Compare commits

..

1 Commits

Author SHA1 Message Date
Ryan Dick
109cbb8532 Update the default Model Cache behavior to be more conservative with RAM usage. 2025-01-13 18:48:52 +00:00
857 changed files with 13205 additions and 44444 deletions

View File

@@ -1,11 +1,9 @@
*
!invokeai
!pyproject.toml
!uv.lock
!docker/docker-entrypoint.sh
!LICENSE
**/dist
**/node_modules
**/__pycache__
**/*.egg-info
**/*.egg-info

View File

@@ -1,5 +1,2 @@
b3dccfaeb636599c02effc377cdd8a87d658256c
218b6d0546b990fc449c876fb99f44b50c4daa35
182580ff6970caed400be178c5b888514b75d7f2
8e9d5c1187b0d36da80571ce4c8ba9b3a37b6c46
99aac5870e1092b182e6c5f21abcaab6936a4ad1

3
.gitattributes vendored
View File

@@ -2,5 +2,4 @@
# Only affects text files and ignores other file types.
# For more info see: https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/
* text=auto
docker/** text eol=lf
tests/test_model_probe/stripped_models/** filter=lfs diff=lfs merge=lfs -text
docker/** text eol=lf

6
.github/CODEOWNERS vendored
View File

@@ -1,12 +1,12 @@
# continuous integration
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr @jazzhaiku
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr
# documentation
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
/mkdocs.yml @lstein @blessedcoolant @hipsterusername @Millu
# nodes
/invokeai/app/ @Kyle0654 @blessedcoolant @psychedelicious @brandonrising @hipsterusername @jazzhaiku
/invokeai/app/ @Kyle0654 @blessedcoolant @psychedelicious @brandonrising @hipsterusername
# installation and configuration
/pyproject.toml @lstein @blessedcoolant @hipsterusername
@@ -22,7 +22,7 @@
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
# generation, model management, postprocessing
/invokeai/backend @damian0815 @lstein @blessedcoolant @gregghelt2 @StAlKeR7779 @brandonrising @ryanjdick @hipsterusername @jazzhaiku
/invokeai/backend @damian0815 @lstein @blessedcoolant @gregghelt2 @StAlKeR7779 @brandonrising @ryanjdick @hipsterusername
# front ends
/invokeai/frontend/CLI @lstein @hipsterusername

View File

@@ -76,6 +76,9 @@ jobs:
latest=${{ matrix.gpu-driver == 'cuda' && github.ref == 'refs/heads/main' }}
suffix=-${{ matrix.gpu-driver }},onlatest=false
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
@@ -97,12 +100,10 @@ jobs:
context: .
file: docker/Dockerfile
platforms: ${{ env.PLATFORMS }}
build-args: |
GPU_DRIVER=${{ matrix.gpu-driver }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
# cache-from: |
# type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
# type=gha,scope=main-${{ matrix.gpu-driver }}
# cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
cache-from: |
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
type=gha,scope=main-${{ matrix.gpu-driver }}
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}

View File

@@ -17,7 +17,7 @@ jobs:
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.12'
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml

View File

@@ -44,12 +44,7 @@ jobs:
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:

View File

@@ -44,12 +44,7 @@ jobs:
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:

View File

@@ -34,9 +34,6 @@ on:
jobs:
python-checks:
env:
# uv requires a venv by default - but for this, we can simply use the system python
UV_SYSTEM_PYTHON: 1
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
@@ -46,12 +43,7 @@ jobs:
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
@@ -60,19 +52,25 @@ jobs:
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup uv
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
uses: actions/setup-python@v5
with:
version: '0.6.10'
enable-cache: true
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff==0.6.0
shell: bash
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: uv tool run ruff@0.11.2 check --output-format=github .
run: ruff check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: uv tool run ruff@0.11.2 format --check .
run: ruff format --check .
shell: bash

View File

@@ -39,15 +39,24 @@ jobs:
strategy:
matrix:
python-version:
- '3.10'
- '3.11'
- '3.12'
platform:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- platform: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- platform: linux-cpu
os: ubuntu-24.04
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
@@ -61,22 +70,14 @@ jobs:
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
UV_SYSTEM_PYTHON: 1
steps:
- name: checkout
# https://github.com/nschloe/action-cached-lfs-checkout
uses: nschloe/action-cached-lfs-checkout@f46300cd8952454b9f0a21a3d133d4bd5684cfc2
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
@@ -85,25 +86,20 @@ jobs:
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup uv
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
python-version: ${{ matrix.python-version }}
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
env:
UV_INDEX: ${{ matrix.extra-index-url }}
run: uv pip install --editable ".[test]"
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install --editable=".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}

View File

@@ -42,37 +42,24 @@ jobs:
- name: check for changed files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
uses: tj-actions/changed-files@v42
with:
files_yaml: |
src:
- 'pyproject.toml'
- 'invokeai/**'
- name: setup uv
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
python-version: '3.11'
- name: setup python
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.11'
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
- name: install python dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
env:
UV_INDEX: ${{ matrix.extra-index-url }}
run: uv pip install --editable .
run: pip3 install --use-pep517 --editable="."
- name: install frontend dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
@@ -85,7 +72,7 @@ jobs:
- name: generate schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: cd invokeai/frontend/web && uv run ../../../scripts/generate_openapi_schema.py | pnpm typegen
run: make frontend-typegen
shell: bash
- name: compare files

1
.nvmrc
View File

@@ -1 +0,0 @@
v22.14.0

View File

@@ -1,8 +1,64 @@
# syntax=docker/dockerfile:1.4
#### Web UI ------------------------------------
## Builder stage
FROM docker.io/node:22-slim AS web-builder
FROM library/ubuntu:24.04 AS builder
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \
build-essential \
git
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
ENV VIRTUAL_ENV=/opt/venv
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ENV INVOKEAI_SRC=/opt/invokeai
ENV PYTHON_VERSION=3.11
ENV UV_COMPILE_BYTECODE=1
ENV UV_LINK_MODE=copy
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
ARG BUILDPLATFORM
# Switch to the `ubuntu` user to work around dependency issues with uv-installed python
RUN mkdir -p ${VIRTUAL_ENV} && \
mkdir -p ${INVOKEAI_SRC} && \
chmod -R a+w /opt
USER ubuntu
# Install python and create the venv
RUN uv python install ${PYTHON_VERSION} && \
uv venv --relocatable --prompt "invoke" --python ${PYTHON_VERSION} ${VIRTUAL_ENV}
WORKDIR ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
# Editable mode helps use the same image for development:
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/home/ubuntu/.cache/uv,uid=1000,gid=1000 \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm6.1"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu124"; \
fi && \
uv pip install --python ${PYTHON_VERSION} $extra_index_url_arg -e "."
#### Build the Web UI ------------------------------------
FROM node:20-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
@@ -14,89 +70,68 @@ RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
## Backend ---------------------------------------
#### Runtime stage ---------------------------------------
FROM library/ubuntu:24.04
FROM library/ubuntu:24.04 AS runtime
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
apt update && apt install -y --no-install-recommends \
ca-certificates \
git \
gosu \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev
ENV PYTHONUNBUFFERED=1
ENV PYTHONDONTWRITEBYTECODE=1
ENV \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
VIRTUAL_ENV=/opt/venv \
INVOKEAI_SRC=/opt/invokeai \
PYTHON_VERSION=3.12 \
UV_PYTHON=3.12 \
UV_COMPILE_BYTECODE=1 \
UV_MANAGED_PYTHON=1 \
UV_LINK_MODE=copy \
UV_PROJECT_ENVIRONMENT=/opt/venv \
UV_INDEX="https://download.pytorch.org/whl/cu124" \
INVOKEAI_ROOT=/invokeai \
INVOKEAI_HOST=0.0.0.0 \
INVOKEAI_PORT=9090 \
PATH="/opt/venv/bin:$PATH" \
CONTAINER_UID=${CONTAINER_UID:-1000} \
CONTAINER_GID=${CONTAINER_GID:-1000}
RUN apt update && apt install -y --no-install-recommends \
git \
curl \
vim \
tmux \
ncdu \
iotop \
bzip2 \
gosu \
magic-wormhole \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev &&\
apt-get clean && apt-get autoclean
ARG GPU_DRIVER=cuda
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv
ENV PYTHON_VERSION=3.11
ENV INVOKEAI_ROOT=/invokeai
ENV INVOKEAI_HOST=0.0.0.0
ENV INVOKEAI_PORT=9090
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.6.9 /uv /uvx /bin/
# and install python for the ubuntu user (expected to exist on ubuntu >=24.x)
# this is too tiny to optimize with multi-stage builds, but maybe we'll come back to it
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
USER ubuntu
RUN uv python install ${PYTHON_VERSION}
USER root
# Install python & allow non-root user to use it by traversing the /root dir without read permissions
RUN --mount=type=cache,target=/root/.cache/uv \
uv python install ${PYTHON_VERSION} && \
# chmod --recursive a+rX /root/.local/share/uv/python
chmod 711 /root
WORKDIR ${INVOKEAI_SRC}
# Install project's dependencies as a separate layer so they aren't rebuilt every commit.
# bind-mount instead of copy to defer adding sources to the image until next layer.
#
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
# this is just to get the package manager to recognize that the project exists, without making changes to the docker layer
--mount=type=bind,source=invokeai/version,target=invokeai/version \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then UV_INDEX="https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then UV_INDEX="https://download.pytorch.org/whl/rocm6.2"; \
fi && \
uv sync --frozen
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# Link amdgpu.ids for ROCm builds
# contributed by https://github.com/Rubonnek
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
WORKDIR ${INVOKEAI_SRC}
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web"]
# --link requires buldkit w/ dockerfile syntax 1.4, does not work with podman
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# add sources last to minimize image changes on code changes
COPY invokeai ${INVOKEAI_SRC}/invokeai

View File

@@ -1,50 +1,41 @@
# Release Process
The Invoke application is published as a python package on [PyPI]. This includes both a source distribution and built distribution (a wheel).
The app is published in twice, in different build formats.
Most users install it with the [Launcher](https://github.com/invoke-ai/launcher/), others with `pip`.
The launcher uses GitHub as the source of truth for available releases.
## Broad Strokes
- Merge all changes and bump the version in the codebase.
- Tag the release commit.
- Wait for the release workflow to complete.
- Approve the PyPI publish jobs.
- Write GH release notes.
- A [PyPI] distribution. This includes both a source distribution and built distribution (a wheel). Users install with `pip install invokeai`. The updater uses this build.
- An installer on the [InvokeAI Releases Page]. This is a zip file with install scripts and a wheel. This is only used for new installs.
## General Prep
Make a developer call-out for PRs to merge. Merge and test things out. Bump the version by editing `invokeai/version/invokeai_version.py`.
Make a developer call-out for PRs to merge. Merge and test things out.
While the release workflow does not include end-to-end tests, it does pause before publishing so you can download and test the final build.
## Release Workflow
The `release.yml` workflow runs a number of jobs to handle code checks, tests, build and publish on PyPI.
It is triggered on **tag push**, when the tag matches `v*`.
It is triggered on **tag push**, when the tag matches `v*`. It doesn't matter if you've prepped a release branch like `release/v3.5.0` or are releasing from `main` - it works the same.
> Because commits are reference-counted, it is safe to create a release branch, tag it, let the workflow run, then delete the branch. So long as the tag exists, that commit will exist.
### Triggering the Workflow
Ensure all commits that should be in the release are merged, and you have pulled them locally.
Run `make tag-release` to tag the current commit and kick off the workflow.
Double-check that you have checked out the commit that will represent the release (typically the latest commit on `main`).
Run `make tag-release` to tag the current commit and kick off the workflow. You will be prompted to provide a message - use the version specifier.
If this version's tag already exists for some reason (maybe you had to make a last minute change), the script will overwrite it.
> In case you cannot use the Make target, the release may also be dispatched [manually] via GH.
The release may also be dispatched [manually].
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run checks and tests, then two final publish jobs.
The workflow consists of a number of concurrently-run jobs, and two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
#### `check-version` Job
This job ensures that the `invokeai` python package version specifier matches the tag for the release. The version specifier is pulled from the `__version__` variable in `invokeai/version/invokeai_version.py`.
This job checks that the git ref matches the app version. It matches the ref against the `__version__` variable in `invokeai/version/invokeai_version.py`.
When the workflow is triggered by tag push, the ref is the tag. If the workflow is run manually, the ref is the target selected from the **Use workflow from** dropdown.
This job uses [samuelcolvin/check-python-version].
@@ -52,52 +43,62 @@ This job uses [samuelcolvin/check-python-version].
#### Check and Test Jobs
Next, these jobs run and must pass. They are the same jobs that are run for every PR.
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
- **`typegen-checks`**: ensures the frontend and backend types are synced
> **TODO** We should add `mypy` or `pyright` to the **`check-python`** job.
> **TODO** We should add an end-to-end test job that generates an image.
#### `build-installer` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
- **`dist`**: the python distribution, to be published on PyPI
- **`InvokeAI-installer-${VERSION}.zip`**: the legacy install scripts
You don't need to download either of these files.
> The legacy install scripts are no longer used, but we haven't updated the workflow to skip building them.
- **`InvokeAI-installer-${VERSION}.zip`**: the installer to be included in the GitHub release
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval.
At this point, the release workflow pauses as the remaining publish jobs require approval. Time to test the installer.
It's possible to test the python package before it gets published to PyPI. We've never had problems with it, so it's not necessary to do this.
Because the installer pulls from PyPI, and we haven't published to PyPI yet, you will need to install from the wheel:
But, if you want to be extra-super careful, here's how to test it:
- Download and unzip `dist.zip` and the installer from the **Summary** tab of the workflow
- Run the installer script using the `--wheel` CLI arg, pointing at the wheel:
- Download the `dist.zip` build artifact from the `build-installer` job
- Unzip it and find the wheel file
- Create a fresh Invoke install by following the [manual install guide](https://invoke-ai.github.io/InvokeAI/installation/manual/) - but instead of installing from PyPI, install from the wheel
- Test the app
```sh
./install.sh --wheel ../InvokeAI-4.0.0rc6-py3-none-any.whl
```
- Install to a temporary directory so you get the new user experience
- Download a model and generate
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation as if the installer got the wheel from PyPI.
##### Something isn't right
If testing reveals any issues, no worries. Cancel the workflow, which will cancel the pending publish jobs (you didn't approve them prematurely, right?) and start over.
If testing reveals any issues, no worries. Cancel the workflow, which will cancel the pending publish jobs (you didn't approve them prematurely, right?).
Now you can start from the top:
- Fix the issues and PR the fixes per usual
- Get the PR approved and merged per usual
- Switch to `main` and pull in the fixes
- Run `make tag-release` to move the tag to `HEAD` (which has the fixes) and kick off the release workflow again
- Re-do the sanity check
#### PyPI Publish Jobs
The publish jobs will not run if any of the previous jobs fail.
The publish jobs will run if any of the previous jobs fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
Both jobs require a @hipsterusername or @psychedelicious to approve them from the workflow's **Summary** tab.
Both jobs require a maintainer to approve them from the workflow's **Summary** tab.
- Click the **Review deployments** button
- Select the environment (either `testpypi` or `pypi` - typically you select both)
- Select the environment (either `testpypi` or `pypi`)
- Click **Approve and deploy**
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
@@ -112,33 +113,46 @@ If there are no incidents, contact @hipsterusername or @lstein, who have owner a
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release for some reason:
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release.
- Approve this publish job without approving the prod publish
- Let it finish
- Create a fresh Invoke install by following the [manual install guide](https://invoke-ai.github.io/InvokeAI/installation/manual/), making sure to use the Test PyPI index URL: `https://test.pypi.org/simple/`
- Test the app
If approved and successful, you could try out the test release like this:
```sh
# Create a new virtual environment
python -m venv ~/.test-invokeai-dist --prompt test-invokeai-dist
# Install the distribution from Test PyPI
pip install --index-url https://test.pypi.org/simple/ invokeai
# Run and test the app
invokeai-web
# Cleanup
deactivate
rm -rf ~/.test-invokeai-dist
```
#### `publish-pypi` Job
Publishes the distribution on the production PyPI index, using the `pypi` GitHub environment.
It's a good idea to wait to approve and run this job until you have the release notes ready!
## Publish the GitHub Release with installer
## Prep and publish the GitHub Release
Once the release is published to PyPI, it's time to publish the GitHub release.
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
2. The **Generate release notes** button automatically inserts the changelog and new contributors. Make sure to select the correct tags for this release and the last stable release. GH often selects the wrong tags - do this manually.
3. Write the release notes, describing important changes. Contributions from community members should be shouted out. Use the GH-generated changelog to see all contributors. If there are Weblate translation updates, open that PR and shout out every person who contributed a translation.
4. Check **Set as a pre-release** if it's a pre-release.
5. Approve and wait for the `publish-pypi` job to finish if you haven't already.
6. Publish the GH release.
7. Post the release in Discord in the [releases](https://discord.com/channels/1020123559063990373/1149260708098359327) channel with abbreviated notes. For example:
> Invoke v5.7.0 (stable): <https://github.com/invoke-ai/InvokeAI/releases/tag/v5.7.0>
>
> It's a pretty big one - Form Builder, Metadata Nodes (thanks @SkunkWorxDark!), and much more.
8. Right click the message in releases and copy the link to it. Then, post that link in the [new-release-discussion](https://discord.com/channels/1020123559063990373/1149506274971631688) channel. For example:
> Invoke v5.7.0 (stable): <https://discord.com/channels/1020123559063990373/1149260708098359327/1344521744916021248>
1. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
1. Use `scripts/get_external_contributions.py` to get a list of external contributions to shout out in the release notes.
1. Upload the zip file created in **`build`** job into the Assets section of the release notes.
1. Check **Set as a pre-release** if it's a pre-release.
1. Check **Create a discussion for this release**.
1. Publish the release.
1. Announce the release in Discord.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
## Manual Build
The `build installer` workflow can be dispatched manually. This is useful to test the installer for a given branch or tag.
No checks are run, it just builds.
## Manual Release
@@ -146,10 +160,12 @@ The `release` workflow can be dispatched manually. You must dispatch the workflo
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
[InvokeAI Releases Page]: https://github.com/invoke-ai/InvokeAI/releases
[PyPI]: https://pypi.org/
[Draft a new release]: https://github.com/invoke-ai/InvokeAI/releases/new
[Test PyPI]: https://test.pypi.org/
[version specifier]: https://packaging.python.org/en/latest/specifications/version-specifiers/
[ncipollo/release-action]: https://github.com/ncipollo/release-action
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version

View File

@@ -18,19 +18,9 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
2. [Fork and clone][forking link] the [InvokeAI repo][repo link].
3. This repository uses Git LFS to manage large files. To ensure all assets are downloaded:
- Install git-lfs → [Download here](https://git-lfs.com/)
- Enable automatic LFS fetching for this repository:
```shell
git config lfs.fetchinclude "*"
```
- Fetch files from LFS (only needs to be done once; subsequent `git pull` will fetch changes automatically):
```
git lfs pull
```
4. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
3. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
5. Follow the [manual install][manual install link] guide, with some modifications to the install command:
4. Follow the [manual install][manual install link] guide, with some modifications to the install command:
- Use `.` instead of `invokeai` to install from the current directory. You don't need to specify the version.
@@ -41,22 +31,22 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
With the modifications made, the install command should look something like this:
```sh
uv pip install -e ".[dev,test,docs,xformers]" --python 3.12 --python-preference only-managed --index=https://download.pytorch.org/whl/cu124 --reinstall
uv pip install -e ".[dev,test,docs,xformers]" --python 3.11 --python-preference only-managed --index=https://download.pytorch.org/whl/cu124 --reinstall
```
6. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
5. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
This is because the UI build is not distributed with the source code. You need to build it manually. End the running server instance.
If you only want to edit the docs, you can stop here and skip to the **Documentation** section below.
7. Install the frontend dev toolchain:
6. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (v20+)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
8. Do a production build of the frontend:
7. Do a production build of the frontend:
```sh
cd <PATH_TO_INVOKEAI_REPO>/invokeai/frontend/web
@@ -64,7 +54,7 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
pnpm build
```
9. Restart the server and navigate to the URL. You should get a UI. After making changes to the python code, restart the server to see those changes.
8. Restart the server and navigate to the URL. You should get a UI. After making changes to the python code, restart the server to see those changes.
## Updating the UI

View File

@@ -1,18 +1,26 @@
# FAQ
!!! info "How to Reinstall"
Many issues can be resolved by re-installing the application. You won't lose any data by re-installing. We suggest downloading the [latest release](https://github.com/invoke-ai/InvokeAI/releases/latest) and using it to re-install the application. Consult the [installer guide](./installation/installer.md) for more information.
When you run the installer, you'll have an option to select the version to install. If you aren't ready to upgrade, you choose the current version to fix a broken install.
If the troubleshooting steps on this page don't get you up and running, please either [create an issue] or hop on [discord] for help.
## How to Install
Follow the [Quick Start guide](./installation/quick_start.md) to install Invoke.
You can download the latest installers [here](https://github.com/invoke-ai/InvokeAI/releases).
Note that any releases marked as _pre-release_ are in a beta state. You may experience some issues, but we appreciate your help testing those! For stable/reliable installations, please install the [latest release].
## Downloading models and using existing models
The Model Manager tab in the UI provides a few ways to install models, including using your already-downloaded models. You'll see a popup directing you there on first startup. For more information, see the [model install docs].
## Missing models after updating from v3
## Missing models after updating to v4
If you find some models are missing after updating from v3, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
If you find some models are missing after updating to v4, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
You can use the `Scan Folder` tab in the Model Manager UI to fix this. The models will either be in the old, now-unused `autoimport` folder, or your `models` folder.
@@ -29,27 +37,115 @@ Follow the same steps to scan and import the missing models.
## Slow generation
- Check the [system requirements] to ensure that your system is capable of generating images.
- Follow the [Low-VRAM mode guide](./features/low-vram.md) to optimize performance.
- Check that your generations are happening on your GPU (if you have one). Invoke will log what is being used for generation upon startup. If your GPU isn't used, re-install to and ensure you select the appropriate GPU option.
- If you are on Windows with an Nvidia GPU, you may have exceeded your GPU's VRAM capacity and are triggering Nvidia's "sysmem fallback". There's a guide to opt out of this behaviour in the [Low-VRAM mode guide](./features/low-vram.md).
- Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it.
- Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well.
- Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed.
- If you are on Windows, you may have exceeded your GPU's VRAM capacity and are using slower [shared GPU memory](#shared-gpu-memory-windows). There's a guide to opt out of this behaviour in the linked FAQ entry.
## Shared GPU Memory (Windows)
!!! tip "Nvidia GPUs with driver 536.40"
This only applies to current Nvidia cards with driver 536.40 or later, released in June 2023.
When the GPU doesn't have enough VRAM for a task, Windows is able to allocate some of its CPU RAM to the GPU. This is much slower than VRAM, but it does allow the system to generate when it otherwise might no have enough VRAM.
When shared GPU memory is used, generation slows down dramatically - but at least it doesn't crash.
If you'd like to opt out of this behavior and instead get an error when you exceed your GPU's VRAM, follow [this guide from Nvidia](https://nvidia.custhelp.com/app/answers/detail/a_id/5490).
Here's how to get the python path required in the linked guide:
- Run `invoke.bat`.
- Select option 2 for developer console.
- At least one python path will be printed. Copy the path that includes your invoke installation directory (typically the first).
## Installer cannot find python (Windows)
Ensure that you checked **Add python.exe to PATH** when installing Python. This can be found at the bottom of the Python Installer window. If you already have Python installed, you can re-run the python installer, choose the Modify option and check the box.
## Triton error on startup
This can be safely ignored. Invoke doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
This can be safely ignored. InvokeAI doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
## Unable to Copy on Firefox
## Updated to 3.4.0 and xformers cant load C++/CUDA
Firefox does not allow Invoke to directly access the clipboard by default. As a result, you may be unable to use certain copy functions. You can fix this by configuring Firefox to allow access to write to the clipboard:
An issue occurred with your PyTorch update. Follow these steps to fix :
- Go to `about:config` and click the Accept button
- Search for `dom.events.asyncClipboard.clipboardItem`
- Set it to `true` by clicking the toggle button
- Restart Firefox
1. Launch your invoke.bat / invoke.sh and select the option to open the developer console
2. Run:`pip install ".[xformers]" --upgrade --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121`
- If you run into an error with `typing_extensions`, re-open the developer console and run: `pip install -U typing-extensions`
Note that v3.4.0 is an old, unsupported version. Please upgrade to the [latest release].
## Install failed and says `pip` is out of date
An out of date `pip` typically won't cause an installation to fail. The cause of the error can likely be found above the message that says `pip` is out of date.
If you saw that warning but the install went well, don't worry about it (but you can update `pip` afterwards if you'd like).
## Replicate image found online
Most example images with prompts that you'll find on the internet have been generated using different software, so you can't expect to get identical results. In order to reproduce an image, you need to replicate the exact settings and processing steps, including (but not limited to) the model, the positive and negative prompts, the seed, the sampler, the exact image size, any upscaling steps, etc.
## OSErrors on Windows while installing dependencies
During a zip file installation or an update, installation stops with an error like this:
![broken-dependency-screenshot](./assets/troubleshooting/broken-dependency.png){:width="800px"}
To resolve this, re-install the application as described above.
## HuggingFace install failed due to invalid access token
Some HuggingFace models require you to authenticate using an [access token].
Invoke doesn't manage this token for you, but it's easy to set it up:
- Follow the instructions in the link above to create an access token. Copy it.
- Run the launcher script.
- Select option 2 (developer console).
- Paste the following command:
```sh
python -c "import huggingface_hub; huggingface_hub.login()"
```
- Paste your access token when prompted and press Enter. You won't see anything when you paste it.
- Type `n` if prompted about git credentials.
If you get an error, try the command again - maybe the token didn't paste correctly.
Once your token is set, start Invoke and try downloading the model again. The installer will automatically use the access token.
If the install still fails, you may not have access to the model.
## Stable Diffusion XL generation fails after trying to load UNet
InvokeAI is working in other respects, but when trying to generate
images with Stable Diffusion XL you get a "Server Error". The text log
in the launch window contains this log line above several more lines of
error messages:
`INFO --> Loading model:D:\LONG\PATH\TO\MODEL, type sdxl:main:unet`
This failure mode occurs when there is a network glitch during
downloading the very large SDXL model.
To address this, first go to the Model Manager and delete the
Stable-Diffusion-XL-base-1.X model. Then, click the HuggingFace tab,
paste the Repo ID stabilityai/stable-diffusion-xl-base-1.0 and install
the model.
## Package dependency conflicts during installation or update
If you have previously installed InvokeAI or another Stable Diffusion
package, the installer may occasionally pick up outdated libraries and
either the installer or `invoke` will fail with complaints about
library conflicts.
To resolve this, re-install the application as described above.
## Invalid configuration file
Everything seems to install ok, you get a `ValidationError` when starting up the app.
@@ -58,9 +154,64 @@ This is caused by an invalid setting in the `invokeai.yaml` configuration file.
Check the [configuration docs] for more detail about the settings and how to specify them.
## Out of Memory Errors
## `ModuleNotFoundError: No module named 'controlnet_aux'`
The models are large, VRAM is expensive, and you may find yourself faced with Out of Memory errors when generating images. Follow our [Low-VRAM mode guide](./features/low-vram.md) to configure Invoke to prevent these.
`controlnet_aux` is a dependency of Invoke and appears to have been packaged or distributed strangely. Sometimes, it doesn't install correctly. This is outside our control.
If you encounter this error, the solution is to remove the package from the `pip` cache and re-run the Invoke installer so a fresh, working version of `controlnet_aux` can be downloaded and installed:
- Run the Invoke launcher
- Choose the developer console option
- Run this command: `pip cache remove controlnet_aux`
- Close the terminal window
- Download and run the [installer][latest release], selecting your current install location
## Out of Memory Issues
The models are large, VRAM is expensive, and you may find yourself
faced with Out of Memory errors when generating images. Here are some
tips to reduce the problem:
!!! info "Optimizing for GPU VRAM"
=== "4GB VRAM GPU"
This should be adequate for 512x512 pixel images using Stable Diffusion 1.5
and derived models, provided that you do not use the NSFW checker. It won't be loaded unless you go into the UI settings and turn it on.
If you are on a CUDA-enabled GPU, we will automatically use xformers or torch-sdp to reduce VRAM requirements, though you can explicitly configure this. See the [configuration docs].
=== "6GB VRAM GPU"
This is a border case. Using the SD 1.5 series you should be able to
generate images up to 640x640 with the NSFW checker enabled, and up to
1024x1024 with it disabled.
If you run into persistent memory issues there are a series of
environment variables that you can set before launching InvokeAI that
alter how the PyTorch machine learning library manages memory. See
<https://pytorch.org/docs/stable/notes/cuda.html#memory-management> for
a list of these tweaks.
=== "12GB VRAM GPU"
This should be sufficient to generate larger images up to about 1280x1280.
## Checkpoint Models Load Slowly or Use Too Much RAM
The difference between diffusers models (a folder containing multiple
subfolders) and checkpoint models (a file ending with .safetensors or
.ckpt) is that InvokeAI is able to load diffusers models into memory
incrementally, while checkpoint models must be loaded all at
once. With very large models, or systems with limited RAM, you may
experience slowdowns and other memory-related issues when loading
checkpoint models.
To solve this, go to the Model Manager tab (the cube), select the
checkpoint model that's giving you trouble, and press the "Convert"
button in the upper right of your browser window. This will convert the
checkpoint into a diffusers model, after which loading should be
faster and less memory-intensive.
## Memory Leak (Linux)
@@ -102,6 +253,8 @@ Note the differences between memory allocated as chunks in an arena vs. memory a
[model install docs]: ./installation/models.md
[system requirements]: ./installation/requirements.md
[latest release]: https://github.com/invoke-ai/InvokeAI/releases/latest
[create an issue]: https://github.com/invoke-ai/InvokeAI/issues
[discord]: https://discord.gg/ZmtBAhwWhy
[configuration docs]: ./configuration.md
[access token]: https://huggingface.co/docs/hub/security-tokens#how-to-manage-user-access-tokens

View File

@@ -28,13 +28,11 @@ It is possible to fine-tune the settings for best performance or if you still ge
## Details and fine-tuning
Low-VRAM mode involves 4 features, each of which can be configured or fine-tuned:
Low-VRAM mode involves 3 features, each of which can be configured or fine-tuned:
- Partial model loading (`enable_partial_loading`)
- PyTorch CUDA allocator config (`pytorch_cuda_alloc_conf`)
- Dynamic RAM and VRAM cache sizes (`max_cache_ram_gb`, `max_cache_vram_gb`)
- Working memory (`device_working_mem_gb`)
- Keeping a RAM weight copy (`keep_ram_copy_of_weights`)
- Partial model loading
- Dynamic RAM and VRAM cache sizes
- Working memory
Read on to learn about these features and understand how to fine-tune them for your system and use-cases.
@@ -52,16 +50,6 @@ As described above, you can enable partial model loading by adding this line to
enable_partial_loading: true
```
### PyTorch CUDA allocator config
The PyTorch CUDA allocator's behavior can be configured using the `pytorch_cuda_alloc_conf` config. Tuning the allocator configuration can help to reduce the peak reserved VRAM. The optimal configuration is dependent on many factors (e.g. device type, VRAM, CUDA driver version, etc.), but switching from PyTorch's native allocator to using CUDA's built-in allocator works well on many systems. To try this, add the following line to your `invokeai.yaml` file:
```yaml
pytorch_cuda_alloc_conf: "backend:cudaMallocAsync"
```
A more complete explanation of the available configuration options is [here](https://pytorch.org/docs/stable/notes/cuda.html#optimizing-memory-usage-with-pytorch-cuda-alloc-conf).
### Dynamic RAM and VRAM cache sizes
Loading models from disk is slow and can be a major bottleneck for performance. Invoke uses two model caches - RAM and VRAM - to reduce loading from disk to a minimum.
@@ -79,33 +67,23 @@ As of v5.6.0, the caches are dynamically sized. The `ram` and `vram` settings ar
But, if your GPU has enough VRAM to hold models fully, you might get a perf boost by manually setting the cache sizes in `invokeai.yaml`:
```yaml
# The default max cache RAM size is logged on InvokeAI startup. It is determined based on your system RAM / VRAM.
# You can override the default value by setting `max_cache_ram_gb`.
# Increasing `max_cache_ram_gb` will increase the amount of RAM used to cache inactive models, resulting in faster model
# reloads for the cached models.
# As an example, if your system has 32GB of RAM and no other heavy processes, setting the `max_cache_ram_gb` to 28GB
# might be a good value to achieve aggressive model caching.
# Set the RAM cache size to as large as possible, leaving a few GB free for the rest of your system and Invoke.
# For example, if your system has 32GB RAM, 28GB is a good value.
max_cache_ram_gb: 28
# The default max cache VRAM size is adjusted dynamically based on the amount of available VRAM (taking into
# consideration the VRAM used by other processes).
# You can override the default value by setting `max_cache_vram_gb`.
# CAUTION: Most users should not manually set this value. See warning below.
max_cache_vram_gb: 16
# Set the VRAM cache size to be as large as possible while leaving enough room for the working memory of the tasks you will be doing.
# For example, on a 24GB GPU that will be running unquantized FLUX without any auxiliary models,
# 18GB is a good value.
max_cache_vram_gb: 18
```
!!! warning "Max safe value for `max_cache_vram_gb`"
!!! tip "Max safe value for `max_cache_vram_gb`"
Most users should not manually configure the `max_cache_vram_gb`. This configuration value takes precedence over the `device_working_mem_gb` and any operations that explicitly reserve additional working memory (e.g. VAE decode). As such, manually configuring it increases the likelihood of encountering out-of-memory errors.
For users who wish to configure `max_cache_vram_gb`, the max safe value can be determined by subtracting `device_working_mem_gb` from your GPU's VRAM. As described below, the default for `device_working_mem_gb` is 3GB.
To determine the max safe value for `max_cache_vram_gb`, subtract `device_working_mem_gb` from your GPU's VRAM. As described below, the default for `device_working_mem_gb` is 3GB.
For example, if you have a 12GB GPU, the max safe value for `max_cache_vram_gb` is `12GB - 3GB = 9GB`.
If you had increased `device_working_mem_gb` to 4GB, then the max safe value for `max_cache_vram_gb` is `12GB - 4GB = 8GB`.
Most users who override `max_cache_vram_gb` are doing so because they wish to use significantly less VRAM, and should be setting `max_cache_vram_gb` to a value significantly less than the 'max safe value'.
### Working memory
Invoke cannot use _all_ of your VRAM for model caching and loading. It requires some VRAM to use as working memory for various operations.
@@ -131,15 +109,6 @@ device_working_mem_gb: 4
Once decoding completes, the model manager "reclaims" the extra VRAM allocated as working memory for future model loading operations.
### Keeping a RAM weight copy
Invoke has the option of keeping a RAM copy of all model weights, even when they are loaded onto the GPU. This optimization is _on_ by default, and enables faster model switching and LoRA patching. Disabling this feature will reduce the average RAM load while running Invoke (peak RAM likely won't change), at the cost of slower model switching and LoRA patching. If you have limited RAM, you can disable this optimization:
```yaml
# Set to false to reduce the average RAM usage at the cost of slower model switching and LoRA patching.
keep_ram_copy_of_weights: false
```
### Disabling Nvidia sysmem fallback (Windows only)
On Windows, Nvidia GPUs are able to use system RAM when their VRAM fills up via **sysmem fallback**. While it sounds like a good idea on the surface, in practice it causes massive slowdowns during generation.
@@ -158,19 +127,3 @@ It is strongly suggested to disable this feature:
If the sysmem fallback feature sounds familiar, that's because Invoke's partial model loading strategy is conceptually very similar - use VRAM when there's room, else fall back to RAM.
Unfortunately, the Nvidia implementation is not optimized for applications like Invoke and does more harm than good.
## Troubleshooting
### Windows page file
Invoke has high virtual memory (a.k.a. 'committed memory') requirements. This can cause issues on Windows if the page file size limits are hit. (See this issue for the technical details on why this happens: https://github.com/invoke-ai/InvokeAI/issues/7563).
If you run out of page file space, InvokeAI may crash. Often, these crashes will happen with one of the following errors:
- InvokeAI exits with Windows error code `3221225477`
- InvokeAI crashes without an error, but `eventvwr.msc` reveals an error with code `0xc0000005` (the hex equivalent of `3221225477`)
If you are running out of page file space, try the following solutions:
- Make sure that you have sufficient disk space for the page file to grow. Watch your disk usage as Invoke runs. If it climbs near 100% leading up to the crash, then this is very likely the source of the issue. Clear out some disk space to resolve the issue.
- Make sure that your page file is set to "System managed size" (this is the default) rather than a custom size. Under the "System managed size" policy, the page file will grow dynamically as needed.

View File

@@ -43,10 +43,10 @@ The following commands vary depending on the version of Invoke being installed a
3. Create a virtual environment in that directory:
```sh
uv venv --relocatable --prompt invoke --python 3.12 --python-preference only-managed .venv
uv venv --relocatable --prompt invoke --python 3.11 --python-preference only-managed .venv
```
This command creates a portable virtual environment at `.venv` complete with a portable python 3.12. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
This command creates a portable virtual environment at `.venv` complete with a portable python 3.11. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
4. Activate the virtual environment:
@@ -88,13 +88,13 @@ The following commands vary depending on the version of Invoke being installed a
8. Install the `invokeai` package. Substitute the package specifier and version.
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --force-reinstall
uv pip install <PACKAGE_SPECIFIER>=<VERSION> --python 3.11 --python-preference only-managed --force-reinstall
```
If you determined you needed to use a `PyPI` index URL in the previous step, you'll need to add `--index=<INDEX_URL>` like this:
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
uv pip install <PACKAGE_SPECIFIER>=<VERSION> --python 3.11 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
```
9. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:

View File

@@ -99,20 +99,6 @@ We recommend watching our [Getting Started Playlist](https://www.youtube.com/pla
- Using control layers and reference guides.
- Refining images with advanced workflows.
## Troubleshooting
If installation fails, retrying the install in Repair Mode may fix it. There's a checkbox to enable this on the Review step of the install flow.
If that doesn't fix it, [clearing the `uv` cache](https://docs.astral.sh/uv/reference/cli/#uv-cache-clean) might do the trick:
- Open and start the dev console (button at the bottom-left of the launcher).
- Run `uv cache clean`.
- Retry the installation. Enable Repair Mode for good measure.
If you are still unable to install, try installing to a different location and see if that works.
If you still have problems, ask for help on the Invoke [discord](https://discord.gg/ZmtBAhwWhy).
## Other Installation Methods
- You can install the Invoke application as a python package. See our [manual install](./manual.md) docs.

View File

@@ -4,9 +4,7 @@ Invoke runs on Windows 10+, macOS 14+ and Linux (Ubuntu 20.04+ is well-tested).
## Hardware
Hardware requirements vary significantly depending on model and image output size.
The requirements below are rough guidelines for best performance. GPUs with less VRAM typically still work, if a bit slower. Follow the [Low-VRAM mode guide](./features/low-vram.md) to optimize performance.
Hardware requirements vary significantly depending on model and image output size. The requirements below are rough guidelines.
- All Apple Silicon (M1, M2, etc) Macs work, but 16GB+ memory is recommended.
- AMD GPUs are supported on Linux only. The VRAM requirements are the same as Nvidia GPUs.
@@ -41,7 +39,7 @@ The requirements below are rough guidelines for best performance. GPUs with less
You don't need to do this if you are installing with the [Invoke Launcher](./quick_start.md).
Invoke requires python 3.10 through 3.12. If you don't already have one of these versions installed, we suggest installing 3.12, as it will be supported for longer.
Invoke requires python 3.10 or 3.11. If you don't already have one of these versions installed, we suggest installing 3.11, as it will be supported for longer.
Check that your system has an up-to-date Python installed by running `python3 --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
@@ -49,19 +47,19 @@ Check that your system has an up-to-date Python installed by running `python3 --
=== "Windows"
- Install python with [an official installer].
- Install python 3.11 with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
=== "macOS"
- Install python with [an official installer].
- Install python 3.11 with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
=== "Linux"
- Installing python varies depending on your system. We recommend [using `uv` to manage your python installation](https://docs.astral.sh/uv/concepts/python-versions/#installing-a-python-version).
- Installing python varies depending on your system. On Ubuntu, you can use the [deadsnakes PPA](https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa).
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
## Drivers

View File

@@ -36,14 +36,7 @@ from invokeai.app.services.style_preset_images.style_preset_images_disk import S
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.app.services.workflow_thumbnails.workflow_thumbnails_disk import WorkflowThumbnailFileStorageDisk
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningFieldData,
FLUXConditioningInfo,
SD3ConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
@@ -90,7 +83,6 @@ class ApiDependencies:
model_images_folder = config.models_path
style_presets_folder = config.style_presets_path
workflow_thumbnails_folder = config.workflow_thumbnails_path
db = init_db(config=config, logger=logger, image_files=image_files)
@@ -107,25 +99,10 @@ class ApiDependencies:
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
tensors = ObjectSerializerForwardCache(
ObjectSerializerDisk[torch.Tensor](
output_folder / "tensors",
safe_globals=[torch.Tensor],
ephemeral=True,
),
max_cache_size=0,
ObjectSerializerDisk[torch.Tensor](output_folder / "tensors", ephemeral=True)
)
conditioning = ObjectSerializerForwardCache(
ObjectSerializerDisk[ConditioningFieldData](
output_folder / "conditioning",
safe_globals=[
ConditioningFieldData,
BasicConditioningInfo,
SDXLConditioningInfo,
FLUXConditioningInfo,
SD3ConditioningInfo,
],
ephemeral=True,
),
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
)
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
@@ -143,7 +120,6 @@ class ApiDependencies:
workflow_records = SqliteWorkflowRecordsStorage(db=db)
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
workflow_thumbnails = WorkflowThumbnailFileStorageDisk(workflow_thumbnails_folder)
services = InvocationServices(
board_image_records=board_image_records,
@@ -171,7 +147,6 @@ class ApiDependencies:
conditioning=conditioning,
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
workflow_thumbnails=workflow_thumbnails,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -1,124 +0,0 @@
import json
import logging
from dataclasses import dataclass
from PIL import Image
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutIDValidator
@dataclass
class ExtractedMetadata:
invokeai_metadata: str | None
invokeai_workflow: str | None
invokeai_graph: str | None
def extract_metadata_from_image(
pil_image: Image.Image,
invokeai_metadata_override: str | None,
invokeai_workflow_override: str | None,
invokeai_graph_override: str | None,
logger: logging.Logger,
) -> ExtractedMetadata:
"""
Extracts the "invokeai_metadata", "invokeai_workflow", and "invokeai_graph" data embedded in the PIL Image.
These items are stored as stringified JSON in the image file's metadata, so we need to do some parsing to validate
them. Once parsed, the values are returned as they came (as strings), or None if they are not present or invalid.
In some situations, we may prefer to override the values extracted from the image file with some other values.
For example, when uploading an image via API, the client can optionally provide the metadata directly in the request,
as opposed to embedding it in the image file. In this case, the client-provided metadata will be used instead of the
metadata embedded in the image file.
Args:
pil_image: The PIL Image object.
invokeai_metadata_override: The metadata override provided by the client.
invokeai_workflow_override: The workflow override provided by the client.
invokeai_graph_override: The graph override provided by the client.
logger: The logger to use for debug logging.
Returns:
ExtractedMetadata: The extracted metadata, workflow, and graph.
"""
# The fallback value for metadata is None.
stringified_metadata: str | None = None
# Use the metadata override if provided, else attempt to extract it from the image file.
metadata_raw = invokeai_metadata_override or pil_image.info.get("invokeai_metadata", None)
# If the metadata is present in the image file, we will attempt to parse it as JSON. When we create images,
# we always store metadata as a stringified JSON dict. So, we expect it to be a string here.
if isinstance(metadata_raw, str):
try:
# Must be a JSON string
metadata_parsed = json.loads(metadata_raw)
# Must be a dict
if isinstance(metadata_parsed, dict):
# Looks good, overwrite the fallback value
stringified_metadata = metadata_raw
except Exception as e:
logger.debug(f"Failed to parse metadata for uploaded image, {e}")
pass
# We expect the workflow, if embedded in the image, to be a JSON-stringified WorkflowWithoutID. We will store it
# as a string.
workflow_raw: str | None = invokeai_workflow_override or pil_image.info.get("invokeai_workflow", None)
# The fallback value for workflow is None.
stringified_workflow: str | None = None
# If the workflow is present in the image file, we will attempt to parse it as JSON. When we create images, we
# always store workflows as a stringified JSON WorkflowWithoutID. So, we expect it to be a string here.
if isinstance(workflow_raw, str):
try:
# Validate the workflow JSON before storing it
WorkflowWithoutIDValidator.validate_json(workflow_raw)
# Looks good, overwrite the fallback value
stringified_workflow = workflow_raw
except Exception:
logger.debug("Failed to parse workflow for uploaded image")
pass
# We expect the workflow, if embedded in the image, to be a JSON-stringified Graph. We will store it as a
# string.
graph_raw: str | None = invokeai_graph_override or pil_image.info.get("invokeai_graph", None)
# The fallback value for graph is None.
stringified_graph: str | None = None
# If the graph is present in the image file, we will attempt to parse it as JSON. When we create images, we
# always store graphs as a stringified JSON Graph. So, we expect it to be a string here.
if isinstance(graph_raw, str):
try:
# TODO(psyche): Due to pydantic's handling of None values, it is possible for the graph to fail validation,
# even if it is a direct dump of a valid graph. Node fields in the graph are allowed to have be unset if
# they have incoming connections, but something about the ser/de process cannot adequately handle this.
#
# In lieu of fixing the graph validation, we will just do a simple check here to see if the graph is dict
# with the correct keys. This is not a perfect solution, but it should be good enough for now.
# FIX ME: Validate the graph JSON before storing it
# Graph.model_validate_json(graph_raw)
# Crappy workaround to validate JSON
graph_parsed = json.loads(graph_raw)
if not isinstance(graph_parsed, dict):
raise ValueError("Not a dict")
if not isinstance(graph_parsed.get("nodes", None), dict):
raise ValueError("'nodes' is not a dict")
if not isinstance(graph_parsed.get("edges", None), list):
raise ValueError("'edges' is not a list")
# Looks good, overwrite the fallback value
stringified_graph = graph_raw
except Exception as e:
logger.debug(f"Failed to parse graph for uploaded image, {e}")
pass
return ExtractedMetadata(
invokeai_metadata=stringified_metadata, invokeai_workflow=stringified_workflow, invokeai_graph=stringified_graph
)

View File

@@ -12,7 +12,6 @@ from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.util.logging import logging
@@ -100,7 +99,7 @@ async def get_app_deps() -> AppDependencyVersions:
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config_() -> AppConfig:
async def get_config() -> AppConfig:
infill_methods = ["lama", "tile", "cv2", "color"] # TODO: add mosaic back
if PatchMatch.patchmatch_available():
infill_methods.append("patchmatch")
@@ -122,21 +121,6 @@ async def get_config_() -> AppConfig:
)
class InvokeAIAppConfigWithSetFields(BaseModel):
"""InvokeAI App Config with model fields set"""
set_fields: set[str] = Field(description="The set fields")
config: InvokeAIAppConfig = Field(description="The InvokeAI App Config")
@app_router.get(
"/runtime_config", operation_id="get_runtime_config", status_code=200, response_model=InvokeAIAppConfigWithSetFields
)
async def get_runtime_config() -> InvokeAIAppConfigWithSetFields:
config = get_config()
return InvokeAIAppConfigWithSetFields(set_fields=config.model_fields_set, config=config)
@app_router.get(
"/logging",
operation_id="get_log_level",

View File

@@ -7,7 +7,6 @@ from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecordOrderBy
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
@@ -88,9 +87,7 @@ async def delete_board(
try:
if include_images is True:
deleted_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id=board_id,
categories=None,
is_intermediate=None,
board_id=board_id
)
ApiDependencies.invoker.services.images.delete_images_on_board(board_id=board_id)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
@@ -101,9 +98,7 @@ async def delete_board(
)
else:
deleted_board_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id=board_id,
categories=None,
is_intermediate=None,
board_id=board_id
)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
return DeleteBoardResult(
@@ -147,14 +142,10 @@ async def list_boards(
)
async def list_all_board_image_names(
board_id: str = Path(description="The id of the board"),
categories: list[ImageCategory] | None = Query(default=None, description="The categories of image to include."),
is_intermediate: bool | None = Query(default=None, description="Whether to list intermediate images."),
) -> list[str]:
"""Gets a list of images for a board"""
image_names = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id,
categories,
is_intermediate,
)
return image_names

View File

@@ -6,10 +6,9 @@ from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request,
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, JsonValue
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.extract_metadata_from_image import extract_metadata_from_image
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
@@ -46,16 +45,18 @@ async def upload_image(
board_id: Optional[str] = Query(default=None, description="The board to add this image to, if any"),
session_id: Optional[str] = Query(default=None, description="The session ID associated with this upload, if any"),
crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
metadata: Optional[str] = Body(
default=None,
description="The metadata to associate with the image, must be a stringified JSON dict",
embed=True,
metadata: Optional[JsonValue] = Body(
default=None, description="The metadata to associate with the image", embed=True
),
) -> ImageDTO:
"""Uploads an image"""
if not file.content_type or not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
_metadata = None
_workflow = None
_graph = None
contents = await file.read()
try:
pil_image = Image.open(io.BytesIO(contents))
@@ -66,13 +67,30 @@ async def upload_image(
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
extracted_metadata = extract_metadata_from_image(
pil_image=pil_image,
invokeai_metadata_override=metadata,
invokeai_workflow_override=None,
invokeai_graph_override=None,
logger=ApiDependencies.invoker.services.logger,
)
# TODO: retain non-invokeai metadata on upload?
# attempt to parse metadata from image
metadata_raw = metadata if isinstance(metadata, str) else pil_image.info.get("invokeai_metadata", None)
if isinstance(metadata_raw, str):
_metadata = metadata_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse metadata for uploaded image")
pass
# attempt to parse workflow from image
workflow_raw = pil_image.info.get("invokeai_workflow", None)
if isinstance(workflow_raw, str):
_workflow = workflow_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse workflow for uploaded image")
pass
# attempt to extract graph from image
graph_raw = pil_image.info.get("invokeai_graph", None)
if isinstance(graph_raw, str):
_graph = graph_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse graph for uploaded image")
pass
try:
image_dto = ApiDependencies.invoker.services.images.create(
@@ -81,9 +99,9 @@ async def upload_image(
image_category=image_category,
session_id=session_id,
board_id=board_id,
metadata=extracted_metadata.invokeai_metadata,
workflow=extracted_metadata.invokeai_workflow,
graph=extracted_metadata.invokeai_graph,
metadata=_metadata,
workflow=_workflow,
graph=_graph,
is_intermediate=is_intermediate,
)
@@ -96,22 +114,6 @@ async def upload_image(
raise HTTPException(status_code=500, detail="Failed to create image")
class ImageUploadEntry(BaseModel):
image_dto: ImageDTO = Body(description="The image DTO")
presigned_url: str = Body(description="The URL to get the presigned URL for the image upload")
@images_router.post("/", operation_id="create_image_upload_entry")
async def create_image_upload_entry(
width: int = Body(description="The width of the image"),
height: int = Body(description="The height of the image"),
board_id: Optional[str] = Body(default=None, description="The board to add this image to, if any"),
) -> ImageUploadEntry:
"""Uploads an image from a URL, not implemented"""
raise HTTPException(status_code=501, detail="Not implemented")
@images_router.delete("/i/{image_name}", operation_id="delete_image")
async def delete_image(
image_name: str = Path(description="The name of the image to delete"),

View File

@@ -28,10 +28,12 @@ from invokeai.app.services.model_records import (
UnknownModelException,
)
from invokeai.app.util.suppress_output import SuppressOutput
from invokeai.backend.model_manager import BaseModelType, ModelFormat, ModelType
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
MainCheckpointConfig,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
@@ -856,18 +858,6 @@ async def get_stats() -> Optional[CacheStats]:
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats
@model_manager_router.post(
"/empty_model_cache",
operation_id="empty_model_cache",
status_code=200,
)
async def empty_model_cache() -> None:
"""Drop all models from the model cache to free RAM/VRAM. 'Locked' models that are in active use will not be dropped."""
# Request 1000GB of room in order to force the cache to drop all models.
ApiDependencies.invoker.services.logger.info("Emptying model cache.")
ApiDependencies.invoker.services.model_manager.load.ram_cache.make_room(1000 * 2**30)
class HFTokenStatus(str, Enum):
VALID = "valid"
INVALID = "invalid"

View File

@@ -10,13 +10,11 @@ from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
Batch,
BatchStatus,
CancelAllExceptCurrentResult,
CancelByBatchIDsResult,
CancelByDestinationResult,
ClearResult,
EnqueueBatchResult,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
SessionQueueItem,
SessionQueueItemDTO,
@@ -48,9 +46,7 @@ async def enqueue_batch(
) -> EnqueueBatchResult:
"""Processes a batch and enqueues the output graphs for execution."""
return await ApiDependencies.invoker.services.session_queue.enqueue_batch(
queue_id=queue_id, batch=batch, prepend=prepend
)
return ApiDependencies.invoker.services.session_queue.enqueue_batch(queue_id=queue_id, batch=batch, prepend=prepend)
@session_queue_router.get(
@@ -98,18 +94,6 @@ async def Pause(
return ApiDependencies.invoker.services.session_processor.pause()
@session_queue_router.put(
"/{queue_id}/cancel_all_except_current",
operation_id="cancel_all_except_current",
responses={200: {"model": CancelAllExceptCurrentResult}},
)
async def cancel_all_except_current(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> CancelAllExceptCurrentResult:
"""Immediately cancels all queue items except in-processing items"""
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
@session_queue_router.put(
"/{queue_id}/cancel_by_batch_ids",
operation_id="cancel_by_batch_ids",
@@ -138,19 +122,6 @@ async def cancel_by_destination(
)
@session_queue_router.put(
"/{queue_id}/retry_items_by_id",
operation_id="retry_items_by_id",
responses={200: {"model": RetryItemsResult}},
)
async def retry_items_by_id(
queue_id: str = Path(description="The queue id to perform this operation on"),
item_ids: list[int] = Body(description="The queue item ids to retry"),
) -> RetryItemsResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.retry_items_by_id(queue_id=queue_id, item_ids=item_ids)
@session_queue_router.put(
"/{queue_id}/clear",
operation_id="clear",

View File

@@ -25,7 +25,6 @@ async def parse_dynamicprompts(
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
max_prompts: int = Body(ge=1, le=10000, default=1000, description="The max number of prompts to generate"),
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
seed: int | None = Body(None, description="The seed to use for random generation. Only used if not combinatorial"),
) -> DynamicPromptsResponse:
"""Creates a batch process"""
max_prompts = min(max_prompts, 10000)
@@ -36,7 +35,7 @@ async def parse_dynamicprompts(
generator = CombinatorialPromptGenerator()
prompts = generator.generate(prompt, max_prompts=max_prompts)
else:
generator = RandomPromptGenerator(seed=seed)
generator = RandomPromptGenerator()
prompts = generator.generate(prompt, num_images=max_prompts)
except ParseException as e:
prompts = [prompt]

View File

@@ -1,10 +1,6 @@
import io
import traceback
from typing import Optional
from fastapi import APIRouter, Body, File, HTTPException, Path, Query, UploadFile
from fastapi.responses import FileResponse
from PIL import Image
from fastapi import APIRouter, Body, HTTPException, Path, Query
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.shared.pagination import PaginatedResults
@@ -14,14 +10,11 @@ from invokeai.app.services.workflow_records.workflow_records_common import (
WorkflowCategory,
WorkflowNotFoundError,
WorkflowRecordDTO,
WorkflowRecordListItemWithThumbnailDTO,
WorkflowRecordListItemDTO,
WorkflowRecordOrderBy,
WorkflowRecordWithThumbnailDTO,
WorkflowWithoutID,
)
from invokeai.app.services.workflow_thumbnails.workflow_thumbnails_common import WorkflowThumbnailFileNotFoundException
IMAGE_MAX_AGE = 31536000
workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
@@ -29,17 +22,15 @@ workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
"/i/{workflow_id}",
operation_id="get_workflow",
responses={
200: {"model": WorkflowRecordWithThumbnailDTO},
200: {"model": WorkflowRecordDTO},
},
)
async def get_workflow(
workflow_id: str = Path(description="The workflow to get"),
) -> WorkflowRecordWithThumbnailDTO:
) -> WorkflowRecordDTO:
"""Gets a workflow"""
try:
thumbnail_url = ApiDependencies.invoker.services.workflow_thumbnails.get_url(workflow_id)
workflow = ApiDependencies.invoker.services.workflow_records.get(workflow_id)
return WorkflowRecordWithThumbnailDTO(thumbnail_url=thumbnail_url, **workflow.model_dump())
return ApiDependencies.invoker.services.workflow_records.get(workflow_id)
except WorkflowNotFoundError:
raise HTTPException(status_code=404, detail="Workflow not found")
@@ -66,11 +57,6 @@ async def delete_workflow(
workflow_id: str = Path(description="The workflow to delete"),
) -> None:
"""Deletes a workflow"""
try:
ApiDependencies.invoker.services.workflow_thumbnails.delete(workflow_id)
except WorkflowThumbnailFileNotFoundException:
# It's OK if the workflow has no thumbnail file. We can still delete the workflow.
pass
ApiDependencies.invoker.services.workflow_records.delete(workflow_id)
@@ -92,7 +78,7 @@ async def create_workflow(
"/",
operation_id="list_workflows",
responses={
200: {"model": PaginatedResults[WorkflowRecordListItemWithThumbnailDTO]},
200: {"model": PaginatedResults[WorkflowRecordListItemDTO]},
},
)
async def list_workflows(
@@ -102,158 +88,10 @@ async def list_workflows(
default=WorkflowRecordOrderBy.Name, description="The attribute to order by"
),
direction: SQLiteDirection = Query(default=SQLiteDirection.Ascending, description="The direction to order by"),
categories: Optional[list[WorkflowCategory]] = Query(default=None, description="The categories of workflow to get"),
tags: Optional[list[str]] = Query(default=None, description="The tags of workflow to get"),
category: WorkflowCategory = Query(default=WorkflowCategory.User, description="The category of workflow to get"),
query: Optional[str] = Query(default=None, description="The text to query by (matches name and description)"),
has_been_opened: Optional[bool] = Query(default=None, description="Whether to include/exclude recent workflows"),
) -> PaginatedResults[WorkflowRecordListItemWithThumbnailDTO]:
) -> PaginatedResults[WorkflowRecordListItemDTO]:
"""Gets a page of workflows"""
workflows_with_thumbnails: list[WorkflowRecordListItemWithThumbnailDTO] = []
workflows = ApiDependencies.invoker.services.workflow_records.get_many(
order_by=order_by,
direction=direction,
page=page,
per_page=per_page,
query=query,
categories=categories,
tags=tags,
has_been_opened=has_been_opened,
return ApiDependencies.invoker.services.workflow_records.get_many(
order_by=order_by, direction=direction, page=page, per_page=per_page, query=query, category=category
)
for workflow in workflows.items:
workflows_with_thumbnails.append(
WorkflowRecordListItemWithThumbnailDTO(
thumbnail_url=ApiDependencies.invoker.services.workflow_thumbnails.get_url(workflow.workflow_id),
**workflow.model_dump(),
)
)
return PaginatedResults[WorkflowRecordListItemWithThumbnailDTO](
items=workflows_with_thumbnails,
total=workflows.total,
page=workflows.page,
pages=workflows.pages,
per_page=workflows.per_page,
)
@workflows_router.put(
"/i/{workflow_id}/thumbnail",
operation_id="set_workflow_thumbnail",
responses={
200: {"model": WorkflowRecordDTO},
},
)
async def set_workflow_thumbnail(
workflow_id: str = Path(description="The workflow to update"),
image: UploadFile = File(description="The image file to upload"),
):
"""Sets a workflow's thumbnail image"""
try:
ApiDependencies.invoker.services.workflow_records.get(workflow_id)
except WorkflowNotFoundError:
raise HTTPException(status_code=404, detail="Workflow not found")
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.workflow_thumbnails.save(workflow_id, pil_image)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@workflows_router.delete(
"/i/{workflow_id}/thumbnail",
operation_id="delete_workflow_thumbnail",
responses={
200: {"model": WorkflowRecordDTO},
},
)
async def delete_workflow_thumbnail(
workflow_id: str = Path(description="The workflow to update"),
):
"""Removes a workflow's thumbnail image"""
try:
ApiDependencies.invoker.services.workflow_records.get(workflow_id)
except WorkflowNotFoundError:
raise HTTPException(status_code=404, detail="Workflow not found")
try:
ApiDependencies.invoker.services.workflow_thumbnails.delete(workflow_id)
except ValueError as e:
raise HTTPException(status_code=500, detail=str(e))
@workflows_router.get(
"/i/{workflow_id}/thumbnail",
operation_id="get_workflow_thumbnail",
responses={
200: {
"description": "The workflow thumbnail was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The workflow thumbnail could not be found"},
},
status_code=200,
)
async def get_workflow_thumbnail(
workflow_id: str = Path(description="The id of the workflow thumbnail to get"),
) -> FileResponse:
"""Gets a workflow's thumbnail image"""
try:
path = ApiDependencies.invoker.services.workflow_thumbnails.get_path(workflow_id)
response = FileResponse(
path,
media_type="image/png",
filename=workflow_id + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@workflows_router.get("/counts_by_tag", operation_id="get_counts_by_tag")
async def get_counts_by_tag(
tags: list[str] = Query(description="The tags to get counts for"),
categories: Optional[list[WorkflowCategory]] = Query(default=None, description="The categories to include"),
has_been_opened: Optional[bool] = Query(default=None, description="Whether to include/exclude recent workflows"),
) -> dict[str, int]:
"""Counts workflows by tag"""
return ApiDependencies.invoker.services.workflow_records.counts_by_tag(
tags=tags, categories=categories, has_been_opened=has_been_opened
)
@workflows_router.get("/counts_by_category", operation_id="counts_by_category")
async def counts_by_category(
categories: list[WorkflowCategory] = Query(description="The categories to include"),
has_been_opened: Optional[bool] = Query(default=None, description="Whether to include/exclude recent workflows"),
) -> dict[str, int]:
"""Counts workflows by category"""
return ApiDependencies.invoker.services.workflow_records.counts_by_category(
categories=categories, has_been_opened=has_been_opened
)
@workflows_router.put(
"/i/{workflow_id}/opened_at",
operation_id="update_opened_at",
)
async def update_opened_at(
workflow_id: str = Path(description="The workflow to update"),
) -> None:
"""Updates the opened_at field of a workflow"""
ApiDependencies.invoker.services.workflow_records.update_opened_at(workflow_id)

View File

@@ -1,8 +1,12 @@
import asyncio
import logging
import mimetypes
import socket
from contextlib import asynccontextmanager
from pathlib import Path
import torch
import uvicorn
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
@@ -11,7 +15,11 @@ from fastapi.responses import HTMLResponse, RedirectResponse
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint
from torch.backends.mps import is_available as is_mps_available
# for PyCharm:
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
import invokeai.frontend.web as web_dir
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
@@ -30,13 +38,31 @@ from invokeai.app.api.routers import (
from invokeai.app.api.sockets import SocketIO
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.custom_openapi import get_openapi_func
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
app_config = get_config()
if is_mps_available():
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
logger = InvokeAILogger.get_logger(config=app_config)
# fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
# We may change the port if the default is in use, this global variable is used to store the port so that we can log
# the correct port when the server starts in the lifespan handler.
port = app_config.port
@asynccontextmanager
async def lifespan(app: FastAPI):
@@ -45,7 +71,7 @@ async def lifespan(app: FastAPI):
# Log the server address when it starts - in case the network log level is not high enough to see the startup log
proto = "https" if app_config.ssl_certfile else "http"
msg = f"Invoke running on {proto}://{app_config.host}:{app_config.port} (Press CTRL+C to quit)"
msg = f"Invoke running on {proto}://{app_config.host}:{port} (Press CTRL+C to quit)"
# Logging this way ignores the logger's log level and _always_ logs the message
record = logger.makeRecord(
@@ -160,3 +186,73 @@ except RuntimeError:
app.mount(
"/static", NoCacheStaticFiles(directory=Path(web_root_path, "static/")), name="static"
) # docs favicon is in here
def check_cudnn(logger: logging.Logger) -> None:
"""Check for cuDNN issues that could be causing degraded performance."""
if torch.backends.cudnn.is_available():
try:
# Note: At the time of writing (torch 2.2.1), torch.backends.cudnn.version() only raises an error the first
# time it is called. Subsequent calls will return the version number without complaining about a mismatch.
cudnn_version = torch.backends.cudnn.version()
logger.info(f"cuDNN version: {cudnn_version}")
except RuntimeError as e:
logger.warning(
"Encountered a cuDNN version issue. This may result in degraded performance. This issue is usually "
"caused by an incompatible cuDNN version installed in your python environment, or on the host "
f"system. Full error message:\n{e}"
)
def invoke_api() -> None:
def find_port(port: int) -> int:
"""Find a port not in use starting at given port"""
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
# https://github.com/WaylonWalker
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(1)
if s.connect_ex(("localhost", port)) == 0:
return find_port(port=port + 1)
else:
return port
if app_config.dev_reload:
try:
import jurigged
except ImportError as e:
logger.error(
'Can\'t start `--dev_reload` because jurigged is not found; `pip install -e ".[dev]"` to include development dependencies.',
exc_info=e,
)
else:
jurigged.watch(logger=InvokeAILogger.get_logger(name="jurigged").info)
global port
port = find_port(app_config.port)
if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}")
check_cudnn(logger)
config = uvicorn.Config(
app=app,
host=app_config.host,
port=port,
loop="asyncio",
log_level=app_config.log_level_network,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)
# replace uvicorn's loggers with InvokeAI's for consistent appearance
uvicorn_logger = InvokeAILogger.get_logger("uvicorn")
uvicorn_logger.handlers.clear()
for hdlr in logger.handlers:
uvicorn_logger.addHandler(hdlr)
loop.run_until_complete(server.serve())
if __name__ == "__main__":
invoke_api()

View File

@@ -1,5 +1,33 @@
import shutil
import sys
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from invokeai.app.services.config.config_default import get_config
custom_nodes_path = Path(get_config().custom_nodes_path)
custom_nodes_path.mkdir(parents=True, exist_ok=True)
custom_nodes_init_path = str(custom_nodes_path / "__init__.py")
custom_nodes_readme_path = str(custom_nodes_path / "README.md")
# copy our custom nodes __init__.py to the custom nodes directory
shutil.copy(Path(__file__).parent / "custom_nodes/init.py", custom_nodes_init_path)
shutil.copy(Path(__file__).parent / "custom_nodes/README.md", custom_nodes_readme_path)
# set the same permissions as the destination directory, in case our source is read-only,
# so that the files are user-writable
for p in custom_nodes_path.glob("**/*"):
p.chmod(custom_nodes_path.stat().st_mode)
# Import custom nodes, see https://docs.python.org/3/library/importlib.html#importing-programmatically
spec = spec_from_file_location("custom_nodes", custom_nodes_init_path)
if spec is None or spec.loader is None:
raise RuntimeError(f"Could not load custom nodes from {custom_nodes_init_path}")
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
# add core nodes to __all__
python_files = filter(lambda f: not f.name.startswith("_"), Path(__file__).parent.glob("*.py"))
__all__ = [f.stem for f in python_files] # type: ignore

View File

@@ -8,7 +8,6 @@ import sys
import warnings
from abc import ABC, abstractmethod
from enum import Enum
from functools import lru_cache
from inspect import signature
from typing import (
TYPE_CHECKING,
@@ -28,6 +27,7 @@ import semver
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter, create_model
from pydantic.fields import FieldInfo
from pydantic_core import PydanticUndefined
from typing_extensions import TypeAliasType
from invokeai.app.invocations.fields import (
FieldKind,
@@ -44,6 +44,8 @@ if TYPE_CHECKING:
logger = InvokeAILogger.get_logger()
CUSTOM_NODE_PACK_SUFFIX = "__invokeai-custom-node"
class InvalidVersionError(ValueError):
pass
@@ -100,6 +102,37 @@ class BaseInvocationOutput(BaseModel):
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
"""
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
_typeadapter_needs_update: ClassVar[bool] = False
@classmethod
def register_output(cls, output: BaseInvocationOutput) -> None:
"""Registers an invocation output."""
cls._output_classes.add(output)
cls._typeadapter_needs_update = True
@classmethod
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
"""Gets all invocation outputs."""
return cls._output_classes
@classmethod
def get_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantc TypeAdapter for the union of all invocation output types."""
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocationOutput = TypeAliasType(
"AnyInvocationOutput", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(AnyInvocationOutput)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
def get_output_types(cls) -> Iterable[str]:
"""Gets all invocation output types."""
return (i.get_type() for i in BaseInvocationOutput.get_outputs())
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocationOutput]) -> None:
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
@@ -142,11 +175,66 @@ class BaseInvocation(ABC, BaseModel):
All invocations must use the `@invocation` decorator to provide their unique type.
"""
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
_typeadapter_needs_update: ClassVar[bool] = False
@classmethod
def get_type(cls) -> str:
"""Gets the invocation's type, as provided by the `@invocation` decorator."""
return cls.model_fields["type"].default
@classmethod
def register_invocation(cls, invocation: BaseInvocation) -> None:
"""Registers an invocation."""
cls._invocation_classes.add(invocation)
cls._typeadapter_needs_update = True
@classmethod
def get_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocation = TypeAliasType(
"AnyInvocation", Annotated[Union[tuple(cls.get_invocations())], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(AnyInvocation)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
def invalidate_typeadapter(cls) -> None:
"""Invalidates the typeadapter, forcing it to be rebuilt on next access. If the invocation allowlist or
denylist is changed, this should be called to ensure the typeadapter is updated and validation respects
the updated allowlist and denylist."""
cls._typeadapter_needs_update = True
@classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]:
"""Gets all invocations, respecting the allowlist and denylist."""
app_config = get_config()
allowed_invocations: set[BaseInvocation] = set()
for sc in cls._invocation_classes:
invocation_type = sc.get_type()
is_in_allowlist = (
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
)
is_in_denylist = (
invocation_type in app_config.deny_nodes if isinstance(app_config.deny_nodes, list) else False
)
if is_in_allowlist and not is_in_denylist:
allowed_invocations.add(sc)
return allowed_invocations
@classmethod
def get_invocations_map(cls) -> dict[str, BaseInvocation]:
"""Gets a map of all invocation types to their invocation classes."""
return {i.get_type(): i for i in BaseInvocation.get_invocations()}
@classmethod
def get_invocation_types(cls) -> Iterable[str]:
"""Gets all invocation types."""
return (i.get_type() for i in BaseInvocation.get_invocations())
@classmethod
def get_output_annotation(cls) -> BaseInvocationOutput:
"""Gets the invocation's output annotation (i.e. the return annotation of its `invoke()` method)."""
@@ -249,105 +337,6 @@ class BaseInvocation(ABC, BaseModel):
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
class InvocationRegistry:
_invocation_classes: ClassVar[set[type[BaseInvocation]]] = set()
_output_classes: ClassVar[set[type[BaseInvocationOutput]]] = set()
@classmethod
def register_invocation(cls, invocation: type[BaseInvocation]) -> None:
"""Registers an invocation."""
cls._invocation_classes.add(invocation)
cls.invalidate_invocation_typeadapter()
@classmethod
@lru_cache(maxsize=1)
def get_invocation_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantic TypeAdapter for the union of all invocation types.
This is used to parse serialized invocations into the correct invocation class.
This method is cached to avoid rebuilding the TypeAdapter on every access. If the invocation allowlist or
denylist is changed, the cache should be cleared to ensure the TypeAdapter is updated and validation respects
the updated allowlist and denylist.
@see https://docs.pydantic.dev/latest/concepts/type_adapter/
"""
return TypeAdapter(Annotated[Union[tuple(cls.get_invocation_classes())], Field(discriminator="type")])
@classmethod
def invalidate_invocation_typeadapter(cls) -> None:
"""Invalidates the cached invocation type adapter."""
cls.get_invocation_typeadapter.cache_clear()
@classmethod
def get_invocation_classes(cls) -> Iterable[type[BaseInvocation]]:
"""Gets all invocations, respecting the allowlist and denylist."""
app_config = get_config()
allowed_invocations: set[type[BaseInvocation]] = set()
for sc in cls._invocation_classes:
invocation_type = sc.get_type()
is_in_allowlist = (
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
)
is_in_denylist = (
invocation_type in app_config.deny_nodes if isinstance(app_config.deny_nodes, list) else False
)
if is_in_allowlist and not is_in_denylist:
allowed_invocations.add(sc)
return allowed_invocations
@classmethod
def get_invocations_map(cls) -> dict[str, type[BaseInvocation]]:
"""Gets a map of all invocation types to their invocation classes."""
return {i.get_type(): i for i in cls.get_invocation_classes()}
@classmethod
def get_invocation_types(cls) -> Iterable[str]:
"""Gets all invocation types."""
return (i.get_type() for i in cls.get_invocation_classes())
@classmethod
def get_invocation_for_type(cls, invocation_type: str) -> type[BaseInvocation] | None:
"""Gets the invocation class for a given invocation type."""
return cls.get_invocations_map().get(invocation_type)
@classmethod
def register_output(cls, output: "type[TBaseInvocationOutput]") -> None:
"""Registers an invocation output."""
cls._output_classes.add(output)
cls.invalidate_output_typeadapter()
@classmethod
def get_output_classes(cls) -> Iterable[type[BaseInvocationOutput]]:
"""Gets all invocation outputs."""
return cls._output_classes
@classmethod
@lru_cache(maxsize=1)
def get_output_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantic TypeAdapter for the union of all invocation output types.
This is used to parse serialized invocation outputs into the correct invocation output class.
This method is cached to avoid rebuilding the TypeAdapter on every access. If the invocation allowlist or
denylist is changed, the cache should be cleared to ensure the TypeAdapter is updated and validation respects
the updated allowlist and denylist.
@see https://docs.pydantic.dev/latest/concepts/type_adapter/
"""
return TypeAdapter(Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")])
@classmethod
def invalidate_output_typeadapter(cls) -> None:
"""Invalidates the cached invocation output type adapter."""
cls.get_output_typeadapter.cache_clear()
@classmethod
def get_output_types(cls) -> Iterable[str]:
"""Gets all invocation output types."""
return (i.get_type() for i in cls.get_output_classes())
RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
"id",
"is_intermediate",
@@ -425,7 +414,7 @@ def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None
ui_type = field.json_schema_extra.get("ui_type", None)
if isinstance(ui_type, str) and ui_type.startswith("DEPRECATED_"):
logger.warn(f'"UIType.{ui_type.split("_")[-1]}" is deprecated, ignoring')
logger.warn(f"\"UIType.{ui_type.split('_')[-1]}\" is deprecated, ignoring")
field.json_schema_extra.pop("ui_type")
return None
@@ -457,27 +446,8 @@ def invocation(
if re.compile(r"^\S+$").match(invocation_type) is None:
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
# The node pack is the module name - will be "invokeai" for built-in nodes
node_pack = cls.__module__.split(".")[0]
# Handle the case where an existing node is being clobbered by the one we are registering
if invocation_type in InvocationRegistry.get_invocation_types():
clobbered_invocation = InvocationRegistry.get_invocation_for_type(invocation_type)
# This should always be true - we just checked if the invocation type was in the set
assert clobbered_invocation is not None
clobbered_node_pack = clobbered_invocation.UIConfig.node_pack
if clobbered_node_pack == "invokeai":
# The node being clobbered is a core node
raise ValueError(
f'Cannot load node "{invocation_type}" from node pack "{node_pack}" - a core node with the same type already exists'
)
else:
# The node being clobbered is a custom node
raise ValueError(
f'Cannot load node "{invocation_type}" from node pack "{node_pack}" - a node with the same type already exists in node pack "{clobbered_node_pack}"'
)
if invocation_type in BaseInvocation.get_invocation_types():
raise ValueError(f'Invocation type "{invocation_type}" already exists')
validate_fields(cls.model_fields, invocation_type)
@@ -487,7 +457,8 @@ def invocation(
uiconfig["tags"] = tags
uiconfig["category"] = category
uiconfig["classification"] = classification
uiconfig["node_pack"] = node_pack
# The node pack is the module name - will be "invokeai" for built-in nodes
uiconfig["node_pack"] = cls.__module__.split(".")[0]
if version is not None:
try:
@@ -547,7 +518,8 @@ def invocation(
)
cls.__doc__ = docstring
InvocationRegistry.register_invocation(cls)
# TODO: how to type this correctly? it's typed as ModelMetaclass, a private class in pydantic
BaseInvocation.register_invocation(cls) # type: ignore
return cls
@@ -572,7 +544,7 @@ def invocation_output(
if re.compile(r"^\S+$").match(output_type) is None:
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
if output_type in InvocationRegistry.get_output_types():
if output_type in BaseInvocationOutput.get_output_types():
raise ValueError(f'Invocation type "{output_type}" already exists')
validate_fields(cls.model_fields, output_type)
@@ -593,7 +565,7 @@ def invocation_output(
)
cls.__doc__ = docstring
InvocationRegistry.register_output(cls)
BaseInvocationOutput.register_output(cls) # type: ignore # TODO: how to type this correctly?
return cls

View File

@@ -1,274 +0,0 @@
from typing import Literal
from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
ImageField,
Input,
InputField,
OutputField,
)
from invokeai.app.invocations.primitives import (
FloatOutput,
ImageOutput,
IntegerOutput,
StringOutput,
)
from invokeai.app.services.shared.invocation_context import InvocationContext
BATCH_GROUP_IDS = Literal[
"None",
"Group 1",
"Group 2",
"Group 3",
"Group 4",
"Group 5",
]
class NotExecutableNodeError(Exception):
def __init__(self, message: str = "This class should never be executed or instantiated directly."):
super().__init__(message)
pass
class BaseBatchInvocation(BaseInvocation):
batch_group_id: BATCH_GROUP_IDS = InputField(
default="None",
description="The ID of this batch node's group. If provided, all batch nodes in with the same ID will be 'zipped' before execution, and all nodes' collections must be of the same size.",
input=Input.Direct,
title="Batch Group",
)
def __init__(self):
raise NotExecutableNodeError()
@invocation(
"image_batch",
title="Image Batch",
tags=["primitives", "image", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(
default=[],
min_length=1,
description="The images to batch over",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
raise NotExecutableNodeError()
@invocation_output("image_generator_output")
class ImageGeneratorOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of boards"""
images: list[ImageField] = OutputField(description="The generated images")
class ImageGeneratorField(BaseModel):
pass
@invocation(
"image_generator",
title="Image Generator",
tags=["primitives", "board", "image", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageGenerator(BaseInvocation):
"""Generated a collection of images for use in a batched generation"""
generator: ImageGeneratorField = InputField(
description="The image generator.",
input=Input.Direct,
title="Generator Type",
)
def __init__(self):
raise NotExecutableNodeError()
def invoke(self, context: InvocationContext) -> ImageGeneratorOutput:
raise NotExecutableNodeError()
@invocation(
"string_batch",
title="String Batch",
tags=["primitives", "string", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class StringBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each string in the batch."""
strings: list[str] = InputField(
default=[],
min_length=1,
description="The strings to batch over",
)
def invoke(self, context: InvocationContext) -> StringOutput:
raise NotExecutableNodeError()
@invocation_output("string_generator_output")
class StringGeneratorOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of strings"""
strings: list[str] = OutputField(description="The generated strings")
class StringGeneratorField(BaseModel):
pass
@invocation(
"string_generator",
title="String Generator",
tags=["primitives", "string", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class StringGenerator(BaseInvocation):
"""Generated a range of strings for use in a batched generation"""
generator: StringGeneratorField = InputField(
description="The string generator.",
input=Input.Direct,
title="Generator Type",
)
def __init__(self):
raise NotExecutableNodeError()
def invoke(self, context: InvocationContext) -> StringGeneratorOutput:
raise NotExecutableNodeError()
@invocation(
"integer_batch",
title="Integer Batch",
tags=["primitives", "integer", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class IntegerBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each integer in the batch."""
integers: list[int] = InputField(
default=[],
min_length=1,
description="The integers to batch over",
)
def invoke(self, context: InvocationContext) -> IntegerOutput:
raise NotExecutableNodeError()
@invocation_output("integer_generator_output")
class IntegerGeneratorOutput(BaseInvocationOutput):
integers: list[int] = OutputField(description="The generated integers")
class IntegerGeneratorField(BaseModel):
pass
@invocation(
"integer_generator",
title="Integer Generator",
tags=["primitives", "int", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class IntegerGenerator(BaseInvocation):
"""Generated a range of integers for use in a batched generation"""
generator: IntegerGeneratorField = InputField(
description="The integer generator.",
input=Input.Direct,
title="Generator Type",
)
def __init__(self):
raise NotExecutableNodeError()
def invoke(self, context: InvocationContext) -> IntegerGeneratorOutput:
raise NotExecutableNodeError()
@invocation(
"float_batch",
title="Float Batch",
tags=["primitives", "float", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class FloatBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each float in the batch."""
floats: list[float] = InputField(
default=[],
min_length=1,
description="The floats to batch over",
)
def invoke(self, context: InvocationContext) -> FloatOutput:
raise NotExecutableNodeError()
@invocation_output("float_generator_output")
class FloatGeneratorOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of floats"""
floats: list[float] = OutputField(description="The generated floats")
class FloatGeneratorField(BaseModel):
pass
@invocation(
"float_generator",
title="Float Generator",
tags=["primitives", "float", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class FloatGenerator(BaseInvocation):
"""Generated a range of floats for use in a batched generation"""
generator: FloatGeneratorField = InputField(
description="The float generator.",
input=Input.Direct,
title="Generator Type",
)
def __init__(self):
raise NotExecutableNodeError()
def invoke(self, context: InvocationContext) -> FloatGeneratorOutput:
raise NotExecutableNodeError()

View File

@@ -40,10 +40,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"compel",
title="Prompt - SD1.5",
title="Prompt",
tags=["prompt", "compel"],
category="conditioning",
version="1.2.1",
version="1.2.0",
)
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
@@ -233,10 +233,10 @@ class SDXLPromptInvocationBase:
@invocation(
"sdxl_compel_prompt",
title="Prompt - SDXL",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.2.1",
version="1.2.0",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@@ -327,10 +327,10 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
@invocation(
"sdxl_refiner_compel_prompt",
title="Prompt - SDXL Refiner",
title="SDXL Refiner Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.1.2",
version="1.1.1",
)
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@@ -376,10 +376,10 @@ class CLIPSkipInvocationOutput(BaseInvocationOutput):
@invocation(
"clip_skip",
title="Apply CLIP Skip - SD1.5, SDXL",
title="CLIP Skip",
tags=["clipskip", "clip", "skip"],
category="conditioning",
version="1.1.1",
version="1.1.0",
)
class CLIPSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
@@ -513,7 +513,7 @@ def log_tokenization_for_text(
usedTokens += 1
if usedTokens > 0:
print(f"\n>> [TOKENLOG] Tokens {display_label or ''} ({usedTokens}):")
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":

View File

@@ -87,7 +87,7 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet - SD1.5, SDXL", tags=["controlnet"], category="controlnet", version="1.1.3")
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.2")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""

View File

@@ -19,8 +19,7 @@ from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase
from invokeai.backend.model_manager.taxonomy import ModelVariantType
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor

View File

@@ -0,0 +1,58 @@
"""
Invoke-managed custom node loader. See README.md for more information.
"""
import sys
import traceback
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
loaded_count = 0
for d in Path(__file__).parent.iterdir():
# skip files
if not d.is_dir():
continue
# skip hidden directories
if d.name.startswith("_") or d.name.startswith("."):
continue
# skip directories without an `__init__.py`
init = d / "__init__.py"
if not init.exists():
continue
module_name = init.parent.stem
# skip if already imported
if module_name in globals():
continue
# load the module, appending adding a suffix to identify it as a custom node pack
spec = spec_from_file_location(module_name, init.absolute())
if spec is None or spec.loader is None:
logger.warn(f"Could not load {init}")
continue
logger.info(f"Loading node pack {module_name}")
try:
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
loaded_count += 1
except Exception:
full_error = traceback.format_exc()
logger.error(f"Failed to load node pack {module_name}:\n{full_error}")
del init, module_name
if loaded_count > 0:
logger.info(f"Loaded {loaded_count} node packs from {Path(__file__).parent}")

View File

@@ -39,8 +39,7 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelVariantType
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
@@ -86,7 +85,6 @@ def get_scheduler(
scheduler_info: ModelIdentifierField,
scheduler_name: str,
seed: int,
unet_config: AnyModelConfig,
) -> Scheduler:
"""Load a scheduler and apply some scheduler-specific overrides."""
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
@@ -105,9 +103,6 @@ def get_scheduler(
"_backup": scheduler_config,
}
if hasattr(unet_config, "prediction_type"):
scheduler_config["prediction_type"] = unet_config.prediction_type
# make dpmpp_sde reproducable(seed can be passed only in initializer)
if scheduler_class is DPMSolverSDEScheduler:
scheduler_config["noise_sampler_seed"] = seed
@@ -127,10 +122,10 @@ def get_scheduler(
@invocation(
"denoise_latents",
title="Denoise - SD1.5, SDXL",
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.5.4",
version="1.5.3",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
@@ -834,9 +829,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
_, _, latent_height, latent_width = latents.shape
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
conditioning_data = self.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
@@ -856,7 +848,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
unet_config=unet_config,
)
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
@@ -868,6 +859,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end,
)
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
### preview
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
@@ -898,7 +892,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
### inpaint
mask, masked_latents, is_gradient_mask = self.prep_inpaint_mask(context, latents)
# NOTE: We used to identify inpainting models by inspecting the shape of the loaded UNet model weights. Now we
# NOTE: We used to identify inpainting models by inpecting the shape of the loaded UNet model weights. Now we
# use the ModelVariantType config. During testing, there was a report of a user with models that had an
# incorrect ModelVariantType value. Re-installing the model fixed the issue. If this issue turns out to be
# prevalent, we will have to revisit how we initialize the inpainting extensions.
@@ -1036,7 +1030,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
unet_config=unet_config,
)
pipeline = self.create_pipeline(unet, scheduler)

View File

@@ -57,9 +57,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
CLIPGEmbedModel = "CLIPGEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
ControlLoRAModel = "ControlLoRAModelField"
SigLipModel = "SigLipModelField"
FluxReduxModel = "FluxReduxModelField"
LlavaOnevisionModel = "LLaVAModelField"
# endregion
# region Misc Field Types
@@ -155,7 +152,6 @@ class FieldDescriptions:
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
spandrel_image_to_image_model = "Image-to-Image model"
vllm_model = "VLLM model"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
@@ -205,9 +201,6 @@ class FieldDescriptions:
freeu_b1 = "Scaling factor for stage 1 to amplify the contributions of backbone features."
freeu_b2 = "Scaling factor for stage 2 to amplify the contributions of backbone features."
instantx_control_mode = "The control mode for InstantX ControlNet union models. Ignored for other ControlNet models. The standard mapping is: canny (0), tile (1), depth (2), blur (3), pose (4), gray (5), low quality (6). Negative values will be treated as 'None'."
flux_redux_conditioning = "FLUX Redux conditioning tensor"
vllm_model = "The VLLM model to use"
flux_fill_conditioning = "FLUX Fill conditioning tensor"
class ImageField(BaseModel):
@@ -266,24 +259,6 @@ class FluxConditioningField(BaseModel):
)
class FluxReduxConditioningField(BaseModel):
"""A FLUX Redux conditioning tensor primitive value"""
conditioning: TensorField = Field(description="The Redux image conditioning tensor.")
mask: Optional[TensorField] = Field(
default=None,
description="The mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class FluxFillConditioningField(BaseModel):
"""A FLUX Fill conditioning field."""
image: ImageField = Field(description="The FLUX Fill reference image.")
mask: TensorField = Field(description="The FLUX Fill inpaint mask.")
class SD3ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
@@ -325,13 +300,6 @@ class BoundingBoxField(BaseModel):
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
return self
def tuple(self) -> Tuple[int, int, int, int]:
"""
Returns the bounding box as a tuple suitable for use with PIL's `Image.crop()` method.
This method returns a tuple of the form (left, upper, right, lower) == (x_min, y_min, x_max, y_max).
"""
return (self.x_min, self.y_min, self.x_max, self.y_max)
class MetadataField(RootModel[dict[str, Any]]):
"""

View File

@@ -1,6 +1,7 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -20,10 +21,11 @@ class FluxControlLoRALoaderOutput(BaseInvocationOutput):
@invocation(
"flux_control_lora_loader",
title="Control LoRA - FLUX",
title="Flux Control LoRA",
tags=["lora", "model", "flux"],
category="model",
version="1.1.1",
version="1.1.0",
classification=Classification.Prototype,
)
class FluxControlLoRALoaderInvocation(BaseInvocation):
"""LoRA model and Image to use with FLUX transformer generation."""

View File

@@ -3,6 +3,7 @@ from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -51,6 +52,7 @@ class FluxControlNetOutput(BaseInvocationOutput):
tags=["controlnet", "flux"],
category="controlnet",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxControlNetInvocation(BaseInvocation):
"""Collect FLUX ControlNet info to pass to other nodes."""

View File

@@ -10,13 +10,11 @@ from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
FluxFillConditioningField,
FluxReduxConditioningField,
ImageField,
Input,
InputField,
@@ -48,8 +46,8 @@ from invokeai.backend.flux.sampling_utils import (
pack,
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxReduxConditioning, FluxTextConditioning
from invokeai.backend.model_manager.taxonomy import ModelFormat, ModelVariantType
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
@@ -63,7 +61,8 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.3.0",
version="3.2.2",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a FLUX transformer model."""
@@ -104,16 +103,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
)
redux_conditioning: FluxReduxConditioningField | list[FluxReduxConditioningField] | None = InputField(
default=None,
description="FLUX Redux conditioning tensor.",
input=Input.Connection,
)
fill_conditioning: FluxFillConditioningField | None = InputField(
default=None,
description="FLUX Fill conditioning.",
input=Input.Connection,
)
cfg_scale: float | list[float] = InputField(default=1.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
cfg_scale_start_step: int = InputField(
default=0,
@@ -201,23 +190,11 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
redux_conditionings: list[FluxReduxConditioning] = self._load_redux_conditioning(
context=context,
redux_cond_field=self.redux_conditioning,
packed_height=packed_h,
packed_width=packed_w,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
pos_regional_prompting_extension = RegionalPromptingExtension.from_text_conditioning(
text_conditioning=pos_text_conditionings,
redux_conditioning=redux_conditionings,
img_seq_len=packed_h * packed_w,
pos_text_conditionings, img_seq_len=packed_h * packed_w
)
neg_regional_prompting_extension = (
RegionalPromptingExtension.from_text_conditioning(
text_conditioning=neg_text_conditionings, redux_conditioning=[], img_seq_len=packed_h * packed_w
)
RegionalPromptingExtension.from_text_conditioning(neg_text_conditionings, img_seq_len=packed_h * packed_w)
if neg_text_conditionings
else None
)
@@ -266,19 +243,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
if is_schnell and self.control_lora:
raise ValueError("Control LoRAs cannot be used with FLUX Schnell")
# Prepare the extra image conditioning tensor (img_cond) for either FLUX structural control or FLUX Fill.
img_cond: torch.Tensor | None = None
is_flux_fill = transformer_config.variant == ModelVariantType.Inpaint # type: ignore
if is_flux_fill:
img_cond = self._prep_flux_fill_img_cond(
context, device=TorchDevice.choose_torch_device(), dtype=inference_dtype
)
else:
if self.fill_conditioning is not None:
raise ValueError("fill_conditioning was provided, but the model is not a FLUX Fill model.")
if self.control_lora is not None:
img_cond = self._prep_structural_control_img_cond(context)
# Prepare the extra image conditioning tensor if a FLUX structural control image is provided.
img_cond = self._prep_structural_control_img_cond(context)
inpaint_mask = self._prep_inpaint_mask(context, x)
@@ -287,6 +253,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
img_cond = pack(img_cond) if img_cond is not None else None
noise = pack(noise)
x = pack(x)
@@ -433,42 +400,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
return text_conditionings
def _load_redux_conditioning(
self,
context: InvocationContext,
redux_cond_field: FluxReduxConditioningField | list[FluxReduxConditioningField] | None,
packed_height: int,
packed_width: int,
device: torch.device,
dtype: torch.dtype,
) -> list[FluxReduxConditioning]:
# Normalize to a list of FluxReduxConditioningFields.
if redux_cond_field is None:
return []
redux_cond_list = (
[redux_cond_field] if isinstance(redux_cond_field, FluxReduxConditioningField) else redux_cond_field
)
redux_conditionings: list[FluxReduxConditioning] = []
for redux_cond_field in redux_cond_list:
# Load the Redux conditioning tensor.
redux_cond_data = context.tensors.load(redux_cond_field.conditioning.tensor_name)
redux_cond_data.to(device=device, dtype=dtype)
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if redux_cond_field.mask is not None:
mask = context.tensors.load(redux_cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
redux_conditionings.append(FluxReduxConditioning(redux_embeddings=redux_cond_data, mask=mask))
return redux_conditionings
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int
@@ -679,70 +610,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
img_cond = einops.rearrange(img_cond, "h w c -> 1 c h w")
vae_info = context.models.load(self.controlnet_vae.vae)
img_cond = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=img_cond)
return pack(img_cond)
def _prep_flux_fill_img_cond(
self, context: InvocationContext, device: torch.device, dtype: torch.dtype
) -> torch.Tensor:
"""Prepare the FLUX Fill conditioning. This method should be called iff the model is a FLUX Fill model.
This logic is based on:
https://github.com/black-forest-labs/flux/blob/716724eb276d94397be99710a0a54d352664e23b/src/flux/sampling.py#L107-L157
"""
# Validate inputs.
if self.fill_conditioning is None:
raise ValueError("A FLUX Fill model is being used without fill_conditioning.")
# TODO(ryand): We should probable rename controlnet_vae. It's used for more than just ControlNets.
if self.controlnet_vae is None:
raise ValueError("A FLUX Fill model is being used without controlnet_vae.")
if self.control_lora is not None:
raise ValueError(
"A FLUX Fill model is being used, but a control_lora was provided. Control LoRAs are not compatible with FLUX Fill models."
)
# Log input warnings related to FLUX Fill usage.
if self.denoise_mask is not None:
context.logger.warning(
"Both fill_conditioning and a denoise_mask were provided. You probably meant to use one or the other."
)
if self.guidance < 25.0:
context.logger.warning("A guidance value of ~30.0 is recommended for FLUX Fill models.")
# Load the conditioning image and resize it to the target image size.
cond_img = context.images.get_pil(self.fill_conditioning.image.image_name, mode="RGB")
cond_img = cond_img.resize((self.width, self.height), Image.Resampling.BICUBIC)
cond_img = np.array(cond_img)
cond_img = torch.from_numpy(cond_img).float() / 127.5 - 1.0
cond_img = einops.rearrange(cond_img, "h w c -> 1 c h w")
cond_img = cond_img.to(device=device, dtype=dtype)
# Load the mask and resize it to the target image size.
mask = context.tensors.load(self.fill_conditioning.mask.tensor_name)
# We expect mask to be a bool tensor with shape [1, H, W].
assert mask.dtype == torch.bool
assert mask.dim() == 3
assert mask.shape[0] == 1
mask = tv_resize(mask, size=[self.height, self.width], interpolation=tv_transforms.InterpolationMode.NEAREST)
mask = mask.to(device=device, dtype=dtype)
mask = einops.rearrange(mask, "1 h w -> 1 1 h w")
# Prepare image conditioning.
cond_img = cond_img * (1 - mask)
vae_info = context.models.load(self.controlnet_vae.vae)
cond_img = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=cond_img)
cond_img = pack(cond_img)
# Prepare mask conditioning.
mask = mask[:, 0, :, :]
# Rearrange mask to a 16-channel representation that matches the shape of the VAE-encoded latent space.
mask = einops.rearrange(mask, "b (h ph) (w pw) -> b (ph pw) h w", ph=8, pw=8)
mask = pack(mask)
# Merge image and mask conditioning.
img_cond = torch.cat((cond_img, mask), dim=-1)
return img_cond
return FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=img_cond)
def _normalize_ip_adapter_fields(self) -> list[IPAdapterField]:
if self.ip_adapter is None:

View File

@@ -1,46 +0,0 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxFillConditioningField,
InputField,
OutputField,
TensorField,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("flux_fill_output")
class FluxFillOutput(BaseInvocationOutput):
"""The conditioning output of a FLUX Fill invocation."""
fill_cond: FluxFillConditioningField = OutputField(
description=FieldDescriptions.flux_redux_conditioning, title="Conditioning"
)
@invocation(
"flux_fill",
title="FLUX Fill Conditioning",
tags=["inpaint"],
category="inpaint",
version="1.0.0",
classification=Classification.Beta,
)
class FluxFillInvocation(BaseInvocation):
"""Prepare the FLUX Fill conditioning data."""
image: ImageField = InputField(description="The FLUX Fill reference image.")
mask: TensorField = InputField(
description="The bool inpainting mask. Excluded regions should be set to "
"False, included regions should be set to True.",
)
def invoke(self, context: InvocationContext) -> FluxFillOutput:
return FluxFillOutput(fill_cond=FluxFillConditioningField(image=self.image, mask=self.mask))

View File

@@ -4,7 +4,7 @@ from typing import List, Literal, Union
from pydantic import field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import InputField, UIType
from invokeai.app.invocations.ip_adapter import (
CLIP_VISION_MODEL_MAP,
@@ -28,6 +28,7 @@ from invokeai.backend.model_manager.config import (
tags=["ip_adapter", "control"],
category="ip_adapter",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxIPAdapterInvocation(BaseInvocation):
"""Collects FLUX IP-Adapter info to pass to other nodes."""

View File

@@ -3,13 +3,14 @@ from typing import Optional
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, T5EncoderField, TransformerField
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, TransformerField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import BaseModelType
from invokeai.backend.model_manager.config import BaseModelType
@invocation_output("flux_lora_loader_output")
@@ -20,17 +21,15 @@ class FluxLoRALoaderOutput(BaseInvocationOutput):
default=None, description=FieldDescriptions.transformer, title="FLUX Transformer"
)
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
t5_encoder: Optional[T5EncoderField] = OutputField(
default=None, description=FieldDescriptions.t5_encoder, title="T5 Encoder"
)
@invocation(
"flux_lora_loader",
title="Apply LoRA - FLUX",
title="FLUX LoRA",
tags=["lora", "model", "flux"],
category="model",
version="1.2.1",
version="1.1.0",
classification=Classification.Prototype,
)
class FluxLoRALoaderInvocation(BaseInvocation):
"""Apply a LoRA model to a FLUX transformer and/or text encoder."""
@@ -51,12 +50,6 @@ class FluxLoRALoaderInvocation(BaseInvocation):
description=FieldDescriptions.clip,
input=Input.Connection,
)
t5_encoder: T5EncoderField | None = InputField(
default=None,
title="T5 Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
lora_key = self.lora.key
@@ -69,8 +62,6 @@ class FluxLoRALoaderInvocation(BaseInvocation):
raise ValueError(f'LoRA "{lora_key}" already applied to transformer.')
if self.clip and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise ValueError(f'LoRA "{lora_key}" already applied to CLIP encoder.')
if self.t5_encoder and any(lora.lora.key == lora_key for lora in self.t5_encoder.loras):
raise ValueError(f'LoRA "{lora_key}" already applied to T5 encoder.')
output = FluxLoRALoaderOutput()
@@ -91,30 +82,23 @@ class FluxLoRALoaderInvocation(BaseInvocation):
weight=self.weight,
)
)
if self.t5_encoder is not None:
output.t5_encoder = self.t5_encoder.model_copy(deep=True)
output.t5_encoder.loras.append(
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
return output
@invocation(
"flux_lora_collection_loader",
title="Apply LoRA Collection - FLUX",
title="FLUX LoRA Collection Loader",
tags=["lora", "model", "flux"],
category="model",
version="1.3.1",
version="1.1.0",
classification=Classification.Prototype,
)
class FLUXLoRACollectionLoader(BaseInvocation):
"""Applies a collection of LoRAs to a FLUX transformer."""
loras: Optional[LoRAField | list[LoRAField]] = InputField(
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
transformer: Optional[TransformerField] = InputField(
@@ -129,30 +113,13 @@ class FLUXLoRACollectionLoader(BaseInvocation):
description=FieldDescriptions.clip,
input=Input.Connection,
)
t5_encoder: T5EncoderField | None = InputField(
default=None,
title="T5 Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
output = FluxLoRALoaderOutput()
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
if self.transformer is not None:
output.transformer = self.transformer.model_copy(deep=True)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
if self.t5_encoder is not None:
output.t5_encoder = self.t5_encoder.model_copy(deep=True)
for lora in loras:
if lora is None:
continue
if lora.lora.key in added_loras:
continue
@@ -163,13 +130,14 @@ class FLUXLoRACollectionLoader(BaseInvocation):
added_loras.append(lora.lora.key)
if self.transformer is not None and output.transformer is not None:
if self.transformer is not None:
if output.transformer is None:
output.transformer = self.transformer.model_copy(deep=True)
output.transformer.loras.append(lora)
if self.clip is not None and output.clip is not None:
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(lora)
if self.t5_encoder is not None and output.t5_encoder is not None:
output.t5_encoder.loras.append(lora)
return output

View File

@@ -3,21 +3,18 @@ from typing import Literal
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.t5_model_identifier import (
preprocess_t5_encoder_model_identifier,
preprocess_t5_tokenizer_model_identifier,
)
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
SubModelType,
)
from invokeai.backend.model_manager.taxonomy import SubModelType
@invocation_output("flux_model_loader_output")
@@ -36,10 +33,11 @@ class FluxModelLoaderOutput(BaseInvocationOutput):
@invocation(
"flux_model_loader",
title="Main Model - FLUX",
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.6",
version="1.0.4",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""
@@ -76,8 +74,8 @@ class FluxModelLoaderInvocation(BaseInvocation):
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = preprocess_t5_tokenizer_model_identifier(self.t5_encoder_model)
t5_encoder = preprocess_t5_encoder_model_identifier(self.t5_encoder_model)
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
@@ -85,7 +83,7 @@ class FluxModelLoaderInvocation(BaseInvocation):
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder, loras=[]),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
max_seq_len=max_seq_lengths[transformer_config.config_path],
)

View File

@@ -1,120 +0,0 @@
from typing import Optional
import torch
from PIL import Image
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxReduxConditioningField,
InputField,
OutputField,
TensorField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.redux.flux_redux_model import FluxReduxModel
from invokeai.backend.model_manager import BaseModelType, ModelType
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager.starter_models import siglip
from invokeai.backend.sig_lip.sig_lip_pipeline import SigLipPipeline
from invokeai.backend.util.devices import TorchDevice
@invocation_output("flux_redux_output")
class FluxReduxOutput(BaseInvocationOutput):
"""The conditioning output of a FLUX Redux invocation."""
redux_cond: FluxReduxConditioningField = OutputField(
description=FieldDescriptions.flux_redux_conditioning, title="Conditioning"
)
@invocation(
"flux_redux",
title="FLUX Redux",
tags=["ip_adapter", "control"],
category="ip_adapter",
version="2.0.0",
classification=Classification.Beta,
)
class FluxReduxInvocation(BaseInvocation):
"""Runs a FLUX Redux model to generate a conditioning tensor."""
image: ImageField = InputField(description="The FLUX Redux image prompt.")
mask: Optional[TensorField] = InputField(
default=None,
description="The bool mask associated with this FLUX Redux image prompt. Excluded regions should be set to "
"False, included regions should be set to True.",
)
redux_model: ModelIdentifierField = InputField(
description="The FLUX Redux model to use.",
title="FLUX Redux Model",
ui_type=UIType.FluxReduxModel,
)
def invoke(self, context: InvocationContext) -> FluxReduxOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
encoded_x = self._siglip_encode(context, image)
redux_conditioning = self._flux_redux_encode(context, encoded_x)
tensor_name = context.tensors.save(redux_conditioning)
return FluxReduxOutput(
redux_cond=FluxReduxConditioningField(conditioning=TensorField(tensor_name=tensor_name), mask=self.mask)
)
@torch.no_grad()
def _siglip_encode(self, context: InvocationContext, image: Image.Image) -> torch.Tensor:
siglip_model_config = self._get_siglip_model(context)
with context.models.load(siglip_model_config.key).model_on_device() as (_, siglip_pipeline):
assert isinstance(siglip_pipeline, SigLipPipeline)
return siglip_pipeline.encode_image(
x=image, device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)
@torch.no_grad()
def _flux_redux_encode(self, context: InvocationContext, encoded_x: torch.Tensor) -> torch.Tensor:
with context.models.load(self.redux_model).model_on_device() as (_, flux_redux):
assert isinstance(flux_redux, FluxReduxModel)
dtype = next(flux_redux.parameters()).dtype
encoded_x = encoded_x.to(dtype=dtype)
return flux_redux(encoded_x)
def _get_siglip_model(self, context: InvocationContext) -> AnyModelConfig:
siglip_models = context.models.search_by_attrs(name=siglip.name, base=BaseModelType.Any, type=ModelType.SigLIP)
if not len(siglip_models) > 0:
context.logger.warning(
f"The SigLIP model required by FLUX Redux ({siglip.name}) is not installed. Downloading and installing now. This may take a while."
)
# TODO(psyche): Can the probe reliably determine the type of the model? Just hardcoding it bc I don't want to experiment now
config_overrides = ModelRecordChanges(name=siglip.name, type=ModelType.SigLIP)
# Queue the job
job = context._services.model_manager.install.heuristic_import(siglip.source, config=config_overrides)
# Wait for up to 10 minutes - model is ~3.5GB
context._services.model_manager.install.wait_for_job(job, timeout=600)
siglip_models = context.models.search_by_attrs(
name=siglip.name,
base=BaseModelType.Any,
type=ModelType.SigLIP,
)
if len(siglip_models) == 0:
context.logger.error("Error while fetching SigLIP for FLUX Redux")
assert len(siglip_models) == 1
return siglip_models[0]

View File

@@ -2,9 +2,9 @@ from contextlib import ExitStack
from typing import Iterator, Literal, Optional, Tuple
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer, T5TokenizerFast
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
@@ -17,19 +17,20 @@ from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.conditioner import HFEncoder
from invokeai.backend.model_manager import ModelFormat
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX, FLUX_LORA_T5_PREFIX
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
@invocation(
"flux_text_encoder",
title="Prompt - FLUX",
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.1.2",
version="1.1.1",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a flux image."""
@@ -70,44 +71,12 @@ class FluxTextEncoderInvocation(BaseInvocation):
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
prompt = [self.prompt]
t5_encoder_info = context.models.load(self.t5_encoder.text_encoder)
t5_encoder_config = t5_encoder_info.config
assert t5_encoder_config is not None
with (
t5_encoder_info.model_on_device() as (cached_weights, t5_text_encoder),
context.models.load(self.t5_encoder.text_encoder) as t5_text_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
ExitStack() as exit_stack,
):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, (T5Tokenizer, T5TokenizerFast))
# Determine if the model is quantized.
# If the model is quantized, then we need to apply the LoRA weights as sidecar layers. This results in
# slower inference than direct patching, but is agnostic to the quantization format.
if t5_encoder_config.format in [ModelFormat.T5Encoder, ModelFormat.Diffusers]:
model_is_quantized = False
elif t5_encoder_config.format in [
ModelFormat.BnbQuantizedLlmInt8b,
ModelFormat.BnbQuantizednf4b,
ModelFormat.GGUFQuantized,
]:
model_is_quantized = True
else:
raise ValueError(f"Unsupported model format: {t5_encoder_config.format}")
# Apply LoRA models to the T5 encoder.
# Note: We apply the LoRA after the encoder has been moved to its target device for faster patching.
exit_stack.enter_context(
LayerPatcher.apply_smart_model_patches(
model=t5_text_encoder,
patches=self._t5_lora_iterator(context),
prefix=FLUX_LORA_T5_PREFIX,
dtype=t5_text_encoder.dtype,
cached_weights=cached_weights,
force_sidecar_patching=model_is_quantized,
)
)
assert isinstance(t5_tokenizer, T5Tokenizer)
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
@@ -163,10 +132,3 @@ class FluxTextEncoderInvocation(BaseInvocation):
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info
def _t5_lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in self.t5_encoder.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -22,10 +22,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_vae_decode",
title="Latents to Image - FLUX",
title="FLUX Latents to Image",
tags=["latents", "image", "vae", "l2i", "flux"],
category="latents",
version="1.0.2",
version="1.0.1",
)
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -41,11 +41,16 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
scaling_constant = 1090 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:

View File

@@ -19,10 +19,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_vae_encode",
title="Image to Latents - FLUX",
title="FLUX Image to Latents",
tags=["latents", "image", "vae", "i2l", "flux"],
category="latents",
version="1.0.1",
version="1.0.0",
)
class FluxVaeEncodeInvocation(BaseInvocation):
"""Encodes an image into latents."""

View File

@@ -6,7 +6,7 @@ from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
from invokeai.app.invocations.model import UNetField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import BaseModelType
from invokeai.backend.model_manager.config import BaseModelType
@invocation_output("ideal_size_output")
@@ -19,9 +19,9 @@ class IdealSizeOutput(BaseInvocationOutput):
@invocation(
"ideal_size",
title="Ideal Size - SD1.5, SDXL",
title="Ideal Size",
tags=["latents", "math", "ideal_size"],
version="1.0.5",
version="1.0.3",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
@@ -41,16 +41,11 @@ class IdealSizeInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(self.unet.unet.key)
aspect = self.width / self.height
if unet_config.base == BaseModelType.StableDiffusion1:
dimension = 512
elif unet_config.base == BaseModelType.StableDiffusion2:
dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2:
dimension = 768
elif unet_config.base in (BaseModelType.StableDiffusionXL, BaseModelType.Flux, BaseModelType.StableDiffusion3):
elif unet_config.base == BaseModelType.StableDiffusionXL:
dimension = 1024
else:
raise ValueError(f"Unsupported model type: {unet_config.base}")
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images

View File

@@ -13,7 +13,6 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.constants import IMAGE_MODES
from invokeai.app.invocations.fields import (
BoundingBoxField,
ColorField,
FieldDescriptions,
ImageField,
@@ -24,7 +23,6 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
@@ -163,12 +161,12 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata, WithBoard):
crop: bool = InputField(default=False, description="Crop to base image dimensions")
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.images.get_pil(self.base_image.image_name, mode="RGBA")
image = context.images.get_pil(self.image.image_name, mode="RGBA")
base_image = context.images.get_pil(self.base_image.image_name)
image = context.images.get_pil(self.image.image_name)
mask = None
if self.mask is not None:
mask = context.images.get_pil(self.mask.image_name, mode="L")
mask = ImageOps.invert(mask)
mask = context.images.get_pil(self.mask.image_name)
mask = ImageOps.invert(mask.convert("L"))
# TODO: probably shouldn't invert mask here... should user be required to do it?
min_x = min(0, self.x)
@@ -178,11 +176,7 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata, WithBoard):
new_image = Image.new(mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0))
new_image.paste(base_image, (abs(min_x), abs(min_y)))
# Create a temporary image to paste the image with transparency
temp_image = Image.new("RGBA", new_image.size)
temp_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
new_image = Image.alpha_composite(new_image, temp_image)
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
if self.crop:
base_w, base_h = base_image.size
@@ -307,44 +301,14 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
blur_type: Literal["gaussian", "box"] = InputField(default="gaussian", description="The type of blur")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
image = context.images.get_pil(self.image.image_name)
# Split the image into RGBA channels
r, g, b, a = image.split()
# Premultiply RGB channels by alpha
premultiplied_image = ImageChops.multiply(image, a.convert("RGBA"))
premultiplied_image.putalpha(a)
# Apply the blur
blur = (
ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius)
)
blurred_image = premultiplied_image.filter(blur)
blur_image = image.filter(blur)
# Split the blurred image into RGBA channels
r, g, b, a_orig = blurred_image.split()
# Convert to float using NumPy. float 32/64 division are much faster than float 16
r = numpy.array(r, dtype=numpy.float32)
g = numpy.array(g, dtype=numpy.float32)
b = numpy.array(b, dtype=numpy.float32)
a = numpy.array(a_orig, dtype=numpy.float32) / 255.0 # Normalize alpha to [0, 1]
# Unpremultiply RGB channels by alpha
r /= a + 1e-6 # Add a small epsilon to avoid division by zero
g /= a + 1e-6
b /= a + 1e-6
# Convert back to PIL images
r = Image.fromarray(numpy.uint8(numpy.clip(r, 0, 255)))
g = Image.fromarray(numpy.uint8(numpy.clip(g, 0, 255)))
b = Image.fromarray(numpy.uint8(numpy.clip(b, 0, 255)))
# Merge back into a single image
result_image = Image.merge("RGBA", (r, g, b, a_orig))
image_dto = context.images.save(image=result_image)
image_dto = context.images.save(image=blur_image)
return ImageOutput.build(image_dto)
@@ -355,6 +319,7 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
tags=["image", "unsharp_mask"],
category="image",
version="1.2.2",
classification=Classification.Beta,
)
class UnsharpMaskInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Applies an unsharp mask filter to an image"""
@@ -842,7 +807,7 @@ CHANNEL_FORMATS = {
"value",
],
category="image",
version="1.2.3",
version="1.2.2",
)
class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Add or subtract a value from a specific color channel of an image."""
@@ -852,22 +817,18 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
offset: int = InputField(default=0, ge=-255, le=255, description="The amount to adjust the channel by")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGBA")
pil_image = context.images.get_pil(self.image.image_name)
# extract the channel and mode from the input and reference tuple
mode = CHANNEL_FORMATS[self.channel][0]
channel_number = CHANNEL_FORMATS[self.channel][1]
# Convert PIL image to new format
converted_image = numpy.array(image.convert(mode)).astype(int)
converted_image = numpy.array(pil_image.convert(mode)).astype(int)
image_channel = converted_image[:, :, channel_number]
if self.channel == "Hue (HSV)":
# loop around the values because hue is special
image_channel = (image_channel + self.offset) % 256
else:
# Adjust the value, clipping to 0..255
image_channel = numpy.clip(image_channel + self.offset, 0, 255)
# Adjust the value, clipping to 0..255
image_channel = numpy.clip(image_channel + self.offset, 0, 255)
# Put the channel back into the image
converted_image[:, :, channel_number] = image_channel
@@ -875,10 +836,6 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
# Convert back to RGBA format and output
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
# restore the alpha channel
if self.channel != "Alpha (RGBA)":
pil_image.putalpha(image.getchannel("A"))
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)
@@ -906,7 +863,7 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
"value",
],
category="image",
version="1.2.3",
version="1.2.2",
)
class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Scale a specific color channel of an image."""
@@ -917,14 +874,14 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
invert_channel: bool = InputField(default=False, description="Invert the channel after scaling")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGBA")
pil_image = context.images.get_pil(self.image.image_name)
# extract the channel and mode from the input and reference tuple
mode = CHANNEL_FORMATS[self.channel][0]
channel_number = CHANNEL_FORMATS[self.channel][1]
# Convert PIL image to new format
converted_image = numpy.array(image.convert(mode)).astype(float)
converted_image = numpy.array(pil_image.convert(mode)).astype(float)
image_channel = converted_image[:, :, channel_number]
# Adjust the value, clipping to 0..255
@@ -940,10 +897,6 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
# Convert back to RGBA format and output
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
# restore the alpha channel
if self.channel != "Alpha (RGBA)":
pil_image.putalpha(image.getchannel("A"))
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)
@@ -1009,10 +962,10 @@ class CanvasPasteBackInvocation(BaseInvocation, WithMetadata, WithBoard):
@invocation(
"mask_from_id",
title="Mask from Segmented Image",
title="Mask from ID",
tags=["image", "mask", "id"],
category="image",
version="1.0.1",
version="1.0.0",
)
class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generate a mask for a particular color in an ID Map"""
@@ -1022,24 +975,40 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
threshold: int = InputField(default=100, description="Threshold for color detection")
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
def rgba_to_hex(self, rgba_color: tuple[int, int, int, int]):
r, g, b, a = rgba_color
hex_code = "#{:02X}{:02X}{:02X}{:02X}".format(r, g, b, int(a * 255))
return hex_code
np_color = numpy.array(self.color.tuple())
def id_to_mask(self, id_mask: Image.Image, color: tuple[int, int, int, int], threshold: int = 100):
if id_mask.mode != "RGB":
id_mask = id_mask.convert("RGB")
# Can directly just use the tuple but I'll leave this rgba_to_hex here
# incase anyone prefers using hex codes directly instead of the color picker
hex_color_str = self.rgba_to_hex(color)
rgb_color = numpy.array([int(hex_color_str[i : i + 2], 16) for i in (1, 3, 5)])
# Maybe there's a faster way to calculate this distance but I can't think of any right now.
color_distance = numpy.linalg.norm(image - np_color, axis=-1)
color_distance = numpy.linalg.norm(id_mask - rgb_color, axis=-1)
# Create a mask based on the threshold and the distance calculated above
binary_mask = (color_distance < self.threshold).astype(numpy.uint8) * 255
binary_mask = (color_distance < threshold).astype(numpy.uint8) * 255
# Convert the mask back to PIL
binary_mask_pil = Image.fromarray(binary_mask)
if self.invert:
binary_mask_pil = ImageOps.invert(binary_mask_pil)
return binary_mask_pil
image_dto = context.images.save(image=binary_mask_pil, image_category=ImageCategory.MASK)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
mask = self.id_to_mask(image, self.color.tuple(), self.threshold)
if self.invert:
mask = ImageOps.invert(mask)
image_dto = context.images.save(image=mask, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
@@ -1050,7 +1019,7 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
tags=["image", "mask", "id"],
category="image",
version="1.0.0",
classification=Classification.Deprecated,
classification=Classification.Internal,
)
class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Handles Canvas V2 image output masking and cropping"""
@@ -1086,246 +1055,3 @@ class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
image_dto = context.images.save(image=generated_image)
return ImageOutput.build(image_dto)
@invocation(
"expand_mask_with_fade", title="Expand Mask with Fade", tags=["image", "mask"], category="image", version="1.0.1"
)
class ExpandMaskWithFadeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Expands a mask with a fade effect. The mask uses black to indicate areas to keep from the generated image and white for areas to discard.
The mask is thresholded to create a binary mask, and then a distance transform is applied to create a fade effect.
The fade size is specified in pixels, and the mask is expanded by that amount. The result is a mask with a smooth transition from black to white.
If the fade size is 0, the mask is returned as-is.
"""
mask: ImageField = InputField(description="The mask to expand")
threshold: int = InputField(default=0, ge=0, le=255, description="The threshold for the binary mask (0-255)")
fade_size_px: int = InputField(default=32, ge=0, description="The size of the fade in pixels")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_mask = context.images.get_pil(self.mask.image_name, mode="L")
if self.fade_size_px == 0:
# If the fade size is 0, just return the mask as-is.
image_dto = context.images.save(image=pil_mask, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
np_mask = numpy.array(pil_mask)
# Threshold the mask to create a binary mask - 0 for black, 255 for white
# If we don't threshold we can get some weird artifacts
np_mask = numpy.where(np_mask > self.threshold, 255, 0).astype(numpy.uint8)
# Create a mask for the black region (1 where black, 0 otherwise)
black_mask = (np_mask == 0).astype(numpy.uint8)
# Invert the black region
bg_mask = 1 - black_mask
# Create a distance transform of the inverted mask
dist = cv2.distanceTransform(bg_mask, cv2.DIST_L2, 5)
# Normalize distances so that pixels <fade_size_px become a linear gradient (0 to 1)
d_norm = numpy.clip(dist / self.fade_size_px, 0, 1)
# Control points: x values (normalized distance) and corresponding fade pct y values.
# There are some magic numbers here that are used to create a smooth transition:
# - The first point is at 0% of fade size from edge of mask (meaning the edge of the mask), and is 0% fade (black)
# - The second point is 1px from the edge of the mask and also has 0% fade, effectively expanding the mask
# by 1px. This fixes an issue where artifacts can occur at the edge of the mask
# - The third point is at 20% of the fade size from the edge of the mask and has 20% fade
# - The fourth point is at 80% of the fade size from the edge of the mask and has 90% fade
# - The last point is at 100% of the fade size from the edge of the mask and has 100% fade (white)
# x values: 0 = mask edge, 1 = fade_size_px from edge
x_control = numpy.array([0.0, 1.0 / self.fade_size_px, 0.2, 0.8, 1.0])
# y values: 0 = black, 1 = white
y_control = numpy.array([0.0, 0.0, 0.2, 0.9, 1.0])
# Fit a cubic polynomial that smoothly passes through the control points
coeffs = numpy.polyfit(x_control, y_control, 3)
poly = numpy.poly1d(coeffs)
# Evaluate the polynomial
feather = poly(d_norm)
# The polynomial fit isn't perfect. Points beyond the fade distance are likely to be slightly less than 1.0,
# even though the control points indicate that they should be exactly 1.0. This is due to the nature of the
# polynomial fit, which is a best approximation of the control points but not an exact match.
# When this occurs, the area outside the mask and fade-out will not be 100% transparent. For example, it may
# have an alpha value of 1 instead of 0. So we must force pixels at or beyond the fade distance to exactly 1.0.
# Force pixels at or beyond the fade distance to exactly 1.0
feather = numpy.where(d_norm >= 1.0, 1.0, feather)
# Clip any other values to ensure they're in the valid range [0,1]
feather = numpy.clip(feather, 0, 1)
# Build final image.
np_result = numpy.where(black_mask == 1, 0, (feather * 255).astype(numpy.uint8))
# Convert back to PIL, grayscale
pil_result = Image.fromarray(np_result.astype(numpy.uint8), mode="L")
image_dto = context.images.save(image=pil_result, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
@invocation(
"apply_mask_to_image",
title="Apply Mask to Image",
tags=["image", "mask", "blend"],
category="image",
version="1.0.0",
)
class ApplyMaskToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""
Extracts a region from a generated image using a mask and blends it seamlessly onto a source image.
The mask uses black to indicate areas to keep from the generated image and white for areas to discard.
"""
image: ImageField = InputField(description="The image from which to extract the masked region")
mask: ImageField = InputField(description="The mask defining the region (black=keep, white=discard)")
invert_mask: bool = InputField(
default=False,
description="Whether to invert the mask before applying it",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load images
image = context.images.get_pil(self.image.image_name, mode="RGBA")
mask = context.images.get_pil(self.mask.image_name, mode="L")
if self.invert_mask:
# Invert the mask if requested
mask = ImageOps.invert(mask.copy())
# Combine the mask as the alpha channel of the image
r, g, b, _ = image.split() # Split the image into RGB and alpha channels
result_image = Image.merge("RGBA", (r, g, b, mask)) # Use the mask as the new alpha channel
# Save the resulting image
image_dto = context.images.save(image=result_image)
return ImageOutput.build(image_dto)
@invocation(
"img_noise",
title="Add Image Noise",
tags=["image", "noise"],
category="image",
version="1.0.1",
)
class ImageNoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Add noise to an image"""
image: ImageField = InputField(description="The image to add noise to")
seed: int = InputField(
default=0,
ge=0,
le=SEED_MAX,
description=FieldDescriptions.seed,
)
noise_type: Literal["gaussian", "salt_and_pepper"] = InputField(
default="gaussian",
description="The type of noise to add",
)
amount: float = InputField(default=0.1, ge=0, le=1, description="The amount of noise to add")
noise_color: bool = InputField(default=True, description="Whether to add colored noise")
size: int = InputField(default=1, ge=1, description="The size of the noise points")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
# Save out the alpha channel
alpha = image.getchannel("A")
# Set the seed for numpy random
rs = numpy.random.RandomState(numpy.random.MT19937(numpy.random.SeedSequence(self.seed)))
if self.noise_type == "gaussian":
if self.noise_color:
noise = rs.normal(0, 1, (image.height // self.size, image.width // self.size, 3)) * 255
else:
noise = rs.normal(0, 1, (image.height // self.size, image.width // self.size)) * 255
noise = numpy.stack([noise] * 3, axis=-1)
elif self.noise_type == "salt_and_pepper":
if self.noise_color:
noise = rs.choice(
[0, 255], (image.height // self.size, image.width // self.size, 3), p=[1 - self.amount, self.amount]
)
else:
noise = rs.choice(
[0, 255], (image.height // self.size, image.width // self.size), p=[1 - self.amount, self.amount]
)
noise = numpy.stack([noise] * 3, axis=-1)
noise = Image.fromarray(noise.astype(numpy.uint8), mode="RGB").resize(
(image.width, image.height), Image.Resampling.NEAREST
)
noisy_image = Image.blend(image.convert("RGB"), noise, self.amount).convert("RGBA")
# Paste back the alpha channel
noisy_image.putalpha(alpha)
image_dto = context.images.save(image=noisy_image)
return ImageOutput.build(image_dto)
@invocation(
"crop_image_to_bounding_box",
title="Crop Image to Bounding Box",
category="image",
version="1.0.0",
tags=["image", "crop"],
)
class CropImageToBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Crop an image to the given bounding box. If the bounding box is omitted, the image is cropped to the non-transparent pixels."""
image: ImageField = InputField(description="The image to crop")
bounding_box: BoundingBoxField | None = InputField(
default=None, description="The bounding box to crop the image to"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
bounding_box = self.bounding_box.tuple() if self.bounding_box is not None else image.getbbox()
cropped_image = image.crop(bounding_box)
image_dto = context.images.save(image=cropped_image)
return ImageOutput.build(image_dto)
@invocation(
"paste_image_into_bounding_box",
title="Paste Image into Bounding Box",
category="image",
version="1.0.0",
tags=["image", "crop"],
)
class PasteImageIntoBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Paste the source image into the target image at the given bounding box.
The source image must be the same size as the bounding box, and the bounding box must fit within the target image."""
source_image: ImageField = InputField(description="The image to paste")
target_image: ImageField = InputField(description="The image to paste into")
bounding_box: BoundingBoxField = InputField(description="The bounding box to paste the image into")
def invoke(self, context: InvocationContext) -> ImageOutput:
source_image = context.images.get_pil(self.source_image.image_name, mode="RGBA")
target_image = context.images.get_pil(self.target_image.image_name, mode="RGBA")
bounding_box = self.bounding_box.tuple()
target_image.paste(source_image, bounding_box, source_image)
image_dto = context.images.save(image=target_image)
return ImageOutput.build(image_dto)

View File

@@ -31,10 +31,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"i2l",
title="Image to Latents - SD1.5, SDXL",
title="Image to Latents",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.1.1",
version="1.1.0",
)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""

View File

@@ -13,8 +13,10 @@ from invokeai.app.services.model_records.model_records_base import ModelRecordCh
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
IPAdapterCheckpointConfig,
IPAdapterInvokeAIConfig,
ModelType,
)
from invokeai.backend.model_manager.starter_models import (
StarterModel,
@@ -22,7 +24,6 @@ from invokeai.backend.model_manager.starter_models import (
ip_adapter_sd_image_encoder,
ip_adapter_sdxl_image_encoder,
)
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
class IPAdapterField(BaseModel):
@@ -68,13 +69,7 @@ CLIP_VISION_MODEL_MAP: dict[Literal["ViT-L", "ViT-H", "ViT-G"], StarterModel] =
}
@invocation(
"ip_adapter",
title="IP-Adapter - SD1.5, SDXL",
tags=["ip_adapter", "control"],
category="ip_adapter",
version="1.5.1",
)
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.5.0")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""

View File

@@ -31,10 +31,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"l2i",
title="Latents to Image - SD1.5, SDXL",
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.3.2",
version="1.3.1",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -60,7 +60,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if self.fp32 else 2
scaling_constant = 2200 # Determined experimentally.
scaling_constant = 960 # Determined experimentally.
if use_tiling:
tile_size = self.tile_size
@@ -84,7 +84,9 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
return int(working_memory)
# We add 20% to the working memory estimate to be safe.
working_memory = int(working_memory * 1.2)
return working_memory
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:

View File

@@ -1,67 +0,0 @@
from typing import Any
import torch
from PIL.Image import Image
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, UIComponent, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.llava_onevision_model import LlavaOnevisionModel
from invokeai.backend.util.devices import TorchDevice
@invocation(
"llava_onevision_vllm",
title="LLaVA OneVision VLLM",
tags=["vllm"],
category="vllm",
version="1.0.0",
classification=Classification.Beta,
)
class LlavaOnevisionVllmInvocation(BaseInvocation):
"""Run a LLaVA OneVision VLLM model."""
images: list[ImageField] | ImageField | None = InputField(default=None, max_length=3, description="Input image.")
prompt: str = InputField(
default="",
description="Input text prompt.",
ui_component=UIComponent.Textarea,
)
vllm_model: ModelIdentifierField = InputField(
title="LLaVA Model Type",
description=FieldDescriptions.vllm_model,
ui_type=UIType.LlavaOnevisionModel,
)
@field_validator("images", mode="before")
def listify_images(cls, v: Any) -> list:
if v is None:
return v
if not isinstance(v, list):
return [v]
return v
def _get_images(self, context: InvocationContext) -> list[Image]:
if self.images is None:
return []
image_fields = self.images if isinstance(self.images, list) else [self.images]
return [context.images.get_pil(image_field.image_name, "RGB") for image_field in image_fields]
@torch.no_grad()
def invoke(self, context: InvocationContext) -> StringOutput:
images = self._get_images(context)
with context.models.load(self.vllm_model) as vllm_model:
assert isinstance(vllm_model, LlavaOnevisionModel)
output = vllm_model.run(
prompt=self.prompt,
images=images,
device=TorchDevice.choose_torch_device(),
dtype=TorchDevice.choose_torch_dtype(),
)
return StringOutput(value=output)

View File

@@ -1,83 +0,0 @@
import logging
import shutil
import sys
import traceback
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
def load_custom_nodes(custom_nodes_path: Path, logger: logging.Logger):
"""
Loads all custom nodes from the custom_nodes_path directory.
If custom_nodes_path does not exist, it creates it.
It also copies the custom_nodes/README.md file to the custom_nodes_path directory. Because this file may change,
it is _always_ copied to the custom_nodes_path directory.
Then, it crawls the custom_nodes_path directory and imports all top-level directories as python modules.
If the directory does not contain an __init__.py file or starts with an `_` or `.`, it is skipped.
"""
# create the custom nodes directory if it does not exist
custom_nodes_path.mkdir(parents=True, exist_ok=True)
# Copy the README file to the custom nodes directory
source_custom_nodes_readme_path = Path(__file__).parent / "custom_nodes/README.md"
target_custom_nodes_readme_path = Path(custom_nodes_path) / "README.md"
# copy our custom nodes README to the custom nodes directory
shutil.copy(source_custom_nodes_readme_path, target_custom_nodes_readme_path)
loaded_packs: list[str] = []
failed_packs: list[str] = []
# Import custom nodes, see https://docs.python.org/3/library/importlib.html#importing-programmatically
for d in custom_nodes_path.iterdir():
# skip files
if not d.is_dir():
continue
# skip hidden directories
if d.name.startswith("_") or d.name.startswith("."):
continue
# skip directories without an `__init__.py`
init = d / "__init__.py"
if not init.exists():
continue
module_name = init.parent.stem
# skip if already imported
if module_name in globals():
continue
# load the module
spec = spec_from_file_location(module_name, init.absolute())
if spec is None or spec.loader is None:
logger.warning(f"Could not load {init}")
continue
logger.info(f"Loading node pack {module_name}")
try:
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
loaded_packs.append(module_name)
except Exception:
failed_packs.append(module_name)
full_error = traceback.format_exc()
logger.error(f"Failed to load node pack {module_name} (may have partially loaded):\n{full_error}")
del init, module_name
loaded_count = len(loaded_packs)
if loaded_count > 0:
logger.info(
f"Loaded {loaded_count} node pack{'s' if loaded_count != 1 else ''} from {custom_nodes_path}: {', '.join(loaded_packs)}"
)

View File

@@ -2,21 +2,9 @@ import numpy as np
import torch
from PIL import Image
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InvocationContext,
invocation,
)
from invokeai.app.invocations.fields import (
BoundingBoxField,
ColorField,
ImageField,
InputField,
TensorField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.primitives import BoundingBoxOutput, ImageOutput, MaskOutput
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
from invokeai.backend.image_util.util import pil_to_np
@@ -57,6 +45,7 @@ class RectangleMaskInvocation(BaseInvocation, WithMetadata):
tags=["conditioning"],
category="conditioning",
version="1.0.0",
classification=Classification.Beta,
)
class AlphaMaskToTensorInvocation(BaseInvocation):
"""Convert a mask image to a tensor. Opaque regions are 1 and transparent regions are 0."""
@@ -65,7 +54,7 @@ class AlphaMaskToTensorInvocation(BaseInvocation):
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
image = context.images.get_pil(self.image.image_name)
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
if self.invert:
mask[0] = torch.tensor(np.array(image)[:, :, 3] == 0, dtype=torch.bool)
@@ -84,7 +73,8 @@ class AlphaMaskToTensorInvocation(BaseInvocation):
title="Invert Tensor Mask",
tags=["conditioning"],
category="conditioning",
version="1.1.0",
version="1.0.0",
classification=Classification.Beta,
)
class InvertTensorMaskInvocation(BaseInvocation):
"""Inverts a tensor mask."""
@@ -93,15 +83,6 @@ class InvertTensorMaskInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = context.tensors.load(self.mask.tensor_name)
# Verify dtype and shape.
assert mask.dtype == torch.bool
assert mask.dim() in [2, 3]
# Unsqueeze the channel dimension if it is missing. The MaskOutput type expects a single channel.
if mask.dim() == 2:
mask = mask.unsqueeze(0)
inverted = ~mask
return MaskOutput(
@@ -220,47 +201,3 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
image_dto = context.images.save(image=masked_image)
return ImageOutput.build(image_dto)
WHITE = ColorField(r=255, g=255, b=255, a=255)
@invocation(
"get_image_mask_bounding_box",
title="Get Image Mask Bounding Box",
tags=["mask"],
category="mask",
version="1.0.0",
)
class GetMaskBoundingBoxInvocation(BaseInvocation):
"""Gets the bounding box of the given mask image."""
mask: ImageField = InputField(description="The mask to crop.")
margin: int = InputField(default=0, description="Margin to add to the bounding box.")
mask_color: ColorField = InputField(default=WHITE, description="Color of the mask in the image.")
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
mask = context.images.get_pil(self.mask.image_name, mode="RGBA")
mask_np = np.array(mask)
# Convert mask_color to RGBA tuple
mask_color_rgb = self.mask_color.tuple()
# Find the bounding box of the mask color
y, x = np.where(np.all(mask_np == mask_color_rgb, axis=-1))
if len(x) == 0 or len(y) == 0:
# No pixels found with the given color
return BoundingBoxOutput(bounding_box=BoundingBoxField(x_min=0, y_min=0, x_max=0, y_max=0))
left, upper, right, lower = x.min(), y.min(), x.max(), y.max()
# Add the margin
left = max(0, left - self.margin)
upper = max(0, upper - self.margin)
right = min(mask_np.shape[1], right + self.margin)
lower = min(mask_np.shape[0], lower + self.margin)
bounding_box = BoundingBoxField(x_min=left, y_min=upper, x_max=right, y_max=lower)
return BoundingBoxOutput(bounding_box=bounding_box)

View File

@@ -18,7 +18,6 @@ from invokeai.app.invocations.fields import (
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from invokeai.version.invokeai_version import __version__
@@ -276,34 +275,3 @@ class CoreMetadataInvocation(BaseInvocation):
return MetadataOutput(metadata=MetadataField.model_validate(as_dict))
model_config = ConfigDict(extra="allow")
@invocation(
"metadata_field_extractor",
title="Metadata Field Extractor",
tags=["metadata"],
category="metadata",
version="1.0.0",
classification=Classification.Deprecated,
)
class MetadataFieldExtractorInvocation(BaseInvocation):
"""Extracts the text value from an image's metadata given a key.
Raises an error if the image has no metadata or if the value is not a string (nesting not permitted)."""
image: ImageField = InputField(description="The image to extract metadata from")
key: str = InputField(description="The key in the image's metadata to extract the value from")
def invoke(self, context: InvocationContext) -> StringOutput:
image_name = self.image.image_name
metadata = context.images.get_metadata(image_name=image_name)
if not metadata:
raise ValueError(f"No metadata found on image {image_name}")
try:
val = metadata.root[self.key]
if not isinstance(val, str):
raise ValueError(f"Metadata at key '{self.key}' must be a string")
return StringOutput(value=val)
except KeyError as e:
raise ValueError(f"No key '{self.key}' found in the metadata for {image_name}") from e

File diff suppressed because it is too large Load Diff

View File

@@ -6,6 +6,7 @@ from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -14,8 +15,10 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType, SubModelType
class ModelIdentifierField(BaseModel):
@@ -65,7 +68,6 @@ class CLIPField(BaseModel):
class T5EncoderField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class VAEField(BaseModel):
@@ -119,10 +121,11 @@ class ModelIdentifierOutput(BaseInvocationOutput):
@invocation(
"model_identifier",
title="Any Model",
title="Model identifier",
tags=["model"],
category="model",
version="1.0.1",
version="1.0.0",
classification=Classification.Prototype,
)
class ModelIdentifierInvocation(BaseInvocation):
"""Selects any model, outputting it its identifier. Be careful with this one! The identifier will be accepted as
@@ -140,10 +143,10 @@ class ModelIdentifierInvocation(BaseInvocation):
@invocation(
"main_model_loader",
title="Main Model - SD1.5",
title="Main Model",
tags=["model"],
category="model",
version="1.0.4",
version="1.0.3",
)
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
@@ -177,7 +180,7 @@ class LoRALoaderOutput(BaseInvocationOutput):
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="Apply LoRA - SD1.5", tags=["model"], category="model", version="1.0.4")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.3")
class LoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
@@ -202,7 +205,7 @@ class LoRALoaderInvocation(BaseInvocation):
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise Exception(f"Unknown lora: {lora_key}!")
raise Exception(f"Unkown lora: {lora_key}!")
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
@@ -240,7 +243,7 @@ class LoRASelectorOutput(BaseInvocationOutput):
lora: LoRAField = OutputField(description="LoRA model and weight", title="LoRA")
@invocation("lora_selector", title="Select LoRA", tags=["model"], category="model", version="1.0.3")
@invocation("lora_selector", title="LoRA Selector", tags=["model"], category="model", version="1.0.1")
class LoRASelectorInvocation(BaseInvocation):
"""Selects a LoRA model and weight."""
@@ -253,14 +256,12 @@ class LoRASelectorInvocation(BaseInvocation):
return LoRASelectorOutput(lora=LoRAField(lora=self.lora, weight=self.weight))
@invocation(
"lora_collection_loader", title="Apply LoRA Collection - SD1.5", tags=["model"], category="model", version="1.1.2"
)
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.0.0")
class LoRACollectionLoader(BaseInvocation):
"""Applies a collection of LoRAs to the provided UNet and CLIP models."""
loras: Optional[LoRAField | list[LoRAField]] = InputField(
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
unet: Optional[UNetField] = InputField(
default=None,
@@ -280,14 +281,7 @@ class LoRACollectionLoader(BaseInvocation):
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
if self.unet is not None:
output.unet = self.unet.model_copy(deep=True)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
for lora in loras:
if lora is None:
continue
if lora.lora.key in added_loras:
continue
@@ -298,10 +292,14 @@ class LoRACollectionLoader(BaseInvocation):
added_loras.append(lora.lora.key)
if self.unet is not None and output.unet is not None:
if self.unet is not None:
if output.unet is None:
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(lora)
if self.clip is not None and output.clip is not None:
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(lora)
return output
@@ -318,10 +316,10 @@ class SDXLLoRALoaderOutput(BaseInvocationOutput):
@invocation(
"sdxl_lora_loader",
title="Apply LoRA - SDXL",
title="SDXL LoRA",
tags=["lora", "model"],
category="model",
version="1.0.5",
version="1.0.3",
)
class SDXLLoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
@@ -398,16 +396,16 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
@invocation(
"sdxl_lora_collection_loader",
title="Apply LoRA Collection - SDXL",
title="SDXL LoRA Collection Loader",
tags=["model"],
category="model",
version="1.1.2",
version="1.0.0",
)
class SDXLLoRACollectionLoader(BaseInvocation):
"""Applies a collection of SDXL LoRAs to the provided UNet and CLIP models."""
loras: Optional[LoRAField | list[LoRAField]] = InputField(
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
unet: Optional[UNetField] = InputField(
default=None,
@@ -433,18 +431,7 @@ class SDXLLoRACollectionLoader(BaseInvocation):
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
if self.unet is not None:
output.unet = self.unet.model_copy(deep=True)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
if self.clip2 is not None:
output.clip2 = self.clip2.model_copy(deep=True)
for lora in loras:
if lora is None:
continue
if lora.lora.key in added_loras:
continue
@@ -455,21 +442,25 @@ class SDXLLoRACollectionLoader(BaseInvocation):
added_loras.append(lora.lora.key)
if self.unet is not None and output.unet is not None:
if self.unet is not None:
if output.unet is None:
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(lora)
if self.clip is not None and output.clip is not None:
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(lora)
if self.clip2 is not None and output.clip2 is not None:
if self.clip2 is not None:
if output.clip2 is None:
output.clip2 = self.clip2.model_copy(deep=True)
output.clip2.loras.append(lora)
return output
@invocation(
"vae_loader", title="VAE Model - SD1.5, SDXL, SD3, FLUX", tags=["vae", "model"], category="model", version="1.0.4"
)
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.3")
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
@@ -481,7 +472,7 @@ class VAELoaderInvocation(BaseInvocation):
key = self.vae_model.key
if not context.models.exists(key):
raise Exception(f"Unknown vae: {key}!")
raise Exception(f"Unkown vae: {key}!")
return VAEOutput(vae=VAEField(vae=self.vae_model))
@@ -496,10 +487,10 @@ class SeamlessModeOutput(BaseInvocationOutput):
@invocation(
"seamless",
title="Apply Seamless - SD1.5, SDXL",
title="Seamless",
tags=["seamless", "model"],
category="model",
version="1.0.2",
version="1.0.1",
)
class SeamlessModeInvocation(BaseInvocation):
"""Applies the seamless transformation to the Model UNet and VAE."""
@@ -539,7 +530,7 @@ class SeamlessModeInvocation(BaseInvocation):
return SeamlessModeOutput(unet=unet, vae=vae)
@invocation("freeu", title="Apply FreeU - SD1.5, SDXL", tags=["freeu"], category="unet", version="1.0.2")
@invocation("freeu", title="FreeU", tags=["freeu"], category="unet", version="1.0.1")
class FreeUInvocation(BaseInvocation):
"""
Applies FreeU to the UNet. Suggested values (b1/b2/s1/s2):

View File

@@ -72,10 +72,10 @@ class NoiseOutput(BaseInvocationOutput):
@invocation(
"noise",
title="Create Latent Noise",
title="Noise",
tags=["latents", "noise"],
category="latents",
version="1.0.3",
version="1.0.2",
)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""

View File

@@ -7,6 +7,7 @@ import torch
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -265,9 +266,13 @@ class ImageInvocation(BaseInvocation):
image: ImageField = InputField(description="The image to load")
def invoke(self, context: InvocationContext) -> ImageOutput:
image_dto = context.images.get_dto(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
return ImageOutput.build(image_dto=image_dto)
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
@invocation(
@@ -412,7 +417,6 @@ class ColorInvocation(BaseInvocation):
class MaskOutput(BaseInvocationOutput):
"""A torch mask tensor."""
# shape: [1, H, W], dtype: bool
mask: TensorField = OutputField(description="The mask.")
width: int = OutputField(description="The width of the mask in pixels.")
height: int = OutputField(description="The height of the mask in pixels.")
@@ -535,3 +539,23 @@ class BoundingBoxInvocation(BaseInvocation):
# endregion
@invocation(
"image_batch",
title="Image Batch",
tags=["primitives", "image", "batch", "internal"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageBatchInvocation(BaseInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(min_length=1, description="The images to batch over", input=Input.Direct)
def __init__(self):
raise NotImplementedError("This class should never be executed or instantiated directly.")
def invoke(self, context: InvocationContext) -> ImageOutput:
raise NotImplementedError("This class should never be executed or instantiated directly.")

View File

@@ -6,7 +6,7 @@ from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from torchvision.transforms.functional import resize as tv_resize
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
DenoiseMaskField,
@@ -23,7 +23,7 @@ from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.invocations.sd3_text_encoder import SD3_T5_MAX_SEQ_LEN
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule_fractional
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.sd3.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import SD3ConditioningInfo
@@ -32,10 +32,11 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_denoise",
title="Denoise - SD3",
title="SD3 Denoise",
tags=["image", "sd3"],
category="image",
version="1.1.1",
version="1.1.0",
classification=Classification.Prototype,
)
class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a SD3 model."""

View File

@@ -2,7 +2,7 @@ import einops
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@@ -21,10 +21,11 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_i2l",
title="Image to Latents - SD3",
title="SD3 Image to Latents",
tags=["image", "latents", "vae", "i2l", "sd3"],
category="image",
version="1.0.1",
version="1.0.0",
classification=Classification.Prototype,
)
class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates latents from an image."""

View File

@@ -24,10 +24,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_l2i",
title="Latents to Image - SD3",
title="SD3 Latents to Image",
tags=["latents", "image", "vae", "l2i", "sd3"],
category="latents",
version="1.3.2",
version="1.3.1",
)
class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -43,11 +43,16 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
scaling_constant = 1230 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
@torch.no_grad()

View File

@@ -3,17 +3,14 @@ from typing import Optional
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.t5_model_identifier import (
preprocess_t5_encoder_model_identifier,
preprocess_t5_tokenizer_model_identifier,
)
from invokeai.backend.model_manager.taxonomy import SubModelType
from invokeai.backend.model_manager.config import SubModelType
@invocation_output("sd3_model_loader_output")
@@ -29,10 +26,11 @@ class Sd3ModelLoaderOutput(BaseInvocationOutput):
@invocation(
"sd3_model_loader",
title="Main Model - SD3",
title="SD3 Main Model",
tags=["model", "sd3"],
category="model",
version="1.0.1",
version="1.0.0",
classification=Classification.Prototype,
)
class Sd3ModelLoaderInvocation(BaseInvocation):
"""Loads a SD3 base model, outputting its submodels."""
@@ -90,13 +88,21 @@ class Sd3ModelLoaderInvocation(BaseInvocation):
if self.clip_g_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
)
tokenizer_t5 = preprocess_t5_tokenizer_model_identifier(self.t5_encoder_model or self.model)
t5_encoder = preprocess_t5_encoder_model_identifier(self.t5_encoder_model or self.model)
tokenizer_t5 = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
)
t5_encoder = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
)
return Sd3ModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder, loras=[]),
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
)

View File

@@ -11,12 +11,12 @@ from transformers import (
T5TokenizerFast,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import SD3ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import ModelFormat
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
@@ -29,10 +29,11 @@ SD3_T5_MAX_SEQ_LEN = 256
@invocation(
"sd3_text_encoder",
title="Prompt - SD3",
title="SD3 Text Encoding",
tags=["prompt", "conditioning", "sd3"],
category="conditioning",
version="1.0.1",
version="1.0.0",
classification=Classification.Prototype,
)
class Sd3TextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a SD3 image."""

View File

@@ -2,7 +2,7 @@ from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocati
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import SubModelType
from invokeai.backend.model_manager import SubModelType
@invocation_output("sdxl_model_loader_output")
@@ -24,7 +24,7 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sdxl_model_loader", title="Main Model - SDXL", tags=["model", "sdxl"], category="model", version="1.0.4")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.3")
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
@@ -58,10 +58,10 @@ class SDXLModelLoaderInvocation(BaseInvocation):
@invocation(
"sdxl_refiner_model_loader",
title="Refiner Model - SDXL",
title="SDXL Refiner Model",
tags=["model", "sdxl", "refiner"],
category="model",
version="1.0.4",
version="1.0.3",
)
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""

View File

@@ -49,7 +49,7 @@ class SAMPointsField(BaseModel):
title="Segment Anything",
tags=["prompt", "segmentation"],
category="segmentation",
version="1.2.0",
version="1.1.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
@@ -96,10 +96,8 @@ class SegmentAnythingInvocation(BaseInvocation):
# masks contains bool values, so we merge them via max-reduce.
combined_mask, _ = torch.stack(masks).max(dim=0)
# Unsqueeze the channel dimension.
combined_mask = combined_mask.unsqueeze(0)
mask_tensor_name = context.tensors.save(combined_mask)
_, height, width = combined_mask.shape
height, width = combined_mask.shape
return MaskOutput(mask=TensorField(tensor_name=mask_tensor_name), width=width, height=height)
@staticmethod
@@ -185,9 +183,9 @@ class SegmentAnythingInvocation(BaseInvocation):
# Find the largest mask.
return [max(masks, key=lambda x: float(x.sum()))]
elif self.mask_filter == "highest_box_score":
assert bounding_boxes is not None, (
"Bounding boxes must be provided to use the 'highest_box_score' mask filter."
)
assert (
bounding_boxes is not None
), "Bounding boxes must be provided to use the 'highest_box_score' mask filter."
assert len(masks) == len(bounding_boxes)
# Find the index of the bounding box with the highest score.
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most

View File

@@ -45,11 +45,7 @@ class T2IAdapterOutput(BaseInvocationOutput):
@invocation(
"t2i_adapter",
title="T2I-Adapter - SD1.5, SDXL",
tags=["t2i_adapter", "control"],
category="t2i_adapter",
version="1.0.4",
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.3"
)
class T2IAdapterInvocation(BaseInvocation):
"""Collects T2I-Adapter info to pass to other nodes."""

View File

@@ -7,7 +7,7 @@ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
@@ -53,10 +53,11 @@ def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> C
@invocation(
"tiled_multi_diffusion_denoise_latents",
title="Tiled Multi-Diffusion Denoise - SD1.5, SDXL",
title="Tiled Multi-Diffusion Denoise Latents",
tags=["upscale", "denoise"],
category="latents",
version="1.0.1",
classification=Classification.Beta,
version="1.0.0",
)
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
"""Tiled Multi-Diffusion denoising.
@@ -217,7 +218,6 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
unet_config=unet_config,
)
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)

View File

@@ -7,6 +7,7 @@ from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -39,6 +40,7 @@ class CalculateImageTilesOutput(BaseInvocationOutput):
tags=["tiles"],
category="tiles",
version="1.0.1",
classification=Classification.Beta,
)
class CalculateImageTilesInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
@@ -72,6 +74,7 @@ class CalculateImageTilesInvocation(BaseInvocation):
tags=["tiles"],
category="tiles",
version="1.1.1",
classification=Classification.Beta,
)
class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
@@ -114,6 +117,7 @@ class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
tags=["tiles"],
category="tiles",
version="1.0.1",
classification=Classification.Beta,
)
class CalculateImageTilesMinimumOverlapInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
@@ -164,6 +168,7 @@ class TileToPropertiesOutput(BaseInvocationOutput):
tags=["tiles"],
category="tiles",
version="1.0.1",
classification=Classification.Beta,
)
class TileToPropertiesInvocation(BaseInvocation):
"""Split a Tile into its individual properties."""
@@ -196,6 +201,7 @@ class PairTileImageOutput(BaseInvocationOutput):
tags=["tiles"],
category="tiles",
version="1.0.1",
classification=Classification.Beta,
)
class PairTileImageInvocation(BaseInvocation):
"""Pair an image with its tile properties."""
@@ -224,6 +230,7 @@ BLEND_MODES = Literal["Linear", "Seam"]
tags=["tiles"],
category="tiles",
version="1.1.1",
classification=Classification.Beta,
)
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Merge multiple tile images into a single image."""

View File

@@ -9,6 +9,6 @@ def validate_weights(weights: Union[float, list[float]]) -> None:
def validate_begin_end_step(begin_step_percent: float, end_step_percent: float) -> None:
"""Validate that begin_step_percent is less than or equal to end_step_percent"""
if begin_step_percent > end_step_percent:
"""Validate that begin_step_percent is less than end_step_percent"""
if begin_step_percent >= end_step_percent:
raise ValueError("Begin step percent must be less than or equal to end step percent")

View File

@@ -1,86 +1,12 @@
import uvicorn
from invokeai.app.invocations.load_custom_nodes import load_custom_nodes
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.torch_cuda_allocator import configure_torch_cuda_allocator
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.cli.arg_parser import InvokeAIArgs
def get_app():
"""Import the app and event loop. We wrap this in a function to more explicitly control when it happens, because
importing from api_app does a bunch of stuff - it's more like calling a function than importing a module.
"""
from invokeai.app.api_app import app, loop
return app, loop
"""This is a wrapper around the main app entrypoint, to allow for CLI args to be parsed before running the app."""
def run_app() -> None:
"""The main entrypoint for the app."""
# Parse the CLI arguments.
# Before doing _anything_, parse CLI args!
from invokeai.frontend.cli.arg_parser import InvokeAIArgs
InvokeAIArgs.parse_args()
# Load config.
app_config = get_config()
from invokeai.app.api_app import invoke_api
logger = InvokeAILogger.get_logger(config=app_config)
# Configure the torch CUDA memory allocator.
# NOTE: It is important that this happens before torch is imported.
if app_config.pytorch_cuda_alloc_conf:
configure_torch_cuda_allocator(app_config.pytorch_cuda_alloc_conf, logger)
# Import from startup_utils here to avoid importing torch before configure_torch_cuda_allocator() is called.
from invokeai.app.util.startup_utils import (
apply_monkeypatches,
check_cudnn,
enable_dev_reload,
find_open_port,
register_mime_types,
)
# Find an open port, and modify the config accordingly.
first_open_port = find_open_port(app_config.port)
if app_config.port != first_open_port:
orig_config_port = app_config.port
app_config.port = first_open_port
logger.warning(f"Port {orig_config_port} is already in use. Using port {app_config.port}.")
# Miscellaneous startup tasks.
apply_monkeypatches()
register_mime_types()
check_cudnn(logger)
# Initialize the app and event loop.
app, loop = get_app()
# Load custom nodes. This must be done after importing the Graph class, which itself imports all modules from the
# invocations module. The ordering here is implicit, but important - we want to load custom nodes after all the
# core nodes have been imported so that we can catch when a custom node clobbers a core node.
load_custom_nodes(custom_nodes_path=app_config.custom_nodes_path, logger=logger)
if app_config.dev_reload:
# load_custom_nodes seems to bypass jurrigged's import sniffer, so be sure to call it *after* they're already
# imported.
enable_dev_reload(custom_nodes_path=app_config.custom_nodes_path)
# Start the server.
config = uvicorn.Config(
app=app,
host=app_config.host,
port=app_config.port,
loop="asyncio",
log_level=app_config.log_level_network,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)
# replace uvicorn's loggers with InvokeAI's for consistent appearance
uvicorn_logger = InvokeAILogger.get_logger("uvicorn")
uvicorn_logger.handlers.clear()
for hdlr in logger.handlers:
uvicorn_logger.addHandler(hdlr)
loop.run_until_complete(server.serve())
invoke_api()

View File

@@ -1,8 +1,6 @@
from abc import ABC, abstractmethod
from typing import Optional
from invokeai.app.services.image_records.image_records_common import ImageCategory
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@@ -28,8 +26,6 @@ class BoardImageRecordStorageBase(ABC):
def get_all_board_image_names_for_board(
self,
board_id: str,
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass

View File

@@ -1,20 +1,23 @@
import sqlite3
import threading
from typing import Optional, cast
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
deserialize_image_record,
)
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.RLock
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def add_image_to_board(
self,
@@ -22,8 +25,8 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
image_name: str,
) -> None:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT INTO board_images (board_id, image_name)
VALUES (?, ?)
@@ -35,14 +38,16 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def remove_image_from_board(
self,
image_name: str,
) -> None:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM board_images
WHERE image_name = ?;
@@ -53,6 +58,8 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_images_for_board(
self,
@@ -61,108 +68,96 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
limit: int = 10,
) -> OffsetPaginatedResults[ImageRecord]:
# TODO: this isn't paginated yet?
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, cursor.fetchone()[0])
self._cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, self._cursor.fetchone()[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
def get_all_board_image_names_for_board(
self,
board_id: str,
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
params: list[str | bool] = []
# Base query is a join between images and board_images
stmt = """
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
AND board_images.board_id = ?
"""
params.append(board_id)
# Add the category filter
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
stmt += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Unpack the included categories into the query params
for c in category_strings:
params.append(c)
# Add the is_intermediate filter
if is_intermediate is not None:
stmt += """--sql
AND images.is_intermediate = ?
"""
params.append(is_intermediate)
# Put a ring on it
stmt += ";"
# Execute the query
cursor = self._conn.cursor()
cursor.execute(stmt, params)
result = cast(list[sqlite3.Row], cursor.fetchall())
image_names = [r[0] for r in result]
return image_names
def get_all_board_image_names_for_board(self, board_id: str) -> list[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT image_name
FROM board_images
WHERE board_id = ?;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = [r[0] for r in result]
return image_names
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
(image_name,),
)
result = self._cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_image_count_for_board(self, board_id: str) -> int:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE
AND board_images.board_id = ?;
""",
(board_id,),
)
count = cast(int, cursor.fetchone()[0])
return count
(board_id,),
)
count = cast(int, self._cursor.fetchone()[0])
return count
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()

View File

@@ -1,8 +1,6 @@
from abc import ABC, abstractmethod
from typing import Optional
from invokeai.app.services.image_records.image_records_common import ImageCategory
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@@ -28,8 +26,6 @@ class BoardImagesServiceABC(ABC):
def get_all_board_image_names_for_board(
self,
board_id: str,
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass

View File

@@ -1,7 +1,6 @@
from typing import Optional
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.invoker import Invoker
@@ -27,14 +26,8 @@ class BoardImagesService(BoardImagesServiceABC):
def get_all_board_image_names_for_board(
self,
board_id: str,
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
return self.__invoker.services.board_image_records.get_all_board_image_names_for_board(
board_id,
categories,
is_intermediate,
)
return self.__invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
def get_board_for_image(
self,

View File

@@ -1,4 +1,5 @@
import sqlite3
import threading
from typing import Union, cast
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
@@ -18,14 +19,20 @@ from invokeai.app.util.misc import uuid_string
class SqliteBoardRecordStorage(BoardRecordStorageBase):
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.RLock
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def delete(self, board_id: str) -> None:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
@@ -33,9 +40,14 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
(board_id,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
except Exception as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
@@ -43,8 +55,8 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
) -> BoardRecord:
try:
board_id = uuid_string()
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
@@ -55,6 +67,8 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get(
@@ -62,8 +76,8 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
board_id: str,
) -> BoardRecord:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM boards
@@ -72,9 +86,12 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
(board_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
result = cast(Union[sqlite3.Row, None], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordNotFoundException from e
finally:
self._lock.release()
if result is None:
raise BoardRecordNotFoundException
return BoardRecord(**dict(result))
@@ -85,10 +102,11 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
changes: BoardChanges,
) -> BoardRecord:
try:
cursor = self._conn.cursor()
self._lock.acquire()
# Change the name of a board
if changes.board_name is not None:
cursor.execute(
self._cursor.execute(
"""--sql
UPDATE boards
SET board_name = ?
@@ -99,7 +117,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
# Change the cover image of a board
if changes.cover_image_name is not None:
cursor.execute(
self._cursor.execute(
"""--sql
UPDATE boards
SET cover_image_name = ?
@@ -110,7 +128,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
# Change the archived status of a board
if changes.archived is not None:
cursor.execute(
self._cursor.execute(
"""--sql
UPDATE boards
SET archived = ?
@@ -123,6 +141,8 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get_many(
@@ -133,10 +153,11 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
limit: int = 10,
include_archived: bool = False,
) -> OffsetPaginatedResults[BoardRecord]:
cursor = self._conn.cursor()
try:
self._lock.acquire()
# Build base query
base_query = """
# Build base query
base_query = """
SELECT *
FROM boards
{archived_filter}
@@ -144,67 +165,81 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
LIMIT ? OFFSET ?;
"""
# Determine archived filter condition
archived_filter = "" if include_archived else "WHERE archived = 0"
# Determine archived filter condition
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
# Execute query to fetch boards
cursor.execute(final_query, (limit, offset))
# Execute query to fetch boards
self._cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
# Determine count query
if include_archived:
count_query = """
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
else:
count_query = """
SELECT COUNT(*)
FROM boards
WHERE archived = 0;
"""
# Execute count query
cursor.execute(count_query)
# Execute count query
self._cursor.execute(count_query)
count = cast(int, cursor.fetchone()[0])
count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_all(
self, order_by: BoardRecordOrderBy, direction: SQLiteDirection, include_archived: bool = False
) -> list[BoardRecord]:
cursor = self._conn.cursor()
if order_by == BoardRecordOrderBy.Name:
base_query = """
try:
self._lock.acquire()
if order_by == BoardRecordOrderBy.Name:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY LOWER(board_name) {direction}
"""
else:
base_query = """
else:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
"""
archived_filter = "" if include_archived else "WHERE archived = 0"
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
cursor.execute(final_query)
self._cursor.execute(final_query)
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
return boards
return boards
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()

View File

@@ -63,11 +63,7 @@ class BulkDownloadService(BulkDownloadBase):
return [self._invoker.services.images.get_dto(image_name) for image_name in image_names]
def _board_handler(self, board_id: str) -> list[ImageDTO]:
image_names = self._invoker.services.board_image_records.get_all_board_image_names_for_board(
board_id,
categories=None,
is_intermediate=None,
)
image_names = self._invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
return self._image_handler(image_names)
def generate_item_id(self, board_id: Optional[str]) -> str:

View File

@@ -72,7 +72,6 @@ class InvokeAIAppConfig(BaseSettings):
outputs_dir: Path to directory for outputs.
custom_nodes_dir: Path to directory for custom nodes.
style_presets_dir: Path to directory for style presets.
workflow_thumbnails_dir: Path to directory for workflow thumbnails.
log_handlers: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
@@ -88,11 +87,9 @@ class InvokeAIAppConfig(BaseSettings):
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device_working_mem_gb: The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.
enable_partial_loading: Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.
keep_ram_copy_of_weights: Whether to keep a full RAM copy of a model's weights when the model is loaded in VRAM. Keeping a RAM copy increases average RAM usage, but speeds up model switching and LoRA patching (assuming there is sufficient RAM). Set this to False if RAM pressure is consistently high.
ram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
vram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
lazy_offload: DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.
pytorch_cuda_alloc_conf: Configure the Torch CUDA memory allocator. This will impact peak reserved VRAM usage and performance. Setting to "backend:cudaMallocAsync" works well on many systems. The optimal configuration is highly dependent on the system configuration (device type, VRAM, CUDA driver version, etc.), so must be tuned experimentally.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
@@ -143,7 +140,6 @@ class InvokeAIAppConfig(BaseSettings):
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
custom_nodes_dir: Path = Field(default=Path("nodes"), description="Path to directory for custom nodes.")
style_presets_dir: Path = Field(default=Path("style_presets"), description="Path to directory for style presets.")
workflow_thumbnails_dir: Path = Field(default=Path("workflow_thumbnails"), description="Path to directory for workflow thumbnails.")
# LOGGING
log_handlers: list[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".')
@@ -166,15 +162,11 @@ class InvokeAIAppConfig(BaseSettings):
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
device_working_mem_gb: float = Field(default=3, description="The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.")
enable_partial_loading: bool = Field(default=False, description="Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.")
keep_ram_copy_of_weights: bool = Field(default=True, description="Whether to keep a full RAM copy of a model's weights when the model is loaded in VRAM. Keeping a RAM copy increases average RAM usage, but speeds up model switching and LoRA patching (assuming there is sufficient RAM). Set this to False if RAM pressure is consistently high.")
# Deprecated CACHE configs
ram: Optional[float] = Field(default=None, gt=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
vram: Optional[float] = Field(default=None, ge=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
lazy_offload: bool = Field(default=True, description="DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.")
# PyTorch Memory Allocator
pytorch_cuda_alloc_conf: Optional[str] = Field(default=None, description="Configure the Torch CUDA memory allocator. This will impact peak reserved VRAM usage and performance. Setting to \"backend:cudaMallocAsync\" works well on many systems. The optimal configuration is highly dependent on the system configuration (device type, VRAM, CUDA driver version, etc.), so must be tuned experimentally.")
# DEVICE
device: DEVICE = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.")
precision: PRECISION = Field(default="auto", description="Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.")
@@ -306,11 +298,6 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the style presets directory, resolved to an absolute path.."""
return self._resolve(self.style_presets_dir)
@property
def workflow_thumbnails_path(self) -> Path:
"""Path to the workflow thumbnails directory, resolved to an absolute path.."""
return self._resolve(self.workflow_thumbnails_dir)
@property
def convert_cache_path(self) -> Path:
"""Path to the converted cache models directory, resolved to an absolute path.."""
@@ -483,9 +470,9 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
try:
# Meta is not included in the model fields, so we need to validate it separately
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
assert config.schema_version == CONFIG_SCHEMA_VERSION, (
f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
)
assert (
config.schema_version == CONFIG_SCHEMA_VERSION
), f"Invalid schema version, expected {CONFIG_SCHEMA_VERSION}: {config.schema_version}"
return config
except Exception as e:
raise RuntimeError(f"Failed to load config file {config_path}: {e}") from e

View File

@@ -28,7 +28,6 @@ from invokeai.app.services.events.events_common import (
ModelLoadCompleteEvent,
ModelLoadStartedEvent,
QueueClearedEvent,
QueueItemsRetriedEvent,
QueueItemStatusChangedEvent,
)
@@ -40,12 +39,10 @@ if TYPE_CHECKING:
from invokeai.app.services.session_queue.session_queue_common import (
BatchStatus,
EnqueueBatchResult,
RetryItemsResult,
SessionQueueItem,
SessionQueueStatus,
)
from invokeai.backend.model_manager import SubModelType
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
class EventServiceBase:
@@ -102,10 +99,6 @@ class EventServiceBase:
"""Emitted when a batch is enqueued"""
self.dispatch(BatchEnqueuedEvent.build(enqueue_result))
def emit_queue_items_retried(self, retry_result: "RetryItemsResult") -> None:
"""Emitted when a list of queue items are retried"""
self.dispatch(QueueItemsRetriedEvent.build(retry_result))
def emit_queue_cleared(self, queue_id: str) -> None:
"""Emitted when a queue is cleared"""
self.dispatch(QueueClearedEvent.build(queue_id))

View File

@@ -10,14 +10,12 @@ from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
BatchStatus,
EnqueueBatchResult,
RetryItemsResult,
SessionQueueItem,
SessionQueueStatus,
)
from invokeai.app.services.shared.graph import AnyInvocation, AnyInvocationOutput
from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_manager import SubModelType
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
if TYPE_CHECKING:
from invokeai.app.services.download.download_base import DownloadJob
@@ -292,22 +290,6 @@ class BatchEnqueuedEvent(QueueEventBase):
)
@payload_schema.register
class QueueItemsRetriedEvent(QueueEventBase):
"""Event model for queue_items_retried"""
__event_name__ = "queue_items_retried"
retried_item_ids: list[int] = Field(description="The IDs of the queue items that were retried")
@classmethod
def build(cls, retry_result: RetryItemsResult) -> "QueueItemsRetriedEvent":
return cls(
queue_id=retry_result.queue_id,
retried_item_ids=retry_result.retried_item_ids,
)
@payload_schema.register
class QueueClearedEvent(QueueEventBase):
"""Event model for queue_cleared"""

View File

@@ -1,4 +1,5 @@
import sqlite3
import threading
from datetime import datetime
from typing import Optional, Union, cast
@@ -21,14 +22,21 @@ from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteImageRecordStorage(ImageRecordStorageBase):
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.RLock
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def get(self, image_name: str) -> ImageRecord:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
f"""--sql
SELECT {IMAGE_DTO_COLS} FROM images
WHERE image_name = ?;
@@ -36,9 +44,12 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
(image_name,),
)
result = cast(Optional[sqlite3.Row], cursor.fetchone())
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordNotFoundException from e
finally:
self._lock.release()
if not result:
raise ImageRecordNotFoundException
@@ -47,8 +58,9 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
def get_metadata(self, image_name: str) -> Optional[MetadataField]:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT metadata FROM images
WHERE image_name = ?;
@@ -56,7 +68,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
(image_name,),
)
result = cast(Optional[sqlite3.Row], cursor.fetchone())
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
if not result:
raise ImageRecordNotFoundException
@@ -65,7 +77,10 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
metadata_raw = cast(Optional[str], as_dict.get("metadata", None))
return MetadataFieldValidator.validate_json(metadata_raw) if metadata_raw is not None else None
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordNotFoundException from e
finally:
self._lock.release()
def update(
self,
@@ -73,10 +88,10 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
changes: ImageRecordChanges,
) -> None:
try:
cursor = self._conn.cursor()
self._lock.acquire()
# Change the category of the image
if changes.image_category is not None:
cursor.execute(
self._cursor.execute(
"""--sql
UPDATE images
SET image_category = ?
@@ -87,7 +102,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
# Change the session associated with the image
if changes.session_id is not None:
cursor.execute(
self._cursor.execute(
"""--sql
UPDATE images
SET session_id = ?
@@ -98,7 +113,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
# Change the image's `is_intermediate`` flag
if changes.is_intermediate is not None:
cursor.execute(
self._cursor.execute(
"""--sql
UPDATE images
SET is_intermediate = ?
@@ -109,7 +124,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
# Change the image's `starred`` state
if changes.starred is not None:
cursor.execute(
self._cursor.execute(
"""--sql
UPDATE images
SET starred = ?
@@ -122,6 +137,8 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordSaveException from e
finally:
self._lock.release()
def get_many(
self,
@@ -135,104 +152,110 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
cursor = self._conn.cursor()
try:
self._lock.acquire()
# Manually build two queries - one for the count, one for the records
count_query = """--sql
SELECT COUNT(*)
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
images_query = f"""--sql
SELECT {IMAGE_DTO_COLS}
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
query_conditions = ""
query_params: list[Union[int, str, bool]] = []
if image_origin is not None:
query_conditions += """--sql
AND images.image_origin = ?
"""
query_params.append(image_origin.value)
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
query_conditions += f"""--sql
AND images.image_category IN ( {placeholders} )
# Manually build two queries - one for the count, one for the records
count_query = """--sql
SELECT COUNT(*)
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
# Unpack the included categories into the query params
for c in category_strings:
query_params.append(c)
if is_intermediate is not None:
query_conditions += """--sql
AND images.is_intermediate = ?
images_query = f"""--sql
SELECT {IMAGE_DTO_COLS}
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
query_params.append(is_intermediate)
query_conditions = ""
query_params: list[Union[int, str, bool]] = []
# board_id of "none" is reserved for images without a board
if board_id == "none":
query_conditions += """--sql
AND board_images.board_id IS NULL
"""
elif board_id is not None:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
if image_origin is not None:
query_conditions += """--sql
AND images.image_origin = ?
"""
query_params.append(image_origin.value)
# Search term condition
if search_term:
query_conditions += """--sql
AND images.metadata LIKE ?
"""
query_params.append(f"%{search_term.lower()}%")
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
if starred_first:
query_pagination = f"""--sql
ORDER BY images.starred DESC, images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
else:
query_pagination = f"""--sql
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
query_conditions += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"
# Add all the parameters
images_params = query_params.copy()
# Add the pagination parameters
images_params.extend([limit, offset])
# Unpack the included categories into the query params
for c in category_strings:
query_params.append(c)
# Build the list of images, deserializing each row
cursor.execute(images_query, images_params)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
if is_intermediate is not None:
query_conditions += """--sql
AND images.is_intermediate = ?
"""
# Set up and execute the count query, without pagination
count_query += query_conditions + ";"
count_params = query_params.copy()
cursor.execute(count_query, count_params)
count = cast(int, cursor.fetchone()[0])
query_params.append(is_intermediate)
# board_id of "none" is reserved for images without a board
if board_id == "none":
query_conditions += """--sql
AND board_images.board_id IS NULL
"""
elif board_id is not None:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
# Search term condition
if search_term:
query_conditions += """--sql
AND images.metadata LIKE ?
"""
query_params.append(f"%{search_term.lower()}%")
if starred_first:
query_pagination = f"""--sql
ORDER BY images.starred DESC, images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
else:
query_pagination = f"""--sql
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"
# Add all the parameters
images_params = query_params.copy()
# Add the pagination parameters
images_params.extend([limit, offset])
# Build the list of images, deserializing each row
self._cursor.execute(images_query, images_params)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
# Set up and execute the count query, without pagination
count_query += query_conditions + ";"
count_params = query_params.copy()
self._cursor.execute(count_query, count_params)
count = cast(int, self._cursor.fetchone()[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
def delete(self, image_name: str) -> None:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM images
WHERE image_name = ?;
@@ -243,48 +266,58 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def delete_many(self, image_names: list[str]) -> None:
try:
cursor = self._conn.cursor()
placeholders = ",".join("?" for _ in image_names)
self._lock.acquire()
# Construct the SQLite query with the placeholders
query = f"DELETE FROM images WHERE image_name IN ({placeholders})"
# Execute the query with the list of IDs as parameters
cursor.execute(query, image_names)
self._cursor.execute(query, image_names)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def get_intermediates_count(self) -> int:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images
WHERE is_intermediate = TRUE;
"""
)
count = cast(int, cursor.fetchone()[0])
self._conn.commit()
return count
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT COUNT(*) FROM images
WHERE is_intermediate = TRUE;
"""
)
count = cast(int, self._cursor.fetchone()[0])
self._conn.commit()
return count
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def delete_intermediates(self) -> list[str]:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT image_name FROM images
WHERE is_intermediate = TRUE;
"""
)
result = cast(list[sqlite3.Row], cursor.fetchall())
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = [r[0] for r in result]
cursor.execute(
self._cursor.execute(
"""--sql
DELETE FROM images
WHERE is_intermediate = TRUE;
@@ -295,6 +328,8 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
@@ -311,8 +346,8 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
metadata: Optional[str] = None,
) -> datetime:
try:
cursor = self._conn.cursor()
cursor.execute(
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO images (
image_name,
@@ -345,7 +380,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
)
self._conn.commit()
cursor.execute(
self._cursor.execute(
"""--sql
SELECT created_at
FROM images
@@ -354,30 +389,34 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
(image_name,),
)
created_at = datetime.fromisoformat(cursor.fetchone()[0])
created_at = datetime.fromisoformat(self._cursor.fetchone()[0])
return created_at
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordSaveException from e
finally:
self._lock.release()
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT images.*
FROM images
JOIN board_images ON images.image_name = board_images.image_name
WHERE board_images.board_id = ?
AND images.is_intermediate = FALSE
ORDER BY images.starred DESC, images.created_at DESC
LIMIT 1;
""",
(board_id,),
)
result = cast(Optional[sqlite3.Row], cursor.fetchone())
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT images.*
FROM images
JOIN board_images ON images.image_name = board_images.image_name
WHERE board_images.board_id = ?
AND images.is_intermediate = FALSE
ORDER BY images.starred DESC, images.created_at DESC
LIMIT 1;
""",
(board_id,),
)
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
finally:
self._lock.release()
if result is None:
return None

View File

@@ -265,11 +265,7 @@ class ImageService(ImageServiceABC):
def delete_images_on_board(self, board_id: str):
try:
image_names = self.__invoker.services.board_image_records.get_all_board_image_names_for_board(
board_id,
categories=None,
is_intermediate=None,
)
image_names = self.__invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
for image_name in image_names:
self.__invoker.services.image_files.delete(image_name)
self.__invoker.services.image_records.delete_many(image_names)
@@ -282,7 +278,7 @@ class ImageService(ImageServiceABC):
self.__invoker.services.logger.error("Failed to delete image files")
raise
except Exception as e:
self.__invoker.services.logger.error(f"Problem deleting image records and files: {str(e)}")
self.__invoker.services.logger.error("Problem deleting image records and files")
raise e
def delete_intermediates(self) -> int:

View File

@@ -32,7 +32,6 @@ if TYPE_CHECKING:
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
from invokeai.app.services.urls.urls_base import UrlServiceBase
from invokeai.app.services.workflow_records.workflow_records_base import WorkflowRecordsStorageBase
from invokeai.app.services.workflow_thumbnails.workflow_thumbnails_base import WorkflowThumbnailServiceBase
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@@ -66,7 +65,6 @@ class InvocationServices:
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
style_preset_records: "StylePresetRecordsStorageBase",
style_preset_image_files: "StylePresetImageFileStorageBase",
workflow_thumbnails: "WorkflowThumbnailServiceBase",
):
self.board_images = board_images
self.board_image_records = board_image_records
@@ -93,4 +91,3 @@ class InvocationServices:
self.conditioning = conditioning
self.style_preset_records = style_preset_records
self.style_preset_image_files = style_preset_image_files
self.workflow_thumbnails = workflow_thumbnails

View File

@@ -1,4 +1,4 @@
# TODO: Should these exceptions subclass existing python exceptions?
# TODO: Should these excpetions subclass existing python exceptions?
class ModelImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""

View File

@@ -10,9 +10,9 @@ from typing_extensions import Annotated
from invokeai.app.services.download import DownloadJob, MultiFileDownloadJob
from invokeai.app.services.model_records import ModelRecordChanges
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from invokeai.backend.model_manager.taxonomy import ModelRepoVariant, ModelSourceType
class InstallStatus(str, Enum):

View File

@@ -38,9 +38,9 @@ from invokeai.backend.model_manager.config import (
AnyModelConfig,
CheckpointConfigBase,
InvalidModelConfigException,
ModelConfigBase,
ModelRepoVariant,
ModelSourceType,
)
from invokeai.backend.model_manager.legacy_probe import ModelProbe
from invokeai.backend.model_manager.metadata import (
AnyModelRepoMetadata,
HuggingFaceMetadataFetch,
@@ -49,8 +49,8 @@ from invokeai.backend.model_manager.metadata import (
RemoteModelFile,
)
from invokeai.backend.model_manager.metadata.metadata_base import HuggingFaceMetadata
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.model_manager.taxonomy import ModelRepoVariant, ModelSourceType
from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
@@ -182,7 +182,9 @@ class ModelInstallService(ModelInstallServiceBase):
) -> str: # noqa D102
model_path = Path(model_path)
config = config or ModelRecordChanges()
info: AnyModelConfig = self._probe(Path(model_path), config) # type: ignore
info: AnyModelConfig = ModelProbe.probe(
Path(model_path), config.model_dump(), hash_algo=self._app_config.hashing_algorithm
) # type: ignore
if preferred_name := config.name:
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
@@ -642,22 +644,12 @@ class ModelInstallService(ModelInstallServiceBase):
move(old_path, new_path)
return new_path
def _probe(self, model_path: Path, config: Optional[ModelRecordChanges] = None):
config = config or ModelRecordChanges()
hash_algo = self._app_config.hashing_algorithm
fields = config.model_dump()
try:
return ModelConfigBase.classify(model_path=model_path, hash_algo=hash_algo, **fields)
except InvalidModelConfigException:
return ModelProbe.probe(model_path=model_path, fields=fields, hash_algo=hash_algo) # type: ignore
def _register(
self, model_path: Path, config: Optional[ModelRecordChanges] = None, info: Optional[AnyModelConfig] = None
) -> str:
config = config or ModelRecordChanges()
info = info or self._probe(model_path, config)
info = info or ModelProbe.probe(model_path, config.model_dump(), hash_algo=self._app_config.hashing_algorithm) # type: ignore
model_path = model_path.resolve()

View File

@@ -5,10 +5,9 @@ from abc import ABC, abstractmethod
from pathlib import Path
from typing import Callable, Optional
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.taxonomy import AnyModel, SubModelType
class ModelLoadServiceBase(ABC):

View File

@@ -11,7 +11,7 @@ from torch import load as torch_load
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import (
LoadedModel,
LoadedModelWithoutConfig,
@@ -20,7 +20,6 @@ from invokeai.backend.model_manager.load import (
)
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.model_manager.taxonomy import AnyModel, SubModelType
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -86,11 +85,8 @@ class ModelLoadService(ModelLoadServiceBase):
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception(f"The model at {checkpoint} is potentially infected by malware. Aborting load.")
if scan_result.scan_err:
raise Exception(f"Error scanning model at {checkpoint} for malware. Aborting load.")
if scan_result.infected_files != 0 or scan_result.scan_err:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result

View File

@@ -1,12 +1,16 @@
"""Initialization file for model manager service."""
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService, ModelManagerServiceBase
from invokeai.backend.model_manager import AnyModelConfig
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
from invokeai.backend.model_manager.load import LoadedModel
__all__ = [
"ModelManagerServiceBase",
"ModelManagerService",
"AnyModel",
"AnyModelConfig",
"BaseModelType",
"ModelType",
"SubModelType",
"LoadedModel",
]

View File

@@ -84,7 +84,6 @@ class ModelManagerService(ModelManagerServiceBase):
ram_cache = ModelCache(
execution_device_working_mem_gb=app_config.device_working_mem_gb,
enable_partial_loading=app_config.enable_partial_loading,
keep_ram_copy_of_weights=app_config.keep_ram_copy_of_weights,
max_ram_cache_size_gb=app_config.max_cache_ram_gb,
max_vram_cache_size_gb=app_config.max_cache_vram_gb,
execution_device=execution_device or TorchDevice.choose_torch_device(),

View File

@@ -14,12 +14,10 @@ from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager.config import (
AnyModelConfig,
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
)
from invokeai.backend.model_manager.taxonomy import (
BaseModelType,
ClipVariantType,
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
ModelSourceType,
ModelType,

View File

@@ -60,9 +60,11 @@ from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelConfigFactory,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelFormat, ModelType
class ModelRecordServiceSQL(ModelRecordServiceBase):
@@ -76,6 +78,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
"""
super().__init__()
self._db = db
self._cursor = db.conn.cursor()
self._logger = logger
@property
@@ -93,38 +96,38 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
Can raise DuplicateModelException and InvalidModelConfigException exceptions.
"""
try:
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
INSERT INTO models (
id,
config
)
VALUES (?,?);
""",
(
config.key,
config.model_dump_json(),
),
)
self._db.conn.commit()
with self._db.lock:
try:
self._cursor.execute(
"""--sql
INSERT INTO models (
id,
config
)
VALUES (?,?);
""",
(
config.key,
config.model_dump_json(),
),
)
self._db.conn.commit()
except sqlite3.IntegrityError as e:
self._db.conn.rollback()
if "UNIQUE constraint failed" in str(e):
if "models.path" in str(e):
msg = f"A model with path '{config.path}' is already installed"
elif "models.name" in str(e):
msg = f"A model with name='{config.name}', type='{config.type}', base='{config.base}' is already installed"
except sqlite3.IntegrityError as e:
self._db.conn.rollback()
if "UNIQUE constraint failed" in str(e):
if "models.path" in str(e):
msg = f"A model with path '{config.path}' is already installed"
elif "models.name" in str(e):
msg = f"A model with name='{config.name}', type='{config.type}', base='{config.base}' is already installed"
else:
msg = f"A model with key '{config.key}' is already installed"
raise DuplicateModelException(msg) from e
else:
msg = f"A model with key '{config.key}' is already installed"
raise DuplicateModelException(msg) from e
else:
raise e
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
return self.get_model(config.key)
@@ -136,21 +139,21 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
Can raise an UnknownModelException
"""
try:
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
DELETE FROM models
WHERE id=?;
""",
(key,),
)
if cursor.rowcount == 0:
raise UnknownModelException("model not found")
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
with self._db.lock:
try:
self._cursor.execute(
"""--sql
DELETE FROM models
WHERE id=?;
""",
(key,),
)
if self._cursor.rowcount == 0:
raise UnknownModelException("model not found")
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
def update_model(self, key: str, changes: ModelRecordChanges) -> AnyModelConfig:
record = self.get_model(key)
@@ -161,23 +164,23 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
json_serialized = record.model_dump_json()
try:
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
UPDATE models
SET
config=?
WHERE id=?;
""",
(json_serialized, key),
)
if cursor.rowcount == 0:
raise UnknownModelException("model not found")
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
with self._db.lock:
try:
self._cursor.execute(
"""--sql
UPDATE models
SET
config=?
WHERE id=?;
""",
(json_serialized, key),
)
if self._cursor.rowcount == 0:
raise UnknownModelException("model not found")
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
return self.get_model(key)
@@ -189,33 +192,33 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
Exceptions: UnknownModelException
"""
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE id=?;
""",
(key,),
)
rows = cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE id=?;
""",
(key,),
)
rows = self._cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
return model
def get_model_by_hash(self, hash: str) -> AnyModelConfig:
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
rows = cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
rows = self._cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
return model
def exists(self, key: str) -> bool:
@@ -224,15 +227,16 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
:param key: Unique key for the model to be deleted
"""
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
select count(*) FROM models
WHERE id=?;
""",
(key,),
)
count = cursor.fetchone()[0]
count = 0
with self._db.lock:
self._cursor.execute(
"""--sql
select count(*) FROM models
WHERE id=?;
""",
(key,),
)
count = self._cursor.fetchone()[0]
return count > 0
def search_by_attr(
@@ -280,18 +284,17 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
where_clause.append("format=?")
bindings.append(model_format)
where = f"WHERE {' AND '.join(where_clause)}" if where_clause else ""
cursor = self._db.conn.cursor()
cursor.execute(
f"""--sql
SELECT config, strftime('%s',updated_at)
FROM models
{where}
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason;
""",
tuple(bindings),
)
result = cursor.fetchall()
with self._db.lock:
self._cursor.execute(
f"""--sql
SELECT config, strftime('%s',updated_at)
FROM models
{where}
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason;
""",
tuple(bindings),
)
result = self._cursor.fetchall()
# Parse the model configs.
results: list[AnyModelConfig] = []
@@ -310,28 +313,34 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
def search_by_path(self, path: Union[str, Path]) -> List[AnyModelConfig]:
"""Return models with the indicated path."""
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE path=?;
""",
(str(path),),
)
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in cursor.fetchall()]
results = []
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE path=?;
""",
(str(path),),
)
results = [
ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in self._cursor.fetchall()
]
return results
def search_by_hash(self, hash: str) -> List[AnyModelConfig]:
"""Return models with the indicated hash."""
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in cursor.fetchall()]
results = []
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
results = [
ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in self._cursor.fetchall()
]
return results
def list_models(
@@ -347,32 +356,33 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
ModelRecordOrderBy.Format: "format",
}
cursor = self._db.conn.cursor()
# Lock so that the database isn't updated while we're doing the two queries.
# query1: get the total number of model configs
cursor.execute(
"""--sql
select count(*) from models;
""",
(),
)
total = int(cursor.fetchone()[0])
with self._db.lock:
# query1: get the total number of model configs
self._cursor.execute(
"""--sql
select count(*) from models;
""",
(),
)
total = int(self._cursor.fetchone()[0])
# query2: fetch key fields
cursor.execute(
f"""--sql
SELECT config
FROM models
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason
LIMIT ?
OFFSET ?;
""",
(
per_page,
page * per_page,
),
)
rows = cursor.fetchall()
items = [ModelSummary.model_validate(dict(x)) for x in rows]
return PaginatedResults(page=page, pages=ceil(total / per_page), per_page=per_page, total=total, items=items)
# query2: fetch key fields
self._cursor.execute(
f"""--sql
SELECT config
FROM models
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason
LIMIT ?
OFFSET ?;
""",
(
per_page,
page * per_page,
),
)
rows = self._cursor.fetchall()
items = [ModelSummary.model_validate(dict(x)) for x in rows]
return PaginatedResults(
page=page, pages=ceil(total / per_page), per_page=per_page, total=total, items=items
)

View File

@@ -21,16 +21,10 @@ class ObjectSerializerDisk(ObjectSerializerBase[T]):
"""Disk-backed storage for arbitrary python objects. Serialization is handled by `torch.save` and `torch.load`.
:param output_dir: The folder where the serialized objects will be stored
:param safe_globals: A list of types to be added to the safe globals for torch serialization
:param ephemeral: If True, objects will be stored in a temporary directory inside the given output_dir and cleaned up on exit
"""
def __init__(
self,
output_dir: Path,
safe_globals: list[type],
ephemeral: bool = False,
) -> None:
def __init__(self, output_dir: Path, ephemeral: bool = False):
super().__init__()
self._ephemeral = ephemeral
self._base_output_dir = output_dir
@@ -48,8 +42,6 @@ class ObjectSerializerDisk(ObjectSerializerBase[T]):
self._output_dir = Path(self._tempdir.name) if self._tempdir else self._base_output_dir
self.__obj_class_name: Optional[str] = None
torch.serialization.add_safe_globals(safe_globals) if safe_globals else None
def load(self, name: str) -> T:
file_path = self._get_path(name)
try:

View File

@@ -1,11 +1,10 @@
from abc import ABC, abstractmethod
from typing import Any, Coroutine, Optional
from typing import Optional
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
Batch,
BatchStatus,
CancelAllExceptCurrentResult,
CancelByBatchIDsResult,
CancelByDestinationResult,
CancelByQueueIDResult,
@@ -14,7 +13,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
IsEmptyResult,
IsFullResult,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
SessionQueueItem,
SessionQueueItemDTO,
@@ -33,7 +31,7 @@ class SessionQueueBase(ABC):
pass
@abstractmethod
def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> Coroutine[Any, Any, EnqueueBatchResult]:
def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult:
"""Enqueues all permutations of a batch for execution."""
pass
@@ -114,11 +112,6 @@ class SessionQueueBase(ABC):
"""Cancels all queue items with matching queue ID"""
pass
@abstractmethod
def cancel_all_except_current(self, queue_id: str) -> CancelAllExceptCurrentResult:
"""Cancels all queue items except in-progress items"""
pass
@abstractmethod
def list_queue_items(
self,
@@ -140,8 +133,3 @@ class SessionQueueBase(ABC):
def set_queue_item_session(self, item_id: int, session: GraphExecutionState) -> SessionQueueItem:
"""Sets the session for a session queue item. Use this to update the session state."""
pass
@abstractmethod
def retry_items_by_id(self, queue_id: str, item_ids: list[int]) -> RetryItemsResult:
"""Retries the given queue items"""
pass

View File

@@ -1,7 +1,7 @@
import datetime
import json
from itertools import chain, product
from typing import Generator, Literal, Optional, TypeAlias, Union, cast
from typing import Generator, Iterable, Literal, NamedTuple, Optional, TypeAlias, Union, cast
from pydantic import (
AliasChoices,
@@ -108,16 +108,8 @@ class Batch(BaseModel):
return v
for batch_data_list in v:
for datum in batch_data_list:
if not datum.items:
continue
# Special handling for numbers - they can be mixed
# TODO(psyche): Update BatchDatum to have a `type` field to specify the type of the items, then we can have strict float and int fields
if all(isinstance(item, (int, float)) for item in datum.items):
continue
# Get the type of the first item in the list
first_item_type = type(datum.items[0])
first_item_type = type(datum.items[0]) if datum.items else None
for item in datum.items:
if type(item) is not first_item_type:
raise BatchItemsTypeError("All items in a batch must have the same type")
@@ -234,9 +226,6 @@ class SessionQueueItemWithoutGraph(BaseModel):
field_values: Optional[list[NodeFieldValue]] = Field(
default=None, description="The field values that were used for this queue item"
)
retried_from_item_id: Optional[int] = Field(
default=None, description="The item_id of the queue item that this item was retried from"
)
@classmethod
def queue_item_dto_from_dict(cls, queue_item_dict: dict) -> "SessionQueueItemDTO":
@@ -347,11 +336,6 @@ class EnqueueBatchResult(BaseModel):
priority: int = Field(description="The priority of the enqueued batch")
class RetryItemsResult(BaseModel):
queue_id: str = Field(description="The ID of the queue")
retried_item_ids: list[int] = Field(description="The IDs of the queue items that were retried")
class ClearResult(BaseModel):
"""Result of clearing the session queue"""
@@ -382,12 +366,6 @@ class CancelByQueueIDResult(CancelByBatchIDsResult):
pass
class CancelAllExceptCurrentResult(CancelByBatchIDsResult):
"""Result of canceling all except current"""
pass
class IsEmptyResult(BaseModel):
"""Result of checking if the session queue is empty"""
@@ -406,143 +384,61 @@ class IsFullResult(BaseModel):
# region Util
def create_session_nfv_tuples(batch: Batch, maximum: int) -> Generator[tuple[str, str, str], None, None]:
def populate_graph(graph: Graph, node_field_values: Iterable[NodeFieldValue]) -> Graph:
"""
Given a batch and a maximum number of sessions to create, generate a tuple of session_id, session_json, and
field_values_json for each session.
Populates the given graph with the given batch data items.
"""
graph_clone = graph.model_copy(deep=True)
for item in node_field_values:
node = graph_clone.get_node(item.node_path)
if node is None:
continue
setattr(node, item.field_name, item.value)
graph_clone.update_node(item.node_path, node)
return graph_clone
The batch has a "source" graph and a data property. The data property is a list of lists of BatchDatum objects.
Each BatchDatum has a field identifier (e.g. a node id and field name), and a list of values to substitute into
the field.
This structure allows us to create a new graph for every possible permutation of BatchDatum objects:
- Each BatchDatum can be "expanded" into a dict of node-field-value tuples - one for each item in the BatchDatum.
- Zip each inner list of expanded BatchDatum objects together. Call this a "batch_data_list".
- Take the cartesian product of all zipped batch_data_lists, resulting in a list of permutations of BatchDatum
- Take the cartesian product of all zipped batch_data_lists, resulting in a list of lists of BatchDatum objects.
Each inner list now represents the substitution values for a single permutation (session).
- For each permutation, substitute the values into the graph
This function is optimized for performance, as it is used to generate a large number of sessions at once.
Args:
batch: The batch to generate sessions from
maximum: The maximum number of sessions to generate
Returns:
A generator that yields tuples of session_id, session_json, and field_values_json for each session. The
generator will stop early if the maximum number of sessions is reached.
def create_session_nfv_tuples(
batch: Batch, maximum: int
) -> Generator[tuple[GraphExecutionState, list[NodeFieldValue], Optional[WorkflowWithoutID]], None, None]:
"""
Create all graph permutations from the given batch data and graph. Yields tuples
of the form (graph, batch_data_items) where batch_data_items is the list of BatchDataItems
that was applied to the graph.
"""
# TODO: Should this be a class method on Batch?
data: list[list[tuple[dict]]] = []
data: list[list[tuple[NodeFieldValue]]] = []
batch_data_collection = batch.data if batch.data is not None else []
for batch_datum_list in batch_data_collection:
node_field_values_to_zip: list[list[dict]] = []
# Expand each BatchDatum into a list of dicts - one for each item in the BatchDatum
# each batch_datum_list needs to be convered to NodeFieldValues and then zipped
node_field_values_to_zip: list[list[NodeFieldValue]] = []
for batch_datum in batch_datum_list:
node_field_values = [
# Note: A tuple here is slightly faster than a dict, but we need the object in dict form to be inserted
# in the session_queue table anyways. So, overall creating NFVs as dicts is faster.
{"node_path": batch_datum.node_path, "field_name": batch_datum.field_name, "value": item}
NodeFieldValue(node_path=batch_datum.node_path, field_name=batch_datum.field_name, value=item)
for item in batch_datum.items
]
node_field_values_to_zip.append(node_field_values)
# Zip the dicts together to create a list of dicts for each permutation
data.append(list(zip(*node_field_values_to_zip, strict=True))) # type: ignore [arg-type]
# We serialize the graph and session once, then mutate the graph dict in place for each session.
#
# This sounds scary, but it's actually fine.
#
# The batch prep logic injects field values into the same fields for each generated session.
#
# For example, after the product operation, we'll end up with a list of node-field-value tuples like this:
# [
# (
# {"node_path": "1", "field_name": "a", "value": 1},
# {"node_path": "2", "field_name": "b", "value": 2},
# {"node_path": "3", "field_name": "c", "value": 3},
# ),
# (
# {"node_path": "1", "field_name": "a", "value": 4},
# {"node_path": "2", "field_name": "b", "value": 5},
# {"node_path": "3", "field_name": "c", "value": 6},
# )
# ]
#
# Note that each tuple has the same length, and each tuple substitutes values in for exactly the same node fields.
# No matter the complexity of the batch, this property holds true.
#
# This means each permutation's substitution can be done in-place on the same graph dict, because it overwrites the
# previous mutation. We only need to serialize the graph once, and then we can mutate it in place for each session.
#
# Previously, we had created new Graph objects for each session, but this was very slow for large (1k+ session
# batches). We then tried dumping the graph to dict and using deep-copy to create a new dict for each session,
# but this was also slow.
#
# Overall, we achieved a 100x speedup by mutating the graph dict in place for each session over creating new Graph
# objects for each session.
#
# We will also mutate the session dict in place, setting a new ID for each session and setting the mutated graph
# dict as the session's graph.
# Dump the batch's graph to a dict once
graph_as_dict = batch.graph.model_dump(warnings=False, exclude_none=True)
# We must provide a Graph object when creating the "dummy" session dict, but we don't actually use it. It will be
# overwritten for each session by the mutated graph_as_dict.
session_dict = GraphExecutionState(graph=Graph()).model_dump(warnings=False, exclude_none=True)
# Now we can create a generator that yields the session_id, session_json, and field_values_json for each session.
# create generator to yield session,nfv tuples
count = 0
# Each batch may have multiple runs, so we need to generate the same number of sessions for each run. The total is
# still limited by the maximum number of sessions.
for _ in range(batch.runs):
for d in product(*data):
if count >= maximum:
# We've reached the maximum number of sessions we may generate
return
# Flatten the list of lists of dicts into a single list of dicts
# TODO(psyche): Is the a more efficient way to do this?
flat_node_field_values = list(chain.from_iterable(d))
# Need a fresh ID for each session
session_id = uuid_string()
# Mutate the session dict in place
session_dict["id"] = session_id
# Substitute the values into the graph
for nfv in flat_node_field_values:
graph_as_dict["nodes"][nfv["node_path"]][nfv["field_name"]] = nfv["value"]
# Mutate the session dict in place
session_dict["graph"] = graph_as_dict
# Serialize the session and field values
# Note the use of pydantic's to_jsonable_python to handle serialization of any python object, including sets.
session_json = json.dumps(session_dict, default=to_jsonable_python)
field_values_json = json.dumps(flat_node_field_values, default=to_jsonable_python)
# Yield the session_id, session_json, and field_values_json
yield (session_id, session_json, field_values_json)
# Increment the count so we know when to stop
graph = populate_graph(batch.graph, flat_node_field_values)
yield (GraphExecutionState(graph=graph), flat_node_field_values, batch.workflow)
count += 1
def calc_session_count(batch: Batch) -> int:
"""
Calculates the number of sessions that would be created by the batch, without incurring the overhead of actually
creating them, as is done in `create_session_nfv_tuples()`.
The count is used to communicate to the user how many sessions were _requested_ to be created, as opposed to how
many were _actually_ created (which may be less due to the maximum number of sessions).
Calculates the number of sessions that would be created by the batch, without incurring
the overhead of actually generating them. Adapted from `create_sessions().
"""
# TODO: Should this be a class method on Batch?
if not batch.data:
@@ -558,78 +454,41 @@ def calc_session_count(batch: Batch) -> int:
return len(data_product) * batch.runs
ValueToInsertTuple: TypeAlias = tuple[
str, # queue_id
str, # session (as stringified JSON)
str, # session_id
str, # batch_id
str | None, # field_values (optional, as stringified JSON)
int, # priority
str | None, # workflow (optional, as stringified JSON)
str | None, # origin (optional)
str | None, # destination (optional)
int | None, # retried_from_item_id (optional, this is always None for new items)
]
"""A type alias for the tuple of values to insert into the session queue table.
class SessionQueueValueToInsert(NamedTuple):
"""A tuple of values to insert into the session_queue table"""
**If you change this, be sure to update the `enqueue_batch` and `retry_items_by_id` methods in the session queue service!**
"""
# Careful with the ordering of this - it must match the insert statement
queue_id: str # queue_id
session: str # session json
session_id: str # session_id
batch_id: str # batch_id
field_values: Optional[str] # field_values json
priority: int # priority
workflow: Optional[str] # workflow json
origin: str | None
destination: str | None
def prepare_values_to_insert(
queue_id: str, batch: Batch, priority: int, max_new_queue_items: int
) -> list[ValueToInsertTuple]:
"""
Given a batch, prepare the values to insert into the session queue table. The list of tuples can be used with an
`executemany` statement to insert multiple rows at once.
ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
Args:
queue_id: The ID of the queue to insert the items into
batch: The batch to prepare the values for
priority: The priority of the queue items
max_new_queue_items: The maximum number of queue items to insert
Returns:
A list of tuples to insert into the session queue table. Each tuple contains the following values:
- queue_id
- session (as stringified JSON)
- session_id
- batch_id
- field_values (optional, as stringified JSON)
- priority
- workflow (optional, as stringified JSON)
- origin (optional)
- destination (optional)
- retried_from_item_id (optional, this is always None for new items)
"""
# A tuple is a fast and memory-efficient way to store the values to insert. Previously, we used a NamedTuple, but
# measured a ~5% performance improvement by using a normal tuple instead. For very large batches (10k+ items), the
# this difference becomes noticeable.
#
# So, despite the inferior DX with normal tuples, we use one here for performance reasons.
values_to_insert: list[ValueToInsertTuple] = []
# pydantic's to_jsonable_python handles serialization of any python object, including sets, which json.dumps does
# not support by default. Apparently there are sets somewhere in the graph.
# The same workflow is used for all sessions in the batch - serialize it once
workflow_json = json.dumps(batch.workflow, default=to_jsonable_python) if batch.workflow else None
for session_id, session_json, field_values_json in create_session_nfv_tuples(batch, max_new_queue_items):
def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new_queue_items: int) -> ValuesToInsert:
values_to_insert: ValuesToInsert = []
for session, field_values, workflow in create_session_nfv_tuples(batch, max_new_queue_items):
# sessions must have unique id
session.id = uuid_string()
values_to_insert.append(
(
queue_id,
session_json,
session_id,
batch.batch_id,
field_values_json,
priority,
workflow_json,
batch.origin,
batch.destination,
None,
SessionQueueValueToInsert(
queue_id, # queue_id
session.model_dump_json(warnings=False, exclude_none=True), # session (json)
session.id, # session_id
batch.batch_id, # batch_id
# must use pydantic_encoder bc field_values is a list of models
json.dumps(field_values, default=to_jsonable_python) if field_values else None, # field_values (json)
priority, # priority
json.dumps(workflow, default=to_jsonable_python) if workflow else None, # workflow (json)
batch.origin, # origin
batch.destination, # destination
)
)
return values_to_insert

View File

@@ -1,10 +1,7 @@
import asyncio
import json
import sqlite3
import threading
from typing import Optional, Union, cast
from pydantic_core import to_jsonable_python
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
from invokeai.app.services.session_queue.session_queue_common import (
@@ -12,7 +9,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
Batch,
BatchStatus,
CancelAllExceptCurrentResult,
CancelByBatchIDsResult,
CancelByDestinationResult,
CancelByQueueIDResult,
@@ -21,13 +17,11 @@ from invokeai.app.services.session_queue.session_queue_common import (
IsEmptyResult,
IsFullResult,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
SessionQueueItem,
SessionQueueItemDTO,
SessionQueueItemNotFoundError,
SessionQueueStatus,
ValueToInsertTuple,
calc_session_count,
prepare_values_to_insert,
)
@@ -38,6 +32,9 @@ from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteSessionQueue(SessionQueueBase):
__invoker: Invoker
__conn: sqlite3.Connection
__cursor: sqlite3.Cursor
__lock: threading.RLock
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
@@ -53,7 +50,9 @@ class SqliteSessionQueue(SessionQueueBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self.__lock = db.lock
self.__conn = db.conn
self.__cursor = self.__conn.cursor()
def _set_in_progress_to_canceled(self) -> None:
"""
@@ -61,8 +60,8 @@ class SqliteSessionQueue(SessionQueueBase):
This is necessary because the invoker may have been killed while processing a queue item.
"""
try:
cursor = self._conn.cursor()
cursor.execute(
self.__lock.acquire()
self.__cursor.execute(
"""--sql
UPDATE session_queue
SET status = 'canceled'
@@ -70,13 +69,14 @@ class SqliteSessionQueue(SessionQueueBase):
"""
)
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
def _get_current_queue_size(self, queue_id: str) -> int:
"""Gets the current number of pending queue items"""
cursor = self._conn.cursor()
cursor.execute(
self.__cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
@@ -86,12 +86,11 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
return cast(int, cursor.fetchone()[0])
return cast(int, self.__cursor.fetchone()[0])
def _get_highest_priority(self, queue_id: str) -> int:
"""Gets the highest priority value in the queue"""
cursor = self._conn.cursor()
cursor.execute(
self.__cursor.execute(
"""--sql
SELECT MAX(priority)
FROM session_queue
@@ -101,14 +100,12 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
return cast(Union[int, None], cursor.fetchone()[0]) or 0
return cast(Union[int, None], self.__cursor.fetchone()[0]) or 0
async def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult:
return await asyncio.to_thread(self._enqueue_batch, queue_id, batch, prepend)
def _enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult:
def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult:
try:
cursor = self._conn.cursor()
self.__lock.acquire()
# TODO: how does this work in a multi-user scenario?
current_queue_size = self._get_current_queue_size(queue_id)
max_queue_size = self.__invoker.services.configuration.max_queue_size
@@ -130,17 +127,19 @@ class SqliteSessionQueue(SessionQueueBase):
if requested_count > enqueued_count:
values_to_insert = values_to_insert[:max_new_queue_items]
cursor.executemany(
self.__cursor.executemany(
"""--sql
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin, destination, retried_from_item_id)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin, destination)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
values_to_insert,
)
self._conn.commit()
self.__conn.commit()
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
enqueue_result = EnqueueBatchResult(
queue_id=queue_id,
requested=requested_count,
@@ -152,19 +151,25 @@ class SqliteSessionQueue(SessionQueueBase):
return enqueue_result
def dequeue(self) -> Optional[SessionQueueItem]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE status = 'pending'
ORDER BY
priority DESC,
item_id ASC
LIMIT 1
"""
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE status = 'pending'
ORDER BY
priority DESC,
item_id ASC
LIMIT 1
"""
)
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
if result is None:
return None
queue_item = SessionQueueItem.queue_item_from_dict(dict(result))
@@ -172,40 +177,52 @@ class SqliteSessionQueue(SessionQueueBase):
return queue_item
def get_next(self, queue_id: str) -> Optional[SessionQueueItem]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE
queue_id = ?
AND status = 'pending'
ORDER BY
priority DESC,
created_at ASC
LIMIT 1
""",
(queue_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE
queue_id = ?
AND status = 'pending'
ORDER BY
priority DESC,
created_at ASC
LIMIT 1
""",
(queue_id,),
)
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
if result is None:
return None
return SessionQueueItem.queue_item_from_dict(dict(result))
def get_current(self, queue_id: str) -> Optional[SessionQueueItem]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE
queue_id = ?
AND status = 'in_progress'
LIMIT 1
""",
(queue_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE
queue_id = ?
AND status = 'in_progress'
LIMIT 1
""",
(queue_id,),
)
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
if result is None:
return None
return SessionQueueItem.queue_item_from_dict(dict(result))
@@ -219,8 +236,8 @@ class SqliteSessionQueue(SessionQueueBase):
error_traceback: Optional[str] = None,
) -> SessionQueueItem:
try:
cursor = self._conn.cursor()
cursor.execute(
self.__lock.acquire()
self.__cursor.execute(
"""--sql
UPDATE session_queue
SET status = ?, error_type = ?, error_message = ?, error_traceback = ?
@@ -228,10 +245,12 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(status, error_type, error_message, error_traceback, item_id),
)
self._conn.commit()
self.__conn.commit()
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
queue_item = self.get_queue_item(item_id)
batch_status = self.get_batch_status(queue_id=queue_item.queue_id, batch_id=queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_item.queue_id)
@@ -239,36 +258,48 @@ class SqliteSessionQueue(SessionQueueBase):
return queue_item
def is_empty(self, queue_id: str) -> IsEmptyResult:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE queue_id = ?
""",
(queue_id,),
)
is_empty = cast(int, cursor.fetchone()[0]) == 0
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE queue_id = ?
""",
(queue_id,),
)
is_empty = cast(int, self.__cursor.fetchone()[0]) == 0
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return IsEmptyResult(is_empty=is_empty)
def is_full(self, queue_id: str) -> IsFullResult:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE queue_id = ?
""",
(queue_id,),
)
max_queue_size = self.__invoker.services.configuration.max_queue_size
is_full = cast(int, cursor.fetchone()[0]) >= max_queue_size
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE queue_id = ?
""",
(queue_id,),
)
max_queue_size = self.__invoker.services.configuration.max_queue_size
is_full = cast(int, self.__cursor.fetchone()[0]) >= max_queue_size
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return IsFullResult(is_full=is_full)
def clear(self, queue_id: str) -> ClearResult:
try:
cursor = self._conn.cursor()
cursor.execute(
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT COUNT(*)
FROM session_queue
@@ -276,8 +307,8 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
count = cursor.fetchone()[0]
cursor.execute(
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
"""--sql
DELETE
FROM session_queue
@@ -285,16 +316,17 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
self._conn.commit()
self.__conn.commit()
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
self.__invoker.services.events.emit_queue_cleared(queue_id)
return ClearResult(deleted=count)
def prune(self, queue_id: str) -> PruneResult:
try:
cursor = self._conn.cursor()
where = """--sql
WHERE
queue_id = ?
@@ -304,7 +336,8 @@ class SqliteSessionQueue(SessionQueueBase):
OR status = 'canceled'
)
"""
cursor.execute(
self.__lock.acquire()
self.__cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
@@ -312,8 +345,8 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
count = cursor.fetchone()[0]
cursor.execute(
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
f"""--sql
DELETE
FROM session_queue
@@ -321,10 +354,12 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
self._conn.commit()
self.__conn.commit()
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
return PruneResult(deleted=count)
def cancel_queue_item(self, item_id: int) -> SessionQueueItem:
@@ -353,8 +388,8 @@ class SqliteSessionQueue(SessionQueueBase):
def cancel_by_batch_ids(self, queue_id: str, batch_ids: list[str]) -> CancelByBatchIDsResult:
try:
cursor = self._conn.cursor()
current_queue_item = self.get_current(queue_id)
self.__lock.acquire()
placeholders = ", ".join(["?" for _ in batch_ids])
where = f"""--sql
WHERE
@@ -365,7 +400,7 @@ class SqliteSessionQueue(SessionQueueBase):
AND status != 'failed'
"""
params = [queue_id] + batch_ids
cursor.execute(
self.__cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
@@ -373,8 +408,8 @@ class SqliteSessionQueue(SessionQueueBase):
""",
tuple(params),
)
count = cursor.fetchone()[0]
cursor.execute(
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
f"""--sql
UPDATE session_queue
SET status = 'canceled'
@@ -382,18 +417,20 @@ class SqliteSessionQueue(SessionQueueBase):
""",
tuple(params),
)
self._conn.commit()
self.__conn.commit()
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
return CancelByBatchIDsResult(canceled=count)
def cancel_by_destination(self, queue_id: str, destination: str) -> CancelByDestinationResult:
try:
cursor = self._conn.cursor()
current_queue_item = self.get_current(queue_id)
self.__lock.acquire()
where = """--sql
WHERE
queue_id == ?
@@ -403,7 +440,7 @@ class SqliteSessionQueue(SessionQueueBase):
AND status != 'failed'
"""
params = (queue_id, destination)
cursor.execute(
self.__cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
@@ -411,8 +448,8 @@ class SqliteSessionQueue(SessionQueueBase):
""",
params,
)
count = cursor.fetchone()[0]
cursor.execute(
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
f"""--sql
UPDATE session_queue
SET status = 'canceled'
@@ -420,18 +457,20 @@ class SqliteSessionQueue(SessionQueueBase):
""",
params,
)
self._conn.commit()
self.__conn.commit()
if current_queue_item is not None and current_queue_item.destination == destination:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
return CancelByDestinationResult(canceled=count)
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
try:
cursor = self._conn.cursor()
current_queue_item = self.get_current(queue_id)
self.__lock.acquire()
where = """--sql
WHERE
queue_id is ?
@@ -440,7 +479,7 @@ class SqliteSessionQueue(SessionQueueBase):
AND status != 'failed'
"""
params = [queue_id]
cursor.execute(
self.__cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
@@ -448,8 +487,8 @@ class SqliteSessionQueue(SessionQueueBase):
""",
tuple(params),
)
count = cursor.fetchone()[0]
cursor.execute(
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
f"""--sql
UPDATE session_queue
SET status = 'canceled'
@@ -457,7 +496,7 @@ class SqliteSessionQueue(SessionQueueBase):
""",
tuple(params),
)
self._conn.commit()
self.__conn.commit()
if current_queue_item is not None and current_queue_item.queue_id == queue_id:
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
@@ -465,64 +504,41 @@ class SqliteSessionQueue(SessionQueueBase):
current_queue_item, batch_status, queue_status
)
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
return CancelByQueueIDResult(canceled=count)
def cancel_all_except_current(self, queue_id: str) -> CancelAllExceptCurrentResult:
try:
cursor = self._conn.cursor()
where = """--sql
WHERE
queue_id == ?
AND status == 'pending'
"""
cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
{where};
""",
(queue_id,),
)
count = cursor.fetchone()[0]
cursor.execute(
f"""--sql
UPDATE session_queue
SET status = 'canceled'
{where};
""",
(queue_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return CancelAllExceptCurrentResult(canceled=count)
def get_queue_item(self, item_id: int) -> SessionQueueItem:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT * FROM session_queue
WHERE
item_id = ?
""",
(item_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT * FROM session_queue
WHERE
item_id = ?
""",
(item_id,),
)
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
if result is None:
raise SessionQueueItemNotFoundError(f"No queue item with id {item_id}")
return SessionQueueItem.queue_item_from_dict(dict(result))
def set_queue_item_session(self, item_id: int, session: GraphExecutionState) -> SessionQueueItem:
try:
cursor = self._conn.cursor()
# Use exclude_none so we don't end up with a bunch of nulls in the graph - this can cause validation errors
# when the graph is loaded. Graph execution occurs purely in memory - the session saved here is not referenced
# during execution.
session_json = session.model_dump_json(warnings=False, exclude_none=True)
cursor.execute(
self.__lock.acquire()
self.__cursor.execute(
"""--sql
UPDATE session_queue
SET session = ?
@@ -530,10 +546,12 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(session_json, item_id),
)
self._conn.commit()
self.__conn.commit()
except Exception:
self._conn.rollback()
self.__conn.rollback()
raise
finally:
self.__lock.release()
return self.get_queue_item(item_id)
def list_queue_items(
@@ -544,71 +562,83 @@ class SqliteSessionQueue(SessionQueueBase):
cursor: Optional[int] = None,
status: Optional[QUEUE_ITEM_STATUS] = None,
) -> CursorPaginatedResults[SessionQueueItemDTO]:
cursor_ = self._conn.cursor()
item_id = cursor
query = """--sql
SELECT item_id,
status,
priority,
field_values,
error_type,
error_message,
error_traceback,
created_at,
updated_at,
completed_at,
started_at,
session_id,
batch_id,
queue_id,
origin,
destination
FROM session_queue
WHERE queue_id = ?
"""
params: list[Union[str, int]] = [queue_id]
if status is not None:
query += """--sql
AND status = ?
"""
params.append(status)
if item_id is not None:
query += """--sql
AND (priority < ?) OR (priority = ? AND item_id > ?)
"""
params.extend([priority, priority, item_id])
query += """--sql
ORDER BY
priority DESC,
item_id ASC
LIMIT ?
try:
item_id = cursor
self.__lock.acquire()
query = """--sql
SELECT item_id,
status,
priority,
field_values,
error_type,
error_message,
error_traceback,
created_at,
updated_at,
completed_at,
started_at,
session_id,
batch_id,
queue_id,
origin,
destination
FROM session_queue
WHERE queue_id = ?
"""
params.append(limit + 1)
cursor_.execute(query, params)
results = cast(list[sqlite3.Row], cursor_.fetchall())
items = [SessionQueueItemDTO.queue_item_dto_from_dict(dict(result)) for result in results]
has_more = False
if len(items) > limit:
# remove the extra item
items.pop()
has_more = True
params: list[Union[str, int]] = [queue_id]
if status is not None:
query += """--sql
AND status = ?
"""
params.append(status)
if item_id is not None:
query += """--sql
AND (priority < ?) OR (priority = ? AND item_id > ?)
"""
params.extend([priority, priority, item_id])
query += """--sql
ORDER BY
priority DESC,
item_id ASC
LIMIT ?
"""
params.append(limit + 1)
self.__cursor.execute(query, params)
results = cast(list[sqlite3.Row], self.__cursor.fetchall())
items = [SessionQueueItemDTO.queue_item_dto_from_dict(dict(result)) for result in results]
has_more = False
if len(items) > limit:
# remove the extra item
items.pop()
has_more = True
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return CursorPaginatedResults(items=items, limit=limit, has_more=has_more)
def get_queue_status(self, queue_id: str) -> SessionQueueStatus:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT status, count(*)
FROM session_queue
WHERE queue_id = ?
GROUP BY status
""",
(queue_id,),
)
counts_result = cast(list[sqlite3.Row], cursor.fetchall())
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT status, count(*)
FROM session_queue
WHERE queue_id = ?
GROUP BY status
""",
(queue_id,),
)
counts_result = cast(list[sqlite3.Row], self.__cursor.fetchall())
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
current_item = self.get_current(queue_id=queue_id)
total = sum(row[1] for row in counts_result)
@@ -627,23 +657,29 @@ class SqliteSessionQueue(SessionQueueBase):
)
def get_batch_status(self, queue_id: str, batch_id: str) -> BatchStatus:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT status, count(*), origin, destination
FROM session_queue
WHERE
queue_id = ?
AND batch_id = ?
GROUP BY status
""",
(queue_id, batch_id),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
total = sum(row[1] for row in result)
counts: dict[str, int] = {row[0]: row[1] for row in result}
origin = result[0]["origin"] if result else None
destination = result[0]["destination"] if result else None
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT status, count(*), origin, destination
FROM session_queue
WHERE
queue_id = ?
AND batch_id = ?
GROUP BY status
""",
(queue_id, batch_id),
)
result = cast(list[sqlite3.Row], self.__cursor.fetchall())
total = sum(row[1] for row in result)
counts: dict[str, int] = {row[0]: row[1] for row in result}
origin = result[0]["origin"] if result else None
destination = result[0]["destination"] if result else None
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return BatchStatus(
batch_id=batch_id,
@@ -659,18 +695,24 @@ class SqliteSessionQueue(SessionQueueBase):
)
def get_counts_by_destination(self, queue_id: str, destination: str) -> SessionQueueCountsByDestination:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT status, count(*)
FROM session_queue
WHERE queue_id = ?
AND destination = ?
GROUP BY status
""",
(queue_id, destination),
)
counts_result = cast(list[sqlite3.Row], cursor.fetchall())
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT status, count(*)
FROM session_queue
WHERE queue_id = ?
AND destination = ?
GROUP BY status
""",
(queue_id, destination),
)
counts_result = cast(list[sqlite3.Row], self.__cursor.fetchall())
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
total = sum(row[1] for row in counts_result)
counts: dict[str, int] = {row[0]: row[1] for row in counts_result}
@@ -685,68 +727,3 @@ class SqliteSessionQueue(SessionQueueBase):
canceled=counts.get("canceled", 0),
total=total,
)
def retry_items_by_id(self, queue_id: str, item_ids: list[int]) -> RetryItemsResult:
"""Retries the given queue items"""
try:
cursor = self._conn.cursor()
values_to_insert: list[ValueToInsertTuple] = []
retried_item_ids: list[int] = []
for item_id in item_ids:
queue_item = self.get_queue_item(item_id)
if queue_item.status not in ("failed", "canceled"):
continue
retried_item_ids.append(item_id)
field_values_json = (
json.dumps(queue_item.field_values, default=to_jsonable_python) if queue_item.field_values else None
)
workflow_json = (
json.dumps(queue_item.workflow, default=to_jsonable_python) if queue_item.workflow else None
)
cloned_session = GraphExecutionState(graph=queue_item.session.graph)
cloned_session_json = cloned_session.model_dump_json(warnings=False, exclude_none=True)
retried_from_item_id = (
queue_item.retried_from_item_id
if queue_item.retried_from_item_id is not None
else queue_item.item_id
)
value_to_insert: ValueToInsertTuple = (
queue_item.queue_id,
cloned_session_json,
cloned_session.id,
queue_item.batch_id,
field_values_json,
queue_item.priority,
workflow_json,
queue_item.origin,
queue_item.destination,
retried_from_item_id,
)
values_to_insert.append(value_to_insert)
# TODO(psyche): Handle max queue size?
cursor.executemany(
"""--sql
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin, destination, retried_from_item_id)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
values_to_insert,
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
retry_result = RetryItemsResult(
queue_id=queue_id,
retried_item_ids=retried_item_ids,
)
self.__invoker.services.events.emit_queue_items_retried(retry_result)
return retry_result

Some files were not shown because too many files have changed in this diff Show More