Compare commits

..

167 Commits

Author SHA1 Message Date
Lincoln Stein
907ff165be Update communityNodes.md (#3873)
Added the Ideal Size node

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because: It's a community node addition

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

Added a reference to my community node that calculates the ideal size
for initial latent generation that avoids duplication. This is the logic
that was present in 2.3.5's first pass of high-res optimization.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [X] No : This is a documentation change that references my community
node.

## [optional] Are there any post deployment tasks we need to perform?
2023-07-21 15:17:28 -04:00
Lincoln Stein
53c8c3b4f5 Merge branch 'main' into JPPhoto-add-ideal-size 2023-07-21 15:17:06 -04:00
Lincoln Stein
8262c31866 Update communityNodes.md (#3876)
Add Face Mask to communityNodes.md

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [x] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description

Add Face Mask to communituNodes.md list.
2023-07-21 15:16:41 -04:00
Lincoln Stein
b940ae8dbb Merge branch 'main' into facemask/communitynodes 2023-07-21 15:16:14 -04:00
Lincoln Stein
845d1524ad warn, do not crash, when duplicate models encountered 2023-07-21 15:00:55 -04:00
ymgenesis
6c82b694a7 Update communityNodes.md
Add Face Mask to communityNodes.md
2023-07-21 19:05:37 +02:00
Lincoln Stein
f1fcc3fb74 fix pypi helper for correct pypi updating 2023-07-21 12:36:09 -04:00
Lincoln Stein
2dd59d31d0 fix mkdocs push 2023-07-21 12:27:53 -04:00
psychedelicious
3f79812dc6 fix: mps attention fix for sd2 2023-07-21 09:22:37 -04:00
Kent Keirsey
055b2207cb Update CONTRIBUTORS.md 2023-07-21 08:24:17 -04:00
Lincoln Stein
19cdd5a99b rebuild frontend for release 2023-07-21 07:48:30 -04:00
Jonathan
5db66e00b6 Update communityNodes.md
Added the Ideal Size node
2023-07-21 06:38:42 -05:00
Lincoln Stein
76337e13f5 Last 3.0.0 tweaks (#3872)
Updated contributors
2023-07-21 07:38:28 -04:00
Lincoln Stein
eb4ca4042e Merge branch 'main' into release/3-0-0 2023-07-21 07:38:02 -04:00
psychedelicious
594bf6fef1 fix(api,ui): fix canvas saved images have extra transparent regions
- add `crop_visible` param to upload image & set to true only for canvas saves
2023-07-21 07:26:12 -04:00
psychedelicious
6f2e8d5217 chore(ui): regen types 2023-07-21 07:26:12 -04:00
psychedelicious
52ae15c167 fix(ui): fix console error related to css 2023-07-21 07:26:12 -04:00
psychedelicious
2c4128d44e fix(ui): deleting board does not reset selected board/image 2023-07-21 07:26:12 -04:00
psychedelicious
01b106d939 fix(ui): fix no image selected on first load 2023-07-21 07:26:12 -04:00
psychedelicious
68f1f87c6f feat(ui): board styles 2023-07-21 07:26:12 -04:00
psychedelicious
c2c99b8650 feat(ui): fix more caching bugs 2023-07-21 07:26:12 -04:00
psychedelicious
896b77cf56 feat(api,db): allow creating an image with a board_id 2023-07-21 07:26:12 -04:00
Lincoln Stein
6f7d221f57 Couple doc tweaks (#3870)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [x] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: just updated docs to try to help lead new users to
installs a little easier

      
## Have you updated relevant documentation?
- [x] Yes
- [ ] No


## Description
Some minor docs tweaks

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-21 06:43:03 -04:00
Lincoln Stein
fba4085939 ui: boards 2: electric boogaloo (#3869)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:


## Description

Revised boards logic and UI

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue # discord convos
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : n/a

## [optional] Are there any post deployment tasks we need to perform?
2023-07-21 06:42:16 -04:00
Millun Atluri
48ad005732 Couple doc tweaks 2023-07-21 16:35:41 +10:00
blessedcoolant
9ce4bd1182 fix: Simplify gallery board name layout 2023-07-21 18:15:55 +12:00
blessedcoolant
39b7ace273 fix: Differentiate no boards from the user boards 2023-07-21 18:15:12 +12:00
blessedcoolant
319c56f844 fix: Make auto add icon be a tad bit smaller 2023-07-21 18:14:57 +12:00
psychedelicious
389a0d2810 feat(ui): use badge for autoadd 2023-07-21 16:01:40 +10:00
psychedelicious
fe33acedad fix(ui): fix crash when removing last image 2023-07-21 15:57:09 +10:00
psychedelicious
eab18c7385 fix(ui): fix incorrect gallery tab 2023-07-21 15:56:50 +10:00
psychedelicious
8e98085530 fix(ui): fix missing 'none' on no-board cache updates 2023-07-21 15:53:41 +10:00
psychedelicious
5396e998b3 feat(ui): simplify auto-add context menu 2023-07-21 15:47:12 +10:00
psychedelicious
fc98089960 fix(ui): debounce metadata query on context menu 2023-07-21 15:37:33 +10:00
psychedelicious
dd0b4dc744 fix(ui): fix next prev buttons 2023-07-21 15:37:20 +10:00
psychedelicious
ddeba190bc fix(ui): really fixed autoadd context menu 2023-07-21 15:18:48 +10:00
psychedelicious
3a610e1a65 fix(ui): more fixing of auto-add 2023-07-21 15:00:07 +10:00
psychedelicious
e10e22440d fix(ui): restore auto-add to board functionality 2023-07-21 14:29:42 +10:00
psychedelicious
f4e8a91bcf fix(ui): update boardIdSelected 2023-07-21 14:22:18 +10:00
Lincoln Stein
ce7fbdb01d bump version; update contributors list 2023-07-21 00:17:21 -04:00
psychedelicious
4da6623700 fix(ui): fix deleteboard cache changes 2023-07-21 14:16:19 +10:00
psychedelicious
0e3ca59e49 feat(ui): refactor boards hierarchy 2023-07-21 13:48:15 +10:00
Lincoln Stein
e06f2229ac Replace SlicedAttnProcessor with patched to chunk memory on mps (#3868)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Description
On mps generating images with resolution above ~1536x1536 results in
"fried" output. Main problem that such resolution results in tensors in
size more then 4gb. Looks like that some of mps internals can't handle
properly this, so to mitigate it I break attention calculation in
chunks.

## QA Instructions, Screenshots, Recordings
Example of bad output:

![image](https://github.com/invoke-ai/InvokeAI/assets/7768370/cd373458-c0a5-4a2f-8ea5-402020de5b4b)
2023-07-20 23:32:29 -04:00
Lincoln Stein
5962d96f27 Merge branch 'main' into fix/long_tensors_mps 2023-07-20 23:24:47 -04:00
Lincoln Stein
d4854c4fac Release 3.0.0 RC Series (#3844)
## What type of PR is this? (check all applicable)

- [ X] Documentation Update


## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:

## Description

This is a WIP to collect documentation enhancements and other polish
prior to final 3.0.0 release. Minor bug fixes may go in here if
non-controversial. It should be merged into main prior to the final
release.
2023-07-20 23:22:40 -04:00
Lincoln Stein
46801c076f Merge branch 'main' into release/invokeai-3-0-rc 2023-07-20 23:16:05 -04:00
Lincoln Stein
9370572169 prettify startup messages 2023-07-20 22:45:35 -04:00
blessedcoolant
ace65325ff Update FoundModelsList.tsx (#3867)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-21 13:14:32 +12:00
Sergey Borisov
e6d890888c Replace SlicedAttnProcessor with patched to chunk memory consumption less then 4gb in each attention calculation pass 2023-07-21 04:08:49 +03:00
Kent Keirsey
8e7f581065 Update FoundModelsList.tsx 2023-07-20 20:51:54 -04:00
Lincoln Stein
85ef3f51e7 extra check for empty hftoken 2023-07-20 15:16:06 -04:00
blessedcoolant
8fdc8a8da5 fix: No board name being displayed if it is empty (#3863)
## What type of PR is this? (check all applicable)

- [x] Bug Fix

## Desc

Fixes a bug where the board name is not displayed in the header if there
are no images in it.
2023-07-21 05:10:11 +12:00
blessedcoolant
52d56e96a5 fix: No board name being displayed if it is empty 2023-07-21 05:07:50 +12:00
Lincoln Stein
c013fe5b5d Merge branch 'main' into release/invokeai-3-0-rc 2023-07-20 12:22:27 -04:00
Lincoln Stein
ddf7ddc2c1 Add sdxl generation preview (#3862)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:


## Description
Add progress preview for sdxl generation nodes
2023-07-20 12:21:57 -04:00
Sergey Borisov
4a0774b260 Use scale from vae 2023-07-20 18:54:51 +03:00
Lincoln Stein
17e401cb8c rebuild frontend 2023-07-20 11:47:04 -04:00
Sergey Borisov
29a590cced Add sdxl generation preview 2023-07-20 18:45:54 +03:00
Lincoln Stein
7deafa838b merge with main 2023-07-20 11:45:54 -04:00
Lincoln Stein
20757d1c02 Add get_log_level and set_log_level operations to the app route (#3858)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:

      
## Have you updated relevant documentation?
- [ X] Yes (swagger)
- [ ] No


## Description

This add new routes for getting and setting the command line console
logging level.
2023-07-20 11:36:47 -04:00
Lincoln Stein
5134de7cfa Merge branch 'main' into lstein/logger-route 2023-07-20 11:29:48 -04:00
Lincoln Stein
b1a6ba552b reinitialize models.yaml if corrupt or missing 2023-07-20 11:26:20 -04:00
psychedelicious
cd21d2f2b6 fix(ui): fix no_board cache not updating
two areas marked TODO were not TODONE!
2023-07-20 23:50:14 +10:00
Mary Hipp
9dc28373d8 use brackets 2023-07-20 23:45:49 +10:00
Mary Hipp
ffe7d5785b if updating intermediate, dont add to gallery list cache 2023-07-20 23:45:49 +10:00
Lincoln Stein
a2e2f0858d bump version number 2023-07-20 09:42:02 -04:00
blessedcoolant
f73c70ca96 feat: ControlNet Resize Mode (#3854)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes  Discussed with @hipsterusername yesterday
- [ ] No, because:

      
## Have you updated relevant documentation?
- [ ] Yes 
- [X] No Not yet (but change to default ControlNet resizing doesn't
require any user documentation)


## Description
This PR adds resize modes (just_resize, crop_resize, fill_resize) to
InvokeAI's ControlNet node. The implementation is largely based on
lllyasviel's, which includes a high quality resizer specifically
intended to handle common ControlNet preprocessor outputs, such as
binary (black/white) images, grayscale images, and binary or grayscale
thin lines. Previously the InvokeAI ControlNet implementation only did a
simple resize with independent x/y scaling to match noise latent.

### "just_resize" mode (the default setting)
With the new implementation, using the default "just_resize" mode,
ControlNet images are still resized with independent x/y scaling to
match the noise latent resolution, but with the high quality resizer. As
a result, images generated in InvokeAI now look much closer to
counterparts generated via sd-webui-controlnet. See example below. All
inference runs are using prompt="old man", same ControlNet canny edge
detection preprocessor and model and control image, identical other
parameters except for control_mode. The top row is previous simple
resize implementation, the bottom row is with new high quality resizer
and "just_resize" mode. Control_mode is: left="balanced", middle="more
prompt", right="more control". The high quality resize images are
identical (at least by eye) to output from sd-webui-controlnet with same
settings.


![just_resize_simple_vs_just_resize_lvmin](https://github.com/invoke-ai/InvokeAI/assets/303100/5fe02121-616a-4531-b2a4-b423cc054b99)

## "crop_resize" and "fill_resize" modes
The other two resize modes are "crop_resize" and "fill_resize". Whereas
"just_resize" ignores any aspect ratio mismatch between the ControlNet
image and the noise latent, these other modes preserve the aspect ratio
of the ControlNet image. The "crop_resize" mode does this by cropping
the image, and the "fill_resize" option does this by expanding the image
(adding fill pixels). See example below. In this case all inference runs
are using prompt="old man", the ControlNet Midas depth detection
preprocessor and depth model, same control image of size 512x512,
control_mode="balanced", and identical other parameters except for
resize_mode and noise latent dimensions. For top row noise latent size
is 768x512, and for bottom row noise latent size is 512x768. Resize_mode
is: left="just_resize", middle="crop_resize", right="fill_resize"

![Screenshot from 2023-07-20
02-09-22](https://github.com/invoke-ai/InvokeAI/assets/303100/7b4df456-2a5e-4ec4-bce1-fafdba52f025)

## Are there any post deployment tasks we need to perform?
To use "just_resize" mode in linear UI, no post deployment work is
needed. The default is switched from old resizer to new high quality
resizer.

To use "just_resize", "crop_resize", and "fill_resize" modes in node UI,
no post deployment work is needed. There is also an additional option
"just_resize_simple" that uses old resizer, mainly left in for testing
and for anyone curious to see the difference.

To use "crop_resize" and "fill_resize" in linear UI, there will need to
be some work to incorporate choice of three modes in ControlNet UI
(probably best to not expose "just_resize_simple" in linear UI, it just
confuses things).
2023-07-21 01:31:52 +12:00
blessedcoolant
e2240feae4 fix: Chevron icon styling 2023-07-21 01:21:04 +12:00
blessedcoolant
e06348bfab fix: Expand chevron icon being too small 2023-07-21 01:14:19 +12:00
blessedcoolant
8fb970d436 fix: Use layout gap to control layout instead of margin 2023-07-21 01:07:00 +12:00
blessedcoolant
15256ed3a4 fix: Layout shift on the ControlNet Panel 2023-07-21 01:04:16 +12:00
Lincoln Stein
89a15f78dd collapse all autoimport directories into a single folder 2023-07-20 09:01:49 -04:00
blessedcoolant
8fc20c837b Merge branch 'main' into feat/controlnet-resize-mode 2023-07-21 00:58:28 +12:00
blessedcoolant
8dfe196c4f feat: Add Image Count to Board Name 2023-07-20 22:56:52 +10:00
psychedelicious
9e27fd9b90 feat(ui): color tweak on board 2023-07-20 22:56:52 +10:00
psychedelicious
2771328853 feat(ui): reduce saturation by 8% for 1337 contrast 2023-07-20 22:56:52 +10:00
psychedelicious
a481607d3f feat(ui): boards are only punch-you-in-the-face-purple if selected 2023-07-20 22:56:52 +10:00
psychedelicious
1e3cebbf42 feat(ui): add useBoardTotal hook to get total items in board
actually not using it now, but it's there
2023-07-20 22:56:52 +10:00
blessedcoolant
d523556558 fix: Truncate board name if longer than 20 chars 2023-07-20 22:56:52 +10:00
blessedcoolant
da523fa32f fix: Editable text aligning left instead of inplace. 2023-07-20 22:56:52 +10:00
blessedcoolant
ab9b5f3b95 fix: Possible fix to the name plate getting displaced 2023-07-20 22:56:52 +10:00
blessedcoolant
f32bd5dd10 fix: Minor color tweaks to the name plate on boards 2023-07-20 22:56:52 +10:00
psychedelicious
190ba5af59 feat(ui): boards styling 2023-07-20 22:56:52 +10:00
Lincoln Stein
cb29ac63a8 prevent crashes on quick install when hftoken not defined 2023-07-20 08:38:37 -04:00
Lincoln Stein
603989dc0d added get_log_level and set_log_level operations to the app route 2023-07-20 08:33:01 -04:00
blessedcoolant
2872ae2aab fix: Adjust layout of Resize Mode dropdown
Moved it next to ControlMode to make it more compact
2023-07-20 22:53:45 +12:00
blessedcoolant
b7cdda0781 feat: Add ControlNet Resize Mode to Linear UI 2023-07-20 22:48:35 +12:00
blessedcoolant
267940a77e Merge branch 'main' into feat/controlnet-resize-mode 2023-07-20 22:24:11 +12:00
blessedcoolant
8d77c5ca96 feat: Add Sync Models (#3850)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Description

This changes the "sync" route from a GET to POST method, in keeping with
the Representational Existential(?) State Transfer (REST) protocol.
2023-07-20 20:26:10 +12:00
blessedcoolant
0795d8764f Merge branch 'main' into fix/post-model-sync 2023-07-20 20:16:14 +12:00
user1
2db56306e4 Merge branch 'feat/controlnet-resize-mode' of github.com:invoke-ai/InvokeAI into feat/controlnet-resize-mode 2023-07-20 00:45:29 -07:00
user1
70fec9ddab Added pixel_perfect_resolution() method to controlnet_utils.py, but not using yet. To be usable this will likely require modification of ControlNet preprocessors 2023-07-20 00:41:49 -07:00
user1
909f538fb5 Switching over to controlnet_utils prepare_control_image(), with added resize_mode. 2023-07-20 00:41:49 -07:00
user1
bab8b6d240 Removed diffusers_pipeline prepare_control_image() -- replaced with controlnet_utils.prepare_control_image()
Added resize_mode to ControlNetData class.
2023-07-20 00:41:49 -07:00
user1
f2f49bd8d0 Added resize_mode param to ControlNet node 2023-07-20 00:41:49 -07:00
user1
b8e0810ed1 Added revised prepare_control_image() that leverages lvmin high quality resizing 2023-07-20 00:41:49 -07:00
user1
6cb9167a1b Added controlnet_utils.py with code from lvmin for high quality resize, crop+resize, fill+resize 2023-07-20 00:41:49 -07:00
user1
09dfcc4277 Added pixel_perfect_resolution() method to controlnet_utils.py, but not using yet. To be usable this will likely require modification of ControlNet preprocessors 2023-07-20 00:38:20 -07:00
blessedcoolant
82eb1f1075 feat: Add Sync Models to UI 2023-07-20 18:50:43 +12:00
psychedelicious
187cf906fa ui: enhance intermediates clear, enhance board auto-add (#3851)
* feat(ui): enhance clear intermediates feature

- retrieve the # of intermediates using a new query (just uses list images endpoint w/ limit of 0)
- display the count in the UI
- add types for clearIntermediates mutation
- minor styling and verbiage changes

* feat(ui): remove unused settings option for guides

* feat(ui): use solid badge variant

consistent with the rest of the usage of badges

* feat(ui): update board ctx menu, add board auto-add

- add context menu to system boards - only open is select board. did this so that you dont think its broken when you click it
- add auto-add board. you can right click a user board to enable it for auto-add, or use the gallery settings popover to select it. the invoke button has a tooltip on a short delay to remind you that you have auto-add enabled
- made useBoardName hook, provide it a board id and it gets your the board name
- removed `boardIdToAdTo` state & logic, updated workflows to auto-switch and auto-add on image generation

* fix(ui): clear controlnet when clearing intermediates

* feat: Make Add Board icon a button

* feat(db, api): clear intermediates now clears all of them

* feat(ui): make reset webui text subtext style

* feat(ui): board name change submits on blur

---------

Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
2023-07-20 17:44:22 +12:00
Millun Atluri
82554b25fe Updated documentation (#3832)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [x] Documentation Update


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: documentation update that needs review from the team
before going live

      
## Description

I updated the contribution guidelines, adding more structure and a
getting started guide. Also re-organized the tabs to be in the order of
most commonly used.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings
run `mkdocs serve` to check it out


## Added/updated tests?

- [ ] Yes
- [X ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-20 14:27:50 +10:00
Millun Atluri
039091c5d4 Updated frontend docs to be more accurate 2023-07-20 13:16:55 +10:00
Lincoln Stein
d76bf4444c Update invokeai/app/api/routers/models.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-07-19 22:46:49 -04:00
Lincoln Stein
82496fee14 Merge branch 'main' into main 2023-07-19 22:43:18 -04:00
user1
c2b99e7545 Switching over to controlnet_utils prepare_control_image(), with added resize_mode. 2023-07-19 19:26:49 -07:00
user1
e918168f7a Removed diffusers_pipeline prepare_control_image() -- replaced with controlnet_utils.prepare_control_image()
Added resize_mode to ControlNetData class.
2023-07-19 19:21:17 -07:00
blessedcoolant
6e36c275c9 feat: Add Setting Switch Component (#3847) 2023-07-20 14:17:51 +12:00
user1
6affe42310 Added resize_mode param to ControlNet node 2023-07-19 19:17:24 -07:00
Lincoln Stein
170bbd7da3 change GET to POST method for model synchronization route 2023-07-19 22:16:56 -04:00
blessedcoolant
f6d5e93020 fix: Model List not scrolling through checkpoints (#3849) 2023-07-20 14:16:32 +12:00
Lincoln Stein
f2515d9480 fix v1-finetune.yaml is not in the subpath of "" (#3848)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2023-07-20 14:13:56 +12:00
Lincoln Stein
4d8f17c69d fix v1-finetune.yaml is not in the subpath of "" 2023-07-19 22:06:55 -04:00
user1
3a987b2e72 Added revised prepare_control_image() that leverages lvmin high quality resizing 2023-07-19 19:01:14 -07:00
user1
4e3f58552c Added controlnet_utils.py with code from lvmin for high quality resize, crop+resize, fill+resize 2023-07-19 18:52:30 -07:00
Lincoln Stein
77d9657980 don't write root into invokeai.yaml 2023-07-19 21:12:52 -04:00
Lincoln Stein
12cae33dcd fix inpaint model detection (#3843)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2023-07-20 12:57:14 +12:00
Millun Atluri
1e5310793c Updated PR template 2023-07-20 09:46:05 +10:00
Millun Atluri
a0b5930340 Updated Code of Conduct URL 2023-07-20 09:35:09 +10:00
Millun Atluri
53ed252168 Fixed typos in docs 2023-07-20 09:34:16 +10:00
Millun Atluri
a683379dda Updated docs to be more accurate based on Lincoln's feedback 2023-07-20 09:28:21 +10:00
Millun Atluri
899aa1d251 Merge branch 'invoke-ai:main' into main 2023-07-20 09:22:26 +10:00
Lincoln Stein
5f940bf3b3 default precision to "auto" 2023-07-19 18:23:00 -04:00
Lincoln Stein
1cd814cba0 fix readme in preparation for RC 2023-07-19 14:57:26 -04:00
Lincoln Stein
a1251c8e04 fix inpaint model detection 2023-07-19 13:30:00 -04:00
psychedelicious
509514f11d feat(api): display warning when port is in use 2023-07-19 13:29:31 -04:00
psychedelicious
c557402dbb feat(api): use next available port
Resolves #3515

@ebr @brandonrising can't imagine this would cause issues but just FYI
2023-07-19 13:29:31 -04:00
Lincoln Stein
495df9fd1b bump version to 3.0.0rc1 2023-07-19 12:36:39 -04:00
Lincoln Stein
3db9a07eea Beta branch containing documentation enhancements, minor bug fix (#3831)
The HF access token was not being saved by the configure script. This
fixes that.
2023-07-19 12:22:21 -04:00
Lincoln Stein
9fd7eb2e0e Merge branch 'main' into release/invokeai-3-0-beta 2023-07-19 12:18:56 -04:00
Lincoln Stein
9263f1090e Changing ImageToLatentsInvocation node to default to detected precision (#3838)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Description
ImageToLatentsInvocation defaulted to float16 rather than detect the
requested precision from configs.
This caused an exception to be raised on systems that don't support
float16 (e.g. CPU).


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-19 12:17:59 -04:00
Lincoln Stein
135ab0a3e8 Merge branch 'release/invokeai-3-0-beta' of github.com:invoke-ai/InvokeAI into release/invokeai-3-0-beta 2023-07-19 12:16:56 -04:00
Lincoln Stein
b9b89ad210 additional tweaks to controlnet documentation 2023-07-19 12:16:16 -04:00
Lincoln Stein
72c19987d5 discuss issues with adding controlnet models 2023-07-19 12:16:03 -04:00
Lincoln Stein
8439e30798 Merge branch 'main' into release/invokeai-3-0-beta 2023-07-19 12:09:32 -04:00
Lincoln Stein
84d6578855 Merge branch 'main' into bugfix/ImageToLatentsInvocation_fp32_precision 2023-07-19 12:08:58 -04:00
Mary Hipp Rogers
0073fc8619 add toggle for isNodesEnabled in settings (#3839)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-07-19 16:08:28 +00:00
Lincoln Stein
2fbc6dc315 Merge branch 'main' into bugfix/ImageToLatentsInvocation_fp32_precision 2023-07-19 12:08:04 -04:00
Lincoln Stein
be95fd753e add missing screenshot 2023-07-19 12:07:07 -04:00
psychedelicious
0724eb9e0a feat(ui): another go at gallery (#3791)
* feat(ui): migrate listImages to RTK query using createEntityAdapter

- see comments in `endpoints/images.ts` for explanation of the caching
- so far, only manually updating `all` images when new image is generated. no other manual cache updates are implemented, but will be needed.
- fixed some weirdness with loading state components (like the spinners in gallery)
- added `useThumbnailFallback` for `IAIDndImage`, this displays the tiny webp thumbnail while the full-size images load
- comment out some old thunk related stuff in gallerySlice, which is no longer needed

* feat(ui): add manual cache updates for board changes (wip)

- update RTK Query caches when adding/removing single image to/from board
- work more on migrating all image-related operations to RTK Query

* update AddImagesToBoardContext so that it works when user uses context menu + modal

* handle case where no image is selected

* get assets working for main list and boards - dnd only

* feat(ui): migrate image uploads to RTK Query

- minor refactor of `ImageUploader` and `useImageUploadButton` hooks, simplify some logic
- style filesystem upload overlay to match existing UI
- replace all old `imageUploaded` thunks with `uploadImage` RTK Query calls, update associated logic including canvas related uploads
- simplify `PostUploadAction`s that only need to display user input

* feat(ui): remove `receivedPageOfImages` thunks

* feat(ui): remove `receivedImageUrls` thunk

* feat(ui): finish removing all images thunks

stuff now broken:
- image usage
- delete board images
- on first load, no image selected

* feat(ui): simplify `updateImage` cache manipulation

- we don't actually ever change categories, so we can remove a lot of logic

* feat(ui): simplify canvas autosave

- instead of using a network request to set the canvas generation as not intermediate, we can just do that in the graph

* feat(ui): simplify & handle edge cases in cache updates

* feat(db, api): support `board_id='none'` for `get_many` images queries

This allows us to get all images that are not on a board.

* chore(ui): regen types

* feat(ui): add `All Assets`, `No Board` boards

Restructure boards:
- `all images` is all images
- `all assets` is all assets
- `no board` is all images/assets without a board set
- user boards may have images and assets

Update caching logic
- much simpler without every board having sub-views of images and assets
- update drag and drop operations for all possible interactions

* chore(ui): regen types

* feat(ui): move download to top of context menu

* feat(ui): improve drop overlay styles

* fix(ui): fix image not selected on first load

- listen for first load of all images board, then select the first image

* feat(ui): refactor board deletion

api changes:
- add route to list all image names for a board. this is required to handle board + image deletion. we need to know every image in the board to determine the image usage across the app. this is fetched only when the delete board and images modal is opened so it's as efficient as it can be.
- update the delete board route to respond with a list of deleted `board_images` and `images`, as image names. this is needed to perform accurate clientside state & cache updates after deleting.

db changes:
- remove unused `board_images` service method to get paginated images dtos for a board. this is now done thru the list images endpoint & images service. needs a small logic change on `images.delete_images_on_board`

ui changes:
- simplify the delete board modal - no context, just minor prop drilling. this is feasible for boards only because the components that need to trigger and manipulate the modal are very close together in the tree
- add cache updates for `deleteBoard` & `deleteBoardAndImages` mutations
- the only thing we cannot do directly is on `deleteBoardAndImages`, update the `No Board` board. we'd need to insert image dtos that we may not have loaded. instead, i am just invalidating the tags for that `listImages` cache. so when you `deleteBoardAndImages`, the `No Board` will re-fetch the initial image limit. i think this is more efficient than e.g. fetching all image dtos to insert then inserting them.
- handle image usage for `deleteBoardAndImages`
- update all (i think/hope) the little bits and pieces in the UI to accomodate these changes

* fix(ui): fix board selection logic

* feat(ui): add delete board modal loading state

* fix(ui): use thumbnails for board cover images

* fix(ui): fix race condition with board selection

when selecting a board that doesn't have any images loaded, we need to wait until the images haveloaded before selecting the first image.

this logic is debounced to ~1000ms.

* feat(ui): name 'No Board' correctly, change icon

* fix(ui): do not cache listAllImageNames query

if we cache it, we can end up with stale image usage during deletion.

we could of course manually update the cache as we are doing elsewhere. but because this is a relatively infrequent network request, i'd like to trade increased cache mgmt complexity here for increased resource usage.

* feat(ui): reduce drag preview opacity, remove border

* fix(ui): fix incorrect queryArg used in `deleteImage` and `updateImage` cache updates

* fix(ui): fix doubled open in new tab

* fix(ui): fix new generations not getting added to 'No Board'

* fix(ui): fix board id not changing on new image when autosave enabled

* fix(ui): context menu when selection is 0

need to revise how context menu is triggered later, when we approach multi select

* fix(ui): fix deleting does not update counts for all images and all assets

* fix(ui): fix all assets board name in boards list collapse button

* fix(ui): ensure we never go under 0 for total board count

* fix(ui): fix text overflow on board names

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-07-19 12:06:38 -04:00
Martin Kristiansen
6a4440e52b Merge branch 'main' into bugfix/ImageToLatentsInvocation_fp32_precision 2023-07-19 11:56:07 -04:00
Martin Kristiansen
07c48b2fd1 Moving detected precision to DEFAULT_PRECISION constant 2023-07-19 11:55:37 -04:00
Mary Hipp
055f5b2d4b clear canvas alongside intermediates 2023-07-19 11:39:24 -04:00
Martin Kristiansen
fface339ae Same fix for ImageToLatentsInvocation 2023-07-19 11:38:13 -04:00
Martin Kristiansen
2ec9dab595 Changing ImageToLatentsInvocation node to default to detected precision instead of fp16 2023-07-19 11:16:00 -04:00
Mary Hipp Rogers
9f00e055ac Maryhipp/clear intermediates (#3820)
* new route to clear intermediates

* UI to clear intermediates from settings modal

* cleanup

* PR feedback

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-07-19 10:55:29 -04:00
Lincoln Stein
aca5c6de9a [WIP] Load text_model.embeddings.position_ids outsude state_dict (#3829)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
      
## Description
In transformers 4.31.0 `text_model.embeddings.position_ids` no longer
part of state_dict.
Fix untested as can't run right now but should be correct. Also need to
check how transformers 4.30.2 works with this fix.

## Related Tickets & Documents


8e5d1619b3 (diff-7f53db5caa73a4cbeb0dca3b396e3d52f30f025b8c48d4daf51eb7abb6e2b949R191)

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_buffer

## QA Instructions, Screenshots, Recordings

```
  File "C:\Users\artis\Documents\invokeai\.venv\lib\site-packages\invokeai\backend\model_management\convert_ckpt_to_diffusers.py", line 844, in convert_ldm_clip_checkpoint
    text_model.load_state_dict(text_model_dict)
  File "C:\Users\artis\Documents\invokeai\.venv\lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict
    raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for CLIPTextModel:
        Unexpected key(s) in state_dict: "text_model.embeddings.position_ids".
```
2023-07-19 09:58:02 -04:00
Millun Atluri
c291b82b94 Added contribution disclaimer 2023-07-19 23:56:38 +10:00
Lincoln Stein
f9320475fd allow upgrade to transformers~=4.31.0 2023-07-19 09:46:21 -04:00
Lincoln Stein
9c3a556813 Merge branch 'main' into fix/transformers_4_31_0 2023-07-19 09:35:52 -04:00
Lincoln Stein
0b6ef7eb7d make the convert VAE available to model manager for use in UI 2023-07-19 09:05:24 -04:00
Millun Atluri
6ba48af0a9 Added community node documentation 2023-07-19 22:04:17 +10:00
Millun Atluri
40fffec0b6 Merge branch 'invoke-ai:main' into main 2023-07-19 21:31:24 +10:00
mickr777
23f0c7035c Tweaks to Image Progress Node (#3833)
* Update nodesSlice.ts

* Update ProgressImageNode.tsx

* remove unused code

* Remove Fixed Ratio

I was causing issues

* fix: Progress Image Node Size

---------

Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
2023-07-19 20:54:50 +12:00
blessedcoolant
94787b7251 Missing def choose_torch_device (#3834)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because:

      
## Description
Fix for
 ```
File "/home/invokeuser/InvokeAI/invokeai/app/services/processor.py",
line 70, in __process
    outputs = invocation.invoke(
File "/home/invokeuser/InvokeAI/invokeai/app/invocations/latent.py",
line 660, in invoke
    device=choose_torch_device()
NameError: name 'choose_torch_device' is not defined
```

when using scale latents node

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-19 18:53:23 +12:00
mickr777
d8db618de0 import choose_torch_device from ...backend.util.devices 2023-07-19 16:43:02 +10:00
Lincoln Stein
5ae2fb0d2b more doc improvements 2023-07-19 01:49:28 -04:00
Lincoln Stein
5b1d7a2367 reorganized intro to web walkthru 2023-07-19 01:47:23 -04:00
Lincoln Stein
f3ae9c513e updated web walkthrough 2023-07-19 01:42:52 -04:00
Millun Atluri
ff74370eda • Updated best practices
• Updated index with new contribution guide link
2023-07-19 15:39:29 +10:00
mickr777
19d67b29e7 Remove not needed text 2023-07-19 15:20:40 +10:00
mickr777
52e7e0b31b Missing def choose_torch_device 2023-07-19 15:15:55 +10:00
Millun Atluri
446d87516a * Updated contributiion guide
* Updated nav to be in new order prioritizing more commonuly used tabs
* Added set nav in mkdocs.yaml
2023-07-19 14:34:03 +10:00
Sergey Borisov
2e7fc055c4 Support both pre and post 4.31.0 transformers 2023-07-19 06:15:17 +03:00
Lincoln Stein
0f7e329e76 restore access token-saving code 2023-07-18 22:58:56 -04:00
Lincoln Stein
a690cca5b5 make convert work with both 4.30.2 and 4.31.0 2023-07-18 22:18:13 -04:00
Lincoln Stein
f29bafd6ec fix Object of type PosixPath is not JSON serializable error 2023-07-18 22:10:12 -04:00
Sergey Borisov
0aa7193d3b Load text_model.embeddings.position_ids outsude state_dict 2023-07-19 04:18:43 +03:00
363 changed files with 7257 additions and 10595 deletions

View File

@@ -2,7 +2,7 @@ name: mkdocs-material
on:
push:
branches:
- 'refs/heads/v2.3'
- 'refs/heads/main'
permissions:
contents: write

View File

@@ -36,15 +36,6 @@
</div>
_**Note: This is an alpha release. Bugs are expected and not all
features are fully implemented. Please use the GitHub [Issues
pages](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen)
to report unexpected problems. Also note that InvokeAI root directory
which contains models, outputs and configuration files, has changed
between the 2.x and 3.x release. If you wish to use your v2.3 root
directory with v3.0, please follow the directions in [Migrating a 2.3
root directory to 3.0](#migrating-to-3).**_
InvokeAI is a leading creative engine built to empower professionals
and enthusiasts alike. Generate and create stunning visual media using
the latest AI-driven technologies. InvokeAI offers an industry leading
@@ -264,19 +255,24 @@ old models directory (which contains the models selected at install
time) will be renamed `models.orig` and can be deleted once you have
confirmed that the migration was successful.
If you wish, you can pass the 2.3 root directory to both `--from` and
`--to` in order to update in place. Warning: this directory will no
longer be usable with InvokeAI 2.3.
#### Migrating in place
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
without touching the command line. The recipe is as follows>
without touching the command line. ***This recipe does not work on
Windows platforms due to a bug in the Windows version of the 2.3
upgrade script.** See the next section for a Windows recipe.
##### For Mac and Linux Users:
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
3a. During the alpha release phase, select option [3] and manually
enter the tag name `v3.0.0+a2`.
3b. Once 3.0 is released, select option [1] to upgrade to the latest release.
3. Select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [7] "Re-run the configure script to fix a broken
@@ -295,14 +291,33 @@ worked, you can safely remove these files. Alternatively you can
restore a working v2.3 directory by removing the new files and
restoring the ".orig" files' original names.
##### For Windows Users:
Windows Users can upgrade with the
1. Enter the 2.3 root directory you wish to upgrade
2. Launch `invoke.sh` or `invoke.bat`
3. Select the "Developer's console" option [8]
4. Type the following commands
```
pip install "invokeai @ https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v3.0.0" --use-pep517 --upgrade
invokeai-configure --root .
```
(Replace `v3.0.0` with the current release number if this document is out of date).
The first command will install and upgrade new software to run
InvokeAI. The second will prepare the 2.3 directory for use with 3.0.
You may now launch the WebUI in the usual way, by selecting option [1]
from the launcher script
#### Migration Caveats
The migration script will migrate your invokeai settings and models,
including textual inversion models, LoRAs and merges that you may have
installed previously. However it does **not** migrate the generated
images stored in your 2.3-format outputs directory. The released
version of 3.0 is expected to have an interface for importing an
entire directory of image files as a batch.
images stored in your 2.3-format outputs directory. You will need to
manually import selected images into the 3.0 gallery via drag-and-drop.
## Hardware Requirements
@@ -314,9 +329,12 @@ AMD card (using the ROCm driver).
You will need one of the following:
- An NVIDIA-based graphics card with 4 GB or more VRAM memory.
- An NVIDIA-based graphics card with 4 GB or more VRAM memory. 6-8 GB
of VRAM is highly recommended for rendering using the Stable
Diffusion XL models
- An Apple computer with an M1 chip.
- An AMD-based graphics card with 4GB or more VRAM memory. (Linux only)
- An AMD-based graphics card with 4GB or more VRAM memory (Linux
only), 6-8 GB for XL rendering.
We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
@@ -349,13 +367,12 @@ Invoke AI provides an organized gallery system for easily storing, accessing, an
### Other features
- *Support for both ckpt and diffusers models*
- *SD 2.0, 2.1 support*
- *SD 2.0, 2.1, XL support*
- *Upscaling Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
- *Node-Based Architecture*
- *Node-Based Plug-&-Play UI (Beta)*
- *SDXL Support* (Coming soon)
### Latest Changes

Binary file not shown.

After

Width:  |  Height:  |  Size: 415 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 101 KiB

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 637 KiB

After

Width:  |  Height:  |  Size: 729 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 530 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 409 KiB

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

BIN
docs/assets/upscaling.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 637 KiB

View File

@@ -1,42 +1,38 @@
# How to Contribute
## Welcome to Invoke AI
We're thrilled to have you here and we're excited for you to contribute.
Invoke AI originated as a project built by the community, and that vision carries forward today as we aim to build the best pro-grade tools available. We work together to incorporate the latest in AI/ML research, making these tools available in over 20 languages to artists and creatives around the world as part of our fully permissive OSS project designed for individual users to self-host and use.
Here are some guidelines to help you get started:
### Technical Prerequisites
## Contributing to Invoke AI
Anyone who wishes to contribute to InvokeAI, whether features, bug fixes, code cleanup, testing, code reviews, documentation or translation is very much encouraged to do so.
Front-end: You'll need a working knowledge of React and TypeScript.
To join, just raise your hand on the InvokeAI Discord server (#dev-chat) or the GitHub discussion board.
Back-end: Depending on the scope of your contribution, you may need to know SQLite, FastAPI, Python, and Socketio. Also, a good majority of the backend logic involved in processing images is built in a modular way using a concept called "Nodes", which are isolated functions that carry out individual, discrete operations. This design allows for easy contributions of novel pipelines and capabilities.
### Areas of contribution:
### How to Submit Contributions
#### Development
If youd like to help with development, please see our [development guide](contribution_guides/development.md). If youre unfamiliar with contributing to open source projects, there is a tutorial contained within the development guide.
To start contributing, please follow these steps:
#### Documentation
If youd like to help with documentation, please see our [documentation guide](contribution_guides/documenation.md).
1. Familiarize yourself with our roadmap and open projects to see where your skills and interests align. These documents can serve as a source of inspiration.
2. Open a Pull Request (PR) with a clear description of the feature you're adding or the problem you're solving. Make sure your contribution aligns with the project's vision.
3. Adhere to general best practices. This includes assuming interoperability with other nodes, keeping the scope of your functions as small as possible, and organizing your code according to our architecture documents.
#### Translation
If you'd like to help with translation, please see our [translation guide](docs/contributing/.contribution_guides/translation.md).
### Types of Contributions We're Looking For
#### Tutorials
Please reach out to @imic or @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy) to help create tutorials for InvokeAI.
We welcome all contributions that improve the project. Right now, we're especially looking for:
We hope you enjoy using our software as much as we enjoy creating it, and we hope that some of those of you who are reading this will elect to become part of our contributor community.
1. Quality of life (QOL) enhancements on the front-end.
2. New backend capabilities added through nodes.
3. Incorporating additional optimizations from the broader open-source software community.
### Communication and Decision-making Process
### Contributors
Project maintainers and code owners review PRs to ensure they align with the project's goals. They may provide design or architectural guidance, suggestions on user experience, or provide more significant feedback on the contribution itself. Expect to receive feedback on your submissions, and don't hesitate to ask questions or propose changes.
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for their time, hard work and effort.
For more robust discussions, or if you're planning to add capabilities not currently listed on our roadmap, please reach out to us on our Discord server. That way, we can ensure your proposed contribution aligns with the project's direction before you start writing code.
### Code of Conduct
### Code of Conduct and Contribution Expectations
We want everyone in our community to have a positive experience. To facilitate this, we've established a code of conduct and a statement of values that we expect all contributors to adhere to. Please take a moment to review these documents—they're essential to maintaining a respectful and inclusive environment.
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:
@@ -49,6 +45,12 @@ This disclaimer is not a license and does not grant any rights or permissions. Y
This disclaimer is provided "as is" without warranty of any kind, whether expressed or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose, or non-infringement. In no event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the contribution or the use or other dealings in the contribution.
### Support
For support, please use this repository's [GitHub Issues](https://github.com/invoke-ai/InvokeAI/issues), or join the [Discord](https://discord.gg/ZmtBAhwWhy).
Original portions of the software are Copyright (c) 2023 by respective contributors.
---
Remember, your contributions help make this project great. We're excited to see what you'll bring to our community!

View File

@@ -0,0 +1,91 @@
# Development
## **What do I need to know to help?**
If you are looking to help to with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
For more information, please review our area specific documentation:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](development_guides/contributingToFrontend.md)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
If you don't feel ready to make a code contribution yet, no problem! You can also help out in other ways, such as [documentation](documentation.md) or [translation](translation.md).
There are two paths to making a development contribution:
1. Choosing an open issue to address. Open issues can be found in the [Issues](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen) section of the InvokeAI repository. These are tagged by the issue type (bug, enhancement, etc.) along with the “good first issues” tag denoting if they are suitable for first time contributors.
1. Additional items can be found on our roadmap <******************************link to roadmap>******************************. The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
2. Opening a new issue or feature to add. **Please make sure you have searched through existing issues before creating new ones.**
*Regardless of what you choose, please post in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord before you start development in order to confirm that the issue or feature is aligned with the current direction of the project. We value our contributors time and effort and want to ensure that no ones time is being misspent.*
## Best Practices:
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
* Comments! Commenting your code helps reviwers easily understand your contribution
* Use Python and Typescripts typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
* Make all communications public. This ensure knowledge is shared with the whole community
## **How do I make a contribution?**
Never made an open source contribution before? Wondering how contributions work in our project? Here's a quick rundown!
Before starting these steps, ensure you have your local environment [configured for development](../LOCAL_DEVELOPMENT.md).
1. Find a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) that you are interested in addressing or a feature that you would like to add. Then, reach out to our team in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord to ensure you are setup for success.
2. Fork the [InvokeAI](https://github.com/invoke-ai/InvokeAI) repository to your GitHub profile. This means that you will have a copy of the repository under **your-GitHub-username/InvokeAI**.
3. Clone the repository to your local machine using:
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
If you're unfamiliar with using Git through the commandline, [GitHub Desktop](https://desktop.github.com) is a easy-to-use alternative with a UI. You can do all the same steps listed here, but through the interface.
4. Create a new branch for your fix using:
```bash
git checkout -b branch-name-here
```
5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
6. Add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index:
```bash
git add insert-paths-of-changed-files-here
```
7. Store the contents of the index with a descriptive message.
```bash
git commit -m "Insert a short message of the changes made here"
```
8. Push the changes to the remote repository using
```markdown
git push origin branch-name-here
```
9. Submit a pull request to the **main** branch of the InvokeAI repository.
10. Title the pull request with a short description of the changes made and the issue or bug number associated with your change. For example, you can title an issue like so "Added more log outputting to resolve #1234".
11. In the description of the pull request, explain the changes that you made, any issues you think exist with the pull request you made, and any questions you have for the maintainer. It's OK if your pull request is not perfect (no pull request is), the reviewer will be able to help you fix any problems and improve it!
12. Wait for the pull request to be reviewed by other collaborators.
13. Make changes to the pull request if the reviewer(s) recommend them.
14. Celebrate your success after your pull request is merged!
If youd like to learn more about contributing to Open Source projects, here is a [Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github).
## **Where can I go for help?**
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
For frontend related work, **@pyschedelicious** is the best person to reach out to.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@pyschedelicious**.
## **What does the Code of Conduct mean for me?**
Our [Code of Conduct](CODE_OF_CONDUCT.md) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code.

View File

@@ -0,0 +1,75 @@
# Contributing to the Frontend
# InvokeAI Web UI
- [InvokeAI Web UI](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#invokeai-web-ui)
- [Stack](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#stack)
- [Contributing](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#contributing)
- [Dev Environment](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#dev-environment)
- [Production builds](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#production-builds)
The UI is a fairly straightforward Typescript React app, with the Unified Canvas being more complex.
Code is located in `invokeai/frontend/web/` for review.
## Stack
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). We lean heavily on RTK:
- `createAsyncThunk` for HTTP requests
- `createEntityAdapter` for fetching images and models
- `createListenerMiddleware` for workflows
The API client and associated types are generated from the OpenAPI schema. See API_CLIENT.md.
Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a simple socket.io redux middleware to help).
[Chakra-UI](https://github.com/chakra-ui/chakra-ui) & [Mantine](https://github.com/mantinedev/mantine) for components and styling.
[Konva](https://github.com/konvajs/react-konva) for the canvas, but we are pushing the limits of what is feasible with it (and HTML canvas in general). We plan to rebuild it with [PixiJS](https://github.com/pixijs/pixijs) to take advantage of WebGL's improved raster handling.
[Vite](https://vitejs.dev/) for bundling.
Localisation is via [i18next](https://github.com/i18next/react-i18next), but translation happens on our [Weblate](https://hosted.weblate.org/engage/invokeai/) project. Only the English source strings should be changed on this repo.
## Contributing
Thanks for your interest in contributing to the InvokeAI Web UI!
We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](https://discord.gg/ZmtBAhwWhy) if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
### Dev Environment
**Setup**
1. Install [node](https://nodejs.org/en/download/). You can confirm node is installed with:
```bash
node --version
```
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
```bash
npm install --global yarn
yarn --version
```
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
Start everything in dev mode:
1. Ensure your virtual environment is running
2. Start the dev server: `yarn dev`
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
### VSCode Remote Dev
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
### Production builds
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
To build for production, run `yarn build`.

View File

@@ -0,0 +1,13 @@
# Documentation
Documentation is an important part of any open source project. It provides a clear and concise way to communicate how the software works, how to use it, and how to troubleshoot issues. Without proper documentation, it can be difficult for users to understand the purpose and functionality of the project.
## Contributing
All documentation is maintained in the InvokeAI GitHub repository. If you come across documentation that is out of date or incorrect, please submit a pull request with the necessary changes.
When updating or creating documentation, please keep in mind InvokeAI is a tool for everyone, not just those who have familiarity with generative art.
## Help & Questions
Please ping @imic1 or @hipsterusername in the [Discord](https://discord.com/channels/1020123559063990373/1049495067846524939) if you have any questions.

View File

@@ -0,0 +1,19 @@
# Translation
InvokeAI uses [Weblate](https://weblate.org/) for translation. Weblate is a FOSS project providing a scalable translation service. Weblate automates the tedious parts of managing translation of a growing project, and the service is generously provided at no cost to FOSS projects like InvokeAI.
## Contributing
If you'd like to contribute by adding or updating a translation, please visit our [Weblate project](https://hosted.weblate.org/engage/invokeai/). You'll need to sign in with your GitHub account (a number of other accounts are supported, including Google).
Once signed in, select a language and then the Web UI component. From here you can Browse and Translate strings from English to your chosen language. Zen mode offers a simpler translation experience.
Your changes will be attributed to you in the automated PR process; you don't need to do anything else.
## Help & Questions
Please check Weblate's [documentation](https://docs.weblate.org/en/latest/index.html) or ping @Harvestor on [Discord](https://discord.com/channels/1020123559063990373/1049495067846524939) if you have any questions.
## Thanks
Thanks to the InvokeAI community for their efforts to translate the project!

View File

@@ -0,0 +1,11 @@
# Tutorials
Tutorials help new & existing users expand their abilty to use InvokeAI to the full extent of our features and services.
Currently, we have a set of tutorials available on our [YouTube channel](https://www.youtube.com/@invokeai), but as InvokeAI continues to evolve with new updates, we want to ensure that we are giving our users the resources they need to succeed.
Tutorials can be in the form of videos or article walkthroughs on a subject of your choice. We recommend focusing tutorials on the key image generation methods, or on a specific component within one of the image generation methods.
## Contributing
Please reach out to @imic or @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy) to help create tutorials for InvokeAI.

View File

@@ -1,8 +1,8 @@
---
title: Concepts
title: Textual Inversion Embeddings and LoRAs
---
# :material-library-shelves: The Hugging Face Concepts Library and Importing Textual Inversion files
# :material-library-shelves: Textual Inversions and LoRAs
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
@@ -64,21 +64,25 @@ select the embedding you'd like to use. This UI has type-ahead support, so you c
## Using LoRAs
LoRA files are models that customize the output of Stable Diffusion image generation.
Larger than embeddings, but much smaller than full models, they augment SD with improved
understanding of subjects and artistic styles.
LoRA files are models that customize the output of Stable Diffusion
image generation. Larger than embeddings, but much smaller than full
models, they augment SD with improved understanding of subjects and
artistic styles.
Unlike TI files, LoRAs do not introduce novel vocabulary into the model's known tokens. Instead,
LoRAs augment the model's weights that are applied to generate imagery. LoRAs may be supplied
with a "trigger" word that they have been explicitly trained on, or may simply apply their
effect without being triggered.
Unlike TI files, LoRAs do not introduce novel vocabulary into the
model's known tokens. Instead, LoRAs augment the model's weights that
are applied to generate imagery. LoRAs may be supplied with a
"trigger" word that they have been explicitly trained on, or may
simply apply their effect without being triggered.
LoRAs are typically stored in .safetensors files, which are the most secure way to store and transmit
these types of weights. You may install any number of `.safetensors` LoRA files simply by copying them into
the `lora` directory of the corresponding InvokeAI models directory (usually `invokeai`
in your home directory). For example, you can simply move a Stable Diffusion 1.5 LoRA file to
the `sd-1/lora` folder.
LoRAs are typically stored in .safetensors files, which are the most
secure way to store and transmit these types of weights. You may
install any number of `.safetensors` LoRA files simply by copying them
into the `autoimport/lora` directory of the corresponding InvokeAI models
directory (usually `invokeai` in your home directory).
To use these when generating, open the LoRA menu item in the options panel, select the LoRAs you want to apply
and ensure that they have the appropriate weight recommended by the model provider. Typically, most LoRAs perform best at a weight of .75-1.
To use these when generating, open the LoRA menu item in the options
panel, select the LoRAs you want to apply and ensure that they have
the appropriate weight recommended by the model provider. Typically,
most LoRAs perform best at a weight of .75-1.

View File

@@ -8,20 +8,64 @@ title: ControlNet
ControlNet
ControlNet is a powerful set of features developed by the open-source community (notably, Stanford researcher [**@ilyasviel**](https://github.com/lllyasviel)) that allows you to apply a secondary neural network model to your image generation process in Invoke.
ControlNet is a powerful set of features developed by the open-source
community (notably, Stanford researcher
[**@ilyasviel**](https://github.com/lllyasviel)) that allows you to
apply a secondary neural network model to your image generation
process in Invoke.
With ControlNet, you can get more control over the output of your image generation, providing you with a way to direct the network towards generating images that better fit your desired style or outcome.
With ControlNet, you can get more control over the output of your
image generation, providing you with a way to direct the network
towards generating images that better fit your desired style or
outcome.
### How it works
ControlNet works by analyzing an input image, pre-processing that image to identify relevant information that can be interpreted by each specific ControlNet model, and then inserting that control information into the generation process. This can be used to adjust the style, composition, or other aspects of the image to better achieve a specific result.
ControlNet works by analyzing an input image, pre-processing that
image to identify relevant information that can be interpreted by each
specific ControlNet model, and then inserting that control information
into the generation process. This can be used to adjust the style,
composition, or other aspects of the image to better achieve a
specific result.
### Models
As part of the model installation, ControlNet models can be selected including a variety of pre-trained models that have been added to achieve different effects or styles in your generated images. Further ControlNet models may require additional code functionality to also be incorporated into Invoke's Invocations folder. You should expect to follow any installation instructions for ControlNet models loaded outside the default models provided by Invoke. The default models include:
InvokeAI provides access to a series of ControlNet models that provide
different effects or styles in your generated images. Currently
InvokeAI only supports "diffuser" style ControlNet models. These are
folders that contain the files `config.json` and/or
`diffusion_pytorch_model.safetensors` and
`diffusion_pytorch_model.fp16.safetensors`. The name of the folder is
the name of the model.
***InvokeAI does not currently support checkpoint-format
ControlNets. These come in the form of a single file with the
extension `.safetensors`.***
Diffuser-style ControlNet models are available at HuggingFace
(http://huggingface.co) and accessed via their repo IDs (identifiers
in the format "author/modelname"). The easiest way to install them is
to use the InvokeAI model installer application. Use the
`invoke.sh`/`invoke.bat` launcher to select item [5] and then navigate
to the CONTROLNETS section. Select the models you wish to install and
press "APPLY CHANGES". You may also enter additional HuggingFace
repo_ids in the "Additional models" textbox:
![Model Installer -
Controlnetl](../assets/installing-models/model-installer-controlnet.png){:width="640px"}
Command-line users can launch the model installer using the command
`invokeai-model-install`.
_Be aware that some ControlNet models require additional code
functionality in order to work properly, so just installing a
third-party ControlNet model may not have the desired effect._ Please
read and follow the documentation for installing a third party model
not currently included among InvokeAI's default list.
The models currently supported include:
**Canny**:

View File

@@ -4,15 +4,19 @@ title: InvokeAI Web Server
# :material-web: InvokeAI Web Server
As of version 2.0.0, this distribution comes with a full-featured web server
(see screenshot).
## Quick guided walkthrough of the WebUI's features
To use it, launch the `invoke.sh`/`invoke.bat` script and select
option (2). Alternatively, with the InvokeAI environment active, run
the `invokeai` script by adding the `--web` option:
While most of the WebUI's features are intuitive, here is a guided walkthrough
through its various components.
### Launching the WebUI
To run the InvokeAI web server, start the `invoke.sh`/`invoke.bat`
script and select option (1). Alternatively, with the InvokeAI
environment active, run `invokeai-web`:
```bash
invokeai --web
invokeai-web
```
You can then connect to the server by pointing your web browser at
@@ -28,33 +32,32 @@ invoke.sh --host 0.0.0.0
or
```bash
invokeai --web --host 0.0.0.0
invokeai-web --host 0.0.0.0
```
## Quick guided walkthrough of the WebUI's features
While most of the WebUI's features are intuitive, here is a guided walkthrough
through its various components.
### The InvokeAI Web Interface
![Invoke Web Server - Major Components](../assets/invoke-web-server-1.png){:width="640px"}
The screenshot above shows the Text to Image tab of the WebUI. There are three
main sections:
1. A **control panel** on the left, which contains various settings for text to
image generation. The most important part is the text field (currently
showing `strawberry sushi`) for entering the text prompt, and the camera icon
directly underneath that will render the image. We'll call this the _Invoke_
button from now on.
1. A **control panel** on the left, which contains various settings
for text to image generation. The most important part is the text
field (currently showing `fantasy painting, horned demon`) for
entering the positive text prompt, another text field right below it for an
optional negative text prompt (concepts to exclude), and a _Invoke_ button
to begin the image rendering process.
2. The **current image** section in the middle, which shows a large format
version of the image you are currently working on. A series of buttons at the
top ("image to image", "Use All", "Use Seed", etc) lets you modify the image
in various ways.
2. The **current image** section in the middle, which shows a large
format version of the image you are currently working on. A series
of buttons at the top lets you modify and manipulate the image in
various ways.
3. A \*_gallery_ section on the left that contains a history of the images you
3. A **gallery** section on the left that contains a history of the images you
have generated. These images are read and written to the directory specified
at launch time in `--outdir`.
in the `INVOKEAIROOT/invokeai.yaml` initialization file, usually a directory
named `outputs` in `INVOKEAIROOT`.
In addition to these three elements, there are a series of icons for changing
global settings, reporting bugs, and changing the theme on the upper right.
@@ -76,15 +79,11 @@ From top to bottom, these are:
with outpainting,and modify interior portions of the image with
inpainting, erase portions of a starting image and have the AI fill in
the erased region from a text prompt.
4. Node Editor - this panel allows you to create
4. Node Editor - (experimental) this panel allows you to create
pipelines of common operations and combine them into workflows.
5. Model Manager - this panel allows you to import and configure new
models using URLs, local paths, or HuggingFace diffusers repo_ids.
The inpainting, outpainting and postprocessing tabs are currently in
development. However, limited versions of their features can already be accessed
through the Text to Image and Image to Image tabs.
## Walkthrough
The following walkthrough will exercise most (but not all) of the WebUI's
@@ -92,43 +91,54 @@ feature set.
### Text to Image
1. Launch the WebUI using `python scripts/invoke.py --web` and connect to it
with your browser by accessing `http://localhost:9090`. If the browser and
server are running on different machines on your LAN, add the option
`--host 0.0.0.0` to the launch command line and connect to the machine
hosting the web server using its IP address or domain name.
1. Launch the WebUI using launcher option [1] and connect to it with
your browser by accessing `http://localhost:9090`. If the browser
and server are running on different machines on your LAN, add the
option `--host 0.0.0.0` to the `invoke.sh` launch command line and connect to
the machine hosting the web server using its IP address or domain
name.
2. If all goes well, the WebUI should come up and you'll see a green
`connected` message on the upper right.
2. If all goes well, the WebUI should come up and you'll see a green dot
meaning `connected` on the upper right.
![Invoke Web Server - Control Panel](../assets/invoke-control-panel-1.png){ align=right width=300px }
#### Basics
1. Generate an image by typing _strawberry sushi_ into the large prompt field
on the upper left and then clicking on the Invoke button (the one with the
Camera icon). After a short wait, you'll see a large image of sushi in the
1. Generate an image by typing _bluebird_ into the large prompt field
on the upper left and then clicking on the Invoke button or pressing
the return button.
After a short wait, you'll see a large image of a bluebird in the
image panel, and a new thumbnail in the gallery on the right.
If you need more room on the screen, you can turn the gallery off by
clicking on the **x** to the right of "Your Invocations". You can turn it
back on later by clicking the image icon that appears in the gallery's
place.
If you need more room on the screen, you can turn the gallery off
by typing the **g** hotkey. You can turn it back on later by clicking the
image icon that appears in the gallery's place. The list of hotkeys can
be found by clicking on the keyboard icon above the image gallery.
The images are written into the directory indicated by the `--outdir` option
provided at script launch time. By default, this is `outputs/img-samples`
under the InvokeAI directory.
2. Generate a bunch of strawberry sushi images by increasing the number of
requested images by adjusting the Images counter just below the Camera
2. Generate a bunch of bluebird images by increasing the number of
requested images by adjusting the Images counter just below the Invoke
button. As each is generated, it will be added to the gallery. You can
switch the active image by clicking on the gallery thumbnails.
If you'd like to watch the image generation progress, click the hourglass
icon above the main image area. As generation progresses, you'll see
increasingly detailed versions of the ultimate image.
3. Try playing with different settings, including image width and height, the
Sampler, the Steps and the CFG scale.
3. Try playing with different settings, including changing the main
model, the image width and height, the Scheduler, the Steps and
the CFG scale.
The _Model_ changes the main model. Thousands of custom models are
now available, which generate a variety of image styles and
subjects. While InvokeAI comes with a few starter models, it is
easy to import new models into the application. See [Installing
Models](../installation/050_INSTALLING_MODELS.md) for more details.
Image _Width_ and _Height_ do what you'd expect. However, be aware that
larger images consume more VRAM memory and take longer to generate.
The _Sampler_ controls how the AI selects the image to display. Some
The _Scheduler_ controls how the AI selects the image to display. Some
samplers are more "creative" than others and will produce a wider range of
variations (see next section). Some samplers run faster than others.
@@ -142,17 +152,27 @@ feature set.
to the input prompt. You can go as high or low as you like, but generally
values greater than 20 won't improve things much, and values lower than 5
will produce unexpected images. There are complex interactions between
_Steps_, _CFG Scale_ and the _Sampler_, so experiment to find out what works
_Steps_, _CFG Scale_ and the _Scheduler_, so experiment to find out what works
for you.
The _Seed_ controls the series of values returned by InvokeAI's
random number generator. Each unique seed value will generate a different
image. To regenerate a previous image, simply use the original image's
seed value. A slider to the right of the _Seed_ field will change the
seed each time an image is generated.
4. To regenerate a previously-generated image, select the image you want and
click _Use All_. This loads the text prompt and other original settings into
the control panel. If you then press _Invoke_ it will regenerate the image
exactly. You can also selectively modify the prompt or other settings to
tweak the image.
![Invoke Web Server - Control Panel 2](../assets/control-panel-2.png){ align=right width=400px }
Alternatively, you may click on _Use Seed_ to load just the image's seed,
and leave other settings unchanged.
4. To regenerate a previously-generated image, select the image you
want and click the asterisk ("*") button at the top of the
image. This loads the text prompt and other original settings into
the control panel. If you then press _Invoke_ it will regenerate
the image exactly. You can also selectively modify the prompt or
other settings to tweak the image.
Alternatively, you may click on the "sprouting plant icon" to load
just the image's seed, and leave other settings unchanged or the
quote icon to load just the positive and negative prompts.
5. To regenerate a Stable Diffusion image that was generated by another SD
package, you need to know its text prompt and its _Seed_. Copy-paste the
@@ -161,62 +181,22 @@ feature set.
you Invoke, you will get something similar to the original image. It will
not be exact unless you also set the correct values for the original
sampler, CFG, steps and dimensions, but it will (usually) be close.
6. To save an image, right click on it to bring up a menu that will
let you download the image, save it to a named image gallery, and
copy it to the clipboard, among other things.
#### Variations on a theme
#### Upscaling
1. Let's try generating some variations. Select your favorite sushi image from
the gallery to load it. Then select "Use All" from the list of buttons
above. This will load up all the settings used to generate this image,
including its unique seed.
![Invoke Web Server - Upscaling](../assets/upscaling.png){ align=right width=400px }
Go down to the Variations section of the Control Panel and set the button to
On. Set Variation Amount to 0.2 to generate a modest number of variations on
the image, and also set the Image counter to `4`. Press the `invoke` button.
This will generate a series of related images. To obtain smaller variations,
just lower the Variation Amount. You may also experiment with changing the
Sampler. Some samplers generate more variability than others. _k_euler_a_ is
particularly creative, while _ddim_ is pretty conservative.
2. For even more variations, experiment with increasing the setting for
_Perlin_. This adds a bit of noise to the image generation process. Note
that values of Perlin noise greater than 0.15 produce poor images for
several of the samplers.
#### Facial reconstruction and upscaling
Stable Diffusion frequently produces mangled faces, particularly when there are
multiple figures in the same scene. Stable Diffusion has particular issues with
generating reallistic eyes. InvokeAI provides the ability to reconstruct faces
using either the GFPGAN or CodeFormer libraries. For more information see
[POSTPROCESS](POSTPROCESS.md).
1. Invoke a prompt that generates a mangled face. A prompt that often gives
this is "portrait of a lawyer, 3/4 shot" (this is not intended as a slur
against lawyers!) Once you have an image that needs some touching up, load
it into the Image panel, and press the button with the face icon
(highlighted in the first screenshot below). A dialog box will appear. Leave
_Strength_ at 0.8 and press \*Restore Faces". If all goes well, the eyes and
other aspects of the face will be improved (see the second screenshot)
![Invoke Web Server - Original Image](../assets/invoke-web-server-3.png)
![Invoke Web Server - Retouched Image](../assets/invoke-web-server-4.png)
The facial reconstruction _Strength_ field adjusts how aggressively the face
library will try to alter the face. It can be as high as 1.0, but be aware
that this often softens the face airbrush style, losing some details. The
default 0.8 is usually sufficient.
2. "Upscaling" is the process of increasing the size of an image while
retaining the sharpness. InvokeAI uses an external library called "ESRGAN"
to do this. To invoke upscaling, simply select an image and press the _HD_
button above it. You can select between 2X and 4X upscaling, and adjust the
upscaling strength, which has much the same meaning as in facial
reconstruction. Try running this on one of your previously-generated images.
3. Finally, you can run facial reconstruction and/or upscaling automatically
after each Invocation. Go to the Advanced Options section of the Control
Panel and turn on _Restore Face_ and/or _Upscale_.
"Upscaling" is the process of increasing the size of an image while
retaining the sharpness. InvokeAI uses an external library called
"ESRGAN" to do this. To invoke upscaling, simply select an image
and press the "expanding arrows" button above it. You can select
between 2X and 4X upscaling, and adjust the upscaling strength,
which has much the same meaning as in facial reconstruction. Try
running this on one of your previously-generated images.
### Image to Image
@@ -224,24 +204,14 @@ InvokeAI lets you take an existing image and use it as the basis for a new
creation. You can use any sort of image, including a photograph, a scanned
sketch, or a digital drawing, as long as it is in PNG or JPEG format.
For this tutorial, we'll use files named
[Lincoln-and-Parrot-512.png](../assets/Lincoln-and-Parrot-512.png), and
[Lincoln-and-Parrot-512-transparent.png](../assets/Lincoln-and-Parrot-512-transparent.png).
Download these images to your local machine now to continue with the
walkthrough.
For this tutorial, we'll use the file named
[Lincoln-and-Parrot-512.png](../assets/Lincoln-and-Parrot-512.png).
1. Click on the _Image to Image_ tab icon, which is the second icon from the
top on the left-hand side of the screen:
1. Click on the _Image to Image_ tab icon, which is the second icon
from the top on the left-hand side of the screen. This will bring
you to a screen similar to the one shown here:
<figure markdown>
![Invoke Web Server - Image to Image Icon](../assets/invoke-web-server-5.png)
</figure>
This will bring you to a screen similar to the one shown here:
<figure markdown>
![Invoke Web Server - Image to Image Tab](../assets/invoke-web-server-6.png){:width="640px"}
</figure>
![Invoke Web Server - Image to Image Tab](../assets/invoke-web-server-6.png){ width="640px" }
2. Drag-and-drop the Lincoln-and-Parrot image into the Image panel, or click
the blank area to get an upload dialog. The image will load into an area
@@ -255,120 +225,99 @@ walkthrough.
![Invoke Web Server - Image to Image example](../assets/invoke-web-server-7.png){:width="640px"}
4. Experiment with the different settings. The most influential one in Image to
Image is _Image to Image Strength_ located about midway down the control
Image is _Denoising Strength_ located about midway down the control
panel. By default it is set to 0.75, but can range from 0.0 to 0.99. The
higher the value, the more of the original image the AI will replace. A
value of 0 will leave the initial image completely unchanged, while 0.99
will replace it completely. However, the Sampler and CFG Scale also
will replace it completely. However, the _Scheduler_ and _CFG Scale_ also
influence the final result. You can also generate variations in the same way
as described in Text to Image.
5. What if we only want to change certain part(s) of the image and leave the
rest intact? This is called Inpainting, and a future version of the InvokeAI
web server will provide an interactive painting canvas on which you can
directly draw the areas you wish to Inpaint into. For now, you can achieve
this effect by using an external photoeditor tool to make one or more
regions of the image transparent as described in [INPAINTING.md] and
uploading that.
The file
[Lincoln-and-Parrot-512-transparent.png](../assets/Lincoln-and-Parrot-512-transparent.png)
is a version of the earlier image in which the area around the parrot has
been replaced with transparency. Click on the "x" in the upper right of the
Initial Image and upload the transparent version. Using the same prompt "old
sea captain with raven on shoulder" try Invoking an image. This time, only
the parrot will be replaced, leaving the rest of the original image intact:
<figure markdown>
![Invoke Web Server - Inpainting](../assets/invoke-web-server-8.png){:width="640px"}
</figure>
5. What if we only want to change certain part(s) of the image and
leave the rest intact? This is called Inpainting, and you can do
it in the [Unified Canvas](UNIFIED_CANVAS.md). The Unified Canvas
also allows you to extend borders of the image and fill in the
blank areas, a process called outpainting.
6. Would you like to modify a previously-generated image using the Image to
Image facility? Easy! While in the Image to Image panel, hover over any of
the gallery images to see a little menu of icons pop up. Click the picture
icon to instantly send the selected image to Image to Image as the initial
image.
Image facility? Easy! While in the Image to Image panel, drag and drop any
image in the gallery into the Initial Image area, and it will be ready for
use. You can do the same thing with the main image display. Click on the
_Send to_ icon to get a menu of
commands and choose "Send to Image to Image".
![Send To Icon](../assets/send-to-icon.png)
You can do the same from the Text to Image tab by clicking on the picture icon
above the central image panel. The screenshot below shows where the "use as
initial image" icons are located.
### Textual Inversion, LoRA and ControlNet
![Invoke Web Server - Use as Image Links](../assets/invoke-web-server-9.png){:width="640px"}
InvokeAI supports several different types of model files that
extending the capabilities of the main model by adding artistic
styles, special effects, or subjects. By mixing and matching textual
inversion, LoRA and ControlNet models, you can achieve many
interesting and beautiful effects.
### Unified Canvas
We will give an example using a LoRA model named "Ink Scenery". This
LoRA, which can be downloaded from Civitai (civitai.com), is
specialized to paint landscapes that look like they were made with
dripping india ink. To install this LoRA, we first download it and
put it into the `autoimport/lora` folder located inside the
`invokeai` root directory. After restarting the web server, the
LoRA will now become available for use.
See the [Unified Canvas Guide](UNIFIED_CANVAS.md)
To see this LoRA at work, we'll first generate an image without it
using the standard `stable-diffusion-v1-5` model. Choose this
model and enter the prompt "mountains, ink". Here is a typical
generated image, a mountain range rendered in ink and watercolor
wash:
## Reference
![Ink Scenery without LoRA](../assets/lora-example-0.png){ width=512px }
### Additional Options
Now let's install and activate the Ink Scenery LoRA. Go to
https://civitai.com/models/78605/ink-scenery-or and download the LoRA
model file to `invokeai/autoimport/lora` and restart the web
server. (Alternatively, you can use [InvokeAI's Web Model
Manager](../installation/050_INSTALLING_MODELS.md) to download and
install the LoRA directly by typing its URL into the _Import
Models_->_Location_ field).
| parameter <img width=160 align="right"> | effect |
| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `--web_develop` | Starts the web server in development mode. |
| `--web_verbose` | Enables verbose logging |
| `--cors [CORS ...]` | Additional allowed origins, comma-separated |
| `--host HOST` | Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network. |
| `--port PORT` | Web server: Port to listen on |
| `--certfile CERTFILE` | Web server: Path to certificate file to use for SSL. Use together with --keyfile |
| `--keyfile KEYFILE` | Web server: Path to private key file to use for SSL. Use together with --certfile' |
| `--gui` | Start InvokeAI GUI - This is the "desktop mode" version of the web app. It uses Flask to create a desktop app experience of the webserver. |
Scroll down the control panel until you get to the LoRA accordion
section, and open it:
### Web Specific Features
![LoRA Section](../assets/lora-example-1.png){ width=512px }
The web experience offers an incredibly easy-to-use experience for interacting
with the InvokeAI toolkit. For detailed guidance on individual features, see the
Feature-specific help documents available in this directory. Note that the
latest functionality available in the CLI may not always be available in the Web
interface.
Click the popup menu and select "Ink scenery". (If it isn't there, then
the model wasn't installed to the right place, or perhaps you forgot
to restart the web server.) The LoRA section will change to look like this:
#### Dark Mode & Light Mode
![LoRA Section Loaded](../assets/lora-example-2.png){ width=512px }
The InvokeAI interface is available in a nano-carbon black & purple Dark Mode,
and a "burn your eyes out Nosferatu" Light Mode. These can be toggled by
clicking the Sun/Moon icons at the top right of the interface.
Note that there is now a slider control for _Ink scenery_. The slider
controls how much influence the LoRA model will have on the generated
image.
![InvokeAI Web Server - Dark Mode](../assets/invoke_web_dark.png)
Run the "mountains, ink" prompt again and observe the change in style:
![InvokeAI Web Server - Light Mode](../assets/invoke_web_light.png)
![Ink Scenery](../assets/lora-example-3.png){ width=512px }
#### Invocation Toolbar
Try adjusting the weight slider for larger and smaller weights and
generate the image after each adjustment. The higher the weight, the
more influence the LoRA will have.
The left side of the InvokeAI interface is available for customizing the prompt
and the settings used for invoking your new image. Typing your prompt into the
open text field and clicking the Invoke button will produce the image based on
the settings configured in the toolbar.
To remove the LoRA completely, just click on its trash can icon.
See below for additional documentation related to each feature:
Multiple LoRAs can be added simultaneously and combined with textual
inversions and ControlNet models. Please see [Textual Inversions and
LoRAs](CONCEPTS.md) and [Using ControlNet](CONTROLNET.md) for details.
- [Variations](./VARIATIONS.md)
- [Upscaling](./POSTPROCESS.md#upscaling)
- [Image to Image](./IMG2IMG.md)
- [Other](./OTHER.md)
## Summary
#### Invocation Gallery
The currently selected --outdir (or the default outputs folder) will display all
previously generated files on load. As new invocations are generated, these will
be dynamically added to the gallery, and can be previewed by selecting them.
Each image also has a simple set of actions (e.g., Delete, Use Seed, Use All
Parameters, etc.) that can be accessed by hovering over the image.
#### Image Workspace
When an image from the Invocation Gallery is selected, or is generated, the
image will be displayed within the center of the interface. A quickbar of common
image interactions are displayed along the top of the image, including:
- Use image in the `Image to Image` workflow
- Initialize Face Restoration on the selected file
- Initialize Upscaling on the selected file
- View File metadata and details
- Delete the file
This walkthrough just skims the surface of the many things InvokeAI
can do. Please see [Features](index.md) for more detailed reference
guides.
## Acknowledgements
A huge shout-out to the core team working to make this vision a reality,
A huge shout-out to the core team working to make the Web GUI a reality,
including [psychedelicious](https://github.com/psychedelicious),
[Kyle0654](https://github.com/Kyle0654) and
[blessedcoolant](https://github.com/blessedcoolant).

View File

@@ -17,8 +17,12 @@ a single convenient digital artist-optimized user interface.
### * [Prompt Engineering](PROMPTS.md)
Get the images you want with the InvokeAI prompt engineering language.
## * The [Concepts Library](CONCEPTS.md)
Add custom subjects and styles using HuggingFace's repository of embeddings.
### * The [LoRA, LyCORIS and Textual Inversion Models](CONCEPTS.md)
Add custom subjects and styles using a variety of fine-tuned models.
### * [ControlNet](CONTROLNET.md)
Learn how to install and use ControlNet models for fine control over
image output.
### * [Image-to-Image Guide](IMG2IMG.md)
Use a seed image to build new creations in the CLI.
@@ -29,26 +33,28 @@ are the ticket.
## Model Management
## * [Model Installation](../installation/050_INSTALLING_MODELS.md)
### * [Model Installation](../installation/050_INSTALLING_MODELS.md)
Learn how to import third-party models and switch among them. This
guide also covers optimizing models to load quickly.
## * [Merging Models](MODEL_MERGING.md)
### * [Merging Models](MODEL_MERGING.md)
Teach an old model new tricks. Merge 2-3 models together to create a
new model that combines characteristics of the originals.
## * [Textual Inversion](TRAINING.md)
### * [Textual Inversion](TRAINING.md)
Personalize models by adding your own style or subjects.
# Other Features
## Other Features
## * [The NSFW Checker](NSFW.md)
### * [The NSFW Checker](NSFW.md)
Prevent InvokeAI from displaying unwanted racy images.
## * [Controlling Logging](LOGGING.md)
### * [Controlling Logging](LOGGING.md)
Control how InvokeAI logs status messages.
## * [Miscellaneous](OTHER.md)
<!-- OUT OF DATE
### * [Miscellaneous](OTHER.md)
Run InvokeAI on Google Colab, generate images with repeating patterns,
batch process a file of prompts, increase the "creativity" of image
generation by adding initial noise, and more!
-->

View File

@@ -24,7 +24,7 @@ title: Home
[![CI checks on main badge]][ci checks on main link]
[![CI checks on dev badge]][ci checks on dev link]
[![latest commit to dev badge]][latest commit to dev link]
<!-- [![latest commit to dev badge]][latest commit to dev link] -->
[![github open issues badge]][github open issues link]
[![github open prs badge]][github open prs link]
@@ -54,10 +54,10 @@ title: Home
[github stars badge]:
https://flat.badgen.net/github/stars/invoke-ai/InvokeAI?icon=github
[github stars link]: https://github.com/invoke-ai/InvokeAI/stargazers
[latest commit to dev badge]:
<!-- [latest commit to dev badge]:
https://flat.badgen.net/github/last-commit/invoke-ai/InvokeAI/development?icon=github&color=yellow&label=last%20dev%20commit&cache=900
[latest commit to dev link]:
https://github.com/invoke-ai/InvokeAI/commits/development
https://github.com/invoke-ai/InvokeAI/commits/main -->
[latest release badge]:
https://flat.badgen.net/github/release/invoke-ai/InvokeAI/development?icon=github
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases
@@ -82,6 +82,25 @@ Q&A</a>]
This fork is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates. They will help aid diagnose issues faster.
## :octicons-package-dependencies-24: Installation
This fork is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
### [Installation Getting Started Guide](installation)
#### **[Automated Installer](installation/010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
#### [Manual Installation](installation/020_INSTALL_MANUAL.md)
This method is recommended for experienced users and developers
#### [Docker Installation](installation/040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
## :fontawesome-solid-computer: Hardware Requirements
### :octicons-cpu-24: System
@@ -107,24 +126,6 @@ images in full-precision mode:
- At least 18 GB of free disk space for the machine learning model, Python, and
all its dependencies.
## :octicons-package-dependencies-24: Installation
This fork is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
### [Installation Getting Started Guide](installation)
#### [Automated Installer](installation/010_INSTALL_AUTOMATED.md)
This method is recommended for 1st time users
#### [Manual Installation](installation/020_INSTALL_MANUAL.md)
This method is recommended for experienced users and developers
#### [Docker Installation](installation/040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
## :octicons-gift-24: InvokeAI Features
@@ -145,6 +146,7 @@ This method is recommended for those familiar with running Docker containers
### Model Management
- [Installing](installation/050_INSTALLING_MODELS.md)
- [Model Merging](features/MODEL_MERGING.md)
- [ControlNet Models](features/CONTROLNET.md)
- [Style/Subject Concepts and Embeddings](features/CONCEPTS.md)
- [Not Safe for Work (NSFW) Checker](features/NSFW.md)
<!-- seperator -->
@@ -221,14 +223,10 @@ get solutions for common installation problems and other issues.
Anyone who wishes to contribute to this project, whether documentation,
features, bug fixes, code cleanup, testing, or code reviews, is very much
encouraged to do so. If you are unfamiliar with how to contribute to GitHub
projects, here is a
[Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github).
encouraged to do so.
A full set of contribution guidelines, along with templates, are in progress,
but for now the most important thing is to **make your pull request against the
"development" branch**, and not against "main". This will help keep public
breakage to a minimum and will allow you to propose more radical changes.
[Please take a look at our Contribution documentation to learn more about contributing to InvokeAI.
](contributing/CONTRIBUTING.md)
## :octicons-person-24: Contributors

View File

@@ -124,9 +124,9 @@ experimental versions later.
[latest release](https://github.com/invoke-ai/InvokeAI/releases/latest),
and look for a file named:
- InvokeAI-installer-v2.X.X.zip
- InvokeAI-installer-v3.X.X.zip
where "2.X.X" is the latest released version. The file is located
where "3.X.X" is the latest released version. The file is located
at the very bottom of the release page, under **Assets**.
4. **Unpack the installer**: Unpack the zip file into a convenient directory. This will create a new

View File

@@ -15,7 +15,7 @@ See the [troubleshooting
section](010_INSTALL_AUTOMATED.md#troubleshooting) of the automated
install guide for frequently-encountered installation issues.
## Main Application
## Installation options
1. [Automated Installer](010_INSTALL_AUTOMATED.md)
@@ -24,6 +24,9 @@ install guide for frequently-encountered installation issues.
"developer console" which will help us debug problems with you and
give you to access experimental features.
✅ This is the recommended option for first time users.
2. [Manual Installation](020_INSTALL_MANUAL.md)
In this method you will manually run the commands needed to install

View File

@@ -0,0 +1,52 @@
# Community Nodes
These are nodes that have been developed by the community, for the community. If you're not sure what a node is, you can learn more about nodes [here](overview.md).
If you'd like to submit a node for the community, please refer to the [node creation overview](./overview.md#contributing-nodes).
To download a node, simply download the `.py` node file from the link and add it to the `invokeai/app/invocations/` folder in your Invoke AI install location. Along with the node, an example node graph should be provided to help you get started with the node.
To use a community node graph, download the the `.json` node graph file and load it into Invoke AI via the **Load Nodes** button on the Node Editor.
## Disclaimer
The nodes linked below have been developed and contributed by members of the Invoke AI community. While we strive to ensure the quality and safety of these contributions, we do not guarantee the reliability or security of the nodes. If you have issues or concerns with any of the nodes below, please raise it on GitHub or in the Discord.
## List of Nodes
### Face Mask
**Description:** This node autodetects a face in the image using MediaPipe and masks it by making it transparent. Via outpainting you can swap faces with other faces, or invert the mask and swap things around the face with other things. Additionally, you can supply X and Y offset values to scale/change the shape of the mask for finer control. The node also outputs an all-white mask in the same dimensions as the input image. This is needed by the inpaint node (and unified canvas) for outpainting.
**Node Link:** https://github.com/ymgenesis/InvokeAI/blob/facemaskmediapipe/invokeai/app/invocations/facemask.py
**Example Node Graph:** https://www.mediafire.com/file/gohn5sb1bfp8use/21-July_2023-FaceMask.json/file
**Output Examples**
![2e3168cb-af6a-475d-bfac-c7b7fd67b4c2](https://github.com/ymgenesis/InvokeAI/assets/25252829/a5ad7d44-2ada-4b3c-a56e-a21f8244a1ac)
![2_annotated](https://github.com/ymgenesis/InvokeAI/assets/25252829/53416c8a-a23b-4d76-bb6d-3cfd776e0096)
![2fe2150c-fd08-4e26-8c36-f0610bf441bb](https://github.com/ymgenesis/InvokeAI/assets/25252829/b0f7ecfe-f093-4147-a904-b9f131b41dc9)
![831b6b98-4f0f-4360-93c8-69a9c1338cbe](https://github.com/ymgenesis/InvokeAI/assets/25252829/fc7b0622-e361-4155-8a76-082894d084f0)
--------------------------------
### Super Cool Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
**Node Link:** https://github.com/invoke-ai/InvokeAI/fake_node.py
**Example Node Graph:** https://github.com/invoke-ai/InvokeAI/fake_node_graph.json
**Output Examples**
![Invoke AI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
### Ideal Size
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Node Link:** https://github.com/JPPhoto/ideal-size-node
## Help
If you run into any issues with a node, please post in the [InvokeAI Discord](https://discord.gg/ZmtBAhwWhy).

42
docs/nodes/overview.md Normal file
View File

@@ -0,0 +1,42 @@
# Nodes
## What are Nodes?
An Node is simply a single operation that takes in some inputs and gives
out some outputs. We can then chain multiple nodes together to create more
complex functionality. All InvokeAI features are added through nodes.
This means nodes can be used to easily extend the image generation capabilities of InvokeAI, and allow you build workflows to suit your needs.
You can read more about nodes and the node editor [here](../features/NODES.md).
## Downloading Nodes
To download a new node, visit our list of [Community Nodes](communityNodes.md). These are nodes that have been created by the community, for the community.
## Contributing Nodes
To learn about creating a new node, please visit our [Node creation documenation](../contributing/INVOCATIONS.md).
Once youve created a node and confirmed that it behaves as expected locally, follow these steps:
* Make sure the node is contained in a new Python (.py) file
* Submit a pull request with a link to your node in GitHub against the `nodes` branch to add the node to the [Community Nodes](Community Nodes) list
* Make sure you are following the template below and have provided all relevant details about the node and what it does.
* A maintainer will review the pull request and node. If the node is aligned with the direction of the project, you might be asked for permission to include it in the core project.
### Community Node Template
```markdown
--------------------------------
### Super Cool Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
**Node Link:** https://github.com/invoke-ai/InvokeAI/fake_node.py
**Example Node Graph:** https://github.com/invoke-ai/InvokeAI/fake_node_graph.json
**Output Examples**
![InvokeAI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
```

View File

@@ -17,67 +17,267 @@ We thank them for all of their time and hard work.
* @lstein (Lincoln Stein) - Co-maintainer
* @blessedcoolant - Co-maintainer
* @hipsterusername (Kent Keirsey) - Product Manager
* @psychedelicious - Web Team Leader
* @hipsterusername (Kent Keirsey) - Co-maintainer, CEO, Positive Vibes
* @psychedelicious (Spencer Mabrito) - Web Team Leader
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* @damian0815 - Attention Systems and Gameplay Engineer
* @mauwii (Matthias Wild) - Continuous integration and product maintenance engineer
* @Netsvetaev (Artur Netsvetaev) - UI/UX Developer
* @tildebyte - General gadfly and resident (self-appointed) know-it-all
* @keturn - Lead for Diffusers port
* @damian0815 - Attention Systems and Compel Maintainer
* @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
* @jpphoto (Jonathan Pollack) - Inference and rendering engine optimization
* @genomancer (Gregg Helt) - Model training and merging
* @genomancer (Gregg Helt) - Controlnet support
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
* @cheerio (Mary Rogers) - Lead Engineer & Web App Development
* @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
* @ryanjdick (Ryan Dick) - Machine Learning & Training
* @millu (Millun Atluri) - Community Manager, Documentation, Node-wrangler
* @chainchompa (Jennifer Player) - Web Development & Chain-Chomping
* @keturn (Kevin Turner) - Diffusers
* @gogurt enjoyer - Discord moderator and end user support
* @whosawhatsis - Discord moderator and end user support
* @dwinrger - Discord moderator and end user support
* @526christian - Discord moderator and end user support
## **Contributions by**
## **Full List of Contributors by Commit Name**
- [Sean McLellan](https://github.com/Oceanswave)
- [Kevin Gibbons](https://github.com/bakkot)
- [Tesseract Cat](https://github.com/TesseractCat)
- [blessedcoolant](https://github.com/blessedcoolant)
- [David Ford](https://github.com/david-ford)
- [yunsaki](https://github.com/yunsaki)
- [James Reynolds](https://github.com/magnusviri)
- [David Wager](https://github.com/maddavid123)
- [Jason Toffaletti](https://github.com/toffaletti)
- [tildebyte](https://github.com/tildebyte)
- [Cragin Godley](https://github.com/cgodley)
- [BlueAmulet](https://github.com/BlueAmulet)
- [Benjamin Warner](https://github.com/warner-benjamin)
- [Cora Johnson-Roberson](https://github.com/corajr)
- [veprogames](https://github.com/veprogames)
- [JigenD](https://github.com/JigenD)
- [Niek van der Maas](https://github.com/Niek)
- [Henry van Megen](https://github.com/hvanmegen)
- [Håvard Gulldahl](https://github.com/havardgulldahl)
- [greentext2](https://github.com/greentext2)
- [Simon Vans-Colina](https://github.com/simonvc)
- [Gabriel Rotbart](https://github.com/gabrielrotbart)
- [Eric Khun](https://github.com/erickhun)
- [Brent Ozar](https://github.com/BrentOzar)
- [nderscore](https://github.com/nderscore)
- [Mikhail Tishin](https://github.com/tishin)
- [Tom Elovi Spruce](https://github.com/ilovecomputers)
- [spezialspezial](https://github.com/spezialspezial)
- [Yosuke Shinya](https://github.com/shinya7y)
- [Andy Pilate](https://github.com/Cubox)
- [Muhammad Usama](https://github.com/SMUsamaShah)
- [Arturo Mendivil](https://github.com/artmen1516)
- [Paul Sajna](https://github.com/sajattack)
- [Samuel Husso](https://github.com/shusso)
- [nicolai256](https://github.com/nicolai256)
- [Mihai](https://github.com/mh-dm)
- [Any Winter](https://github.com/any-winter-4079)
- [Doggettx](https://github.com/doggettx)
- [Matthias Wild](https://github.com/mauwii)
- [Kyle Schouviller](https://github.com/kyle0654)
- [rabidcopy](https://github.com/rabidcopy)
- [Dominic Letz](https://github.com/dominicletz)
- [Dmitry T.](https://github.com/ArDiouscuros)
- [Kent Keirsey](https://github.com/hipsterusername)
- [psychedelicious](https://github.com/psychedelicious)
- [damian0815](https://github.com/damian0815)
- [Eugene Brodsky](https://github.com/ebr)
- AbdBarho
- ablattmann
- AdamOStark
- Adam Rice
- Airton Silva
- Alexander Eichhorn
- Alexandre D. Roberge
- Andreas Rozek
- Andre LaBranche
- Andy Bearman
- Andy Luhrs
- Andy Pilate
- Any-Winter-4079
- apolinario
- ArDiouscuros
- Armando C. Santisbon
- Arthur Holstvoogd
- artmen1516
- Artur
- Arturo Mendivil
- Ben Alkov
- Benjamin Warner
- Bernard Maltais
- blessedcoolant
- blhook
- BlueAmulet
- Bouncyknighter
- Brandon Rising
- Brent Ozar
- Brian Racer
- bsilvereagle
- c67e708d
- CapableWeb
- Carson Katri
- Chloe
- Chris Dawson
- Chris Hayes
- Chris Jones
- chromaticist
- Claus F. Strasburger
- cmdr2
- cody
- Conor Reid
- Cora Johnson-Roberson
- coreco
- cosmii02
- cpacker
- Cragin Godley
- creachec
- Damian Stewart
- Daniel Manzke
- Danny Beer
- Dan Sully
- David Burnett
- David Ford
- David Regla
- David Wager
- Daya Adianto
- db3000
- Denis Olshin
- Dennis
- Dominic Letz
- DrGunnarMallon
- Edward Johan
- elliotsayes
- Elrik
- ElrikUnderlake
- Eric Khun
- Eric Wolf
- Eugene Brodsky
- ExperimentalCyborg
- Fabian Bahl
- Fabio 'MrWHO' Torchetti
- fattire
- Felipe Nogueira
- Félix Sanz
- figgefigge
- Gabriel Mackievicz Telles
- gabrielrotbart
- gallegonovato
- Gérald LONLAS
- GitHub Actions Bot
- gogurtenjoyer
- greentext2
- Gregg Helt
- H4rk
- Håvard Gulldahl
- henry
- Henry van Megen
- hipsterusername
- hj
- Hosted Weblate
- Iman Karim
- ismail ihsan bülbül
- Ivan Efimov
- jakehl
- Jakub Kolčář
- JamDon2
- James Reynolds
- Jan Skurovec
- Jari Vetoniemi
- Jason Toffaletti
- Jaulustus
- Jeff Mahoney
- jeremy
- Jeremy Clark
- JigenD
- Jim Hays
- Johan Roxendal
- Johnathon Selstad
- Jonathan
- Joseph Dries III
- JPPhoto
- jspraul
- Justin Wong
- Juuso V
- Kaspar Emanuel
- Katsuyuki-Karasawa
- Kent Keirsey
- Kevin Coakley
- Kevin Gibbons
- Kevin Schaul
- Kevin Turner
- krummrey
- Kyle Lacy
- Kyle Schouviller
- Lawrence Norton
- LemonDouble
- Leo Pasanen
- Lincoln Stein
- LoganPederson
- Lynne Whitehorn
- majick
- Marco Labarile
- Martin Kristiansen
- Mary Hipp Rogers
- mastercaster9000
- Matthias Wild
- michaelk71
- mickr777
- Mihai
- Mihail Dumitrescu
- Mikhail Tishin
- Millun Atluri
- Minjune Song
- mitien
- mofuzz
- Muhammad Usama
- Name
- _nderscore
- Netzer R
- Nicholas Koh
- Nicholas Körfer
- nicolai256
- Niek van der Maas
- noodlebox
- Nuno Coração
- ofirkris
- Olivier Louvignes
- owenvincent
- Patrick Esser
- Patrick Tien
- Patrick von Platen
- Paul Sajna
- pejotr
- Peter Baylies
- Peter Lin
- plucked
- prixt
- psychedelicious
- Rainer Bernhardt
- Riccardo Giovanetti
- Rich Jones
- rmagur1203
- Rob Baines
- Robert Bolender
- Robin Rombach
- Rohan Barar
- rpagliuca
- rromb
- Rupesh Sreeraman
- Ryan Cao
- Saifeddine
- Saifeddine ALOUI
- SammCheese
- Sammy
- sammyf
- Samuel Husso
- Scott Lahteine
- Sean McLellan
- Sebastian Aigner
- Sergey Borisov
- Sergey Krashevich
- Shapor Naghibzadeh
- Shawn Zhong
- Simon Vans-Colina
- skunkworxdark
- slashtechno
- spezialspezial
- ssantos
- StAlKeR7779
- Stephan Koglin-Fischer
- SteveCaruso
- Steve Martinelli
- Steven Frank
- System X - Files
- Taylor Kems
- techicode
- techybrain-dev
- tesseractcat
- thealanle
- Thomas
- tildebyte
- Tim Cabbage
- Tom
- Tom Elovi Spruce
- Tom Gouville
- tomosuto
- Travco
- Travis Palmer
- tyler
- unknown
- user1
- Vedant Madane
- veprogames
- wa.code
- wfng92
- whosawhatsis
- Will
- William Becher
- William Chong
- xra
- Yeung Yiu Hung
- ymgenesis
- Yorzaren
- Yosuke Shinya
- yun saki
- Zadagu
- zeptofine
- 冯不游
- 唐澤 克幸
## **Original CompVis Authors**

View File

@@ -58,7 +58,8 @@ class ApiDependencies:
@staticmethod
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger):
logger.debug(f"InvokeAI version {__version__}")
logger.info(f"InvokeAI version {__version__}")
logger.info(f"Root directory = {str(config.root_path)}")
logger.debug(f"Internet connectivity is {config.internet_available}")
events = FastAPIEventService(event_handler_id)

View File

@@ -1,9 +1,22 @@
from enum import Enum
from fastapi import Body
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.backend.image_util.patchmatch import PatchMatch
from invokeai.version import __version__
from ..dependencies import ApiDependencies
from invokeai.backend.util.logging import logging
class LogLevel(int, Enum):
NotSet = logging.NOTSET
Debug = logging.DEBUG
Info = logging.INFO
Warning = logging.WARNING
Error = logging.ERROR
Critical = logging.CRITICAL
app_router = APIRouter(prefix="/v1/app", tags=["app"])
@@ -34,3 +47,27 @@ async def get_config() -> AppConfig:
if PatchMatch.patchmatch_available():
infill_methods.append('patchmatch')
return AppConfig(infill_methods=infill_methods)
@app_router.get(
"/logging",
operation_id="get_log_level",
responses={200: {"description" : "The operation was successful"}},
response_model = LogLevel,
)
async def get_log_level(
) -> LogLevel:
"""Returns the log level"""
return LogLevel(ApiDependencies.invoker.services.logger.level)
@app_router.post(
"/logging",
operation_id="set_log_level",
responses={200: {"description" : "The operation was successful"}},
response_model = LogLevel,
)
async def set_log_level(
level: LogLevel = Body(description="New log verbosity level"),
) -> LogLevel:
"""Sets the log verbosity level"""
ApiDependencies.invoker.services.logger.setLevel(level)
return LogLevel(ApiDependencies.invoker.services.logger.level)

View File

@@ -24,11 +24,14 @@ async def create_board_image(
):
"""Creates a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.add_image_to_board(board_id=board_id, image_name=image_name)
result = ApiDependencies.invoker.services.board_images.add_image_to_board(
board_id=board_id, image_name=image_name
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to add to board")
@board_images_router.delete(
"/",
operation_id="remove_board_image",
@@ -43,27 +46,10 @@ async def remove_board_image(
):
"""Deletes a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(board_id=board_id, image_name=image_name)
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(
board_id=board_id, image_name=image_name
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
@board_images_router.get(
"/{board_id}",
operation_id="list_board_images",
response_model=OffsetPaginatedResults[ImageDTO],
)
async def list_board_images(
board_id: str = Path(description="The id of the board"),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of boards per page"),
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a list of images for a board"""
results = ApiDependencies.invoker.services.board_images.get_images_for_board(
board_id,
)
return results

View File

@@ -1,16 +1,28 @@
from typing import Optional, Union
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.services.board_record_storage import BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from ..dependencies import ApiDependencies
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
class DeleteBoardResult(BaseModel):
board_id: str = Field(description="The id of the board that was deleted.")
deleted_board_images: list[str] = Field(
description="The image names of the board-images relationships that were deleted."
)
deleted_images: list[str] = Field(
description="The names of the images that were deleted."
)
@boards_router.post(
"/",
operation_id="create_board",
@@ -69,25 +81,42 @@ async def update_board(
raise HTTPException(status_code=500, detail="Failed to update board")
@boards_router.delete("/{board_id}", operation_id="delete_board")
@boards_router.delete(
"/{board_id}", operation_id="delete_board", response_model=DeleteBoardResult
)
async def delete_board(
board_id: str = Path(description="The id of board to delete"),
include_images: Optional[bool] = Query(
description="Permanently delete all images on the board", default=False
),
) -> None:
) -> DeleteBoardResult:
"""Deletes a board"""
try:
if include_images is True:
deleted_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id=board_id
)
ApiDependencies.invoker.services.images.delete_images_on_board(
board_id=board_id
)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
return DeleteBoardResult(
board_id=board_id,
deleted_board_images=[],
deleted_images=deleted_images,
)
else:
deleted_board_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id=board_id
)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
return DeleteBoardResult(
board_id=board_id,
deleted_board_images=deleted_board_images,
deleted_images=[],
)
except Exception as e:
# TODO: Does this need any exception handling at all?
pass
raise HTTPException(status_code=500, detail="Failed to delete board")
@boards_router.get(
@@ -115,3 +144,19 @@ async def list_boards(
status_code=400,
detail="Invalid request: Must provide either 'all' or both 'offset' and 'limit'",
)
@boards_router.get(
"/{board_id}/image_names",
operation_id="list_all_board_image_names",
response_model=list[str],
)
async def list_all_board_image_names(
board_id: str = Path(description="The id of the board"),
) -> list[str]:
"""Gets a list of images for a board"""
image_names = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id,
)
return image_names

View File

@@ -1,8 +1,7 @@
import io
from typing import Optional
from fastapi import (Body, HTTPException, Path, Query, Request, Response,
UploadFile)
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
@@ -11,9 +10,11 @@ from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.services.models.image_record import (ImageDTO,
ImageRecordChanges,
ImageUrlsDTO)
from invokeai.app.services.models.image_record import (
ImageDTO,
ImageRecordChanges,
ImageUrlsDTO,
)
from ..dependencies import ApiDependencies
@@ -39,9 +40,15 @@ async def upload_image(
response: Response,
image_category: ImageCategory = Query(description="The category of the image"),
is_intermediate: bool = Query(description="Whether this is an intermediate image"),
board_id: Optional[str] = Query(
default=None, description="The board to add this image to, if any"
),
session_id: Optional[str] = Query(
default=None, description="The session ID associated with this upload, if any"
),
crop_visible: Optional[bool] = Query(
default=False, description="Whether to crop the image"
),
) -> ImageDTO:
"""Uploads an image"""
if not file.content_type.startswith("image"):
@@ -51,6 +58,9 @@ async def upload_image(
try:
pil_image = Image.open(io.BytesIO(contents))
if crop_visible:
bbox = pil_image.getbbox()
pil_image = pil_image.crop(bbox)
except:
# Error opening the image
raise HTTPException(status_code=415, detail="Failed to read image")
@@ -61,6 +71,7 @@ async def upload_image(
image_origin=ResourceOrigin.EXTERNAL,
image_category=image_category,
session_id=session_id,
board_id=board_id,
is_intermediate=is_intermediate,
)
@@ -85,6 +96,18 @@ async def delete_image(
pass
@images_router.post("/clear-intermediates", operation_id="clear_intermediates")
async def clear_intermediates() -> int:
"""Clears all intermediates"""
try:
count_deleted = ApiDependencies.invoker.services.images.delete_intermediates()
return count_deleted
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to clear intermediates")
pass
@images_router.patch(
"/{image_name}",
operation_id="update_image",
@@ -119,6 +142,7 @@ async def get_image_dto(
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_name}/metadata",
operation_id="get_image_metadata",
@@ -234,16 +258,17 @@ async def get_image_urls(
)
async def list_image_dtos(
image_origin: Optional[ResourceOrigin] = Query(
default=None, description="The origin of images to list"
default=None, description="The origin of images to list."
),
categories: Optional[list[ImageCategory]] = Query(
default=None, description="The categories of image to include"
default=None, description="The categories of image to include."
),
is_intermediate: Optional[bool] = Query(
default=None, description="Whether to list intermediate images"
default=None, description="Whether to list intermediate images."
),
board_id: Optional[str] = Query(
default=None, description="The board id to filter by"
default=None,
description="The board id to filter by. Use 'none' to find images without a board.",
),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of images per page"),

View File

@@ -315,20 +315,21 @@ async def list_ckpt_configs(
return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs()
@models_router.get(
@models_router.post(
"/sync",
operation_id="sync_to_config",
responses={
201: { "description": "synchronization successful" },
},
status_code = 201,
response_model = None
response_model = bool
)
async def sync_to_config(
)->None:
)->bool:
"""Call after making changes to models.yaml, autoimport directories or models directory to synchronize
in-memory data structures with disk data structures."""
return ApiDependencies.invoker.services.model_manager.sync_to_config()
ApiDependencies.invoker.services.model_manager.sync_to_config()
return True
@models_router.put(
"/merge/{base_model}",
@@ -373,50 +374,3 @@ async def merge_models(
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response
# The rename operation is now supported by update_model and no longer needs to be
# a standalone route.
# @models_router.post(
# "/rename/{base_model}/{model_type}/{model_name}",
# operation_id="rename_model",
# responses= {
# 201: {"description" : "The model was renamed successfully"},
# 404: {"description" : "The model could not be found"},
# 409: {"description" : "There is already a model corresponding to the new name"},
# },
# status_code=201,
# response_model=ImportModelResponse
# )
# async def rename_model(
# base_model: BaseModelType = Path(description="Base model"),
# model_type: ModelType = Path(description="The type of model"),
# model_name: str = Path(description="current model name"),
# new_name: Optional[str] = Query(description="new model name", default=None),
# new_base: Optional[BaseModelType] = Query(description="new model base", default=None),
# ) -> ImportModelResponse:
# """ Rename a model"""
# logger = ApiDependencies.invoker.services.logger
# try:
# result = ApiDependencies.invoker.services.model_manager.rename_model(
# base_model = base_model,
# model_type = model_type,
# model_name = model_name,
# new_name = new_name,
# new_base = new_base,
# )
# logger.debug(result)
# logger.info(f'Successfully renamed {model_name}=>{new_name}')
# model_raw = ApiDependencies.invoker.services.model_manager.list_model(
# model_name=new_name or model_name,
# base_model=new_base or base_model,
# model_type=model_type
# )
# return parse_obj_as(ImportModelResponse, model_raw)
# except ModelNotFoundException as e:
# logger.error(str(e))
# raise HTTPException(status_code=404, detail=str(e))
# except ValueError as e:
# logger.error(str(e))
# raise HTTPException(status_code=409, detail=str(e))

View File

@@ -4,6 +4,7 @@ import sys
from inspect import signature
import uvicorn
import socket
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
@@ -193,9 +194,22 @@ app.mount("/",
)
def invoke_api():
def find_port(port: int):
"""Find a port not in use starting at given port"""
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
# https://github.com/WaylonWalker
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
if s.connect_ex(("localhost", port)) == 0:
return find_port(port=port + 1)
else:
return port
port = find_port(app_config.port)
if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}")
# Start our own event loop for eventing usage
loop = asyncio.new_event_loop()
config = uvicorn.Config(app=app, host=app_config.host, port=app_config.port, loop=loop)
config = uvicorn.Config(app=app, host=app_config.host, port=port, loop=loop)
# Use access_log to turn off logging
server = uvicorn.Server(config)
loop.run_until_complete(server.serve())

View File

@@ -1,14 +1,6 @@
from typing import Literal, Optional, Union, List, Annotated
from pydantic import BaseModel, Field
import re
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from .model import ClipField
from ...backend.util.devices import torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.model_management import BaseModelType, ModelType, SubModelType, ModelPatcher
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import (Blend, Conjunction,

View File

@@ -85,8 +85,8 @@ CONTROLNET_DEFAULT_MODELS = [
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
CONTROLNET_MODE_VALUES = Literal[tuple(
["balanced", "more_prompt", "more_control", "unbalanced"])]
# crop and fill options not ready yet
# CONTROLNET_RESIZE_VALUES = Literal[tuple(["just_resize", "crop_resize", "fill_resize"])]
CONTROLNET_RESIZE_VALUES = Literal[tuple(
["just_resize", "crop_resize", "fill_resize", "just_resize_simple",])]
class ControlNetModelField(BaseModel):
@@ -111,7 +111,8 @@ class ControlField(BaseModel):
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(
default="balanced", description="The control mode to use")
# resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(
default="just_resize", description="The resize mode to use")
@validator("control_weight")
def validate_control_weight(cls, v):
@@ -161,6 +162,7 @@ class ControlNetInvocation(BaseInvocation):
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode used")
# fmt: on
class Config(InvocationConfig):
@@ -187,6 +189,7 @@ class ControlNetInvocation(BaseInvocation):
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
resize_mode=self.resize_mode,
),
)

View File

@@ -22,8 +22,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.model_management import ModelPatcher
from ...backend.util.devices import choose_torch_device, torch_dtype, choose_precision
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
@@ -31,6 +30,7 @@ from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
from invokeai.app.util.controlnet_utils import prepare_control_image
from diffusers.models.attention_processor import (
AttnProcessor2_0,
@@ -40,6 +40,9 @@ from diffusers.models.attention_processor import (
)
DEFAULT_PRECISION = choose_precision(choose_torch_device())
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
@@ -286,7 +289,7 @@ class TextToLatentsInvocation(BaseInvocation):
# and add in batch_size, num_images_per_prompt?
# and do real check for classifier_free_guidance?
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
control_image = model.prepare_control_image(
control_image = prepare_control_image(
image=input_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=control_width_resize,
@@ -296,13 +299,18 @@ class TextToLatentsInvocation(BaseInvocation):
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
)
control_item = ControlNetData(
model=control_model, image_tensor=control_image,
model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
# any resizing needed should currently be happening in prepare_control_image(),
# but adding resize_mode to ControlNetData in case needed in the future
resize_mode=control_info.resize_mode,
)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
@@ -494,7 +502,7 @@ class LatentsToImageInvocation(BaseInvocation):
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(False, description="Decode in full precision")
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
# Schema customisation
@@ -599,7 +607,7 @@ class ResizeLatentsInvocation(BaseInvocation):
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
class Config(InvocationConfig):
schema_extra = {
"ui": {
@@ -645,7 +653,7 @@ class ScaleLatentsInvocation(BaseInvocation):
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
class Config(InvocationConfig):
schema_extra = {
"ui": {
@@ -688,7 +696,7 @@ class ImageToLatentsInvocation(BaseInvocation):
tiled: bool = Field(
default=False,
description="Encode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(False, description="Decode in full precision")
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
# Schema customisation
@@ -756,7 +764,7 @@ class ImageToLatentsInvocation(BaseInvocation):
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
latents = 0.18215 * latents
latents = vae.config.scaling_factor * latents
latents = latents.to(dtype=orig_dtype)
name = f"{context.graph_execution_state_id}__{self.id}"

View File

@@ -54,7 +54,6 @@ class MainModelField(BaseModel):
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
class LoRAModelField(BaseModel):
@@ -222,9 +221,6 @@ class LoraLoaderInvocation(BaseInvocation):
base_model = self.lora.base_model
lora_name = self.lora.model_name
# TODO: ui rewrite
base_model = BaseModelType.StableDiffusion1
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=lora_name,

View File

@@ -1,591 +0,0 @@
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
from contextlib import ExitStack
from typing import List, Literal, Optional, Union
import re
import inspect
from pydantic import BaseModel, Field, validator
import torch
import numpy as np
from diffusers import ControlNetModel, DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from ...backend.model_management import ONNXModelPatcher
from ...backend.util import choose_torch_device
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.backend import BaseModelType, ModelType, SubModelType
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.stable_diffusion import PipelineIntermediateState
from tqdm import tqdm
from .model import ClipField
from .latent import LatentsField, LatentsOutput, build_latents_output, get_scheduler, SAMPLER_NAME_VALUES
from .compel import CompelOutput
ORT_TO_NP_TYPE = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.int8,
"tensor(uint8)": np.uint8,
"tensor(int16)": np.int16,
"tensor(uint16)": np.uint16,
"tensor(int32)": np.int32,
"tensor(uint32)": np.uint32,
"tensor(int64)": np.int64,
"tensor(uint64)": np.uint64,
"tensor(float16)": np.float16,
"tensor(float)": np.float32,
"tensor(double)": np.float64,
}
class ONNXPromptInvocation(BaseInvocation):
type: Literal["prompt_onnx"] = "prompt_onnx"
prompt: str = Field(default="", description="Prompt")
clip: ClipField = Field(None, description="Clip to use")
def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
with tokenizer_info as orig_tokenizer,\
text_encoder_info as text_encoder,\
ExitStack() as stack:
#loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.clip.loras]
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
#stack.enter_context(
# context.services.model_manager.get_model(
# model_name=name,
# base_model=self.clip.text_encoder.base_model,
# model_type=ModelType.TextualInversion,
# )
#)
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model
)
except Exception:
#print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras),\
ONNXModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager):
text_encoder.create_session()
# copy from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L153
text_inputs = tokenizer(
self.prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
"""
untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
"""
prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
text_encoder.release_session()
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (prompt_embeds, None))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
# Text to image
class ONNXTextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
type: Literal["t2l_onnx"] = "t2l_onnx"
# Inputs
# fmt: off
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel")
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
else:
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
return v
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
# "cfg_scale": "float",
"cfg_scale": "number"
}
},
}
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
def invoke(self, context: InvocationContext) -> LatentsOutput:
c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
if isinstance(c, torch.Tensor):
c = c.cpu().numpy()
if isinstance(uc, torch.Tensor):
uc = uc.cpu().numpy()
device = torch.device(choose_torch_device())
prompt_embeds = np.concatenate([uc, c])
latents = context.services.latents.get(self.noise.latents_name)
if isinstance(latents, torch.Tensor):
latents = latents.cpu().numpy()
# TODO: better execution device handling
latents = latents.astype(np.float16)
# get the initial random noise unless the user supplied it
do_classifier_free_guidance = True
#latents_dtype = prompt_embeds.dtype
#latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
#if latents.shape != latents_shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
def torch2numpy(latent: torch.Tensor):
return latent.cpu().numpy()
def numpy2torch(latent, device):
return torch.from_numpy(latent).to(device)
def dispatch_progress(
self, context: InvocationContext, source_node_id: str,
intermediate_state: PipelineIntermediateState) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
scheduler.set_timesteps(self.steps)
latents = latents * np.float64(scheduler.init_noise_sigma)
extra_step_kwargs = dict()
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
extra_step_kwargs.update(
eta=0.0,
)
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
with unet_info as unet,\
ExitStack() as stack:
#loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.unet.loras]
with ONNXModelPatcher.apply_lora_unet(unet, loras):
# TODO:
unet.create_session()
timestep_dtype = next(
(input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float16)"
)
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
import time
times = []
for i in tqdm(range(len(scheduler.timesteps))):
t = scheduler.timesteps[i]
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(numpy2torch(latent_model_input, device), t)
latent_model_input = latent_model_input.cpu().numpy()
# predict the noise residual
timestep = np.array([t], dtype=timestep_dtype)
start_time = time.time()
noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)
times.append(time.time() - start_time)
noise_pred = noise_pred[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
scheduler_output = scheduler.step(
numpy2torch(noise_pred, device), t, numpy2torch(latents, device), **extra_step_kwargs
)
latents = torch2numpy(scheduler_output.prev_sample)
state = PipelineIntermediateState(
run_id= "test",
step=i,
timestep=timestep,
latents=scheduler_output.prev_sample
)
dispatch_progress(
self,
context=context,
source_node_id=source_node_id,
intermediate_state=state
)
# call the callback, if provided
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
print(times)
unet.release_session()
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=torch.from_numpy(latents))
# Latent to image
class ONNXLatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i_onnx"] = "l2i_onnx"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
#tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
if self.vae.vae.submodel != SubModelType.VaeDecoder:
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
with vae_info as vae:
vae.create_session()
# copied from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L427
latents = 1 / 0.18215 * latents
# image = self.vae_decoder(latent_sample=latents)[0]
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate(
[vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
)
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
image = VaeImageProcessor.numpy_to_pil(image)[0]
vae.release_session()
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ONNXModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
#fmt: off
type: Literal["model_loader_output_onnx"] = "model_loader_output_onnx"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae_decoder: VaeField = Field(default=None, description="Vae submodel")
vae_encoder: VaeField = Field(default=None, description="Vae submodel")
#fmt: on
class ONNXSD1ModelLoaderInvocation(BaseInvocation):
"""Loading submodels of selected model."""
type: Literal["sd1_model_loader_onnx"] = "sd1_model_loader_onnx"
model_name: str = Field(default="", description="Model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["model", "loader"],
"type_hints": {
"model_name": "model" # TODO: rename to model_name?
}
},
}
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
model_name = "stable-diffusion-v1-5"
base_model = BaseModelType.StableDiffusion1
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.ONNX,
):
raise Exception(f"Unkown model name: {model_name}!")
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.TextEncoder,
),
loras=[],
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.VaeEncoder,
),
)
)
class OnnxModelField(BaseModel):
"""Onnx model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
class OnnxModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
type: Literal["onnx_model_loader"] = "onnx_model_loader"
model: OnnxModelField = Field(description="The model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Onnx Model Loader",
"tags": ["model", "loader"],
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.ONNX
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeEncoder,
),
)
)

View File

@@ -6,6 +6,7 @@ from typing import List, Literal, Optional, Union
from pydantic import Field, validator
from ...backend.model_management import ModelType, SubModelType
from invokeai.app.util.step_callback import stable_diffusion_xl_step_callback
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
@@ -243,10 +244,31 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
},
}
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
sample,
step,
total_steps,
) -> None:
stable_diffusion_xl_step_callback(
context=context,
node=self.dict(),
source_node_id=source_node_id,
sample=sample,
step=step,
total_steps=total_steps,
)
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
latents = context.services.latents.get(self.noise.latents_name)
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
@@ -341,6 +363,7 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
else:
@@ -409,6 +432,7 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
@@ -473,10 +497,31 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
},
}
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
sample,
step,
total_steps,
) -> None:
stable_diffusion_xl_step_callback(
context=context,
node=self.dict(),
source_node_id=source_node_id,
sample=sample,
step=step,
total_steps=total_steps,
)
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
latents = context.services.latents.get(self.latents.latents_name)
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
@@ -579,6 +624,7 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
else:
@@ -647,6 +693,7 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
self.dispatch_progress(context, source_node_id, latents, i, num_inference_steps)
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)

View File

@@ -32,11 +32,11 @@ class BoardImageRecordStorageBase(ABC):
pass
@abstractmethod
def get_images_for_board(
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets images for a board."""
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
@@ -211,6 +211,26 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
items=images, offset=offset, limit=limit, total=count
)
def get_all_board_image_names_for_board(self, board_id: str) -> list[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT image_name
FROM board_images
WHERE board_id = ?;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = list(map(lambda r: r[0], result))
return image_names
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_board_for_image(
self,
image_name: str,

View File

@@ -38,11 +38,11 @@ class BoardImagesServiceABC(ABC):
pass
@abstractmethod
def get_images_for_board(
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets images for a board."""
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
@@ -98,30 +98,13 @@ class BoardImagesService(BoardImagesServiceABC):
) -> None:
self._services.board_image_records.remove_image_from_board(board_id, image_name)
def get_images_for_board(
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageDTO]:
image_records = self._services.board_image_records.get_images_for_board(
) -> list[str]:
return self._services.board_image_records.get_all_board_image_names_for_board(
board_id
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
board_id,
),
image_records.items,
)
)
return OffsetPaginatedResults[ImageDTO](
items=image_dtos,
offset=image_records.offset,
limit=image_records.limit,
total=image_records.total,
)
def get_board_for_image(
self,
@@ -136,7 +119,7 @@ def board_record_to_dto(
) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={'cover_image_name'}),
**board_record.dict(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@@ -277,7 +277,7 @@ class InvokeAISettings(BaseSettings):
@classmethod
def _excluded_from_yaml(self)->List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return ['type','initconf', 'gpu_mem_reserved', 'max_loaded_models', 'version', 'from_file', 'model', 'restore']
return ['type','initconf', 'gpu_mem_reserved', 'max_loaded_models', 'version', 'from_file', 'model', 'restore', 'root']
class Config:
env_file_encoding = 'utf-8'
@@ -374,16 +374,16 @@ setting environment variables INVOKEAI_<setting>.
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
gpu_mem_reserved : float = Field(default=2.75, ge=0, description="DEPRECATED: use max_vram_cache_size. Amount of VRAM reserved for model storage", category='DEPRECATED')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='auto',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport/main', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default='autoimport/lora', description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default='autoimport/embedding', description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
controlnet_dir : Path = Field(default='autoimport/controlnet', description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
controlnet_dir : Path = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
@@ -397,7 +397,7 @@ setting environment variables INVOKEAI_<setting>.
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="debug", description="Emit logging messages at this level or higher", category="Logging")
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
#fmt: on
@@ -446,7 +446,7 @@ setting environment variables INVOKEAI_<setting>.
Path to the runtime root directory
'''
if self.root:
return Path(self.root).expanduser()
return Path(self.root).expanduser().absolute()
else:
return self.find_root()

View File

@@ -141,7 +141,7 @@ class EventServiceBase:
model_type=model_type,
submodel=submodel,
hash=model_info.hash,
location=model_info.location,
location=str(model_info.location),
precision=str(model_info.precision),
),
)

View File

@@ -10,7 +10,10 @@ from pydantic.generics import GenericModel
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.models.image_record import (
ImageRecord, ImageRecordChanges, deserialize_image_record)
ImageRecord,
ImageRecordChanges,
deserialize_image_record,
)
T = TypeVar("T", bound=BaseModel)
@@ -97,8 +100,8 @@ class ImageRecordStorageBase(ABC):
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
offset: Optional[int] = None,
limit: Optional[int] = None,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
@@ -119,6 +122,11 @@ class ImageRecordStorageBase(ABC):
"""Deletes many image records."""
pass
@abstractmethod
def delete_intermediates(self) -> list[str]:
"""Deletes all intermediate image records, returning a list of deleted image names."""
pass
@abstractmethod
def save(
self,
@@ -322,8 +330,8 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
def get_many(
self,
offset: int = 0,
limit: int = 10,
offset: Optional[int] = None,
limit: Optional[int] = None,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
@@ -377,11 +385,15 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
query_params.append(is_intermediate)
if board_id is not None:
# board_id of "none" is reserved for images without a board
if board_id == "none":
query_conditions += """--sql
AND board_images.board_id IS NULL
"""
elif board_id is not None:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
query_pagination = """--sql
@@ -392,8 +404,12 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
images_query += query_conditions + query_pagination + ";"
# Add all the parameters
images_params = query_params.copy()
images_params.append(limit)
images_params.append(offset)
if limit is not None:
images_params.append(limit)
if offset is not None:
images_params.append(offset)
# Build the list of images, deserializing each row
self._cursor.execute(images_query, images_params)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
@@ -450,6 +466,32 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
finally:
self._lock.release()
def delete_intermediates(self) -> list[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT image_name FROM images
WHERE is_intermediate = TRUE;
"""
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = list(map(lambda r: r[0], result))
self._cursor.execute(
"""--sql
DELETE FROM images
WHERE is_intermediate = TRUE;
"""
)
self._conn.commit()
return image_names
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
image_name: str,

View File

@@ -6,22 +6,33 @@ from typing import TYPE_CHECKING, Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import (ImageCategory,
InvalidImageCategoryException,
InvalidOriginException, ResourceOrigin)
from invokeai.app.services.board_image_record_storage import \
BoardImageRecordStorageBase
from invokeai.app.services.graph import Graph
from invokeai.app.models.image import (
ImageCategory,
InvalidImageCategoryException,
InvalidOriginException,
ResourceOrigin,
)
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.image_file_storage import (
ImageFileDeleteException, ImageFileNotFoundException,
ImageFileSaveException, ImageFileStorageBase)
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
ImageFileStorageBase,
)
from invokeai.app.services.image_record_storage import (
ImageRecordDeleteException, ImageRecordNotFoundException,
ImageRecordSaveException, ImageRecordStorageBase, OffsetPaginatedResults)
ImageRecordDeleteException,
ImageRecordNotFoundException,
ImageRecordSaveException,
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.item_storage import ItemStorageABC
from invokeai.app.services.models.image_record import (ImageDTO, ImageRecord,
ImageRecordChanges,
image_record_to_dto)
from invokeai.app.services.models.image_record import (
ImageDTO,
ImageRecord,
ImageRecordChanges,
image_record_to_dto,
)
from invokeai.app.services.resource_name import NameServiceBase
from invokeai.app.services.urls import UrlServiceBase
from invokeai.app.util.metadata import get_metadata_graph_from_raw_session
@@ -41,6 +52,7 @@ class ImageServiceABC(ABC):
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[dict] = None,
) -> ImageDTO:
@@ -109,6 +121,11 @@ class ImageServiceABC(ABC):
"""Deletes an image."""
pass
@abstractmethod
def delete_intermediates(self) -> int:
"""Deletes all intermediate images."""
pass
@abstractmethod
def delete_images_on_board(self, board_id: str):
"""Deletes all images on a board."""
@@ -158,6 +175,7 @@ class ImageService(ImageServiceABC):
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[dict] = None,
) -> ImageDTO:
@@ -199,6 +217,11 @@ class ImageService(ImageServiceABC):
session_id=session_id,
)
if board_id is not None:
self._services.board_image_records.add_image_to_board(
board_id=board_id, image_name=image_name
)
self._services.image_files.save(
image_name=image_name, image=image, metadata=metadata, graph=graph
)
@@ -378,16 +401,31 @@ class ImageService(ImageServiceABC):
def delete_images_on_board(self, board_id: str):
try:
images = self._services.board_image_records.get_images_for_board(board_id)
image_name_list = list(
map(
lambda r: r.image_name,
images.items,
image_names = (
self._services.board_image_records.get_all_board_image_names_for_board(
board_id
)
)
for image_name in image_name_list:
for image_name in image_names:
self._services.image_files.delete(image_name)
self._services.image_records.delete_many(image_name_list)
self._services.image_records.delete_many(image_names)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image records")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image files")
raise
except Exception as e:
self._services.logger.error("Problem deleting image records and files")
raise e
def delete_intermediates(self) -> int:
try:
image_names = self._services.image_records.delete_intermediates()
count = len(image_names)
for image_name in image_names:
self._services.image_files.delete(image_name)
return count
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image records")
raise

View File

@@ -299,10 +299,11 @@ class ModelManagerService(ModelManagerServiceBase):
else:
config_file = config.root_dir / "configs/models.yaml"
logger.debug(f'config file={config_file}')
logger.debug(f'Config file={config_file}')
device = torch.device(choose_torch_device())
logger.debug(f'GPU device = {device}')
device_name = torch.cuda.get_device_name() if device==torch.device('cuda') else ''
logger.info(f'GPU device = {device} {device_name}')
precision = config.precision
if precision == "auto":

View File

@@ -0,0 +1,342 @@
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import PIL_INTERPOLATION
from einops import rearrange
from controlnet_aux.util import HWC3, resize_image
###################################################################
# Copy of scripts/lvminthin.py from Mikubill/sd-webui-controlnet
###################################################################
# High Quality Edge Thinning using Pure Python
# Written by Lvmin Zhangu
# 2023 April
# Stanford University
# If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet.
lvmin_kernels_raw = [
np.array([
[-1, -1, -1],
[0, 1, 0],
[1, 1, 1]
], dtype=np.int32),
np.array([
[0, -1, -1],
[1, 1, -1],
[0, 1, 0]
], dtype=np.int32)
]
lvmin_kernels = []
lvmin_kernels += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_prunings_raw = [
np.array([
[-1, -1, -1],
[-1, 1, -1],
[0, 0, -1]
], dtype=np.int32),
np.array([
[-1, -1, -1],
[-1, 1, -1],
[-1, 0, 0]
], dtype=np.int32)
]
lvmin_prunings = []
lvmin_prunings += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_prunings_raw]
def remove_pattern(x, kernel):
objects = cv2.morphologyEx(x, cv2.MORPH_HITMISS, kernel)
objects = np.where(objects > 127)
x[objects] = 0
return x, objects[0].shape[0] > 0
def thin_one_time(x, kernels):
y = x
is_done = True
for k in kernels:
y, has_update = remove_pattern(y, k)
if has_update:
is_done = False
return y, is_done
def lvmin_thin(x, prunings=True):
y = x
for i in range(32):
y, is_done = thin_one_time(y, lvmin_kernels)
if is_done:
break
if prunings:
y, _ = thin_one_time(y, lvmin_prunings)
return y
def nake_nms(x):
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
return y
################################################################################
# copied from Mikubill/sd-webui-controlnet external_code.py and modified for InvokeAI
################################################################################
# FIXME: not using yet, if used in the future will most likely require modification of preprocessors
def pixel_perfect_resolution(
image: np.ndarray,
target_H: int,
target_W: int,
resize_mode: str,
) -> int:
"""
Calculate the estimated resolution for resizing an image while preserving aspect ratio.
The function first calculates scaling factors for height and width of the image based on the target
height and width. Then, based on the chosen resize mode, it either takes the smaller or the larger
scaling factor to estimate the new resolution.
If the resize mode is OUTER_FIT, the function uses the smaller scaling factor, ensuring the whole image
fits within the target dimensions, potentially leaving some empty space.
If the resize mode is not OUTER_FIT, the function uses the larger scaling factor, ensuring the target
dimensions are fully filled, potentially cropping the image.
After calculating the estimated resolution, the function prints some debugging information.
Args:
image (np.ndarray): A 3D numpy array representing an image. The dimensions represent [height, width, channels].
target_H (int): The target height for the image.
target_W (int): The target width for the image.
resize_mode (ResizeMode): The mode for resizing.
Returns:
int: The estimated resolution after resizing.
"""
raw_H, raw_W, _ = image.shape
k0 = float(target_H) / float(raw_H)
k1 = float(target_W) / float(raw_W)
if resize_mode == "fill_resize":
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else: # "crop_resize" or "just_resize" (or possibly "just_resize_simple"?)
estimation = max(k0, k1) * float(min(raw_H, raw_W))
# print(f"Pixel Perfect Computation:")
# print(f"resize_mode = {resize_mode}")
# print(f"raw_H = {raw_H}")
# print(f"raw_W = {raw_W}")
# print(f"target_H = {target_H}")
# print(f"target_W = {target_W}")
# print(f"estimation = {estimation}")
return int(np.round(estimation))
###########################################################################
# Copied from detectmap_proc method in scripts/detectmap_proc.py in Mikubill/sd-webui-controlnet
# modified for InvokeAI
###########################################################################
# def detectmap_proc(detected_map, module, resize_mode, h, w):
def np_img_resize(
np_img: np.ndarray,
resize_mode: str,
h: int,
w: int,
device: torch.device = torch.device('cpu')
):
# if 'inpaint' in module:
# np_img = np_img.astype(np.float32)
# else:
# np_img = HWC3(np_img)
np_img = HWC3(np_img)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def get_pytorch_control(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w')
y = y.clone()
# y = y.to(devices.get_device_for("controlnet"))
y = y.to(device)
y = y.clone()
return y
def high_quality_resize(x: np.ndarray,
size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
# if resize_mode == external_code.ResizeMode.RESIZE:
if resize_mode == "just_resize": # RESIZE
np_img = high_quality_resize(np_img, (w, h))
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
old_h, old_w, _ = np_img.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
# if resize_mode == external_code.ResizeMode.OUTER_FIT:
if resize_mode == "fill_resize": # OUTER_FIT
k = min(k0, k1)
borders = np.concatenate([np_img[0, :, :], np_img[-1, :, :], np_img[:, 0, :], np_img[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(np_img.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = np_img
np_img = high_quality_background
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
else: # resize_mode == "crop_resize" (INNER_FIT)
k = max(k0, k1)
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
np_img = np_img[pad_h:pad_h + h, pad_w:pad_w + w]
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
def prepare_control_image(
# image used to be Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor, List[torch.Tensor]]
# but now should be able to assume that image is a single PIL.Image, which simplifies things
image: Image,
# FIXME: need to fix hardwiring of width and height, change to basing on latents dimensions?
# latents_to_match_resolution, # TorchTensor of shape (batch_size, 3, height, width)
width=512, # should be 8 * latent.shape[3]
height=512, # should be 8 * latent height[2]
# batch_size=1, # currently no batching
# num_images_per_prompt=1, # currently only single image
device="cuda",
dtype=torch.float16,
do_classifier_free_guidance=True,
control_mode="balanced",
resize_mode="just_resize_simple",
):
# FIXME: implement "crop_resize_simple" and "fill_resize_simple", or pull them out
if (resize_mode == "just_resize_simple" or
resize_mode == "crop_resize_simple" or
resize_mode == "fill_resize_simple"):
image = image.convert("RGB")
if (resize_mode == "just_resize_simple"):
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
elif (resize_mode == "crop_resize_simple"): # not yet implemented
pass
elif (resize_mode == "fill_resize_simple"): # not yet implemented
pass
nimage = np.array(image)
nimage = nimage[None, :]
nimage = np.concatenate([nimage], axis=0)
# normalizing RGB values to [0,1] range (in PIL.Image they are [0-255])
nimage = np.array(nimage).astype(np.float32) / 255.0
nimage = nimage.transpose(0, 3, 1, 2)
timage = torch.from_numpy(nimage)
# use fancy lvmin controlnet resizing
elif (resize_mode == "just_resize" or resize_mode == "crop_resize" or resize_mode == "fill_resize"):
nimage = np.array(image)
timage, nimage = np_img_resize(
np_img=nimage,
resize_mode=resize_mode,
h=height,
w=width,
# device=torch.device('cpu')
device=device,
)
else:
pass
print("ERROR: invalid resize_mode ==> ", resize_mode)
exit(1)
timage = timage.to(device=device, dtype=dtype)
cfg_injection = (control_mode == "more_control" or control_mode == "unbalanced")
if do_classifier_free_guidance and not cfg_injection:
timage = torch.cat([timage] * 2)
return timage

View File

@@ -1,9 +1,30 @@
import torch
from PIL import Image
from invokeai.app.models.exceptions import CanceledException
from invokeai.app.models.image import ProgressImage
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
from invokeai.app.services.config import InvokeAIAppConfig
def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix = None):
latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors
if smooth_matrix is not None:
latent_image = latent_image.unsqueeze(0).permute(3, 0, 1, 2)
latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1,1,3,3)), padding=1)
latent_image = latent_image.permute(1, 2, 3, 0).squeeze(0)
latents_ubyte = (
((latent_image + 1) / 2)
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
).cpu()
return Image.fromarray(latents_ubyte.numpy())
def stable_diffusion_step_callback(
@@ -37,7 +58,24 @@ def stable_diffusion_step_callback(
# step = intermediate_state.step
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
# origingally adapted from code by @erucipe and @keturn here:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
# these updated numbers for v1.5 are from @torridgristle
v1_5_latent_rgb_factors = torch.tensor(
[
# R G B
[0.3444, 0.1385, 0.0670], # L1
[0.1247, 0.4027, 0.1494], # L2
[-0.3192, 0.2513, 0.2103], # L3
[-0.1307, -0.1874, -0.7445], # L4
],
dtype=sample.dtype,
device=sample.device,
)
image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors)
(width, height) = image.size
width *= 8
@@ -53,3 +91,56 @@ def stable_diffusion_step_callback(
step=intermediate_state.step,
total_steps=node["steps"],
)
def stable_diffusion_xl_step_callback(
context: InvocationContext,
node: dict,
source_node_id: str,
sample,
step,
total_steps,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
sdxl_latent_rgb_factors = torch.tensor(
[
# R G B
[ 0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739],
[ 0.1770, 0.3588, -0.2048],
[-0.4350, -0.2644, -0.4289],
],
dtype=sample.dtype,
device=sample.device,
)
sdxl_smooth_matrix = torch.tensor(
[
#[ 0.0478, 0.1285, 0.0478],
#[ 0.1285, 0.2948, 0.1285],
#[ 0.0478, 0.1285, 0.0478],
[0.0358, 0.0964, 0.0358],
[0.0964, 0.4711, 0.0964],
[0.0358, 0.0964, 0.0358],
],
dtype=sample.dtype,
device=sample.device,
)
image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
graph_execution_state_id=context.graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=step,
total_steps=total_steps,
)

View File

@@ -466,6 +466,7 @@ class Generator:
dtype=samples.dtype,
device=samples.device,
)
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
latents_ubyte = (
((latent_image + 1) / 2)

View File

@@ -23,6 +23,7 @@ from urllib import request
import npyscreen
import transformers
import omegaconf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from huggingface_hub import HfFolder
@@ -44,6 +45,7 @@ from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
from invokeai.frontend.install.widgets import (
CenteredButtonPress,
FileBox,
IntTitleSlider,
set_min_terminal_size,
CyclingForm,
@@ -409,21 +411,21 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Directories containing textual inversion, controlnet and LoRA models (<tab> autocompletes, ctrl-N advances):",
value="Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models (<tab> autocompletes, ctrl-N advances):",
editable=False,
color="CONTROL",
)
self.autoimport_dirs = {}
for description, config_name, path in autoimport_paths(old_opts):
self.autoimport_dirs[config_name] = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=description+':',
value=str(path),
self.autoimport_dirs['autoimport_dir'] = self.add_widget_intelligent(
FileBox,
name=f'Autoimport Folder',
value=str(config.root_path / config.autoimport_dir),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
max_height = 3,
scroll_exit=True
)
self.nextrely += 1
@@ -560,7 +562,6 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
editApp.run()
return editApp.new_opts()
def default_startup_options(init_file: Path) -> Namespace:
opts = InvokeAIAppConfig.get_config()
if not init_file.exists():
@@ -568,7 +569,14 @@ def default_startup_options(init_file: Path) -> Namespace:
return opts
def default_user_selections(program_opts: Namespace) -> InstallSelections:
installer = ModelInstall(config)
try:
installer = ModelInstall(config)
except omegaconf.errors.ConfigKeyError:
logger.warning('Your models.yaml file is corrupt or out of date. Reinitializing')
initialize_rootdir(config.root_path, True)
installer = ModelInstall(config)
models = installer.all_models()
return InstallSelections(
install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id]
@@ -576,19 +584,8 @@ def default_user_selections(program_opts: Namespace) -> InstallSelections:
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
if program_opts.yes_to_all
else list(),
# scan_directory=None,
# autoscan_on_startup=None,
)
# -------------------------------------
def autoimport_paths(config: InvokeAIAppConfig):
return [
('Checkpoints & diffusers models', 'autoimport_dir', config.root_path / config.autoimport_dir),
('LoRA/LyCORIS models', 'lora_dir', config.root_path / config.lora_dir),
('Controlnet models', 'controlnet_dir', config.root_path / config.controlnet_dir),
('Textual Inversion Embeddings', 'embedding_dir', config.root_path / config.embedding_dir),
]
# -------------------------------------
def initialize_rootdir(root: Path, yes_to_all: bool = False):
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
@@ -664,6 +661,9 @@ def write_opts(opts: Namespace, init_file: Path):
with open(init_file,'w', encoding='utf-8') as file:
file.write(new_config.to_yaml())
if hasattr(opts,'hf_token') and opts.hf_token:
HfLogin(opts.hf_token)
# -------------------------------------
def default_output_dir() -> Path:
return config.root_path / "outputs"

View File

@@ -3,7 +3,6 @@ Initialization file for invokeai.backend.model_management
"""
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType
from .model_cache import ModelCache
from .lora import ModelPatcher, ONNXModelPatcher
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType, ModelNotFoundException
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType, ModelNotFoundException, DuplicateModelException
from .model_merge import ModelMerger, MergeInterpolationMethod

View File

@@ -21,6 +21,7 @@ import re
import warnings
from pathlib import Path
from typing import Union
from packaging import version
import torch
from safetensors.torch import load_file
@@ -63,6 +64,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from diffusers.utils import is_safetensors_available
import transformers
from transformers import (
AutoFeatureExtractor,
BertTokenizerFast,
@@ -841,7 +843,16 @@ def convert_ldm_clip_checkpoint(checkpoint):
key
]
text_model.load_state_dict(text_model_dict)
# transformers 4.31.0 and higher - this key no longer in state dict
if version.parse(transformers.__version__) >= version.parse("4.31.0"):
position_ids = text_model_dict.pop("text_model.embeddings.position_ids", None)
text_model.load_state_dict(text_model_dict)
if position_ids is not None:
text_model.text_model.embeddings.position_ids.copy_(position_ids)
# transformers 4.30.2 and lower - position_ids is part of state_dict
else:
text_model.load_state_dict(text_model_dict)
return text_model
@@ -947,7 +958,16 @@ def convert_open_clip_checkpoint(checkpoint):
text_model_dict[new_key] = checkpoint[key]
text_model.load_state_dict(text_model_dict)
# transformers 4.31.0 and higher - this key no longer in state dict
if version.parse(transformers.__version__) >= version.parse("4.31.0"):
position_ids = text_model_dict.pop("text_model.embeddings.position_ids", None)
text_model.load_state_dict(text_model_dict)
if position_ids is not None:
text_model.text_model.embeddings.position_ids.copy_(position_ids)
# transformers 4.30.2 and lower - position_ids is part of state_dict
else:
text_model.load_state_dict(text_model_dict)
return text_model

View File

@@ -6,22 +6,11 @@ from typing import Optional, Dict, Tuple, Any, Union, List
from pathlib import Path
import torch
from safetensors.torch import load_file
from torch.utils.hooks import RemovableHandle
from diffusers.models import UNet2DConditionModel
from transformers import CLIPTextModel
from onnx import numpy_helper
from onnxruntime import OrtValue
import numpy as np
from compel.embeddings_provider import BaseTextualInversionManager
from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer
# TODO: rename and split this file
class LoRALayerBase:
#rank: Optional[int]
#alpha: Optional[float]
@@ -719,185 +708,3 @@ class TextualInversionManager(BaseTextualInversionManager):
return new_token_ids
class ONNXModelPatcher:
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: OnnxRuntimeModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: OnnxRuntimeModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
# based on
# https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323
@classmethod
@contextmanager
def apply_lora(
cls,
model: IAIOnnxRuntimeModel,
loras: List[Tuple[LoraModel, float]],
prefix: str,
):
from .models.base import IAIOnnxRuntimeModel
if not isinstance(model, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_weights = dict()
try:
blended_loras = dict()
for lora, lora_weight in loras:
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
layer_key = layer_key.replace(prefix, "")
layer_weight = layer.get_weight().detach().cpu().numpy() * lora_weight
if layer_key is blended_loras:
blended_loras[layer_key] += layer_weight
else:
blended_loras[layer_key] = layer_weight
node_names = dict()
for node in model.nodes.values():
node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name
for layer_key, lora_weight in blended_loras.items():
conv_key = layer_key + "_Conv"
gemm_key = layer_key + "_Gemm"
matmul_key = layer_key + "_MatMul"
if conv_key in node_names or gemm_key in node_names:
if conv_key in node_names:
conv_node = model.nodes[node_names[conv_key]]
else:
conv_node = model.nodes[node_names[gemm_key]]
weight_name = [n for n in conv_node.input if ".weight" in n][0]
orig_weight = model.tensors[weight_name]
if orig_weight.shape[-2:] == (1, 1):
if lora_weight.shape[-2:] == (1, 1):
new_weight = orig_weight.squeeze((3, 2)) + lora_weight.squeeze((3, 2))
else:
new_weight = orig_weight.squeeze((3, 2)) + lora_weight
new_weight = np.expand_dims(new_weight, (2, 3))
else:
if orig_weight.shape != lora_weight.shape:
new_weight = orig_weight + lora_weight.reshape(orig_weight.shape)
else:
new_weight = orig_weight + lora_weight
orig_weights[weight_name] = orig_weight
model.tensors[weight_name] = new_weight.astype(orig_weight.dtype)
elif matmul_key in node_names:
weight_node = model.nodes[node_names[matmul_key]]
matmul_name = [n for n in weight_node.input if "MatMul" in n][0]
orig_weight = model.tensors[matmul_name]
new_weight = orig_weight + lora_weight.transpose()
orig_weights[matmul_name] = orig_weight
model.tensors[matmul_name] = new_weight.astype(orig_weight.dtype)
else:
# warn? err?
pass
yield
finally:
# restore original weights
for name, orig_weight in orig_weights.items():
model.tensors[name] = orig_weight
@classmethod
@contextmanager
def apply_ti(
cls,
tokenizer: CLIPTokenizer,
text_encoder: IAIOnnxRuntimeModel,
ti_list: List[Any],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
from .models.base import IAIOnnxRuntimeModel
if not isinstance(text_encoder, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_embeddings = None
try:
ti_tokenizer = copy.deepcopy(tokenizer)
ti_manager = TextualInversionManager(ti_tokenizer)
def _get_trigger(ti, index):
trigger = ti.name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti, i))
# modify text_encoder
orig_embeddings = text_encoder.tensors["text_model.embeddings.token_embedding.weight"]
embeddings = np.concatenate(
(
np.copy(orig_embeddings),
np.zeros((new_tokens_added, orig_embeddings.shape[1]))
),
axis=0,
)
for ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i].detach().numpy()
trigger = _get_trigger(ti, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
if embeddings[token_id].shape != embedding.shape:
raise ValueError(
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {embeddings[token_id].shape[0]}."
)
embeddings[token_id] = embedding
ti_tokens.append(token_id)
if len(ti_tokens) > 1:
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = embeddings.astype(orig_embeddings.dtype)
yield ti_tokenizer, ti_manager
finally:
# restore
if orig_embeddings is not None:
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = orig_embeddings

View File

@@ -251,7 +251,9 @@ from .model_search import ModelSearch
from .models import (
BaseModelType, ModelType, SubModelType,
ModelError, SchedulerPredictionType, MODEL_CLASSES,
ModelConfigBase, ModelNotFoundException, InvalidModelException,
ModelConfigBase,
ModelNotFoundException, InvalidModelException,
DuplicateModelException,
)
# We are only starting to number the config file with release 3.
@@ -858,7 +860,7 @@ class ModelManager(object):
loaded_files = set()
new_models_found = False
self.logger.info(f'scanning {self.app_config.models_path} for new models')
self.logger.info(f'Scanning {self.app_config.models_path} for new models')
with Chdir(self.app_config.root_path):
for model_key, model_config in list(self.models.items()):
model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
@@ -891,15 +893,18 @@ class ModelManager(object):
model_name = model_path.name if model_path.is_dir() else model_path.stem
model_key = self.create_key(model_name, cur_base_model, cur_model_type)
if model_key in self.models:
raise Exception(f"Model with key {model_key} added twice")
if model_path.is_relative_to(self.app_config.root_path):
model_path = model_path.relative_to(self.app_config.root_path)
try:
if model_key in self.models:
raise DuplicateModelException(f"Model with key {model_key} added twice")
if model_path.is_relative_to(self.app_config.root_path):
model_path = model_path.relative_to(self.app_config.root_path)
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config
new_models_found = True
except DuplicateModelException as e:
self.logger.warning(e)
except InvalidModelException:
self.logger.warning(f"Not a valid model: {model_path}")
except NotImplementedError as e:
@@ -938,20 +943,29 @@ class ModelManager(object):
def models_found(self):
return self.new_models_found
config = self.app_config
# LS: hacky
# Patch in the SD VAE from core so that it is available for use by the UI
try:
self.heuristic_import({config.root_path / 'models/core/convert/sd-vae-ft-mse'})
except:
pass
installer = ModelInstall(config = self.app_config,
model_manager = self,
prediction_type_helper = ask_user_for_prediction_type,
)
config = self.app_config
known_paths = {config.root_path / x['path'] for x in self.list_models()}
directories = {config.root_path / x for x in [config.autoimport_dir,
config.lora_dir,
config.embedding_dir,
config.controlnet_dir]
config.controlnet_dir,
] if x
}
scanner = ScanAndImport(directories, self.logger, ignore=known_paths, installer=installer)
scanner.search()
return scanner.models_found()
def heuristic_import(self,

View File

@@ -23,7 +23,7 @@ class ModelProbeInfo(object):
variant_type: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
format: Literal['diffusers','checkpoint', 'lycoris', 'olive']
format: Literal['diffusers','checkpoint', 'lycoris']
image_size: int
class ProbeBase(object):
@@ -39,6 +39,7 @@ class ModelProbe(object):
CLASS2TYPE = {
'StableDiffusionPipeline' : ModelType.Main,
'StableDiffusionInpaintPipeline' : ModelType.Main,
'StableDiffusionXLPipeline' : ModelType.Main,
'StableDiffusionXLImg2ImgPipeline' : ModelType.Main,
'AutoencoderKL' : ModelType.Vae,
@@ -401,7 +402,7 @@ class PipelineFolderProbe(FolderProbeBase):
in_channels = conf['in_channels']
if in_channels == 9:
return ModelVariantType.Inpainting
return ModelVariantType.Inpaint
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:

View File

@@ -2,7 +2,11 @@ import inspect
from enum import Enum
from pydantic import BaseModel
from typing import Literal, get_origin
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException, InvalidModelException
from .base import (
BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase,
ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings,
ModelNotFoundException, InvalidModelException, DuplicateModelException
)
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
from .sdxl import StableDiffusionXLModel
from .vae import VaeModel
@@ -10,11 +14,8 @@ from .lora import LoRAModel
from .controlnet import ControlNetModel # TODO:
from .textual_inversion import TextualInversionModel
from .stable_diffusion_onnx import ONNXStableDiffusion1Model, ONNXStableDiffusion2Model
MODEL_CLASSES = {
BaseModelType.StableDiffusion1: {
ModelType.ONNX: ONNXStableDiffusion1Model,
ModelType.Main: StableDiffusion1Model,
ModelType.Vae: VaeModel,
ModelType.Lora: LoRAModel,
@@ -22,7 +23,6 @@ MODEL_CLASSES = {
ModelType.TextualInversion: TextualInversionModel,
},
BaseModelType.StableDiffusion2: {
ModelType.ONNX: ONNXStableDiffusion2Model,
ModelType.Main: StableDiffusion2Model,
ModelType.Vae: VaeModel,
ModelType.Lora: LoRAModel,
@@ -36,7 +36,6 @@ MODEL_CLASSES = {
ModelType.Lora: LoRAModel,
ModelType.ControlNet: ControlNetModel,
ModelType.TextualInversion: TextualInversionModel,
ModelType.ONNX: ONNXStableDiffusion2Model,
},
BaseModelType.StableDiffusionXLRefiner: {
ModelType.Main: StableDiffusionXLModel,
@@ -45,7 +44,6 @@ MODEL_CLASSES = {
ModelType.Lora: LoRAModel,
ModelType.ControlNet: ControlNetModel,
ModelType.TextualInversion: TextualInversionModel,
ModelType.ONNX: ONNXStableDiffusion2Model,
},
#BaseModelType.Kandinsky2_1: {
# ModelType.Main: Kandinsky2_1Model,

View File

@@ -8,19 +8,16 @@ from abc import ABCMeta, abstractmethod
from pathlib import Path
from picklescan.scanner import scan_file_path
import torch
import numpy as np
import safetensors.torch
from pathlib import Path
from diffusers import DiffusionPipeline, ConfigMixin, OnnxRuntimeModel
from diffusers import DiffusionPipeline, ConfigMixin
from contextlib import suppress
from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
import onnx
from onnx import numpy_helper
from onnx.external_data_helper import set_external_data
from onnxruntime import InferenceSession, OrtValue, SessionOptions, ExecutionMode, GraphOptimizationLevel
class DuplicateModelException(Exception):
pass
class InvalidModelException(Exception):
pass
@@ -35,7 +32,6 @@ class BaseModelType(str, Enum):
#Kandinsky2_1 = "kandinsky-2.1"
class ModelType(str, Enum):
ONNX = "onnx"
Main = "main"
Vae = "vae"
Lora = "lora"
@@ -49,8 +45,6 @@ class SubModelType(str, Enum):
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
#MoVQ = "movq"
@@ -263,18 +257,16 @@ class DiffusersModel(ModelBase):
try:
# TODO: set cache_dir to /dev/null to be sure that cache not used?
model = self.child_types[child_type].from_pretrained(
os.path.join(self.model_path, child_type.value),
#subfolder=child_type.value,
self.model_path,
subfolder=child_type.value,
torch_dtype=torch_dtype,
variant=variant,
local_files_only=True,
)
break
except Exception as e:
print("====ERR LOAD====")
print(f"{variant}: {e}")
import traceback
traceback.print_exc()
#print("====ERR LOAD====")
#print(f"{variant}: {e}")
pass
else:
raise Exception(f"Failed to load {self.base_model}:{self.model_type}:{child_type} model")
@@ -441,188 +433,3 @@ class SilenceWarnings(object):
transformers_logging.set_verbosity(self.transformers_verbosity)
diffusers_logging.set_verbosity(self.diffusers_verbosity)
warnings.simplefilter('default')
ONNX_WEIGHTS_NAME = "model.onnx"
class IAIOnnxRuntimeModel:
class _tensor_access:
def __init__(self, model):
self.model = model
self.indexes = dict()
for idx, obj in enumerate(self.model.proto.graph.initializer):
self.indexes[obj.name] = idx
def __getitem__(self, key: str):
return self.model.data[key].numpy()
def __setitem__(self, key: str, value: np.ndarray):
new_node = numpy_helper.from_array(value)
# set_external_data(new_node, location="in-memory-location")
new_node.name = key
# new_node.ClearField("raw_data")
del self.model.proto.graph.initializer[self.indexes[key]]
self.model.proto.graph.initializer.insert(self.indexes[key], new_node)
self.model.data[key] = OrtValue.ortvalue_from_numpy(value)
# __delitem__
def __contains__(self, key: str):
return key in self.model.data
def items(self):
raise NotImplementedError("tensor.items")
#return [(obj.name, obj) for obj in self.raw_proto]
def keys(self):
return self.model.data.keys()
def values(self):
raise NotImplementedError("tensor.values")
#return [obj for obj in self.raw_proto]
class _access_helper:
def __init__(self, raw_proto):
self.indexes = dict()
self.raw_proto = raw_proto
for idx, obj in enumerate(raw_proto):
self.indexes[obj.name] = idx
def __getitem__(self, key: str):
return self.raw_proto[self.indexes[key]]
def __setitem__(self, key: str, value):
index = self.indexes[key]
del self.raw_proto[index]
self.raw_proto.insert(index, value)
# __delitem__
def __contains__(self, key: str):
return key in self.indexes
def items(self):
return [(obj.name, obj) for obj in self.raw_proto]
def keys(self):
return self.indexes.keys()
def values(self):
return [obj for obj in self.raw_proto]
def __init__(self, model_path: str, provider: Optional[str]):
self.path = model_path
self.session = None
self.provider = provider or "CPUExecutionProvider"
"""
self.data_path = self.path + "_data"
if not os.path.exists(self.data_path):
print(f"Moving model tensors to separate file: {self.data_path}")
tmp_proto = onnx.load(model_path, load_external_data=True)
onnx.save_model(tmp_proto, self.path, save_as_external_data=True, all_tensors_to_one_file=True, location=os.path.basename(self.data_path), size_threshold=1024, convert_attribute=False)
del tmp_proto
gc.collect()
self.proto = onnx.load(model_path, load_external_data=False)
"""
self.proto = onnx.load(model_path, load_external_data=True)
self.data = dict()
for tensor in self.proto.graph.initializer:
name = tensor.name
if tensor.HasField("raw_data"):
npt = numpy_helper.to_array(tensor)
orv = OrtValue.ortvalue_from_numpy(npt)
self.data[name] = orv
# set_external_data(tensor, location="in-memory-location")
tensor.name = name
# tensor.ClearField("raw_data")
self.nodes = self._access_helper(self.proto.graph.node)
self.initializers = self._access_helper(self.proto.graph.initializer)
# print(self.proto.graph.input)
# print(self.proto.graph.initializer)
self.tensors = self._tensor_access(self)
# TODO: integrate with model manager/cache
def create_session(self):
if self.session is None:
#onnx.save(self.proto, "tmp.onnx")
#onnx.save_model(self.proto, "tmp.onnx", save_as_external_data=True, all_tensors_to_one_file=True, location="tmp.onnx_data", size_threshold=1024, convert_attribute=False)
# TODO: something to be able to get weight when they already moved outside of model proto
#(trimmed_model, external_data) = buffer_external_data_tensors(self.proto)
sess = SessionOptions()
#self._external_data.update(**external_data)
# sess.add_external_initializers(list(self.data.keys()), list(self.data.values()))
# sess.enable_profiling = True
# sess.intra_op_num_threads = 1
# sess.inter_op_num_threads = 1
# sess.execution_mode = ExecutionMode.ORT_SEQUENTIAL
# sess.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
# sess.enable_cpu_mem_arena = True
# sess.enable_mem_pattern = True
# sess.add_session_config_entry("session.intra_op.use_xnnpack_threadpool", "1") ########### It's the key code
sess.add_free_dimension_override_by_name("unet_sample_batch", 2)
sess.add_free_dimension_override_by_name("unet_sample_channels", 4)
sess.add_free_dimension_override_by_name("unet_hidden_batch", 2)
sess.add_free_dimension_override_by_name("unet_hidden_sequence", 77)
sess.add_free_dimension_override_by_name("unet_sample_height", 64)
sess.add_free_dimension_override_by_name("unet_sample_width", 64)
sess.add_free_dimension_override_by_name("unet_time_batch", 1)
self.session = InferenceSession(self.proto.SerializeToString(), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'], sess_options=sess)
#self.session = InferenceSession("tmp.onnx", providers=[self.provider], sess_options=self.sess_options)
self.io_binding = self.session.io_binding()
def release_session(self):
self.session = None
import gc
gc.collect()
def __call__(self, **kwargs):
if self.session is None:
raise Exception("You should call create_session before running model")
inputs = {k: np.array(v) for k, v in kwargs.items()}
output_names = self.session.get_outputs()
for k in inputs:
self.io_binding.bind_cpu_input(k, inputs[k])
for name in output_names:
self.io_binding.bind_output(name.name)
self.session.run_with_iobinding(self.io_binding, None)
return self.io_binding.copy_outputs_to_cpu()
# compatability with diffusers load code
@classmethod
def from_pretrained(
cls,
model_id: Union[str, Path],
subfolder: Union[str, Path] = None,
file_name: Optional[str] = None,
provider: Optional[str] = None,
sess_options: Optional["SessionOptions"] = None,
**kwargs,
):
file_name = file_name or ONNX_WEIGHTS_NAME
if os.path.isdir(model_id):
model_path = model_id
if subfolder is not None:
model_path = os.path.join(model_path, subfolder)
model_path = os.path.join(model_path, file_name)
else:
model_path = model_id
# load model from local directory
if not os.path.isfile(model_path):
raise Exception(f"Model not found: {model_path}")
# TODO: session options
return cls(model_path, provider=provider)

View File

@@ -1,156 +0,0 @@
import os
import json
from enum import Enum
from pydantic import Field
from pathlib import Path
from typing import Literal, Optional, Union
from .base import (
ModelBase,
ModelConfigBase,
BaseModelType,
ModelType,
SubModelType,
ModelVariantType,
DiffusersModel,
SchedulerPredictionType,
SilenceWarnings,
read_checkpoint_meta,
classproperty,
OnnxRuntimeModel,
IAIOnnxRuntimeModel,
)
from invokeai.app.services.config import InvokeAIAppConfig
class ONNXStableDiffusion1Model(DiffusersModel):
class Config(ModelConfigBase):
model_format: None
variant: ModelVariantType
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion1
assert model_type == ModelType.ONNX
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.ONNX,
)
for child_name, child_type in self.child_types.items():
if child_type is OnnxRuntimeModel:
self.child_types[child_name] = IAIOnnxRuntimeModel
# TODO: check that no optimum models provided
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
in_channels = 4 # TODO:
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 1.* model format")
return cls.create_config(
path=path,
model_format=model_format,
variant=variant,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
return None
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
return model_path
class ONNXStableDiffusion2Model(DiffusersModel):
# TODO: check that configs overwriten properly
class Config(ModelConfigBase):
model_format: None
variant: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion2
assert model_type == ModelType.ONNX
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion2,
model_type=ModelType.ONNX,
)
for child_name, child_type in self.child_types.items():
if child_type is OnnxRuntimeModel:
self.child_types[child_name] = IAIOnnxRuntimeModel
# TODO: check that no optimum models provided
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
in_channels = 4 # TODO:
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 5:
variant = ModelVariantType.Depth
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 2.* model format")
if variant == ModelVariantType.Normal:
prediction_type = SchedulerPredictionType.VPrediction
upcast_attention = True
else:
prediction_type = SchedulerPredictionType.Epsilon
upcast_attention = False
return cls.create_config(
path=path,
model_format=model_format,
variant=variant,
prediction_type=prediction_type,
upcast_attention=upcast_attention,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
return None
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
return model_path

View File

@@ -219,6 +219,7 @@ class ControlNetData:
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
control_mode: str = Field(default="balanced")
resize_mode: str = Field(default="just_resize")
@dataclass
@@ -653,7 +654,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if cfg_injection:
# Inferred ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
# prepend zeros for unconditional batch
down_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_samples]
mid_sample = torch.cat([torch.zeros_like(mid_sample), mid_sample])
@@ -954,53 +955,3 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
debug_image(
img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True
)
# Copied from diffusers pipeline_stable_diffusion_controlnet.py
# Returns torch.Tensor of shape (batch_size, 3, height, width)
@staticmethod
def prepare_control_image(
image,
# FIXME: need to fix hardwiring of width and height, change to basing on latents dimensions?
# latents,
width=512, # should be 8 * latent.shape[3]
height=512, # should be 8 * latent height[2]
batch_size=1,
num_images_per_prompt=1,
device="cuda",
dtype=torch.float16,
do_classifier_free_guidance=True,
control_mode="balanced"
):
if not isinstance(image, torch.Tensor):
if isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
images = []
for image_ in image:
image_ = image_.convert("RGB")
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
image_ = np.array(image_)
image_ = image_[None, :]
images.append(image_)
image = images
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
cfg_injection = (control_mode == "more_control" or control_mode == "unbalanced")
if do_classifier_free_guidance and not cfg_injection:
image = torch.cat([image] * 2)
return image

View File

@@ -1,4 +1,6 @@
import math
import torch
import diffusers
if torch.backends.mps.is_available():
@@ -61,3 +63,150 @@ def new_torch_interpolate(input, size=None, scale_factor=None, mode='nearest', a
return _torch_interpolate(input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
torch.nn.functional.interpolate = new_torch_interpolate
# TODO: refactor it
_SlicedAttnProcessor = diffusers.models.attention_processor.SlicedAttnProcessor
class ChunkedSlicedAttnProcessor:
r"""
Processor for implementing sliced attention.
Args:
slice_size (`int`, *optional*):
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
`attention_head_dim` must be a multiple of the `slice_size`.
"""
def __init__(self, slice_size):
assert isinstance(slice_size, int)
slice_size = 1 # TODO: maybe implement chunking in batches too when enough memory
self.slice_size = slice_size
self._sliced_attn_processor = _SlicedAttnProcessor(slice_size)
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
if self.slice_size != 1 or attn.upcast_attention:
return self._sliced_attn_processor(attn, hidden_states, encoder_hidden_states, attention_mask)
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
batch_size_attention, query_tokens, _ = query.shape
hidden_states = torch.zeros(
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
)
chunk_tmp_tensor = torch.empty(self.slice_size, query.shape[1], key.shape[1], dtype=query.dtype, device=query.device)
for i in range(batch_size_attention // self.slice_size):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
self.get_attention_scores_chunked(attn, query_slice, key_slice, attn_mask_slice, hidden_states[start_idx:end_idx], value[start_idx:end_idx], chunk_tmp_tensor)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def get_attention_scores_chunked(self, attn, query, key, attention_mask, hidden_states, value, chunk):
# batch size = 1
assert query.shape[0] == 1
assert key.shape[0] == 1
assert value.shape[0] == 1
assert hidden_states.shape[0] == 1
dtype = query.dtype
if attn.upcast_attention:
query = query.float()
key = key.float()
#out_item_size = query.dtype.itemsize
#if attn.upcast_attention:
# out_item_size = torch.float32.itemsize
out_item_size = query.element_size()
if attn.upcast_attention:
out_item_size = 4
chunk_size = 2 ** 29
out_size = query.shape[1] * key.shape[1] * out_item_size
chunks_count = min(query.shape[1], math.ceil((out_size - 1) / chunk_size))
chunk_step = max(1, int(query.shape[1] / chunks_count))
key = key.transpose(-1, -2)
def _get_chunk_view(tensor, start, length):
if start + length > tensor.shape[1]:
length = tensor.shape[1] - start
#print(f"view: [{tensor.shape[0]},{tensor.shape[1]},{tensor.shape[2]}] - start: {start}, length: {length}")
return tensor[:,start:start+length]
for chunk_pos in range(0, query.shape[1], chunk_step):
if attention_mask is not None:
torch.baddbmm(
_get_chunk_view(attention_mask, chunk_pos, chunk_step),
_get_chunk_view(query, chunk_pos, chunk_step),
key,
beta=1,
alpha=attn.scale,
out=chunk,
)
else:
torch.baddbmm(
torch.zeros((1,1,1), device=query.device, dtype=query.dtype),
_get_chunk_view(query, chunk_pos, chunk_step),
key,
beta=0,
alpha=attn.scale,
out=chunk,
)
chunk = chunk.softmax(dim=-1)
torch.bmm(chunk, value, out=_get_chunk_view(hidden_states, chunk_pos, chunk_step))
#del chunk
diffusers.models.attention_processor.SlicedAttnProcessor = ChunkedSlicedAttnProcessor

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-ba194473.js"></script>
<script type="module" crossorigin src="./assets/index-e2437518.js"></script>
</head>
<body dir="ltr">

View File

@@ -455,7 +455,12 @@
"addDifference": "Add Difference",
"pickModelType": "Pick Model Type",
"selectModel": "Select Model",
"importModels": "Import Models"
"importModels": "Import Models",
"settings": "Settings",
"syncModels": "Sync Models",
"syncModelsDesc": "If your models are out of sync with the backend, you can refresh them up using this option. This is generally handy in cases where you manually update your models.yaml file or add models to the InvokeAI root folder after the application has booted.",
"modelsSynced": "Models Synced",
"modelSyncFailed": "Model Sync Failed"
},
"parameters": {
"general": "General",
@@ -547,7 +552,8 @@
"saveSteps": "Save images every n steps",
"confirmOnDelete": "Confirm On Delete",
"displayHelpIcons": "Display Help Icons",
"useCanvasBeta": "Use Canvas Beta Layout",
"alternateCanvasLayout": "Alternate Canvas Layout",
"enableNodesEditor": "Enable Nodes Editor",
"enableImageDebugging": "Enable Image Debugging",
"useSlidersForAll": "Use Sliders For All Options",
"showProgressInViewer": "Show Progress Images in Viewer",
@@ -564,7 +570,9 @@
"ui": "User Interface",
"favoriteSchedulers": "Favorite Schedulers",
"favoriteSchedulersPlaceholder": "No schedulers favorited",
"showAdvancedOptions": "Show Advanced Options"
"showAdvancedOptions": "Show Advanced Options",
"experimental": "Experimental",
"beta": "Beta"
},
"toast": {
"serverError": "Server Error",

View File

@@ -455,7 +455,12 @@
"addDifference": "Add Difference",
"pickModelType": "Pick Model Type",
"selectModel": "Select Model",
"importModels": "Import Models"
"importModels": "Import Models",
"settings": "Settings",
"syncModels": "Sync Models",
"syncModelsDesc": "If your models are out of sync with the backend, you can refresh them up using this option. This is generally handy in cases where you manually update your models.yaml file or add models to the InvokeAI root folder after the application has booted.",
"modelsSynced": "Models Synced",
"modelSyncFailed": "Model Sync Failed"
},
"parameters": {
"general": "General",
@@ -547,7 +552,8 @@
"saveSteps": "Save images every n steps",
"confirmOnDelete": "Confirm On Delete",
"displayHelpIcons": "Display Help Icons",
"useCanvasBeta": "Use Canvas Beta Layout",
"alternateCanvasLayout": "Alternate Canvas Layout",
"enableNodesEditor": "Enable Nodes Editor",
"enableImageDebugging": "Enable Image Debugging",
"useSlidersForAll": "Use Sliders For All Options",
"showProgressInViewer": "Show Progress Images in Viewer",
@@ -564,7 +570,9 @@
"ui": "User Interface",
"favoriteSchedulers": "Favorite Schedulers",
"favoriteSchedulersPlaceholder": "No schedulers favorited",
"showAdvancedOptions": "Show Advanced Options"
"showAdvancedOptions": "Show Advanced Options",
"experimental": "Experimental",
"beta": "Beta"
},
"toast": {
"serverError": "Server Error",

View File

@@ -15,7 +15,6 @@ import InvokeTabs from 'features/ui/components/InvokeTabs';
import ParametersDrawer from 'features/ui/components/ParametersDrawer';
import i18n from 'i18n';
import { ReactNode, memo, useEffect } from 'react';
import DeleteBoardImagesModal from '../../features/gallery/components/Boards/DeleteBoardImagesModal';
import UpdateImageBoardModal from '../../features/gallery/components/Boards/UpdateImageBoardModal';
import GlobalHotkeys from './GlobalHotkeys';
import Toaster from './Toaster';
@@ -84,7 +83,6 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
</Grid>
<DeleteImageModal />
<UpdateImageBoardModal />
<DeleteBoardImagesModal />
<Toaster />
<GlobalHotkeys />
</>

View File

@@ -15,10 +15,7 @@ const STYLES: ChakraProps['sx'] = {
maxH: BOX_SIZE,
shadow: 'dark-lg',
borderRadius: 'lg',
borderWidth: 2,
borderStyle: 'dashed',
borderColor: 'base.100',
opacity: 0.5,
opacity: 0.3,
bg: 'base.800',
color: 'base.50',
_dark: {

View File

@@ -28,6 +28,7 @@ const ImageDndContext = (props: ImageDndContextProps) => {
const dispatch = useAppDispatch();
const handleDragStart = useCallback((event: DragStartEvent) => {
console.log('dragStart', event.active.data.current);
const activeData = event.active.data.current;
if (!activeData) {
return;
@@ -37,15 +38,16 @@ const ImageDndContext = (props: ImageDndContextProps) => {
const handleDragEnd = useCallback(
(event: DragEndEvent) => {
console.log('dragEnd', event.active.data.current);
const activeData = event.active.data.current;
const overData = event.over?.data.current;
if (!activeData || !overData) {
if (!activeDragData || !overData) {
return;
}
dispatch(dndDropped({ overData, activeData }));
dispatch(dndDropped({ overData, activeData: activeDragData }));
setActiveDragData(null);
},
[dispatch]
[activeDragData, dispatch]
);
const mouseSensor = useSensor(MouseSensor, {

View File

@@ -11,6 +11,7 @@ import {
useDraggable as useOriginalDraggable,
useDroppable as useOriginalDroppable,
} from '@dnd-kit/core';
import { BoardId } from 'features/gallery/store/gallerySlice';
import { ImageDTO } from 'services/api/types';
type BaseDropData = {
@@ -55,7 +56,7 @@ export type AddToBatchDropData = BaseDropData & {
export type MoveBoardDropData = BaseDropData & {
actionType: 'MOVE_BOARD';
context: { boardId: string | null };
context: { boardId: BoardId };
};
export type TypesafeDroppableData =
@@ -158,8 +159,34 @@ export const isValidDrop = (
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
case 'ADD_TO_BATCH':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
case 'MOVE_BOARD':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
case 'MOVE_BOARD': {
// If the board is the same, don't allow the drop
// Check the payload types
const isPayloadValid = payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
if (!isPayloadValid) {
return false;
}
// Check if the image's board is the board we are dragging onto
if (payloadType === 'IMAGE_DTO') {
const { imageDTO } = active.data.current.payload;
const currentBoard = imageDTO.board_id;
const destinationBoard = overData.context.boardId;
const isSameBoard = currentBoard === destinationBoard;
const isDestinationValid = !currentBoard ? destinationBoard : true;
return !isSameBoard && isDestinationValid;
}
if (payloadType === 'IMAGE_NAMES') {
// TODO (multi-select)
return false;
}
return true;
}
default:
return false;
}

View File

@@ -18,7 +18,6 @@ import { Middleware } from '@reduxjs/toolkit';
import ImageDndContext from './ImageDnd/ImageDndContext';
import { AddImageToBoardContextProvider } from '../contexts/AddImageToBoardContext';
import { $authToken, $baseUrl } from 'services/api/client';
import { DeleteBoardImagesContextProvider } from '../contexts/DeleteBoardImagesContext';
const App = lazy(() => import('./App'));
const ThemeLocaleProvider = lazy(() => import('./ThemeLocaleProvider'));
@@ -78,9 +77,7 @@ const InvokeAIUI = ({
<ThemeLocaleProvider>
<ImageDndContext>
<AddImageToBoardContextProvider>
<DeleteBoardImagesContextProvider>
<App config={config} headerComponent={headerComponent} />
</DeleteBoardImagesContextProvider>
<App config={config} headerComponent={headerComponent} />
</AddImageToBoardContextProvider>
</ImageDndContext>
</ThemeLocaleProvider>

View File

@@ -1,7 +1,8 @@
import { useDisclosure } from '@chakra-ui/react';
import { PropsWithChildren, createContext, useCallback, useState } from 'react';
import { ImageDTO } from 'services/api/types';
import { useAddImageToBoardMutation } from 'services/api/endpoints/boardImages';
import { imagesApi } from 'services/api/endpoints/images';
import { useAppDispatch } from '../store/storeHooks';
export type ImageUsage = {
isInitialImage: boolean;
@@ -40,8 +41,7 @@ type Props = PropsWithChildren;
export const AddImageToBoardContextProvider = (props: Props) => {
const [imageToMove, setImageToMove] = useState<ImageDTO>();
const { isOpen, onOpen, onClose } = useDisclosure();
const [addImageToBoard, result] = useAddImageToBoardMutation();
const dispatch = useAppDispatch();
// Clean up after deleting or dismissing the modal
const closeAndClearImageToDelete = useCallback(() => {
@@ -63,14 +63,16 @@ export const AddImageToBoardContextProvider = (props: Props) => {
const handleAddToBoard = useCallback(
(boardId: string) => {
if (imageToMove) {
addImageToBoard({
board_id: boardId,
image_name: imageToMove.image_name,
});
dispatch(
imagesApi.endpoints.addImageToBoard.initiate({
imageDTO: imageToMove,
board_id: boardId,
})
);
closeAndClearImageToDelete();
}
},
[addImageToBoard, closeAndClearImageToDelete, imageToMove]
[dispatch, closeAndClearImageToDelete, imageToMove]
);
return (

View File

@@ -1,170 +0,0 @@
import { useDisclosure } from '@chakra-ui/react';
import { PropsWithChildren, createContext, useCallback, useState } from 'react';
import { BoardDTO } from 'services/api/types';
import { useDeleteBoardMutation } from '../../services/api/endpoints/boards';
import { defaultSelectorOptions } from '../store/util/defaultMemoizeOptions';
import { createSelector } from '@reduxjs/toolkit';
import { some } from 'lodash-es';
import { canvasSelector } from 'features/canvas/store/canvasSelectors';
import { controlNetSelector } from 'features/controlNet/store/controlNetSlice';
import { selectImagesById } from 'features/gallery/store/gallerySlice';
import { nodesSelector } from 'features/nodes/store/nodesSlice';
import { generationSelector } from 'features/parameters/store/generationSelectors';
import { RootState } from '../store/store';
import { useAppDispatch, useAppSelector } from '../store/storeHooks';
import { ImageUsage } from './DeleteImageContext';
import { requestedBoardImagesDeletion } from 'features/gallery/store/actions';
export const selectBoardImagesUsage = createSelector(
[
(state: RootState) => state,
generationSelector,
canvasSelector,
nodesSelector,
controlNetSelector,
(state: RootState, board_id?: string) => board_id,
],
(state, generation, canvas, nodes, controlNet, board_id) => {
const initialImage = generation.initialImage
? selectImagesById(state, generation.initialImage.imageName)
: undefined;
const isInitialImage = initialImage?.board_id === board_id;
const isCanvasImage = canvas.layerState.objects.some((obj) => {
if (obj.kind === 'image') {
const image = selectImagesById(state, obj.imageName);
return image?.board_id === board_id;
}
return false;
});
const isNodesImage = nodes.nodes.some((node) => {
return some(node.data.inputs, (input) => {
if (input.type === 'image' && input.value) {
const image = selectImagesById(state, input.value.image_name);
return image?.board_id === board_id;
}
return false;
});
});
const isControlNetImage = some(controlNet.controlNets, (c) => {
const controlImage = c.controlImage
? selectImagesById(state, c.controlImage)
: undefined;
const processedControlImage = c.processedControlImage
? selectImagesById(state, c.processedControlImage)
: undefined;
return (
controlImage?.board_id === board_id ||
processedControlImage?.board_id === board_id
);
});
const imageUsage: ImageUsage = {
isInitialImage,
isCanvasImage,
isNodesImage,
isControlNetImage,
};
return imageUsage;
},
defaultSelectorOptions
);
type DeleteBoardImagesContextValue = {
/**
* Whether the move image dialog is open.
*/
isOpen: boolean;
/**
* Closes the move image dialog.
*/
onClose: () => void;
imagesUsage?: ImageUsage;
board?: BoardDTO;
onClickDeleteBoardImages: (board: BoardDTO) => void;
handleDeleteBoardImages: (boardId: string) => void;
handleDeleteBoardOnly: (boardId: string) => void;
};
export const DeleteBoardImagesContext =
createContext<DeleteBoardImagesContextValue>({
isOpen: false,
onClose: () => undefined,
onClickDeleteBoardImages: () => undefined,
handleDeleteBoardImages: () => undefined,
handleDeleteBoardOnly: () => undefined,
});
type Props = PropsWithChildren;
export const DeleteBoardImagesContextProvider = (props: Props) => {
const [boardToDelete, setBoardToDelete] = useState<BoardDTO>();
const { isOpen, onOpen, onClose } = useDisclosure();
const dispatch = useAppDispatch();
// Check where the board images to be deleted are used (eg init image, controlnet, etc.)
const imagesUsage = useAppSelector((state) =>
selectBoardImagesUsage(state, boardToDelete?.board_id)
);
const [deleteBoard] = useDeleteBoardMutation();
// Clean up after deleting or dismissing the modal
const closeAndClearBoardToDelete = useCallback(() => {
setBoardToDelete(undefined);
onClose();
}, [onClose]);
const onClickDeleteBoardImages = useCallback(
(board?: BoardDTO) => {
console.log({ board });
if (!board) {
return;
}
setBoardToDelete(board);
onOpen();
},
[setBoardToDelete, onOpen]
);
const handleDeleteBoardImages = useCallback(
(boardId: string) => {
if (boardToDelete) {
dispatch(
requestedBoardImagesDeletion({ board: boardToDelete, imagesUsage })
);
closeAndClearBoardToDelete();
}
},
[dispatch, closeAndClearBoardToDelete, boardToDelete, imagesUsage]
);
const handleDeleteBoardOnly = useCallback(
(boardId: string) => {
if (boardToDelete) {
deleteBoard(boardId);
closeAndClearBoardToDelete();
}
},
[deleteBoard, closeAndClearBoardToDelete, boardToDelete]
);
return (
<DeleteBoardImagesContext.Provider
value={{
isOpen,
board: boardToDelete,
onClose: closeAndClearBoardToDelete,
onClickDeleteBoardImages,
handleDeleteBoardImages,
handleDeleteBoardOnly,
imagesUsage,
}}
>
{props.children}
</DeleteBoardImagesContext.Provider>
);
};

View File

@@ -11,7 +11,7 @@ import { addCommitStagingAreaImageListener } from './listeners/addCommitStagingA
import { addAppConfigReceivedListener } from './listeners/appConfigReceived';
import { addAppStartedListener } from './listeners/appStarted';
import { addBoardIdSelectedListener } from './listeners/boardIdSelected';
import { addRequestedBoardImageDeletionListener } from './listeners/boardImagesDeleted';
import { addDeleteBoardAndImagesFulfilledListener } from './listeners/boardAndImagesDeleted';
import { addCanvasCopiedToClipboardListener } from './listeners/canvasCopiedToClipboard';
import { addCanvasDownloadedAsImageListener } from './listeners/canvasDownloadedAsImage';
import { addCanvasMergedListener } from './listeners/canvasMerged';
@@ -29,10 +29,6 @@ import {
addRequestedImageDeletionListener,
} from './listeners/imageDeleted';
import { addImageDroppedListener } from './listeners/imageDropped';
import {
addImageMetadataReceivedFulfilledListener,
addImageMetadataReceivedRejectedListener,
} from './listeners/imageMetadataReceived';
import {
addImageRemovedFromBoardFulfilledListener,
addImageRemovedFromBoardRejectedListener,
@@ -46,18 +42,10 @@ import {
addImageUploadedFulfilledListener,
addImageUploadedRejectedListener,
} from './listeners/imageUploaded';
import {
addImageUrlsReceivedFulfilledListener,
addImageUrlsReceivedRejectedListener,
} from './listeners/imageUrlsReceived';
import { addInitialImageSelectedListener } from './listeners/initialImageSelected';
import { addModelSelectedListener } from './listeners/modelSelected';
import { addModelsLoadedListener } from './listeners/modelsLoaded';
import { addReceivedOpenAPISchemaListener } from './listeners/receivedOpenAPISchema';
import {
addReceivedPageOfImagesFulfilledListener,
addReceivedPageOfImagesRejectedListener,
} from './listeners/receivedPageOfImages';
import {
addSessionCanceledFulfilledListener,
addSessionCanceledPendingListener,
@@ -91,6 +79,7 @@ import { addUserInvokedTextToImageListener } from './listeners/userInvokedTextTo
import { addModelLoadStartedEventListener } from './listeners/socketio/socketModelLoadStarted';
import { addModelLoadCompletedEventListener } from './listeners/socketio/socketModelLoadCompleted';
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
import { addFirstListImagesListener } from './listeners/addFirstListImagesListener.ts';
export const listenerMiddleware = createListenerMiddleware();
@@ -132,17 +121,9 @@ addRequestedImageDeletionListener();
addImageDeletedPendingListener();
addImageDeletedFulfilledListener();
addImageDeletedRejectedListener();
addRequestedBoardImageDeletionListener();
addDeleteBoardAndImagesFulfilledListener();
addImageToDeleteSelectedListener();
// Image metadata
addImageMetadataReceivedFulfilledListener();
addImageMetadataReceivedRejectedListener();
// Image URLs
addImageUrlsReceivedFulfilledListener();
addImageUrlsReceivedRejectedListener();
// User Invoked
addUserInvokedCanvasListener();
addUserInvokedNodesListener();
@@ -198,17 +179,10 @@ addSessionCanceledPendingListener();
addSessionCanceledFulfilledListener();
addSessionCanceledRejectedListener();
// Fetching images
addReceivedPageOfImagesFulfilledListener();
addReceivedPageOfImagesRejectedListener();
// ControlNet
addControlNetImageProcessedListener();
addControlNetAutoProcessListener();
// Update image URLs on connect
// addUpdateImageUrlsOnConnectListener();
// Boards
addImageAddedToBoardFulfilledListener();
addImageAddedToBoardRejectedListener();
@@ -229,5 +203,7 @@ addModelSelectedListener();
addAppStartedListener();
addModelsLoadedListener();
addAppConfigReceivedListener();
addFirstListImagesListener();
// Ad-hoc upscale workflwo
addUpscaleRequestedListener();

View File

@@ -0,0 +1,43 @@
import { createAction } from '@reduxjs/toolkit';
import {
IMAGE_CATEGORIES,
imageSelected,
} from 'features/gallery/store/gallerySlice';
import {
ImageCache,
getListImagesUrl,
imagesApi,
} from 'services/api/endpoints/images';
import { startAppListening } from '..';
export const appStarted = createAction('app/appStarted');
export const addFirstListImagesListener = () => {
startAppListening({
matcher: imagesApi.endpoints.listImages.matchFulfilled,
effect: async (
action,
{ getState, dispatch, unsubscribe, cancelActiveListeners }
) => {
// Only run this listener on the first listImages request for no-board images
if (
action.meta.arg.queryCacheKey !==
getListImagesUrl({ board_id: 'none', categories: IMAGE_CATEGORIES })
) {
return;
}
// this should only run once
cancelActiveListeners();
unsubscribe();
// TODO: figure out how to type the predicate
const data = action.payload as ImageCache;
if (data.ids.length > 0) {
// Select the first image
dispatch(imageSelected(data.ids[0] as string));
}
},
});
};

View File

@@ -1,11 +1,4 @@
import { createAction } from '@reduxjs/toolkit';
import {
ASSETS_CATEGORIES,
IMAGE_CATEGORIES,
INITIAL_IMAGE_LIMIT,
isLoadingChanged,
} from 'features/gallery/store/gallerySlice';
import { receivedPageOfImages } from 'services/api/thunks/image';
import { startAppListening } from '..';
export const appStarted = createAction('app/appStarted');
@@ -17,29 +10,9 @@ export const addAppStartedListener = () => {
action,
{ getState, dispatch, unsubscribe, cancelActiveListeners }
) => {
// this should only run once
cancelActiveListeners();
unsubscribe();
// fill up the gallery tab with images
await dispatch(
receivedPageOfImages({
categories: IMAGE_CATEGORIES,
is_intermediate: false,
offset: 0,
limit: INITIAL_IMAGE_LIMIT,
})
);
// fill up the assets tab with images
await dispatch(
receivedPageOfImages({
categories: ASSETS_CATEGORIES,
is_intermediate: false,
offset: 0,
limit: INITIAL_IMAGE_LIMIT,
})
);
dispatch(isLoadingChanged(false));
},
});
};

View File

@@ -0,0 +1,48 @@
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { getImageUsage } from 'features/imageDeletion/store/imageDeletionSlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { startAppListening } from '..';
import { boardsApi } from '../../../../../services/api/endpoints/boards';
export const addDeleteBoardAndImagesFulfilledListener = () => {
startAppListening({
matcher: boardsApi.endpoints.deleteBoardAndImages.matchFulfilled,
effect: async (action, { dispatch, getState, condition }) => {
const { board_id, deleted_board_images, deleted_images } = action.payload;
// Remove all deleted images from the UI
let wasInitialImageReset = false;
let wasCanvasReset = false;
let wasNodeEditorReset = false;
let wasControlNetReset = false;
const state = getState();
deleted_images.forEach((image_name) => {
const imageUsage = getImageUsage(state, image_name);
if (imageUsage.isInitialImage && !wasInitialImageReset) {
dispatch(clearInitialImage());
wasInitialImageReset = true;
}
if (imageUsage.isCanvasImage && !wasCanvasReset) {
dispatch(resetCanvas());
wasCanvasReset = true;
}
if (imageUsage.isNodesImage && !wasNodeEditorReset) {
dispatch(nodeEditorReset());
wasNodeEditorReset = true;
}
if (imageUsage.isControlNetImage && !wasControlNetReset) {
dispatch(controlNetReset());
wasControlNetReset = true;
}
});
},
});
};

View File

@@ -1,72 +1,67 @@
import { log } from 'app/logging/useLogger';
import { selectFilteredImages } from 'features/gallery/store/gallerySelectors';
import {
ASSETS_CATEGORIES,
IMAGE_CATEGORIES,
boardIdSelected,
galleryViewChanged,
imageSelected,
selectImagesAll,
} from 'features/gallery/store/gallerySlice';
import { boardsApi } from 'services/api/endpoints/boards';
import {
IMAGES_PER_PAGE,
receivedPageOfImages,
} from 'services/api/thunks/image';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { isAnyOf } from '@reduxjs/toolkit';
const moduleLog = log.child({ namespace: 'boards' });
export const addBoardIdSelectedListener = () => {
startAppListening({
actionCreator: boardIdSelected,
effect: (action, { getState, dispatch }) => {
const board_id = action.payload;
// we need to check if we need to fetch more images
matcher: isAnyOf(boardIdSelected, galleryViewChanged),
effect: async (
action,
{ getState, dispatch, condition, cancelActiveListeners }
) => {
// Cancel any in-progress instances of this listener, we don't want to select an image from a previous board
cancelActiveListeners();
const state = getState();
const allImages = selectImagesAll(state);
if (board_id === 'all') {
// Selected all images
dispatch(imageSelected(allImages[0]?.image_name ?? null));
return;
}
const board_id = boardIdSelected.match(action)
? action.payload
: state.gallery.selectedBoardId;
if (board_id === 'batch') {
// Selected the batch
dispatch(imageSelected(state.gallery.batchImageNames[0] ?? null));
return;
}
const filteredImages = selectFilteredImages(state);
const galleryView = galleryViewChanged.match(action)
? action.payload
: state.gallery.galleryView;
// when a board is selected, we need to wait until the board has loaded *some* images, then select the first one
const categories =
state.gallery.galleryView === 'images'
? IMAGE_CATEGORIES
: ASSETS_CATEGORIES;
galleryView === 'images' ? IMAGE_CATEGORIES : ASSETS_CATEGORIES;
// get the board from the cache
const { data: boards } =
boardsApi.endpoints.listAllBoards.select()(state);
const board = boards?.find((b) => b.board_id === board_id);
const queryArgs = { board_id: board_id ?? 'none', categories };
if (!board) {
// can't find the board in cache...
dispatch(boardIdSelected('all'));
return;
}
// wait until the board has some images - maybe it already has some from a previous fetch
// must use getState() to ensure we do not have stale state
const isSuccess = await condition(
() =>
imagesApi.endpoints.listImages.select(queryArgs)(getState())
.isSuccess,
5000
);
dispatch(imageSelected(board.cover_image_name ?? null));
if (isSuccess) {
// the board was just changed - we can select the first image
const { data: boardImagesData } = imagesApi.endpoints.listImages.select(
queryArgs
)(getState());
// if we haven't loaded one full page of images from this board, load more
if (
filteredImages.length < board.image_count &&
filteredImages.length < IMAGES_PER_PAGE
) {
dispatch(
receivedPageOfImages({ categories, board_id, is_intermediate: false })
);
if (boardImagesData?.ids.length) {
dispatch(imageSelected((boardImagesData.ids[0] as string) ?? null));
} else {
// board has no images - deselect
dispatch(imageSelected(null));
}
} else {
// fallback - deselect
dispatch(imageSelected(null));
}
},
});

View File

@@ -1,82 +0,0 @@
import { requestedBoardImagesDeletion } from 'features/gallery/store/actions';
import { startAppListening } from '..';
import {
imageSelected,
imagesRemoved,
selectImagesAll,
selectImagesById,
} from 'features/gallery/store/gallerySlice';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { LIST_TAG, api } from 'services/api';
import { boardsApi } from '../../../../../services/api/endpoints/boards';
export const addRequestedBoardImageDeletionListener = () => {
startAppListening({
actionCreator: requestedBoardImagesDeletion,
effect: async (action, { dispatch, getState, condition }) => {
const { board, imagesUsage } = action.payload;
const { board_id } = board;
const state = getState();
const selectedImageName =
state.gallery.selection[state.gallery.selection.length - 1];
const selectedImage = selectedImageName
? selectImagesById(state, selectedImageName)
: undefined;
if (selectedImage && selectedImage.board_id === board_id) {
dispatch(imageSelected(null));
}
// We need to reset the features where the board images are in use - none of these work if their image(s) don't exist
if (imagesUsage.isCanvasImage) {
dispatch(resetCanvas());
}
if (imagesUsage.isControlNetImage) {
dispatch(controlNetReset());
}
if (imagesUsage.isInitialImage) {
dispatch(clearInitialImage());
}
if (imagesUsage.isNodesImage) {
dispatch(nodeEditorReset());
}
// Preemptively remove from gallery
const images = selectImagesAll(state).reduce((acc: string[], img) => {
if (img.board_id === board_id) {
acc.push(img.image_name);
}
return acc;
}, []);
dispatch(imagesRemoved(images));
// Delete from server
dispatch(boardsApi.endpoints.deleteBoardAndImages.initiate(board_id));
const result =
boardsApi.endpoints.deleteBoardAndImages.select(board_id)(state);
const { isSuccess } = result;
// Wait for successful deletion, then trigger boards to re-fetch
const wasBoardDeleted = await condition(() => !!isSuccess, 30000);
if (wasBoardDeleted) {
dispatch(
api.util.invalidateTags([
{ type: 'Board', id: board_id },
{ type: 'Image', id: LIST_TAG },
])
);
}
},
});
};

View File

@@ -1,11 +1,11 @@
import { canvasMerged } from 'features/canvas/store/actions';
import { startAppListening } from '..';
import { log } from 'app/logging/useLogger';
import { addToast } from 'features/system/store/systemSlice';
import { imageUploaded } from 'services/api/thunks/image';
import { canvasMerged } from 'features/canvas/store/actions';
import { setMergedCanvas } from 'features/canvas/store/canvasSlice';
import { getCanvasBaseLayer } from 'features/canvas/util/konvaInstanceProvider';
import { getFullBaseLayerBlob } from 'features/canvas/util/getFullBaseLayerBlob';
import { getCanvasBaseLayer } from 'features/canvas/util/konvaInstanceProvider';
import { addToast } from 'features/system/store/systemSlice';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'canvasCopiedToClipboardListener' });
@@ -45,28 +45,22 @@ export const addCanvasMergedListener = () => {
relativeTo: canvasBaseLayer.getParent(),
});
const imageUploadedRequest = dispatch(
imageUploaded({
const imageDTO = await dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([blob], 'mergedCanvas.png', {
type: 'image/png',
}),
image_category: 'general',
is_intermediate: true,
postUploadAction: {
type: 'TOAST_CANVAS_MERGED',
type: 'TOAST',
toastOptions: { title: 'Canvas Merged' },
},
})
);
).unwrap();
const [{ payload }] = await take(
(
uploadedImageAction
): uploadedImageAction is ReturnType<typeof imageUploaded.fulfilled> =>
imageUploaded.fulfilled.match(uploadedImageAction) &&
uploadedImageAction.meta.requestId === imageUploadedRequest.requestId
);
const { image_name } = payload;
// TODO: I can't figure out how to do the type narrowing in the `take()` so just brute forcing it here
const { image_name } = imageDTO;
dispatch(
setMergedCanvas({
@@ -76,13 +70,6 @@ export const addCanvasMergedListener = () => {
...baseLayerRect,
})
);
dispatch(
addToast({
title: 'Canvas Merged',
status: 'success',
})
);
},
});
};

View File

@@ -1,10 +1,9 @@
import { canvasSavedToGallery } from 'features/canvas/store/actions';
import { startAppListening } from '..';
import { log } from 'app/logging/useLogger';
import { imageUploaded } from 'services/api/thunks/image';
import { canvasSavedToGallery } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { addToast } from 'features/system/store/systemSlice';
import { imageUpserted } from 'features/gallery/store/gallerySlice';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'canvasSavedToGalleryListener' });
@@ -28,28 +27,21 @@ export const addCanvasSavedToGalleryListener = () => {
return;
}
const imageUploadedRequest = dispatch(
imageUploaded({
dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([blob], 'savedCanvas.png', {
type: 'image/png',
}),
image_category: 'general',
is_intermediate: false,
board_id: state.gallery.autoAddBoardId,
crop_visible: true,
postUploadAction: {
type: 'TOAST_CANVAS_SAVED_TO_GALLERY',
type: 'TOAST',
toastOptions: { title: 'Canvas Saved to Gallery' },
},
})
);
const [{ payload: uploadedImageDTO }] = await take(
(
uploadedImageAction
): uploadedImageAction is ReturnType<typeof imageUploaded.fulfilled> =>
imageUploaded.fulfilled.match(uploadedImageAction) &&
uploadedImageAction.meta.requestId === imageUploadedRequest.requestId
);
dispatch(imageUpserted(uploadedImageDTO));
},
});
};

View File

@@ -2,10 +2,10 @@ import { log } from 'app/logging/useLogger';
import { controlNetImageProcessed } from 'features/controlNet/store/actions';
import { controlNetProcessedImageChanged } from 'features/controlNet/store/controlNetSlice';
import { sessionReadyToInvoke } from 'features/system/store/actions';
import { imagesApi } from 'services/api/endpoints/images';
import { isImageOutput } from 'services/api/guards';
import { imageDTOReceived } from 'services/api/thunks/image';
import { sessionCreated } from 'services/api/thunks/session';
import { Graph } from 'services/api/types';
import { Graph, ImageDTO } from 'services/api/types';
import { socketInvocationComplete } from 'services/events/actions';
import { startAppListening } from '..';
@@ -62,12 +62,13 @@ export const addControlNetImageProcessedListener = () => {
invocationCompleteAction.payload.data.result.image;
// Wait for the ImageDTO to be received
const [imageMetadataReceivedAction] = await take(
(action): action is ReturnType<typeof imageDTOReceived.fulfilled> =>
imageDTOReceived.fulfilled.match(action) &&
const [{ payload }] = await take(
(action) =>
imagesApi.endpoints.getImageDTO.matchFulfilled(action) &&
action.payload.image_name === image_name
);
const processedControlImage = imageMetadataReceivedAction.payload;
const processedControlImage = payload as ImageDTO;
moduleLog.debug(
{ data: { arg: action.payload, processedControlImage } },

View File

@@ -1,31 +1,30 @@
import { log } from 'app/logging/useLogger';
import { boardImagesApi } from 'services/api/endpoints/boardImages';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'boards' });
export const addImageAddedToBoardFulfilledListener = () => {
startAppListening({
matcher: boardImagesApi.endpoints.addImageToBoard.matchFulfilled,
matcher: imagesApi.endpoints.addImageToBoard.matchFulfilled,
effect: (action, { getState, dispatch }) => {
const { board_id, image_name } = action.meta.arg.originalArgs;
const { board_id, imageDTO } = action.meta.arg.originalArgs;
moduleLog.debug(
{ data: { board_id, image_name } },
'Image added to board'
);
// TODO: update listImages cache for this board
moduleLog.debug({ data: { board_id, imageDTO } }, 'Image added to board');
},
});
};
export const addImageAddedToBoardRejectedListener = () => {
startAppListening({
matcher: boardImagesApi.endpoints.addImageToBoard.matchRejected,
matcher: imagesApi.endpoints.addImageToBoard.matchRejected,
effect: (action, { getState, dispatch }) => {
const { board_id, image_name } = action.meta.arg.originalArgs;
const { board_id, imageDTO } = action.meta.arg.originalArgs;
moduleLog.debug(
{ data: { board_id, image_name } },
{ data: { board_id, imageDTO } },
'Problem adding image to board'
);
},

View File

@@ -1,19 +1,17 @@
import { log } from 'app/logging/useLogger';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { selectNextImageToSelect } from 'features/gallery/store/gallerySelectors';
import {
imageRemoved,
imageSelected,
} from 'features/gallery/store/gallerySlice';
import { selectListImagesBaseQueryArgs } from 'features/gallery/store/gallerySelectors';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import {
imageDeletionConfirmed,
isModalOpenChanged,
} from 'features/imageDeletion/store/imageDeletionSlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { clamp } from 'lodash-es';
import { api } from 'services/api';
import { imageDeleted } from 'services/api/thunks/image';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'image' });
@@ -36,10 +34,28 @@ export const addRequestedImageDeletionListener = () => {
state.gallery.selection[state.gallery.selection.length - 1];
if (lastSelectedImage === image_name) {
const newSelectedImageId = selectNextImageToSelect(state, image_name);
const baseQueryArgs = selectListImagesBaseQueryArgs(state);
const { data } =
imagesApi.endpoints.listImages.select(baseQueryArgs)(state);
const ids = data?.ids ?? [];
const deletedImageIndex = ids.findIndex(
(result) => result.toString() === image_name
);
const filteredIds = ids.filter((id) => id.toString() !== image_name);
const newSelectedImageIndex = clamp(
deletedImageIndex,
0,
filteredIds.length - 1
);
const newSelectedImageId = filteredIds[newSelectedImageIndex];
if (newSelectedImageId) {
dispatch(imageSelected(newSelectedImageId));
dispatch(imageSelected(newSelectedImageId as string));
} else {
dispatch(imageSelected(null));
}
@@ -63,16 +79,15 @@ export const addRequestedImageDeletionListener = () => {
dispatch(nodeEditorReset());
}
// Preemptively remove from gallery
dispatch(imageRemoved(image_name));
// Delete from server
const { requestId } = dispatch(imageDeleted({ image_name }));
const { requestId } = dispatch(
imagesApi.endpoints.deleteImage.initiate(imageDTO)
);
// Wait for successful deletion, then trigger boards to re-fetch
const wasImageDeleted = await condition(
(action): action is ReturnType<typeof imageDeleted.fulfilled> =>
imageDeleted.fulfilled.match(action) &&
(action) =>
imagesApi.endpoints.deleteImage.matchFulfilled(action) &&
action.meta.requestId === requestId,
30000
);
@@ -91,7 +106,7 @@ export const addRequestedImageDeletionListener = () => {
*/
export const addImageDeletedPendingListener = () => {
startAppListening({
actionCreator: imageDeleted.pending,
matcher: imagesApi.endpoints.deleteImage.matchPending,
effect: (action, { dispatch, getState }) => {
//
},
@@ -103,9 +118,12 @@ export const addImageDeletedPendingListener = () => {
*/
export const addImageDeletedFulfilledListener = () => {
startAppListening({
actionCreator: imageDeleted.fulfilled,
matcher: imagesApi.endpoints.deleteImage.matchFulfilled,
effect: (action, { dispatch, getState }) => {
moduleLog.debug({ data: { image: action.meta.arg } }, 'Image deleted');
moduleLog.debug(
{ data: { image: action.meta.arg.originalArgs } },
'Image deleted'
);
},
});
};
@@ -115,10 +133,10 @@ export const addImageDeletedFulfilledListener = () => {
*/
export const addImageDeletedRejectedListener = () => {
startAppListening({
actionCreator: imageDeleted.rejected,
matcher: imagesApi.endpoints.deleteImage.matchRejected,
effect: (action, { dispatch, getState }) => {
moduleLog.debug(
{ data: { image: action.meta.arg } },
{ data: { image: action.meta.arg.originalArgs } },
'Unable to delete image'
);
},

View File

@@ -10,12 +10,9 @@ import {
imageSelected,
imagesAddedToBatch,
} from 'features/gallery/store/gallerySlice';
import {
fieldValueChanged,
imageCollectionFieldValueChanged,
} from 'features/nodes/store/nodesSlice';
import { fieldValueChanged } from 'features/nodes/store/nodesSlice';
import { initialImageChanged } from 'features/parameters/store/generationSlice';
import { boardImagesApi } from 'services/api/endpoints/boardImages';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '../';
const moduleLog = log.child({ namespace: 'dnd' });
@@ -137,122 +134,114 @@ export const addImageDroppedListener = () => {
return;
}
// set multiple nodes images (multiple images handler)
if (
overData.actionType === 'SET_MULTI_NODES_IMAGE' &&
activeData.payloadType === 'IMAGE_NAMES'
) {
const { fieldName, nodeId } = overData.context;
dispatch(
imageCollectionFieldValueChanged({
nodeId,
fieldName,
value: activeData.payload.image_names.map((image_name) => ({
image_name,
})),
})
);
return;
}
// // set multiple nodes images (multiple images handler)
// if (
// overData.actionType === 'SET_MULTI_NODES_IMAGE' &&
// activeData.payloadType === 'IMAGE_NAMES'
// ) {
// const { fieldName, nodeId } = overData.context;
// dispatch(
// imageCollectionFieldValueChanged({
// nodeId,
// fieldName,
// value: activeData.payload.image_names.map((image_name) => ({
// image_name,
// })),
// })
// );
// return;
// }
// add image to board
if (
overData.actionType === 'MOVE_BOARD' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO &&
overData.context.boardId
activeData.payload.imageDTO
) {
const { image_name } = activeData.payload.imageDTO;
const { imageDTO } = activeData.payload;
const { boardId } = overData.context;
// image was droppe on the "NoBoardBoard"
if (!boardId) {
dispatch(
imagesApi.endpoints.removeImageFromBoard.initiate({
imageDTO,
})
);
return;
}
// image was dropped on a user board
dispatch(
boardImagesApi.endpoints.addImageToBoard.initiate({
image_name,
imagesApi.endpoints.addImageToBoard.initiate({
imageDTO,
board_id: boardId,
})
);
return;
}
// remove image from board
if (
overData.actionType === 'MOVE_BOARD' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO &&
overData.context.boardId === null
) {
const { image_name, board_id } = activeData.payload.imageDTO;
if (board_id) {
dispatch(
boardImagesApi.endpoints.removeImageFromBoard.initiate({
image_name,
board_id,
})
);
}
return;
}
// // add gallery selection to board
// if (
// overData.actionType === 'MOVE_BOARD' &&
// activeData.payloadType === 'IMAGE_NAMES' &&
// overData.context.boardId
// ) {
// console.log('adding gallery selection to board');
// const board_id = overData.context.boardId;
// dispatch(
// boardImagesApi.endpoints.addManyBoardImages.initiate({
// board_id,
// image_names: activeData.payload.image_names,
// })
// );
// return;
// }
// add gallery selection to board
if (
overData.actionType === 'MOVE_BOARD' &&
activeData.payloadType === 'IMAGE_NAMES' &&
overData.context.boardId
) {
console.log('adding gallery selection to board');
const board_id = overData.context.boardId;
dispatch(
boardImagesApi.endpoints.addManyBoardImages.initiate({
board_id,
image_names: activeData.payload.image_names,
})
);
return;
}
// // remove gallery selection from board
// if (
// overData.actionType === 'MOVE_BOARD' &&
// activeData.payloadType === 'IMAGE_NAMES' &&
// overData.context.boardId === null
// ) {
// console.log('removing gallery selection to board');
// dispatch(
// boardImagesApi.endpoints.deleteManyBoardImages.initiate({
// image_names: activeData.payload.image_names,
// })
// );
// return;
// }
// remove gallery selection from board
if (
overData.actionType === 'MOVE_BOARD' &&
activeData.payloadType === 'IMAGE_NAMES' &&
overData.context.boardId === null
) {
console.log('removing gallery selection to board');
dispatch(
boardImagesApi.endpoints.deleteManyBoardImages.initiate({
image_names: activeData.payload.image_names,
})
);
return;
}
// // add batch selection to board
// if (
// overData.actionType === 'MOVE_BOARD' &&
// activeData.payloadType === 'IMAGE_NAMES' &&
// overData.context.boardId
// ) {
// const board_id = overData.context.boardId;
// dispatch(
// boardImagesApi.endpoints.addManyBoardImages.initiate({
// board_id,
// image_names: activeData.payload.image_names,
// })
// );
// return;
// }
// add batch selection to board
if (
overData.actionType === 'MOVE_BOARD' &&
activeData.payloadType === 'IMAGE_NAMES' &&
overData.context.boardId
) {
const board_id = overData.context.boardId;
dispatch(
boardImagesApi.endpoints.addManyBoardImages.initiate({
board_id,
image_names: activeData.payload.image_names,
})
);
return;
}
// remove batch selection from board
if (
overData.actionType === 'MOVE_BOARD' &&
activeData.payloadType === 'IMAGE_NAMES' &&
overData.context.boardId === null
) {
dispatch(
boardImagesApi.endpoints.deleteManyBoardImages.initiate({
image_names: activeData.payload.image_names,
})
);
return;
}
// // remove batch selection from board
// if (
// overData.actionType === 'MOVE_BOARD' &&
// activeData.payloadType === 'IMAGE_NAMES' &&
// overData.context.boardId === null
// ) {
// dispatch(
// boardImagesApi.endpoints.deleteManyBoardImages.initiate({
// image_names: activeData.payload.image_names,
// })
// );
// return;
// }
},
});
};

View File

@@ -1,51 +0,0 @@
import { log } from 'app/logging/useLogger';
import { imageUpserted } from 'features/gallery/store/gallerySlice';
import { imageDTOReceived, imageUpdated } from 'services/api/thunks/image';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'image' });
export const addImageMetadataReceivedFulfilledListener = () => {
startAppListening({
actionCreator: imageDTOReceived.fulfilled,
effect: (action, { getState, dispatch }) => {
const image = action.payload;
const state = getState();
if (
image.session_id === state.canvas.layerState.stagingArea.sessionId &&
state.canvas.shouldAutoSave
) {
dispatch(
imageUpdated({
image_name: image.image_name,
is_intermediate: image.is_intermediate,
})
);
} else if (image.is_intermediate) {
// No further actions needed for intermediate images
moduleLog.trace(
{ data: { image } },
'Image metadata received (intermediate), skipping'
);
return;
}
moduleLog.debug({ data: { image } }, 'Image metadata received');
dispatch(imageUpserted(image));
},
});
};
export const addImageMetadataReceivedRejectedListener = () => {
startAppListening({
actionCreator: imageDTOReceived.rejected,
effect: (action, { getState, dispatch }) => {
moduleLog.debug(
{ data: { image: action.meta.arg } },
'Problem receiving image metadata'
);
},
});
};

View File

@@ -1,12 +1,12 @@
import { log } from 'app/logging/useLogger';
import { boardImagesApi } from 'services/api/endpoints/boardImages';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
const moduleLog = log.child({ namespace: 'boards' });
export const addImageRemovedFromBoardFulfilledListener = () => {
startAppListening({
matcher: boardImagesApi.endpoints.removeImageFromBoard.matchFulfilled,
matcher: imagesApi.endpoints.removeImageFromBoard.matchFulfilled,
effect: (action, { getState, dispatch }) => {
const { board_id, image_name } = action.meta.arg.originalArgs;
@@ -20,7 +20,7 @@ export const addImageRemovedFromBoardFulfilledListener = () => {
export const addImageRemovedFromBoardRejectedListener = () => {
startAppListening({
matcher: boardImagesApi.endpoints.removeImageFromBoard.matchRejected,
matcher: imagesApi.endpoints.removeImageFromBoard.matchRejected,
effect: (action, { getState, dispatch }) => {
const { board_id, image_name } = action.meta.arg.originalArgs;

Some files were not shown because too many files have changed in this diff Show More