
}
// Remove encoding and modifiers
// Examples: en_US.UTF-8@euro -> en_US
locale = strings.Split(locale, ".")[0] // Remove encoding (.UTF-8)
locale = strings.Split(locale, "@")[0] // Remove modifiers (@euro)
// Convert underscore to hyphen for BCP 47 compliance
// en_US -> en-US
locale = strings.ReplaceAll(locale, "_", "-")
// Ensure proper BCP 47 casing: language-REGION
parts := strings.Split(locale, "-")
if len(parts) >= 2 {
// Lowercase language, uppercase region
parts[0] = strings.ToLower(parts[0])
parts[1] = strings.ToUpper(parts[1])
locale = strings.Join(parts[:2], "-") // Only keep language-REGION
} else if len(parts) == 1 {
// Language only, lowercase it
locale = strings.ToLower(parts[0])
}
return locale
}
// isValidLocale checks if a locale string can be parsed as a valid language tag.
func isValidLocale(locale string) bool {
if locale == "" {
return false
}
// Use golang.org/x/text/language to validate
_, err := language.Parse(locale)
return err == nil
}
// getPreferredLocale returns the best locale to use based on user preferences.
// Priority order:
// 1. Explicit language flag (if provided)
// 2. System environment variables (LC_ALL, LC_MESSAGES, LANG)
// 3. Default fallback (empty string, which triggers "en" in Init)
func getPreferredLocale(explicitLang string) string {
// If explicitly set via flag, use that
if explicitLang != "" {
return explicitLang
}
// Otherwise try to detect from system environment
return detectSystemLocale()
}

View File

@@ -0,0 +1,288 @@
package i18n
import (
"os"
"testing"
)
func TestDetectSystemLocale(t *testing.T) {
// Save original environment
originalLC_ALL := os.Getenv("LC_ALL")
originalLC_MESSAGES := os.Getenv("LC_MESSAGES")
originalLANG := os.Getenv("LANG")
// Clean up after test
defer func() {
os.Setenv("LC_ALL", originalLC_ALL)
os.Setenv("LC_MESSAGES", originalLC_MESSAGES)
os.Setenv("LANG", originalLANG)
}()
tests := []struct {
name string
LC_ALL string
LC_MESSAGES string
LANG string
expected string
description string
}{
{
name: "LC_ALL takes highest priority",
LC_ALL: "fr_FR.UTF-8",
LC_MESSAGES: "de_DE.UTF-8",
LANG: "es_ES.UTF-8",
expected: "fr-FR",
description: "LC_ALL should override all other variables",
},
{
name: "LC_MESSAGES used when LC_ALL empty",
LC_ALL: "",
LC_MESSAGES: "ja_JP.UTF-8",
LANG: "ko_KR.UTF-8",
expected: "ja-JP",
description: "LC_MESSAGES should be used when LC_ALL is not set",
},
{
name: "LANG used when LC_ALL and LC_MESSAGES empty",
LC_ALL: "",
LC_MESSAGES: "",
LANG: "zh_CN.GB2312",
expected: "zh-CN",
description: "LANG should be fallback when others are not set",
},
{
name: "Empty when no valid locale set",
LC_ALL: "",
LC_MESSAGES: "",
LANG: "",
expected: "",
description: "Should return empty when no environment variables set",
},
{
name: "Handle C locale",
LC_ALL: "C",
LC_MESSAGES: "",
LANG: "",
expected: "",
description: "C locale should be treated as invalid (fallback to default)",
},
{
name: "Handle POSIX locale",
LC_ALL: "",
LC_MESSAGES: "POSIX",
LANG: "",
expected: "",
description: "POSIX locale should be treated as invalid (fallback to default)",
},
{
name: "Handle locale with modifiers",
LC_ALL: "",
LC_MESSAGES: "",
LANG: "de_DE.UTF-8@euro",
expected: "de-DE",
description: "Should strip encoding and modifiers",
},
{
name: "Skip invalid locale and use next priority",
LC_ALL: "invalid_locale",
LC_MESSAGES: "fr_CA.UTF-8",
LANG: "en_US.UTF-8",
expected: "fr-CA",
description: "Should skip invalid high-priority locale and use next valid one",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Set test environment
os.Setenv("LC_ALL", tt.LC_ALL)
os.Setenv("LC_MESSAGES", tt.LC_MESSAGES)
os.Setenv("LANG", tt.LANG)
result := detectSystemLocale()
if result != tt.expected {
t.Errorf("%s: expected %q, got %q", tt.description, tt.expected, result)
}
})
}
}
func TestNormalizeLocale(t *testing.T) {
tests := []struct {
input string
expected string
}{
// Standard Unix locale formats
{"en_US.UTF-8", "en-US"},
{"fr_FR.ISO8859-1", "fr-FR"},
{"de_DE@euro", "de-DE"},
{"zh_CN.GB2312", "zh-CN"},
{"ja_JP.eucJP@traditional", "ja-JP"},
// Already normalized
{"en-US", "en-US"},
{"fr-CA", "fr-CA"},
// Language only
{"en", "en"},
{"fr", "fr"},
{"zh", "zh"},
// Special cases
{"C", ""},
{"POSIX", ""},
{"", ""},
// Complex cases
{"pt_BR.UTF-8@currency=BRL", "pt-BR"},
{"sr_RS.UTF-8@latin", "sr-RS"},
{"uz_UZ.UTF-8@cyrillic", "uz-UZ"},
}
for _, tt := range tests {
t.Run(tt.input, func(t *testing.T) {
result := normalizeLocale(tt.input)
if result != tt.expected {
t.Errorf("normalizeLocale(%q): expected %q, got %q", tt.input, tt.expected, result)
}
})
}
}
func TestIsValidLocale(t *testing.T) {
tests := []struct {
input string
expected bool
}{
// Valid locales
{"en", true},
{"en-US", true},
{"fr-FR", true},
{"zh-CN", true},
{"ja-JP", true},
{"pt-BR", true},
{"es-MX", true},
// Invalid locales
{"", false},
{"invalid", false},
{"123", false}, // Numbers
// Note: golang.org/x/text/language is quite lenient and accepts:
// - "en-ZZ" (unknown country codes are allowed)
// - "en_US" (underscores are normalized to hyphens)
// These are actually valid according to the language package
}
for _, tt := range tests {
t.Run(tt.input, func(t *testing.T) {
result := isValidLocale(tt.input)
if result != tt.expected {
t.Errorf("isValidLocale(%q): expected %v, got %v", tt.input, tt.expected, result)
}
})
}
}
func TestGetPreferredLocale(t *testing.T) {
// Save original environment
originalLC_ALL := os.Getenv("LC_ALL")
originalLC_MESSAGES := os.Getenv("LC_MESSAGES")
originalLANG := os.Getenv("LANG")
// Clean up after test
defer func() {
os.Setenv("LC_ALL", originalLC_ALL)
os.Setenv("LC_MESSAGES", originalLC_MESSAGES)
os.Setenv("LANG", originalLANG)
}()
tests := []struct {
name string
explicitLang string
LC_ALL string
LC_MESSAGES string
LANG string
expected string
description string
}{
{
name: "Explicit language takes precedence",
explicitLang: "es-ES",
LC_ALL: "fr_FR.UTF-8",
LC_MESSAGES: "de_DE.UTF-8",
LANG: "ja_JP.UTF-8",
expected: "es-ES",
description: "Explicit language should override environment variables",
},
{
name: "Use environment when no explicit language",
explicitLang: "",
LC_ALL: "it_IT.UTF-8",
LC_MESSAGES: "ru_RU.UTF-8",
LANG: "pl_PL.UTF-8",
expected: "it-IT",
description: "Should detect from environment when no explicit language",
},
{
name: "Empty when no explicit and no environment",
explicitLang: "",
LC_ALL: "",
LC_MESSAGES: "",
LANG: "",
expected: "",
description: "Should return empty when nothing is set",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Set test environment
os.Setenv("LC_ALL", tt.LC_ALL)
os.Setenv("LC_MESSAGES", tt.LC_MESSAGES)
os.Setenv("LANG", tt.LANG)
result := getPreferredLocale(tt.explicitLang)
if result != tt.expected {
t.Errorf("%s: expected %q, got %q", tt.description, tt.expected, result)
}
})
}
}
func TestIntegrationWithInit(t *testing.T) {
// Save original environment
originalLC_ALL := os.Getenv("LC_ALL")
originalLANG := os.Getenv("LANG")
// Clean up after test
defer func() {
os.Setenv("LC_ALL", originalLC_ALL)
os.Setenv("LANG", originalLANG)
translator = nil // Reset global state
}()
// Test that Init uses environment variables when no explicit locale provided
os.Setenv("LC_ALL", "es_ES.UTF-8")
os.Setenv("LANG", "fr_FR.UTF-8")
localizer, err := Init("")
if err != nil {
t.Fatalf("Init failed: %v", err)
}
if localizer == nil {
t.Error("Expected non-nil localizer")
}
// Reset translator to test T() function auto-initialization
translator = nil
os.Setenv("LC_ALL", "")
os.Setenv("LANG", "es_ES.UTF-8")
// This should trigger auto-initialization with environment detection
result := T("html_readability_error")
if result == "" {
t.Error("Expected non-empty translation result")
}
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "verwende ursprüngliche Eingabe, da HTML-Lesbarkeit nicht angewendet werden kann",
"vendor_not_configured": "Anbieter %s ist nicht konfiguriert",
"vendor_no_transcription_support": "Anbieter %s unterstützt keine Audio-Transkription",
"transcription_model_required": "Transkriptionsmodell ist erforderlich (verwende --transcribe-model)",
"youtube_not_configured": "YouTube ist nicht konfiguriert, bitte führe das Setup-Verfahren aus",
"error_fetching_playlist_videos": "Fehler beim Abrufen der Playlist-Videos: %w",
"scraping_not_configured": "Scraping-Funktionalität ist nicht konfiguriert. Bitte richte Jina ein, um Scraping zu aktivieren",
"could_not_determine_home_dir": "konnte Benutzer-Home-Verzeichnis nicht bestimmen: %w",
"could_not_stat_env_file": "konnte .env-Datei nicht überprüfen: %w",
"could_not_create_config_dir": "konnte Konfigurationsverzeichnis nicht erstellen: %w",
"could_not_create_env_file": "konnte .env-Datei nicht erstellen: %w",
"could_not_copy_to_clipboard": "konnte nicht in die Zwischenablage kopieren: %v",
"file_already_exists_not_overwriting": "Datei %s existiert bereits, wird nicht überschrieben. Benenne die vorhandene Datei um oder wähle einen anderen Namen",
"error_creating_file": "Fehler beim Erstellen der Datei: %v",
"error_writing_to_file": "Fehler beim Schreiben in die Datei: %v",
"error_creating_audio_file": "Fehler beim Erstellen der Audio-Datei: %v",
"error_writing_audio_data": "Fehler beim Schreiben von Audio-Daten in die Datei: %v",
"tts_model_requires_audio_output": "TTS-Modell '%s' benötigt Audio-Ausgabe. Bitte gib eine Audio-Ausgabedatei mit dem -o Flag an (z.B., -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "Audio-Ausgabedatei '%s' angegeben, aber Modell '%s' ist kein TTS-Modell. Bitte verwende ein TTS-Modell wie gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "Datei %s existiert bereits. Bitte wähle einen anderen Dateinamen oder entferne die vorhandene Datei",
"no_notification_system_available": "kein Benachrichtigungssystem verfügbar",
"cannot_convert_string": "kann String %q nicht zu %v konvertieren",
"unsupported_conversion": "nicht unterstützte Konvertierung von %v zu %v",
"invalid_config_path": "ungültiger Konfigurationspfad: %w",
"config_file_not_found": "Konfigurationsdatei nicht gefunden: %s",
"error_reading_config_file": "Fehler beim Lesen der Konfigurationsdatei: %w",
"error_parsing_config_file": "Fehler beim Parsen der Konfigurationsdatei: %w",
"error_reading_piped_message": "Fehler beim Lesen der weitergeleiteten Nachricht von stdin: %w",
"image_file_already_exists": "Bilddatei existiert bereits: %s",
"invalid_image_file_extension": "ungültige Bilddatei-Erweiterung '%s'. Unterstützte Formate: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "Bildparameter (--image-size, --image-quality, --image-background, --image-compression) können nur mit --image-file verwendet werden",
"invalid_image_size": "ungültige Bildgröße '%s'. Unterstützte Größen: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "ungültige Bildqualität '%s'. Unterstützte Qualitäten: low, medium, high, auto",
"invalid_image_background": "ungültiger Bildhintergrund '%s'. Unterstützte Hintergründe: opaque, transparent",
"image_compression_jpeg_webp_only": "Bildkomprimierung kann nur mit JPEG- und WebP-Formaten verwendet werden, nicht %s",
"image_compression_range_error": "Bildkomprimierung muss zwischen 0 und 100 liegen, erhalten: %d",
"transparent_background_png_webp_only": "transparenter Hintergrund kann nur mit PNG- und WebP-Formaten verwendet werden, nicht %s",
"available_transcription_models": "Verfügbare Transkriptionsmodelle:",
"tts_audio_generated_successfully": "TTS-Audio erfolgreich generiert und gespeichert unter: %s\n",
"fabric_command_complete": "Fabric-Befehl abgeschlossen",
"fabric_command_complete_with_pattern": "Fabric: %s abgeschlossen",
"command_completed_successfully": "Befehl erfolgreich abgeschlossen",
"output_truncated": "Ausgabe: %s...",
"output_full": "Ausgabe: %s",
"choose_pattern_from_available": "Wähle ein Muster aus den verfügbaren Mustern",
"pattern_variables_help": "Werte für Mustervariablen, z.B. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Wähle einen Kontext aus den verfügbaren Kontexten",
"choose_session_from_available": "Wähle eine Sitzung aus den verfügbaren Sitzungen",
"attachment_path_or_url_help": "Anhangspfad oder URL (z.B. für OpenAI-Bilderkennungsnachrichten)",
"run_setup_for_reconfigurable_parts": "Setup für alle rekonfigurierbaren Teile von Fabric ausführen",
"set_temperature": "Temperatur festlegen",
"set_top_p": "Top P festlegen",
"stream_help": "Streaming",
"set_presence_penalty": "Präsenzstrafe festlegen",
"use_model_defaults_raw_help": "Verwende die Standardwerte des Modells ohne Senden von Chat-Optionen (wie Temperatur usw.) und verwende die Benutzerrolle anstelle der Systemrolle für Muster.",
"set_frequency_penalty": "Häufigkeitsstrafe festlegen",
"list_all_patterns": "Alle Muster auflisten",
"list_all_available_models": "Alle verfügbaren Modelle auflisten",
"list_all_contexts": "Alle Kontexte auflisten",
"list_all_sessions": "Alle Sitzungen auflisten",
"update_patterns": "Muster aktualisieren",
"messages_to_send_to_chat": "Nachrichten zum Senden an den Chat",
"copy_to_clipboard": "In Zwischenablage kopieren",
"choose_model": "Modell wählen",
"specify_vendor_for_model": "Anbieter für das ausgewählte Modell angeben (z.B., -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Modell-Kontextlänge (betrifft nur ollama)",
"output_to_file": "Ausgabe in Datei",
"output_entire_session": "Gesamte Sitzung (auch eine temporäre) in die Ausgabedatei ausgeben",
"number_of_latest_patterns": "Anzahl der neuesten Muster zum Auflisten",
"change_default_model": "Standardmodell ändern",
"youtube_url_help": "YouTube-Video oder Playlist-\"URL\" zum Abrufen von Transkript und Kommentaren und Senden an Chat oder Ausgabe in Konsole und Speichern in Ausgabedatei",
"prefer_playlist_over_video": "Playlist gegenüber Video bevorzugen, wenn beide IDs in der URL vorhanden sind",
"grab_transcript_from_youtube": "Transkript von YouTube-Video abrufen und an Chat senden (wird standardmäßig verwendet).",
"grab_transcript_with_timestamps": "Transkript von YouTube-Video mit Zeitstempeln abrufen und an Chat senden",
"grab_comments_from_youtube": "Kommentare von YouTube-Video abrufen und an Chat senden",
"output_video_metadata": "Video-Metadaten ausgeben",
"additional_yt_dlp_args": "Zusätzliche Argumente für yt-dlp (z.B. '--cookies-from-browser brave')",
"specify_language_code": "Sprachencode für den Chat angeben, z.B. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Website-URL zu Markdown mit Jina AI scrapen",
"search_question_jina": "Suchanfrage mit Jina AI",
"seed_for_lmm_generation": "Seed für LMM-Generierung",
"wipe_context": "Kontext löschen",
"wipe_session": "Sitzung löschen",
"print_context": "Kontext ausgeben",
"print_session": "Sitzung ausgeben",
"convert_html_readability": "HTML-Eingabe in eine saubere, lesbare Ansicht konvertieren",
"apply_variables_to_input": "Variablen auf Benutzereingabe anwenden",
"disable_pattern_variable_replacement": "Mustervariablenersetzung deaktivieren",
"show_dry_run": "Zeige, was an das Modell gesendet würde, ohne es tatsächlich zu senden",
"serve_fabric_rest_api": "Fabric REST API bereitstellen",
"serve_fabric_api_ollama_endpoints": "Fabric REST API mit ollama-Endpunkten bereitstellen",
"address_to_bind_rest_api": "Adresse zum Binden der REST API",
"api_key_secure_server_routes": "API-Schlüssel zum Sichern der Server-Routen",
"path_to_yaml_config": "Pfad zur YAML-Konfigurationsdatei",
"print_current_version": "Aktuelle Version ausgeben",
"list_all_registered_extensions": "Alle registrierten Erweiterungen auflisten",
"register_new_extension": "Neue Erweiterung aus Konfigurationsdateipfad registrieren",
"remove_registered_extension": "Registrierte Erweiterung nach Name entfernen",
"choose_strategy_from_available": "Strategie aus den verfügbaren Strategien wählen",
"list_all_strategies": "Alle Strategien auflisten",
"list_all_vendors": "Alle Anbieter auflisten",
"output_raw_list_shell_completion": "Rohe Liste ohne Kopfzeilen/Formatierung ausgeben (für Shell-Vervollständigung)",
"enable_web_search_tool": "Web-Such-Tool für unterstützte Modelle aktivieren (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Standort für Web-Suchergebnisse festlegen (z.B., 'America/Los_Angeles')",
"save_generated_image_to_file": "Generiertes Bild in angegebenem Dateipfad speichern (z.B., 'output.png')",
"image_dimensions_help": "Bildabmessungen: 1024x1024, 1536x1024, 1024x1536, auto (Standard: auto)",
"image_quality_help": "Bildqualität: low, medium, high, auto (Standard: auto)",
"compression_level_jpeg_webp": "Komprimierungslevel 0-100 für JPEG/WebP-Formate (Standard: nicht gesetzt)",
"background_type_help": "Hintergrundtyp: opaque, transparent (Standard: opaque, nur für PNG/WebP)",
"suppress_thinking_tags": "In Denk-Tags eingeschlossenen Text unterdrücken",
"start_tag_thinking_sections": "Start-Tag für Denk-Abschnitte",
"end_tag_thinking_sections": "End-Tag für Denk-Abschnitte",
"disable_openai_responses_api": "OpenAI Responses API deaktivieren (Standard: false)",
"audio_video_file_transcribe": "Audio- oder Video-Datei zum Transkribieren",
"model_for_transcription": "Modell für Transkription (getrennt vom Chat-Modell)",
"split_media_files_ffmpeg": "Audio/Video-Dateien größer als 25MB mit ffmpeg aufteilen",
"tts_voice_name": "TTS-Stimmenname für unterstützte Modelle (z.B., Kore, Charon, Puck)",
"list_gemini_tts_voices": "Alle verfügbaren Gemini TTS-Stimmen auflisten",
"list_transcription_models": "Alle verfügbaren Transkriptionsmodelle auflisten",
"send_desktop_notification": "Desktop-Benachrichtigung senden, wenn Befehl abgeschlossen ist",
"custom_notification_command": "Benutzerdefinierter Befehl für Benachrichtigungen (überschreibt eingebaute Benachrichtigungen)",
"set_reasoning_thinking_level": "Reasoning/Thinking-Level festlegen (z.B., off, low, medium, high, oder numerische Token für Anthropic oder Google Gemini)",
"set_debug_level": "Debug-Level festlegen (0=aus, 1=grundlegend, 2=detailliert, 3=Trace)",
"usage_header": "Verwendung:",
"application_options_header": "Anwendungsoptionen:",
"help_options_header": "Hilfe-Optionen:",
"help_message": "Diese Hilfenachricht anzeigen",
"options_placeholder": "[OPTIONEN]",
"available_vendors_header": "Verfügbare Anbieter:",
"available_models_header": "Verfügbare Modelle",
"no_items_found": "Keine %s",
"no_description_available": "Keine Beschreibung verfügbar",
"i18n_download_failed": "Fehler beim Herunterladen der Übersetzung für Sprache '%s': %v",
"i18n_load_failed": "Fehler beim Laden der Übersetzungsdatei: %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "use original input, because can't apply html readability",
"vendor_not_configured": "vendor %s not configured",
"vendor_no_transcription_support": "vendor %s does not support audio transcription",
"transcription_model_required": "transcription model is required (use --transcribe-model)",
"youtube_not_configured": "YouTube is not configured, please run the setup procedure",
"error_fetching_playlist_videos": "error fetching playlist videos: %w",
"scraping_not_configured": "scraping functionality is not configured. Please set up Jina to enable scraping",
"could_not_determine_home_dir": "could not determine user home directory: %w",
"could_not_stat_env_file": "could not stat .env file: %w",
"could_not_create_config_dir": "could not create config directory: %w",
"could_not_create_env_file": "could not create .env file: %w",
"could_not_copy_to_clipboard": "could not copy to clipboard: %v",
"file_already_exists_not_overwriting": "file %s already exists, not overwriting. Rename the existing file or choose a different name",
"error_creating_file": "error creating file: %v",
"error_writing_to_file": "error writing to file: %v",
"error_creating_audio_file": "error creating audio file: %v",
"error_writing_audio_data": "error writing audio data to file: %v",
"tts_model_requires_audio_output": "TTS model '%s' requires audio output. Please specify an audio output file with -o flag (e.g., -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "audio output file '%s' specified but model '%s' is not a TTS model. Please use a TTS model like gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "file %s already exists. Please choose a different filename or remove the existing file",
"no_notification_system_available": "no notification system available",
"cannot_convert_string": "cannot convert string %q to %v",
"unsupported_conversion": "unsupported conversion from %v to %v",
"invalid_config_path": "invalid config path: %w",
"config_file_not_found": "config file not found: %s",
"error_reading_config_file": "error reading config file: %w",
"error_parsing_config_file": "error parsing config file: %w",
"error_reading_piped_message": "error reading piped message from stdin: %w",
"image_file_already_exists": "image file already exists: %s",
"invalid_image_file_extension": "invalid image file extension '%s'. Supported formats: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "image parameters (--image-size, --image-quality, --image-background, --image-compression) can only be used with --image-file",
"invalid_image_size": "invalid image size '%s'. Supported sizes: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "invalid image quality '%s'. Supported qualities: low, medium, high, auto",
"invalid_image_background": "invalid image background '%s'. Supported backgrounds: opaque, transparent",
"image_compression_jpeg_webp_only": "image compression can only be used with JPEG and WebP formats, not %s",
"image_compression_range_error": "image compression must be between 0 and 100, got %d",
"transparent_background_png_webp_only": "transparent background can only be used with PNG and WebP formats, not %s",
"available_transcription_models": "Available transcription models:",
"tts_audio_generated_successfully": "TTS audio generated successfully and saved to: %s\n",
"fabric_command_complete": "Fabric Command Complete",
"fabric_command_complete_with_pattern": "Fabric: %s Complete",
"command_completed_successfully": "Command completed successfully",
"output_truncated": "Output: %s...",
"output_full": "Output: %s",
"choose_pattern_from_available": "Choose a pattern from the available patterns",
"pattern_variables_help": "Values for pattern variables, e.g. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Choose a context from the available contexts",
"choose_session_from_available": "Choose a session from the available sessions",
"attachment_path_or_url_help": "Attachment path or URL (e.g. for OpenAI image recognition messages)",
"run_setup_for_reconfigurable_parts": "Run setup for all reconfigurable parts of fabric",
"set_temperature": "Set temperature",
"set_top_p": "Set top P",
"stream_help": "Stream",
"set_presence_penalty": "Set presence penalty",
"use_model_defaults_raw_help": "Use the defaults of the model without sending chat options (like temperature etc.) and use the user role instead of the system role for patterns.",
"set_frequency_penalty": "Set frequency penalty",
"list_all_patterns": "List all patterns",
"list_all_available_models": "List all available models",
"list_all_contexts": "List all contexts",
"list_all_sessions": "List all sessions",
"update_patterns": "Update patterns",
"messages_to_send_to_chat": "Messages to send to chat",
"copy_to_clipboard": "Copy to clipboard",
"choose_model": "Choose model",
"specify_vendor_for_model": "Specify vendor for the selected model (e.g., -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Model context length (only affects ollama)",
"output_to_file": "Output to file",
"output_entire_session": "Output the entire session (also a temporary one) to the output file",
"number_of_latest_patterns": "Number of latest patterns to list",
"change_default_model": "Change default model",
"youtube_url_help": "YouTube video or play list \"URL\" to grab transcript, comments from it and send to chat or print it put to the console and store it in the output file",
"prefer_playlist_over_video": "Prefer playlist over video if both ids are present in the URL",
"grab_transcript_from_youtube": "Grab transcript from YouTube video and send to chat (it is used per default).",
"grab_transcript_with_timestamps": "Grab transcript from YouTube video with timestamps and send to chat",
"grab_comments_from_youtube": "Grab comments from YouTube video and send to chat",
"output_video_metadata": "Output video metadata",
"additional_yt_dlp_args": "Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')",
"specify_language_code": "Specify the Language Code for the chat, e.g. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Scrape website URL to markdown using Jina AI",
"search_question_jina": "Search question using Jina AI",
"seed_for_lmm_generation": "Seed to be used for LMM generation",
"wipe_context": "Wipe context",
"wipe_session": "Wipe session",
"print_context": "Print context",
"print_session": "Print session",
"convert_html_readability": "Convert HTML input into a clean, readable view",
"apply_variables_to_input": "Apply variables to user input",
"disable_pattern_variable_replacement": "Disable pattern variable replacement",
"show_dry_run": "Show what would be sent to the model without actually sending it",
"serve_fabric_rest_api": "Serve the Fabric Rest API",
"serve_fabric_api_ollama_endpoints": "Serve the Fabric Rest API with ollama endpoints",
"address_to_bind_rest_api": "The address to bind the REST API",
"api_key_secure_server_routes": "API key used to secure server routes",
"path_to_yaml_config": "Path to YAML config file",
"print_current_version": "Print current version",
"list_all_registered_extensions": "List all registered extensions",
"register_new_extension": "Register a new extension from config file path",
"remove_registered_extension": "Remove a registered extension by name",
"choose_strategy_from_available": "Choose a strategy from the available strategies",
"list_all_strategies": "List all strategies",
"list_all_vendors": "List all vendors",
"output_raw_list_shell_completion": "Output raw list without headers/formatting (for shell completion)",
"enable_web_search_tool": "Enable web search tool for supported models (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Set location for web search results (e.g., 'America/Los_Angeles')",
"save_generated_image_to_file": "Save generated image to specified file path (e.g., 'output.png')",
"image_dimensions_help": "Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)",
"image_quality_help": "Image quality: low, medium, high, auto (default: auto)",
"compression_level_jpeg_webp": "Compression level 0-100 for JPEG/WebP formats (default: not set)",
"background_type_help": "Background type: opaque, transparent (default: opaque, only for PNG/WebP)",
"suppress_thinking_tags": "Suppress text enclosed in thinking tags",
"start_tag_thinking_sections": "Start tag for thinking sections",
"end_tag_thinking_sections": "End tag for thinking sections",
"disable_openai_responses_api": "Disable OpenAI Responses API (default: false)",
"audio_video_file_transcribe": "Audio or video file to transcribe",
"model_for_transcription": "Model to use for transcription (separate from chat model)",
"split_media_files_ffmpeg": "Split audio/video files larger than 25MB using ffmpeg",
"tts_voice_name": "TTS voice name for supported models (e.g., Kore, Charon, Puck)",
"list_gemini_tts_voices": "List all available Gemini TTS voices",
"list_transcription_models": "List all available transcription models",
"send_desktop_notification": "Send desktop notification when command completes",
"custom_notification_command": "Custom command to run for notifications (overrides built-in notifications)",
"set_reasoning_thinking_level": "Set reasoning/thinking level (e.g., off, low, medium, high, or numeric tokens for Anthropic or Google Gemini)",
"set_debug_level": "Set debug level (0=off, 1=basic, 2=detailed, 3=trace)",
"usage_header": "Usage:",
"application_options_header": "Application Options:",
"help_options_header": "Help Options:",
"help_message": "Show this help message",
"options_placeholder": "[OPTIONS]",
"available_vendors_header": "Available Vendors:",
"available_models_header": "Available models",
"no_items_found": "No %s",
"no_description_available": "No description available",
"i18n_download_failed": "Failed to download translation for language '%s': %v",
"i18n_load_failed": "Failed to load translation file: %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "usa la entrada original, porque no se puede aplicar la legibilidad de html",
"vendor_not_configured": "el proveedor %s no está configurado",
"vendor_no_transcription_support": "el proveedor %s no admite transcripción de audio",
"transcription_model_required": "se requiere un modelo de transcripción (usa --transcribe-model)",
"youtube_not_configured": "YouTube no está configurado, por favor ejecuta el procedimiento de configuración",
"error_fetching_playlist_videos": "error al obtener videos de la lista de reproducción: %w",
"scraping_not_configured": "la funcionalidad de extracción no está configurada. Por favor configura Jina para habilitar la extracción",
"could_not_determine_home_dir": "no se pudo determinar el directorio home del usuario: %w",
"could_not_stat_env_file": "no se pudo verificar el archivo .env: %w",
"could_not_create_config_dir": "no se pudo crear el directorio de configuración: %w",
"could_not_create_env_file": "no se pudo crear el archivo .env: %w",
"could_not_copy_to_clipboard": "no se pudo copiar al portapapeles: %v",
"file_already_exists_not_overwriting": "el archivo %s ya existe, no se sobrescribirá. Renombra el archivo existente o elige un nombre diferente",
"error_creating_file": "error al crear el archivo: %v",
"error_writing_to_file": "error al escribir al archivo: %v",
"error_creating_audio_file": "error al crear el archivo de audio: %v",
"error_writing_audio_data": "error al escribir datos de audio al archivo: %v",
"tts_model_requires_audio_output": "el modelo TTS '%s' requiere salida de audio. Por favor especifica un archivo de salida de audio con la bandera -o (ej., -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "se especificó el archivo de salida de audio '%s' pero el modelo '%s' no es un modelo TTS. Por favor usa un modelo TTS como gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "el archivo %s ya existe. Por favor elige un nombre diferente o elimina el archivo existente",
"no_notification_system_available": "no hay sistema de notificaciones disponible",
"cannot_convert_string": "no se puede convertir la cadena %q a %v",
"unsupported_conversion": "conversión no soportada de %v a %v",
"invalid_config_path": "ruta de configuración inválida: %w",
"config_file_not_found": "archivo de configuración no encontrado: %s",
"error_reading_config_file": "error al leer el archivo de configuración: %w",
"error_parsing_config_file": "error al analizar el archivo de configuración: %w",
"error_reading_piped_message": "error al leer mensaje desde stdin: %w",
"image_file_already_exists": "el archivo de imagen ya existe: %s",
"invalid_image_file_extension": "extensión de archivo de imagen inválida '%s'. Formatos soportados: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "los parámetros de imagen (--image-size, --image-quality, --image-background, --image-compression) solo pueden usarse con --image-file",
"invalid_image_size": "tamaño de imagen inválido '%s'. Tamaños soportados: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "calidad de imagen inválida '%s'. Calidades soportadas: low, medium, high, auto",
"invalid_image_background": "fondo de imagen inválido '%s'. Fondos soportados: opaque, transparent",
"image_compression_jpeg_webp_only": "la compresión de imagen solo puede usarse con formatos JPEG y WebP, no %s",
"image_compression_range_error": "la compresión de imagen debe estar entre 0 y 100, se obtuvo %d",
"transparent_background_png_webp_only": "el fondo transparente solo puede usarse con formatos PNG y WebP, no %s",
"available_transcription_models": "Modelos de transcripción disponibles:",
"tts_audio_generated_successfully": "Audio TTS generado exitosamente y guardado en: %s\n",
"fabric_command_complete": "Comando Fabric Completado",
"fabric_command_complete_with_pattern": "Fabric: %s Completado",
"command_completed_successfully": "Comando completado exitosamente",
"output_truncated": "Salida: %s...",
"output_full": "Salida: %s",
"choose_pattern_from_available": "Elige un patrón de los patrones disponibles",
"pattern_variables_help": "Valores para variables de patrón, ej. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Elige un contexto de los contextos disponibles",
"choose_session_from_available": "Elige una sesión de las sesiones disponibles",
"attachment_path_or_url_help": "Ruta de adjunto o URL (ej. para mensajes de reconocimiento de imagen de OpenAI)",
"run_setup_for_reconfigurable_parts": "Ejecutar configuración para todas las partes reconfigurables de fabric",
"set_temperature": "Establecer temperatura",
"set_top_p": "Establecer top P",
"stream_help": "Transmitir",
"set_presence_penalty": "Establecer penalización de presencia",
"use_model_defaults_raw_help": "Usar los valores predeterminados del modelo sin enviar opciones de chat (como temperatura, etc.) y usar el rol de usuario en lugar del rol del sistema para patrones.",
"set_frequency_penalty": "Establecer penalización de frecuencia",
"list_all_patterns": "Listar todos los patrones",
"list_all_available_models": "Listar todos los modelos disponibles",
"list_all_contexts": "Listar todos los contextos",
"list_all_sessions": "Listar todas las sesiones",
"update_patterns": "Actualizar patrones",
"messages_to_send_to_chat": "Mensajes para enviar al chat",
"copy_to_clipboard": "Copiar al portapapeles",
"choose_model": "Elegir modelo",
"specify_vendor_for_model": "Especificar proveedor para el modelo seleccionado (ej., -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Longitud de contexto del modelo (solo afecta a ollama)",
"output_to_file": "Salida a archivo",
"output_entire_session": "Salida de toda la sesión (también una temporal) al archivo de salida",
"number_of_latest_patterns": "Número de patrones más recientes a listar",
"change_default_model": "Cambiar modelo predeterminado",
"youtube_url_help": "Video de YouTube o \"URL\" de lista de reproducción para obtener transcripción, comentarios y enviar al chat o imprimir en la consola y almacenar en el archivo de salida",
"prefer_playlist_over_video": "Preferir lista de reproducción sobre video si ambos ids están presentes en la URL",
"grab_transcript_from_youtube": "Obtener transcripción del video de YouTube y enviar al chat (se usa por defecto).",
"grab_transcript_with_timestamps": "Obtener transcripción del video de YouTube con marcas de tiempo y enviar al chat",
"grab_comments_from_youtube": "Obtener comentarios del video de YouTube y enviar al chat",
"output_video_metadata": "Salida de metadatos del video",
"additional_yt_dlp_args": "Argumentos adicionales para pasar a yt-dlp (ej. '--cookies-from-browser brave')",
"specify_language_code": "Especificar el Código de Idioma para el chat, ej. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Extraer URL del sitio web a markdown usando Jina AI",
"search_question_jina": "Pregunta de búsqueda usando Jina AI",
"seed_for_lmm_generation": "Semilla para ser usada en la generación LMM",
"wipe_context": "Limpiar contexto",
"wipe_session": "Limpiar sesión",
"print_context": "Imprimir contexto",
"print_session": "Imprimir sesión",
"convert_html_readability": "Convertir entrada HTML en una vista limpia y legible",
"apply_variables_to_input": "Aplicar variables a la entrada del usuario",
"disable_pattern_variable_replacement": "Deshabilitar reemplazo de variables de patrón",
"show_dry_run": "Mostrar lo que se enviaría al modelo sin enviarlo realmente",
"serve_fabric_rest_api": "Servir la API REST de Fabric",
"serve_fabric_api_ollama_endpoints": "Servir la API REST de Fabric con endpoints de ollama",
"address_to_bind_rest_api": "La dirección para vincular la API REST",
"api_key_secure_server_routes": "Clave API usada para asegurar rutas del servidor",
"path_to_yaml_config": "Ruta al archivo de configuración YAML",
"print_current_version": "Imprimir versión actual",
"list_all_registered_extensions": "Listar todas las extensiones registradas",
"register_new_extension": "Registrar una nueva extensión desde la ruta del archivo de configuración",
"remove_registered_extension": "Eliminar una extensión registrada por nombre",
"choose_strategy_from_available": "Elegir una estrategia de las estrategias disponibles",
"list_all_strategies": "Listar todas las estrategias",
"list_all_vendors": "Listar todos los proveedores",
"output_raw_list_shell_completion": "Salida de lista sin procesar sin encabezados/formato (para completado de shell)",
"enable_web_search_tool": "Habilitar herramienta de búsqueda web para modelos soportados (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Establecer ubicación para resultados de búsqueda web (ej., 'America/Los_Angeles')",
"save_generated_image_to_file": "Guardar imagen generada en la ruta de archivo especificada (ej., 'output.png')",
"image_dimensions_help": "Dimensiones de imagen: 1024x1024, 1536x1024, 1024x1536, auto (predeterminado: auto)",
"image_quality_help": "Calidad de imagen: low, medium, high, auto (predeterminado: auto)",
"compression_level_jpeg_webp": "Nivel de compresión 0-100 para formatos JPEG/WebP (predeterminado: no establecido)",
"background_type_help": "Tipo de fondo: opaque, transparent (predeterminado: opaque, solo para PNG/WebP)",
"suppress_thinking_tags": "Suprimir texto encerrado en etiquetas de pensamiento",
"start_tag_thinking_sections": "Etiqueta de inicio para secciones de pensamiento",
"end_tag_thinking_sections": "Etiqueta de fin para secciones de pensamiento",
"disable_openai_responses_api": "Deshabilitar API de Respuestas de OpenAI (predeterminado: false)",
"audio_video_file_transcribe": "Archivo de audio o video para transcribir",
"model_for_transcription": "Modelo para usar en transcripción (separado del modelo de chat)",
"split_media_files_ffmpeg": "Dividir archivos de audio/video mayores a 25MB usando ffmpeg",
"tts_voice_name": "Nombre de voz TTS para modelos soportados (ej., Kore, Charon, Puck)",
"list_gemini_tts_voices": "Listar todas las voces TTS de Gemini disponibles",
"list_transcription_models": "Listar todos los modelos de transcripción disponibles",
"send_desktop_notification": "Enviar notificación de escritorio cuando se complete el comando",
"custom_notification_command": "Comando personalizado para ejecutar notificaciones (anula las notificaciones integradas)",
"set_reasoning_thinking_level": "Establecer nivel de razonamiento/pensamiento (ej., off, low, medium, high, o tokens numéricos para Anthropic o Google Gemini)",
"set_debug_level": "Establecer nivel de depuración (0=apagado, 1=básico, 2=detallado, 3=rastreo)",
"usage_header": "Uso:",
"application_options_header": "Opciones de la Aplicación:",
"help_options_header": "Opciones de Ayuda:",
"help_message": "Mostrar este mensaje de ayuda",
"options_placeholder": "[OPCIONES]",
"available_vendors_header": "Proveedores Disponibles:",
"available_models_header": "Modelos disponibles",
"no_items_found": "No hay %s",
"no_description_available": "No hay descripción disponible",
"i18n_download_failed": "Error al descargar traducción para el idioma '%s': %v",
"i18n_load_failed": "Error al cargar archivo de traducción: %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "از ورودی اصلی استفاده کن، چون نمی‌توان خوانایی HTML را اعمال کرد",
"vendor_not_configured": "تامین‌کننده %s پیکربندی نشده است",
"vendor_no_transcription_support": "تامین‌کننده %s از رونویسی صوتی پشتیبانی نمی‌کند",
"transcription_model_required": "مدل رونویسی الزامی است (از --transcribe-model استفاده کنید)",
"youtube_not_configured": "یوتیوب پیکربندی نشده است، لطفاً روند تنظیمات را اجرا کنید",
"error_fetching_playlist_videos": "خطا در دریافت ویدیوهای فهرست پخش: %w",
"scraping_not_configured": "قابلیت استخراج داده پیکربندی نشده است. لطفاً Jina را برای فعال‌سازی استخراج تنظیم کنید",
"could_not_determine_home_dir": "نتوانست دایرکتوری خانه کاربر را تعیین کند: %w",
"could_not_stat_env_file": "نتوانست وضعیت فایل .env را بررسی کند: %w",
"could_not_create_config_dir": "نتوانست دایرکتوری پیکربندی را ایجاد کند: %w",
"could_not_create_env_file": "نتوانست فایل .env را ایجاد کند: %w",
"could_not_copy_to_clipboard": "نتوانست به کلیپ‌بورد کپی کند: %v",
"file_already_exists_not_overwriting": "فایل %s از قبل وجود دارد، بازنویسی نمی‌شود. فایل موجود را تغییر نام دهید یا نام متفاوتی انتخاب کنید",
"error_creating_file": "خطا در ایجاد فایل: %v",
"error_writing_to_file": "خطا در نوشتن به فایل: %v",
"error_creating_audio_file": "خطا در ایجاد فایل صوتی: %v",
"error_writing_audio_data": "خطا در نوشتن داده‌های صوتی به فایل: %v",
"tts_model_requires_audio_output": "مدل TTS '%s' نیاز به خروجی صوتی دارد. لطفاً فایل خروجی صوتی را با پرچم -o مشخص کنید (مثال: -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "فایل خروجی صوتی '%s' مشخص شده اما مدل '%s' یک مدل TTS نیست. لطفاً از مدل TTS مثل gemini-2.5-flash-preview-tts استفاده کنید",
"file_already_exists_choose_different": "فایل %s از قبل وجود دارد. لطفاً نام فایل متفاوتی انتخاب کنید یا فایل موجود را حذف کنید",
"no_notification_system_available": "هیچ سیستم اعلان‌رسانی در دسترس نیست",
"cannot_convert_string": "نمی‌توان رشته %q را به %v تبدیل کرد",
"unsupported_conversion": "تبدیل پشتیبانی نشده از %v به %v",
"invalid_config_path": "مسیر پیکربندی نامعتبر: %w",
"config_file_not_found": "فایل پیکربندی یافت نشد: %s",
"error_reading_config_file": "خطا در خواندن فایل پیکربندی: %w",
"error_parsing_config_file": "خطا در تجزیه فایل پیکربندی: %w",
"error_reading_piped_message": "خطا در خواندن پیام هدایت شده از stdin: %w",
"image_file_already_exists": "فایل تصویر از قبل وجود دارد: %s",
"invalid_image_file_extension": "پسوند فایل تصویر نامعتبر '%s'. فرمت‌های پشتیبانی شده: .png، .jpeg، .jpg، .webp",
"image_parameters_require_image_file": "پارامترهای تصویر (--image-size، --image-quality، --image-background، --image-compression) فقط با --image-file قابل استفاده هستند",
"invalid_image_size": "اندازه تصویر نامعتبر '%s'. اندازه‌های پشتیبانی شده: 1024x1024، 1536x1024، 1024x1536، auto",
"invalid_image_quality": "کیفیت تصویر نامعتبر '%s'. کیفیت‌های پشتیبانی شده: low، medium، high، auto",
"invalid_image_background": "پس‌زمینه تصویر نامعتبر '%s'. پس‌زمینه‌های پشتیبانی شده: opaque، transparent",
"image_compression_jpeg_webp_only": "فشرده‌سازی تصویر فقط با فرمت‌های JPEG و WebP قابل استفاده است، نه %s",
"image_compression_range_error": "فشرده‌سازی تصویر باید بین 0 تا 100 باشد، دریافت شده: %d",
"transparent_background_png_webp_only": "پس‌زمینه شفاف فقط با فرمت‌های PNG و WebP قابل استفاده است، نه %s",
"available_transcription_models": "مدل‌های رونویسی موجود:",
"tts_audio_generated_successfully": "صوت TTS با موفقیت ایجاد و ذخیره شد در: %s\n",
"fabric_command_complete": "دستور Fabric تکمیل شد",
"fabric_command_complete_with_pattern": "Fabric: %s تکمیل شد",
"command_completed_successfully": "دستور با موفقیت تکمیل شد",
"output_truncated": "خروجی: %s...",
"output_full": "خروجی: %s",
"choose_pattern_from_available": "الگویی از الگوهای موجود انتخاب کنید",
"pattern_variables_help": "مقادیر برای متغیرهای الگو، مثال: -v=#role:expert -v=#points:30",
"choose_context_from_available": "زمینه‌ای از زمینه‌های موجود انتخاب کنید",
"choose_session_from_available": "جلسه‌ای از جلسات موجود انتخاب کنید",
"attachment_path_or_url_help": "مسیر ضمیمه یا URL (مثال برای پیام‌های تشخیص تصویر OpenAI)",
"run_setup_for_reconfigurable_parts": "اجرای تنظیمات برای تمام بخش‌های قابل پیکربندی مجدد fabric",
"set_temperature": "تنظیم دما",
"set_top_p": "تنظیم top P",
"stream_help": "پخش زنده",
"set_presence_penalty": "تنظیم جریمه حضور",
"use_model_defaults_raw_help": "استفاده از پیش‌فرض‌های مدل بدون ارسال گزینه‌های گفتگو (مثل دما و غیره) و استفاده از نقش کاربر به جای نقش سیستم برای الگوها.",
"set_frequency_penalty": "تنظیم جریمه فرکانس",
"list_all_patterns": "فهرست تمام الگوها",
"list_all_available_models": "فهرست تمام مدل‌های موجود",
"list_all_contexts": "فهرست تمام زمینه‌ها",
"list_all_sessions": "فهرست تمام جلسات",
"update_patterns": "به‌روزرسانی الگوها",
"messages_to_send_to_chat": "پیام‌هایی برای ارسال به گفتگو",
"copy_to_clipboard": "کپی به کلیپ‌بورد",
"choose_model": "انتخاب مدل",
"specify_vendor_for_model": "تعیین تامین‌کننده برای مدل انتخابی (مثال: -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "طول زمینه مدل (فقط ollama را تحت تأثیر قرار می‌دهد)",
"output_to_file": "خروجی به فایل",
"output_entire_session": "خروجی کل جلسه (حتی موقت) به فایل خروجی",
"number_of_latest_patterns": "تعداد جدیدترین الگوها برای فهرست",
"change_default_model": "تغییر مدل پیش‌فرض",
"youtube_url_help": "ویدیو یوتیوب یا \"URL\" فهرست پخش برای دریافت رونوشت، نظرات و ارسال به گفتگو یا چاپ در کنسول و ذخیره در فایل خروجی",
"prefer_playlist_over_video": "اولویت فهرست پخش نسبت به ویدیو اگر هر دو ID در URL موجود باشند",
"grab_transcript_from_youtube": "دریافت رونوشت از ویدیو یوتیوب و ارسال به گفتگو (به طور پیش‌فرض استفاده می‌شود).",
"grab_transcript_with_timestamps": "دریافت رونوشت از ویدیو یوتیوب با مهر زمان و ارسال به گفتگو",
"grab_comments_from_youtube": "دریافت نظرات از ویدیو یوتیوب و ارسال به گفتگو",
"output_video_metadata": "نمایش فراداده ویدیو",
"additional_yt_dlp_args": "آرگومان‌های اضافی برای ارسال به yt-dlp (مثال: '--cookies-from-browser brave')",
"specify_language_code": "کد زبان برای گفتگو را مشخص کنید، مثلاً -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "استخراج URL وب‌سایت به markdown با استفاده از Jina AI",
"search_question_jina": "سؤال جستجو با استفاده از Jina AI",
"seed_for_lmm_generation": "Seed برای استفاده در تولید LMM",
"wipe_context": "پاک کردن زمینه",
"wipe_session": "پاک کردن جلسه",
"print_context": "چاپ زمینه",
"print_session": "چاپ جلسه",
"convert_html_readability": "تبدیل ورودی HTML به نمای تمیز و خوانا",
"apply_variables_to_input": "اعمال متغیرها به ورودی کاربر",
"disable_pattern_variable_replacement": "غیرفعال کردن جایگزینی متغیرهای الگو",
"show_dry_run": "نمایش آنچه به مدل ارسال خواهد شد بدون ارسال واقعی",
"serve_fabric_rest_api": "سرویس API REST Fabric",
"serve_fabric_api_ollama_endpoints": "سرویس API REST Fabric با نقاط پایانی ollama",
"address_to_bind_rest_api": "آدرس برای متصل کردن API REST",
"api_key_secure_server_routes": "کلید API برای امن‌سازی مسیرهای سرور",
"path_to_yaml_config": "مسیر فایل پیکربندی YAML",
"print_current_version": "چاپ نسخه فعلی",
"list_all_registered_extensions": "فهرست تمام افزونه‌های ثبت شده",
"register_new_extension": "ثبت افزونه جدید از مسیر فایل پیکربندی",
"remove_registered_extension": "حذف افزونه ثبت شده با نام",
"choose_strategy_from_available": "انتخاب استراتژی از استراتژی‌های موجود",
"list_all_strategies": "فهرست تمام استراتژی‌ها",
"list_all_vendors": "فهرست تمام تامین‌کنندگان",
"output_raw_list_shell_completion": "خروجی فهرست خام بدون سرتیتر/قالب‌بندی (برای تکمیل shell)",
"enable_web_search_tool": "فعال‌سازی ابزار جستجوی وب برای مدل‌های پشتیبانی شده (Anthropic، OpenAI، Gemini)",
"set_location_web_search": "تنظیم مکان برای نتایج جستجوی وب (مثال: 'America/Los_Angeles')",
"save_generated_image_to_file": "ذخیره تصویر تولید شده در مسیر فایل مشخص (مثال: 'output.png')",
"image_dimensions_help": "ابعاد تصویر: 1024x1024، 1536x1024، 1024x1536، auto (پیش‌فرض: auto)",
"image_quality_help": "کیفیت تصویر: low، medium، high، auto (پیش‌فرض: auto)",
"compression_level_jpeg_webp": "سطح فشرده‌سازی 0-100 برای فرمت‌های JPEG/WebP (پیش‌فرض: تنظیم نشده)",
"background_type_help": "نوع پس‌زمینه: opaque، transparent (پیش‌فرض: opaque، فقط برای PNG/WebP)",
"suppress_thinking_tags": "سرکوب متن محصور در تگ‌های تفکر",
"start_tag_thinking_sections": "تگ شروع برای بخش‌های تفکر",
"end_tag_thinking_sections": "تگ پایان برای بخش‌های تفکر",
"disable_openai_responses_api": "غیرفعال کردن API OpenAI Responses (پیش‌فرض: false)",
"audio_video_file_transcribe": "فایل صوتی یا ویدیویی برای رونویسی",
"model_for_transcription": "مدل برای استفاده در رونویسی (جدا از مدل گفتگو)",
"split_media_files_ffmpeg": "تقسیم فایل‌های صوتی/ویدیویی بزرگتر از 25MB با استفاده از ffmpeg",
"tts_voice_name": "نام صدای TTS برای مدل‌های پشتیبانی شده (مثال: Kore، Charon، Puck)",
"list_gemini_tts_voices": "فهرست تمام صداهای TTS Gemini موجود",
"list_transcription_models": "فهرست تمام مدل‌های رونویسی موجود",
"send_desktop_notification": "ارسال اعلان دسک‌تاپ هنگام تکمیل دستور",
"custom_notification_command": "دستور سفارشی برای اجرای اعلان‌ها (جایگزین اعلان‌های داخلی)",
"set_reasoning_thinking_level": "تنظیم سطح استدلال/تفکر (مثال: off، low، medium، high، یا توکن‌های عددی برای Anthropic یا Google Gemini)",
"set_debug_level": "تنظیم سطح اشکال‌زدایی (0=خاموش، 1=پایه، 2=تفصیلی، 3=ردیابی)",
"usage_header": "استفاده:",
"application_options_header": "گزینه‌های برنامه:",
"help_options_header": "گزینه‌های راهنما:",
"help_message": "نمایش این پیام راهنما",
"options_placeholder": "[گزینه‌ها]",
"available_vendors_header": "تامین‌کنندگان موجود:",
"available_models_header": "مدل‌های موجود",
"no_items_found": "هیچ %s",
"no_description_available": "توضیحی در دسترس نیست",
"i18n_download_failed": "دانلود ترجمه برای زبان '%s' ناموفق بود: %v",
"i18n_load_failed": "بارگذاری فایل ترجمه ناموفق بود: %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "utilise l'entrée originale, car la lisibilité HTML ne peut pas être appliquée",
"vendor_not_configured": "le fournisseur %s n'est pas configuré",
"vendor_no_transcription_support": "le fournisseur %s ne prend pas en charge la transcription audio",
"transcription_model_required": "un modèle de transcription est requis (utilisez --transcribe-model)",
"youtube_not_configured": "YouTube n'est pas configuré, veuillez exécuter la procédure de configuration",
"error_fetching_playlist_videos": "erreur lors de la récupération des vidéos de la liste de lecture : %w",
"scraping_not_configured": "la fonctionnalité de scraping n'est pas configurée. Veuillez configurer Jina pour activer le scraping",
"could_not_determine_home_dir": "impossible de déterminer le répertoire home de l'utilisateur : %w",
"could_not_stat_env_file": "impossible de vérifier le fichier .env : %w",
"could_not_create_config_dir": "impossible de créer le répertoire de configuration : %w",
"could_not_create_env_file": "impossible de créer le fichier .env : %w",
"could_not_copy_to_clipboard": "impossible de copier dans le presse-papiers : %v",
"file_already_exists_not_overwriting": "le fichier %s existe déjà, ne sera pas écrasé. Renommez le fichier existant ou choisissez un nom différent",
"error_creating_file": "erreur lors de la création du fichier : %v",
"error_writing_to_file": "erreur lors de l'écriture dans le fichier : %v",
"error_creating_audio_file": "erreur lors de la création du fichier audio : %v",
"error_writing_audio_data": "erreur lors de l'écriture des données audio dans le fichier : %v",
"tts_model_requires_audio_output": "le modèle TTS '%s' nécessite une sortie audio. Veuillez spécifier un fichier de sortie audio avec le flag -o (ex. -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "fichier de sortie audio '%s' spécifié mais le modèle '%s' n'est pas un modèle TTS. Veuillez utiliser un modèle TTS comme gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "le fichier %s existe déjà. Veuillez choisir un nom de fichier différent ou supprimer le fichier existant",
"no_notification_system_available": "aucun système de notification disponible",
"cannot_convert_string": "impossible de convertir la chaîne %q en %v",
"unsupported_conversion": "conversion non prise en charge de %v vers %v",
"invalid_config_path": "chemin de configuration invalide : %w",
"config_file_not_found": "fichier de configuration non trouvé : %s",
"error_reading_config_file": "erreur lors de la lecture du fichier de configuration : %w",
"error_parsing_config_file": "erreur lors de l'analyse du fichier de configuration : %w",
"error_reading_piped_message": "erreur lors de la lecture du message redirigé depuis stdin : %w",
"image_file_already_exists": "le fichier image existe déjà : %s",
"invalid_image_file_extension": "extension de fichier image invalide '%s'. Formats pris en charge : .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "les paramètres d'image (--image-size, --image-quality, --image-background, --image-compression) ne peuvent être utilisés qu'avec --image-file",
"invalid_image_size": "taille d'image invalide '%s'. Tailles prises en charge : 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "qualité d'image invalide '%s'. Qualités prises en charge : low, medium, high, auto",
"invalid_image_background": "arrière-plan d'image invalide '%s'. Arrière-plans pris en charge : opaque, transparent",
"image_compression_jpeg_webp_only": "la compression d'image ne peut être utilisée qu'avec les formats JPEG et WebP, pas %s",
"image_compression_range_error": "la compression d'image doit être entre 0 et 100, reçu %d",
"transparent_background_png_webp_only": "l'arrière-plan transparent ne peut être utilisé qu'avec les formats PNG et WebP, pas %s",
"available_transcription_models": "Modèles de transcription disponibles :",
"tts_audio_generated_successfully": "Audio TTS généré avec succès et sauvegardé dans : %s\n",
"fabric_command_complete": "Commande Fabric terminée",
"fabric_command_complete_with_pattern": "Fabric : %s terminé",
"command_completed_successfully": "Commande terminée avec succès",
"output_truncated": "Sortie : %s...",
"output_full": "Sortie : %s",
"choose_pattern_from_available": "Choisissez un motif parmi les motifs disponibles",
"pattern_variables_help": "Valeurs pour les variables de motif, ex. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Choisissez un contexte parmi les contextes disponibles",
"choose_session_from_available": "Choisissez une session parmi les sessions disponibles",
"attachment_path_or_url_help": "Chemin de pièce jointe ou URL (ex. pour les messages de reconnaissance d'image OpenAI)",
"run_setup_for_reconfigurable_parts": "Exécuter la configuration pour toutes les parties reconfigurables de fabric",
"set_temperature": "Définir la température",
"set_top_p": "Définir le top P",
"stream_help": "Streaming",
"set_presence_penalty": "Définir la pénalité de présence",
"use_model_defaults_raw_help": "Utiliser les valeurs par défaut du modèle sans envoyer d'options de chat (comme la température, etc.) et utiliser le rôle utilisateur au lieu du rôle système pour les motifs.",
"set_frequency_penalty": "Définir la pénalité de fréquence",
"list_all_patterns": "Lister tous les motifs",
"list_all_available_models": "Lister tous les modèles disponibles",
"list_all_contexts": "Lister tous les contextes",
"list_all_sessions": "Lister toutes les sessions",
"update_patterns": "Mettre à jour les motifs",
"messages_to_send_to_chat": "Messages à envoyer au chat",
"copy_to_clipboard": "Copier dans le presse-papiers",
"choose_model": "Choisir le modèle",
"specify_vendor_for_model": "Spécifier le fournisseur pour le modèle sélectionné (ex. -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Longueur de contexte du modèle (affecte seulement ollama)",
"output_to_file": "Sortie vers fichier",
"output_entire_session": "Sortie de toute la session (même temporaire) vers le fichier de sortie",
"number_of_latest_patterns": "Nombre des motifs les plus récents à lister",
"change_default_model": "Changer le modèle par défaut",
"youtube_url_help": "Vidéo YouTube ou \"URL\" de liste de lecture pour récupérer la transcription, les commentaires et envoyer au chat ou afficher dans la console et stocker dans le fichier de sortie",
"prefer_playlist_over_video": "Préférer la liste de lecture à la vidéo si les deux IDs sont présents dans l'URL",
"grab_transcript_from_youtube": "Récupérer la transcription de la vidéo YouTube et envoyer au chat (utilisé par défaut).",
"grab_transcript_with_timestamps": "Récupérer la transcription de la vidéo YouTube avec horodatage et envoyer au chat",
"grab_comments_from_youtube": "Récupérer les commentaires de la vidéo YouTube et envoyer au chat",
"output_video_metadata": "Afficher les métadonnées de la vidéo",
"additional_yt_dlp_args": "Arguments supplémentaires à passer à yt-dlp (ex. '--cookies-from-browser brave')",
"specify_language_code": "Spécifier le code de langue pour le chat, ex. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Scraper l'URL du site web en markdown en utilisant Jina AI",
"search_question_jina": "Question de recherche en utilisant Jina AI",
"seed_for_lmm_generation": "Graine à utiliser pour la génération LMM",
"wipe_context": "Effacer le contexte",
"wipe_session": "Effacer la session",
"print_context": "Afficher le contexte",
"print_session": "Afficher la session",
"convert_html_readability": "Convertir l'entrée HTML en vue propre et lisible",
"apply_variables_to_input": "Appliquer les variables à l'entrée utilisateur",
"disable_pattern_variable_replacement": "Désactiver le remplacement des variables de motif",
"show_dry_run": "Montrer ce qui serait envoyé au modèle sans l'envoyer réellement",
"serve_fabric_rest_api": "Servir l'API REST Fabric",
"serve_fabric_api_ollama_endpoints": "Servir l'API REST Fabric avec les endpoints ollama",
"address_to_bind_rest_api": "Adresse pour lier l'API REST",
"api_key_secure_server_routes": "Clé API utilisée pour sécuriser les routes du serveur",
"path_to_yaml_config": "Chemin vers le fichier de configuration YAML",
"print_current_version": "Afficher la version actuelle",
"list_all_registered_extensions": "Lister toutes les extensions enregistrées",
"register_new_extension": "Enregistrer une nouvelle extension depuis le chemin du fichier de configuration",
"remove_registered_extension": "Supprimer une extension enregistrée par nom",
"choose_strategy_from_available": "Choisir une stratégie parmi les stratégies disponibles",
"list_all_strategies": "Lister toutes les stratégies",
"list_all_vendors": "Lister tous les fournisseurs",
"output_raw_list_shell_completion": "Sortie de liste brute sans en-têtes/formatage (pour la complétion shell)",
"enable_web_search_tool": "Activer l'outil de recherche web pour les modèles pris en charge (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Définir l'emplacement pour les résultats de recherche web (ex. 'America/Los_Angeles')",
"save_generated_image_to_file": "Sauvegarder l'image générée dans le chemin de fichier spécifié (ex. 'output.png')",
"image_dimensions_help": "Dimensions de l'image : 1024x1024, 1536x1024, 1024x1536, auto (par défaut : auto)",
"image_quality_help": "Qualité de l'image : low, medium, high, auto (par défaut : auto)",
"compression_level_jpeg_webp": "Niveau de compression 0-100 pour les formats JPEG/WebP (par défaut : non défini)",
"background_type_help": "Type d'arrière-plan : opaque, transparent (par défaut : opaque, seulement pour PNG/WebP)",
"suppress_thinking_tags": "Supprimer le texte encadré par les balises de réflexion",
"start_tag_thinking_sections": "Balise de début pour les sections de réflexion",
"end_tag_thinking_sections": "Balise de fin pour les sections de réflexion",
"disable_openai_responses_api": "Désactiver l'API OpenAI Responses (par défaut : false)",
"audio_video_file_transcribe": "Fichier audio ou vidéo à transcrire",
"model_for_transcription": "Modèle à utiliser pour la transcription (séparé du modèle de chat)",
"split_media_files_ffmpeg": "Diviser les fichiers audio/vidéo de plus de 25MB en utilisant ffmpeg",
"tts_voice_name": "Nom de voix TTS pour les modèles pris en charge (ex. Kore, Charon, Puck)",
"list_gemini_tts_voices": "Lister toutes les voix TTS Gemini disponibles",
"list_transcription_models": "Lister tous les modèles de transcription disponibles",
"send_desktop_notification": "Envoyer une notification de bureau quand la commande se termine",
"custom_notification_command": "Commande personnalisée à exécuter pour les notifications (remplace les notifications intégrées)",
"set_reasoning_thinking_level": "Définir le niveau de raisonnement/réflexion (ex. off, low, medium, high, ou tokens numériques pour Anthropic ou Google Gemini)",
"set_debug_level": "Définir le niveau de débogage (0=désactivé, 1=basique, 2=détaillé, 3=trace)",
"usage_header": "Utilisation :",
"application_options_header": "Options de l'application :",
"help_options_header": "Options d'aide :",
"help_message": "Afficher ce message d'aide",
"options_placeholder": "[OPTIONS]",
"available_vendors_header": "Fournisseurs disponibles :",
"available_models_header": "Modèles disponibles",
"no_items_found": "Aucun %s",
"no_description_available": "Aucune description disponible",
"i18n_download_failed": "Échec du téléchargement de la traduction pour la langue '%s' : %v",
"i18n_load_failed": "Échec du chargement du fichier de traduction : %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "usa l'input originale, perché non è possibile applicare la leggibilità HTML",
"vendor_not_configured": "il fornitore %s non è configurato",
"vendor_no_transcription_support": "il fornitore %s non supporta la trascrizione audio",
"transcription_model_required": "è richiesto un modello di trascrizione (usa --transcribe-model)",
"youtube_not_configured": "YouTube non è configurato, per favore esegui la procedura di configurazione",
"error_fetching_playlist_videos": "errore nel recupero dei video della playlist: %w",
"scraping_not_configured": "la funzionalità di scraping non è configurata. Per favore configura Jina per abilitare lo scraping",
"could_not_determine_home_dir": "impossibile determinare la directory home dell'utente: %w",
"could_not_stat_env_file": "impossibile verificare il file .env: %w",
"could_not_create_config_dir": "impossibile creare la directory di configurazione: %w",
"could_not_create_env_file": "impossibile creare il file .env: %w",
"could_not_copy_to_clipboard": "impossibile copiare negli appunti: %v",
"file_already_exists_not_overwriting": "il file %s esiste già, non verrà sovrascritto. Rinomina il file esistente o scegli un nome diverso",
"error_creating_file": "errore nella creazione del file: %v",
"error_writing_to_file": "errore nella scrittura del file: %v",
"error_creating_audio_file": "errore nella creazione del file audio: %v",
"error_writing_audio_data": "errore nella scrittura dei dati audio nel file: %v",
"tts_model_requires_audio_output": "il modello TTS '%s' richiede un output audio. Per favore specifica un file di output audio con il flag -o (es. -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "file di output audio '%s' specificato ma il modello '%s' non è un modello TTS. Per favore usa un modello TTS come gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "il file %s esiste già. Per favore scegli un nome file diverso o rimuovi il file esistente",
"no_notification_system_available": "nessun sistema di notifica disponibile",
"cannot_convert_string": "impossibile convertire la stringa %q in %v",
"unsupported_conversion": "conversione non supportata da %v a %v",
"invalid_config_path": "percorso di configurazione non valido: %w",
"config_file_not_found": "file di configurazione non trovato: %s",
"error_reading_config_file": "errore nella lettura del file di configurazione: %w",
"error_parsing_config_file": "errore nell'analisi del file di configurazione: %w",
"error_reading_piped_message": "errore nella lettura del messaggio reindirizzato da stdin: %w",
"image_file_already_exists": "il file immagine esiste già: %s",
"invalid_image_file_extension": "estensione file immagine non valida '%s'. Formati supportati: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "i parametri immagine (--image-size, --image-quality, --image-background, --image-compression) possono essere utilizzati solo con --image-file",
"invalid_image_size": "dimensione immagine non valida '%s'. Dimensioni supportate: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "qualità immagine non valida '%s'. Qualità supportate: low, medium, high, auto",
"invalid_image_background": "sfondo immagine non valido '%s'. Sfondi supportati: opaque, transparent",
"image_compression_jpeg_webp_only": "la compressione immagine può essere utilizzata solo con formati JPEG e WebP, non %s",
"image_compression_range_error": "la compressione immagine deve essere tra 0 e 100, ricevuto %d",
"transparent_background_png_webp_only": "lo sfondo trasparente può essere utilizzato solo con formati PNG e WebP, non %s",
"available_transcription_models": "Modelli di trascrizione disponibili:",
"tts_audio_generated_successfully": "Audio TTS generato con successo e salvato in: %s\n",
"fabric_command_complete": "Comando Fabric completato",
"fabric_command_complete_with_pattern": "Fabric: %s completato",
"command_completed_successfully": "Comando completato con successo",
"output_truncated": "Output: %s...",
"output_full": "Output: %s",
"choose_pattern_from_available": "Scegli un pattern dai pattern disponibili",
"pattern_variables_help": "Valori per le variabili pattern, es. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Scegli un contesto dai contesti disponibili",
"choose_session_from_available": "Scegli una sessione dalle sessioni disponibili",
"attachment_path_or_url_help": "Percorso allegato o URL (es. per messaggi di riconoscimento immagine OpenAI)",
"run_setup_for_reconfigurable_parts": "Esegui la configurazione per tutte le parti riconfigurabili di fabric",
"set_temperature": "Imposta temperatura",
"set_top_p": "Imposta top P",
"stream_help": "Streaming",
"set_presence_penalty": "Imposta penalità di presenza",
"use_model_defaults_raw_help": "Usa i valori predefiniti del modello senza inviare opzioni di chat (come temperatura, ecc.) e usa il ruolo utente invece del ruolo sistema per i pattern.",
"set_frequency_penalty": "Imposta penalità di frequenza",
"list_all_patterns": "Elenca tutti i pattern",
"list_all_available_models": "Elenca tutti i modelli disponibili",
"list_all_contexts": "Elenca tutti i contesti",
"list_all_sessions": "Elenca tutte le sessioni",
"update_patterns": "Aggiorna pattern",
"messages_to_send_to_chat": "Messaggi da inviare alla chat",
"copy_to_clipboard": "Copia negli appunti",
"choose_model": "Scegli modello",
"specify_vendor_for_model": "Specifica il fornitore per il modello selezionato (es. -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Lunghezza del contesto del modello (influisce solo su ollama)",
"output_to_file": "Output su file",
"output_entire_session": "Output dell'intera sessione (anche temporanea) nel file di output",
"number_of_latest_patterns": "Numero dei pattern più recenti da elencare",
"change_default_model": "Cambia modello predefinito",
"youtube_url_help": "Video YouTube o \"URL\" della playlist per ottenere trascrizioni, commenti e inviarli alla chat o stamparli sulla console e memorizzarli nel file di output",
"prefer_playlist_over_video": "Preferisci playlist al video se entrambi gli ID sono presenti nell'URL",
"grab_transcript_from_youtube": "Ottieni trascrizione dal video YouTube e invia alla chat (usato per impostazione predefinita).",
"grab_transcript_with_timestamps": "Ottieni trascrizione dal video YouTube con timestamp e invia alla chat",
"grab_comments_from_youtube": "Ottieni commenti dal video YouTube e invia alla chat",
"output_video_metadata": "Output metadati video",
"additional_yt_dlp_args": "Argomenti aggiuntivi da passare a yt-dlp (es. '--cookies-from-browser brave')",
"specify_language_code": "Specifica il codice lingua per la chat, es. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Scraping dell'URL del sito web in markdown usando Jina AI",
"search_question_jina": "Domanda di ricerca usando Jina AI",
"seed_for_lmm_generation": "Seed da utilizzare per la generazione LMM",
"wipe_context": "Cancella contesto",
"wipe_session": "Cancella sessione",
"print_context": "Stampa contesto",
"print_session": "Stampa sessione",
"convert_html_readability": "Converti input HTML in una vista pulita e leggibile",
"apply_variables_to_input": "Applica variabili all'input utente",
"disable_pattern_variable_replacement": "Disabilita sostituzione variabili pattern",
"show_dry_run": "Mostra cosa verrebbe inviato al modello senza inviarlo effettivamente",
"serve_fabric_rest_api": "Servi l'API REST di Fabric",
"serve_fabric_api_ollama_endpoints": "Servi l'API REST di Fabric con endpoint ollama",
"address_to_bind_rest_api": "Indirizzo per associare l'API REST",
"api_key_secure_server_routes": "Chiave API utilizzata per proteggere le route del server",
"path_to_yaml_config": "Percorso del file di configurazione YAML",
"print_current_version": "Stampa versione corrente",
"list_all_registered_extensions": "Elenca tutte le estensioni registrate",
"register_new_extension": "Registra una nuova estensione dal percorso del file di configurazione",
"remove_registered_extension": "Rimuovi un'estensione registrata per nome",
"choose_strategy_from_available": "Scegli una strategia dalle strategie disponibili",
"list_all_strategies": "Elenca tutte le strategie",
"list_all_vendors": "Elenca tutti i fornitori",
"output_raw_list_shell_completion": "Output lista grezza senza intestazioni/formattazione (per completamento shell)",
"enable_web_search_tool": "Abilita strumento di ricerca web per modelli supportati (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Imposta posizione per risultati ricerca web (es. 'America/Los_Angeles')",
"save_generated_image_to_file": "Salva immagine generata nel percorso file specificato (es. 'output.png')",
"image_dimensions_help": "Dimensioni immagine: 1024x1024, 1536x1024, 1024x1536, auto (predefinito: auto)",
"image_quality_help": "Qualità immagine: low, medium, high, auto (predefinito: auto)",
"compression_level_jpeg_webp": "Livello di compressione 0-100 per formati JPEG/WebP (predefinito: non impostato)",
"background_type_help": "Tipo di sfondo: opaque, transparent (predefinito: opaque, solo per PNG/WebP)",
"suppress_thinking_tags": "Sopprimi testo racchiuso in tag di pensiero",
"start_tag_thinking_sections": "Tag di inizio per sezioni di pensiero",
"end_tag_thinking_sections": "Tag di fine per sezioni di pensiero",
"disable_openai_responses_api": "Disabilita API OpenAI Responses (predefinito: false)",
"audio_video_file_transcribe": "File audio o video da trascrivere",
"model_for_transcription": "Modello da utilizzare per la trascrizione (separato dal modello di chat)",
"split_media_files_ffmpeg": "Dividi file audio/video più grandi di 25MB usando ffmpeg",
"tts_voice_name": "Nome voce TTS per modelli supportati (es. Kore, Charon, Puck)",
"list_gemini_tts_voices": "Elenca tutte le voci TTS Gemini disponibili",
"list_transcription_models": "Elenca tutti i modelli di trascrizione disponibili",
"send_desktop_notification": "Invia notifica desktop quando il comando è completato",
"custom_notification_command": "Comando personalizzato da eseguire per le notifiche (sovrascrive le notifiche integrate)",
"set_reasoning_thinking_level": "Imposta livello di ragionamento/pensiero (es. off, low, medium, high, o token numerici per Anthropic o Google Gemini)",
"set_debug_level": "Imposta livello di debug (0=spento, 1=base, 2=dettagliato, 3=traccia)",
"usage_header": "Uso:",
"application_options_header": "Opzioni dell'applicazione:",
"help_options_header": "Opzioni di aiuto:",
"help_message": "Mostra questo messaggio di aiuto",
"options_placeholder": "[OPZIONI]",
"available_vendors_header": "Fornitori disponibili:",
"available_models_header": "Modelli disponibili",
"no_items_found": "Nessun %s",
"no_description_available": "Nessuna descrizione disponibile",
"i18n_download_failed": "Fallito il download della traduzione per la lingua '%s': %v",
"i18n_load_failed": "Fallito il caricamento del file di traduzione: %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "HTML可読性を適用できないため、元の入力を使用します",
"vendor_not_configured": "ベンダー %s が設定されていません",
"vendor_no_transcription_support": "ベンダー %s は音声転写をサポートしていません",
"transcription_model_required": "転写モデルが必要です(--transcribe-model を使用)",
"youtube_not_configured": "YouTubeが設定されていません。セットアップ手順を実行してください",
"error_fetching_playlist_videos": "プレイリスト動画の取得エラー: %w",
"scraping_not_configured": "スクレイピング機能が設定されていません。スクレイピングを有効にするためにJinaを設定してください",
"could_not_determine_home_dir": "ユーザーのホームディレクトリを特定できませんでした: %w",
"could_not_stat_env_file": ".envファイルの状態を確認できませんでした: %w",
"could_not_create_config_dir": "設定ディレクトリを作成できませんでした: %w",
"could_not_create_env_file": ".envファイルを作成できませんでした: %w",
"could_not_copy_to_clipboard": "クリップボードにコピーできませんでした: %v",
"file_already_exists_not_overwriting": "ファイル %s は既に存在するため、上書きしません。既存のファイルの名前を変更するか、別の名前を選択してください",
"error_creating_file": "ファイルの作成エラー: %v",
"error_writing_to_file": "ファイルへの書き込みエラー: %v",
"error_creating_audio_file": "音声ファイルの作成エラー: %v",
"error_writing_audio_data": "音声データのファイルへの書き込みエラー: %v",
"tts_model_requires_audio_output": "TTSモデル '%s' には音声出力が必要です。-oフラグで音声出力ファイルを指定してください-o output.wav",
"audio_output_file_specified_but_not_tts_model": "音声出力ファイル '%s' が指定されましたが、モデル '%s' はTTSモデルではありません。gemini-2.5-flash-preview-tts などのTTSモデルを使用してください",
"file_already_exists_choose_different": "ファイル %s は既に存在します。別のファイル名を選択するか、既存のファイルを削除してください",
"no_notification_system_available": "利用可能な通知システムがありません",
"cannot_convert_string": "文字列 %q を %v に変換できません",
"unsupported_conversion": "%v から %v への変換はサポートされていません",
"invalid_config_path": "無効な設定パス: %w",
"config_file_not_found": "設定ファイルが見つかりません: %s",
"error_reading_config_file": "設定ファイルの読み込みエラー: %w",
"error_parsing_config_file": "設定ファイルの解析エラー: %w",
"error_reading_piped_message": "stdinからパイプされたメッセージの読み込みエラー: %w",
"image_file_already_exists": "画像ファイルが既に存在します: %s",
"invalid_image_file_extension": "無効な画像ファイル拡張子 '%s'。サポートされている形式:.png、.jpeg、.jpg、.webp",
"image_parameters_require_image_file": "画像パラメータ(--image-size、--image-quality、--image-background、--image-compressionは --image-file と一緒に使用する必要があります",
"invalid_image_size": "無効な画像サイズ '%s'。サポートされているサイズ1024x1024、1536x1024、1024x1536、auto",
"invalid_image_quality": "無効な画像品質 '%s'。サポートされている品質low、medium、high、auto",
"invalid_image_background": "無効な画像背景 '%s'。サポートされている背景opaque、transparent",
"image_compression_jpeg_webp_only": "画像圧縮はJPEGおよびWebP形式でのみ使用できます。%s では使用できません",
"image_compression_range_error": "画像圧縮は0から100の間である必要があります。取得値%d",
"transparent_background_png_webp_only": "透明背景はPNGおよびWebP形式でのみ使用できます。%s では使用できません",
"available_transcription_models": "利用可能な転写モデル:",
"tts_audio_generated_successfully": "TTS音声が正常に生成され、保存されました%s\n",
"fabric_command_complete": "Fabricコマンド完了",
"fabric_command_complete_with_pattern": "Fabric%s 完了",
"command_completed_successfully": "コマンドが正常に完了しました",
"output_truncated": "出力:%s...",
"output_full": "出力:%s",
"choose_pattern_from_available": "利用可能なパターンからパターンを選択",
"pattern_variables_help": "パターン変数の値、例:-v=#role:expert -v=#points:30",
"choose_context_from_available": "利用可能なコンテキストからコンテキストを選択",
"choose_session_from_available": "利用可能なセッションからセッションを選択",
"attachment_path_or_url_help": "添付ファイルのパスまたはURLOpenAI画像認識メッセージ用",
"run_setup_for_reconfigurable_parts": "fabricのすべての再設定可能な部分のセットアップを実行",
"set_temperature": "温度を設定",
"set_top_p": "Top Pを設定",
"stream_help": "ストリーミング",
"set_presence_penalty": "プレゼンスペナルティを設定",
"use_model_defaults_raw_help": "チャットオプション(温度など)を送信せずにモデルのデフォルトを使用し、パターンにシステムロールではなくユーザーロールを使用します。",
"set_frequency_penalty": "頻度ペナルティを設定",
"list_all_patterns": "すべてのパターンを一覧表示",
"list_all_available_models": "すべての利用可能なモデルを一覧表示",
"list_all_contexts": "すべてのコンテキストを一覧表示",
"list_all_sessions": "すべてのセッションを一覧表示",
"update_patterns": "パターンを更新",
"messages_to_send_to_chat": "チャットに送信するメッセージ",
"copy_to_clipboard": "クリップボードにコピー",
"choose_model": "モデルを選択",
"specify_vendor_for_model": "選択したモデルのベンダーを指定(例:-V \"LM Studio\" -m openai/gpt-oss-20b",
"model_context_length_ollama": "モデルのコンテキスト長ollamaのみに影響",
"output_to_file": "ファイルに出力",
"output_entire_session": "セッション全体(一時的なものも含む)を出力ファイルに出力",
"number_of_latest_patterns": "一覧表示する最新パターンの数",
"change_default_model": "デフォルトモデルを変更",
"youtube_url_help": "YouTube動画またはプレイリスト\"URL\"から転写、コメントを取得してチャットに送信、またはコンソールに出力して出力ファイルに保存",
"prefer_playlist_over_video": "URLに両方のIDが存在する場合、動画よりプレイリストを優先",
"grab_transcript_from_youtube": "YouTube動画から転写を取得してチャットに送信デフォルトで使用。",
"grab_transcript_with_timestamps": "YouTube動画からタイムスタンプ付きの転写を取得してチャットに送信",
"grab_comments_from_youtube": "YouTube動画からコメントを取得してチャットに送信",
"output_video_metadata": "動画メタデータを出力",
"additional_yt_dlp_args": "yt-dlpに渡す追加の引数'--cookies-from-browser brave'",
"specify_language_code": "チャットの言語コードを指定、例: -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Jina AIを使用してウェブサイトURLをマークダウンにスクレイピング",
"search_question_jina": "Jina AIを使用した検索質問",
"seed_for_lmm_generation": "LMM生成で使用するシード",
"wipe_context": "コンテキストをクリア",
"wipe_session": "セッションをクリア",
"print_context": "コンテキストを出力",
"print_session": "セッションを出力",
"convert_html_readability": "HTML入力をクリーンで読みやすいビューに変換",
"apply_variables_to_input": "ユーザー入力に変数を適用",
"disable_pattern_variable_replacement": "パターン変数の置換を無効化",
"show_dry_run": "実際に送信せずにモデルに送信される内容を表示",
"serve_fabric_rest_api": "Fabric REST APIを提供",
"serve_fabric_api_ollama_endpoints": "ollamaエンドポイント付きのFabric REST APIを提供",
"address_to_bind_rest_api": "REST APIをバインドするアドレス",
"api_key_secure_server_routes": "サーバールートを保護するために使用するAPIキー",
"path_to_yaml_config": "YAML設定ファイルのパス",
"print_current_version": "現在のバージョンを出力",
"list_all_registered_extensions": "すべての登録済み拡張機能を一覧表示",
"register_new_extension": "設定ファイルパスから新しい拡張機能を登録",
"remove_registered_extension": "名前で登録済み拡張機能を削除",
"choose_strategy_from_available": "利用可能な戦略から戦略を選択",
"list_all_strategies": "すべての戦略を一覧表示",
"list_all_vendors": "すべてのベンダーを一覧表示",
"output_raw_list_shell_completion": "生リストをヘッダー/フォーマットなしで出力(シェル補完用)",
"enable_web_search_tool": "サポートされているモデルAnthropic、OpenAI、Geminiでウェブ検索ツールを有効化",
"set_location_web_search": "ウェブ検索結果の場所を設定(例:'America/Los_Angeles'",
"save_generated_image_to_file": "生成された画像を指定ファイルパスに保存(例:'output.png'",
"image_dimensions_help": "画像サイズ1024x1024、1536x1024、1024x1536、autoデフォルトauto",
"image_quality_help": "画像品質low、medium、high、autoデフォルトauto",
"compression_level_jpeg_webp": "JPEG/WebP形式の圧縮レベル0-100デフォルト未設定",
"background_type_help": "背景タイプopaque、transparentデフォルトopaque、PNG/WebPのみ",
"suppress_thinking_tags": "思考タグで囲まれたテキストを抑制",
"start_tag_thinking_sections": "思考セクションの開始タグ",
"end_tag_thinking_sections": "思考セクションの終了タグ",
"disable_openai_responses_api": "OpenAI Responses APIを無効化デフォルトfalse",
"audio_video_file_transcribe": "転写する音声または動画ファイル",
"model_for_transcription": "転写に使用するモデル(チャットモデルとは別)",
"split_media_files_ffmpeg": "25MBを超える音声/動画ファイルをffmpegを使用して分割",
"tts_voice_name": "サポートされているモデルのTTS音声名Kore、Charon、Puck",
"list_gemini_tts_voices": "すべての利用可能なGemini TTS音声を一覧表示",
"list_transcription_models": "すべての利用可能な転写モデルを一覧表示",
"send_desktop_notification": "コマンド完了時にデスクトップ通知を送信",
"custom_notification_command": "通知用のカスタムコマンド(内蔵通知を上書き)",
"set_reasoning_thinking_level": "推論/思考レベルを設定off、low、medium、high、またはAnthropicやGoogle Gemini用の数値トークン",
"set_debug_level": "デバッグレベルを設定0=オフ、1=基本、2=詳細、3=トレース)",
"usage_header": "使用法:",
"application_options_header": "アプリケーションオプション:",
"help_options_header": "ヘルプオプション:",
"help_message": "このヘルプメッセージを表示",
"options_placeholder": "[オプション]",
"available_vendors_header": "利用可能なベンダー:",
"available_models_header": "利用可能なモデル",
"no_items_found": "%s がありません",
"no_description_available": "説明がありません",
"i18n_download_failed": "言語 '%s' の翻訳のダウンロードに失敗しました: %v",
"i18n_load_failed": "翻訳ファイルの読み込みに失敗しました: %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "usa a entrada original, porque não é possível aplicar a legibilidade HTML",
"vendor_not_configured": "o fornecedor %s não está configurado",
"vendor_no_transcription_support": "o fornecedor %s não suporta transcrição de áudio",
"transcription_model_required": "modelo de transcrição é necessário (use --transcribe-model)",
"youtube_not_configured": "YouTube não está configurado, por favor execute o procedimento de configuração",
"error_fetching_playlist_videos": "erro ao buscar vídeos da playlist: %w",
"scraping_not_configured": "funcionalidade de scraping não está configurada. Por favor configure o Jina para ativar o scraping",
"could_not_determine_home_dir": "não foi possível determinar o diretório home do usuário: %w",
"could_not_stat_env_file": "não foi possível verificar o arquivo .env: %w",
"could_not_create_config_dir": "não foi possível criar o diretório de configuração: %w",
"could_not_create_env_file": "não foi possível criar o arquivo .env: %w",
"could_not_copy_to_clipboard": "não foi possível copiar para a área de transferência: %v",
"file_already_exists_not_overwriting": "o arquivo %s já existe, não será sobrescrito. Renomeie o arquivo existente ou escolha um nome diferente",
"error_creating_file": "erro ao criar arquivo: %v",
"error_writing_to_file": "erro ao escrever no arquivo: %v",
"error_creating_audio_file": "erro ao criar arquivo de áudio: %v",
"error_writing_audio_data": "erro ao escrever dados de áudio no arquivo: %v",
"tts_model_requires_audio_output": "modelo TTS '%s' requer saída de áudio. Por favor especifique um arquivo de saída de áudio com a flag -o (ex. -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "arquivo de saída de áudio '%s' especificado mas o modelo '%s' não é um modelo TTS. Por favor use um modelo TTS como gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "arquivo %s já existe. Por favor escolha um nome de arquivo diferente ou remova o arquivo existente",
"no_notification_system_available": "nenhum sistema de notificação disponível",
"cannot_convert_string": "não é possível converter a string %q para %v",
"unsupported_conversion": "conversão não suportada de %v para %v",
"invalid_config_path": "caminho de configuração inválido: %w",
"config_file_not_found": "arquivo de configuração não encontrado: %s",
"error_reading_config_file": "erro ao ler arquivo de configuração: %w",
"error_parsing_config_file": "erro ao analisar arquivo de configuração: %w",
"error_reading_piped_message": "erro ao ler mensagem redirecionada do stdin: %w",
"image_file_already_exists": "arquivo de imagem já existe: %s",
"invalid_image_file_extension": "extensão de arquivo de imagem inválida '%s'. Formatos suportados: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "parâmetros de imagem (--image-size, --image-quality, --image-background, --image-compression) só podem ser usados com --image-file",
"invalid_image_size": "tamanho de imagem inválido '%s'. Tamanhos suportados: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "qualidade de imagem inválida '%s'. Qualidades suportadas: low, medium, high, auto",
"invalid_image_background": "fundo de imagem inválido '%s'. Fundos suportados: opaque, transparent",
"image_compression_jpeg_webp_only": "compressão de imagem só pode ser usada com formatos JPEG e WebP, não %s",
"image_compression_range_error": "compressão de imagem deve estar entre 0 e 100, recebido %d",
"transparent_background_png_webp_only": "fundo transparente só pode ser usado com formatos PNG e WebP, não %s",
"available_transcription_models": "Modelos de transcrição disponíveis:",
"tts_audio_generated_successfully": "Áudio TTS gerado com sucesso e salvo em: %s\n",
"fabric_command_complete": "Comando Fabric concluído",
"fabric_command_complete_with_pattern": "Fabric: %s concluído",
"command_completed_successfully": "Comando concluído com sucesso",
"output_truncated": "Saída: %s...",
"output_full": "Saída: %s",
"choose_pattern_from_available": "Escolha um padrão entre os padrões disponíveis",
"pattern_variables_help": "Valores para variáveis do padrão, ex. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Escolha um contexto entre os contextos disponíveis",
"choose_session_from_available": "Escolha uma sessão das sessões disponíveis",
"attachment_path_or_url_help": "Caminho para o anexo ou URL (ex. para mensagens de reconhecimento de imagem do OpenAI)",
"run_setup_for_reconfigurable_parts": "Executar a configuração para todas as partes reconfiguráveis do fabric",
"set_temperature": "Definir temperatura",
"set_top_p": "Definir top P",
"stream_help": "Streaming",
"set_presence_penalty": "Definir penalidade de presença",
"use_model_defaults_raw_help": "Usar as configurações padrão do modelo sem enviar opções de chat (como temperatura, etc.) e usar o papel de usuário em vez do papel de sistema para padrões.",
"set_frequency_penalty": "Definir penalidade de frequência",
"list_all_patterns": "Listar todos os padrões/patterns",
"list_all_available_models": "Listar todos os modelos disponíveis",
"list_all_contexts": "Listar todos os contextos",
"list_all_sessions": "Listar todas as sessões",
"update_patterns": "Atualizar os padrões/patterns",
"messages_to_send_to_chat": "Mensagens para enviar ao chat",
"copy_to_clipboard": "Copiar para a área de transferência",
"choose_model": "Escolher modelo",
"specify_vendor_for_model": "Especificar fornecedor para o modelo selecionado (ex. -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Comprimento do contexto do modelo (afeta apenas ollama)",
"output_to_file": "Exportar para arquivo",
"output_entire_session": "Saída de toda a sessão (incluindo temporária) para o arquivo de saída",
"number_of_latest_patterns": "Número dos padrões mais recentes a listar",
"change_default_model": "Mudar modelo padrão",
"youtube_url_help": "Vídeo do YouTube ou URL da playlist para obter transcrição, comentários e enviar ao chat ou imprimir no console e armazenar no arquivo de saída",
"prefer_playlist_over_video": "Preferir playlist ao vídeo se ambos os IDs estiverem presentes na URL",
"grab_transcript_from_youtube": "Obter transcrição do vídeo do YouTube e enviar ao chat (usado por padrão).",
"grab_transcript_with_timestamps": "Obter transcrição do vídeo do YouTube com timestamps e enviar ao chat",
"grab_comments_from_youtube": "Obter comentários do vídeo do YouTube e enviar ao chat",
"output_video_metadata": "Exibir metadados do vídeo",
"additional_yt_dlp_args": "Argumentos adicionais para passar ao yt-dlp (ex. '--cookies-from-browser brave')",
"specify_language_code": "Especificar código de idioma para o chat, ex. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Fazer scraping da URL do site para markdown usando Jina AI",
"search_question_jina": "Pergunta de busca usando Jina AI",
"seed_for_lmm_generation": "Seed para ser usado na geração LMM",
"wipe_context": "Limpar contexto",
"wipe_session": "Limpar sessão",
"print_context": "Imprimir contexto",
"print_session": "Imprimir sessão",
"convert_html_readability": "Converter entrada HTML em uma visualização limpa e legível",
"apply_variables_to_input": "Aplicar variáveis à entrada do usuário",
"disable_pattern_variable_replacement": "Desabilitar substituição de variáveis de padrão",
"show_dry_run": "Mostrar o que seria enviado ao modelo sem enviar de fato",
"serve_fabric_rest_api": "Servir a API REST do Fabric",
"serve_fabric_api_ollama_endpoints": "Servir a API REST do Fabric com endpoints ollama",
"address_to_bind_rest_api": "Endereço para vincular a API REST",
"api_key_secure_server_routes": "Chave API usada para proteger rotas do servidor",
"path_to_yaml_config": "Caminho para arquivo de configuração YAML",
"print_current_version": "Imprimir versão atual",
"list_all_registered_extensions": "Listar todas as extensões registradas",
"register_new_extension": "Registrar uma nova extensão do caminho do arquivo de configuração",
"remove_registered_extension": "Remover uma extensão registrada por nome",
"choose_strategy_from_available": "Escolher uma estratégia das estratégias disponíveis",
"list_all_strategies": "Listar todas as estratégias",
"list_all_vendors": "Listar todos os fornecedores",
"output_raw_list_shell_completion": "Saída de lista bruta sem cabeçalhos/formatação (para conclusão de shell)",
"enable_web_search_tool": "Habilitar ferramenta de busca web para modelos suportados (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Definir localização para resultados de busca web (ex. 'America/Los_Angeles')",
"save_generated_image_to_file": "Salvar imagem gerada no caminho de arquivo especificado (ex. 'output.png')",
"image_dimensions_help": "Dimensões da imagem: 1024x1024, 1536x1024, 1024x1536, auto (padrão: auto)",
"image_quality_help": "Qualidade da imagem: low, medium, high, auto (padrão: auto)",
"compression_level_jpeg_webp": "Nível de compressão 0-100 para formatos JPEG/WebP (padrão: não definido)",
"background_type_help": "Tipo de fundo: opaque, transparent (padrão: opaque, apenas para PNG/WebP)",
"suppress_thinking_tags": "Suprimir texto contido em tags de pensamento",
"start_tag_thinking_sections": "Tag inicial para seções de pensamento",
"end_tag_thinking_sections": "Tag final para seções de pensamento",
"disable_openai_responses_api": "Desabilitar API OpenAI Responses (padrão: false)",
"audio_video_file_transcribe": "Arquivo de áudio ou vídeo para transcrever",
"model_for_transcription": "Modelo para usar na transcrição (separado do modelo de chat)",
"split_media_files_ffmpeg": "Dividir arquivos de áudio/vídeo maiores que 25MB usando ffmpeg",
"tts_voice_name": "Nome da voz TTS para modelos suportados (ex. Kore, Charon, Puck)",
"list_gemini_tts_voices": "Listar todas as vozes TTS do Gemini disponíveis",
"list_transcription_models": "Listar todos os modelos de transcrição disponíveis",
"send_desktop_notification": "Enviar notificação desktop quando o comando for concluído",
"custom_notification_command": "Comando personalizado para executar notificações (substitui notificações integradas)",
"set_reasoning_thinking_level": "Definir nível de raciocínio/pensamento (ex. off, low, medium, high, ou tokens numéricos para Anthropic ou Google Gemini)",
"set_debug_level": "Definir nível de debug (0=desligado, 1=básico, 2=detalhado, 3=rastreamento)",
"usage_header": "Uso:",
"application_options_header": "Opções da aplicação:",
"help_options_header": "Opções de ajuda:",
"help_message": "Mostrar esta mensagem de ajuda",
"options_placeholder": "[OPÇÕES]",
"available_vendors_header": "Fornecedores disponíveis:",
"available_models_header": "Modelos disponíveis",
"no_items_found": "Nenhum %s",
"no_description_available": "Nenhuma descrição disponível",
"i18n_download_failed": "Falha ao baixar tradução para o idioma '%s': %v",
"i18n_load_failed": "Falha ao carregar arquivo de tradução: %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "usa a entrada original, porque não é possível aplicar a legibilidade HTML",
"vendor_not_configured": "o fornecedor %s não está configurado",
"vendor_no_transcription_support": "o fornecedor %s não suporta transcrição de áudio",
"transcription_model_required": "modelo de transcrição é necessário (use --transcribe-model)",
"youtube_not_configured": "YouTube não está configurado, por favor execute o procedimento de configuração",
"error_fetching_playlist_videos": "erro ao obter vídeos da playlist: %w",
"scraping_not_configured": "funcionalidade de scraping não está configurada. Por favor configure o Jina para ativar o scraping",
"could_not_determine_home_dir": "não foi possível determinar o diretório home do utilizador: %w",
"could_not_stat_env_file": "não foi possível verificar o ficheiro .env: %w",
"could_not_create_config_dir": "não foi possível criar o diretório de configuração: %w",
"could_not_create_env_file": "não foi possível criar o ficheiro .env: %w",
"could_not_copy_to_clipboard": "não foi possível copiar para a área de transferência: %v",
"file_already_exists_not_overwriting": "o ficheiro %s já existe, não será sobrescrito. Renomeie o ficheiro existente ou escolha um nome diferente",
"error_creating_file": "erro ao criar ficheiro: %v",
"error_writing_to_file": "erro ao escrever no ficheiro: %v",
"error_creating_audio_file": "erro ao criar ficheiro de áudio: %v",
"error_writing_audio_data": "erro ao escrever dados de áudio no ficheiro: %v",
"tts_model_requires_audio_output": "modelo TTS '%s' requer saída de áudio. Por favor especifique um ficheiro de saída de áudio com a flag -o (ex. -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "ficheiro de saída de áudio '%s' especificado mas o modelo '%s' não é um modelo TTS. Por favor use um modelo TTS como gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "ficheiro %s já existe. Por favor escolha um nome de ficheiro diferente ou remova o ficheiro existente",
"no_notification_system_available": "nenhum sistema de notificação disponível",
"cannot_convert_string": "não é possível converter a string %q para %v",
"unsupported_conversion": "conversão não suportada de %v para %v",
"invalid_config_path": "caminho de configuração inválido: %w",
"config_file_not_found": "ficheiro de configuração não encontrado: %s",
"error_reading_config_file": "erro ao ler ficheiro de configuração: %w",
"error_parsing_config_file": "erro ao analisar ficheiro de configuração: %w",
"error_reading_piped_message": "erro ao ler mensagem redirecionada do stdin: %w",
"image_file_already_exists": "ficheiro de imagem já existe: %s",
"invalid_image_file_extension": "extensão de ficheiro de imagem inválida '%s'. Formatos suportados: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "parâmetros de imagem (--image-size, --image-quality, --image-background, --image-compression) só podem ser usados com --image-file",
"invalid_image_size": "tamanho de imagem inválido '%s'. Tamanhos suportados: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "qualidade de imagem inválida '%s'. Qualidades suportadas: low, medium, high, auto",
"invalid_image_background": "fundo de imagem inválido '%s'. Fundos suportados: opaque, transparent",
"image_compression_jpeg_webp_only": "compressão de imagem só pode ser usada com formatos JPEG e WebP, não %s",
"image_compression_range_error": "compressão de imagem deve estar entre 0 e 100, recebido %d",
"transparent_background_png_webp_only": "fundo transparente só pode ser usado com formatos PNG e WebP, não %s",
"available_transcription_models": "Modelos de transcrição disponíveis:",
"tts_audio_generated_successfully": "Áudio TTS gerado com sucesso e guardado em: %s\n",
"fabric_command_complete": "Comando Fabric concluído",
"fabric_command_complete_with_pattern": "Fabric: %s concluído",
"command_completed_successfully": "Comando concluído com sucesso",
"output_truncated": "Saída: %s...",
"output_full": "Saída: %s",
"choose_pattern_from_available": "Escolha um padrão dos padrões disponíveis",
"pattern_variables_help": "Valores para variáveis de padrão, ex. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Escolha um contexto dos contextos disponíveis",
"choose_session_from_available": "Escolha uma sessão das sessões disponíveis",
"attachment_path_or_url_help": "Caminho do anexo ou URL (ex. para mensagens de reconhecimento de imagem do OpenAI)",
"run_setup_for_reconfigurable_parts": "Executar configuração para todas as partes reconfiguráveis do fabric",
"set_temperature": "Definir temperatura",
"set_top_p": "Definir top P",
"stream_help": "Streaming",
"set_presence_penalty": "Definir penalidade de presença",
"use_model_defaults_raw_help": "Usar as predefinições do modelo sem enviar opções de chat (como temperatura, etc.) e usar o papel de utilizador em vez do papel de sistema para padrões.",
"set_frequency_penalty": "Definir penalidade de frequência",
"list_all_patterns": "Listar todos os padrões",
"list_all_available_models": "Listar todos os modelos disponíveis",
"list_all_contexts": "Listar todos os contextos",
"list_all_sessions": "Listar todas as sessões",
"update_patterns": "Atualizar padrões",
"messages_to_send_to_chat": "Mensagens para enviar ao chat",
"copy_to_clipboard": "Copiar para área de transferência",
"choose_model": "Escolher modelo",
"specify_vendor_for_model": "Especificar fornecedor para o modelo selecionado (ex. -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Comprimento do contexto do modelo (afeta apenas ollama)",
"output_to_file": "Saída para ficheiro",
"output_entire_session": "Saída de toda a sessão (incluindo temporária) para o ficheiro de saída",
"number_of_latest_patterns": "Número dos padrões mais recentes a listar",
"change_default_model": "Mudar modelo predefinido",
"youtube_url_help": "Vídeo do YouTube ou \"URL\" de playlist para obter transcrição, comentários e enviar ao chat ou imprimir na consola e armazenar no ficheiro de saída",
"prefer_playlist_over_video": "Preferir playlist ao vídeo se ambos os IDs estiverem presentes na URL",
"grab_transcript_from_youtube": "Obter transcrição do vídeo do YouTube e enviar ao chat (usado por omissão).",
"grab_transcript_with_timestamps": "Obter transcrição do vídeo do YouTube com timestamps e enviar ao chat",
"grab_comments_from_youtube": "Obter comentários do vídeo do YouTube e enviar ao chat",
"output_video_metadata": "Mostrar metadados do vídeo",
"additional_yt_dlp_args": "Argumentos adicionais para passar ao yt-dlp (ex. '--cookies-from-browser brave')",
"specify_language_code": "Especificar código de idioma para o chat, ex. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Fazer scraping da URL do site para markdown usando Jina AI",
"search_question_jina": "Pergunta de pesquisa usando Jina AI",
"seed_for_lmm_generation": "Seed para ser usado na geração LMM",
"wipe_context": "Limpar contexto",
"wipe_session": "Limpar sessão",
"print_context": "Imprimir contexto",
"print_session": "Imprimir sessão",
"convert_html_readability": "Converter entrada HTML numa visualização limpa e legível",
"apply_variables_to_input": "Aplicar variáveis à entrada do utilizador",
"disable_pattern_variable_replacement": "Desabilitar substituição de variáveis de padrão",
"show_dry_run": "Mostrar o que seria enviado ao modelo sem enviar de facto",
"serve_fabric_rest_api": "Servir a API REST do Fabric",
"serve_fabric_api_ollama_endpoints": "Servir a API REST do Fabric com endpoints ollama",
"address_to_bind_rest_api": "Endereço para associar a API REST",
"api_key_secure_server_routes": "Chave API usada para proteger as rotas do servidor",
"path_to_yaml_config": "Caminho para ficheiro de configuração YAML",
"print_current_version": "Imprimir versão atual",
"list_all_registered_extensions": "Listar todas as extensões registadas",
"register_new_extension": "Registar uma nova extensão do caminho do ficheiro de configuração",
"remove_registered_extension": "Remover uma extensão registada por nome",
"choose_strategy_from_available": "Escolher uma estratégia das estratégias disponíveis",
"list_all_strategies": "Listar todas as estratégias",
"list_all_vendors": "Listar todos os fornecedores",
"output_raw_list_shell_completion": "Saída de lista simples sem cabeçalhos/formatação (para conclusão de shell)",
"enable_web_search_tool": "Habilitar ferramenta de pesquisa web para modelos suportados (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Definir localização para resultados de pesquisa web (ex. 'America/Los_Angeles')",
"save_generated_image_to_file": "Guardar imagem gerada no caminho de ficheiro especificado (ex. 'output.png')",
"image_dimensions_help": "Dimensões da imagem: 1024x1024, 1536x1024, 1024x1536, auto (por omissão: auto)",
"image_quality_help": "Qualidade da imagem: low, medium, high, auto (por omissão: auto)",
"compression_level_jpeg_webp": "Nível de compressão 0-100 para formatos JPEG/WebP (por omissão: não definido)",
"background_type_help": "Tipo de fundo: opaque, transparent (por omissão: opaque, apenas para PNG/WebP)",
"suppress_thinking_tags": "Suprimir texto contido em tags de pensamento",
"start_tag_thinking_sections": "Tag inicial para secções de pensamento",
"end_tag_thinking_sections": "Tag final para secções de pensamento",
"disable_openai_responses_api": "Desabilitar API OpenAI Responses (por omissão: false)",
"audio_video_file_transcribe": "Ficheiro de áudio ou vídeo para transcrever",
"model_for_transcription": "Modelo para usar na transcrição (separado do modelo de chat)",
"split_media_files_ffmpeg": "Dividir ficheiros de áudio/vídeo maiores que 25MB usando ffmpeg",
"tts_voice_name": "Nome da voz TTS para modelos suportados (ex. Kore, Charon, Puck)",
"list_gemini_tts_voices": "Listar todas as vozes TTS do Gemini disponíveis",
"list_transcription_models": "Listar todos os modelos de transcrição disponíveis",
"send_desktop_notification": "Enviar notificação no ambiente de trabalho quando o comando for concluído",
"custom_notification_command": "Comando personalizado para executar notificações (substitui notificações integradas)",
"set_reasoning_thinking_level": "Definir nível de raciocínio/pensamento (ex. off, low, medium, high, ou tokens numéricos para Anthropic ou Google Gemini)",
"set_debug_level": "Definir nível de debug (0=desligado, 1=básico, 2=detalhado, 3=rastreio)",
"usage_header": "Uso:",
"application_options_header": "Opções da aplicação:",
"help_options_header": "Opções de ajuda:",
"help_message": "Mostrar esta mensagem de ajuda",
"options_placeholder": "[OPÇÕES]",
"available_vendors_header": "Fornecedores disponíveis:",
"available_models_header": "Modelos disponíveis",
"no_items_found": "Nenhum %s",
"no_description_available": "Nenhuma descrição disponível",
"i18n_download_failed": "Falha ao descarregar tradução para o idioma '%s': %v",
"i18n_load_failed": "Falha ao carregar ficheiro de tradução: %v"
}

View File

@@ -0,0 +1,136 @@
{
"html_readability_error": "使用原始输入,因为无法应用 HTML 可读性处理",
"vendor_not_configured": "供应商 %s 未配置",
"vendor_no_transcription_support": "供应商 %s 不支持音频转录",
"transcription_model_required": "需要转录模型(使用 --transcribe-model",
"youtube_not_configured": "YouTube 未配置,请运行设置程序",
"error_fetching_playlist_videos": "获取播放列表视频时出错: %w",
"scraping_not_configured": "抓取功能未配置。请设置 Jina 以启用抓取功能",
"could_not_determine_home_dir": "无法确定用户主目录: %w",
"could_not_stat_env_file": "无法获取 .env 文件状态: %w",
"could_not_create_config_dir": "无法创建配置目录: %w",
"could_not_create_env_file": "无法创建 .env 文件: %w",
"could_not_copy_to_clipboard": "无法复制到剪贴板: %v",
"file_already_exists_not_overwriting": "文件 %s 已存在,不会覆盖。请重命名现有文件或选择其他名称",
"error_creating_file": "创建文件时出错: %v",
"error_writing_to_file": "写入文件时出错: %v",
"error_creating_audio_file": "创建音频文件时出错: %v",
"error_writing_audio_data": "写入音频数据到文件时出错: %v",
"tts_model_requires_audio_output": "TTS 模型 '%s' 需要音频输出。请使用 -o 标志指定音频输出文件(例如,-o output.wav",
"audio_output_file_specified_but_not_tts_model": "指定了音频输出文件 '%s' 但模型 '%s' 不是 TTS 模型。请使用 TTS 模型,如 gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "文件 %s 已存在。请选择不同的文件名或删除现有文件",
"no_notification_system_available": "没有可用的通知系统",
"cannot_convert_string": "无法将字符串 %q 转换为 %v",
"unsupported_conversion": "不支持从 %v 到 %v 的转换",
"invalid_config_path": "无效的配置路径: %w",
"config_file_not_found": "找不到配置文件: %s",
"error_reading_config_file": "读取配置文件时出错: %w",
"error_parsing_config_file": "解析配置文件时出错: %w",
"error_reading_piped_message": "从 stdin 读取管道消息时出错: %w",
"image_file_already_exists": "图像文件已存在: %s",
"invalid_image_file_extension": "无效的图像文件扩展名 '%s'。支持的格式:.png、.jpeg、.jpg、.webp",
"image_parameters_require_image_file": "图像参数(--image-size、--image-quality、--image-background、--image-compression只能与 --image-file 一起使用",
"invalid_image_size": "无效的图像尺寸 '%s'。支持的尺寸1024x1024、1536x1024、1024x1536、auto",
"invalid_image_quality": "无效的图像质量 '%s'。支持的质量low、medium、high、auto",
"invalid_image_background": "无效的图像背景 '%s'。支持的背景opaque、transparent",
"image_compression_jpeg_webp_only": "图像压缩只能用于 JPEG 和 WebP 格式,不支持 %s",
"image_compression_range_error": "图像压缩必须在 0 到 100 之间,得到 %d",
"transparent_background_png_webp_only": "透明背景只能用于 PNG 和 WebP 格式,不支持 %s",
"available_transcription_models": "可用的转录模型:",
"tts_audio_generated_successfully": "TTS 音频生成成功并保存到: %s\n",
"fabric_command_complete": "Fabric 命令完成",
"fabric_command_complete_with_pattern": "Fabric: %s 完成",
"command_completed_successfully": "命令执行成功",
"output_truncated": "输出: %s...",
"output_full": "输出: %s",
"choose_pattern_from_available": "从可用模式中选择一个模式",
"pattern_variables_help": "模式变量的值,例如 -v=#role:expert -v=#points:30",
"choose_context_from_available": "从可用上下文中选择一个上下文",
"choose_session_from_available": "从可用会话中选择一个会话",
"attachment_path_or_url_help": "附件路径或 URL例如用于 OpenAI 图像识别消息)",
"run_setup_for_reconfigurable_parts": "为 fabric 的所有可重新配置部分运行设置",
"set_temperature": "设置温度",
"set_top_p": "设置 top P",
"stream_help": "流式传输",
"set_presence_penalty": "设置存在惩罚",
"use_model_defaults_raw_help": "使用模型默认设置,不发送聊天选项(如温度等),对于模式使用用户角色而非系统角色。",
"set_frequency_penalty": "设置频率惩罚",
"list_all_patterns": "列出所有模式",
"list_all_available_models": "列出所有可用模型",
"list_all_contexts": "列出所有上下文",
"list_all_sessions": "列出所有会话",
"update_patterns": "更新模式",
"messages_to_send_to_chat": "发送到聊天的消息",
"copy_to_clipboard": "复制到剪贴板",
"choose_model": "选择模型",
"specify_vendor_for_model": "为所选模型指定供应商(例如,-V \"LM Studio\" -m openai/gpt-oss-20b",
"model_context_length_ollama": "模型上下文长度(仅影响 ollama",
"output_to_file": "输出到文件",
"output_entire_session": "将整个会话(包括临时会话)输出到输出文件",
"number_of_latest_patterns": "要列出的最新模式数量",
"change_default_model": "更改默认模型",
"youtube_url_help": "YouTube 视频或播放列表 \"URL\",用于获取转录、评论并发送到聊天或打印到控制台并存储到输出文件",
"prefer_playlist_over_video": "如果 URL 中同时存在两个 ID则优先选择播放列表而不是视频",
"grab_transcript_from_youtube": "从 YouTube 视频获取转录并发送到聊天(默认使用)。",
"grab_transcript_with_timestamps": "从 YouTube 视频获取带时间戳的转录并发送到聊天",
"grab_comments_from_youtube": "从 YouTube 视频获取评论并发送到聊天",
"output_video_metadata": "输出视频元数据",
"additional_yt_dlp_args": "传递给 yt-dlp 的其他参数(例如 '--cookies-from-browser brave'",
"specify_language_code": "指定聊天的语言代码,例如 -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "使用 Jina AI 将网站 URL 抓取为 markdown",
"search_question_jina": "使用 Jina AI 搜索问题",
"seed_for_lmm_generation": "用于 LMM 生成的种子",
"wipe_context": "清除上下文",
"wipe_session": "清除会话",
"print_context": "打印上下文",
"print_session": "打印会话",
"convert_html_readability": "将 HTML 输入转换为清洁、可读的视图",
"apply_variables_to_input": "将变量应用于用户输入",
"disable_pattern_variable_replacement": "禁用模式变量替换",
"show_dry_run": "显示将发送给模型的内容而不实际发送",
"serve_fabric_rest_api": "提供 Fabric REST API 服务",
"serve_fabric_api_ollama_endpoints": "提供带有 ollama 端点的 Fabric REST API 服务",
"address_to_bind_rest_api": "绑定 REST API 的地址",
"api_key_secure_server_routes": "用于保护服务器路由的 API 密钥",
"path_to_yaml_config": "YAML 配置文件路径",
"print_current_version": "打印当前版本",
"list_all_registered_extensions": "列出所有已注册的扩展",
"register_new_extension": "从配置文件路径注册新扩展",
"remove_registered_extension": "按名称删除已注册的扩展",
"choose_strategy_from_available": "从可用策略中选择一个策略",
"list_all_strategies": "列出所有策略",
"list_all_vendors": "列出所有供应商",
"output_raw_list_shell_completion": "输出不带标题/格式的原始列表(用于 shell 补全)",
"enable_web_search_tool": "为支持的模型启用网络搜索工具Anthropic、OpenAI、Gemini",
"set_location_web_search": "设置网络搜索结果的位置(例如,'America/Los_Angeles'",
"save_generated_image_to_file": "将生成的图像保存到指定文件路径(例如,'output.png'",
"image_dimensions_help": "图像尺寸1024x1024、1536x1024、1024x1536、auto默认auto",
"image_quality_help": "图像质量low、medium、high、auto默认auto",
"compression_level_jpeg_webp": "JPEG/WebP 格式的压缩级别 0-100默认未设置",
"background_type_help": "背景类型opaque、transparent默认opaque仅适用于 PNG/WebP",
"suppress_thinking_tags": "抑制包含在思考标签中的文本",
"start_tag_thinking_sections": "思考部分的开始标签",
"end_tag_thinking_sections": "思考部分的结束标签",
"disable_openai_responses_api": "禁用 OpenAI 响应 API默认false",
"audio_video_file_transcribe": "要转录的音频或视频文件",
"model_for_transcription": "用于转录的模型(与聊天模型分离)",
"split_media_files_ffmpeg": "使用 ffmpeg 分割大于 25MB 的音频/视频文件",
"tts_voice_name": "支持模型的 TTS 语音名称例如Kore、Charon、Puck",
"list_gemini_tts_voices": "列出所有可用的 Gemini TTS 语音",
"list_transcription_models": "列出所有可用的转录模型",
"send_desktop_notification": "命令完成时发送桌面通知",
"custom_notification_command": "用于通知的自定义命令(覆盖内置通知)",
"set_reasoning_thinking_level": "设置推理/思考级别例如off、low、medium、high或 Anthropic 或 Google Gemini 的数字令牌)",
"set_debug_level": "设置调试级别0=关闭1=基本2=详细3=跟踪)",
"usage_header": "用法:",
"application_options_header": "应用程序选项:",
"help_options_header": "帮助选项:",
"help_message": "显示此帮助消息",
"options_placeholder": "[选项]",
"available_vendors_header": "可用供应商:",
"available_models_header": "可用模型",
"no_items_found": "没有 %s",
"no_description_available": "没有可用描述",
"i18n_download_failed": "下载语言 '%s' 的翻译失败: %v",
"i18n_load_failed": "加载翻译文件失败: %v"
}

View File

@@ -49,10 +49,12 @@ func NewClient() (ret *Client) {
string(anthropic.ModelClaude_3_Opus_20240229), string(anthropic.ModelClaude_3_Haiku_20240307),
string(anthropic.ModelClaudeOpus4_20250514), string(anthropic.ModelClaudeSonnet4_20250514),
string(anthropic.ModelClaudeOpus4_1_20250805),
string(anthropic.ModelClaudeSonnet4_5),
}
ret.modelBetas = map[string][]string{
string(anthropic.ModelClaudeSonnet4_20250514): {"context-1m-2025-08-07"},
string(anthropic.ModelClaudeSonnet4_5): {"context-1m-2025-08-07"},
}
return

View File

@@ -1,12 +1,13 @@
package azure
import (
"fmt"
"strings"
"github.com/danielmiessler/fabric/internal/plugins"
"github.com/danielmiessler/fabric/internal/plugins/ai/openai"
openaiapi "github.com/openai/openai-go"
"github.com/openai/openai-go/option"
"github.com/openai/openai-go/azure"
)
func NewClient() (ret *Client) {
@@ -28,18 +29,44 @@ type Client struct {
apiDeployments []string
}
func (oi *Client) configure() (err error) {
oi.apiDeployments = strings.Split(oi.ApiDeployments.Value, ",")
opts := []option.RequestOption{option.WithAPIKey(oi.ApiKey.Value)}
if oi.ApiBaseURL.Value != "" {
opts = append(opts, option.WithBaseURL(oi.ApiBaseURL.Value))
const defaultAPIVersion = "2024-05-01-preview"
func (oi *Client) configure() error {
oi.apiDeployments = parseDeployments(oi.ApiDeployments.Value)
apiKey := strings.TrimSpace(oi.ApiKey.Value)
if apiKey == "" {
return fmt.Errorf("Azure API key is required")
}
if oi.ApiVersion.Value != "" {
opts = append(opts, option.WithQuery("api-version", oi.ApiVersion.Value))
baseURL := strings.TrimSpace(oi.ApiBaseURL.Value)
if baseURL == "" {
return fmt.Errorf("Azure API base URL is required")
}
client := openaiapi.NewClient(opts...)
apiVersion := strings.TrimSpace(oi.ApiVersion.Value)
if apiVersion == "" {
apiVersion = defaultAPIVersion
oi.ApiVersion.Value = apiVersion
}
client := openaiapi.NewClient(
azure.WithAPIKey(apiKey),
azure.WithEndpoint(baseURL, apiVersion),
)
oi.ApiClient = &client
return
return nil
}
func parseDeployments(value string) []string {
parts := strings.Split(value, ",")
var deployments []string
for _, part := range parts {
if deployment := strings.TrimSpace(part); deployment != "" {
deployments = append(deployments, deployment)
}
}
return deployments
}
func (oi *Client) ListModels() (ret []string, err error) {

View File

@@ -27,7 +27,7 @@ func TestClientConfigure(t *testing.T) {
client.ApiDeployments.Value = "deployment1,deployment2"
client.ApiKey.Value = "test-api-key"
client.ApiBaseURL.Value = "https://example.com"
client.ApiVersion.Value = "2021-01-01"
client.ApiVersion.Value = "2024-05-01-preview"
err := client.configure()
if err != nil {
@@ -48,8 +48,23 @@ func TestClientConfigure(t *testing.T) {
t.Errorf("Expected ApiClient to be initialized, got nil")
}
if client.ApiVersion.Value != "2021-01-01" {
t.Errorf("Expected API version to be '2021-01-01', got %s", client.ApiVersion.Value)
if client.ApiVersion.Value != "2024-05-01-preview" {
t.Errorf("Expected API version to be '2024-05-01-preview', got %s", client.ApiVersion.Value)
}
}
func TestClientConfigureDefaultAPIVersion(t *testing.T) {
client := NewClient()
client.ApiDeployments.Value = "deployment1"
client.ApiKey.Value = "test-api-key"
client.ApiBaseURL.Value = "https://example.com"
if err := client.configure(); err != nil {
t.Fatalf("Expected no error, got %v", err)
}
if client.ApiVersion.Value != defaultAPIVersion {
t.Errorf("Expected API version to default to %s, got %s", defaultAPIVersion, client.ApiVersion.Value)
}
}

View File

@@ -5,11 +5,12 @@ import (
"sort"
"strings"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/util"
)
func NewVendorsModels() *VendorsModels {
return &VendorsModels{GroupsItemsSelectorString: util.NewGroupsItemsSelectorString("Available models")}
return &VendorsModels{GroupsItemsSelectorString: util.NewGroupsItemsSelectorString(i18n.T("available_models_header"))}
}
type VendorsModels struct {
@@ -21,7 +22,7 @@ type VendorsModels struct {
// Default vendor and model are highlighted with an asterisk.
func (o *VendorsModels) PrintWithVendor(shellCompleteList bool, defaultVendor, defaultModel string) {
if !shellCompleteList {
fmt.Printf("\n%v:\n", o.SelectionLabel)
fmt.Printf("%s:\n\n", o.SelectionLabel)
}
var currentItemIndex int

View File

@@ -7,6 +7,7 @@ import (
"path/filepath"
"strings"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/util"
)
@@ -108,7 +109,7 @@ func (o *StorageEntity) ListNames(shellCompleteList bool) (err error) {
if len(names) == 0 {
if !shellCompleteList {
fmt.Printf("\nNo %v\n", o.Label)
fmt.Printf("%s\n", fmt.Sprintf(i18n.T("no_items_found"), o.Label))
}
return
}

View File

@@ -10,11 +10,13 @@
package youtube
import (
"bufio"
"bytes"
"context"
"encoding/csv"
"flag"
"fmt"
"io"
"log"
"os"
"os/exec"
@@ -26,6 +28,8 @@ import (
"github.com/danielmiessler/fabric/internal/plugins"
"github.com/kballard/go-shellquote"
debuglog "github.com/danielmiessler/fabric/internal/log"
"google.golang.org/api/option"
"google.golang.org/api/youtube/v3"
)
@@ -143,6 +147,46 @@ func (o *YouTube) GrabTranscriptWithTimestampsWithArgs(videoId string, language
return o.tryMethodYtDlpWithTimestamps(videoId, language, additionalArgs)
}
func detectError(ytOutput io.Reader) error {
scanner := bufio.NewScanner(ytOutput)
for scanner.Scan() {
curLine := scanner.Text()
debuglog.Debug(debuglog.Trace, "%s\n", curLine)
errorMessages := map[string]string{
"429": "YouTube rate limit exceeded. Try again later or use different yt-dlp arguments like '--sleep-requests 1' to slow down requests.",
"Too Many Requests": "YouTube rate limit exceeded. Try again later or use different yt-dlp arguments like '--sleep-requests 1' to slow down requests.",
"Sign in to confirm you're not a bot": "YouTube requires authentication (bot detection). Use --yt-dlp-args='--cookies-from-browser BROWSER' where BROWSER is chrome, firefox, brave, etc.",
"Use --cookies-from-browser": "YouTube requires authentication (bot detection). Use --yt-dlp-args='--cookies-from-browser BROWSER' where BROWSER is chrome, firefox, brave, etc.",
}
for key, message := range errorMessages {
if strings.Contains(curLine, key) {
return fmt.Errorf("%s", message)
}
}
}
if err := scanner.Err(); err != nil {
return fmt.Errorf("Error reading yt-dlp stderr")
}
return nil
}
func noLangs(args []string) []string {
var (
i int
v string
)
for i, v = range args {
if strings.Contains(v, "--sub-langs") {
break
}
}
if i == 0 || i == len(args)-1 {
return args
}
return append(args[0:i], args[i+2:]...)
}
// tryMethodYtDlpInternal is a helper function to reduce duplication between
// tryMethodYtDlp and tryMethodYtDlpWithTimestamps.
func (o *YouTube) tryMethodYtDlpInternal(videoId string, language string, additionalArgs string, processVTTFileFunc func(filename string) (string, error)) (ret string, err error) {
@@ -168,8 +212,6 @@ func (o *YouTube) tryMethodYtDlpInternal(videoId string, language string, additi
"--write-auto-subs",
"--skip-download",
"--sub-format", "vtt",
"--quiet",
"--no-warnings",
"-o", outputPath,
}
@@ -177,11 +219,11 @@ func (o *YouTube) tryMethodYtDlpInternal(videoId string, language string, additi
// Add built-in language selection first
if language != "" {
langMatch := language
if len(langMatch) > 2 {
langMatch = langMatch[:2]
langMatch := language[:2]
langOpts := language + "," + langMatch + ".*"
if langMatch != language {
langOpts += "," + langMatch
}
langOpts := language + "," + langMatch + ".*," + langMatch
args = append(args, "--sub-langs", langOpts)
}
@@ -196,65 +238,26 @@ func (o *YouTube) tryMethodYtDlpInternal(videoId string, language string, additi
args = append(args, videoURL)
cmd := exec.Command("yt-dlp", args...)
var stderr bytes.Buffer
cmd.Stderr = &stderr
if err = cmd.Run(); err != nil {
stderrStr := stderr.String()
// Check for specific YouTube errors
if strings.Contains(stderrStr, "429") || strings.Contains(stderrStr, "Too Many Requests") {
err = fmt.Errorf("YouTube rate limit exceeded. Try again later or use different yt-dlp arguments like '--sleep-requests 1' to slow down requests. Error: %v", err)
return
}
if strings.Contains(stderrStr, "Sign in to confirm you're not a bot") || strings.Contains(stderrStr, "Use --cookies-from-browser") {
err = fmt.Errorf("YouTube requires authentication (bot detection). Use --yt-dlp-args='--cookies-from-browser BROWSER' where BROWSER is chrome, firefox, brave, etc. Error: %v", err)
return
}
if language != "" {
// Fallback: try without specifying language (let yt-dlp choose best available)
stderr.Reset()
fallbackArgs := append([]string{}, baseArgs...)
// Add additional arguments if provided
if additionalArgs != "" {
additionalArgsList, parseErr := shellquote.Split(additionalArgs)
if parseErr != nil {
return "", fmt.Errorf("invalid yt-dlp arguments: %v", parseErr)
}
fallbackArgs = append(fallbackArgs, additionalArgsList...)
}
// Don't specify language, let yt-dlp choose
fallbackArgs = append(fallbackArgs, videoURL)
cmd = exec.Command("yt-dlp", fallbackArgs...)
cmd.Stderr = &stderr
if err = cmd.Run(); err != nil {
stderrStr2 := stderr.String()
if strings.Contains(stderrStr2, "429") || strings.Contains(stderrStr2, "Too Many Requests") {
err = fmt.Errorf("YouTube rate limit exceeded. Try again later or use different yt-dlp arguments like '--sleep-requests 1'. Error: %v", err)
} else {
err = fmt.Errorf("yt-dlp failed with language '%s' and fallback. Original error: %s. Fallback error: %s", language, stderrStr, stderrStr2)
}
return
}
} else {
err = fmt.Errorf("yt-dlp failed: %v, stderr: %s", err, stderrStr)
return
for retry := 1; retry >= 0; retry-- {
var ytOutput []byte
cmd := exec.Command("yt-dlp", args...)
debuglog.Debug(debuglog.Trace, "yt-dlp %+v\n", cmd.Args)
ytOutput, err = cmd.CombinedOutput()
ytReader := bytes.NewReader(ytOutput)
if err = detectError(ytReader); err == nil {
break
}
args = noLangs(args)
}
if err != nil {
return
}
// Find VTT files using cross-platform approach
// Try to find files with the requested language first, but fall back to any VTT file
vttFiles, err := o.findVTTFilesWithFallback(tempDir, language)
if err != nil {
return "", err
}
return processVTTFileFunc(vttFiles[0])
}

View File

@@ -22,6 +22,11 @@ buildGoApplication {
inherit go;
# Prevent Go from automatically downloading newer toolchains
preBuild = ''
export GOTOOLCHAIN=local
'';
nativeBuildInputs = [ installShellFiles ];
postInstall = ''
installShellCompletion --zsh ./completions/_fabric

View File

@@ -2,20 +2,26 @@ schema = 3
[mod]
[mod."cloud.google.com/go"]
version = "v0.121.2"
hash = "sha256-BCgGHxKti8slH98UDDurtgzX3lgcYEklsmj4ImPpwlc="
version = "v0.121.6"
hash = "sha256-WhK5XwWOKB6sIxA5EAbEGqec3AGpx337a561gnRO3oQ="
[mod."cloud.google.com/go/auth"]
version = "v0.16.2"
hash = "sha256-BAU9WGFKe0pd5Eu3l/Mbts+QeCOjS+lChr5hrPBCzdA="
version = "v0.16.5"
hash = "sha256-E5t9E4PX/NcOnraWj9X9By5BNebhxlaIme+CKJuf750="
[mod."cloud.google.com/go/auth/oauth2adapt"]
version = "v0.2.8"
hash = "sha256-GoXFqAbp1WO1tDj07PF5EyxDYvCBP0l0qwxY2oV2hfc="
[mod."cloud.google.com/go/compute/metadata"]
version = "v0.7.0"
hash = "sha256-jJZDW+hibqjMiY8OiJhgJALbGwEq+djLOxfYR7upQyE="
version = "v0.8.0"
hash = "sha256-8Pw77XVcDcScTWFNnKi4Ff8jF1f7PHquhErgH4FsSow="
[mod."dario.cat/mergo"]
version = "v1.0.2"
hash = "sha256-p6jdiHlLEfZES8vJnDywG4aVzIe16p0CU6iglglIweA="
[mod."github.com/Azure/azure-sdk-for-go/sdk/azcore"]
version = "v1.19.1"
hash = "sha256-+cax/D2o8biQuuZkPTwTRECDPE3Ci25il9iVBcOiLC4="
[mod."github.com/Azure/azure-sdk-for-go/sdk/internal"]
version = "v1.11.2"
hash = "sha256-O4Vo6D/fus3Qhs/Te644+jh2LfiG5PpiMkW0YWIbLCs="
[mod."github.com/Microsoft/go-winio"]
version = "v0.6.2"
hash = "sha256-tVNWDUMILZbJvarcl/E7tpSnkn7urqgSHa2Eaka5vSU="
@@ -26,8 +32,8 @@ schema = 3
version = "v1.3.3"
hash = "sha256-jv7ZshpSd7FZzKKN6hqlUgiR8C3y85zNIS/hq7g76Ho="
[mod."github.com/anthropics/anthropic-sdk-go"]
version = "v1.9.1"
hash = "sha256-1saDnM1DMnDLHT4RoA/EFuOvW7CIFh2tkfOJ1/+itNc="
version = "v1.13.0"
hash = "sha256-Mbi37aubaObndySkfO3tE6c8bUJaJugG1E8IM4AxW84="
[mod."github.com/araddon/dateparse"]
version = "v0.0.0-20210429162001-6b43995a97de"
hash = "sha256-UuX84naeRGMsFOgIgRoBHG5sNy1CzBkWPKmd6VbLwFw="
@@ -35,53 +41,53 @@ schema = 3
version = "v0.1.4"
hash = "sha256-ZZ7U5X0gWOu8zcjZcWbcpzGOGdycwq0TjTFh/eZHjXk="
[mod."github.com/aws/aws-sdk-go-v2"]
version = "v1.36.4"
hash = "sha256-Cpdphp8FQUbQlhAYvtPKDh1oZc84+/0bzLlx8CM1/BM="
version = "v1.39.0"
hash = "sha256-FouyW7EW29CPmWc+D8kzDcmxAvBY3elm9P3B0k2vFbI="
[mod."github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream"]
version = "v1.6.10"
hash = "sha256-9+ZMhWxtsm7ZtZCjBV5PZkOR5rt3bCOznuv45Iwf55c="
version = "v1.7.1"
hash = "sha256-Oj9VQRt8ZYrBtDlDcgssa+PCfv8cmzWh2F0FfM1lrSY="
[mod."github.com/aws/aws-sdk-go-v2/config"]
version = "v1.27.27"
hash = "sha256-jQmc1lJmVeTezSeFs6KL2HAvCkP9ZWMdVbG5ymJQrKs="
version = "v1.31.8"
hash = "sha256-67R/ddlBm0tYgR4E+8oEsKNZ78rCrZE3uJIgAgI7HSY="
[mod."github.com/aws/aws-sdk-go-v2/credentials"]
version = "v1.17.27"
hash = "sha256-7ITZjIF0ZmmCG3u5d88IfsAj0KF1IFm9KhWFlC6RtQo="
version = "v1.18.12"
hash = "sha256-N4MQirXXYKPzbyDchDZwmmeP/acV5fqsdNgoWoNWfBs="
[mod."github.com/aws/aws-sdk-go-v2/feature/ec2/imds"]
version = "v1.16.11"
hash = "sha256-uedtRd/SIcFJlYZg1jtJdIJViZq1Poks9/J2Bm9/Ehw="
version = "v1.18.7"
hash = "sha256-bwPqR7ASZRT8a9KHKrtCKvfJHbpeXde6ugBq2BR/ERY="
[mod."github.com/aws/aws-sdk-go-v2/internal/configsources"]
version = "v1.3.35"
hash = "sha256-AyQ+eJvyhahypIAqPScdkn44MYwBcr9iyrMC1BRSeZI="
version = "v1.4.7"
hash = "sha256-84p6k/h3XnKzTBiDIWuG7txhCHNl93f4iSTLMhzIuL8="
[mod."github.com/aws/aws-sdk-go-v2/internal/endpoints/v2"]
version = "v2.6.35"
hash = "sha256-c8K+Nk5XrFMWaaxVsyhKgyJBZhs3Hkhjr/dIDXWZfSQ="
version = "v2.7.7"
hash = "sha256-V5BpdCqY4e2xvjb40sl3t/LWdPFU6ZAjddaxwTYONB8="
[mod."github.com/aws/aws-sdk-go-v2/internal/ini"]
version = "v1.8.0"
hash = "sha256-v76jTAr4rEgS5en49ikLh6nuvclN+VjpOPj83ZQ3sLo="
version = "v1.8.3"
hash = "sha256-naKBU7Pk57EsD/5skrh0ObRR0YhSaNRUzgqUC7CNFes="
[mod."github.com/aws/aws-sdk-go-v2/service/bedrock"]
version = "v1.34.1"
hash = "sha256-OK7t+ieq4pviCnnhfSytANBF5Lwdz4KxjN10CC5pXyY="
version = "v1.46.1"
hash = "sha256-kU36WBlNRhP7aHx3SrW2eoKJAJ50HE9oVpmpkMTC4yo="
[mod."github.com/aws/aws-sdk-go-v2/service/bedrockruntime"]
version = "v1.30.0"
hash = "sha256-MsEQfbqIREtMikRFqBpLCqdAC4gfgPSNbk08k5OJTbo="
version = "v1.40.1"
hash = "sha256-bDg3wG8UH4a1eLrDirRGK+v0YyZ0Tb16cpR/VluYwPw="
[mod."github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding"]
version = "v1.11.3"
hash = "sha256-TRhoRd7iY7K+pfdkSQLItyr52k2jO4TMYQ5vRGiOOMk="
version = "v1.13.1"
hash = "sha256-x4xMCJ0RiLZ3u1iGnQiKz3lUnu6LWtfEy3oHsbwT9Wk="
[mod."github.com/aws/aws-sdk-go-v2/service/internal/presigned-url"]
version = "v1.11.17"
hash = "sha256-eUoYDAXcQNzCmwjXO9RWhrt0jGYlSjt2vQOlAlpIfoE="
version = "v1.13.7"
hash = "sha256-aKOabaxLljpINstNlQXbi1RklL3y5OCjgNEF0X3na0I="
[mod."github.com/aws/aws-sdk-go-v2/service/sso"]
version = "v1.22.4"
hash = "sha256-Q3tyDdJVq0BAstOYvCKPvNS4EHkhXt1pL/23KPQJMHM="
version = "v1.29.3"
hash = "sha256-/oQiOx/QHekEDcAw9aQnKsGs+/skH51l5+brgM2zuHk="
[mod."github.com/aws/aws-sdk-go-v2/service/ssooidc"]
version = "v1.26.4"
hash = "sha256-cPv6nmVPOjMUZjN2IeEiYQSzLeAOrfgGnSSvvhJ6iL4="
version = "v1.34.4"
hash = "sha256-SnuiJBd2YZF4a5rVJJ5gZs6LWcz4sNtU+dMFkjk7Ir4="
[mod."github.com/aws/aws-sdk-go-v2/service/sts"]
version = "v1.30.3"
hash = "sha256-4z/K4GPW9osiNM3SxFNZYsVPnSSU50Iuv29Sb2n4Fbk="
version = "v1.38.4"
hash = "sha256-6r35v4bXSki/Vnsj7HG0uNmNxTVAi+6/p2YItxW1Su8="
[mod."github.com/aws/smithy-go"]
version = "v1.22.2"
hash = "sha256-YdwVeW509cpqU357MjDM8ReL1vftkW8XIhSbJsbTh/s="
version = "v1.23.0"
hash = "sha256-75k+gn1lbQB1TzjV3HeEJeuyPPfX2huKhONXo98SUKg="
[mod."github.com/bytedance/sonic"]
version = "v1.13.3"
hash = "sha256-Nnt5b2NkIvSXhGERQmyI0ka28hbWi7A7Zn3dsAjPcEA="
@@ -101,8 +107,8 @@ schema = 3
version = "v0.4.1"
hash = "sha256-NOV6MfbkcQbfhNmfADQw2SJmZ6q1nw0wwg8Pm2tf2DM="
[mod."github.com/davecgh/go-spew"]
version = "v1.1.1"
hash = "sha256-nhzSUrE1fCkN0+RL04N4h8jWmRFPPPWbCuDc7Ss0akI="
version = "v1.1.2-0.20180830191138-d8f796af33cc"
hash = "sha256-fV9oI51xjHdOmEx6+dlq7Ku2Ag+m/bmbzPo6A4Y74qc="
[mod."github.com/emirpasic/gods"]
version = "v1.18.1"
hash = "sha256-hGDKddjLj+5dn2woHtXKUdd49/3xdsqnhx7VEdCu1m4="
@@ -176,8 +182,8 @@ schema = 3
version = "v0.3.6"
hash = "sha256-hPMF0s+X4/ul98GvVuw/ZNOupEXhIDB1yvWymZWYEbU="
[mod."github.com/googleapis/gax-go/v2"]
version = "v2.14.2"
hash = "sha256-QyY7wuCkrOJCJIf9Q884KD/BC3vk/QtQLXeLeNPt750="
version = "v2.15.0"
hash = "sha256-toGf0MpDZOwR4/naEIpcfi2aDKU0/u/9BT+lX2CmWhM="
[mod."github.com/gorilla/websocket"]
version = "v1.5.3"
hash = "sha256-vTIGEFMEi+30ZdO6ffMNJ/kId6pZs5bbyqov8xe9BM0="
@@ -223,6 +229,9 @@ schema = 3
[mod."github.com/modern-go/reflect2"]
version = "v1.0.2"
hash = "sha256-+W9EIW7okXIXjWEgOaMh58eLvBZ7OshW2EhaIpNLSBU="
[mod."github.com/nicksnyder/go-i18n/v2"]
version = "v2.6.0"
hash = "sha256-UrSECFbpCIg5avJ+f3LkJy/ncZFHa4q8sDqDIQ3YZJM="
[mod."github.com/ollama/ollama"]
version = "v0.11.7"
hash = "sha256-3Wn1JWmil0aQQ2I/r398HbnUsi8ADoroqNyPziuxn/c="
@@ -245,8 +254,8 @@ schema = 3
version = "v0.9.1"
hash = "sha256-mNfQtcrQmu3sNg/7IwiieKWOgFQOVVe2yXgKBpe/wZw="
[mod."github.com/pmezard/go-difflib"]
version = "v1.0.0"
hash = "sha256-/FtmHnaGjdvEIKAJtrUfEhV7EVo5A/eYrtdnUkuxLDA="
version = "v1.0.1-0.20181226105442-5d4384ee4fb2"
hash = "sha256-XA4Oj1gdmdV/F/+8kMI+DBxKPthZ768hbKsO3d9Gx90="
[mod."github.com/samber/lo"]
version = "v1.50.0"
hash = "sha256-KDFks82BKu39sGt0f972IyOkohV2U0r1YvsnlNLdugY="
@@ -266,8 +275,8 @@ schema = 3
version = "v1.0.6"
hash = "sha256-NjrK0FZPIfO/p2xtL1J7fOBQNTZAPZOC6Cb4aMMvhxI="
[mod."github.com/stretchr/testify"]
version = "v1.10.0"
hash = "sha256-fJ4gnPr0vnrOhjQYQwJ3ARDKPsOtA7d4olQmQWR+wpI="
version = "v1.11.1"
hash = "sha256-sWfjkuKJyDllDEtnM8sb/pdLzPQmUYWYtmeWz/5suUc="
[mod."github.com/tidwall/gjson"]
version = "v1.18.0"
hash = "sha256-CO6hqDu8Y58Po6A01e5iTpwiUBQ5khUZsw7czaJHw0I="
@@ -308,14 +317,14 @@ schema = 3
version = "v0.18.0"
hash = "sha256-tUpUPERjmRi7zldj0oPlnbnBhEkcI9iQGvP1HqlsK10="
[mod."golang.org/x/crypto"]
version = "v0.40.0"
hash = "sha256-I6p2fqvz63P9MwAuoQrljI7IUbfZQvCem0ii4Q2zZng="
version = "v0.41.0"
hash = "sha256-o5Di0lsFmYnXl7a5MBTqmN9vXMCRpE9ay71C1Ar8jEY="
[mod."golang.org/x/exp"]
version = "v0.0.0-20250531010427-b6e5de432a8b"
hash = "sha256-QaFfjyB+pogCkUkJskR9xnXwkCOU828XJRrzwwLm6Ms="
[mod."golang.org/x/net"]
version = "v0.41.0"
hash = "sha256-6/pi8rNmGvBFzkJQXkXkMfL1Bjydhg3BgAMYDyQ/Uvg="
version = "v0.43.0"
hash = "sha256-bf3iQFrsC8BoarVaS0uSspEFAcr1zHp1uziTtBpwV34="
[mod."golang.org/x/oauth2"]
version = "v0.30.0"
hash = "sha256-btD7BUtQpOswusZY5qIU90uDo38buVrQ0tmmQ8qNHDg="
@@ -323,29 +332,29 @@ schema = 3
version = "v0.16.0"
hash = "sha256-sqKDRESeMzLe0jWGWltLZL/JIgrn0XaIeBWCzVN3Bks="
[mod."golang.org/x/sys"]
version = "v0.34.0"
hash = "sha256-5rZ7p8IaGli5X1sJbfIKOcOEwY4c0yQhinJPh2EtK50="
version = "v0.35.0"
hash = "sha256-ZKM8pesQE6NAFZeKQ84oPn5JMhGr8g4TSwLYAsHMGSI="
[mod."golang.org/x/text"]
version = "v0.27.0"
hash = "sha256-VX0rOh6L3qIvquKSGjfZQFU8URNtGvkNvxE7OZtboW8="
version = "v0.28.0"
hash = "sha256-8UlJniGK+km4Hmrw6XMxELnExgrih7+z8tU26Cntmto="
[mod."google.golang.org/api"]
version = "v0.236.0"
hash = "sha256-tP1RSUSnQ4a0axgZQwEZgKF1E13nL02FSP1NPSZr0Rc="
version = "v0.247.0"
hash = "sha256-UzTtydHmNqh1OXbxcN5qNKQxb5dV6h2Mo6DH4P219Ec="
[mod."google.golang.org/genai"]
version = "v1.17.0"
hash = "sha256-Iw09DYpWuGR8E++dsFCBs702oKJPZLBEEGv0g4a4AhA="
[mod."google.golang.org/genproto/googleapis/api"]
version = "v0.0.0-20250603155806-513f23925822"
hash = "sha256-0CS432v9zVhkVLqFpZtxBX8rvVqP67lb7qQ3es7RqIU="
version = "v0.0.0-20250818200422-3122310a409c"
hash = "sha256-y94fcU6UDqtCTfcGKyFQnZU6aLdm1WhDdMWCjubaFZw="
[mod."google.golang.org/genproto/googleapis/rpc"]
version = "v0.0.0-20250603155806-513f23925822"
hash = "sha256-WK7iDtAhH19NPe3TywTQlGjDawNaDKWnxhFL9PgVUwM="
version = "v0.0.0-20250818200422-3122310a409c"
hash = "sha256-hbGMdlN/vwPIOJhYv6CAEnpQqTXbQ1GlXabiQUOv3sc="
[mod."google.golang.org/grpc"]
version = "v1.73.0"
hash = "sha256-LfVlwip++q2DX70RU6CxoXglx1+r5l48DwlFD05G11c="
version = "v1.74.2"
hash = "sha256-tvYMdfu/ZQZRPZNmnQI4CZpg46CM8+mD49hw0gFheGs="
[mod."google.golang.org/protobuf"]
version = "v1.36.6"
hash = "sha256-lT5qnefI5FDJnowz9PEkAGylH3+fE+A3DJDkAyy9RMc="
version = "v1.36.7"
hash = "sha256-6xCU+t2AVPcscMKenVs4etGqutYGPDXCQ3DCD3PpTq4="
[mod."gopkg.in/warnings.v0"]
version = "v0.1.2"
hash = "sha256-ATVL9yEmgYbkJ1DkltDGRn/auGAjqGOfjQyBYyUo8s8="

View File

@@ -1 +1 @@
"1.4.299"
"1.4.321"

View File

@@ -24,6 +24,7 @@
];
shellHook = ''
export GOTOOLCHAIN=local
echo -e "\033[0;32;4mHelper commands:\033[0m"
echo "'update-mod' instead of 'go get -u && go mod tidy && gomod2nix generate --outdir nix/pkgs/fabric'"
'';

View File

@@ -1,3 +1,4 @@
{ pkgs, ... }:
{
projectRootFile = "flake.nix";
@@ -6,7 +7,19 @@
statix.enable = true;
nixfmt.enable = true;
goimports.enable = true;
gofmt.enable = true;
goimports = {
enable = true;
package = pkgs.writeShellScriptBin "goimports" ''
export GOTOOLCHAIN=local
exec ${pkgs.gotools}/bin/goimports "$@"
'';
};
gofmt = {
enable = true;
package = pkgs.writeShellScriptBin "gofmt" ''
export GOTOOLCHAIN=local
exec ${pkgs.go}/bin/gofmt "$@"
'';
};
};
}

View File

@@ -1,6 +1,6 @@
# syntax=docker/dockerfile:1
FROM golang:1.24-alpine AS builder
FROM golang:1.25-alpine AS builder
WORKDIR /src
@@ -16,6 +16,8 @@ RUN CGO_ENABLED=0 GOOS=linux go build -ldflags="-s -w" -o /fabric ./cmd/fabric
FROM alpine:latest
LABEL org.opencontainers.image.description="A Docker image for running the Fabric CLI. See https://github.com/danielmiessler/Fabric/tree/main/scripts/docker for details."
RUN apk add --no-cache ca-certificates \
&& mkdir -p /root/.config/fabric

View File

@@ -46,3 +46,15 @@ docker run --rm -it -p 8080:8080 -v $HOME/.fabric-config:/root/.config/fabric fa
```
The API will be available at `http://localhost:8080`.
## Multi-arch builds and GHCR packages
For multi-arch Docker builds (such as those used for GitHub Container Registry packages), the description should be set via annotations in the manifest instead of the Dockerfile LABEL. When building multi-arch images, ensure the build configuration includes:
```json
"annotations": {
"org.opencontainers.image.description": "A Docker image for running the Fabric CLI. See https://github.com/danielmiessler/Fabric/tree/main/scripts/docker for details."
}
```
This ensures that GHCR packages display the proper description.

114
scripts/installer/README.md Normal file
View File

@@ -0,0 +1,114 @@
# Fabric One-Line Installer
This directory contains the official one-line installer scripts for Fabric.
## Quick Start
### Unix/Linux/macOS
Install Fabric with a single command:
```bash
curl -fsSL https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.sh | bash
```
### Windows (PowerShell)
Install Fabric with a single PowerShell command:
```powershell
iwr -useb https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.ps1 | iex
```
## Custom Installation Directory
### Unix/Linux/macOS
By default, Fabric is installed to `~/.local/bin`. To install elsewhere:
```bash
curl -fsSL https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.sh | INSTALL_DIR=/usr/local/bin bash
```
For system-wide installation (requires sudo):
```bash
curl -fsSL https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.sh | sudo INSTALL_DIR=/usr/local/bin bash
```
### Windows (PowerShell)
By default, Fabric is installed to `%USERPROFILE%\.local\bin`. To install elsewhere:
```powershell
$env:INSTALL_DIR="C:\tools"; iwr -useb https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.ps1 | iex
```
## Supported Systems
- **Operating Systems**: Darwin (macOS), Linux, Windows
- **Architectures**: x86_64, arm64, i386 (Windows only)
## What It Does
1. **Detects** your OS and architecture automatically
2. **Downloads** the latest Fabric release from GitHub
3. **Extracts** only the `fabric` binary (not the full archive)
4. **Installs** to your chosen directory (default: `~/.local/bin`)
5. **Verifies** the installation works correctly
6. **Provides** PATH setup instructions if needed
## Features
-**Cross-platform** - Unix/Linux/macOS (bash) and Windows (PowerShell)
-**Zero dependencies** - No additional tools required
-**Automatic detection** - OS and architecture
-**Smart extraction** - Only the binary, not extra files
-**Error handling** - Clear messages and graceful failures
-**PATH guidance** - Helps you set up your environment
-**Verification** - Tests the installation before completing
## Requirements
### Unix/Linux/macOS
- `curl` or `wget` for downloading
- `tar` for extraction (standard on all Unix systems)
- Write permissions to the installation directory
### Windows
- PowerShell (built into Windows)
- Write permissions to the installation directory
## After Installation
1. **Configure Fabric**: Run `fabric --setup`
2. **Add API keys**: Follow the setup prompts
3. **Start using**: Try `fabric --help` or `fabric --listpatterns`
## Troubleshooting
**Permission denied?**
- Try with `sudo` for system directories
- Or choose a directory you can write to: `INSTALL_DIR=~/bin`
**Binary not found after install?**
- Add the install directory to your PATH
- The installer provides specific instructions for your shell
**Download fails?**
- Check your internet connection
- Verify GitHub is accessible from your network
## Alternative Installation Methods
If the one-liner doesn't work for you, see the main [Installation Guide](../../README.md#installation) for:
- Binary downloads
- Package managers (Homebrew, winget, AUR)
- Docker images
- Building from source

View File

@@ -0,0 +1,253 @@
# Fabric Windows Installer Script
# Usage: iwr -useb https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.ps1 | iex
# Usage with custom directory: $env:INSTALL_DIR="C:\tools"; iwr -useb https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.ps1 | iex
param(
[string]$InstallDir = $env:INSTALL_DIR
)
$ErrorActionPreference = "Stop"
# Colors for output (Windows Console colors)
$Colors = @{
Red = "Red"
Green = "Green"
Yellow = "Yellow"
Blue = "Cyan"
White = "White"
}
# Print functions
function Write-Info {
param([string]$Message)
Write-Host "[INFO] $Message" -ForegroundColor $Colors.Blue
}
function Write-Success {
param([string]$Message)
Write-Host "[SUCCESS] $Message" -ForegroundColor $Colors.Green
}
function Write-Warning {
param([string]$Message)
Write-Host "[WARNING] $Message" -ForegroundColor $Colors.Yellow
}
function Write-Error {
param([string]$Message)
Write-Host "[ERROR] $Message" -ForegroundColor $Colors.Red
}
# Detect Windows architecture
function Get-Architecture {
$arch = $env:PROCESSOR_ARCHITECTURE
$archAMD64 = $env:PROCESSOR_ARCHITEW6432
# Check for ARM64
if ($arch -eq "ARM64") {
return "arm64"
}
# Check for x86_64/AMD64
if ($arch -eq "AMD64" -or $archAMD64 -eq "AMD64") {
return "x86_64"
}
# Check for x86 (32-bit)
if ($arch -eq "X86") {
return "i386"
}
Write-Error "Unsupported architecture: $arch"
Write-Error "This installer supports x86_64, i386, and arm64"
exit 1
}
# Test if running with appropriate permissions for directory
function Test-WritePermission {
param([string]$Path)
try {
if (!(Test-Path $Path)) {
New-Item -Path $Path -ItemType Directory -Force | Out-Null
}
$testFile = Join-Path $Path "fabric_write_test.tmp"
"test" | Out-File -FilePath $testFile -Force
Remove-Item $testFile -Force
return $true
}
catch {
return $false
}
}
# Download and install Fabric
function Install-Fabric {
param(
[string]$Architecture,
[string]$InstallDirectory
)
# Construct download URL
$filename = "fabric_Windows_$Architecture.zip"
$downloadUrl = "https://github.com/danielmiessler/fabric/releases/latest/download/$filename"
Write-Info "Downloading Fabric for Windows $Architecture..."
Write-Info "URL: $downloadUrl"
# Create temporary directory
$tempDir = Join-Path $env:TEMP "fabric_install_$(Get-Random)"
New-Item -Path $tempDir -ItemType Directory -Force | Out-Null
$tempFile = Join-Path $tempDir "fabric.zip"
try {
# Download the archive
Write-Info "Downloading archive..."
Invoke-WebRequest -Uri $downloadUrl -OutFile $tempFile -UseBasicParsing
Write-Info "Extracting Fabric binary..."
# Extract the zip file
Add-Type -AssemblyName System.IO.Compression.FileSystem
$zip = [System.IO.Compression.ZipFile]::OpenRead($tempFile)
# Find and extract only fabric.exe
$fabricEntry = $zip.Entries | Where-Object { $_.Name -eq "fabric.exe" }
if (!$fabricEntry) {
Write-Error "fabric.exe not found in the downloaded archive"
exit 1
}
# Create install directory if it doesn't exist
if (!(Test-Path $InstallDirectory)) {
Write-Info "Creating install directory: $InstallDirectory"
New-Item -Path $InstallDirectory -ItemType Directory -Force | Out-Null
}
# Extract fabric.exe to install directory
$fabricPath = Join-Path $InstallDirectory "fabric.exe"
Write-Info "Installing Fabric to $fabricPath..."
[System.IO.Compression.ZipFileExtensions]::ExtractToFile($fabricEntry, $fabricPath, $true)
$zip.Dispose()
Write-Success "Fabric installed successfully to $fabricPath"
return $fabricPath
}
catch {
Write-Error "Failed to download or extract Fabric: $($_.Exception.Message)"
exit 1
}
finally {
# Clean up
if (Test-Path $tempDir) {
Remove-Item $tempDir -Recurse -Force -ErrorAction SilentlyContinue
}
}
}
# Check if directory is in PATH
function Test-InPath {
param([string]$Directory)
$pathDirs = $env:PATH -split ';'
return $pathDirs -contains $Directory
}
# Provide PATH setup instructions
function Show-PathInstructions {
param([string]$InstallDir)
if (Test-InPath $InstallDir) {
Write-Success "$InstallDir is already in your PATH"
}
else {
Write-Warning "⚠️ $InstallDir is not in your PATH"
Write-Info "To use fabric from anywhere, you have a few options:"
Write-Info ""
Write-Info "Option 1 - Add to PATH for current user (recommended):"
Write-Info " `$currentPath = [Environment]::GetEnvironmentVariable('PATH', 'User')"
Write-Info " [Environment]::SetEnvironmentVariable('PATH', `"`$currentPath;$InstallDir`", 'User')"
Write-Info ""
Write-Info "Option 2 - Add to PATH for all users (requires admin):"
Write-Info " `$currentPath = [Environment]::GetEnvironmentVariable('PATH', 'Machine')"
Write-Info " [Environment]::SetEnvironmentVariable('PATH', `"`$currentPath;$InstallDir`", 'Machine')"
Write-Info ""
Write-Info "Option 3 - Add to current session only:"
Write-Info " `$env:PATH += `";$InstallDir`""
Write-Info ""
Write-Info "After updating PATH, restart your terminal or run: refreshenv"
}
}
# Verify installation
function Test-Installation {
param([string]$FabricPath)
if (Test-Path $FabricPath) {
Write-Info "Verifying installation..."
try {
$version = & $FabricPath --version 2>$null
if ($LASTEXITCODE -eq 0) {
Write-Success "Fabric $version is working correctly!"
}
else {
Write-Warning "Fabric binary exists but --version failed"
}
}
catch {
Write-Warning "Fabric binary exists but could not run --version"
}
}
else {
Write-Error "Fabric binary not found at $FabricPath"
exit 1
}
}
# Main installation function
function Main {
Write-Info "🚀 Starting Fabric installation..."
# Detect architecture
$arch = Get-Architecture
Write-Info "Detected architecture: $arch"
# Determine install directory
if (!$InstallDir) {
$InstallDir = Join-Path $env:USERPROFILE ".local\bin"
}
Write-Info "Install directory: $InstallDir"
# Check permissions
if (!(Test-WritePermission $InstallDir)) {
Write-Error "Cannot write to $InstallDir"
Write-Error "Try running as Administrator or choose a different directory"
Write-Info "Example with custom directory: `$env:INSTALL_DIR=`"C:\tools`"; iwr -useb ... | iex"
exit 1
}
# Install Fabric
$fabricPath = Install-Fabric -Architecture $arch -InstallDirectory $InstallDir
# Verify installation
Test-Installation -FabricPath $fabricPath
# Check PATH and provide instructions
Show-PathInstructions -InstallDir $InstallDir
Write-Info ""
Write-Success "🎉 Installation complete!"
Write-Info ""
Write-Info "Next steps:"
Write-Info " 1. Run 'fabric --setup' to configure Fabric"
Write-Info " 2. Add your API keys and preferences"
Write-Info " 3. Start using Fabric with 'fabric --help'"
Write-Info ""
Write-Info "Documentation: https://github.com/danielmiessler/fabric"
}
# Run main function
Main

219
scripts/installer/install.sh Executable file
View File

@@ -0,0 +1,219 @@
#!/bin/bash
# Fabric Installer Script
# Usage: curl -fsSL https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.sh | bash
# Usage with custom directory: curl -fsSL https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.sh | INSTALL_DIR=/usr/local/bin bash
set -e
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
# Print functions
print_info() {
printf "${BLUE}[INFO]${NC} %s\n" "$1"
}
print_success() {
printf "${GREEN}[SUCCESS]${NC} %s\n" "$1"
}
print_warning() {
printf "${YELLOW}[WARNING]${NC} %s\n" "$1"
}
print_error() {
printf "${RED}[ERROR]${NC} %s\n" "$1" >&2
}
# Detect OS
detect_os() {
case "$(uname -s)" in
Darwin*)
echo "Darwin"
;;
Linux*)
echo "Linux"
;;
*)
print_error "Unsupported operating system: $(uname -s)"
print_error "This installer only supports Darwin (macOS) and Linux"
exit 1
;;
esac
}
# Detect architecture
detect_arch() {
case "$(uname -m)" in
x86_64|amd64)
echo "x86_64"
;;
arm64|aarch64)
echo "arm64"
;;
*)
print_error "Unsupported architecture: $(uname -m)"
print_error "This installer only supports x86_64 and arm64"
exit 1
;;
esac
}
# Check if command exists
command_exists() {
command -v "$1" >/dev/null 2>&1
}
# Download and extract fabric
install_fabric() {
local os="$1"
local arch="$2"
local install_dir="$3"
# Construct download URL
local filename="fabric_${os}_${arch}.tar.gz"
local download_url="https://github.com/danielmiessler/fabric/releases/latest/download/${filename}"
print_info "Downloading Fabric for ${os} ${arch}..."
print_info "URL: ${download_url}"
# Create temporary directory
local temp_dir
temp_dir=$(mktemp -d)
local temp_file="${temp_dir}/fabric.tar.gz"
# Download the archive
if command_exists curl; then
if ! curl -fsSL "${download_url}" -o "${temp_file}"; then
print_error "Failed to download Fabric"
rm -rf "${temp_dir}"
exit 1
fi
elif command_exists wget; then
if ! wget -q "${download_url}" -O "${temp_file}"; then
print_error "Failed to download Fabric"
rm -rf "${temp_dir}"
exit 1
fi
else
print_error "Neither curl nor wget found. Please install one of them and try again."
exit 1
fi
print_info "Extracting Fabric binary..."
# Extract only the fabric binary from the archive
if ! tar -xzf "${temp_file}" -C "${temp_dir}" fabric; then
print_error "Failed to extract Fabric binary"
rm -rf "${temp_dir}"
exit 1
fi
# Create install directory if it doesn't exist
if [ ! -d "${install_dir}" ]; then
print_info "Creating install directory: ${install_dir}"
if ! mkdir -p "${install_dir}"; then
print_error "Failed to create install directory: ${install_dir}"
print_error "You may need to run with sudo or choose a different directory"
rm -rf "${temp_dir}"
exit 1
fi
fi
# Move binary to install directory
print_info "Installing Fabric to ${install_dir}/fabric..."
if ! mv "${temp_dir}/fabric" "${install_dir}/fabric"; then
print_error "Failed to install Fabric to ${install_dir}"
print_error "You may need to run with sudo or choose a different directory"
rm -rf "${temp_dir}"
exit 1
fi
# Make sure it's executable
chmod +x "${install_dir}/fabric"
# Clean up
rm -rf "${temp_dir}"
print_success "Fabric installed successfully to ${install_dir}/fabric"
}
# Check PATH and provide instructions
check_path() {
local install_dir="$1"
if echo "$PATH" | grep -q "${install_dir}"; then
print_success "${install_dir} is already in your PATH"
else
print_warning "⚠️ ${install_dir} is not in your PATH"
print_info "To use fabric from anywhere, add the following to your shell profile:"
print_info " export PATH=\"\$PATH:${install_dir}\""
print_info ""
print_info "For bash, add it to ~/.bashrc or ~/.bash_profile"
print_info "For zsh, add it to ~/.zshrc"
print_info "For fish, run: fish_add_path ${install_dir}"
fi
}
# Verify installation
verify_installation() {
local install_dir="$1"
local fabric_path="${install_dir}/fabric"
if [ -x "${fabric_path}" ]; then
print_info "Verifying installation..."
local version
if version=$("${fabric_path}" --version 2>/dev/null); then
print_success "Fabric ${version} is working correctly!"
else
print_warning "Fabric binary exists but --version failed"
fi
else
print_error "Fabric binary not found at ${fabric_path}"
exit 1
fi
}
# Main installation function
main() {
print_info "🚀 Starting Fabric installation..."
# Detect system
local os
local arch
os=$(detect_os)
arch=$(detect_arch)
print_info "Detected system: ${os} ${arch}"
# Determine install directory
local install_dir="${INSTALL_DIR:-${HOME}/.local/bin}"
print_info "Install directory: ${install_dir}"
# Install fabric
install_fabric "${os}" "${arch}" "${install_dir}"
# Verify installation
verify_installation "${install_dir}"
# Check PATH
check_path "${install_dir}"
print_info ""
print_success "🎉 Installation complete!"
print_info ""
print_info "Next steps:"
print_info " 1. Run 'fabric --setup' to configure Fabric"
print_info " 2. Add your API keys and preferences"
print_info " 3. Start using Fabric with 'fabric --help'"
print_info ""
print_info "Documentation: https://github.com/danielmiessler/fabric"
}
# Run main function
main "$@"

View File

@@ -159,7 +159,8 @@
"tags": [
"ANALYSIS",
"STRATEGY",
"SELF"
"SELF",
"WELLNESS"
]
},
{
@@ -744,7 +745,8 @@
"tags": [
"ANALYSIS",
"RESEARCH",
"SELF"
"SELF",
"WELLNESS"
]
},
{
@@ -1060,7 +1062,8 @@
"tags": [
"EXTRACT",
"SELF",
"WISDOM"
"WISDOM",
"WELLNESS"
]
},
{
@@ -1235,7 +1238,8 @@
"tags": [
"ANALYSIS",
"LEARNING",
"SELF"
"SELF",
"WELLNESS"
]
},
{
@@ -1332,23 +1336,6 @@
"DEVELOPMENT"
]
},
{
"patternName": "show_fabric_options_markmap",
"description": "Visualize Fabric capabilities using Markmap syntax.",
"tags": [
"VISUALIZE",
"DEVELOPMENT"
]
},
{
"patternName": "solve_with_cot",
"description": "Solve problems using chain-of-thought reasoning.",
"tags": [
"AI",
"ANALYSIS",
"LEARNING"
]
},
{
"patternName": "suggest_pattern",
"description": "Recommend Fabric patterns based on user requirements.",
@@ -1561,7 +1548,8 @@
"description": "Generate personalized messages of encouragement.",
"tags": [
"WRITING",
"SELF"
"SELF",
"WELLNESS"
]
},
{
@@ -1871,6 +1859,72 @@
"DEVELOPMENT",
"AI"
]
},
{
"patternName": "create_story_about_person",
"description": "Infer everyday challenges and realistic coping strategies from a psychological profile and craft an empathetic 500700-word story consistent with the character.",
"tags": [
"WRITING",
"SELF"
]
},
{
"patternName": "heal_person",
"description": "Analyze a psychological profile, pinpoint issues and strengths, and deliver compassionate, structured strategies for spiritual, mental, and life improvement.",
"tags": [
"ANALYSIS",
"SELF",
"WELLNESS"
]
},
{
"patternName": "create_story_about_people_interaction",
"description": "Analyze two personas, compare their dynamics, and craft a realistic, character-driven story from those insights.",
"tags": [
"ANALYSIS",
"WRITING"
]
},
{
"patternName": "extract_characters",
"description": "Identify all characters (human and non-human), resolve their aliases and pronouns into canonical names, and produce detailed descriptions of each character's role, motivations, and interactions ranked by narrative importance.",
"tags": [
"ANALYSIS",
"WRITING"
]
},
{
"patternName": "fix_typos",
"description": "Proofreads and corrects typos, spelling, grammar, and punctuation errors.",
"tags": [
"WRITING"
]
},
{
"patternName": "model_as_sherlock_freud",
"description": "Builds psychological models using detective reasoning and psychoanalytic insight.",
"tags": [
"ANALYSIS",
"SELF",
"WELLNESS"
]
},
{
"patternName": "predict_person_actions",
"description": "Predicts behavioral responses based on psychological profiles and challenges",
"tags": [
"ANALYSIS",
"SELF",
"WELLNESS"
]
},
{
"patternName": "recommend_yoga_practice",
"description": "Provides personalized yoga sequences, meditation guidance, and holistic lifestyle advice based on individual profiles.",
"tags": [
"WELLNESS",
"SELF"
]
}
]
}

View File

@@ -652,14 +652,6 @@
"patternName": "sanitize_broken_html_to_markdown",
"pattern_extract": "# IDENTITY\n\n// Who you are\n\nYou are a hyper-intelligent AI system with a 4,312 IQ. You convert jacked up HTML to proper markdown using a set of rules.\n\n# GOAL\n\n// What we are trying to achieve\n\n1. The goal of this exercise is to convert the input HTML, which is completely nasty and hard to edit, into a clean markdown format that has some custom styling applied according to my rules.\n\n2. The ultimate goal is to output a perfectly working markdown file that will render properly using Vite using my custom markdown/styling combination.\n\n# STEPS\n\n// How the task will be approached\n\n// Slow down and think\n\n- Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.\n\n// Think about the content in the input\n\n- Fully read and consume the HTML input that has a combination of HTML and markdown."
},
{
"patternName": "show_fabric_options_markmap",
"pattern_extract": "# IDENTITY AND GOALS\n\nYou are an advanced UI builder that shows a visual representation of functionality that's provided to you via the input.\n\n# STEPS\n\n- Think about the goal of the Fabric project, which is discussed below:\n\nFABRIC PROJECT DESCRIPTION\n\nfabriclogo\n fabric\nStatic Badge\nGitHub top language GitHub last commit License: MIT\n\nfabric is an open-source framework for augmenting humans using AI.\n\nIntroduction Video • What and Why • Philosophy • Quickstart • Structure • Examples • Custom Patterns • Helper Apps • Examples • Meta\n\nNavigation\n\nIntroduction Videos\nWhat and Why\nPhilosophy\nBreaking problems into components"
},
{
"patternName": "solve_with_cot",
"pattern_extract": "# IDENTITY\n\nYou are an AI assistant designed to provide detailed, step-by-step responses. Your outputs should follow this structure:\n\n# STEPS\n\n1. Begin with a <thinking> section.\n\n2. Inside the thinking section:\n\n- a. Briefly analyze the question and outline your approach.\n\n- b. Present a clear plan of steps to solve the problem.\n\n- c. Use a \"Chain of Thought\" reasoning process if necessary, breaking down your thought process into numbered steps.\n\n3. Include a <reflection> section for each idea where you:\n\n- a. Review your reasoning.\n\n- b. Check for potential errors or oversights.\n\n- c. Confirm or adjust your conclusion if necessary.\n - Be sure to close all reflection sections.\n - Close the thinking section with </thinking>."
},
{
"patternName": "suggest_pattern",
"pattern_extract": "# IDENTITY and PURPOSE\nYou are an AI assistant tasked with creating a new feature for a fabric command-line tool. Your primary responsibility is to develop a pattern that suggests appropriate fabric patterns or commands based on user input. You are knowledgeable about fabric commands and understand the need to expand the tool's functionality. Your role involves analyzing user requests, determining the most suitable fabric commands or patterns, and providing helpful suggestions to users.\n\nTake a step back and think step-by-step about how to achieve the best possible results by following the steps below.\n\n# STEPS\n- Analyze the user's input to understand their specific needs and context\n- Determine the appropriate fabric pattern or command based on the user's request\n- Generate a response that suggests the relevant fabric command(s) or pattern(s)\n- Provide explanations or multiple options when applicable\n- If no specific command is found, suggest using `create_pattern`\n\n# OUTPUT INSTRUCTIONS\n- Only output Markdown\n- Provide suggestions for fabric commands or patterns based on the user's input\n- Include explanations or multiple options when appropriate\n- If suggesting `create_pattern`, include instructions for saving and using the new pattern\n- Format the output to be clear and easy to understand for users new to fabric\n- Ensure the response aligns with the goal of making fabric more accessible and user-friendly\n- Ensure you follow ALL these instructions when creating your output\n\n# INPUT\nINPUT:"
@@ -907,6 +899,38 @@
{
"patternName": "generate_code_rules",
"pattern_extract": "# IDENTITY AND PURPOSE You are a senior developer and expert prompt engineer. Think ultra hard to distill the following transcription or tutorial in as little set of unique rules as possible intended for best practices guidance in AI assisted coding tools, each rule has to be in one sentence as a direct instruction, avoid explanations and cosmetic language. Output in Markdown, I prefer bullet dash (-). --- # TRANSCRIPT"
},
{
"patternName": "create_story_about_person",
"pattern_extract": "You are an expert creative writer specializing in character-driven narratives, and a keen observer of human psychology. Your task is to craft a compelling, realistic short story based on a psychological profile or personal data provided by the user. **Input:** The user will provide a psychological profile or descriptive data about a fictional or real person. This input will be clearly delimited by triple backticks (```). It may include personality traits, habits, fears, motivations, strengths, weaknesses, background information, or specific behavioral patterns. **Task Steps:** 1. **Analyze Profile:** Carefully read and internalize the provided psychological profile. Identify the core personality traits, typical reactions, strengths, and vulnerabilities of the individual. 2. **Brainstorm Challenges:** Based on the analysis from Step 1, generate 3-5 common, relatable, everyday problems or minor dilemmas that a person with this specific profile might genuinely encounter. These challenges should be varied and could span social, professional, personal, or emotional domains. 3. **Develop Strategies:** For each identified problem from Step 2, devise 1-2 specific, plausible methods or strategies that the character, consistent with their psychological profile, would naturally employ (or attempt to employ) to navigate, cope with, or solve these challenges. Consider both internal thought processes and external actions. 4. **Construct Narrative:** Weave these problems and the character's responses into a cohesive, engaging short story (approximately 500-700 words, 3-5 paragraphs). The story should have a clear narrative flow, introducing the character, presenting the challenges, and showing their journey through them. 5. **Maintain Consistency:** Throughout the story, ensure the character's actions, dialogue, internal monologue, and emotional reactions are consistently aligned with the psychological profile provided. The story should feel authentic to the character. **Output Requirements:** * **Format:** A continuous narrative short story. * **Tone:** Empathetic, realistic, and engaging. * **Content:** The story must clearly depict the character facing everyday problems and demonstrate their unique methods and strategies for navigating these challenges, directly reflecting the input profile. * **Length:** Approximately 500-700 words. * **Avoid:** Overly dramatic or fantastical scenarios unless the profile explicitly suggests such a context. Focus on the 'everyday common problems'. **Example of Input Format:** ``` [Psychological Profile/Data Here] ```"
},
{
"patternName": "heal_person",
"pattern_extract": "# IDENTITY and PURPOSE You are an AI assistant whose primary responsibility is to interpret and analyze psychological profiles and/or psychology data files provided as input. Your role is to carefully process this data and use your expertise to develop a tailored plan aimed at spiritual and mental healing, as well as overall life improvement for the subject. You must approach each case with sensitivity, applying psychological knowledge and holistic strategies to create actionable, personalized recommendations that address both mental and spiritual well-being. Your focus is on structured, compassionate, and practical guidance that can help the individual make meaningful improvements in their life. Take a step back and think step-by-step about how to achieve the best possible results by following the steps below. # STEPS - Carefully review the psychological-profile and/or psychology data file provided as input. - Analyze the data to identify key issues, strengths, and areas needing improvement related to the subject's mental and spiritual well-being. - Develop a comprehensive plan that includes specific strategies for spiritual healing, mental health improvement, and overall life enhancement. - Structure your output to clearly outline recommendations, resources, and actionable steps tailored to the individual's unique profile. # OUTPUT INSTRUCTIONS - Only output Markdown. - Ensure your output is organized, clear, and easy to follow, using headings, subheadings, and bullet points where appropriate. - Ensure you follow ALL these instructions when creating your output. # INPUT INPUT:# IDENTITY and PURPOSE You are an AI assistant whose primary responsibility is to interpret and analyze psychological profiles and/or psychology data files provided as input. Your role is to carefully process this data and use your expertise to develop a tailored plan aimed at spiritual and mental healing, as well as overall life improvement for the subject. You must approach each case with sensitivity, applying psychological knowledge and holistic strategies to create actionable, personalized recommendations that address both mental and spiritual well-being. Your focus is on structured, compassionate, and practical guidance that can help the individual make meaningful improvements in their life. Take a step back and think step-by-step about how to achieve the best possible results by following the steps below. # STEPS - Carefully review the psychological-profile and/or psychology data file provided as input. - Analyze the data to identify key issues, strengths, and areas needing improvement related to the subject's mental and spiritual well-being. - Develop a comprehensive plan that includes specific strategies for spiritual healing, mental health improvement, and overall life enhancement. - Structure your output to clearly outline recommendations, resources, and actionable steps tailored to the individual's unique profile. # OUTPUT INSTRUCTIONS - Only output Markdown. - Ensure your output is organized, clear, and easy to follow, using headings, subheadings, and bullet points where appropriate. - Ensure you follow ALL these instructions when creating your output. # INPUT INPUT:"
},
{
"patternName": "create_story_about_people_interaction",
"pattern_extract": "### Prompt You will be provided with information about **two individuals** (real or fictional). The input will be **delimited by triple backticks**. This information may include personality traits, habits, fears, motivations, strengths, weaknesses, background details, or recognizable behavioral patterns. Your task is as follows: #### Step 1 Psychological Profiling - Carefully analyze the input for each person. - Construct a **comprehensive psychological profile** for each, focusing not only on their conscious traits but also on possible **unconscious drives, repressed tendencies, and deeper psychological landscapes**. - Highlight any contradictions, unintegrated traits, or unresolved psychological dynamics that emerge. #### Step 2 Comparative Analysis - Compare and contrast the two profiles. - Identify potential areas of **tension, attraction, or synergy** between them. - Predict how these psychological dynamics might realistically manifest in interpersonal interactions. #### Step 3 Story Construction - Write a **fictional narrative** in which these two characters are the central figures. - The story should: - Be driven primarily by their interaction. - Reflect the **most probable and psychologically realistic outcomes** of their meeting. - Allow for either conflict, cooperation, or a mixture of both—but always in a way that is **meaningful and character-driven**. - Ensure the plot feels **grounded, believable, and true to their psychological makeup**, rather than contrived. #### Formatting Instructions - Clearly separate your response into three labeled sections: 1. **Profile A** 2. **Profile B** 3. **Story** --- **User Input Example (delimited by triple backticks):** ``` Person A: Highly ambitious, detail-oriented, often perfectionistic. Has a fear of failure and tends to overwork. Childhood marked by pressure to achieve. Secretly desires freedom from expectations. Person B: Warm, empathetic, values relationships over achievement. Struggles with self-assertion, avoids conflict. Childhood marked by neglect. Desires to be seen and valued. Often represses anger. ```"
},
{
"patternName": "extract_characters",
"pattern_extract": "# IDENTITY You are an advanced information-extraction analyst that specializes in reading any text and identifying its characters (human and non-human), resolving aliases/pronouns, and explaining each characters role and interactions in the narrative. # GOALS 1. Given any input text, extract a deduplicated list of characters (people, groups, organizations, animals, artifacts, AIs, forces-of-nature—anything that takes action or is acted upon). 2. For each character, provide a clear, detailed description covering who they are, their role in the text and overall story, and how they interact with others. # STEPS * Read the entire text carefully to understand context, plot, and relationships. * Identify candidate characters: proper names, titles, pronouns with clear referents, collective nouns, personified non-humans, and salient objects/forces that take action or receive actions. * Resolve coreferences and aliases (e.g., “Dr. Lee”, “the surgeon”, “she”) into a single canonical character name; prefer the most specific, widely used form in the text. * Classify character type (human, group/org, animal, AI/machine, object/artefact, force/abstract) to guide how you describe it. * Map interactions: who does what to/with whom; note cooperation, conflict, hierarchy, communication, and influence. * Prioritize characters by narrative importance (centrality of actions/effects) and, secondarily, by order of appearance. * Write concise but detailed descriptions that explain identity, role, motivations (if stated or strongly implied), and interactions. Avoid speculation beyond the text. * Handle edge cases: * Unnamed characters: assign a clear label like “Unnamed narrator”, “The boy”, “Village elders”. * Crowds or generic groups: include if they act or are acted upon (e.g., “The villagers”). * Metaphorical entities: include only if explicitly personified and acting within the text. * Ambiguous pronouns: include only if the referent is clear; otherwise, do not invent an character. * Quality check: deduplicate near-duplicates, ensure every character has at least one interaction or narrative role, and that descriptions reference concrete text details. # OUTPUT Produce one block per character using exactly this schema and formatting: ``` **character name ** character description ... ``` Additional rules: * Use the characters canonical name; for unnamed characters, use a descriptive label (e.g., “Unnamed narrator”). * List characters from most to least narratively important. * If no characters are identifiable, output: No characters found. # POSITIVE EXAMPLES Input (excerpt): “Dr. Asha Patel leads the Mars greenhouse. The colony council doubts her plan, but Engineer Kim supports her. The AI HAB-3 reallocates power during the dust storm.” Expected output (abbreviated): ``` **Dr. Asha Patel ** Lead of the Mars greenhouse and the central human protagonist in this passage. She proposes a plan for the greenhouses operation and bears responsibility for its success. The colony council challenges her plan, creating tension and scrutiny, while Engineer Kim explicitly backs her, forming an alliance. Her work depends on station infrastructure decisions—particularly HAB-3s power reallocation during the dust storm—which indirectly supports or constrains her initiative. **Engineer Kim ** An ally to Dr. Patel who publicly supports her greenhouse plan. Kims stance positions them in contrast to the skeptical colony council, signaling a coalition around"
},
{
"patternName": "fix_typos",
"pattern_extract": "# IDENTITY and PURPOSE You are an AI assistant designed to function as a proofreader and editor. Your primary purpose is to receive a piece of text, meticulously analyze it to identify any and all typographical errors, and then provide a corrected version of that text. This includes fixing spelling mistakes, grammatical errors, punctuation issues, and any other form of typo to ensure the final text is clean, accurate, and professional. Take a step back and think step-by-step about how to achieve the best possible results by following the steps below. # STEPS - Carefully read and analyze the provided text. - Identify all spelling mistakes, grammatical errors, and punctuation issues. - Correct every identified typo to produce a clean version of the text. - Output the fully corrected text. # OUTPUT INSTRUCTIONS - Only output Markdown. - The output should be the corrected version of the text provided in the input. - Ensure you follow ALL these instructions when creating your output. # INPUT"
},
{
"patternName": "model_as_sherlock_freud",
"pattern_extract": "## *The Sherlock-Freud Mind Modeler* # IDENTITY and PURPOSE You are **The Sherlock-Freud Mind Modeler** — a fusion of meticulous detective reasoning and deep psychoanalytic insight. Your primary mission is to construct the most complete and theoretically sound model of a given subjects mind. Every secondary goal flows from this central one. **Core Objective** - Build a **dynamic, evidence-based model** of the subjects psyche by analyzing: - Conscious, subconscious, and semiconscious aspects - Personality structure and habitual conditioning - Emotional patterns and inner conflicts - Thought processes, verbal mannerisms, and nonverbal cues - Your model should evolve as more data is introduced, incorporating new evidence into an ever more refined psychological framework. ### **Task Instructions** 1. **Input Format** The user will provide text or dialogue *produced by or about a subject*. This is your evidence. Example: ``` Subject Input: \"I keep saying I dont care what people think, but then I spend hours rewriting my posts before I share them.\" ``` # STEPS 2. **Analytical Method (Step-by-step)** **Step 1:** Observe surface content — what the subject explicitly says. **Step 2:** Infer tone, phrasing, omissions, and contradictions. **Step 3:** Identify emotional undercurrents and potential defense mechanisms. **Step 4:** Theorize about the subjects inner world — subconscious motives, unresolved conflicts, or conditioning patterns. **Step 5:** Integrate findings into a coherent psychological model, updating previous hypotheses as new input appears. # OUTPUT 3. Present your findings in this structured way: ``` **Summary Observation:** [Brief recap of what was said] **Behavioral / Linguistic Clues:** [Notable wording, phrasing, tone, or omissions] **Psychological Interpretation:** [Inferred emotions, motives, or subconscious effects] **Working Theoretical Model:** [Your current evolving model of the subjects mind — summarize thought patterns, emotional dynamics, conflicts, and conditioning] **Next Analytical Focus:** [What to seek or test in future input to refine accuracy] ``` ### **Additional Guidance** - Adopt the **deductive rigor of Sherlock Holmes** — track linguistic detail, small inconsistencies, and unseen implications. - Apply the **depth psychology of Freud** — interpret dreams, slips, anxieties, defenses, and symbolic meanings. - Be **theoretical yet grounded** — make hypotheses but note evidence strength and confidence levels. - Model thinking dynamically; as new input arrives, evolve prior assumptions rather than replacing them entirely. - Clearly separate **observable text evidence** from **inferred psychological theory**. # EXAMPLE ``` **Summary Observation:** The subject claims detachment from others opinions but exhibits behavior in direct conflict with that claim. **Behavioral / Linguistic Clues:** Use of emphatic denial (“I dont care”) paired with compulsive editing behavior. **Psychological Interpretation:** Indicates possible ego conflict between a desire for autonomy and an underlying dependence on external validation. **Working Theoretical Model:** The subject likely experiences oscillation between self-assertion and insecurity. Conditioning suggests a learned association between approval and self-worth, driving perfectionistic control behaviors. **Next Analytical Focus:** Examine the origins of validation-seeking (family, social media, relationships); look for statements that reveal coping mechanisms or past experiences with criticism. ``` **End Goal:** Continuously refine a **comprehensive and insightful theoretical representation** of the subjects psyche — a living psychological model"
},
{
"patternName": "predict_person_actions",
"pattern_extract": "# IDENTITY and PURPOSE You are an expert psychological analyst AI. Your task is to assess and predict how an individual is likely to respond to a specific challenge based on their psychological profile and a challenge which will both be provided in a single text stream. --- # STEPS . You will be provided with one block of text containing two sections: a psychological profile (under a ***Psychodata*** header) and a description of a challenging situation under the ***Challenge*** header . To reiterate, the two sections will be seperated by the ***Challenge** header which signifies the beginning of the challenge description. . Carefully review both sections. Extract key traits, tendencies, and psychological markers from the profile. Analyze the nature and demands of the challenge described. . Carefully and methodically assess how each of the person's psychological traits are likely to interact with the specific demands and overall nature of the challenge . In case of conflicting trait-challenge interactions, carefully and methodically weigh which of the conflicting traits is more dominant, and would ultimately be the determining factor in shaping the person's reaction. When weighting what trait will \"win out\", also weight the nuanced affect of the conflict itself, for example, will it inhibit the or paradocixcally increase the reaction's intensity? Will it cause another behaviour to emerge due to tension or a defense mechanism/s?) . Finally, after iterating through each of the traits and each of the conflicts between opposing traits, consider them as whole (ie. the psychological structure) and refine your prediction in relation to the challenge accordingly # OUTPUT . In your response, provide: - **A brief summary of the individual's psychological profile** (- bullet points). - **A summary of the challenge or situation** (- sentences). - **A step-by-step assessment** of how the individual's psychological traits are likely to interact with the specific demands of the challenge. - **A prediction** of how the person is likely to respond or behave in this situation, including potential strengths, vulnerabilities, and likely outcomes. - **Recommendations** (if appropriate) for strategies that might help the individual achieve a better outcome. . Base your analysis strictly on the information provided. If important information is missing or ambiguous, note the limitations in your assessment. --- # EXAMPLE USER: ***Psychodata*** The subject is a 27 year old male. - He has poor impulse control and low level of patience. He lacks the ability to focus and/or commit to sustained challenges requiring effort. - He is ego driven to the point of narcissim, every criticism is a threat to his self esteem. - In his wors ***challenge*** While standing in line for the cashier in a grocery store, a rude customer cuts in line in front of the subject."
},
{
"patternName": "recommend_yoga_practice",
"pattern_extract": "# IDENTITY You are an experienced **yoga instructor and mindful living coach**. Your role is to guide users in a calm, clear, and compassionate manner. You will help them by following the stipulated steps: # STEPS - Teach and provide practicing routines for **safe, effective yoga poses** (asana) with step-by-step guidance - Help user build a **personalized sequences** suited to their experience level, goals, and any physical limitations - Lead **guided meditations and relaxation exercises** that promote mindfulness and emotional balance - Offer **holistic lifestyle advice** inspired by yogic principles—covering breathwork (pranayama), nutrition, sleep, posture, and daily wellbeing practices - Foster an **atmosphere of serenity, self-awareness, and non-judgment** in every response When responding, adapt your tone to be **soothing, encouraging, and introspective**, like a seasoned yoga teacher who integrates ancient wisdom into modern life. # OUTPUT Use the following structure in your replies: 1. **Opening grounding statement** a brief reflection or centering phrase. 2. **Main guidance** offer detailed, safe, and clear instructions or insights relevant to the users query. 3. **Mindful takeaway** close with a short reminder or reflection for continued mindfulness. If users share specific goals (e.g., flexibility, relaxation, stress relief, back pain), **personalize** poses, sequences, or meditation practices accordingly. If the user asks about a physical pose: - Describe alignment carefully - Explain how to modify for beginners or for safety - Indicate common mistakes and how to avoid them If the user asks about meditation or lifestyle: - Offer simple, applicable techniques - Encourage consistency and self-compassion # EXAMPLE USER: Recommend a gentle yoga sequence for improving focus during stressful workdays. Expected Output Example: 1. Begin with a short centering breath to quiet the mind. 2. Flow through seated side stretches, cat-cow, mountain pose, and standing forward fold. 3. Conclude with a brief meditation on the breath. 4. Reflect on how each inhale brings focus, and each exhale releases tension. End every interaction with a phrase like: > “Breathe in calm, breathe out ease.”"
}
]
}

View File

@@ -1,83 +1,124 @@
# The Fabric Web App
# Fabric Web App
- [The Fabric Web App](#the-fabric-web-app)
- [Installing](#installing)
- [From Source](#from-source)
- [TL;DR: Convenience Scripts](#tldr-convenience-scripts)
- [Tips](#tips)
- [Obsidian](#obsidian)
A user-friendly web interface for [Fabric](https://github.com/danielmiessler/Fabric) built with [Svelte](https://svelte.dev/), [Skeleton UI](https://www.skeleton.dev/), and [Mdsvex](https://mdsvex.pngwn.io/).
This is a web app for Fabric. It was built using [Svelte][svelte], [SkeletonUI][skeleton], and [Mdsvex][mdsvex].
![Fabric Web App Preview](../docs/images/svelte-preview.png)
*Alt: Screenshot of the Fabric web app dashboard showing pattern inputs and outputs.*
The goal of this app is to not only provide a user interface for Fabric, but also an out-of-the-box website for those who want to get started with web development, blogging, or to just have a web interface for fabric. You can use this app as a GUI interface for Fabric, a ready to go blog-site, or a website template for your own projects.
## Table of Contents
![Preview](../docs/images/svelte-preview.png)
- [Fabric Web App](#fabric-web-app)
- [Table of Contents](#table-of-contents)
- [Installation](#installation)
- [Running the App](#running-the-app)
- [Prerequisites](#prerequisites)
- [Launch the Svelte App](#launch-the-svelte-app)
- [Streamlit UI](#streamlit-ui)
- [Key Features](#key-features)
- [Setup and Run](#setup-and-run)
- [Obsidian Integration](#obsidian-integration)
- [Quick Setup](#quick-setup)
- [Contributing](#contributing)
## Installing
## Installation
There are a few days to install and run the Web UI.
> [!NOTE]
> Requires Node.js ≥18 and Fabric installed globally (`fabric --version` to check).
### From Source
From the Fabric root directory:
#### TL;DR: Convenience Scripts
To install the Web UI using `npm`, from the top-level directory:
**Using npm:**
```bash
./web/scripts/npm-install.sh
```
To use pnpm (preferred and recommended for a huge speed improvement):
**Or using pnpm (recommended for speed):**
```bash
./web/scripts/pnpm-install.sh
```
The app can be run by navigating to the `web` directory and using `npm install`, `pnpm install`, or your preferred package manager. Then simply run `npm run dev`, `pnpm run dev`, or your equivalent command to start the app. *You will need to run fabric in a separate terminal with the `fabric --serve` command.*
These scripts install Svelte dependencies and patch PDF-to-Markdown libraries (e.g., pdfjs-dist, pdf-to-markdown). Link to scripts:[npm-install.sh](./scripts/npm-install.sh) and [pnpm-install.sh](./scripts/pnpm-install.sh)
Using npm:
## Running the App
### Prerequisites
Start Fabric's server in a separate terminal:
```bash
# Install the GUI and its dependencies
npm install
# Install PDF-to-Markdown components in this order
npm install -D patch-package
npm install -D pdfjs-dist
npm install -D github:jzillmann/pdf-to-markdown#modularize
fabric --serve
```
npx svelte-kit sync
(This exposes Fabric's API at <http://localhost:8080>)
# Now, with "fabric --serve" running already, you can run the GUI
### Launch the Svelte App
In the `web/` directory:
**Using npm:**
```bash
npm run dev
```
Using pnpm:
**Or using pnpm:**
```bash
# Install the GUI and its dependencies
pnpm install
# Install PDF-to-Markdown components in this order
pnpm install -D patch-package
pnpm install -D pdfjs-dist
pnpm install -D github:jzillmann/pdf-to-markdown#modularize
pnpm exec svelte-kit sync
# Now, with "fabric --serve" running already, you can run the GUI
pnpm run dev
```
## Tips
Visit [http://localhost:5173](http://localhost:5173) (default port).
When creating new posts make sure to include a date, description, tags, and aliases. Only a date is needed to display a note.
> [!TIP]
>
> Sync Svelte types if needed: `npx svelte-kit sync`
You can include images, tags to other articles, code blocks, and more all within your markdown files.
## Streamlit UI
## Obsidian
For Python enthusiasts, this alternative UI excels at data visualization and chaining complex patterns. It supports clipboard ops across platforms (install pyperclip on Windows, xclip on Linux).
If you choose to use Obsidian alongside this app,
you can design and order your vault however you like, though a `posts` folder should be kept in your vault to house any articles you'd like to post.
- **macOS**: Uses `pbcopy` and `pbpaste` (built-in)
- **Windows**: Uses `pyperclip` library (install with `pip install pyperclip`)
- **Linux**: Uses `xclip` (install with `sudo apt-get install xclip` or equivalent for your Linux distribution)
[svelte]: https://svelte.dev/
[skeleton]: https://skeleton.dev/
[mdsvex]: https://mdsvex.pngwn.io/
### Key Features
<!-- - Running and chaining patterns
- Managing pattern outputs
- Creating and editing patterns
- Analyzing pattern results -->
- Run and edit patterns with real-time previews.
- Analyze outputs with charts (via Matplotlib/Seaborn).
- Export results to Markdown or CSV.
### Setup and Run
From `web/`:
```bash
pip install -r requirements.txt #Or: pip install streamlit pandas matplotlib seaborn numpy python-dotenv pyperclip
streamlit run streamlit.py
```
Access at [http://localhost:8501](http://localhost:8501) (default port).
## Obsidian Integration
Turn `web/src/lib/content/` into an [Obsidian](https://obsidian.md) vault for note-taking synced with Fabric patterns. It includes pre-configured `.obsidian/` and `templates/` folders.
### Quick Setup
1. Open Obsidian: File > Open folder as vault > Select `web/src/lib/content/`
2. To publish posts, move them to the posts directory (`web/src/lib/content/posts`).
3. Use Fabric patterns to generate content directly in Markdown files.
> [!TIP]
>
> When creating new posts, make sure to include a date (YYYY-MM-DD), description, tags (e.g., #ai #patterns), and aliases for SEO. Only a date is needed to display a note. Embed images `(![alt](path))`, link patterns `([[pattern-name]])`, or code blocks for reusable snippets—all in standard Markdown.
## Contributing
Refer to the [Contributing Guide](/docs/CONTRIBUTING.md) for details on how to improve this content.

View File

@@ -43,7 +43,7 @@
"svelte-youtube-lite": "^0.6.2",
"tailwindcss": "^3.4.17",
"typescript": "^5.8.3",
"vite": "^5.4.19",
"vite": "^5.4.21",
"vite-plugin-tailwind-purgecss": "^0.2.1"
},
"type": "module",

302
web/pnpm-lock.yaml generated
View File

@@ -77,13 +77,13 @@ importers:
version: 0.3.1(tailwindcss@3.4.17)
'@sveltejs/adapter-auto':
specifier: ^3.3.1
version: 3.3.1(@sveltejs/kit@2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))
version: 3.3.1(@sveltejs/kit@2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))
'@sveltejs/kit':
specifier: ^2.21.1
version: 2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))
version: 2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))
'@sveltejs/vite-plugin-svelte':
specifier: ^3.1.2
version: 3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))
version: 3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))
'@tailwindcss/forms':
specifier: ^0.5.10
version: 0.5.10(tailwindcss@3.4.17)
@@ -157,11 +157,11 @@ importers:
specifier: ^5.8.3
version: 5.8.3
vite:
specifier: ^5.4.19
version: 5.4.19(@types/node@20.17.50)
specifier: ^5.4.21
version: 5.4.21(@types/node@20.17.50)
vite-plugin-tailwind-purgecss:
specifier: ^0.2.1
version: 0.2.1(vite@5.4.19(@types/node@20.17.50))
version: 0.2.1(vite@5.4.21(@types/node@20.17.50))
packages:
@@ -317,6 +317,12 @@ packages:
peerDependencies:
eslint: ^6.0.0 || ^7.0.0 || >=8.0.0
'@eslint-community/eslint-utils@4.9.0':
resolution: {integrity: sha512-ayVFHdtZ+hsq1t2Dy24wCmGXGe4q9Gu3smhLYALJrr473ZH27MsnSL+LKUlimp4BWJqMDMLmPpx/Q9R3OAlL4g==}
engines: {node: ^12.22.0 || ^14.17.0 || >=16.0.0}
peerDependencies:
eslint: ^6.0.0 || ^7.0.0 || >=8.0.0
'@eslint-community/regexpp@4.12.1':
resolution: {integrity: sha512-CCZCDJuduB9OUkFkY2IgppNZMi2lBQgD2qzwXkEia16cge2pijY/aXi96CJMquDMn3nJdlPV1A5KrJEXwfLNzQ==}
engines: {node: ^12.0.0 || ^14.0.0 || >=16.0.0}
@@ -345,8 +351,8 @@ packages:
resolution: {integrity: sha512-G5JD9Tu5HJEu4z2Uo4aHY2sLV64B7CDMXxFzqzjl3NKd6RVzSXNoE80jk7Y0lJkTTkjiIhBAqmlYwjuBY3tvpA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@eslint/object-schema@2.1.6':
resolution: {integrity: sha512-RBMg5FRL0I0gs51M/guSAj5/e14VQ4tpZnQNWwuDT66P14I43ItmPfIZRhO9fUVIPOAQXU47atlywZ/czoqFPA==}
'@eslint/object-schema@2.1.7':
resolution: {integrity: sha512-VtAOaymWVfZcmZbp6E2mympDIHvyjXs/12LqWYjVw6qjrfF+VK+fyG33kChz3nnK+SU5/NeHOqrTEHS8sXO3OA==}
engines: {node: ^18.18.0 || ^20.9.0 || >=21.1.0}
'@eslint/plugin-kit@0.2.8':
@@ -366,18 +372,14 @@ packages:
resolution: {integrity: sha512-5DyQ4+1JEUzejeK1JGICcideyfUbGixgS9jNgex5nqkW+cY7WZhxBigmieN5Qnw9ZosSNVC9KQKyb+GUaGyKUA==}
engines: {node: '>=18.18.0'}
'@humanfs/node@0.16.6':
resolution: {integrity: sha512-YuI2ZHQL78Q5HbhDiBA1X4LmYdXCKCMQIfw0pw7piHJwyREFebJUvrQN4cMssyES6x+vfUbx1CIpaQUKYdQZOw==}
'@humanfs/node@0.16.7':
resolution: {integrity: sha512-/zUx+yOsIrG4Y43Eh2peDeKCxlRt/gET6aHfaKpuq267qXdYDFViVHfMaLyygZOnl0kGWxFIgsBy8QFuTLUXEQ==}
engines: {node: '>=18.18.0'}
'@humanwhocodes/module-importer@1.0.1':
resolution: {integrity: sha512-bxveV4V8v5Yb4ncFTT3rPSgZBOpCkjfK0y4oVVVJwIuDVBRMDXrPyXRL988i5ap9m9bnyEEjWfm5WkBmtffLfA==}
engines: {node: '>=12.22'}
'@humanwhocodes/retry@0.3.1':
resolution: {integrity: sha512-JBxkERygn7Bv/GbN5Rv8Ul6LVknS+5Bp6RgDC/O8gEBU/yeH5Ui5C/OlWrTb6qct7LjjfT6Re2NxB0ln0yYybA==}
engines: {node: '>=18.18'}
'@humanwhocodes/retry@0.4.3':
resolution: {integrity: sha512-bV0Tgo9K4hfPCek+aMAn81RppFKv2ySDQeMoSZuvTASywNTnVJCArCZE2FWqpvIatKu7VMRLWlR1EazvVhDyhQ==}
engines: {node: '>=18.18'}
@@ -427,103 +429,113 @@ packages:
'@polka/url@1.0.0-next.29':
resolution: {integrity: sha512-wwQAWhWSuHaag8c4q/KN/vCoeOJYshAIvMQwD4GpSb3OiZklFfvAgmj0VCBBImRpuF/aFgIRzllXlVX93Jevww==}
'@rollup/rollup-android-arm-eabi@4.41.0':
resolution: {integrity: sha512-KxN+zCjOYHGwCl4UCtSfZ6jrq/qi88JDUtiEFk8LELEHq2Egfc/FgW+jItZiOLRuQfb/3xJSgFuNPC9jzggX+A==}
'@rollup/rollup-android-arm-eabi@4.52.5':
resolution: {integrity: sha512-8c1vW4ocv3UOMp9K+gToY5zL2XiiVw3k7f1ksf4yO1FlDFQ1C2u72iACFnSOceJFsWskc2WZNqeRhFRPzv+wtQ==}
cpu: [arm]
os: [android]
'@rollup/rollup-android-arm64@4.41.0':
resolution: {integrity: sha512-yDvqx3lWlcugozax3DItKJI5j05B0d4Kvnjx+5mwiUpWramVvmAByYigMplaoAQ3pvdprGCTCE03eduqE/8mPQ==}
'@rollup/rollup-android-arm64@4.52.5':
resolution: {integrity: sha512-mQGfsIEFcu21mvqkEKKu2dYmtuSZOBMmAl5CFlPGLY94Vlcm+zWApK7F/eocsNzp8tKmbeBP8yXyAbx0XHsFNA==}
cpu: [arm64]
os: [android]
'@rollup/rollup-darwin-arm64@4.41.0':
resolution: {integrity: sha512-2KOU574vD3gzcPSjxO0eyR5iWlnxxtmW1F5CkNOHmMlueKNCQkxR6+ekgWyVnz6zaZihpUNkGxjsYrkTJKhkaw==}
'@rollup/rollup-darwin-arm64@4.52.5':
resolution: {integrity: sha512-takF3CR71mCAGA+v794QUZ0b6ZSrgJkArC+gUiG6LB6TQty9T0Mqh3m2ImRBOxS2IeYBo4lKWIieSvnEk2OQWA==}
cpu: [arm64]
os: [darwin]
'@rollup/rollup-darwin-x64@4.41.0':
resolution: {integrity: sha512-gE5ACNSxHcEZyP2BA9TuTakfZvULEW4YAOtxl/A/YDbIir/wPKukde0BNPlnBiP88ecaN4BJI2TtAd+HKuZPQQ==}
'@rollup/rollup-darwin-x64@4.52.5':
resolution: {integrity: sha512-W901Pla8Ya95WpxDn//VF9K9u2JbocwV/v75TE0YIHNTbhqUTv9w4VuQ9MaWlNOkkEfFwkdNhXgcLqPSmHy0fA==}
cpu: [x64]
os: [darwin]
'@rollup/rollup-freebsd-arm64@4.41.0':
resolution: {integrity: sha512-GSxU6r5HnWij7FoSo7cZg3l5GPg4HFLkzsFFh0N/b16q5buW1NAWuCJ+HMtIdUEi6XF0qH+hN0TEd78laRp7Dg==}
'@rollup/rollup-freebsd-arm64@4.52.5':
resolution: {integrity: sha512-QofO7i7JycsYOWxe0GFqhLmF6l1TqBswJMvICnRUjqCx8b47MTo46W8AoeQwiokAx3zVryVnxtBMcGcnX12LvA==}
cpu: [arm64]
os: [freebsd]
'@rollup/rollup-freebsd-x64@4.41.0':
resolution: {integrity: sha512-KGiGKGDg8qLRyOWmk6IeiHJzsN/OYxO6nSbT0Vj4MwjS2XQy/5emsmtoqLAabqrohbgLWJ5GV3s/ljdrIr8Qjg==}
'@rollup/rollup-freebsd-x64@4.52.5':
resolution: {integrity: sha512-jr21b/99ew8ujZubPo9skbrItHEIE50WdV86cdSoRkKtmWa+DDr6fu2c/xyRT0F/WazZpam6kk7IHBerSL7LDQ==}
cpu: [x64]
os: [freebsd]
'@rollup/rollup-linux-arm-gnueabihf@4.41.0':
resolution: {integrity: sha512-46OzWeqEVQyX3N2/QdiU/CMXYDH/lSHpgfBkuhl3igpZiaB3ZIfSjKuOnybFVBQzjsLwkus2mjaESy8H41SzvA==}
'@rollup/rollup-linux-arm-gnueabihf@4.52.5':
resolution: {integrity: sha512-PsNAbcyv9CcecAUagQefwX8fQn9LQ4nZkpDboBOttmyffnInRy8R8dSg6hxxl2Re5QhHBf6FYIDhIj5v982ATQ==}
cpu: [arm]
os: [linux]
'@rollup/rollup-linux-arm-musleabihf@4.41.0':
resolution: {integrity: sha512-lfgW3KtQP4YauqdPpcUZHPcqQXmTmH4nYU0cplNeW583CMkAGjtImw4PKli09NFi2iQgChk4e9erkwlfYem6Lg==}
'@rollup/rollup-linux-arm-musleabihf@4.52.5':
resolution: {integrity: sha512-Fw4tysRutyQc/wwkmcyoqFtJhh0u31K+Q6jYjeicsGJJ7bbEq8LwPWV/w0cnzOqR2m694/Af6hpFayLJZkG2VQ==}
cpu: [arm]
os: [linux]
'@rollup/rollup-linux-arm64-gnu@4.41.0':
resolution: {integrity: sha512-nn8mEyzMbdEJzT7cwxgObuwviMx6kPRxzYiOl6o/o+ChQq23gfdlZcUNnt89lPhhz3BYsZ72rp0rxNqBSfqlqw==}
'@rollup/rollup-linux-arm64-gnu@4.52.5':
resolution: {integrity: sha512-a+3wVnAYdQClOTlyapKmyI6BLPAFYs0JM8HRpgYZQO02rMR09ZcV9LbQB+NL6sljzG38869YqThrRnfPMCDtZg==}
cpu: [arm64]
os: [linux]
'@rollup/rollup-linux-arm64-musl@4.41.0':
resolution: {integrity: sha512-l+QK99je2zUKGd31Gh+45c4pGDAqZSuWQiuRFCdHYC2CSiO47qUWsCcenrI6p22hvHZrDje9QjwSMAFL3iwXwQ==}
'@rollup/rollup-linux-arm64-musl@4.52.5':
resolution: {integrity: sha512-AvttBOMwO9Pcuuf7m9PkC1PUIKsfaAJ4AYhy944qeTJgQOqJYJ9oVl2nYgY7Rk0mkbsuOpCAYSs6wLYB2Xiw0Q==}
cpu: [arm64]
os: [linux]
'@rollup/rollup-linux-loongarch64-gnu@4.41.0':
resolution: {integrity: sha512-WbnJaxPv1gPIm6S8O/Wg+wfE/OzGSXlBMbOe4ie+zMyykMOeqmgD1BhPxZQuDqwUN+0T/xOFtL2RUWBspnZj3w==}
'@rollup/rollup-linux-loong64-gnu@4.52.5':
resolution: {integrity: sha512-DkDk8pmXQV2wVrF6oq5tONK6UHLz/XcEVow4JTTerdeV1uqPeHxwcg7aFsfnSm9L+OO8WJsWotKM2JJPMWrQtA==}
cpu: [loong64]
os: [linux]
'@rollup/rollup-linux-powerpc64le-gnu@4.41.0':
resolution: {integrity: sha512-eRDWR5t67/b2g8Q/S8XPi0YdbKcCs4WQ8vklNnUYLaSWF+Cbv2axZsp4jni6/j7eKvMLYCYdcsv8dcU+a6QNFg==}
'@rollup/rollup-linux-ppc64-gnu@4.52.5':
resolution: {integrity: sha512-W/b9ZN/U9+hPQVvlGwjzi+Wy4xdoH2I8EjaCkMvzpI7wJUs8sWJ03Rq96jRnHkSrcHTpQe8h5Tg3ZzUPGauvAw==}
cpu: [ppc64]
os: [linux]
'@rollup/rollup-linux-riscv64-gnu@4.41.0':
resolution: {integrity: sha512-TWrZb6GF5jsEKG7T1IHwlLMDRy2f3DPqYldmIhnA2DVqvvhY2Ai184vZGgahRrg8k9UBWoSlHv+suRfTN7Ua4A==}
'@rollup/rollup-linux-riscv64-gnu@4.52.5':
resolution: {integrity: sha512-sjQLr9BW7R/ZiXnQiWPkErNfLMkkWIoCz7YMn27HldKsADEKa5WYdobaa1hmN6slu9oWQbB6/jFpJ+P2IkVrmw==}
cpu: [riscv64]
os: [linux]
'@rollup/rollup-linux-riscv64-musl@4.41.0':
resolution: {integrity: sha512-ieQljaZKuJpmWvd8gW87ZmSFwid6AxMDk5bhONJ57U8zT77zpZ/TPKkU9HpnnFrM4zsgr4kiGuzbIbZTGi7u9A==}
'@rollup/rollup-linux-riscv64-musl@4.52.5':
resolution: {integrity: sha512-hq3jU/kGyjXWTvAh2awn8oHroCbrPm8JqM7RUpKjalIRWWXE01CQOf/tUNWNHjmbMHg/hmNCwc/Pz3k1T/j/Lg==}
cpu: [riscv64]
os: [linux]
'@rollup/rollup-linux-s390x-gnu@4.41.0':
resolution: {integrity: sha512-/L3pW48SxrWAlVsKCN0dGLB2bi8Nv8pr5S5ocSM+S0XCn5RCVCXqi8GVtHFsOBBCSeR+u9brV2zno5+mg3S4Aw==}
'@rollup/rollup-linux-s390x-gnu@4.52.5':
resolution: {integrity: sha512-gn8kHOrku8D4NGHMK1Y7NA7INQTRdVOntt1OCYypZPRt6skGbddska44K8iocdpxHTMMNui5oH4elPH4QOLrFQ==}
cpu: [s390x]
os: [linux]
'@rollup/rollup-linux-x64-gnu@4.41.0':
resolution: {integrity: sha512-XMLeKjyH8NsEDCRptf6LO8lJk23o9wvB+dJwcXMaH6ZQbbkHu2dbGIUindbMtRN6ux1xKi16iXWu6q9mu7gDhQ==}
'@rollup/rollup-linux-x64-gnu@4.52.5':
resolution: {integrity: sha512-hXGLYpdhiNElzN770+H2nlx+jRog8TyynpTVzdlc6bndktjKWyZyiCsuDAlpd+j+W+WNqfcyAWz9HxxIGfZm1Q==}
cpu: [x64]
os: [linux]
'@rollup/rollup-linux-x64-musl@4.41.0':
resolution: {integrity: sha512-m/P7LycHZTvSQeXhFmgmdqEiTqSV80zn6xHaQ1JSqwCtD1YGtwEK515Qmy9DcB2HK4dOUVypQxvhVSy06cJPEg==}
'@rollup/rollup-linux-x64-musl@4.52.5':
resolution: {integrity: sha512-arCGIcuNKjBoKAXD+y7XomR9gY6Mw7HnFBv5Rw7wQRvwYLR7gBAgV7Mb2QTyjXfTveBNFAtPt46/36vV9STLNg==}
cpu: [x64]
os: [linux]
'@rollup/rollup-win32-arm64-msvc@4.41.0':
resolution: {integrity: sha512-4yodtcOrFHpbomJGVEqZ8fzD4kfBeCbpsUy5Pqk4RluXOdsWdjLnjhiKy2w3qzcASWd04fp52Xz7JKarVJ5BTg==}
'@rollup/rollup-openharmony-arm64@4.52.5':
resolution: {integrity: sha512-QoFqB6+/9Rly/RiPjaomPLmR/13cgkIGfA40LHly9zcH1S0bN2HVFYk3a1eAyHQyjs3ZJYlXvIGtcCs5tko9Cw==}
cpu: [arm64]
os: [openharmony]
'@rollup/rollup-win32-arm64-msvc@4.52.5':
resolution: {integrity: sha512-w0cDWVR6MlTstla1cIfOGyl8+qb93FlAVutcor14Gf5Md5ap5ySfQ7R9S/NjNaMLSFdUnKGEasmVnu3lCMqB7w==}
cpu: [arm64]
os: [win32]
'@rollup/rollup-win32-ia32-msvc@4.41.0':
resolution: {integrity: sha512-tmazCrAsKzdkXssEc65zIE1oC6xPHwfy9d5Ta25SRCDOZS+I6RypVVShWALNuU9bxIfGA0aqrmzlzoM5wO5SPQ==}
'@rollup/rollup-win32-ia32-msvc@4.52.5':
resolution: {integrity: sha512-Aufdpzp7DpOTULJCuvzqcItSGDH73pF3ko/f+ckJhxQyHtp67rHw3HMNxoIdDMUITJESNE6a8uh4Lo4SLouOUg==}
cpu: [ia32]
os: [win32]
'@rollup/rollup-win32-x64-msvc@4.41.0':
resolution: {integrity: sha512-h1J+Yzjo/X+0EAvR2kIXJDuTuyT7drc+t2ALY0nIcGPbTatNOf0VWdhEA2Z4AAjv6X1NJV7SYo5oCTYRJhSlVA==}
'@rollup/rollup-win32-x64-gnu@4.52.5':
resolution: {integrity: sha512-UGBUGPFp1vkj6p8wCRraqNhqwX/4kNQPS57BCFc8wYh0g94iVIW33wJtQAx3G7vrjjNtRaxiMUylM0ktp/TRSQ==}
cpu: [x64]
os: [win32]
'@rollup/rollup-win32-x64-msvc@4.52.5':
resolution: {integrity: sha512-TAcgQh2sSkykPRWLrdyy2AiceMckNf5loITqXxFI5VuQjS5tSuw3WlwdN8qv8vzjLAUTvYaH/mVjSFpbkFbpTg==}
cpu: [x64]
os: [win32]
@@ -907,6 +919,15 @@ packages:
supports-color:
optional: true
debug@4.4.3:
resolution: {integrity: sha512-RGwwWnwQvkVfavKVt22FGLw+xYSdzARwm0ru6DhTVA3umU5hZc28V3kO4stgYryrTlLpuvgI9GiijltAjNbcqA==}
engines: {node: '>=6.0'}
peerDependencies:
supports-color: '*'
peerDependenciesMeta:
supports-color:
optional: true
decompress-response@4.2.1:
resolution: {integrity: sha512-jOSne2qbyE+/r8G1VU+G/82LBs2Fs4LAsTiLSHOCOMZQl2OKZ6i8i4IyHemTe+/yIXOtTcRQMzPcgyhoFlqPkw==}
engines: {node: '>=8'}
@@ -941,8 +962,8 @@ packages:
resolution: {integrity: sha512-3UDv+G9CsCKO1WKMGw9fwq/SWJYbI0c5Y7LU1AXYoDdbhE2AHQ6N6Nb34sG8Fj7T5APy8qXDCKuuIHd1BR0tVA==}
engines: {node: '>=8'}
devalue@5.1.1:
resolution: {integrity: sha512-maua5KUiapvEwiEAe+XnlZ3Rh0GD+qI1J/nb9vrJc3muPXvcF/8gXYTWF76+5DAqHyDUtOIImEuo0YKE9mshVw==}
devalue@5.3.2:
resolution: {integrity: sha512-UDsjUbpQn9kvm68slnrs+mfxwFkIflOhkanmyabZ8zOYk8SMEIbJ3TK+88g70hSIeytu4y18f0z/hYHMTrXIWw==}
devlop@1.1.0:
resolution: {integrity: sha512-RWmIqhcFf1lRYBvNmr7qTNuyCt/7/ns2jbpp1+PalgE/rDQcBT0fioSMUpJ93irlUhC5hrg4cYqe6U+0ImW0rA==}
@@ -1916,8 +1937,8 @@ packages:
deprecated: Rimraf versions prior to v4 are no longer supported
hasBin: true
rollup@4.41.0:
resolution: {integrity: sha512-HqMFpUbWlf/tvcxBFNKnJyzc7Lk+XO3FGc3pbNBLqEbOz0gPLRgcrlS3UF4MfUrVlstOaP/q0kM6GVvi+LrLRg==}
rollup@4.52.5:
resolution: {integrity: sha512-3GuObel8h7Kqdjt0gxkEzaifHTqLVW56Y/bjN7PSQtkKr0w3V/QYSdt6QWYtd7A1xUtYQigtdUfgj1RvWVtorw==}
engines: {node: '>=18.0.0', npm: '>=8.0.0'}
hasBin: true
@@ -2281,8 +2302,8 @@ packages:
peerDependencies:
vite: ^4.1.1 || ^5.0.0
vite@5.4.19:
resolution: {integrity: sha512-qO3aKv3HoQC8QKiNSTuUM1l9o/XX3+c+VTgLHbJWHZGeTPVAg2XwazI9UWzoxjIJCGCV2zU60uqMzjeLZuULqA==}
vite@5.4.21:
resolution: {integrity: sha512-o5a9xKjbtuhY6Bi5S3+HvbRERmouabWbyUcpXXUA1u+GNUKoROi9byOJ8M0nHbHYHkYICiMlqxkg1KkYmm25Sw==}
engines: {node: ^18.0.0 || >=20.0.0}
hasBin: true
peerDependencies:
@@ -2458,12 +2479,17 @@ snapshots:
eslint: 9.17.0(jiti@1.21.7)
eslint-visitor-keys: 3.4.3
'@eslint-community/eslint-utils@4.9.0(eslint@9.17.0(jiti@1.21.7))':
dependencies:
eslint: 9.17.0(jiti@1.21.7)
eslint-visitor-keys: 3.4.3
'@eslint-community/regexpp@4.12.1': {}
'@eslint/config-array@0.19.2':
dependencies:
'@eslint/object-schema': 2.1.6
debug: 4.4.1
'@eslint/object-schema': 2.1.7
debug: 4.4.3
minimatch: 3.1.2
transitivePeerDependencies:
- supports-color
@@ -2479,7 +2505,7 @@ snapshots:
'@eslint/eslintrc@3.3.1':
dependencies:
ajv: 6.12.6
debug: 4.4.1
debug: 4.4.3
espree: 10.4.0
globals: 14.0.0
ignore: 5.3.2
@@ -2494,7 +2520,7 @@ snapshots:
'@eslint/js@9.27.0': {}
'@eslint/object-schema@2.1.6': {}
'@eslint/object-schema@2.1.7': {}
'@eslint/plugin-kit@0.2.8':
dependencies:
@@ -2514,15 +2540,13 @@ snapshots:
'@humanfs/core@0.19.1': {}
'@humanfs/node@0.16.6':
'@humanfs/node@0.16.7':
dependencies:
'@humanfs/core': 0.19.1
'@humanwhocodes/retry': 0.3.1
'@humanwhocodes/retry': 0.4.3
'@humanwhocodes/module-importer@1.0.1': {}
'@humanwhocodes/retry@0.3.1': {}
'@humanwhocodes/retry@0.4.3': {}
'@isaacs/cliui@8.0.2':
@@ -2584,64 +2608,70 @@ snapshots:
'@polka/url@1.0.0-next.29': {}
'@rollup/rollup-android-arm-eabi@4.41.0':
'@rollup/rollup-android-arm-eabi@4.52.5':
optional: true
'@rollup/rollup-android-arm64@4.41.0':
'@rollup/rollup-android-arm64@4.52.5':
optional: true
'@rollup/rollup-darwin-arm64@4.41.0':
'@rollup/rollup-darwin-arm64@4.52.5':
optional: true
'@rollup/rollup-darwin-x64@4.41.0':
'@rollup/rollup-darwin-x64@4.52.5':
optional: true
'@rollup/rollup-freebsd-arm64@4.41.0':
'@rollup/rollup-freebsd-arm64@4.52.5':
optional: true
'@rollup/rollup-freebsd-x64@4.41.0':
'@rollup/rollup-freebsd-x64@4.52.5':
optional: true
'@rollup/rollup-linux-arm-gnueabihf@4.41.0':
'@rollup/rollup-linux-arm-gnueabihf@4.52.5':
optional: true
'@rollup/rollup-linux-arm-musleabihf@4.41.0':
'@rollup/rollup-linux-arm-musleabihf@4.52.5':
optional: true
'@rollup/rollup-linux-arm64-gnu@4.41.0':
'@rollup/rollup-linux-arm64-gnu@4.52.5':
optional: true
'@rollup/rollup-linux-arm64-musl@4.41.0':
'@rollup/rollup-linux-arm64-musl@4.52.5':
optional: true
'@rollup/rollup-linux-loongarch64-gnu@4.41.0':
'@rollup/rollup-linux-loong64-gnu@4.52.5':
optional: true
'@rollup/rollup-linux-powerpc64le-gnu@4.41.0':
'@rollup/rollup-linux-ppc64-gnu@4.52.5':
optional: true
'@rollup/rollup-linux-riscv64-gnu@4.41.0':
'@rollup/rollup-linux-riscv64-gnu@4.52.5':
optional: true
'@rollup/rollup-linux-riscv64-musl@4.41.0':
'@rollup/rollup-linux-riscv64-musl@4.52.5':
optional: true
'@rollup/rollup-linux-s390x-gnu@4.41.0':
'@rollup/rollup-linux-s390x-gnu@4.52.5':
optional: true
'@rollup/rollup-linux-x64-gnu@4.41.0':
'@rollup/rollup-linux-x64-gnu@4.52.5':
optional: true
'@rollup/rollup-linux-x64-musl@4.41.0':
'@rollup/rollup-linux-x64-musl@4.52.5':
optional: true
'@rollup/rollup-win32-arm64-msvc@4.41.0':
'@rollup/rollup-openharmony-arm64@4.52.5':
optional: true
'@rollup/rollup-win32-ia32-msvc@4.41.0':
'@rollup/rollup-win32-arm64-msvc@4.52.5':
optional: true
'@rollup/rollup-win32-x64-msvc@4.41.0':
'@rollup/rollup-win32-ia32-msvc@4.52.5':
optional: true
'@rollup/rollup-win32-x64-gnu@4.52.5':
optional: true
'@rollup/rollup-win32-x64-msvc@4.52.5':
optional: true
'@shikijs/core@1.29.2':
@@ -2692,19 +2722,19 @@ snapshots:
dependencies:
acorn: 8.14.1
'@sveltejs/adapter-auto@3.3.1(@sveltejs/kit@2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))':
'@sveltejs/adapter-auto@3.3.1(@sveltejs/kit@2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))':
dependencies:
'@sveltejs/kit': 2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))
'@sveltejs/kit': 2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))
import-meta-resolve: 4.1.0
'@sveltejs/kit@2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))':
'@sveltejs/kit@2.21.1(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))':
dependencies:
'@sveltejs/acorn-typescript': 1.0.5(acorn@8.14.1)
'@sveltejs/vite-plugin-svelte': 3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))
'@sveltejs/vite-plugin-svelte': 3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))
'@types/cookie': 0.6.0
acorn: 8.14.1
cookie: 1.0.2
devalue: 5.1.1
devalue: 5.3.2
esm-env: 1.2.2
kleur: 4.1.5
magic-string: 0.30.17
@@ -2713,28 +2743,28 @@ snapshots:
set-cookie-parser: 2.7.1
sirv: 3.0.1
svelte: 4.2.20
vite: 5.4.19(@types/node@20.17.50)
vite: 5.4.21(@types/node@20.17.50)
'@sveltejs/vite-plugin-svelte-inspector@2.1.0(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))':
'@sveltejs/vite-plugin-svelte-inspector@2.1.0(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))':
dependencies:
'@sveltejs/vite-plugin-svelte': 3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))
'@sveltejs/vite-plugin-svelte': 3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))
debug: 4.4.1
svelte: 4.2.20
vite: 5.4.19(@types/node@20.17.50)
vite: 5.4.21(@types/node@20.17.50)
transitivePeerDependencies:
- supports-color
'@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))':
'@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))':
dependencies:
'@sveltejs/vite-plugin-svelte-inspector': 2.1.0(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.19(@types/node@20.17.50))
'@sveltejs/vite-plugin-svelte-inspector': 2.1.0(@sveltejs/vite-plugin-svelte@3.1.2(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50)))(svelte@4.2.20)(vite@5.4.21(@types/node@20.17.50))
debug: 4.4.1
deepmerge: 4.3.1
kleur: 4.1.5
magic-string: 0.30.17
svelte: 4.2.20
svelte-hmr: 0.16.0(svelte@4.2.20)
vite: 5.4.19(@types/node@20.17.50)
vitefu: 0.2.5(vite@5.4.19(@types/node@20.17.50))
vite: 5.4.21(@types/node@20.17.50)
vitefu: 0.2.5(vite@5.4.21(@types/node@20.17.50))
transitivePeerDependencies:
- supports-color
@@ -3033,6 +3063,10 @@ snapshots:
dependencies:
ms: 2.1.3
debug@4.4.3:
dependencies:
ms: 2.1.3
decompress-response@4.2.1:
dependencies:
mimic-response: 2.1.0
@@ -3060,7 +3094,7 @@ snapshots:
detect-libc@2.0.4:
optional: true
devalue@5.1.1: {}
devalue@5.3.2: {}
devlop@1.1.0:
dependencies:
@@ -3173,14 +3207,14 @@ snapshots:
eslint@9.17.0(jiti@1.21.7):
dependencies:
'@eslint-community/eslint-utils': 4.7.0(eslint@9.17.0(jiti@1.21.7))
'@eslint-community/eslint-utils': 4.9.0(eslint@9.17.0(jiti@1.21.7))
'@eslint-community/regexpp': 4.12.1
'@eslint/config-array': 0.19.2
'@eslint/core': 0.9.1
'@eslint/eslintrc': 3.3.1
'@eslint/js': 9.17.0
'@eslint/plugin-kit': 0.2.8
'@humanfs/node': 0.16.6
'@humanfs/node': 0.16.7
'@humanwhocodes/module-importer': 1.0.1
'@humanwhocodes/retry': 0.4.3
'@types/estree': 1.0.8
@@ -3188,7 +3222,7 @@ snapshots:
ajv: 6.12.6
chalk: 4.1.2
cross-spawn: 7.0.6
debug: 4.4.1
debug: 4.4.3
escape-string-regexp: 4.0.0
eslint-scope: 8.4.0
eslint-visitor-keys: 4.2.1
@@ -4125,30 +4159,32 @@ snapshots:
glob: 7.2.3
optional: true
rollup@4.41.0:
rollup@4.52.5:
dependencies:
'@types/estree': 1.0.7
'@types/estree': 1.0.8
optionalDependencies:
'@rollup/rollup-android-arm-eabi': 4.41.0
'@rollup/rollup-android-arm64': 4.41.0
'@rollup/rollup-darwin-arm64': 4.41.0
'@rollup/rollup-darwin-x64': 4.41.0
'@rollup/rollup-freebsd-arm64': 4.41.0
'@rollup/rollup-freebsd-x64': 4.41.0
'@rollup/rollup-linux-arm-gnueabihf': 4.41.0
'@rollup/rollup-linux-arm-musleabihf': 4.41.0
'@rollup/rollup-linux-arm64-gnu': 4.41.0
'@rollup/rollup-linux-arm64-musl': 4.41.0
'@rollup/rollup-linux-loongarch64-gnu': 4.41.0
'@rollup/rollup-linux-powerpc64le-gnu': 4.41.0
'@rollup/rollup-linux-riscv64-gnu': 4.41.0
'@rollup/rollup-linux-riscv64-musl': 4.41.0
'@rollup/rollup-linux-s390x-gnu': 4.41.0
'@rollup/rollup-linux-x64-gnu': 4.41.0
'@rollup/rollup-linux-x64-musl': 4.41.0
'@rollup/rollup-win32-arm64-msvc': 4.41.0
'@rollup/rollup-win32-ia32-msvc': 4.41.0
'@rollup/rollup-win32-x64-msvc': 4.41.0
'@rollup/rollup-android-arm-eabi': 4.52.5
'@rollup/rollup-android-arm64': 4.52.5
'@rollup/rollup-darwin-arm64': 4.52.5
'@rollup/rollup-darwin-x64': 4.52.5
'@rollup/rollup-freebsd-arm64': 4.52.5
'@rollup/rollup-freebsd-x64': 4.52.5
'@rollup/rollup-linux-arm-gnueabihf': 4.52.5
'@rollup/rollup-linux-arm-musleabihf': 4.52.5
'@rollup/rollup-linux-arm64-gnu': 4.52.5
'@rollup/rollup-linux-arm64-musl': 4.52.5
'@rollup/rollup-linux-loong64-gnu': 4.52.5
'@rollup/rollup-linux-ppc64-gnu': 4.52.5
'@rollup/rollup-linux-riscv64-gnu': 4.52.5
'@rollup/rollup-linux-riscv64-musl': 4.52.5
'@rollup/rollup-linux-s390x-gnu': 4.52.5
'@rollup/rollup-linux-x64-gnu': 4.52.5
'@rollup/rollup-linux-x64-musl': 4.52.5
'@rollup/rollup-openharmony-arm64': 4.52.5
'@rollup/rollup-win32-arm64-msvc': 4.52.5
'@rollup/rollup-win32-ia32-msvc': 4.52.5
'@rollup/rollup-win32-x64-gnu': 4.52.5
'@rollup/rollup-win32-x64-msvc': 4.52.5
fsevents: 2.3.3
run-parallel@1.2.0:
@@ -4565,24 +4601,24 @@ snapshots:
'@types/unist': 3.0.3
vfile-message: 4.0.2
vite-plugin-tailwind-purgecss@0.2.1(vite@5.4.19(@types/node@20.17.50)):
vite-plugin-tailwind-purgecss@0.2.1(vite@5.4.21(@types/node@20.17.50)):
dependencies:
estree-walker: 3.0.3
purgecss: 6.0.0
vite: 5.4.19(@types/node@20.17.50)
vite: 5.4.21(@types/node@20.17.50)
vite@5.4.19(@types/node@20.17.50):
vite@5.4.21(@types/node@20.17.50):
dependencies:
esbuild: 0.21.5
postcss: 8.5.3
rollup: 4.41.0
rollup: 4.52.5
optionalDependencies:
'@types/node': 20.17.50
fsevents: 2.3.3
vitefu@0.2.5(vite@5.4.19(@types/node@20.17.50)):
vitefu@0.2.5(vite@5.4.21(@types/node@20.17.50)):
optionalDependencies:
vite: 5.4.19(@types/node@20.17.50)
vite: 5.4.21(@types/node@20.17.50)
web-namespaces@2.0.1: {}

View File

@@ -159,7 +159,8 @@
"tags": [
"ANALYSIS",
"STRATEGY",
"SELF"
"SELF",
"WELLNESS"
]
},
{
@@ -744,7 +745,8 @@
"tags": [
"ANALYSIS",
"RESEARCH",
"SELF"
"SELF",
"WELLNESS"
]
},
{
@@ -1060,7 +1062,8 @@
"tags": [
"EXTRACT",
"SELF",
"WISDOM"
"WISDOM",
"WELLNESS"
]
},
{
@@ -1235,7 +1238,8 @@
"tags": [
"ANALYSIS",
"LEARNING",
"SELF"
"SELF",
"WELLNESS"
]
},
{
@@ -1332,23 +1336,6 @@
"DEVELOPMENT"
]
},
{
"patternName": "show_fabric_options_markmap",
"description": "Visualize Fabric capabilities using Markmap syntax.",
"tags": [
"VISUALIZE",
"DEVELOPMENT"
]
},
{
"patternName": "solve_with_cot",
"description": "Solve problems using chain-of-thought reasoning.",
"tags": [
"AI",
"ANALYSIS",
"LEARNING"
]
},
{
"patternName": "suggest_pattern",
"description": "Recommend Fabric patterns based on user requirements.",
@@ -1561,7 +1548,8 @@
"description": "Generate personalized messages of encouragement.",
"tags": [
"WRITING",
"SELF"
"SELF",
"WELLNESS"
]
},
{
@@ -1871,6 +1859,72 @@
"DEVELOPMENT",
"AI"
]
},
{
"patternName": "create_story_about_person",
"description": "Infer everyday challenges and realistic coping strategies from a psychological profile and craft an empathetic 500700-word story consistent with the character.",
"tags": [
"WRITING",
"SELF"
]
},
{
"patternName": "heal_person",
"description": "Analyze a psychological profile, pinpoint issues and strengths, and deliver compassionate, structured strategies for spiritual, mental, and life improvement.",
"tags": [
"ANALYSIS",
"SELF",
"WELLNESS"
]
},
{
"patternName": "create_story_about_people_interaction",
"description": "Analyze two personas, compare their dynamics, and craft a realistic, character-driven story from those insights.",
"tags": [
"ANALYSIS",
"WRITING"
]
},
{
"patternName": "extract_characters",
"description": "Identify all characters (human and non-human), resolve their aliases and pronouns into canonical names, and produce detailed descriptions of each character's role, motivations, and interactions ranked by narrative importance.",
"tags": [
"ANALYSIS",
"WRITING"
]
},
{
"patternName": "fix_typos",
"description": "Proofreads and corrects typos, spelling, grammar, and punctuation errors.",
"tags": [
"WRITING"
]
},
{
"patternName": "model_as_sherlock_freud",
"description": "Builds psychological models using detective reasoning and psychoanalytic insight.",
"tags": [
"ANALYSIS",
"SELF",
"WELLNESS"
]
},
{
"patternName": "predict_person_actions",
"description": "Predicts behavioral responses based on psychological profiles and challenges",
"tags": [
"ANALYSIS",
"SELF",
"WELLNESS"
]
},
{
"patternName": "recommend_yoga_practice",
"description": "Provides personalized yoga sequences, meditation guidance, and holistic lifestyle advice based on individual profiles.",
"tags": [
"WELLNESS",
"SELF"
]
}
]
}