Compare commits

..

141 Commits

Author SHA1 Message Date
Ryan Dick
109cbb8532 Update the default Model Cache behavior to be more conservative with RAM usage. 2025-01-13 18:48:52 +00:00
psychedelicious
d88b59c5c4 Revert "feat(ui): rearrange canvas paste back nodes to save an image step"
This reverts commit 7cdda00a54.
2025-01-10 15:59:29 +11:00
Simon Fuhrmann
1c7adb5c70 Update communityNodes.md - Fix broken image
The image under https://invoke-ai.github.io/InvokeAI/nodes/communityNodes/#stereogram-nodes is broken. Changing img src to fix.
2025-01-09 07:29:02 -05:00
psychedelicious
8da9d3bc19 chore: bump version to v5.6.0rc2 2025-01-09 14:12:46 +11:00
psychedelicious
d9c099bd3a docs: fix incorrect macOS launcher fix command 2025-01-09 11:26:59 +11:00
psychedelicious
a329588e5a feat: add link to low vram guide to OOM toast (local only)
Needed to do a bit of refactoring to support this. Overall, the error toast components are easier to understand now.
2025-01-09 11:20:05 +11:00
psychedelicious
e09cf64779 feat: more updates to first run view 2025-01-09 11:20:05 +11:00
psychedelicious
fc8cf224ca docs: typo 2025-01-09 11:20:05 +11:00
psychedelicious
3e1ed18a1f Update docs/features/low-vram.md
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2025-01-09 11:20:05 +11:00
psychedelicious
9a84c85486 docs: add section about disabling the sysmem fallback 2025-01-09 11:20:05 +11:00
psychedelicious
e6deaa2d2f feat(ui): minor layout tweaks for first run screen 2025-01-09 11:20:05 +11:00
psychedelicious
5246b31347 feat(ui): add low vram link to first run page 2025-01-09 11:20:05 +11:00
psychedelicious
b15dd00840 docs: add docs for low vram mode 2025-01-09 11:20:05 +11:00
psychedelicious
8808c36028 docs: update example yaml file 2025-01-09 11:20:05 +11:00
psychedelicious
89b576f10d fix(ui): prevent canvas & main panel content from scrolling
Hopefully fixes issues where, when run via the launcher, the main panel kinda just scrolls out of bounds.
2025-01-09 09:14:22 +11:00
psychedelicious
d7893a52c3 tweak(ui): whats new copy 2025-01-08 15:26:26 +11:00
Mary Hipp
b9c45c3232 Whats new update 2025-01-08 15:26:26 +11:00
David Burnett
afc9d3b98f more ruff formating 2025-01-07 20:18:19 -05:00
David Burnett
7ddc757bdb ruff format changes 2025-01-07 20:18:19 -05:00
David Burnett
d8da9b45cc Fix for DEIS / DPM clash 2025-01-07 20:18:19 -05:00
Ryan Dick
607d19f4dd We should not trust the value of since the model could be partially-loaded. 2025-01-07 19:22:31 -05:00
psychedelicious
32286f321c docs: note that version is not req for editable install 2025-01-07 17:17:40 -05:00
psychedelicious
03f7bdc9f9 docs: fix manual install rocm pypi indices 2025-01-07 17:17:40 -05:00
Ryan Dick
4df3d0861b Deprecate ram/vram configs for smoother migration path to dynamic limits (#7526)
## Summary

Changes:
- Deprecate `ram` and `vram` configs. If these are set in invokeai.yaml,
they will be ignored.
- Create new `max_cache_ram_gb` and `max_cache_vram_gb` configs with the
same definitions as the old configs.

The main motivation of this change is to make the migration path
smoother for users who had previously added `ram` /`vram` to their
config files. Now, these users will be automatically migrated into the
new dynamic limit behavior (which is better in most cases). These users
will have to manually re-add `max_cache_ram_gb` and `max_cache_vram_gb`
to their configs if they wish to go back to specifying manual limits.

## Related Issues / Discussions

See the release notes for RC v5.6.0rc1 for the old migration behavior
that we are trying to improve:
https://github.com/invoke-ai/InvokeAI/releases/tag/v5.6.0rc1

## QA Instructions

- [x] Test that if `ram` or `vram` are present in a user's
`invokeai.yaml`, these values are ignored.
- [x] Test that `max_cache_ram_gb` and `max_cache_vram_gb` are applied,
if set.

## Merge Plan

- Don't forget to update the RC release notes accordingly.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 17:03:11 -05:00
Ryan Dick
974b4671b1 Deprecate the ram and vram configs to make the migration to dynamic
memory limits smoother for users who had previously overriden these
values.
2025-01-07 16:45:29 +00:00
Ryan Dick
6b18f270dd Bugfix: Offload of GGML-quantized model in torch.inference_mode() cm (#7525)
## Summary

This PR contains a bugfix for an edge case with model unloading (from
VRAM to RAM). Thanks to @JPPhoto for finding it.

The bug was triggered under the following conditions:
- A GGML-quantized model is loaded in VRAM
- We run a Spandrel image-to-image invocation (which is wrapped in a
`torch.inference_mode()` context manager.
- The model cache attempts to unload the GGML-quantized model from VRAM
to RAM.
- Doing this inside of the `torch.inference_mode()` cm results in the
following error:
```
 [2025-01-07 15:48:17,744]::[InvokeAI]::ERROR --> Error while invoking session 98a07259-0c03-4111-a8d8-107041cb86f9, invocation d8daa90b-7e4c-4fc4-807c-50ba9be1a4ed (spandrel_image_to_image): Cannot set version_counter for inference tensor
[2025-01-07 15:48:17,744]::[InvokeAI]::ERROR --> Traceback (most recent call last):
  File "/home/ryan/src/InvokeAI/invokeai/app/services/session_processor/session_processor_default.py", line 129, in run_node
    output = invocation.invoke_internal(context=context, services=self._services)
  File "/home/ryan/src/InvokeAI/invokeai/app/invocations/baseinvocation.py", line 300, in invoke_internal
    output = self.invoke(context)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/home/ryan/src/InvokeAI/invokeai/app/invocations/spandrel_image_to_image.py", line 167, in invoke
    with context.models.load(self.image_to_image_model) as spandrel_model:
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/load_base.py", line 60, in __enter__
    self._cache.lock(self._cache_record, None)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 224, in lock
    self._load_locked_model(cache_entry, working_mem_bytes)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 272, in _load_locked_model
    vram_bytes_freed = self._offload_unlocked_models(model_vram_needed, working_mem_bytes)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 458, in _offload_unlocked_models
    cache_entry_bytes_freed = self._move_model_to_ram(cache_entry, vram_bytes_to_free)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 330, in _move_model_to_ram
    return cache_entry.cached_model.partial_unload_from_vram(
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/cached_model/cached_model_with_partial_load.py", line 182, in partial_unload_from_vram
    cur_state_dict = self._model.state_dict()
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1939, in state_dict
    module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1936, in state_dict
    self._save_to_state_dict(destination, prefix, keep_vars)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1843, in _save_to_state_dict
    destination[prefix + name] = param if keep_vars else param.detach()
RuntimeError: Cannot set version_counter for inference tensor
```

### Explanation

From the `torch.inference_mode()` docs:
> Code run under this mode gets better performance by disabling view
tracking and version counter bumps.

Disabling version counter bumps results in the aforementioned error when
saving `GGMLTensor`s to a state_dict.

This incompatibility between `GGMLTensors` and `torch.inference_mode()`
is likely caused by the custom tensor type implementation. There may
very well be a way to get these to cooperate, but for now it is much
simpler to remove the `torch.inference_mode()` contexts.

Note that there are several other uses of `torch.inference_mode()` in
the Invoke codebase, but they are all tight wrappers around the
inference forward pass and do not contain the model load/unload process.

## Related Issues / Discussions

Original discussion:
https://discord.com/channels/1020123559063990373/1149506274971631688/1326180753159094303

## QA Instructions

Find a sequence of operations that triggers the condition. For me, this
was:
- Reserve VRAM in a separate process so that there was ~12GB left.
- Fresh start of Invoke
- Run FLUX inference with a GGML 8K model
- Run Spandrel upscaling

Tests:
- [x] Confirmed that I can reproduce the error and that it is no longer
hit after the change
- [x] Confirm that there is no speed regression from switching from
`torch.inference_mode()` to `torch.no_grad()`.
    - Before: `50.354s`, After: `51.536s`


## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 11:31:20 -05:00
Ryan Dick
85eb4f0312 Fix an edge case with model offloading from VRAM to RAM. If a GGML-quantized model is offloaded from VRAM inside of a torch.inference_mode() context manager, this will cause the following error: 'RuntimeError: Cannot set version_counter for inference tensor'. 2025-01-07 15:59:50 +00:00
psychedelicious
67e948b50d chore: bump version to v5.6.0rc1 2025-01-07 19:41:56 +11:00
Riccardo Giovanetti
d9a20f319f translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1639 of 1649 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Riku
38d4863e09 translationBot(ui): update translation (German)
Currently translated at 71.7% (1181 of 1645 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Nik Nikovsky
cd7ba14adc translationBot(ui): update translation (Polish)
Currently translated at 16.5% (273 of 1645 strings)

translationBot(ui): update translation (Polish)

Currently translated at 15.4% (254 of 1645 strings)

translationBot(ui): update translation (Polish)

Currently translated at 10.8% (178 of 1645 strings)

Co-authored-by: Nik Nikovsky <zejdzztegomaila@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pl/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Linos
e5b6beb24d translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1649 of 1649 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Ryan Dick
0258b6a04f Partial Loading PR5: Dynamic cache ram/vram limits (#7509)
## Summary

This PR enables RAM/VRAM cache size limits to be determined dynamically
based on availability.

**Config Changes**

This PR modifies the app configs in the following ways:
- A new `device_working_mem_gb` config was added. This is the amount of
non-model working memory to keep available on the execution device (i.e.
GPU) when using dynamic cache limits. It default to 3GB.
- The `ram` and `vram` configs now default to `None`. If these configs
are set, they will take precedence over the dynamic limits. **Note: Some
users may have previously overriden the `ram` and `vram` values in their
`invokeai.yaml`. They will need to remove these configs to enable the
new dynamic limit feature.**

**Working Memory**

In addition to the new `device_working_mem_gb` config described above,
memory-intensive operations can estimate the amount of working memory
that they will need and request it from the model cache. This is
currently applied to the VAE decoding step for all models. In the
future, we may apply this to other operations as we work out which ops
tend to exceed the default working memory reservation.

**Mitigations for https://github.com/invoke-ai/InvokeAI/issues/7513**

This PR includes some mitigations for the issue described in
https://github.com/invoke-ai/InvokeAI/issues/7513. Without these
mitigations, it would occur with higher frequency when dynamic RAM
limits are used and the RAM is close to maxed-out.

## Limitations / Future Work

- Only _models_ can be offloaded to RAM to conserve VRAM. I.e. if VAE
decoding requires more working VRAM than available, the best we can do
is keep the full model on the CPU, but we will still hit an OOM error.
In the future, we could detect this ahead of time and switch to running
inference on the CPU for those ops.
- There is often a non-negligible amount of VRAM 'reserved' by the torch
CUDA allocator, but not used by any allocated tensors. We may be able to
tune the torch CUDA allocator to work better for our use case.
Reference:
https://pytorch.org/docs/stable/notes/cuda.html#optimizing-memory-usage-with-pytorch-cuda-alloc-conf
- There may be some ops that require high working memory that haven't
been updated to request extra memory yet. We will update these as we
uncover them.
- If a model is 'locked' in VRAM, it won't be partially unloaded if a
later model load requests extra working memory. This should be uncommon,
but I can think of cases where it would matter.

## Related Issues / Discussions

- #7492 
- #7494 
- #7500 
- #7505 

## QA Instructions

Run a variety of models near the cache limits to ensure that model
switching works properly for the following configurations:
- [x] CUDA, `enable_partial_loading=true`, all other configs default
(i.e. dynamic memory limits)
- [x] CUDA, `enable_partial_loading=true`, CPU and CUDA memory reserved
in another process so there is limited RAM/VRAM remaining, all other
configs default (i.e. dynamic memory limits)
- [x] CUDA, `enable_partial_loading=false`, all other configs default
(i.e. dynamic memory limits)
- [x] CUDA, ram/vram limits set (these should take precedence over the
dynamic limits)
- [x] MPS, all other default (i.e. dynamic memory limits)
- [x] CPU, all other default (i.e. dynamic memory limits) 

## Merge Plan

- [x] Merge #7505 first and change target branch to main

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 00:35:39 -05:00
Ryan Dick
87fdcb7f6f Partial Loading PR4: Enable partial loading (behind config flag) (#7505)
## Summary

This PR adds support for partial loading of models onto the GPU. This
enables models to run with much lower peak VRAM requirements (e.g. full
FLUX dev with 8GB of VRAM).

The partial loading feature is enabled behind a new config flag:
`enable_partial_loading=True`. This flag defaults to `False`.

**Note about performance:**
The `ram` and `vram` config limits are still applied when
`enable_partial_loading=True` is set. This can result in significant
slowdowns compared to the 'old' behaviour. Consider the case where the
VRAM limit is set to `vram=0.75` (GB) and we are trying to run an 8GB
model. When `enable_partial_loading=False`, we attempt to load the
entire model into VRAM, and if it fits (no OOM error) then it will run
at full speed. When `enable_partial_loading=True`, since we have the
option to partially load the model we will only load 0.75 GB into VRAM
and leave the remaining 7.25 GB in RAM. This will cause inference to be
much slower than before. To workaround this, it is important that your
`ram` and `vram` configs are carefully tuned. In a future PR, we will
add the ability to dynamically set the RAM/VRAM limits based on the
available memory / VRAM.

## Related Issues / Discussions

- #7492 
- #7494 
- #7500

## QA Instructions

Tests with `enable_partial_loading=True`, `vram=2`, on CUDA device:
For all tests, we expect model memory to stay below 2 GB. Peak working
memory will be higher.
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Tests with `enable_partial_loading=True`, and hack to force all models
to load 10%, on CUDA device:
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Tests with `enable_partial_loading=False`, `vram=30`:
We expect no change in behaviour when  `enable_partial_loading=False`.
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Other platforms:
- [x] No change in behavior on MPS, even if
`enable_partial_loading=True`.
- [x] No change in behavior on CPU-only systems, even if
`enable_partial_loading=True`.

## Merge Plan

- [x] Merge #7500 first, and change the target branch to main

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-06 23:18:31 -05:00
Ryan Dick
d7ab464176 Offload the current model when locking if it is already partially loaded and we have insufficient VRAM. 2025-01-07 02:53:44 +00:00
Ryan Dick
5eafe1ec7a Fix ModelCache execution device selection in unit tests. 2025-01-07 01:20:15 +00:00
Ryan Dick
548b3eddb8 pnpm typegen 2025-01-07 01:20:15 +00:00
Ryan Dick
5b42b7bd45 Add a utility to help with determining the working memory required for expensive operations. 2025-01-07 01:20:15 +00:00
Ryan Dick
71b97ce7be Reduce the likelihood of encountering https://github.com/invoke-ai/InvokeAI/issues/7513 by elminating places where the door was left open for this to happen. 2025-01-07 01:20:15 +00:00
Ryan Dick
b343f81644 Use torch.cuda.memory_allocated() rather than torch.cuda.memory_reserved() to be more conservative in setting dynamic VRAM cache limits. 2025-01-07 01:20:15 +00:00
Ryan Dick
4abfb35321 Tune SD3 VAE decode working memory estimate. 2025-01-07 01:20:15 +00:00
Ryan Dick
cba6528ea7 Add a 20% buffer to all VAE decode working memory estimates. 2025-01-07 01:20:15 +00:00
Ryan Dick
6a5cee61be Tune the working memory estimate for FLUX VAE decoding. 2025-01-07 01:20:15 +00:00
Ryan Dick
bd8017ecd5 Update working memory estimate for VAE decoding when tiling is being applied. 2025-01-07 01:20:15 +00:00
Ryan Dick
299eb94a05 Estimate the working memory required for VAE decoding, since this operations tends to be memory intensive. 2025-01-07 01:20:15 +00:00
Ryan Dick
fc4a22fe78 Allow expensive operations to request more working memory. 2025-01-07 01:20:13 +00:00
Ryan Dick
a167632f09 Calculate model cache size limits dynamically based on the available RAM / VRAM. 2025-01-07 01:14:20 +00:00
Ryan Dick
1321fac8f2 Remove get_cache_size() and set_cache_size() endpoints. These were unused by the frontend and refer to cache fields that are no longer accessible. 2025-01-07 01:06:20 +00:00
Ryan Dick
6a9de1fcf3 Change definition of VRAM in use for the ModelCache from sum of model weights to the total torch.cuda.memory_allocated(). 2025-01-07 00:31:53 +00:00
Ryan Dick
e5180c4e6b Add get_effective_device(...) utility to aid in determining the effective device of models that are partially loaded. 2025-01-07 00:31:00 +00:00
Ryan Dick
2619ef53ca Handle device casting in ia2_layer.py. 2025-01-07 00:31:00 +00:00
Ryan Dick
bcd29c5d74 Remove all cases where we check the 'model.device'. This is no longer trustworthy now that partial loading is permitted. 2025-01-07 00:31:00 +00:00
Ryan Dick
1b7bb70bde Improve handling of cases when application code modifies the size of a model after registering it with the model cache. 2025-01-07 00:31:00 +00:00
Ryan Dick
402dd840a1 Add seed to flaky unit test. 2025-01-07 00:31:00 +00:00
Ryan Dick
7127040c3a Remove unused function set_nested_attr(...). 2025-01-07 00:31:00 +00:00
Ryan Dick
ceb2498a67 Add log prefix to model cache logs. 2025-01-07 00:31:00 +00:00
Ryan Dick
d0bfa019be Add 'enable_partial_loading' config flag. 2025-01-07 00:31:00 +00:00
Ryan Dick
535e45cedf First pass at adding partial loading support to the ModelCache. 2025-01-07 00:30:58 +00:00
Ryan Dick
782ee7a0ec Partial Loading PR 3.5: Fix pre-mature model drops from the RAM cache (#7522)
## Summary

This is an unplanned fix between PR3 and PR4 in the sequence of partial
loading (i.e. low-VRAM) PRs. This PR restores the 'Current Workaround'
documented in https://github.com/invoke-ai/InvokeAI/issues/7513. In
other words, to work around a flaw in the model cache API, this fix
allows models to be loaded into VRAM _even if_ they have been dropped
from the RAM cache.

This PR also adds an info log each time that this workaround is hit. In
a future PR (#7509), we will eliminate the places in the application
code that are capable of triggering this condition.

## Related Issues / Discussions

- #7492 
- #7494
- #7500 
- https://github.com/invoke-ai/InvokeAI/issues/7513

## QA Instructions

- Set RAM cache limit to a small value. E.g. `ram: 4`
- Run FLUX text-to-image with the full T5 encoder, which exceeds 4GB.
This will trigger the error condition.
- Before the fix, this test configuration would cause a `KeyError`.
After the fix, we should see an info-level log explaining that the
condition was hit, but that generation should continue successfully.

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-06 19:05:48 -05:00
Ryan Dick
c579a218ef Allow models to be locked in VRAM, even if they have been dropped from the RAM cache (related: https://github.com/invoke-ai/InvokeAI/issues/7513). 2025-01-06 23:02:52 +00:00
Riku
f4f7415a3b fix(app): remove obsolete DEFAULT_PRECISION variable 2025-01-06 11:14:58 +11:00
Mary Hipp
7d6c443d6f fix(api): limit board_name length to 300 characters 2025-01-06 10:49:49 +11:00
psychedelicious
868e06eb8b tests: fix test_model_install.py 2025-01-03 11:21:23 -05:00
psychedelicious
40e4dbe1fb docs: add blurb about setting a HF token when downloading HF models by URL and not repo id 2025-01-03 11:21:23 -05:00
psychedelicious
4815b4ea80 feat(ui): tweak verbiage for model install errors 2025-01-03 11:21:23 -05:00
psychedelicious
d77a6ccd76 fix(ui): model install error toasts not updating correctly 2025-01-03 11:21:23 -05:00
psychedelicious
3e860c8338 feat(ui): starter models filter works with model base
For example, "flux" now matches any starter model with a model base of "FLUX".
2025-01-03 11:21:23 -05:00
psychedelicious
4f2ef7ce76 refactor(ui): handle hf vs civitai/other url model install errors separately
Previously, we didn't differentiate between model install errors for different types of model install sources, resulting in a buggy UX:
- If a HF model install failed, but it was a HF URL install and not a repo id install, the link to the HF model page was incorrect.
- If a non-HF URL install (e.g. civitai) failed, we treated it as a HF URL install. In this case, if the user's HF token was invalid or unset, we directed the user to set it. If the HF token was valid, we displayed an empty red toast. If it's not a HF URL install, then of course neither of these are correct.

Also, the logic for handling the toasts was a bit complicated.

This change does a few things:
- Consolidate the model install error toasts into one place - the socket.io event handler for the model install error event. There is no more global state for the toasts and there are no hooks managing them.
- Handling the different cases for errors, including all combinations of HF/non-HF and unauthorized/forbidden/unknown.
2025-01-03 11:21:23 -05:00
psychedelicious
d7e9ad52f9 chore(ui): typegen 2025-01-03 11:21:23 -05:00
psychedelicious
b6d7a44004 refactor(events): include full model source in model install events
This is required to fix an issue with the MM UI's error handling.

Previously, we only included the model source as a string. That could be an arbitrary URL, file path or HF repo id, but the frontend has no parsing logic to differentiate between these different model sources.

Without access to the type of model source, it is difficult to determine how the user should proceed. For example, if it's HF URL with an HTTP unauthorized error, we should direct the user to log in to HF. But if it's a civitai URL with the same error, we should not direct the user to HF.

There are a variety of related edge cases.

With this change, the full `ModelSource` object is included in each model install event, including error events.

I had to fix some circular import issues, hence the import changes to files other than `events_common.py`.
2025-01-03 11:21:23 -05:00
psychedelicious
e18100ae7e refactor(ui): move model install error event handling to own file
No logic change.
2025-01-03 11:21:23 -05:00
psychedelicious
ad0aa0e6b2 feat(ui): reset canvas layers only resets the layers 2025-01-03 11:02:04 -05:00
psychedelicious
157b92e0fd docs: no need to specify version for dev env setup 2025-01-03 10:59:39 -05:00
psychedelicious
fd838ad9d4 docs: update dev env docs to mirror the launcher's install method 2025-01-03 14:27:45 +11:00
psychedelicious
5e9227c052 docs: update manual install docs to mirror the launcher's install method 2025-01-03 14:27:45 +11:00
Kent Keirsey
94785231ce Update href to correct link 2025-01-02 09:39:41 +11:00
Ryan Dick
b46d7abfb0 Partial Loading PR3: Integrate 1) partial loading, 2) quantized models, 3) model patching (#7500)
## Summary

This PR is the third in a sequence of PRs working towards support for
partial loading of models onto the compute device (for low-VRAM
operation). This PR updates the LoRA patching code so that the following
features can cooperate fully:
- Partial loading of weights onto the GPU
- Quantized layers / weights
- Model patches (e.g. LoRA)

Note that this PR does not yet enable partial loading. It adds support
in the model patching code so that partial loading can be enabled in a
future PR.

## Technical Design Decisions

The layer patching logic has been integrated into the custom layers (via
`CustomModuleMixin`) rather than keeping it in a separate set of wrapper
layers, as before. This has the following advantages:
- It makes it easier to calculate the modified weights on the fly and
then reuse the normal forward() logic.
- In the future, it makes it possible to pass original parameters that
have been cast to the device down to the LoRA calculation without having
to re-cast (but the current implementation hasn't fully taken advantage
of this yet).

## Know Limitations

1. I haven't fully solved device management for patch types that require
the original layer value to calculate the patch. These aren't very
common, and are not compatible with some quantized layers, so leaving
this for future if there's demand.
2. There is a small speed regression for models that have CPU
bottlenecks. This seems to be caused by slightly slower method
resolution on the custom layers sub-classes. The regression does not
show up on larger models, like FLUX, that are almost entirely
GPU-limited. I think this small regression is tolerable, but if we
decide that it's not, then the slowdown can easily be reclaimed by
optimizing other CPU operations (e.g. if we only sent every 2nd progress
image, we'd see a much more significant speedup).

## Related Issues / Discussions

- https://github.com/invoke-ai/InvokeAI/pull/7492
- https://github.com/invoke-ai/InvokeAI/pull/7494

## QA Instructions

Speed tests:
- Vanilla SD1 speed regression
    - Before: 3.156s (8.78 it/s)
    - After: 3.54s (8.35 it/s)
- Vanilla SDXL speed regression
    - Before: 6.23s (4.46 it/s)
    - After: 6.45s (4.31 it/s)
- Vanilla FLUX speed regression
    - Before: 12.02s (2.27 it/s)
    - After: 11.91s (2.29 it/s)

LoRA tests with default configuration:
- [x] SD1: A handful of LoRA variants
- [x] SDXL: A handful of LoRA variants
- [x] flux non-quantized: multiple lora variants
- [x] flux bnb-quantized: multiple lora variants
- [x] flux ggml-quantized: muliple lora variants
- [x] flux non-quantized: FLUX control LoRA
- [x] flux bnb-quantized: FLUX control LoRA
- [x] flux ggml-quantized: FLUX control LoRA

LoRA tests with sidecar patching forced:
- [x] SD1: A handful of LoRA variants
- [x] SDXL: A handful of LoRA variants
- [x] flux non-quantized: multiple lora variants
- [x] flux bnb-quantized: multiple lora variants
- [x] flux ggml-quantized: muliple lora variants
- [x] flux non-quantized: FLUX control LoRA
- [x] flux bnb-quantized: FLUX control LoRA
- [x] flux ggml-quantized: FLUX control LoRA

Other:
- [x] Smoke testing of IP-Adapter, ControlNet

All tests repeated on:
- [x] cuda
- [x] cpu (only test SD1, because larger models are prohibitively slow)
- [x] mps (skipped FLUX tests, because my Mac doesn't have enough memory
to run them in a reasonable amount of time)

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-31 13:58:13 -05:00
Ryan Dick
9a0a226ce1 Fix bitsandbytes imports in unit tests on MacOS. 2024-12-30 10:41:48 -05:00
Ryan Dick
477d87ec31 Fix layer patch dtype selection for CLIP text encoder models. 2024-12-29 21:48:51 +00:00
Ryan Dick
8b4b0ff0cf Fix bug in CustomConv1d and CustomConv2d patch calculations. 2024-12-29 19:10:19 +00:00
Ryan Dick
6fd9b0a274 Delete old sidecar wrapper implementation. This functionality has moved into the custom layers. 2024-12-29 17:33:08 +00:00
Ryan Dick
52fc5a64d4 Add a unit test for a LoRA patch applied to a quantized linear layer with weights streamed from CPU to GPU. 2024-12-29 17:14:55 +00:00
Ryan Dick
a8bef59699 First pass at making custom layer patches work with weights streamed from the CPU to the GPU. 2024-12-29 17:01:37 +00:00
Ryan Dick
6d49ee839c Switch the LayerPatcher to use 'custom modules' to manage layer patching. 2024-12-29 01:18:30 +00:00
Ryan Dick
0525f967c2 Fix the _autocast_forward_with_patches() function for CustomConv1d and CustomConv2d. 2024-12-29 00:22:37 +00:00
Ryan Dick
2855bb6b41 Update BaseLayerPatch.get_parameters(...) to accept a dict of orig_parameters rather than orig_module. This will enable compatibility between patching and cpu->gpu streaming. 2024-12-28 21:12:53 +00:00
Ryan Dick
20acfc9a00 Raise in CustomEmbedding and CustomGroupNorm if a patch is applied. 2024-12-28 20:49:17 +00:00
Ryan Dick
918f541af8 Add unit test for a SetParameterLayer patch applied to a CustomFluxRMSNorm layer. 2024-12-28 20:44:48 +00:00
Ryan Dick
93e76b61d6 Add CustomFluxRMSNorm layer. 2024-12-28 20:33:38 +00:00
Ryan Dick
f692e217ea Add patch support to CustomConv1d and CustomConv2d (no unit tests yet). 2024-12-27 22:23:17 +00:00
Ryan Dick
f2981979f9 Get custom layer patches working with all quantized linear layer types. 2024-12-27 22:00:22 +00:00
Ryan Dick
ef970a1cdc Add support for FluxControlLoRALayer in CustomLinear layers and add a unit test for it. 2024-12-27 21:00:47 +00:00
Ryan Dick
5ee7405f97 Add more unit tests for custom module LoRA patching: multiple LoRAs and ConcatenatedLoRALayers. 2024-12-27 19:47:21 +00:00
Ryan Dick
e24e386a27 Add support for patches to CustomModuleMixin and add a single unit test (more to come). 2024-12-27 18:57:13 +00:00
Ryan Dick
b06d61e3c0 Improve custom layer wrap/unwrap logic. 2024-12-27 16:29:48 +00:00
Ryan Dick
6bf5b747ce Partial Loading PR2: Add utils to support partial loading of models from CPU to GPU (#7494)
## Summary

This PR adds utilities to support partial loading of models from CPU to
GPU. The new utilities are not yet being used by the ModelCache, so
there should be no functional behavior changes in this PR.

Detailed changes:

- Add autocast modules that are designed to wrap common
`torch.nn.Module`s and enable them to run with automatic device casting.
E.g. a linear layer on the CPU can be executed with an input tensor on
the GPU by streaming the weights to the GPU at runtime.
- Add unit tests for the aforementioned autocast modules to verify that
they work for all supported quantization formats (GGUF, BnB NF4, BnB
LLM.int8()).
- Add `CachedModelWithPartialLoad` and `CachedModelOnlyFullLoad` classes
to manage partial loading at the model level.

## Alternative Implementations

Several options were explored for supporting inference on
partially-loaded models. The pros/cons of the explored options are
summarized here for reference. In the end, wrapper modules were selected
as the best overall solution for our use case.

Option 1: Re-implement the .forward() methods of modules to add support
for device conversions
- This is the option implemented in this PR.
- This approach is the most manual of the three, but as a result offers
the broadest compatibility with unusual model types. It is manual in
that we have to explicitly add support for all module types that we wish
to support. Fortunately, the list of foundational module types is
relatively small (e.g. the current set of implemented layers covers all
but 0.04 MB of the full FLUX model.).

Option 2: Implement a custom Tensor type that casts tensors to a
`target_device` each time the tensor is used
- This approach has the nice property that it is injected at the tensor
level, and the model does not need to be modified in any way.
- One challenge with this approach is handling interactions with other
custom tensor types (e.g. GGMLTensor). This problem is solvable, but
definitely introduces a layer of complexity. (There are likely to also
be some similar issues with interactions with the BnB quantization, but
I didn't get as far as testing BnB.)

Option 3: Override the `__torch_function__` dispatch calls globally and
cast all params to the execution device.
- This approach is nice and simple: just apply a global context manager
and all operations will happen on the compute device regardless of the
device of the participating tensors.
- Challenges:
- Overriding the `__torch_function__` dispatch calls introduces some
overhead even if the tensors are already on the correct device.
- It is difficult to manage the autocasting context manager. E.g. it is
tempting to apply it to the model's `.forward(...)` method, but we use
some models with non-standard entrypoints. And we don't want to end up
with nested autocasting context managers.
- BnB applies quantization side effects when a param is moved to the GPU
- this interacts in unexpected ways with a global context manager.


## QA Instructions

Most of the changes in this PR should not impact active code, and thus
should not cause any changes to behavior. The main risks come from
bumping the bitsandbytes dependency and some minor modifications to the
bitsandbytes quantization code.

- [x] Regression test bitsandbytes NF4 quantization
- [x] Regression test bitsandbytes LLM.int8() quantization
- [x] Regression test on MacOS (to ensure that there are no lingering
bitsandbytes import errors)

I also tested the new utilities for inference on full models in another
branch to validate that there were not major issues. This functionality
will be tested more thoroughly in a future PR.

## Merge Plan

- [x] #7492 should be merged first so that the target branch can be
updated to main.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-27 09:20:24 -05:00
Ryan Dick
7d6ab0ceb2 Add a CustomModuleMixin class with a flag for enabling/disabling autocasting (since it incurs some runtime speed overhead.) 2024-12-26 20:08:30 +00:00
Ryan Dick
9692a36dd6 Use a fixture to parameterize tests in test_all_custom_modules.py so that a fresh instance of the layer under test is initialized for each test. 2024-12-26 19:41:25 +00:00
Ryan Dick
b0b699a01f Add unit test to test that isinstance(...) behaves as expected with custom module types. 2024-12-26 18:45:56 +00:00
Ryan Dick
a8b2c4c3d2 Add inference tests for all custom module types (i.e. to test autocasting from cpu to device). 2024-12-26 18:33:46 +00:00
Ryan Dick
03944191db Split test_autocast_modules.py into separate test files to mirror the source file structure. 2024-12-24 22:29:11 +00:00
Ryan Dick
987c9ae076 Move custom autocast modules to separate files in a custom_modules/ directory. 2024-12-24 22:21:31 +00:00
Ryan Dick
6d7314ac0a Consolidate the LayerPatching patching modes into a single implementation. 2024-12-24 15:57:54 +00:00
Ryan Dick
80db9537ff Rename model_patcher.py -> layer_patcher.py. 2024-12-24 15:57:54 +00:00
Ryan Dick
6f926f05b0 Update apply_smart_model_patches() so that layer restore matches the behavior of non-smart mode. 2024-12-24 15:57:54 +00:00
Ryan Dick
61253b91f1 Enable LoRAPatcher.apply_smart_lora_patches(...) throughout the stack. 2024-12-24 15:57:54 +00:00
Ryan Dick
0148512038 (minor) Rename num_layers -> num_loras in unit tests. 2024-12-24 15:57:54 +00:00
Ryan Dick
d0f35fceed Add test_apply_smart_lora_patches_to_partially_loaded_model(...). 2024-12-24 15:57:54 +00:00
Ryan Dick
cefcb340d9 Add LoRAPatcher.smart_apply_lora_patches() 2024-12-24 15:57:54 +00:00
Ryan Dick
0fc538734b Skip flaky test when running on Github Actions, and further reduce peak unit test memory. 2024-12-24 14:32:11 +00:00
Ryan Dick
7214d4969b Workaround a weird quirk of QuantState.to() and add a unit test to exercise it. 2024-12-24 14:32:11 +00:00
Ryan Dick
a83a999b79 Reduce peak memory used for unit tests. 2024-12-24 14:32:11 +00:00
Ryan Dick
f8a6accf8a Fix bitsandbytes imports to avoid ImportErrors on MacOS. 2024-12-24 14:32:11 +00:00
Ryan Dick
f8ab414f99 Add CachedModelOnlyFullLoad to mirror the CachedModelWithPartialLoad for models that cannot or should not be partially loaded. 2024-12-24 14:32:11 +00:00
Ryan Dick
c6795a1b47 Make CachedModelWithPartialLoad work with models that have non-persistent buffers. 2024-12-24 14:32:11 +00:00
Ryan Dick
0a8fc74ae9 Add CachedModelWithPartialLoad to manage partially-loaded models using the new autocast modules. 2024-12-24 14:32:11 +00:00
Ryan Dick
dc54e8763b Add CustomInvokeLinearNF4 to enable CPU -> GPU streaming for InvokeLinearNF4 layers. 2024-12-24 14:32:11 +00:00
Ryan Dick
1b56020876 Add CustomInvokeLinear8bitLt layer for device streaming with InvokeLinear8bitLt layers. 2024-12-24 14:32:11 +00:00
Ryan Dick
3f990393a1 Simplify the state management in InvokeLinear8bitLt and add unit tests. This is in preparation for wrapping it to support streaming of weights from cpu to gpu. 2024-12-24 14:32:11 +00:00
Ryan Dick
97d56f7dc9 Add torch module autocast unit test for GGUF-quantized models. 2024-12-24 14:32:11 +00:00
Ryan Dick
fe0ef2c27c Add torch module autocast utilities. 2024-12-24 14:32:11 +00:00
Ryan Dick
65fcbf5f60 Bump bitsandbytes. The new verson contains improvements to state_dict loading/saving for LLM.int8 and promises improved speed on some HW. 2024-12-24 14:32:11 +00:00
Ryan Dick
d3916dbdb6 Partial Loading PR1: Tidy ModelCache (#7492)
## Summary

This PR tidies up the model cache code in preparation for further
refactoring to support partial loading of models onto the GPU. **These
code changes should not change the functional behavior in any way.**

Changes:
- Remove the `ModelCacheBase` class. `ModelCache` is the only
implementation, so there is no benefit to the separate abstract class.
- Split `CacheRecord` and `CacheStats` out into their own files.
- Remove the `ModelLocker` class. This extra layer of indirection was
not providing any benefit. Locking is now done directly with the
`ModelCache`.
- Tidy up relative imports that were contributing to circular import
issues.
- Pull the 'submodel' concern out of the `ModelCache`. The `ModelCache`
should not need to be aware of the model manager submodel system.
- Delete unused properties from the `ModelCache` (e.g.
`.lazy_offloading`, `.storage_device`, etc.)

## QA Instructions

I ran smoke tests with a variety of SD1, SDXL and FLUX models. No change
to behavior is expected.

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-24 09:30:44 -05:00
Ryan Dick
55b13c1da3 (minor) Add TODO comment regarding the location of get_model_cache_key(). 2024-12-24 14:23:19 +00:00
Ryan Dick
7dc3e0fdbe Get rid of ModelLocker. It was an unnecessary layer of indirection. 2024-12-24 14:23:18 +00:00
Ryan Dick
a39bcf7e85 Move lock(...) and unlock(...) logic from ModelLocker to the ModelCache and make a bunch of ModelCache properties/methods private. 2024-12-24 14:23:18 +00:00
Ryan Dick
a7c72992a6 Pull get_model_cache_key(...) out of ModelCache. The ModelCache should not be concerned with implementation details like the submodel_type. 2024-12-24 14:23:18 +00:00
Ryan Dick
d30a9ced38 Rename model_cache_default.py -> model_cache.py. 2024-12-24 14:23:18 +00:00
Ryan Dick
e0bfa6157b Remove ModelCacheBase. 2024-12-24 14:23:18 +00:00
Ryan Dick
83ea6420e2 Move CacheStats to its own file. 2024-12-24 14:23:18 +00:00
Ryan Dick
ce11a1952e Move CacheRecord out to its own file. 2024-12-24 14:23:18 +00:00
Ryan Dick
e48dee4c4a Rip out ModelLockerBase. 2024-12-24 14:23:18 +00:00
Simon Fuhrmann
712674b6dd Add Stereogram Nodes to communityNodes.md 2024-12-23 13:51:53 -05:00
psychedelicious
de0043f443 docs: update download links for launcher 2024-12-23 13:23:14 +11:00
Riku
d21506da6f feat(ci): add typegen check workflow 2024-12-22 06:05:17 +11:00
psychedelicious
a49894901a docs: fix installation docs home again 2024-12-20 17:35:50 +11:00
psychedelicious
e7e26c8a93 docs: fix installation docs home 2024-12-20 17:12:44 +11:00
psychedelicious
9adcd2cc31 docs: update install-related docs 2024-12-20 17:01:34 +11:00
Kent Keirsey
f9edd009f5 Update README.md 2024-12-20 17:01:34 +11:00
Kent Keirsey
91a4160e36 Update Installation Docs 2024-12-20 17:01:34 +11:00
Kent Keirsey
9c9cec1b43 Update README.md 2024-12-20 17:01:34 +11:00
145 changed files with 5077 additions and 2551 deletions

85
.github/workflows/typegen-checks.yml vendored Normal file
View File

@@ -0,0 +1,85 @@
# Runs typegen schema quality checks.
# Frontend types should match the server.
#
# Checks for changes to files before running the checks.
# If always_run is true, always runs the checks.
name: 'typegen checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
typegen-checks:
runs-on: ubuntu-22.04
timeout-minutes: 15 # expected run time: <5 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
src:
- 'pyproject.toml'
- 'invokeai/**'
- name: setup python
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install python dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: pip3 install --use-pep517 --editable="."
- name: install frontend dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: copy schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: cp invokeai/frontend/web/src/services/api/schema.ts invokeai/frontend/web/src/services/api/schema_orig.ts
shell: bash
- name: generate schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: make frontend-typegen
shell: bash
- name: compare files
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: |
if ! diff invokeai/frontend/web/src/services/api/schema.ts invokeai/frontend/web/src/services/api/schema_orig.ts; then
echo "Files are different!";
exit 1;
fi
shell: bash

View File

@@ -30,51 +30,12 @@ Invoke is available in two editions:
|----------------------------------------------------------------------------------------------------------------------------|
| [Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs] |
</div>
# Installation
## Quick Start
To get started with Invoke, [Download the Installer](https://www.invoke.com/downloads).
1. Download and unzip the installer from the bottom of the [latest release][latest release link].
2. Run the installer script.
For detailed step by step instructions, or for instructions on manual/docker installations, visit our documentation on [Installation and Updates][installation docs]
- **Windows**: Double-click on the `install.bat` script.
- **macOS**: Open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press enter.
- **Linux**: Run `install.sh`.
3. When prompted, enter a location for the install and select your GPU type.
4. Once the install finishes, find the directory you selected during install. The default location is `C:\Users\Username\invokeai` for Windows or `~/invokeai` for Linux/macOS.
5. Run the launcher script (`invoke.bat` for Windows, `invoke.sh` for macOS and Linux) the same way you ran the installer script in step 2.
6. Select option 1 to start the application. Once it starts up, open your browser and go to <http://localhost:9090>.
7. Open the model manager tab to install a starter model and then you'll be ready to generate.
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
## Docker Container
We publish official container images in Github Container Registry: https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai. Both CUDA and ROCm images are available. Check the above link for relevant tags.
> [!IMPORTANT]
> Ensure that Docker is set up to use the GPU. Refer to [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] documentation.
### Generate!
Run the container, modifying the command as necessary:
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
Then open `http://localhost:9090` and install some models using the Model Manager tab to begin generating.
For ROCm, add `--device /dev/kfd --device /dev/dri` to the `docker run` command.
### Persist your data
You will likely want to persist your workspace outside of the container. Use the `--volume /home/myuser/invokeai:/invokeai` flag to mount some local directory (using its **absolute** path) to the `/invokeai` path inside the container. Your generated images and models will reside there. You can use this directory with other InvokeAI installations, or switch between runtime directories as needed.
### DIY
Build your own image and customize the environment to match your needs using our `docker-compose` stack. See [README.md](./docker/README.md) in the [docker](./docker) directory.
## Troubleshooting, FAQ and Support

View File

@@ -39,7 +39,7 @@ It has two sections - one for internal use and one for user settings:
```yaml
# Internal metadata - do not edit:
schema_version: 4
schema_version: 4.0.2
# Put user settings here - see https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/:
host: 0.0.0.0 # serve the app on your local network
@@ -83,6 +83,10 @@ A subset of settings may be specified using CLI args:
- `--root`: specify the root directory
- `--config`: override the default `invokeai.yaml` file location
### Low-VRAM Mode
See the [Low-VRAM mode docs][low-vram] for details on enabling this feature.
### All Settings
Following the table are additional explanations for certain settings.
@@ -114,6 +118,10 @@ remote_api_tokens:
The provided token will be added as a `Bearer` token to the network requests to download the model files. As far as we know, this works for all model marketplaces that require authorization.
!!! tip "HuggingFace Models"
If you get an error when installing a HF model using a URL instead of repo id, you may need to [set up a HF API token](https://huggingface.co/settings/tokens) and add an entry for it under `remote_api_tokens`. Use `huggingface.co` for `url_regex`.
#### Model Hashing
Models are hashed during installation, providing a stable identifier for models across all platforms. Hashing is a one-time operation.
@@ -181,3 +189,4 @@ The `log_format` option provides several alternative formats:
[basic guide to yaml files]: https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/
[Model Marketplace API Keys]: #model-marketplace-api-keys
[low-vram]: ./features/low-vram.md

View File

@@ -1364,7 +1364,6 @@ the in-memory loaded model:
|----------------|-----------------|------------------|
| `config` | AnyModelConfig | A copy of the model's configuration record for retrieving base type, etc. |
| `model` | AnyModel | The instantiated model (details below) |
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
### get_model_by_key(key, [submodel]) -> LoadedModel

View File

@@ -1,12 +1,10 @@
# Dev Environment
To make changes to Invoke's backend, frontend, or documentation, you'll need to set up a dev environment.
To make changes to Invoke's backend, frontend or documentation, you'll need to set up a dev environment.
If you just want to use Invoke, you should use the [installer][installer link].
If you only want to make changes to the docs site, you can skip the frontend dev environment setup as described in the below guide.
!!! info "Why do I need the frontend toolchain?"
The repo doesn't contain a build of the frontend. You'll be responsible for rebuilding it every time you pull in new changes, or run it in dev mode (which incurs a substantial performance penalty).
If you just want to use Invoke, you should use the [launcher][launcher link].
!!! warning
@@ -17,84 +15,66 @@ If you just want to use Invoke, you should use the [installer][installer link].
## Setup
1. Run through the [requirements][requirements link].
2. [Fork and clone][forking link] the [InvokeAI repo][repo link].
3. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
4. Create a python virtual environment inside the directory you just created:
4. Follow the [manual install][manual install link] guide, with some modifications to the install command:
- Use `.` instead of `invokeai` to install from the current directory. You don't need to specify the version.
- Add `-e` after the `install` operation to make this an [editable install][editable install link]. That means your changes to the python code will be reflected when you restart the Invoke server.
- When installing the `invokeai` package, add the `dev`, `test` and `docs` package options to the package specifier. You may or may not need the `xformers` option - follow the manual install guide to figure that out. So, your package specifier will be either `".[dev,test,docs]"` or `".[dev,test,docs,xformers]"`. Note the quotes!
With the modifications made, the install command should look something like this:
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
uv pip install -e ".[dev,test,docs,xformers]" --python 3.11 --python-preference only-managed --index=https://download.pytorch.org/whl/cu124 --reinstall
```
5. Activate the venv (you'll need to do this every time you want to run the app):
5. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
This is because the UI build is not distributed with the source code. You need to build it manually. End the running server instance.
If you only want to edit the docs, you can stop here and skip to the **Documentation** section below.
6. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (v20+)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
7. Do a production build of the frontend:
```sh
source .venv/bin/activate
```
6. Install the repo as an [editable install][editable install link]:
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
Refer to the [manual installation][manual install link] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
7. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (recommend v20 LTS)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
8. Do a production build of the frontend:
```sh
cd PATH_TO_INVOKEAI_REPO/invokeai/frontend/web
cd <PATH_TO_INVOKEAI_REPO>/invokeai/frontend/web
pnpm i
pnpm build
```
9. Start the application:
```sh
cd PATH_TO_INVOKEAI_REPO
python scripts/invokeai-web.py
```
10. Access the UI at `localhost:9090`.
8. Restart the server and navigate to the URL. You should get a UI. After making changes to the python code, restart the server to see those changes.
## Updating the UI
You'll need to run `pnpm build` every time you pull in new changes. Another option is to skip the build and instead run the app in dev mode:
You'll need to run `pnpm build` every time you pull in new changes.
Another option is to skip the build and instead run the UI in dev mode:
```sh
pnpm dev
```
This starts a dev server at `localhost:5173`, which you will use instead of `localhost:9090`.
This starts a vite dev server for the UI at `127.0.0.1:5173`, which you will use instead of `127.0.0.1:9090`.
The dev mode is substantially slower than the production build but may be more convenient if you just need to test things out.
The dev mode is substantially slower than the production build but may be more convenient if you just need to test things out. It will hot-reload the UI as you make changes to the frontend code. Sometimes the hot-reload doesn't work, and you need to manually refresh the browser tab.
## Documentation
The documentation is built with `mkdocs`. To preview it locally, you need a additional set of packages installed.
The documentation is built with `mkdocs`. It provides a hot-reload dev server for the docs. Start it with `mkdocs serve`.
```sh
# after activating the venv
pip install -e ".[docs]"
```
Then, you can start a live docs dev server, which will auto-refresh when you edit the docs:
```sh
mkdocs serve
```
On macOS and Linux, there is a `make` target for this:
```sh
make docs
```
[installer link]: ../installation/installer.md
[launcher link]: ../installation/quick_start.md
[forking link]: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
[requirements link]: ../installation/requirements.md
[repo link]: https://github.com/invoke-ai/InvokeAI

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

129
docs/features/low-vram.md Normal file
View File

@@ -0,0 +1,129 @@
---
title: Low-VRAM mode
---
As of v5.6.0, Invoke has a low-VRAM mode. It works on systems with dedicated GPUs (Nvidia GPUs on Windows/Linux and AMD GPUs on Linux).
This allows you to generate even if your GPU doesn't have enough VRAM to hold full models. Most users should be able to run even the beefiest models - like the ~24GB unquantised FLUX dev model.
## Enabling Low-VRAM mode
To enable Low-VRAM mode, add this line to your `invokeai.yaml` configuration file, then restart Invoke:
```yaml
enable_partial_loading: true
```
**Windows users should also [disable the Nvidia sysmem fallback](#disabling-nvidia-sysmem-fallback-windows-only)**.
It is possible to fine-tune the settings for best performance or if you still get out-of-memory errors (OOMs).
!!! tip "How to find `invokeai.yaml`"
The `invokeai.yaml` configuration file lives in your install directory. To access it, run the **Invoke Community Edition** launcher and click the install location. This will open your install directory in a file explorer window.
You'll see `invokeai.yaml` there and can edit it with any text editor. After making changes, restart Invoke.
If you don't see `invokeai.yaml`, launch Invoke once. It will create the file on its first startup.
## Details and fine-tuning
Low-VRAM mode involves 3 features, each of which can be configured or fine-tuned:
- Partial model loading
- Dynamic RAM and VRAM cache sizes
- Working memory
Read on to learn about these features and understand how to fine-tune them for your system and use-cases.
### Partial model loading
Invoke's partial model loading works by streaming model "layers" between RAM and VRAM as they are needed.
When an operation needs layers that are not in VRAM, but there isn't enough room to load them, inactive layers are offloaded to RAM to make room.
#### Enabling partial model loading
As described above, you can enable partial model loading by adding this line to `invokeai.yaml`:
```yaml
enable_partial_loading: true
```
### Dynamic RAM and VRAM cache sizes
Loading models from disk is slow and can be a major bottleneck for performance. Invoke uses two model caches - RAM and VRAM - to reduce loading from disk to a minimum.
By default, Invoke manages these caches' sizes dynamically for best performance.
#### Fine-tuning cache sizes
Prior to v5.6.0, the cache sizes were static, and for best performance, many users needed to manually fine-tune the `ram` and `vram` settings in `invokeai.yaml`.
As of v5.6.0, the caches are dynamically sized. The `ram` and `vram` settings are no longer used, and new settings are added to configure the cache.
**Most users will not need to fine-tune the cache sizes.**
But, if your GPU has enough VRAM to hold models fully, you might get a perf boost by manually setting the cache sizes in `invokeai.yaml`:
```yaml
# Set the RAM cache size to as large as possible, leaving a few GB free for the rest of your system and Invoke.
# For example, if your system has 32GB RAM, 28GB is a good value.
max_cache_ram_gb: 28
# Set the VRAM cache size to be as large as possible while leaving enough room for the working memory of the tasks you will be doing.
# For example, on a 24GB GPU that will be running unquantized FLUX without any auxiliary models,
# 18GB is a good value.
max_cache_vram_gb: 18
```
!!! tip "Max safe value for `max_cache_vram_gb`"
To determine the max safe value for `max_cache_vram_gb`, subtract `device_working_mem_gb` from your GPU's VRAM. As described below, the default for `device_working_mem_gb` is 3GB.
For example, if you have a 12GB GPU, the max safe value for `max_cache_vram_gb` is `12GB - 3GB = 9GB`.
If you had increased `device_working_mem_gb` to 4GB, then the max safe value for `max_cache_vram_gb` is `12GB - 4GB = 8GB`.
### Working memory
Invoke cannot use _all_ of your VRAM for model caching and loading. It requires some VRAM to use as working memory for various operations.
Invoke reserves 3GB VRAM as working memory by default, which is enough for most use-cases. However, it is possible to fine-tune this setting if you still get OOMs.
#### Fine-tuning working memory
You can increase the working memory size in `invokeai.yaml` to prevent OOMs:
```yaml
# The default is 3GB - bump it up to 4GB to prevent OOMs.
device_working_mem_gb: 4
```
!!! tip "Operations may request more working memory"
For some operations, we can determine VRAM requirements in advance and allocate additional working memory to prevent OOMs.
VAE decoding is one such operation. This operation converts the generation process's output into an image. For large image outputs, this might use more than the default working memory size of 3GB.
During this decoding step, Invoke calculates how much VRAM will be required to decode and requests that much VRAM from the model manager. If the amount exceeds the working memory size, the model manager will offload cached model layers from VRAM until there's enough VRAM to decode.
Once decoding completes, the model manager "reclaims" the extra VRAM allocated as working memory for future model loading operations.
### Disabling Nvidia sysmem fallback (Windows only)
On Windows, Nvidia GPUs are able to use system RAM when their VRAM fills up via **sysmem fallback**. While it sounds like a good idea on the surface, in practice it causes massive slowdowns during generation.
It is strongly suggested to disable this feature:
- Open the **NVIDIA Control Panel** app.
- Expand **3D Settings** on the left panel.
- Click **Manage 3D Settings** in the left panel.
- Find **CUDA - Sysmem Fallback Policy** in the right panel and set it to **Prefer No Sysmem Fallback**.
![cuda-sysmem-fallback](./cuda-sysmem-fallback.png)
!!! tip "Invoke does the same thing, but better"
If the sysmem fallback feature sounds familiar, that's because Invoke's partial model loading strategy is conceptually very similar - use VRAM when there's room, else fall back to RAM.
Unfortunately, the Nvidia implementation is not optimized for applications like Invoke and does more harm than good.

View File

@@ -50,11 +50,9 @@ title: Invoke
## Installation
The [installer script](installation/installer.md) is the easiest way to install and update the application.
The [Invoke Launcher](installation/quick_start.md) is the easiest way to install, update and run Invoke on Windows, macOS and Linux.
You can also install Invoke as python package [via PyPI](installation/manual.md) or [docker](installation/docker.md).
See the [installation section](./installation/index.md) for more information.
You can also install Invoke as [python package](installation/manual.md) or with [docker](installation/docker.md).
## Help

View File

@@ -4,7 +4,7 @@ title: Docker
!!! warning "macOS users"
Docker can not access the GPU on macOS, so your generation speeds will be slow. Use the [installer](./installer.md) instead.
Docker can not access the GPU on macOS, so your generation speeds will be slow. Use the [launcher](./quick_start.md) instead.
!!! tip "Linux and Windows Users"

View File

@@ -1,36 +0,0 @@
# Installation and Updating Overview
Before installing, review the [installation requirements](./requirements.md) to ensure your system is set up properly.
See the [FAQ](../faq.md) for frequently-encountered installation issues.
If you need more help, join our [discord](https://discord.gg/ZmtBAhwWhy) or [create a GitHub issue](https://github.com/invoke-ai/InvokeAI/issues).
## Automated Installer & Updates
✅ The automated [installer](./installer.md) is the best way to install Invoke.
⬆️ The same installer is also the best way to update Invoke - simply rerun it for the same folder you installed to.
The installation process simply manages installation for the core libraries & application dependencies that run Invoke.
Models, images, or other assets in the Invoke root folder won't be affected by the installation process.
## Manual Install
If you are familiar with python and want more control over the packages that are installed, you can [install Invoke manually via PyPI](./manual.md).
Updates are managed by reinstalling the latest version through PyPi.
## Developer Install
If you want to contribute to InvokeAI, you'll need to set up a [dev environment](../contributing/dev-environment.md).
## Docker
Invoke publishes docker images. See the [docker installation guide](./docker.md) for details.
## Other Installation Guides
- [PyPatchMatch](./patchmatch.md)
- [Installing Models](./models.md)

View File

@@ -1,4 +1,10 @@
# Automatic Install & Updates
# Legacy Scripts
!!! warning "Legacy Scripts"
We recommend using the Invoke Launcher to install and update Invoke. It's a desktop application for Windows, macOS and Linux. It takes care of a lot of nitty gritty details for you.
Follow the [quick start guide](./quick_start.md) to get started.
!!! tip "Use the installer to update"

View File

@@ -4,11 +4,11 @@
**Python experience is mandatory.**
If you want to use Invoke locally, you should probably use the [installer](./installer.md).
If you want to use Invoke locally, you should probably use the [launcher](./quick_start.md).
If you want to contribute to Invoke, instead follow the [dev environment](../contributing/dev-environment.md) guide.
If you want to contribute to Invoke or run the app on the latest dev branch, instead follow the [dev environment](../contributing/dev-environment.md) guide.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the installer and launcher that you'll need to manage manually, described in this guide.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the launcher that you'll need to manage manually, described in this guide.
## Requirements
@@ -16,43 +16,39 @@ Before you start, go through the [installation requirements](./requirements.md).
## Walkthrough
1. Create a directory to contain your InvokeAI library, configuration files, and models. This is known as the "runtime" or "root" directory, and typically lives in your home directory under the name `invokeai`.
We'll use [`uv`](https://github.com/astral-sh/uv) to install python and create a virtual environment, then install the `invokeai` package. `uv` is a modern, very fast alternative to `pip`.
The following commands vary depending on the version of Invoke being installed and the system onto which it is being installed.
1. Install `uv` as described in its [docs](https://docs.astral.sh/uv/getting-started/installation/#standalone-installer). We suggest using the standalone installer method.
Run `uv --version` to confirm that `uv` is installed and working. After installation, you may need to restart your terminal to get access to `uv`.
2. Create a directory for your installation, typically in your home directory (e.g. `~/invokeai` or `$Home/invokeai`):
=== "Linux/macOS"
```bash
mkdir ~/invokeai
cd ~/invokeai
```
=== "Windows (PowerShell)"
```bash
mkdir $Home/invokeai
```
1. Enter the root directory and create a virtual Python environment within it named `.venv`.
!!! warning "Virtual Environment Location"
While you may create the virtual environment anywhere in the file system, we recommend that you create it within the root directory as shown here. This allows the application to automatically detect its data directories.
If you choose a different location for the venv, then you _must_ set the `INVOKEAI_ROOT` environment variable or specify the root directory using the `--root` CLI arg.
=== "Linux/macOS"
```bash
cd ~/invokeai
python3 -m venv .venv --prompt InvokeAI
```
=== "Windows (PowerShell)"
```bash
cd $Home/invokeai
python3 -m venv .venv --prompt InvokeAI
```
1. Activate the new environment:
3. Create a virtual environment in that directory:
```sh
uv venv --relocatable --prompt invoke --python 3.11 --python-preference only-managed .venv
```
This command creates a portable virtual environment at `.venv` complete with a portable python 3.11. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
4. Activate the virtual environment:
=== "Linux/macOS"
@@ -60,41 +56,48 @@ Before you start, go through the [installation requirements](./requirements.md).
source .venv/bin/activate
```
=== "Windows"
=== "Windows (PowerShell)"
```ps
.venv\Scripts\activate
```
!!! info "Permissions Error (Windows)"
5. Choose a version to install. Review the [GitHub releases page](https://github.com/invoke-ai/InvokeAI/releases).
If you get a permissions error at this point, run this command and try again.
6. Determine the package package specifier to use when installing. This is a performance optimization.
`Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser`
- If you have an Nvidia 20xx series GPU or older, use `invokeai[xformers]`.
- If you have an Nvidia 30xx series GPU or newer, or do not have an Nvidia GPU, use `invokeai`.
The command-line prompt should change to to show `(InvokeAI)`, indicating the venv is active.
7. Determine the `PyPI` index URL to use for installation, if any. This is necessary to get the right version of torch installed.
1. Make sure that pip is installed in your virtual environment and up to date:
=== "Invoke v5 or later"
```bash
python3 -m pip install --upgrade pip
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm6.1`.
- **In all other cases, do not use an index.**
=== "Invoke v4"
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm5.2`.
- **In all other cases, do not use an index.**
8. Install the `invokeai` package. Substitute the package specifier and version.
```sh
uv pip install <PACKAGE_SPECIFIER>=<VERSION> --python 3.11 --python-preference only-managed --force-reinstall
```
1. Install the InvokeAI Package. The base command is `pip install InvokeAI --use-pep517`, but you may need to change this depending on your system and the desired features.
If you determined you needed to use a `PyPI` index URL in the previous step, you'll need to add `--index=<INDEX_URL>` like this:
- You may need to provide an [extra index URL](https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-extra-index-url). Select your platform configuration using [this tool on the PyTorch website](https://pytorch.org/get-started/locally/). Copy the `--extra-index-url` string from this and append it to your install command.
```sh
uv pip install <PACKAGE_SPECIFIER>=<VERSION> --python 3.11 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
```
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
- If you have a CUDA GPU and want to install with `xformers`, you need to add an option to the package name. Note that `xformers` is not strictly necessary. PyTorch includes an implementation of the SDP attention algorithm with similar performance for most GPUs.
```bash
pip install "InvokeAI[xformers]" --use-pep517
```
1. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:
9. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:
=== "Linux/macOS"
@@ -102,17 +105,31 @@ Before you start, go through the [installation requirements](./requirements.md).
deactivate && source .venv/bin/activate
```
=== "Windows"
=== "Windows (PowerShell)"
```ps
deactivate
.venv\Scripts\activate
```
1. Run the application:
10. Run the application, specifying the directory you created earlier as the root directory:
Run `invokeai-web` to start the UI. You must activate the virtual environment before running the app.
=== "Linux/macOS"
!!! warning
```bash
invokeai-web --root ~/invokeai
```
If the virtual environment is _not_ inside the root directory, then you _must_ specify the path to the root directory with `--root \path\to\invokeai` or the `INVOKEAI_ROOT` environment variable.
=== "Windows (PowerShell)"
```bash
invokeai-web --root $Home/invokeai
```
## Headless Install and Launch Scripts
If you run Invoke on a headless server, you might want to install and run Invoke on the command line.
We do not plan to maintain scripts to do this moving forward, instead focusing our dev resources on the GUI [launcher](../installation/quick_start.md).
You can create your own scripts for this by copying the handful of commands in this guide. `uv`'s [`pip` interface docs](https://docs.astral.sh/uv/reference/cli/#uv-pip-install) may be useful.

View File

@@ -0,0 +1,114 @@
# Invoke Community Edition Quick Start
Welcome to Invoke! Follow these steps to install, update, and get started creating.
## Step 1: System Requirements
Invoke runs on Windows 10+, macOS 14+ and Linux (Ubuntu 20.04+ is well-tested).
Hardware requirements vary significantly depending on model and image output size. The requirements below are rough guidelines.
- All Apple Silicon (M1, M2, etc) Macs work, but 16GB+ memory is recommended.
- AMD GPUs are supported on Linux only. The VRAM requirements are the same as Nvidia GPUs.
!!! info "Hardware Requirements (Windows/Linux)"
=== "SD1.5 - 512×512"
- GPU: Nvidia 10xx series or later, 4GB+ VRAM.
- Memory: At least 8GB RAM.
- Disk: 10GB for base installation plus 30GB for models.
=== "SDXL - 1024×1024"
- GPU: Nvidia 20xx series or later, 8GB+ VRAM.
- Memory: At least 16GB RAM.
- Disk: 10GB for base installation plus 100GB for models.
=== "FLUX - 1024×1024"
- GPU: Nvidia 20xx series or later, 10GB+ VRAM.
- Memory: At least 32GB RAM.
- Disk: 10GB for base installation plus 200GB for models.
More detail on system requirements can be found [here](./requirements.md).
## Step 2: Download
Download the most launcher for your operating system:
- [Download for Windows](https://download.invoke.ai/Invoke%20Community%20Edition.exe)
- [Download for macOS](https://download.invoke.ai/Invoke%20Community%20Edition.dmg)
- [Download for Linux](https://download.invoke.ai/Invoke%20Community%20Edition.AppImage)
## Step 3: Install or Update
Run the launcher you just downloaded, click **Install** and follow the instructions to get set up.
If you have an existing Invoke installation, you can select it and let the launcher manage the install. You'll be able to update or launch the installation.
!!! warning "Problem running the launcher on macOS"
macOS may not allow you to run the launcher. We are working to resolve this by signing the launcher executable. Until that is done, you can either use the [legacy scripts](./legacy_scripts.md) to install, or manually flag the launcher as safe:
- Open the **Invoke-Installer-mac-arm64.dmg** file.
- Drag the launcher to **Applications**.
- Open a terminal.
- Run `xattr -d 'com.apple.quarantine' /Applications/Invoke\ Community\ Edition.app`.
You should now be able to run the launcher.
## Step 4: Launch
Once installed, click **Finish**, then **Launch** to start Invoke.
The very first run after an installation or update will take a few extra moments to get ready.
!!! tip "Server Mode"
The launcher runs Invoke as a desktop application. You can enable **Server Mode** in the launcher's settings to disable this and instead access the UI through your web browser.
## Step 5: Install Models
With Invoke started up, you'll need to install some models.
The quickest way to get started is to install a **Starter Model** bundle. If you already have a model collection, Invoke can use it.
!!! info "Install Models"
=== "Install a Starter Model bundle"
1. Go to the **Models** tab.
2. Click **Starter Models** on the right.
3. Click one of the bundles to install its models. Refer to the [system requirements](#step-1-confirm-system-requirements) if you're unsure which model architecture will work for your system.
=== "Use my model collection"
4. Go to the **Models** tab.
5. Click **Scan Folder** on the right.
6. Paste the path to your models collection and click **Scan Folder**.
7. With **In-place install** enabled, Invoke will leave the model files where they are. If you disable this, **Invoke will move the models into its own folders**.
Youre now ready to start creating!
## Step 6: Learn the Basics
We recommend watching our [Getting Started Playlist](https://www.youtube.com/playlist?list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO). It covers essential features and workflows, including:
- Generating your first image.
- Using control layers and reference guides.
- Refining images with advanced workflows.
## Other Installation Methods
- You can install the Invoke application as a python package. See our [manual install](./manual.md) docs.
- You can run Invoke with docker. See our [docker install](./docker.md) docs.
- You can still use our legacy scripts to install and run Invoke. See the [legacy scripts](./legacy_scripts.md) docs.
## Need Help?
- Visit our [Support Portal](https://support.invoke.ai).
- Watch the [Getting Started Playlist](https://www.youtube.com/playlist?list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO).
- Join the conversation on [Discord][discord link].
[discord link]: https://discord.gg/ZmtBAhwWhy

View File

@@ -1,90 +1,33 @@
# Requirements
## GPU
Invoke runs on Windows 10+, macOS 14+ and Linux (Ubuntu 20.04+ is well-tested).
!!! warning "Problematic Nvidia GPUs"
## Hardware
We do not recommend these GPUs. They cannot operate with half precision, but have insufficient VRAM to generate 512x512 images at full precision.
Hardware requirements vary significantly depending on model and image output size. The requirements below are rough guidelines.
- NVIDIA 10xx series cards such as the 1080 TI
- GTX 1650 series cards
- GTX 1660 series cards
- All Apple Silicon (M1, M2, etc) Macs work, but 16GB+ memory is recommended.
- AMD GPUs are supported on Linux only. The VRAM requirements are the same as Nvidia GPUs.
Invoke runs best with a dedicated GPU, but will fall back to running on CPU, albeit much slower. You'll need a beefier GPU for SDXL.
!!! info "Hardware Requirements (Windows/Linux)"
!!! example "Stable Diffusion 1.5"
=== "SD1.5 - 512×512"
=== "Nvidia"
- GPU: Nvidia 10xx series or later, 4GB+ VRAM.
- Memory: At least 8GB RAM.
- Disk: 10GB for base installation plus 30GB for models.
```
Any GPU with at least 4GB VRAM.
```
=== "SDXL - 1024×1024"
=== "AMD"
- GPU: Nvidia 20xx series or later, 8GB+ VRAM.
- Memory: At least 16GB RAM.
- Disk: 10GB for base installation plus 100GB for models.
```
Any GPU with at least 4GB VRAM. Linux only.
```
=== "FLUX - 1024×1024"
=== "Mac"
```
Any Apple Silicon Mac with at least 8GB memory.
```
!!! example "Stable Diffusion XL"
=== "Nvidia"
```
Any GPU with at least 8GB VRAM.
```
=== "AMD"
```
Any GPU with at least 16GB VRAM. Linux only.
```
=== "Mac"
```
Any Apple Silicon Mac with at least 16GB memory.
```
## RAM
At least 12GB of RAM.
## Disk
SSDs will, of course, offer the best performance.
The base application disk usage depends on the torch backend.
!!! example "Disk"
=== "Nvidia (CUDA)"
```
~6.5GB
```
=== "AMD (ROCm)"
```
~12GB
```
=== "Mac (MPS)"
```
~3.5GB
```
You'll need to set aside some space for images, depending on how much you generate. A couple GB is enough to get started.
You'll need a good chunk of space for models. Even if you only install the most popular models and the usual support models (ControlNet, IP Adapter ,etc), you will quickly hit 50GB of models.
- GPU: Nvidia 20xx series or later, 10GB+ VRAM.
- Memory: At least 32GB RAM.
- Disk: 10GB for base installation plus 200GB for models.
!!! info "`tmpfs` on Linux"
@@ -92,26 +35,32 @@ You'll need a good chunk of space for models. Even if you only install the most
## Python
!!! tip "The launcher installs python for you"
You don't need to do this if you are installing with the [Invoke Launcher](./quick_start.md).
Invoke requires python 3.10 or 3.11. If you don't already have one of these versions installed, we suggest installing 3.11, as it will be supported for longer.
Check that your system has an up-to-date Python installed by running `python --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
Check that your system has an up-to-date Python installed by running `python3 --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
<h3>Installing Python (Windows)</h3>
!!! info "Installing Python"
- Install python 3.11 with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
=== "Windows"
<h3>Installing Python (macOS)</h3>
- Install python 3.11 with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
- Install python 3.11 with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
=== "macOS"
<h3>Installing Python (Linux)</h3>
- Install python 3.11 with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
- Follow the [linux install instructions], being sure to install python 3.11.
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
=== "Linux"
- Installing python varies depending on your system. On Ubuntu, you can use the [deadsnakes PPA](https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa).
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
## Drivers
@@ -175,7 +124,4 @@ An alternative to installing ROCm locally is to use a [ROCm docker container] to
[ROCm Documentation]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html
[cuDNN support matrix]: https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
[Nvidia Container Runtime]: https://developer.nvidia.com/container-runtime
[linux install instructions]: https://docs.python-guide.org/starting/install3/linux/
[Microsoft Visual C++ Redistributable]: https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170
[an official installer]: https://www.python.org/downloads/
[CUDA Toolkit Downloads]: https://developer.nvidia.com/cuda-downloads

View File

@@ -49,6 +49,7 @@ To use a community workflow, download the `.json` node graph file and load it in
+ [BriaAI Background Remove](#briaai-remove-background)
+ [Remove Background](#remove-background)
+ [Retroize](#retroize)
+ [Stereogram](#stereogram-nodes)
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Simple Skin Detection](#simple-skin-detection)
+ [Text font to Image](#text-font-to-image)
@@ -526,6 +527,16 @@ View:
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
--------------------------------
### Stereogram Nodes
**Description:** A set of custom nodes for InvokeAI to create cross-view or parallel-view stereograms. Stereograms are 2D images that, when viewed properly, reveal a 3D scene. Check out [r/crossview](https://www.reddit.com/r/CrossView/) for tutorials.
**Node Link:** https://github.com/simonfuhrmann/invokeai-stereo
**Example Workflow and Output**
</br><img src="https://raw.githubusercontent.com/simonfuhrmann/invokeai-stereo/refs/heads/main/docs/example_promo_03.jpg" width="600" />
--------------------------------
### Simple Skin Detection

View File

@@ -31,7 +31,7 @@ class DeleteBoardResult(BaseModel):
response_model=BoardDTO,
)
async def create_board(
board_name: str = Query(description="The name of the board to create"),
board_name: str = Query(description="The name of the board to create", max_length=300),
is_private: bool = Query(default=False, description="Whether the board is private"),
) -> BoardDTO:
"""Creates a board"""

View File

@@ -4,7 +4,6 @@
import contextlib
import io
import pathlib
import shutil
import traceback
from copy import deepcopy
from enum import Enum
@@ -21,7 +20,6 @@ from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.config import get_config
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_records import (
@@ -37,7 +35,7 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
@@ -848,74 +846,6 @@ async def get_starter_models() -> StarterModelResponse:
return StarterModelResponse(starter_models=starter_models, starter_bundles=starter_bundles)
@model_manager_router.get(
"/model_cache",
operation_id="get_cache_size",
response_model=float,
summary="Get maximum size of model manager RAM or VRAM cache.",
)
async def get_cache_size(cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM)) -> float:
"""Return the current RAM or VRAM cache size setting (in GB)."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
value = 0.0
if cache_type == CacheType.RAM:
value = cache.max_cache_size
elif cache_type == CacheType.VRAM:
value = cache.max_vram_cache_size
return value
@model_manager_router.put(
"/model_cache",
operation_id="set_cache_size",
response_model=float,
summary="Set maximum size of model manager RAM or VRAM cache, optionally writing new value out to invokeai.yaml config file.",
)
async def set_cache_size(
value: float = Query(description="The new value for the maximum cache size"),
cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM),
persist: bool = Query(description="Write new value out to invokeai.yaml", default=False),
) -> float:
"""Set the current RAM or VRAM cache size setting (in GB). ."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
app_config = get_config()
# Record initial state.
vram_old = app_config.vram
ram_old = app_config.ram
# Prepare target state.
vram_new = vram_old
ram_new = ram_old
if cache_type == CacheType.RAM:
ram_new = value
elif cache_type == CacheType.VRAM:
vram_new = value
else:
raise ValueError(f"Unexpected {cache_type=}.")
config_path = app_config.config_file_path
new_config_path = config_path.with_suffix(".yaml.new")
try:
# Try to apply the target state.
cache.max_vram_cache_size = vram_new
cache.max_cache_size = ram_new
app_config.ram = ram_new
app_config.vram = vram_new
if persist:
app_config.write_file(new_config_path)
shutil.move(new_config_path, config_path)
except Exception as e:
# If there was a failure, restore the initial state.
cache.max_cache_size = ram_old
cache.max_vram_cache_size = vram_old
app_config.ram = ram_old
app_config.vram = vram_old
raise RuntimeError("Failed to update cache size") from e
return value
@model_manager_router.get(
"/stats",
operation_id="get_stats",

View File

@@ -20,8 +20,8 @@ from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.model_patcher import LayerPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningFieldData,
@@ -63,9 +63,6 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(self.clip.tokenizer)
text_encoder_info = context.models.load(self.clip.text_encoder)
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in self.clip.loras:
lora_info = context.models.load(lora.lora)
@@ -76,16 +73,18 @@ class CompelInvocation(BaseInvocation):
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
text_encoder_info = context.models.load(self.clip.text_encoder)
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
LayerPatcher.apply_model_patches(
context.models.load(self.clip.tokenizer) as tokenizer,
LayerPatcher.apply_smart_model_patches(
model=text_encoder,
patches=_lora_loader(),
prefix="lora_te_",
dtype=text_encoder.dtype,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
@@ -104,6 +103,7 @@ class CompelInvocation(BaseInvocation):
textual_inversion_manager=ti_manager,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(self.prompt)
@@ -138,9 +138,7 @@ class SDXLPromptInvocationBase:
lora_prefix: str,
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
tokenizer_info = context.models.load(clip_field.tokenizer)
text_encoder_info = context.models.load(clip_field.text_encoder)
# return zero on empty
if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.model
@@ -178,11 +176,12 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
LayerPatcher.apply_model_patches(
text_encoder,
context.models.load(clip_field.tokenizer) as tokenizer,
LayerPatcher.apply_smart_model_patches(
model=text_encoder,
patches=_lora_loader(),
prefix=lora_prefix,
dtype=text_encoder.dtype,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
@@ -205,6 +204,7 @@ class SDXLPromptInvocationBase:
truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(prompt)
@@ -222,7 +222,6 @@ class SDXLPromptInvocationBase:
del tokenizer
del text_encoder
del tokenizer_info
del text_encoder_info
c = c.detach().to("cpu")

View File

@@ -1,7 +1,5 @@
from typing import Literal
from invokeai.backend.util.devices import TorchDevice
LATENT_SCALE_FACTOR = 8
"""
HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
@@ -12,5 +10,3 @@ The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
"""A literal type for PIL image modes supported by Invoke"""
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()

View File

@@ -10,7 +10,9 @@ import torchvision.transforms as T
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.adapter import T2IAdapter
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from PIL import Image
@@ -39,8 +41,8 @@ from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.model_patcher import LayerPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
@@ -89,6 +91,7 @@ def get_scheduler(
# possible.
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@@ -104,6 +107,10 @@ def get_scheduler(
if scheduler_class is DPMSolverSDEScheduler:
scheduler_config["noise_sampler_seed"] = seed
if scheduler_class is DPMSolverMultistepScheduler or scheduler_class is DPMSolverSinglestepScheduler:
if scheduler_config["_class_name"] == "DEISMultistepScheduler" and scheduler_config["algorithm_type"] == "deis":
scheduler_config["algorithm_type"] = "dpmsolver++"
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
@@ -411,6 +418,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
control_input: ControlField | list[ControlField] | None,
latents_shape: List[int],
device: torch.device,
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> list[ControlNetData] | None:
@@ -452,7 +460,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
device=device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
@@ -547,7 +555,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
for single_ip_adapter in ip_adapters:
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
assert isinstance(ip_adapter_model, IPAdapter)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
@@ -556,7 +563,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
single_ipa_images = [
context.images.get_pil(image.image_name, mode="RGB") for image in single_ipa_image_fields
]
with image_encoder_model_info as image_encoder_model:
with context.models.load(single_ip_adapter.image_encoder_model) as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
@@ -606,6 +613,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
latents_shape: list[int],
device: torch.device,
do_classifier_free_guidance: bool,
) -> Optional[list[T2IAdapterData]]:
if t2i_adapter is None:
@@ -621,7 +629,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name, mode="RGB")
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
@@ -637,7 +644,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
t2i_adapter_model: T2IAdapter
with t2i_adapter_loaded_model as t2i_adapter_model:
with context.models.load(t2i_adapter_field.t2i_adapter_model) as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
@@ -657,7 +664,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
width=control_width_resize,
height=control_height_resize,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=t2i_adapter_model.device,
device=device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
@@ -926,10 +933,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
unet_info.model_on_device() as (cached_weights, unet),
context.models.load(self.unet.unet).model_on_device() as (cached_weights, unet),
ModelPatcher.patch_unet_attention_processor(unet, denoise_ctx.inputs.attention_processor_cls),
# ext: controlnet
ext_manager.patch_extensions(denoise_ctx),
@@ -950,6 +955,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def _old_invoke(self, context: InvocationContext) -> LatentsOutput:
device = TorchDevice.choose_torch_device()
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
@@ -964,6 +970,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context,
self.t2i_adapter,
latents.shape,
device=device,
do_classifier_free_guidance=True,
)
@@ -995,29 +1002,28 @@ class DenoiseLatentsInvocation(BaseInvocation):
del lora_info
return
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info.model_on_device() as (cached_weights, unet),
context.models.load(self.unet.unet).model_on_device() as (cached_weights, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
LayerPatcher.apply_model_patches(
LayerPatcher.apply_smart_model_patches(
model=unet,
patches=_lora_loader(),
prefix="lora_unet_",
dtype=unet.dtype,
cached_weights=cached_weights,
),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
latents = latents.to(device=device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
noise = noise.to(device=device, dtype=unet.dtype)
if mask is not None:
mask = mask.to(device=unet.device, dtype=unet.dtype)
mask = mask.to(device=device, dtype=unet.dtype)
if masked_latents is not None:
masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype)
masked_latents = masked_latents.to(device=device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
@@ -1033,7 +1039,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
device=unet.device,
device=device,
dtype=unet.dtype,
latent_height=latent_height,
latent_width=latent_width,
@@ -1046,6 +1052,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
control_input=self.control,
latents_shape=latents.shape,
device=device,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
@@ -1063,7 +1070,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
device=unet.device,
device=device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,

View File

@@ -48,9 +48,9 @@ from invokeai.backend.flux.sampling_utils import (
)
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.model_patcher import LayerPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -199,8 +199,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
else None
)
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in getattr(transformer_info.config, "config_path", "")
transformer_config = context.models.get_config(self.transformer.transformer)
is_schnell = "schnell" in getattr(transformer_config, "config_path", "")
# Calculate the timestep schedule.
timesteps = get_schedule(
@@ -276,7 +276,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# TODO(ryand): We should really do this in a separate invocation to benefit from caching.
ip_adapter_fields = self._normalize_ip_adapter_fields()
pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds = self._prep_ip_adapter_image_prompt_clip_embeds(
ip_adapter_fields, context
ip_adapter_fields, context, device=x.device
)
cfg_scale = self.prep_cfg_scale(
@@ -299,41 +299,40 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
)
# Load the transformer model.
(cached_weights, transformer) = exit_stack.enter_context(transformer_info.model_on_device())
(cached_weights, transformer) = exit_stack.enter_context(
context.models.load(self.transformer.transformer).model_on_device()
)
assert isinstance(transformer, Flux)
config = transformer_info.config
config = transformer_config
assert config is not None
# Apply LoRA models to the transformer.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
# Determine if the model is quantized.
# If the model is quantized, then we need to apply the LoRA weights as sidecar layers. This results in
# slower inference than direct patching, but is agnostic to the quantization format.
if config.format in [ModelFormat.Checkpoint]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LayerPatcher.apply_model_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
cached_weights=cached_weights,
)
)
model_is_quantized = False
elif config.format in [
ModelFormat.BnbQuantizedLlmInt8b,
ModelFormat.BnbQuantizednf4b,
ModelFormat.GGUFQuantized,
]:
# The model is quantized, so apply the LoRA weights as sidecar layers. This results in slower inference,
# than directly patching the weights, but is agnostic to the quantization format.
exit_stack.enter_context(
LayerPatcher.apply_model_sidecar_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
dtype=inference_dtype,
)
)
model_is_quantized = True
else:
raise ValueError(f"Unsupported model format: {config.format}")
# Apply LoRA models to the transformer.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
exit_stack.enter_context(
LayerPatcher.apply_smart_model_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
dtype=inference_dtype,
cached_weights=cached_weights,
force_sidecar_patching=model_is_quantized,
)
)
# Prepare IP-Adapter extensions.
pos_ip_adapter_extensions, neg_ip_adapter_extensions = self._prep_ip_adapter_extensions(
pos_image_prompt_clip_embeds=pos_image_prompt_clip_embeds,
@@ -515,15 +514,18 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# before loading the models. Then make sure that all VAE encoding is done before loading the ControlNets to
# minimize peak memory.
# First, load the ControlNet models so that we can determine the ControlNet types.
controlnet_models = [context.models.load(controlnet.control_model) for controlnet in controlnets]
# Calculate the controlnet conditioning tensors.
# We do this before loading the ControlNet models because it may require running the VAE, and we are trying to
# keep peak memory down.
controlnet_conds: list[torch.Tensor] = []
for controlnet, controlnet_model in zip(controlnets, controlnet_models, strict=True):
for controlnet in controlnets:
image = context.images.get_pil(controlnet.image.image_name)
# HACK(ryand): We have to load the ControlNet model to determine whether the VAE needs to be run. We really
# shouldn't have to load the model here. There's a risk that the model will be dropped from the model cache
# before we load it into VRAM and thus we'll have to load it again (context:
# https://github.com/invoke-ai/InvokeAI/issues/7513).
controlnet_model = context.models.load(controlnet.control_model)
if isinstance(controlnet_model.model, InstantXControlNetFlux):
if self.controlnet_vae is None:
raise ValueError("A ControlNet VAE is required when using an InstantX FLUX ControlNet.")
@@ -553,10 +555,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Finally, load the ControlNet models and initialize the ControlNet extensions.
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension] = []
for controlnet, controlnet_cond, controlnet_model in zip(
controlnets, controlnet_conds, controlnet_models, strict=True
):
model = exit_stack.enter_context(controlnet_model)
for controlnet, controlnet_cond in zip(controlnets, controlnet_conds, strict=True):
model = exit_stack.enter_context(context.models.load(controlnet.control_model))
if isinstance(model, XLabsControlNetFlux):
controlnet_extensions.append(
@@ -626,6 +626,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
self,
ip_adapter_fields: list[IPAdapterField],
context: InvocationContext,
device: torch.device,
) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
clip_image_processor = CLIPImageProcessor()
@@ -665,11 +666,11 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
clip_image: torch.Tensor = clip_image_processor(images=pos_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder_model.device, dtype=image_encoder_model.dtype)
clip_image = clip_image.to(device=device, dtype=image_encoder_model.dtype)
pos_clip_image_embeds = image_encoder_model(clip_image).image_embeds
clip_image = clip_image_processor(images=neg_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder_model.device, dtype=image_encoder_model.dtype)
clip_image = clip_image.to(device=device, dtype=image_encoder_model.dtype)
neg_clip_image_embeds = image_encoder_model(clip_image).image_embeds
pos_image_prompt_clip_embeds.append(pos_clip_image_embeds)

View File

@@ -18,9 +18,9 @@ from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.conditioner import HFEncoder
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.model_patcher import LayerPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
@@ -69,14 +69,11 @@ class FluxTextEncoderInvocation(BaseInvocation):
)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
context.models.load(self.t5_encoder.text_encoder) as t5_text_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, T5Tokenizer)
@@ -90,31 +87,30 @@ class FluxTextEncoderInvocation(BaseInvocation):
return prompt_embeds
def _clip_encode(self, context: InvocationContext) -> torch.Tensor:
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
prompt = [self.prompt]
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
with (
clip_text_encoder_info.model_on_device() as (cached_weights, clip_text_encoder),
clip_tokenizer_info as clip_tokenizer,
context.models.load(self.clip.tokenizer) as clip_tokenizer,
ExitStack() as exit_stack,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
# Apply LoRA models to the CLIP encoder.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LayerPatcher.apply_model_patches(
LayerPatcher.apply_smart_model_patches(
model=clip_text_encoder,
patches=self._clip_lora_iterator(context),
prefix=FLUX_LORA_CLIP_PREFIX,
dtype=clip_text_encoder.dtype,
cached_weights=cached_weights,
)
)

View File

@@ -3,6 +3,7 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -24,7 +25,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Latents to Image",
tags=["latents", "image", "vae", "l2i", "flux"],
category="latents",
version="1.0.0",
version="1.0.1",
)
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -38,8 +39,23 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 1090 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
with vae_info as vae:
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)

View File

@@ -26,6 +26,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
@invocation(
@@ -98,7 +99,7 @@ class ImageToLatentsInvocation(BaseInvocation):
)
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae.dtype)
with torch.inference_mode(), tiling_context:
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)

View File

@@ -34,7 +34,7 @@ from invokeai.backend.util.devices import TorchDevice
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.3.0",
version="1.3.1",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -53,16 +53,58 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
def _estimate_working_memory(
self, latents: torch.Tensor, use_tiling: bool, vae: AutoencoderKL | AutoencoderTiny
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if self.fp32 else 2
scaling_constant = 960 # Determined experimentally.
if use_tiling:
tile_size = self.tile_size
if tile_size == 0:
tile_size = vae.tile_sample_min_size
assert isinstance(tile_size, int)
out_h = tile_size
out_w = tile_size
working_memory = out_h * out_w * element_size * scaling_constant
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
# and number of tiles. We could make this more precise in the future, but this should be good enough for
# most use cases.
working_memory = working_memory * 1.25
else:
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
working_memory = out_h * out_w * element_size * scaling_constant
if self.fp32:
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
# We add 20% to the working memory estimate to be safe.
working_memory = int(working_memory * 1.2)
return working_memory
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
use_tiling = self.tiled or context.config.get().force_tiled_decode
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
estimated_working_memory = self._estimate_working_memory(latents, use_tiling, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
):
context.util.signal_progress("Running VAE decoder")
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
latents = latents.to(TorchDevice.choose_torch_device())
if self.fp32:
vae.to(dtype=torch.float32)
@@ -88,7 +130,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.to(dtype=torch.float16)
latents = latents.half()
if self.tiled or context.config.get().force_tiled_decode:
if use_tiling:
vae.enable_tiling()
else:
vae.disable_tiling()

View File

@@ -16,6 +16,7 @@ from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
@invocation(
@@ -39,7 +40,7 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.disable_tiling()
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
# TODO: Use seed to make sampling reproducible.

View File

@@ -6,6 +6,7 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -26,7 +27,7 @@ from invokeai.backend.util.devices import TorchDevice
title="SD3 Latents to Image",
tags=["latents", "image", "vae", "l2i", "sd3"],
category="latents",
version="1.3.0",
version="1.3.1",
)
class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -40,16 +41,34 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 1230 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
):
context.util.signal_progress("Running VAE")
assert isinstance(vae, (AutoencoderKL))
latents = latents.to(vae.device)
latents = latents.to(TorchDevice.choose_torch_device())
vae.disable_tiling()

View File

@@ -17,10 +17,11 @@ from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import SD3ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.model_patcher import LayerPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
# The SD3 T5 Max Sequence Length set based on the default in diffusers.
SD3_T5_MAX_SEQ_LEN = 256
@@ -86,14 +87,11 @@ class Sd3TextEncoderInvocation(BaseInvocation):
def _t5_encode(self, context: InvocationContext, max_seq_len: int) -> torch.Tensor:
assert self.t5_encoder is not None
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
context.models.load(self.t5_encoder.text_encoder) as t5_text_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
):
context.util.signal_progress("Running T5 encoder")
assert isinstance(t5_text_encoder, T5EncoderModel)
@@ -120,7 +118,7 @@ class Sd3TextEncoderInvocation(BaseInvocation):
f" {max_seq_len} tokens: {removed_text}"
)
prompt_embeds = t5_text_encoder(text_input_ids.to(t5_text_encoder.device))[0]
prompt_embeds = t5_text_encoder(text_input_ids.to(TorchDevice.choose_torch_device()))[0]
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
@@ -128,14 +126,12 @@ class Sd3TextEncoderInvocation(BaseInvocation):
def _clip_encode(
self, context: InvocationContext, clip_model: CLIPField, tokenizer_max_length: int = 77
) -> Tuple[torch.Tensor, torch.Tensor]:
clip_tokenizer_info = context.models.load(clip_model.tokenizer)
clip_text_encoder_info = context.models.load(clip_model.text_encoder)
prompt = [self.prompt]
clip_text_encoder_info = context.models.load(clip_model.text_encoder)
with (
clip_text_encoder_info.model_on_device() as (cached_weights, clip_text_encoder),
clip_tokenizer_info as clip_tokenizer,
context.models.load(clip_model.tokenizer) as clip_tokenizer,
ExitStack() as exit_stack,
):
context.util.signal_progress("Running CLIP encoder")
@@ -150,10 +146,11 @@ class Sd3TextEncoderInvocation(BaseInvocation):
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LayerPatcher.apply_model_patches(
LayerPatcher.apply_smart_model_patches(
model=clip_text_encoder,
patches=self._clip_lora_iterator(context, clip_model),
prefix=FLUX_LORA_CLIP_PREFIX,
dtype=clip_text_encoder.dtype,
cached_weights=cached_weights,
)
)
@@ -184,7 +181,7 @@ class Sd3TextEncoderInvocation(BaseInvocation):
f" {tokenizer_max_length} tokens: {removed_text}"
)
prompt_embeds = clip_text_encoder(
input_ids=text_input_ids.to(clip_text_encoder.device), output_hidden_states=True
input_ids=text_input_ids.to(TorchDevice.choose_torch_device()), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]

View File

@@ -22,6 +22,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
from invokeai.backend.tiles.utils import TBLR, Tile
from invokeai.backend.util.devices import TorchDevice
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.3.0")
@@ -102,7 +103,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
(height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu")
)
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=spandrel_model.dtype)
# Run the model on each tile.
pbar = tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles")
@@ -116,9 +117,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
raise CanceledException
# Extract the current tile from the input tensor.
input_tile = image_tensor[
:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right
].to(device=spandrel_model.device, dtype=spandrel_model.dtype)
input_tile = image_tensor[:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right]
# Run the model on the tile.
output_tile = spandrel_model.run(input_tile)
@@ -151,15 +150,12 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
return pil_image
@torch.inference_mode()
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
def step_callback(step: int, total_steps: int) -> None:
context.util.signal_progress(
message=f"Processing tile {step}/{total_steps}",
@@ -167,7 +163,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
)
# Do the upscaling.
with spandrel_model_info as spandrel_model:
with context.models.load(self.image_to_image_model) as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
# Upscale the image
@@ -200,15 +196,12 @@ class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
description="If true, the output image will be resized to the nearest multiple of 8 in both dimensions.",
)
@torch.inference_mode()
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# The target size of the image, determined by the provided scale. We'll run the upscaler until we hit this size.
# Later, we may mutate this value if the model doesn't upscale the image or if the user requested a multiple of 8.
target_width = int(image.width * self.scale)
@@ -221,7 +214,7 @@ class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
)
# Do the upscaling.
with spandrel_model_info as spandrel_model:
with context.models.load(self.image_to_image_model) as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
iteration = 1

View File

@@ -22,8 +22,8 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.model_patcher import LayerPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
@@ -201,18 +201,18 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
yield (lora_info.model, lora.weight)
del lora_info
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
device = TorchDevice.choose_torch_device()
with (
ExitStack() as exit_stack,
unet_info as unet,
LayerPatcher.apply_model_patches(model=unet, patches=_lora_loader(), prefix="lora_unet_"),
context.models.load(self.unet.unet) as unet,
LayerPatcher.apply_smart_model_patches(
model=unet, patches=_lora_loader(), prefix="lora_unet_", dtype=unet.dtype
),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
latents = latents.to(device=device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
noise = noise.to(device=device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
@@ -226,7 +226,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
device=unet.device,
device=device,
dtype=unet.dtype,
latent_height=latent_tile_height,
latent_width=latent_tile_width,
@@ -239,6 +239,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context=context,
control_input=self.control,
latents_shape=list(latents.shape),
device=device,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
@@ -264,7 +265,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
device=device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,

View File

@@ -57,7 +57,7 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
class BoardChanges(BaseModel, extra="forbid"):
board_name: Optional[str] = Field(default=None, description="The board's new name.")
board_name: Optional[str] = Field(default=None, description="The board's new name.", max_length=300)
cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
archived: Optional[bool] = Field(default=None, description="Whether or not the board is archived")

View File

@@ -13,7 +13,6 @@ from functools import lru_cache
from pathlib import Path
from typing import Any, Literal, Optional
import psutil
import yaml
from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, SettingsConfigDict
@@ -25,8 +24,6 @@ from invokeai.frontend.cli.arg_parser import InvokeAIArgs
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_RAM_CACHE = 10.0
DEFAULT_VRAM_CACHE = 0.25
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
@@ -36,24 +33,6 @@ LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
CONFIG_SCHEMA_VERSION = "4.0.2"
def get_default_ram_cache_size() -> float:
"""Run a heuristic for the default RAM cache based on installed RAM."""
# On some machines, psutil.virtual_memory().total gives a value that is slightly less than the actual RAM, so the
# limits are set slightly lower than than what we expect the actual RAM to be.
GB = 1024**3
max_ram = psutil.virtual_memory().total / GB
if max_ram >= 60:
return 15.0
if max_ram >= 30:
return 7.5
if max_ram >= 14:
return 4.0
return 2.1 # 2.1 is just large enough for sd 1.5 ;-)
class URLRegexTokenPair(BaseModel):
url_regex: str = Field(description="Regular expression to match against the URL")
token: str = Field(description="Token to use when the URL matches the regex")
@@ -103,10 +82,14 @@ class InvokeAIAppConfig(BaseSettings):
profile_graphs: Enable graph profiling using `cProfile`.
profile_prefix: An optional prefix for profile output files.
profiles_dir: Path to profiles output directory.
ram: Maximum memory amount used by memory model cache for rapid switching (GB).
vram: Amount of VRAM reserved for model storage (GB).
lazy_offload: Keep models in VRAM until their space is needed.
max_cache_ram_gb: The maximum amount of CPU RAM to use for model caching in GB. If unset, the limit will be configured based on the available RAM. In most cases, it is recommended to leave this unset.
max_cache_vram_gb: The amount of VRAM to use for model caching in GB. If unset, the limit will be configured based on the available VRAM and the device_working_mem_gb. In most cases, it is recommended to leave this unset.
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device_working_mem_gb: The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.
enable_partial_loading: Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.
ram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
vram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
lazy_offload: DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
@@ -174,10 +157,15 @@ class InvokeAIAppConfig(BaseSettings):
profiles_dir: Path = Field(default=Path("profiles"), description="Path to profiles output directory.")
# CACHE
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
lazy_offload: bool = Field(default=True, description="Keep models in VRAM until their space is needed.")
max_cache_ram_gb: Optional[float] = Field(default=None, gt=0, description="The maximum amount of CPU RAM to use for model caching in GB. If unset, the limit will be configured based on the available RAM. In most cases, it is recommended to leave this unset.")
max_cache_vram_gb: Optional[float] = Field(default=None, ge=0, description="The amount of VRAM to use for model caching in GB. If unset, the limit will be configured based on the available VRAM and the device_working_mem_gb. In most cases, it is recommended to leave this unset.")
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
device_working_mem_gb: float = Field(default=3, description="The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.")
enable_partial_loading: bool = Field(default=False, description="Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.")
# Deprecated CACHE configs
ram: Optional[float] = Field(default=None, gt=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
vram: Optional[float] = Field(default=None, ge=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
lazy_offload: bool = Field(default=True, description="DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.")
# DEVICE
device: DEVICE = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.")

View File

@@ -8,7 +8,7 @@ import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import Any, Dict, List, Literal, Optional, Set
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
@@ -28,11 +28,13 @@ from invokeai.app.services.download.download_base import (
ServiceInactiveException,
UnknownJobIDException,
)
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.model_manager.metadata import RemoteModelFile
from invokeai.backend.util.logging import InvokeAILogger
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000

View File

@@ -1 +0,0 @@
from .events_base import EventServiceBase # noqa F401

View File

@@ -4,6 +4,7 @@ from fastapi_events.handlers.local import local_handler
from fastapi_events.registry.payload_schema import registry as payload_schema
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
@@ -18,7 +19,7 @@ from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
if TYPE_CHECKING:
from invokeai.app.services.download.download_base import DownloadJob
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
class EventBase(BaseModel):
@@ -422,7 +423,7 @@ class ModelInstallDownloadStartedEvent(ModelEventBase):
__event_name__ = "model_install_download_started"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
@@ -443,7 +444,7 @@ class ModelInstallDownloadStartedEvent(ModelEventBase):
]
return cls(
id=job.id,
source=str(job.source),
source=job.source,
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
@@ -458,7 +459,7 @@ class ModelInstallDownloadProgressEvent(ModelEventBase):
__event_name__ = "model_install_download_progress"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
@@ -479,7 +480,7 @@ class ModelInstallDownloadProgressEvent(ModelEventBase):
]
return cls(
id=job.id,
source=str(job.source),
source=job.source,
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
@@ -494,11 +495,11 @@ class ModelInstallDownloadsCompleteEvent(ModelEventBase):
__event_name__ = "model_install_downloads_complete"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadsCompleteEvent":
return cls(id=job.id, source=str(job.source))
return cls(id=job.id, source=job.source)
@payload_schema.register
@@ -508,11 +509,11 @@ class ModelInstallStartedEvent(ModelEventBase):
__event_name__ = "model_install_started"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallStartedEvent":
return cls(id=job.id, source=str(job.source))
return cls(id=job.id, source=job.source)
@payload_schema.register
@@ -522,14 +523,14 @@ class ModelInstallCompleteEvent(ModelEventBase):
__event_name__ = "model_install_complete"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
key: str = Field(description="Model config record key")
total_bytes: Optional[int] = Field(description="Size of the model (may be None for installation of a local path)")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCompleteEvent":
assert job.config_out is not None
return cls(id=job.id, source=str(job.source), key=(job.config_out.key), total_bytes=job.total_bytes)
return cls(id=job.id, source=job.source, key=(job.config_out.key), total_bytes=job.total_bytes)
@payload_schema.register
@@ -539,11 +540,11 @@ class ModelInstallCancelledEvent(ModelEventBase):
__event_name__ = "model_install_cancelled"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCancelledEvent":
return cls(id=job.id, source=str(job.source))
return cls(id=job.id, source=job.source)
@payload_schema.register
@@ -553,7 +554,7 @@ class ModelInstallErrorEvent(ModelEventBase):
__event_name__ = "model_install_error"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
error_type: str = Field(description="The name of the exception")
error: str = Field(description="A text description of the exception")
@@ -561,7 +562,7 @@ class ModelInstallErrorEvent(ModelEventBase):
def build(cls, job: "ModelInstallJob") -> "ModelInstallErrorEvent":
assert job.error_type is not None
assert job.error is not None
return cls(id=job.id, source=str(job.source), error_type=job.error_type, error=job.error)
return cls(id=job.id, source=job.source, error_type=job.error_type, error=job.error)
class BulkDownloadEventBase(EventBase):

View File

@@ -20,7 +20,7 @@ from invokeai.app.services.invocation_stats.invocation_stats_common import (
NodeExecutionStatsSummary,
)
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load.model_cache import CacheStats
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
# Size of 1GB in bytes.
GB = 2**30

View File

@@ -3,18 +3,20 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from typing import TYPE_CHECKING, List, Optional, Union
from pydantic.networks import AnyHttpUrl
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordChanges, ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
class ModelInstallServiceBase(ABC):
"""Abstract base class for InvokeAI model installation."""

View File

@@ -9,7 +9,7 @@ from pathlib import Path
from queue import Empty, Queue
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Tuple, Type, Union
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
import torch
import yaml
@@ -20,7 +20,6 @@ from requests import Session
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDownloadJob
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_common import (
@@ -57,6 +56,10 @@ from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.util import slugify
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
TMPDIR_PREFIX = "tmpinstall_"

View File

@@ -7,7 +7,7 @@ from typing import Callable, Optional
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
class ModelLoadServiceBase(ABC):
@@ -24,7 +24,7 @@ class ModelLoadServiceBase(ABC):
@property
@abstractmethod
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the RAM cache used by this loader."""
@abstractmethod

View File

@@ -18,7 +18,7 @@ from invokeai.backend.model_manager.load import (
ModelLoaderRegistry,
ModelLoaderRegistryBase,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -30,7 +30,7 @@ class ModelLoadService(ModelLoadServiceBase):
def __init__(
self,
app_config: InvokeAIAppConfig,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
):
"""Initialize the model load service."""
@@ -45,7 +45,7 @@ class ModelLoadService(ModelLoadServiceBase):
self._invoker = invoker
@property
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the RAM cache used by this loader."""
return self._ram_cache
@@ -78,9 +78,8 @@ class ModelLoadService(ModelLoadServiceBase):
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
cache_key = str(model_path)
ram_cache = self.ram_cache
try:
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
return LoadedModelWithoutConfig(cache_record=self._ram_cache.get(key=cache_key), cache=self._ram_cache)
except IndexError:
pass
@@ -109,5 +108,5 @@ class ModelLoadService(ModelLoadServiceBase):
)
assert loader is not None
raw_model = loader(model_path)
ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
self._ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(cache_record=self._ram_cache.get(key=cache_key), cache=self._ram_cache)

View File

@@ -16,7 +16,8 @@ from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBas
from invokeai.app.services.model_load.model_load_default import ModelLoadService
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -81,11 +82,12 @@ class ModelManagerService(ModelManagerServiceBase):
logger.setLevel(app_config.log_level.upper())
ram_cache = ModelCache(
max_cache_size=app_config.ram,
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
logger=logger,
execution_device_working_mem_gb=app_config.device_working_mem_gb,
enable_partial_loading=app_config.enable_partial_loading,
max_ram_cache_size_gb=app_config.max_cache_ram_gb,
max_vram_cache_size_gb=app_config.max_cache_vram_gb,
execution_device=execution_device or TorchDevice.choose_torch_device(),
logger=logger,
)
loader = ModelLoadService(
app_config=app_config,

View File

@@ -8,6 +8,7 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
from invokeai.backend.util.devices import TorchDevice
class XLabsIPAdapterExtension:
@@ -45,7 +46,7 @@ class XLabsIPAdapterExtension:
) -> torch.Tensor:
clip_image_processor = CLIPImageProcessor()
clip_image: torch.Tensor = clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder.device, dtype=image_encoder.dtype)
clip_image = clip_image.to(device=TorchDevice.choose_torch_device(), dtype=image_encoder.dtype)
clip_image_embeds = image_encoder(clip_image).image_embeds
return clip_image_embeds

View File

@@ -3,6 +3,8 @@
from torch import Tensor, nn
from transformers import PreTrainedModel, PreTrainedTokenizer
from invokeai.backend.util.devices import TorchDevice
class HFEncoder(nn.Module):
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
@@ -26,7 +28,7 @@ class HFEncoder(nn.Module):
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
input_ids=batch_encoding["input_ids"].to(TorchDevice.choose_torch_device()),
attention_mask=None,
output_hidden_states=False,
)

View File

@@ -18,6 +18,7 @@ from invokeai.backend.image_util.util import (
resize_image_to_resolution,
safe_step,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class DoubleConvBlock(torch.nn.Module):
@@ -109,7 +110,7 @@ class HEDProcessor:
Returns:
The detected edges.
"""
device = next(iter(self.network.parameters())).device
device = get_effective_device(self.network)
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
@@ -183,7 +184,7 @@ class HEDEdgeDetector:
The detected edges.
"""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(image)

View File

@@ -7,6 +7,7 @@ from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
def norm_img(np_img):
@@ -31,7 +32,7 @@ class LaMA:
mask = norm_img(mask)
mask = (mask > 0) * 1
device = next(self._model.buffers()).device
device = get_effective_device(self._model)
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)

View File

@@ -17,6 +17,7 @@ from invokeai.backend.image_util.util import (
pil_to_np,
resize_image_to_resolution,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class ResidualBlock(nn.Module):
@@ -130,7 +131,7 @@ class LineartProcessor:
Returns:
The detected lineart.
"""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
@@ -201,7 +202,7 @@ class LineartEdgeDetector:
Returns:
The detected edges.
"""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(image)

View File

@@ -19,6 +19,7 @@ from invokeai.backend.image_util.util import (
pil_to_np,
resize_image_to_resolution,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class UnetGenerator(nn.Module):
@@ -171,7 +172,7 @@ class LineartAnimeProcessor:
Returns:
The detected lineart.
"""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
@@ -239,7 +240,7 @@ class LineartAnimeEdgeDetector:
def run(self, image: Image.Image) -> Image.Image:
"""Processes an image and returns the detected edges."""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(image)

View File

@@ -14,6 +14,8 @@ import numpy as np
import torch
from torch.nn import functional as F
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
'''
@@ -49,7 +51,7 @@ def pred_lines(image, model,
dist_thr=20.0):
h, w, _ = image.shape
device = next(iter(model.parameters())).device
device = get_effective_device(model)
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
@@ -108,7 +110,7 @@ def pred_squares(image,
'''
h, w, _ = image.shape
original_shape = [h, w]
device = next(iter(model.parameters())).device
device = get_effective_device(model)
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)

View File

@@ -13,6 +13,7 @@ from PIL import Image
from invokeai.backend.image_util.normal_bae.nets.NNET import NNET
from invokeai.backend.image_util.util import np_to_pil, pil_to_np, resize_to_multiple
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class NormalMapDetector:
@@ -64,7 +65,7 @@ class NormalMapDetector:
def run(self, image: Image.Image):
"""Processes an image and returns the detected normal map."""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(image)
height, width, _channels = np_image.shape

View File

@@ -11,6 +11,7 @@ from PIL import Image
from invokeai.backend.image_util.pidi.model import PiDiNet, pidinet
from invokeai.backend.image_util.util import nms, normalize_image_channel_count, np_to_pil, pil_to_np, safe_step
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class PIDINetDetector:
@@ -45,7 +46,7 @@ class PIDINetDetector:
) -> Image.Image:
"""Processes an image and returns the detected edges."""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_img = pil_to_np(image)
np_img = normalize_image_channel_count(np_img)

View File

@@ -8,7 +8,7 @@ from pathlib import Path
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_cache.model_cache_default import ModelCache
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
# This registers the subclasses that implement loaders of specific model types

View File

@@ -5,7 +5,6 @@ Base class for model loading in InvokeAI.
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass
from logging import Logger
from pathlib import Path
from typing import Any, Dict, Generator, Optional, Tuple
@@ -18,19 +17,17 @@ from invokeai.backend.model_manager.config import (
AnyModelConfig,
SubModelType,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
@dataclass
class LoadedModelWithoutConfig:
"""
Context manager object that mediates transfer from RAM<->VRAM.
"""Context manager object that mediates transfer from RAM<->VRAM.
This is a context manager object that has two distinct APIs:
1. Older API (deprecated):
Use the LoadedModel object directly as a context manager.
It will move the model into VRAM (on CUDA devices), and
Use the LoadedModel object directly as a context manager. It will move the model into VRAM (on CUDA devices), and
return the model in a form suitable for passing to torch.
Example:
```
@@ -40,13 +37,9 @@ class LoadedModelWithoutConfig:
```
2. Newer API (recommended):
Call the LoadedModel's `model_on_device()` method in a
context. It returns a tuple consisting of a copy of
the model's state dict in CPU RAM followed by a copy
of the model in VRAM. The state dict is provided to allow
LoRAs and other model patchers to return the model to
its unpatched state without expensive copy and restore
operations.
Call the LoadedModel's `model_on_device()` method in a context. It returns a tuple consisting of a copy of the
model's state dict in CPU RAM followed by a copy of the model in VRAM. The state dict is provided to allow LoRAs and
other model patchers to return the model to its unpatched state without expensive copy and restore operations.
Example:
```
@@ -55,43 +48,48 @@ class LoadedModelWithoutConfig:
image = vae.decode(latents)[0]
```
The state_dict should be treated as a read-only object and
never modified. Also be aware that some loadable models do
not have a state_dict, in which case this value will be None.
The state_dict should be treated as a read-only object and never modified. Also be aware that some loadable models
do not have a state_dict, in which case this value will be None.
"""
_locker: ModelLockerBase
def __init__(self, cache_record: CacheRecord, cache: ModelCache):
self._cache_record = cache_record
self._cache = cache
def __enter__(self) -> AnyModel:
"""Context entry."""
self._locker.lock()
self._cache.lock(self._cache_record, None)
return self.model
def __exit__(self, *args: Any, **kwargs: Any) -> None:
"""Context exit."""
self._locker.unlock()
self._cache.unlock(self._cache_record)
@contextmanager
def model_on_device(self) -> Generator[Tuple[Optional[Dict[str, torch.Tensor]], AnyModel], None, None]:
"""Return a tuple consisting of the model's state dict (if it exists) and the locked model on execution device."""
locked_model = self._locker.lock()
def model_on_device(
self, working_mem_bytes: Optional[int] = None
) -> Generator[Tuple[Optional[Dict[str, torch.Tensor]], AnyModel], None, None]:
"""Return a tuple consisting of the model's state dict (if it exists) and the locked model on execution device.
:param working_mem_bytes: The amount of working memory to keep available on the compute device when loading the
model.
"""
self._cache.lock(self._cache_record, working_mem_bytes)
try:
state_dict = self._locker.get_state_dict()
yield (state_dict, locked_model)
yield (self._cache_record.cached_model.get_cpu_state_dict(), self._cache_record.cached_model.model)
finally:
self._locker.unlock()
self._cache.unlock(self._cache_record)
@property
def model(self) -> AnyModel:
"""Return the model without locking it."""
return self._locker.model
return self._cache_record.cached_model.model
@dataclass
class LoadedModel(LoadedModelWithoutConfig):
"""Context manager object that mediates transfer from RAM<->VRAM."""
config: Optional[AnyModelConfig] = None
def __init__(self, config: Optional[AnyModelConfig], cache_record: CacheRecord, cache: ModelCache):
super().__init__(cache_record=cache_record, cache=cache)
self.config = config
# TODO(MM2):
@@ -110,7 +108,7 @@ class ModelLoaderBase(ABC):
self,
app_config: InvokeAIAppConfig,
logger: Logger,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
):
"""Initialize the loader."""
pass
@@ -138,6 +136,6 @@ class ModelLoaderBase(ABC):
@property
@abstractmethod
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the ram cache associated with this loader."""
pass

View File

@@ -14,7 +14,8 @@ from invokeai.backend.model_manager import (
)
from invokeai.backend.model_manager.config import DiffusersConfigBase
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache, get_model_cache_key
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_fs
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.util.devices import TorchDevice
@@ -28,7 +29,7 @@ class ModelLoader(ModelLoaderBase):
self,
app_config: InvokeAIAppConfig,
logger: Logger,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
):
"""Initialize the loader."""
self._app_config = app_config
@@ -54,11 +55,11 @@ class ModelLoader(ModelLoaderBase):
raise InvalidModelConfigException(f"Files for model '{model_config.name}' not found at {model_path}")
with skip_torch_weight_init():
locker = self._load_and_cache(model_config, submodel_type)
return LoadedModel(config=model_config, _locker=locker)
cache_record = self._load_and_cache(model_config, submodel_type)
return LoadedModel(config=model_config, cache_record=cache_record, cache=self._ram_cache)
@property
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the ram cache associated with this loader."""
return self._ram_cache
@@ -66,10 +67,10 @@ class ModelLoader(ModelLoaderBase):
model_base = self._app_config.models_path
return (model_base / config.path).resolve()
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> ModelLockerBase:
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> CacheRecord:
stats_name = ":".join([config.base, config.type, config.name, (submodel_type or "")])
try:
return self._ram_cache.get(config.key, submodel_type, stats_name=stats_name)
return self._ram_cache.get(key=get_model_cache_key(config.key, submodel_type), stats_name=stats_name)
except IndexError:
pass
@@ -78,16 +79,11 @@ class ModelLoader(ModelLoaderBase):
loaded_model = self._load_model(config, submodel_type)
self._ram_cache.put(
config.key,
submodel_type=submodel_type,
get_model_cache_key(config.key, submodel_type),
model=loaded_model,
)
return self._ram_cache.get(
key=config.key,
submodel_type=submodel_type,
stats_name=stats_name,
)
return self._ram_cache.get(key=get_model_cache_key(config.key, submodel_type), stats_name=stats_name)
def get_size_fs(
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None

View File

@@ -1,6 +0,0 @@
"""Init file for ModelCache."""
from .model_cache_base import ModelCacheBase, CacheStats # noqa F401
from .model_cache_default import ModelCache # noqa F401
_all__ = ["ModelCacheBase", "ModelCache", "CacheStats"]

View File

@@ -0,0 +1,33 @@
from dataclasses import dataclass
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
CachedModelOnlyFullLoad,
)
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
CachedModelWithPartialLoad,
)
@dataclass
class CacheRecord:
"""A class that represents a model in the model cache."""
# Cache key.
key: str
# Model in memory.
cached_model: CachedModelWithPartialLoad | CachedModelOnlyFullLoad
_locks: int = 0
def lock(self) -> None:
"""Lock this record."""
self._locks += 1
def unlock(self) -> None:
"""Unlock this record."""
self._locks -= 1
assert self._locks >= 0
@property
def is_locked(self) -> bool:
"""Return true if record is locked."""
return self._locks > 0

View File

@@ -0,0 +1,15 @@
from dataclasses import dataclass, field
from typing import Dict
@dataclass
class CacheStats(object):
"""Collect statistics on cache performance."""
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)

View File

@@ -0,0 +1,93 @@
from typing import Any
import torch
class CachedModelOnlyFullLoad:
"""A wrapper around a PyTorch model to handle full loads and unloads between the CPU and the compute device.
Note: "VRAM" is used throughout this class to refer to the memory on the compute device. It could be CUDA memory,
MPS memory, etc.
"""
def __init__(self, model: torch.nn.Module | Any, compute_device: torch.device, total_bytes: int):
"""Initialize a CachedModelOnlyFullLoad.
Args:
model (torch.nn.Module | Any): The model to wrap. Should be on the CPU.
compute_device (torch.device): The compute device to move the model to.
total_bytes (int): The total size (in bytes) of all the weights in the model.
"""
# model is often a torch.nn.Module, but could be any model type. Throughout this class, we handle both cases.
self._model = model
self._compute_device = compute_device
self._offload_device = torch.device("cpu")
# A CPU read-only copy of the model's state dict.
self._cpu_state_dict: dict[str, torch.Tensor] | None = None
if isinstance(model, torch.nn.Module):
self._cpu_state_dict = model.state_dict()
self._total_bytes = total_bytes
self._is_in_vram = False
@property
def model(self) -> torch.nn.Module:
return self._model
def get_cpu_state_dict(self) -> dict[str, torch.Tensor] | None:
"""Get a read-only copy of the model's state dict in RAM."""
# TODO(ryand): Document this better.
return self._cpu_state_dict
def total_bytes(self) -> int:
"""Get the total size (in bytes) of all the weights in the model."""
return self._total_bytes
def cur_vram_bytes(self) -> int:
"""Get the size (in bytes) of the weights that are currently in VRAM."""
if self._is_in_vram:
return self._total_bytes
else:
return 0
def is_in_vram(self) -> bool:
"""Return true if the model is currently in VRAM."""
return self._is_in_vram
def full_load_to_vram(self) -> int:
"""Load all weights into VRAM (if supported by the model).
Returns:
The number of bytes loaded into VRAM.
"""
if self._is_in_vram:
# Already in VRAM.
return 0
if not hasattr(self._model, "to"):
# Model doesn't support moving to a device.
return 0
if self._cpu_state_dict is not None:
new_state_dict: dict[str, torch.Tensor] = {}
for k, v in self._cpu_state_dict.items():
new_state_dict[k] = v.to(self._compute_device, copy=True)
self._model.load_state_dict(new_state_dict, assign=True)
self._model.to(self._compute_device)
self._is_in_vram = True
return self._total_bytes
def full_unload_from_vram(self) -> int:
"""Unload all weights from VRAM.
Returns:
The number of bytes unloaded from VRAM.
"""
if not self._is_in_vram:
# Already in RAM.
return 0
if self._cpu_state_dict is not None:
self._model.load_state_dict(self._cpu_state_dict, assign=True)
self._model.to(self._offload_device)
self._is_in_vram = False
return self._total_bytes

View File

@@ -0,0 +1,206 @@
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
from invokeai.backend.util.logging import InvokeAILogger
class CachedModelWithPartialLoad:
"""A wrapper around a PyTorch model to handle partial loads and unloads between the CPU and the compute device.
Note: "VRAM" is used throughout this class to refer to the memory on the compute device. It could be CUDA memory,
MPS memory, etc.
"""
def __init__(self, model: torch.nn.Module, compute_device: torch.device):
self._model = model
self._compute_device = compute_device
# A CPU read-only copy of the model's state dict.
self._cpu_state_dict: dict[str, torch.Tensor] = model.state_dict()
# A dictionary of the size of each tensor in the state dict.
# HACK(ryand): We use this dictionary any time we are doing byte tracking calculations. We do this for
# consistency in case the application code has modified the model's size (e.g. by casting to a different
# precision). Of course, this means that we are making model cache load/unload decisions based on model size
# data that may not be fully accurate.
self._state_dict_bytes = {k: calc_tensor_size(v) for k, v in self._cpu_state_dict.items()}
self._total_bytes = sum(self._state_dict_bytes.values())
self._cur_vram_bytes: int | None = None
self._modules_that_support_autocast = self._find_modules_that_support_autocast()
self._keys_in_modules_that_do_not_support_autocast = self._find_keys_in_modules_that_do_not_support_autocast()
def _find_modules_that_support_autocast(self) -> dict[str, torch.nn.Module]:
"""Find all modules that support autocasting."""
return {n: m for n, m in self._model.named_modules() if isinstance(m, CustomModuleMixin)} # type: ignore
def _find_keys_in_modules_that_do_not_support_autocast(self) -> set[str]:
keys_in_modules_that_do_not_support_autocast: set[str] = set()
for key in self._cpu_state_dict.keys():
for module_name in self._modules_that_support_autocast.keys():
if key.startswith(module_name):
break
else:
keys_in_modules_that_do_not_support_autocast.add(key)
return keys_in_modules_that_do_not_support_autocast
def _move_non_persistent_buffers_to_device(self, device: torch.device):
"""Move the non-persistent buffers to the target device. These buffers are not included in the state dict,
so we need to move them manually.
"""
# HACK(ryand): Typically, non-persistent buffers are moved when calling module.to(device). We don't move entire
# modules, because we manage the devices of individual tensors using the state dict. Since non-persistent
# buffers are not included in the state dict, we need to handle them manually. The only way to do this is by
# using private torch.nn.Module attributes.
for module in self._model.modules():
for name, buffer in module.named_buffers():
if name in module._non_persistent_buffers_set:
module._buffers[name] = buffer.to(device, copy=True)
def _set_autocast_enabled_in_all_modules(self, enabled: bool):
"""Set autocast_enabled flag in all modules that support device autocasting."""
for module in self._modules_that_support_autocast.values():
module.set_device_autocasting_enabled(enabled)
@property
def model(self) -> torch.nn.Module:
return self._model
def get_cpu_state_dict(self) -> dict[str, torch.Tensor] | None:
"""Get a read-only copy of the model's state dict in RAM."""
# TODO(ryand): Document this better.
return self._cpu_state_dict
def total_bytes(self) -> int:
"""Get the total size (in bytes) of all the weights in the model."""
return self._total_bytes
def cur_vram_bytes(self) -> int:
"""Get the size (in bytes) of the weights that are currently in VRAM."""
if self._cur_vram_bytes is None:
cur_state_dict = self._model.state_dict()
self._cur_vram_bytes = sum(
self._state_dict_bytes[k]
for k, v in cur_state_dict.items()
if v.device.type == self._compute_device.type
)
return self._cur_vram_bytes
def full_load_to_vram(self) -> int:
"""Load all weights into VRAM."""
return self.partial_load_to_vram(self.total_bytes())
def full_unload_from_vram(self) -> int:
"""Unload all weights from VRAM."""
return self.partial_unload_from_vram(self.total_bytes())
@torch.no_grad()
def partial_load_to_vram(self, vram_bytes_to_load: int) -> int:
"""Load more weights into VRAM without exceeding vram_bytes_to_load.
Returns:
The number of bytes loaded into VRAM.
"""
# TODO(ryand): Handle the case where an exception is thrown while loading or unloading weights. At the very
# least, we should reset self._cur_vram_bytes to None.
vram_bytes_loaded = 0
cur_state_dict = self._model.state_dict()
# First, process the keys that *must* be loaded into VRAM.
for key in self._keys_in_modules_that_do_not_support_autocast:
param = cur_state_dict[key]
if param.device.type == self._compute_device.type:
continue
param_size = self._state_dict_bytes[key]
cur_state_dict[key] = param.to(self._compute_device, copy=True)
vram_bytes_loaded += param_size
if vram_bytes_loaded > vram_bytes_to_load:
logger = InvokeAILogger.get_logger()
logger.warning(
f"Loaded {vram_bytes_loaded / 2**20} MB into VRAM, but only {vram_bytes_to_load / 2**20} MB were "
"requested. This is the minimum set of weights in VRAM required to run the model."
)
# Next, process the keys that can optionally be loaded into VRAM.
fully_loaded = True
for key, param in cur_state_dict.items():
if param.device.type == self._compute_device.type:
continue
param_size = self._state_dict_bytes[key]
if vram_bytes_loaded + param_size > vram_bytes_to_load:
# TODO(ryand): Should we just break here? If we couldn't fit this parameter into VRAM, is it really
# worth continuing to search for a smaller parameter that would fit?
fully_loaded = False
continue
cur_state_dict[key] = param.to(self._compute_device, copy=True)
vram_bytes_loaded += param_size
if vram_bytes_loaded > 0:
# We load the entire state dict, not just the parameters that changed, in case there are modules that
# override _load_from_state_dict() and do some funky stuff that requires the entire state dict.
# Alternatively, in the future, grouping parameters by module could probably solve this problem.
self._model.load_state_dict(cur_state_dict, assign=True)
if self._cur_vram_bytes is not None:
self._cur_vram_bytes += vram_bytes_loaded
if fully_loaded:
self._set_autocast_enabled_in_all_modules(False)
else:
self._set_autocast_enabled_in_all_modules(True)
# Move all non-persistent buffers to the compute device. These are a weird edge case and do not participate in
# the vram_bytes_loaded tracking.
self._move_non_persistent_buffers_to_device(self._compute_device)
return vram_bytes_loaded
@torch.no_grad()
def partial_unload_from_vram(self, vram_bytes_to_free: int, keep_required_weights_in_vram: bool = False) -> int:
"""Unload weights from VRAM until vram_bytes_to_free bytes are freed. Or the entire model is unloaded.
:param keep_required_weights_in_vram: If True, any weights that must be kept in VRAM to run the model will be
kept in VRAM.
Returns:
The number of bytes unloaded from VRAM.
"""
vram_bytes_freed = 0
required_weights_in_vram = 0
offload_device = "cpu"
cur_state_dict = self._model.state_dict()
for key, param in cur_state_dict.items():
if vram_bytes_freed >= vram_bytes_to_free:
break
if param.device.type == offload_device:
continue
if keep_required_weights_in_vram and key in self._keys_in_modules_that_do_not_support_autocast:
required_weights_in_vram += self._state_dict_bytes[key]
continue
cur_state_dict[key] = self._cpu_state_dict[key]
vram_bytes_freed += self._state_dict_bytes[key]
if vram_bytes_freed > 0:
self._model.load_state_dict(cur_state_dict, assign=True)
if self._cur_vram_bytes is not None:
self._cur_vram_bytes -= vram_bytes_freed
# We may have gone from a fully-loaded model to a partially-loaded model, so we need to reapply the custom
# layers.
self._set_autocast_enabled_in_all_modules(True)
return vram_bytes_freed

View File

@@ -0,0 +1,33 @@
from contextlib import contextmanager
import torch
from invokeai.backend.util.logging import InvokeAILogger
@contextmanager
def log_operation_vram_usage(operation_name: str):
"""A helper function for tuning working memory requirements for memory-intensive ops.
Sample usage:
```python
with log_operation_vram_usage("some_operation"):
some_operation()
```
"""
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
max_allocated_before = torch.cuda.max_memory_allocated()
max_reserved_before = torch.cuda.max_memory_reserved()
try:
yield
finally:
torch.cuda.synchronize()
max_allocated_after = torch.cuda.max_memory_allocated()
max_reserved_after = torch.cuda.max_memory_reserved()
logger = InvokeAILogger.get_logger()
logger.info(
f">>>{operation_name} Peak VRAM allocated: {(max_allocated_after - max_allocated_before) / 2**20} MB, "
f"Peak VRAM reserved: {(max_reserved_after - max_reserved_before) / 2**20} MB"
)

View File

@@ -0,0 +1,639 @@
import gc
import logging
import time
from logging import Logger
from typing import Dict, List, Optional
import psutil
import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
CachedModelOnlyFullLoad,
)
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
CachedModelWithPartialLoad,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.torch_module_autocast import (
apply_custom_layers_to_model,
)
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.util.prefix_logger_adapter import PrefixedLoggerAdapter
# Size of a GB in bytes.
GB = 2**30
# Size of a MB in bytes.
MB = 2**20
# TODO(ryand): Where should this go? The ModelCache shouldn't be concerned with submodels.
def get_model_cache_key(model_key: str, submodel_type: Optional[SubModelType] = None) -> str:
"""Get the cache key for a model based on the optional submodel type."""
if submodel_type:
return f"{model_key}:{submodel_type.value}"
else:
return model_key
class ModelCache:
"""A cache for managing models in memory.
The cache is based on two levels of model storage:
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
The model cache is based on the following assumptions:
- storage_device_mem_size > execution_device_mem_size
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
the execution_device.
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
configuration.
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
the context, and unload outside the context.
Example usage:
```
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
do_something_on_gpu(SD1)
```
"""
def __init__(
self,
execution_device_working_mem_gb: float,
enable_partial_loading: bool,
max_ram_cache_size_gb: float | None = None,
max_vram_cache_size_gb: float | None = None,
execution_device: torch.device | str = "cuda",
storage_device: torch.device | str = "cpu",
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
"""Initialize the model RAM cache.
:param execution_device_working_mem_gb: The amount of working memory to keep on the GPU (in GB) i.e. non-model
VRAM.
:param enable_partial_loading: Whether to enable partial loading of models.
:param max_ram_cache_size_gb: The maximum amount of CPU RAM to use for model caching in GB. This parameter is
kept to maintain compatibility with previous versions of the model cache, but should be deprecated in the
future. If set, this parameter overrides the default cache size logic.
:param max_vram_cache_size_gb: The amount of VRAM to use for model caching in GB. This parameter is kept to
maintain compatibility with previous versions of the model cache, but should be deprecated in the future.
If set, this parameter overrides the default cache size logic.
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
:param logger: InvokeAILogger to use (otherwise creates one)
"""
self._enable_partial_loading = enable_partial_loading
self._execution_device_working_mem_gb = execution_device_working_mem_gb
self._execution_device: torch.device = torch.device(execution_device)
self._storage_device: torch.device = torch.device(storage_device)
self._max_ram_cache_size_gb = max_ram_cache_size_gb
self._max_vram_cache_size_gb = max_vram_cache_size_gb
self._logger = PrefixedLoggerAdapter(
logger or InvokeAILogger.get_logger(self.__class__.__name__), "MODEL CACHE"
)
self._log_memory_usage = log_memory_usage
self._stats: Optional[CacheStats] = None
self._cached_models: Dict[str, CacheRecord] = {}
self._cache_stack: List[str] = []
@property
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
return self._stats
@stats.setter
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collecting cache statistics."""
self._stats = stats
def put(self, key: str, model: AnyModel) -> None:
"""Add a model to the cache."""
if key in self._cached_models:
self._logger.debug(
f"Attempted to add model {key} ({model.__class__.__name__}), but it already exists in the cache. No action necessary."
)
return
size = calc_model_size_by_data(self._logger, model)
self.make_room(size)
# Inject custom modules into the model.
if isinstance(model, torch.nn.Module):
apply_custom_layers_to_model(model)
# Partial loading only makes sense on CUDA.
# - When running on CPU, there is no 'loading' to do.
# - When running on MPS, memory is shared with the CPU, so the default OS memory management already handles this
# well.
running_with_cuda = self._execution_device.type == "cuda"
# Wrap model.
if isinstance(model, torch.nn.Module) and running_with_cuda and self._enable_partial_loading:
wrapped_model = CachedModelWithPartialLoad(model, self._execution_device)
else:
wrapped_model = CachedModelOnlyFullLoad(model, self._execution_device, size)
cache_record = CacheRecord(key=key, cached_model=wrapped_model)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
self._logger.debug(
f"Added model {key} (Type: {model.__class__.__name__}, Wrap mode: {wrapped_model.__class__.__name__}, Model size: {size/MB:.2f}MB)"
)
def get(self, key: str, stats_name: Optional[str] = None) -> CacheRecord:
"""Retrieve a model from the cache.
:param key: Model key
:param stats_name: A human-readable id for the model for the purposes of stats reporting.
Raises IndexError if the model is not in the cache.
"""
if key in self._cached_models:
if self.stats:
self.stats.hits += 1
else:
if self.stats:
self.stats.misses += 1
self._logger.debug(f"Cache miss: {key}")
raise IndexError(f"The model with key {key} is not in the cache.")
cache_entry = self._cached_models[key]
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.high_watermark = max(self.stats.high_watermark, self._get_ram_in_use())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.cached_model.total_bytes()
)
# This moves the entry to the top (right end) of the stack.
self._cache_stack = [k for k in self._cache_stack if k != key]
self._cache_stack.append(key)
self._logger.debug(f"Cache hit: {key} (Type: {cache_entry.cached_model.model.__class__.__name__})")
return cache_entry
def lock(self, cache_entry: CacheRecord, working_mem_bytes: Optional[int]) -> None:
"""Lock a model for use and move it into VRAM."""
if cache_entry.key not in self._cached_models:
self._logger.info(
f"Locking model cache entry {cache_entry.key} "
f"(Type: {cache_entry.cached_model.model.__class__.__name__}), but it has already been dropped from "
"the RAM cache. This is a sign that the model loading order is non-optimal in the invocation code "
"(See https://github.com/invoke-ai/InvokeAI/issues/7513)."
)
# cache_entry = self._cached_models[key]
cache_entry.lock()
self._logger.debug(
f"Locking model {cache_entry.key} (Type: {cache_entry.cached_model.model.__class__.__name__})"
)
if self._execution_device.type == "cpu":
# Models don't need to be loaded into VRAM if we're running on CPU.
return
try:
self._load_locked_model(cache_entry, working_mem_bytes)
self._logger.debug(
f"Finished locking model {cache_entry.key} (Type: {cache_entry.cached_model.model.__class__.__name__})"
)
except torch.cuda.OutOfMemoryError:
self._logger.warning("Insufficient GPU memory to load model. Aborting")
cache_entry.unlock()
raise
except Exception:
cache_entry.unlock()
raise
self._log_cache_state()
def unlock(self, cache_entry: CacheRecord) -> None:
"""Unlock a model."""
if cache_entry.key not in self._cached_models:
self._logger.info(
f"Unlocking model cache entry {cache_entry.key} "
f"(Type: {cache_entry.cached_model.model.__class__.__name__}), but it has already been dropped from "
"the RAM cache. This is a sign that the model loading order is non-optimal in the invocation code "
"(See https://github.com/invoke-ai/InvokeAI/issues/7513)."
)
# cache_entry = self._cached_models[key]
cache_entry.unlock()
self._logger.debug(
f"Unlocked model {cache_entry.key} (Type: {cache_entry.cached_model.model.__class__.__name__})"
)
def _load_locked_model(self, cache_entry: CacheRecord, working_mem_bytes: Optional[int] = None) -> None:
"""Helper function for self.lock(). Loads a locked model into VRAM."""
start_time = time.time()
# Calculate model_vram_needed, the amount of additional VRAM that will be used if we fully load the model into
# VRAM.
model_cur_vram_bytes = cache_entry.cached_model.cur_vram_bytes()
model_total_bytes = cache_entry.cached_model.total_bytes()
model_vram_needed = model_total_bytes - model_cur_vram_bytes
vram_available = self._get_vram_available(working_mem_bytes)
self._logger.debug(
f"Before unloading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
# Make room for the model in VRAM.
# 1. If the model can fit entirely in VRAM, then make enough room for it to be loaded fully.
# 2. If the model can't fit fully into VRAM, then unload all other models and load as much of the model as
# possible.
vram_bytes_freed = self._offload_unlocked_models(model_vram_needed, working_mem_bytes)
self._logger.debug(f"Unloaded models (if necessary): vram_bytes_freed={(vram_bytes_freed/MB):.2f}MB")
# Check the updated vram_available after offloading.
vram_available = self._get_vram_available(working_mem_bytes)
self._logger.debug(
f"After unloading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
if vram_available < 0:
# There is insufficient VRAM available. As a last resort, try to unload the model being locked from VRAM,
# as it may still be loaded from a previous use.
vram_bytes_freed_from_own_model = self._move_model_to_ram(cache_entry, -vram_available)
vram_available = self._get_vram_available(working_mem_bytes)
self._logger.debug(
f"Unloaded {vram_bytes_freed_from_own_model/MB:.2f}MB from the model being locked ({cache_entry.key})."
)
# Move as much of the model as possible into VRAM.
# For testing, only allow 10% of the model to be loaded into VRAM.
# vram_available = int(model_vram_needed * 0.1)
# We add 1 MB to the available VRAM to account for small errors in memory tracking (e.g. off-by-one). A fully
# loaded model is much faster than a 95% loaded model.
model_bytes_loaded = self._move_model_to_vram(cache_entry, vram_available + MB)
model_cur_vram_bytes = cache_entry.cached_model.cur_vram_bytes()
vram_available = self._get_vram_available(working_mem_bytes)
loaded_percent = model_cur_vram_bytes / model_total_bytes if model_total_bytes > 0 else 0
self._logger.info(
f"Loaded model '{cache_entry.key}' ({cache_entry.cached_model.model.__class__.__name__}) onto "
f"{self._execution_device.type} device in {(time.time() - start_time):.2f}s. "
f"Total model size: {model_total_bytes/MB:.2f}MB, "
f"VRAM: {model_cur_vram_bytes/MB:.2f}MB ({loaded_percent:.1%})"
)
self._logger.debug(f"Loaded model onto execution device: model_bytes_loaded={(model_bytes_loaded/MB):.2f}MB, ")
self._logger.debug(
f"After loading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
def _move_model_to_vram(self, cache_entry: CacheRecord, vram_available: int) -> int:
try:
if isinstance(cache_entry.cached_model, CachedModelWithPartialLoad):
return cache_entry.cached_model.partial_load_to_vram(vram_available)
elif isinstance(cache_entry.cached_model, CachedModelOnlyFullLoad): # type: ignore
# Partial load is not supported, so we have not choice but to try and fit it all into VRAM.
return cache_entry.cached_model.full_load_to_vram()
else:
raise ValueError(f"Unsupported cached model type: {type(cache_entry.cached_model)}")
except Exception as e:
if isinstance(e, torch.cuda.OutOfMemoryError):
self._logger.warning("Insufficient GPU memory to load model. Aborting")
# If an exception occurs, the model could be left in a bad state, so we delete it from the cache entirely.
self._delete_cache_entry(cache_entry)
raise
def _move_model_to_ram(self, cache_entry: CacheRecord, vram_bytes_to_free: int) -> int:
try:
if isinstance(cache_entry.cached_model, CachedModelWithPartialLoad):
return cache_entry.cached_model.partial_unload_from_vram(
vram_bytes_to_free, keep_required_weights_in_vram=cache_entry.is_locked
)
elif isinstance(cache_entry.cached_model, CachedModelOnlyFullLoad): # type: ignore
return cache_entry.cached_model.full_unload_from_vram()
else:
raise ValueError(f"Unsupported cached model type: {type(cache_entry.cached_model)}")
except Exception:
# If an exception occurs, the model could be left in a bad state, so we delete it from the cache entirely.
self._delete_cache_entry(cache_entry)
raise
def _get_total_vram_available_to_cache(self, working_mem_bytes: Optional[int]) -> int:
"""Calculate the total amount of VRAM available for storing models. I.e. the amount of VRAM available to the
process minus the amount of VRAM to keep for working memory.
"""
# If self._max_vram_cache_size_gb is set, then it overrides the default logic.
if self._max_vram_cache_size_gb is not None:
return int(self._max_vram_cache_size_gb * GB)
working_mem_bytes_default = int(self._execution_device_working_mem_gb * GB)
working_mem_bytes = max(working_mem_bytes or 0, working_mem_bytes_default)
if self._execution_device.type == "cuda":
# TODO(ryand): It is debatable whether we should use memory_reserved() or memory_allocated() here.
# memory_reserved() includes memory reserved by the torch CUDA memory allocator that may or may not be
# re-used for future allocations. For now, we use memory_allocated() to be conservative.
# vram_reserved = torch.cuda.memory_reserved(self._execution_device)
vram_allocated = torch.cuda.memory_allocated(self._execution_device)
vram_free, _vram_total = torch.cuda.mem_get_info(self._execution_device)
vram_available_to_process = vram_free + vram_allocated
elif self._execution_device.type == "mps":
vram_allocated = torch.mps.driver_allocated_memory()
# TODO(ryand): Is it accurate that MPS shares memory with the CPU?
vram_free = psutil.virtual_memory().available
vram_available_to_process = vram_free + vram_allocated
else:
raise ValueError(f"Unsupported execution device: {self._execution_device.type}")
return vram_available_to_process - working_mem_bytes
def _get_vram_available(self, working_mem_bytes: Optional[int]) -> int:
"""Calculate the amount of additional VRAM available for the model cache to use (takes into account the working
memory).
"""
return self._get_total_vram_available_to_cache(working_mem_bytes) - self._get_vram_in_use()
def _get_vram_in_use(self) -> int:
"""Get the amount of VRAM currently in use by the cache."""
# NOTE(ryand): To be conservative, we are treating the amount of VRAM allocated by torch as entirely being used
# by the model cache. In reality, some of this allocated memory is being used as working memory. This is a
# reasonable conservative assumption, because this function is typically called before (not during)
# working-memory-intensive operations. This conservative definition also helps to handle models whose size
# increased after initial load (e.g. a model whose precision was upcast by application code).
if self._execution_device.type == "cuda":
return torch.cuda.memory_allocated()
elif self._execution_device.type == "mps":
return torch.mps.current_allocated_memory()
else:
raise ValueError(f"Unsupported execution device type: {self._execution_device.type}")
# Alternative definition of VRAM in use:
# return sum(ce.cached_model.cur_vram_bytes() for ce in self._cached_models.values())
def _get_ram_available(self) -> int:
"""Get the amount of RAM available for the cache to use, while keeping memory pressure under control."""
# If self._max_ram_cache_size_gb is set, then it overrides the default logic.
if self._max_ram_cache_size_gb is not None:
ram_total_available_to_cache = int(self._max_ram_cache_size_gb * GB)
return ram_total_available_to_cache - self._get_ram_in_use()
# We have 3 strategies for calculating the amount of RAM available to the cache. We calculate all 3 options and
# then use a heuristic to decide which one to use.
# - Strategy 1: Match RAM cache size to VRAM cache size
# - Strategy 2: Aim to keep at least 10% of RAM free
# - Strategy 3: Use a minimum RAM cache size of 4GB
# ---------------------
# Calculate Strategy 1
# ---------------------
# Under Strategy 1, the RAM cache size is equal to the total VRAM available to the cache. The RAM cache size
# should **roughly** match the VRAM cache size for the following reasons:
# - Setting it much larger than the VRAM cache size means that we would accumulate mmap'ed model files for
# models that are 0% loaded onto the GPU. Accumulating a large amount of virtual memory causes issues -
# particularly on Windows. Instead, we should drop these extra models from the cache and rely on the OS's
# disk caching behavior to make reloading them fast (if there is enough RAM for disk caching to be possible).
# - Setting it much smaller than the VRAM cache size would increase the likelihood that we drop models from the
# cache even if they are partially loaded onto the GPU.
#
# TODO(ryand): In the future, we should re-think this strategy. Setting the RAM cache size like this doesn't
# really make sense, and is done primarily for consistency with legacy behavior. We should be relying on the
# OS's caching behavior more and make decisions about whether to drop models from the cache based primarily on
# how much of the model can be kept in VRAM.
cache_ram_used = self._get_ram_in_use()
if self._execution_device.type == "cpu":
# Strategy 1 is not applicable for CPU.
ram_available_based_on_default_ram_cache_size = 0
else:
default_ram_cache_size_bytes = self._get_total_vram_available_to_cache(None)
ram_available_based_on_default_ram_cache_size = default_ram_cache_size_bytes - cache_ram_used
# ---------------------
# Calculate Strategy 2
# ---------------------
# If RAM memory pressure is high, then we want to be more conservative with the RAM cache size.
virtual_memory = psutil.virtual_memory()
ram_total = virtual_memory.total
ram_available = virtual_memory.available
ram_used = ram_total - ram_available
# We aim to keep at least 10% of RAM free.
ram_available_based_on_memory_usage = int(ram_total * 0.9) - ram_used
# ---------------------
# Calculate Strategy 3
# ---------------------
# If the RAM cache is very small, then there's an increased likelihood that we will run into this issue:
# https://github.com/invoke-ai/InvokeAI/issues/7513
# To keep things running smoothly, there's a minimum RAM cache size that we always allow (even if this means
# using swap).
min_ram_cache_size_bytes = 4 * GB
ram_available_based_on_min_cache_size = min_ram_cache_size_bytes - cache_ram_used
# ----------------------------
# Decide which strategy to use
# ----------------------------
# First, take the minimum of strategies 1 and 2.
ram_available = min(ram_available_based_on_default_ram_cache_size, ram_available_based_on_memory_usage)
# Then, apply strategy 3 as the lower bound.
ram_available = max(ram_available, ram_available_based_on_min_cache_size)
self._logger.debug(
f"Calculated RAM available: {ram_available/MB:.2f} MB. Strategies considered (1,2,3): "
f"{ram_available_based_on_default_ram_cache_size/MB:.2f}, "
f"{ram_available_based_on_memory_usage/MB:.2f}, "
f"{ram_available_based_on_min_cache_size/MB:.2f}"
)
return ram_available
def _get_ram_in_use(self) -> int:
"""Get the amount of RAM currently in use."""
return sum(ce.cached_model.total_bytes() for ce in self._cached_models.values())
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
if self._log_memory_usage:
return MemorySnapshot.capture()
return None
def _get_vram_state_str(self, model_cur_vram_bytes: int, model_total_bytes: int, vram_available: int) -> str:
"""Helper function for preparing a VRAM state log string."""
model_cur_vram_bytes_percent = model_cur_vram_bytes / model_total_bytes if model_total_bytes > 0 else 0
return (
f"model_total={model_total_bytes/MB:.0f} MB, "
+ f"model_vram={model_cur_vram_bytes/MB:.0f} MB ({model_cur_vram_bytes_percent:.1%} %), "
# + f"vram_total={int(self._max_vram_cache_size * GB)/MB:.0f} MB, "
+ f"vram_available={(vram_available/MB):.0f} MB, "
)
def _offload_unlocked_models(self, vram_bytes_required: int, working_mem_bytes: Optional[int] = None) -> int:
"""Offload models from the execution_device until vram_bytes_required bytes are available, or all models are
offloaded. Of course, locked models are not offloaded.
Returns:
int: The number of bytes freed based on believed model sizes. The actual change in VRAM may be different.
"""
self._logger.debug(
f"Offloading unlocked models with goal of making room for {vram_bytes_required/MB:.2f}MB of VRAM."
)
vram_bytes_freed = 0
# TODO(ryand): Give more thought to the offloading policy used here.
cache_entries_increasing_size = sorted(self._cached_models.values(), key=lambda x: x.cached_model.total_bytes())
for cache_entry in cache_entries_increasing_size:
# We do not fully trust the count of bytes freed, so we check again on each iteration.
vram_available = self._get_vram_available(working_mem_bytes)
vram_bytes_to_free = vram_bytes_required - vram_available
if vram_bytes_to_free <= 0:
break
if cache_entry.is_locked:
# TODO(ryand): In the future, we may want to partially unload locked models, but this requires careful
# handling of model patches (e.g. LoRA).
continue
cache_entry_bytes_freed = self._move_model_to_ram(cache_entry, vram_bytes_to_free)
if cache_entry_bytes_freed > 0:
self._logger.debug(
f"Unloaded {cache_entry.key} from VRAM to free {(cache_entry_bytes_freed/MB):.0f} MB."
)
vram_bytes_freed += cache_entry_bytes_freed
TorchDevice.empty_cache()
return vram_bytes_freed
def _log_cache_state(self, title: str = "Model cache state:", include_entry_details: bool = True):
if self._logger.getEffectiveLevel() > logging.DEBUG:
# Short circuit if the logger is not set to debug. Some of the data lookups could take a non-negligible
# amount of time.
return
log = f"{title}\n"
log_format = " {:<30} Limit: {:>7.1f} MB, Used: {:>7.1f} MB ({:>5.1%}), Available: {:>7.1f} MB ({:>5.1%})\n"
ram_in_use_bytes = self._get_ram_in_use()
ram_available_bytes = self._get_ram_available()
ram_size_bytes = ram_in_use_bytes + ram_available_bytes
ram_in_use_bytes_percent = ram_in_use_bytes / ram_size_bytes if ram_size_bytes > 0 else 0
ram_available_bytes_percent = ram_available_bytes / ram_size_bytes if ram_size_bytes > 0 else 0
log += log_format.format(
f"Storage Device ({self._storage_device.type})",
ram_size_bytes / MB,
ram_in_use_bytes / MB,
ram_in_use_bytes_percent,
ram_available_bytes / MB,
ram_available_bytes_percent,
)
if self._execution_device.type != "cpu":
vram_in_use_bytes = self._get_vram_in_use()
vram_available_bytes = self._get_vram_available(None)
vram_size_bytes = vram_in_use_bytes + vram_available_bytes
vram_in_use_bytes_percent = vram_in_use_bytes / vram_size_bytes if vram_size_bytes > 0 else 0
vram_available_bytes_percent = vram_available_bytes / vram_size_bytes if vram_size_bytes > 0 else 0
log += log_format.format(
f"Compute Device ({self._execution_device.type})",
vram_size_bytes / MB,
vram_in_use_bytes / MB,
vram_in_use_bytes_percent,
vram_available_bytes / MB,
vram_available_bytes_percent,
)
if torch.cuda.is_available():
log += " {:<30} {:.1f} MB\n".format("CUDA Memory Allocated:", torch.cuda.memory_allocated() / MB)
log += " {:<30} {}\n".format("Total models:", len(self._cached_models))
if include_entry_details and len(self._cached_models) > 0:
log += " Models:\n"
log_format = (
" {:<80} total={:>7.1f} MB, vram={:>7.1f} MB ({:>5.1%}), ram={:>7.1f} MB ({:>5.1%}), locked={}\n"
)
for cache_record in self._cached_models.values():
total_bytes = cache_record.cached_model.total_bytes()
cur_vram_bytes = cache_record.cached_model.cur_vram_bytes()
cur_vram_bytes_percent = cur_vram_bytes / total_bytes if total_bytes > 0 else 0
cur_ram_bytes = total_bytes - cur_vram_bytes
cur_ram_bytes_percent = cur_ram_bytes / total_bytes if total_bytes > 0 else 0
log += log_format.format(
f"{cache_record.key} ({cache_record.cached_model.model.__class__.__name__}):",
total_bytes / MB,
cur_vram_bytes / MB,
cur_vram_bytes_percent,
cur_ram_bytes / MB,
cur_ram_bytes_percent,
cache_record.is_locked,
)
self._logger.debug(log)
def make_room(self, bytes_needed: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size.
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
external references to the model, there's nothing that the cache can do about it, and those models will not be
garbage-collected.
"""
self._logger.debug(f"Making room for {bytes_needed/MB:.2f}MB of RAM.")
self._log_cache_state(title="Before dropping models:")
ram_bytes_available = self._get_ram_available()
ram_bytes_to_free = max(0, bytes_needed - ram_bytes_available)
ram_bytes_freed = 0
pos = 0
models_cleared = 0
while ram_bytes_freed < ram_bytes_to_free and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
if not cache_entry.is_locked:
ram_bytes_freed += cache_entry.cached_model.total_bytes()
self._logger.debug(
f"Dropping {model_key} from RAM cache to free {(cache_entry.cached_model.total_bytes()/MB):.2f}MB."
)
self._delete_cache_entry(cache_entry)
del cache_entry
models_cleared += 1
else:
pos += 1
if models_cleared > 0:
# There would likely be some 'garbage' to be collected regardless of whether a model was cleared or not, but
# there is a significant time cost to calling `gc.collect()`, so we want to use it sparingly. (The time cost
# is high even if no garbage gets collected.)
#
# Calling gc.collect(...) when a model is cleared seems like a good middle-ground:
# - If models had to be cleared, it's a signal that we are close to our memory limit.
# - If models were cleared, there's a good chance that there's a significant amount of garbage to be
# collected.
#
# Keep in mind that gc is only responsible for handling reference cycles. Most objects should be cleaned up
# immediately when their reference count hits 0.
if self.stats:
self.stats.cleared = models_cleared
gc.collect()
TorchDevice.empty_cache()
self._logger.debug(f"Dropped {models_cleared} models to free {ram_bytes_freed/MB:.2f}MB of RAM.")
self._log_cache_state(title="After dropping models:")
def _delete_cache_entry(self, cache_entry: CacheRecord) -> None:
"""Delete cache_entry from the cache if it exists. No exception is thrown if it doesn't exist."""
self._cache_stack = [key for key in self._cache_stack if key != cache_entry.key]
self._cached_models.pop(cache_entry.key, None)

View File

@@ -1,221 +0,0 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
# TODO: Add Stalker's proper name to copyright
"""
Manage a RAM cache of diffusion/transformer models for fast switching.
They are moved between GPU VRAM and CPU RAM as necessary. If the cache
grows larger than a preset maximum, then the least recently used
model will be cleared and (re)loaded from disk when next needed.
"""
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from logging import Logger
from typing import Dict, Generic, Optional, TypeVar
import torch
from invokeai.backend.model_manager.config import AnyModel, SubModelType
class ModelLockerBase(ABC):
"""Base class for the model locker used by the loader."""
@abstractmethod
def lock(self) -> AnyModel:
"""Lock the contained model and move it into VRAM."""
pass
@abstractmethod
def unlock(self) -> None:
"""Unlock the contained model, and remove it from VRAM."""
pass
@abstractmethod
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
pass
@property
@abstractmethod
def model(self) -> AnyModel:
"""Return the model."""
pass
T = TypeVar("T")
@dataclass
class CacheRecord(Generic[T]):
"""
Elements of the cache:
key: Unique key for each model, same as used in the models database.
model: Model in memory.
state_dict: A read-only copy of the model's state dict in RAM. It will be
used as a template for creating a copy in the VRAM.
size: Size of the model
loaded: True if the model's state dict is currently in VRAM
Before a model is executed, the state_dict template is copied into VRAM,
and then injected into the model. When the model is finished, the VRAM
copy of the state dict is deleted, and the RAM version is reinjected
into the model.
The state_dict should be treated as a read-only attribute. Do not attempt
to patch or otherwise modify it. Instead, patch the copy of the state_dict
after it is loaded into the execution device (e.g. CUDA) using the `LoadedModel`
context manager call `model_on_device()`.
"""
key: str
model: T
device: torch.device
state_dict: Optional[Dict[str, torch.Tensor]]
size: int
loaded: bool = False
_locks: int = 0
def lock(self) -> None:
"""Lock this record."""
self._locks += 1
def unlock(self) -> None:
"""Unlock this record."""
self._locks -= 1
assert self._locks >= 0
@property
def locked(self) -> bool:
"""Return true if record is locked."""
return self._locks > 0
@dataclass
class CacheStats(object):
"""Collect statistics on cache performance."""
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
class ModelCacheBase(ABC, Generic[T]):
"""Virtual base class for RAM model cache."""
@property
@abstractmethod
def storage_device(self) -> torch.device:
"""Return the storage device (e.g. "CPU" for RAM)."""
pass
@property
@abstractmethod
def execution_device(self) -> torch.device:
"""Return the exection device (e.g. "cuda" for VRAM)."""
pass
@property
@abstractmethod
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
pass
@property
@abstractmethod
def max_cache_size(self) -> float:
"""Return the maximum size the RAM cache can grow to."""
pass
@max_cache_size.setter
@abstractmethod
def max_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
@property
@abstractmethod
def max_vram_cache_size(self) -> float:
"""Return the maximum size the VRAM cache can grow to."""
pass
@max_vram_cache_size.setter
@abstractmethod
def max_vram_cache_size(self, value: float) -> float:
"""Set the maximum size the VRAM cache can grow to."""
pass
@abstractmethod
def offload_unlocked_models(self, size_required: int) -> None:
"""Offload from VRAM any models not actively in use."""
pass
@abstractmethod
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device."""
pass
@property
@abstractmethod
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
pass
@stats.setter
@abstractmethod
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collectin cache statistics."""
pass
@property
@abstractmethod
def logger(self) -> Logger:
"""Return the logger used by the cache."""
pass
@abstractmethod
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size."""
pass
@abstractmethod
def put(
self,
key: str,
model: T,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
pass
@abstractmethod
def get(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
stats_name: Optional[str] = None,
) -> ModelLockerBase:
"""
Retrieve model using key and optional submodel_type.
:param key: Opaque model key
:param submodel_type: Type of the submodel to fetch
:param stats_name: A human-readable id for the model for the purposes of
stats reporting.
This may raise an IndexError if the model is not in the cache.
"""
pass
@abstractmethod
def cache_size(self) -> int:
"""Get the total size of the models currently cached."""
pass
@abstractmethod
def print_cuda_stats(self) -> None:
"""Log debugging information on CUDA usage."""
pass

View File

@@ -1,426 +0,0 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
# TODO: Add Stalker's proper name to copyright
""" """
import gc
import math
import time
from contextlib import suppress
from logging import Logger
from typing import Dict, List, Optional
import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_manager.load.model_cache.model_cache_base import (
CacheRecord,
CacheStats,
ModelCacheBase,
ModelLockerBase,
)
from invokeai.backend.model_manager.load.model_cache.model_locker import ModelLocker
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
# Size of a GB in bytes.
GB = 2**30
# Size of a MB in bytes.
MB = 2**20
class ModelCache(ModelCacheBase[AnyModel]):
"""A cache for managing models in memory.
The cache is based on two levels of model storage:
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
The model cache is based on the following assumptions:
- storage_device_mem_size > execution_device_mem_size
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
the execution_device.
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
configuration.
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
the context, and unload outside the context.
Example usage:
```
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
do_something_on_gpu(SD1)
```
"""
def __init__(
self,
max_cache_size: float,
max_vram_cache_size: float,
execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float16,
lazy_offloading: bool = True,
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
"""
Initialize the model RAM cache.
:param max_cache_size: Maximum size of the storage_device cache in GBs.
:param max_vram_cache_size: Maximum size of the execution_device cache in GBs.
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
:param logger: InvokeAILogger to use (otherwise creates one)
"""
# allow lazy offloading only when vram cache enabled
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self._max_cache_size: float = max_cache_size
self._max_vram_cache_size: float = max_vram_cache_size
self._execution_device: torch.device = execution_device
self._storage_device: torch.device = storage_device
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
self._log_memory_usage = log_memory_usage
self._stats: Optional[CacheStats] = None
self._cached_models: Dict[str, CacheRecord[AnyModel]] = {}
self._cache_stack: List[str] = []
@property
def logger(self) -> Logger:
"""Return the logger used by the cache."""
return self._logger
@property
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
return self._lazy_offloading
@property
def storage_device(self) -> torch.device:
"""Return the storage device (e.g. "CPU" for RAM)."""
return self._storage_device
@property
def execution_device(self) -> torch.device:
"""Return the exection device (e.g. "cuda" for VRAM)."""
return self._execution_device
@property
def max_cache_size(self) -> float:
"""Return the cap on cache size."""
return self._max_cache_size
@max_cache_size.setter
def max_cache_size(self, value: float) -> None:
"""Set the cap on cache size."""
self._max_cache_size = value
@property
def max_vram_cache_size(self) -> float:
"""Return the cap on vram cache size."""
return self._max_vram_cache_size
@max_vram_cache_size.setter
def max_vram_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
self._max_vram_cache_size = value
@property
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
return self._stats
@stats.setter
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collectin cache statistics."""
self._stats = stats
def cache_size(self) -> int:
"""Get the total size of the models currently cached."""
total = 0
for cache_record in self._cached_models.values():
total += cache_record.size
return total
def put(
self,
key: str,
model: AnyModel,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
return
size = calc_model_size_by_data(self.logger, model)
self.make_room(size)
running_on_cpu = self.execution_device == torch.device("cpu")
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) and not running_on_cpu else None
cache_record = CacheRecord(key=key, model=model, device=self.storage_device, state_dict=state_dict, size=size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
def get(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
stats_name: Optional[str] = None,
) -> ModelLockerBase:
"""
Retrieve model using key and optional submodel_type.
:param key: Opaque model key
:param submodel_type: Type of the submodel to fetch
:param stats_name: A human-readable id for the model for the purposes of
stats reporting.
This may raise an IndexError if the model is not in the cache.
"""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
if self.stats:
self.stats.hits += 1
else:
if self.stats:
self.stats.misses += 1
raise IndexError(f"The model with key {key} is not in the cache.")
cache_entry = self._cached_models[key]
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.cache_size = int(self._max_cache_size * GB)
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.size
)
# this moves the entry to the top (right end) of the stack
with suppress(Exception):
self._cache_stack.remove(key)
self._cache_stack.append(key)
return ModelLocker(
cache=self,
cache_entry=cache_entry,
)
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
if self._log_memory_usage:
return MemorySnapshot.capture()
return None
def _make_cache_key(self, model_key: str, submodel_type: Optional[SubModelType] = None) -> str:
if submodel_type:
return f"{model_key}:{submodel_type.value}"
else:
return model_key
def offload_unlocked_models(self, size_required: int) -> None:
"""Offload models from the execution_device to make room for size_required.
:param size_required: The amount of space to clear in the execution_device cache, in bytes.
"""
reserved = self._max_vram_cache_size * GB
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(f"{(vram_in_use/GB):.2f}GB VRAM needed for models; max allowed={(reserved/GB):.2f}GB")
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
if not cache_entry.loaded:
continue
if not cache_entry.locked:
self.move_model_to_device(cache_entry, self.storage_device)
cache_entry.loaded = False
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GB):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GB):.2f}GB"
)
TorchDevice.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device.
:param cache_entry: The CacheRecord for the model
:param target_device: The torch.device to move the model into
May raise a torch.cuda.OutOfMemoryError
"""
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
source_device = cache_entry.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
# This would need to be revised to support multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
# Some models don't have a `to` method, in which case they run in RAM/CPU.
if not hasattr(cache_entry.model, "to"):
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
# RAM to a new state dict in VRAM, and then inject it into the model.
# This operation is slightly faster than running `to()` on the whole model.
#
# When the model needs to be removed from VRAM we simply delete the copy
# of the state dict in VRAM, and reinject the state dict that is cached
# in RAM into the model. So this operation is very fast.
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
try:
if cache_entry.state_dict is not None:
assert hasattr(cache_entry.model, "load_state_dict")
if target_device == self.storage_device:
cache_entry.model.load_state_dict(cache_entry.state_dict, assign=True)
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(target_device, copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)
raise e
snapshot_after = self._capture_memory_snapshot()
end_model_to_time = time.time()
self.logger.debug(
f"Moved model '{cache_entry.key}' from {source_device} to"
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
f"Estimated model size: {(cache_entry.size/GB):.3f} GB."
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
if (
snapshot_before is not None
and snapshot_after is not None
and snapshot_before.vram is not None
and snapshot_after.vram is not None
):
vram_change = abs(snapshot_before.vram - snapshot_after.vram)
# If the estimated model size does not match the change in VRAM, log a warning.
if not math.isclose(
vram_change,
cache_entry.size,
rel_tol=0.1,
abs_tol=10 * MB,
):
self.logger.debug(
f"Moving model '{cache_entry.key}' from {source_device} to"
f" {target_device} caused an unexpected change in VRAM usage. The model's"
" estimated size may be incorrect. Estimated model size:"
f" {(cache_entry.size/GB):.3f} GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
def print_cuda_stats(self) -> None:
"""Log CUDA diagnostics."""
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GB)
ram = "%4.2fG" % (self.cache_size() / GB)
in_ram_models = 0
in_vram_models = 0
locked_in_vram_models = 0
for cache_record in self._cached_models.values():
if hasattr(cache_record.model, "device"):
if cache_record.model.device == self.storage_device:
in_ram_models += 1
else:
in_vram_models += 1
if cache_record.locked:
locked_in_vram_models += 1
self.logger.debug(
f"Current VRAM/RAM usage: {vram}/{ram}; models_in_ram/models_in_vram(locked) ="
f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})"
)
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size.
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
external references to the model, there's nothing that the cache can do about it, and those models will not be
garbage-collected.
"""
bytes_needed = size
maximum_size = self.max_cache_size * GB # stored in GB, convert to bytes
current_size = self.cache_size()
if current_size + bytes_needed > maximum_size:
self.logger.debug(
f"Max cache size exceeded: {(current_size/GB):.2f}/{self.max_cache_size:.2f} GB, need an additional"
f" {(bytes_needed/GB):.2f} GB"
)
self.logger.debug(f"Before making_room: cached_models={len(self._cached_models)}")
pos = 0
models_cleared = 0
while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}"
)
if not cache_entry.locked:
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(size/GB):.2f} GB (-{(cache_entry.size/GB):.2f} GB)"
)
current_size -= cache_entry.size
models_cleared += 1
self._delete_cache_entry(cache_entry)
del cache_entry
else:
pos += 1
if models_cleared > 0:
# There would likely be some 'garbage' to be collected regardless of whether a model was cleared or not, but
# there is a significant time cost to calling `gc.collect()`, so we want to use it sparingly. (The time cost
# is high even if no garbage gets collected.)
#
# Calling gc.collect(...) when a model is cleared seems like a good middle-ground:
# - If models had to be cleared, it's a signal that we are close to our memory limit.
# - If models were cleared, there's a good chance that there's a significant amount of garbage to be
# collected.
#
# Keep in mind that gc is only responsible for handling reference cycles. Most objects should be cleaned up
# immediately when their reference count hits 0.
if self.stats:
self.stats.cleared = models_cleared
gc.collect()
TorchDevice.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _delete_cache_entry(self, cache_entry: CacheRecord[AnyModel]) -> None:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]

View File

@@ -1,64 +0,0 @@
"""
Base class and implementation of a class that moves models in and out of VRAM.
"""
from typing import Dict, Optional
import torch
from invokeai.backend.model_manager import AnyModel
from invokeai.backend.model_manager.load.model_cache.model_cache_base import (
CacheRecord,
ModelCacheBase,
ModelLockerBase,
)
class ModelLocker(ModelLockerBase):
"""Internal class that mediates movement in and out of GPU."""
def __init__(self, cache: ModelCacheBase[AnyModel], cache_entry: CacheRecord[AnyModel]):
"""
Initialize the model locker.
:param cache: The ModelCache object
:param cache_entry: The entry in the model cache
"""
self._cache = cache
self._cache_entry = cache_entry
@property
def model(self) -> AnyModel:
"""Return the model without moving it around."""
return self._cache_entry.model
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
return self._cache_entry.state_dict
def lock(self) -> AnyModel:
"""Move the model into the execution device (GPU) and lock it."""
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
self._cache_entry.loaded = True
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError:
self._cache.logger.warning("Insufficient GPU memory to load model. Aborting")
self._cache_entry.unlock()
raise
except Exception:
self._cache_entry.unlock()
raise
return self.model
def unlock(self) -> None:
"""Call upon exit from context."""
self._cache_entry.unlock()
if not self._cache.lazy_offloading:
self._cache.offload_unlocked_models(0)
self._cache.print_cuda_stats()

View File

@@ -0,0 +1,15 @@
from typing import TypeVar
import torch
T = TypeVar("T", torch.Tensor, None, torch.Tensor | None)
def cast_to_device(t: T, to_device: torch.device) -> T:
"""Helper function to cast an optional tensor to a target device."""
if t is None:
return t
if t.device.type != to_device.type:
return t.to(to_device)
return t

View File

@@ -0,0 +1,8 @@
This directory contains custom implementations of common torch.nn.Module classes that add support for:
- Streaming weights to the execution device
- Applying sidecar patches at execution time (e.g. sidecar LoRA layers)
Each custom class sub-classes the original module type that is is replacing, so the following properties are preserved:
- `isinstance(m, torch.nn.OrginalModule)` should still work.
- Patching the weights directly (e.g. for LoRA) should still work. (Of course, this is not possible for quantized layers, hence the sidecar support.)

View File

@@ -0,0 +1,43 @@
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.utils import (
add_nullable_tensors,
)
class CustomConv1d(torch.nn.Conv1d, CustomModuleMixin):
def _autocast_forward_with_patches(self, input: torch.Tensor) -> torch.Tensor:
weight = cast_to_device(self.weight, input.device)
bias = cast_to_device(self.bias, input.device)
# Prepare the original parameters for the patch aggregation.
orig_params = {"weight": weight, "bias": bias}
# Filter out None values.
orig_params = {k: v for k, v in orig_params.items() if v is not None}
aggregated_param_residuals = self._aggregate_patch_parameters(
patches_and_weights=self._patches_and_weights,
orig_params=orig_params,
device=input.device,
)
weight = add_nullable_tensors(weight, aggregated_param_residuals.get("weight", None))
bias = add_nullable_tensors(bias, aggregated_param_residuals.get("bias", None))
return self._conv_forward(input, weight, bias)
def _autocast_forward(self, input: torch.Tensor) -> torch.Tensor:
weight = cast_to_device(self.weight, input.device)
bias = cast_to_device(self.bias, input.device)
return self._conv_forward(input, weight, bias)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if len(self._patches_and_weights) > 0:
return self._autocast_forward_with_patches(input)
elif self._device_autocasting_enabled:
return self._autocast_forward(input)
else:
return super().forward(input)

View File

@@ -0,0 +1,43 @@
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.utils import (
add_nullable_tensors,
)
class CustomConv2d(torch.nn.Conv2d, CustomModuleMixin):
def _autocast_forward_with_patches(self, input: torch.Tensor) -> torch.Tensor:
weight = cast_to_device(self.weight, input.device)
bias = cast_to_device(self.bias, input.device)
# Prepare the original parameters for the patch aggregation.
orig_params = {"weight": weight, "bias": bias}
# Filter out None values.
orig_params = {k: v for k, v in orig_params.items() if v is not None}
aggregated_param_residuals = self._aggregate_patch_parameters(
patches_and_weights=self._patches_and_weights,
orig_params=orig_params,
device=input.device,
)
weight = add_nullable_tensors(weight, aggregated_param_residuals.get("weight", None))
bias = add_nullable_tensors(bias, aggregated_param_residuals.get("bias", None))
return self._conv_forward(input, weight, bias)
def _autocast_forward(self, input: torch.Tensor) -> torch.Tensor:
weight = cast_to_device(self.weight, input.device)
bias = cast_to_device(self.bias, input.device)
return self._conv_forward(input, weight, bias)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if len(self._patches_and_weights) > 0:
return self._autocast_forward_with_patches(input)
elif self._device_autocasting_enabled:
return self._autocast_forward(input)
else:
return super().forward(input)

View File

@@ -0,0 +1,29 @@
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
class CustomEmbedding(torch.nn.Embedding, CustomModuleMixin):
def _autocast_forward(self, input: torch.Tensor) -> torch.Tensor:
weight = cast_to_device(self.weight, input.device)
return torch.nn.functional.embedding(
input,
weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if len(self._patches_and_weights) > 0:
raise RuntimeError("Embedding layers do not support patches")
if self._device_autocasting_enabled:
return self._autocast_forward(input)
else:
return super().forward(input)

View File

@@ -0,0 +1,36 @@
import torch
from invokeai.backend.flux.modules.layers import RMSNorm
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
from invokeai.backend.patches.layers.set_parameter_layer import SetParameterLayer
class CustomFluxRMSNorm(RMSNorm, CustomModuleMixin):
def _autocast_forward_with_patches(self, x: torch.Tensor) -> torch.Tensor:
# Currently, CustomFluxRMSNorm layers only support patching with a single SetParameterLayer.
assert len(self._patches_and_weights) == 1
patch, _patch_weight = self._patches_and_weights[0]
assert isinstance(patch, SetParameterLayer)
assert patch.param_name == "scale"
scale = cast_to_device(patch.weight, x.device)
# Apply the patch.
# NOTE(ryand): Currently, we ignore the patch weight when running as a sidecar. It's not clear how this should
# be handled.
return torch.nn.functional.rms_norm(x, scale.shape, scale, eps=1e-6)
def _autocast_forward(self, x: torch.Tensor) -> torch.Tensor:
scale = cast_to_device(self.scale, x.device)
return torch.nn.functional.rms_norm(x, scale.shape, scale, eps=1e-6)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if len(self._patches_and_weights) > 0:
return self._autocast_forward_with_patches(x)
elif self._device_autocasting_enabled:
return self._autocast_forward(x)
else:
return super().forward(x)

View File

@@ -0,0 +1,22 @@
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
class CustomGroupNorm(torch.nn.GroupNorm, CustomModuleMixin):
def _autocast_forward(self, input: torch.Tensor) -> torch.Tensor:
weight = cast_to_device(self.weight, input.device)
bias = cast_to_device(self.bias, input.device)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if len(self._patches_and_weights) > 0:
raise RuntimeError("GroupNorm layers do not support patches")
if self._device_autocasting_enabled:
return self._autocast_forward(input)
else:
return super().forward(input)

View File

@@ -0,0 +1,44 @@
import bitsandbytes as bnb
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_linear import (
autocast_linear_forward_sidecar_patches,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
from invokeai.backend.quantization.bnb_llm_int8 import InvokeLinear8bitLt
class CustomInvokeLinear8bitLt(InvokeLinear8bitLt, CustomModuleMixin):
def _autocast_forward_with_patches(self, x: torch.Tensor) -> torch.Tensor:
return autocast_linear_forward_sidecar_patches(self, x, self._patches_and_weights)
def _autocast_forward(self, x: torch.Tensor) -> torch.Tensor:
matmul_state = bnb.MatmulLtState()
matmul_state.threshold = self.state.threshold
matmul_state.has_fp16_weights = self.state.has_fp16_weights
matmul_state.use_pool = self.state.use_pool
matmul_state.is_training = self.training
# The underlying InvokeInt8Params weight must already be quantized.
assert self.weight.CB is not None
matmul_state.CB = cast_to_device(self.weight.CB, x.device)
matmul_state.SCB = cast_to_device(self.weight.SCB, x.device)
# weights are cast automatically as Int8Params, but the bias has to be cast manually.
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
# NOTE(ryand): The second parameter should not be needed at all given our expected inference configuration, but
# it's dtype field must be accessible, even though it's not used. We pass in self.weight even though it could be
# on the wrong device.
return bnb.matmul(x, self.weight, bias=cast_to_device(self.bias, x.device), state=matmul_state)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if len(self._patches_and_weights) > 0:
return self._autocast_forward_with_patches(x)
elif self._device_autocasting_enabled:
return self._autocast_forward(x)
else:
return super().forward(x)

View File

@@ -0,0 +1,62 @@
import copy
import bitsandbytes as bnb
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_linear import (
autocast_linear_forward_sidecar_patches,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
from invokeai.backend.quantization.bnb_nf4 import InvokeLinearNF4
class CustomInvokeLinearNF4(InvokeLinearNF4, CustomModuleMixin):
def _autocast_forward_with_patches(self, x: torch.Tensor) -> torch.Tensor:
return autocast_linear_forward_sidecar_patches(self, x, self._patches_and_weights)
def _autocast_forward(self, x: torch.Tensor) -> torch.Tensor:
bnb.nn.modules.fix_4bit_weight_quant_state_from_module(self)
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
if not self.compute_type_is_set:
self.set_compute_type(x)
self.compute_type_is_set = True
inp_dtype = x.dtype
if self.compute_dtype is not None:
x = x.to(self.compute_dtype)
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
# HACK(ryand): Casting self.weight to the device also casts the self.weight.quant_state in-place (i.e. it
# does not follow the tensor semantics of returning a new copy when converting to a different device). This
# means that quant_state elements that started on the CPU would be left on the GPU, which we don't want. To
# avoid this side effect we make a shallow copy of the original quant_state so that we can restore it. Fixing
# this properly would require more invasive changes to the bitsandbytes library.
# Make a shallow copy of the quant_state so that we can undo the in-place modification that occurs when casting
# to a new device.
old_quant_state = copy.copy(self.weight.quant_state)
weight = cast_to_device(self.weight, x.device)
self.weight.quant_state = old_quant_state
# For some reason, the quant_state.to(...) implementation fails to cast the quant_state.code field. We do this
# manually here.
weight.quant_state.code = cast_to_device(weight.quant_state.code, x.device)
bias = cast_to_device(self.bias, x.device)
return bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state).to(inp_dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if len(self._patches_and_weights) > 0:
return self._autocast_forward_with_patches(x)
elif self._device_autocasting_enabled:
return self._autocast_forward(x)
else:
return super().forward(x)

View File

@@ -0,0 +1,106 @@
import copy
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
from invokeai.backend.patches.layers.concatenated_lora_layer import ConcatenatedLoRALayer
from invokeai.backend.patches.layers.flux_control_lora_layer import FluxControlLoRALayer
from invokeai.backend.patches.layers.lora_layer import LoRALayer
def linear_lora_forward(input: torch.Tensor, lora_layer: LoRALayer, lora_weight: float) -> torch.Tensor:
"""An optimized implementation of the residual calculation for a sidecar linear LoRALayer."""
x = torch.nn.functional.linear(input, lora_layer.down)
if lora_layer.mid is not None:
x = torch.nn.functional.linear(x, lora_layer.mid)
x = torch.nn.functional.linear(x, lora_layer.up, bias=lora_layer.bias)
x *= lora_weight * lora_layer.scale()
return x
def concatenated_lora_forward(
input: torch.Tensor, concatenated_lora_layer: ConcatenatedLoRALayer, lora_weight: float
) -> torch.Tensor:
"""An optimized implementation of the residual calculation for a sidecar ConcatenatedLoRALayer."""
x_chunks: list[torch.Tensor] = []
for lora_layer in concatenated_lora_layer.lora_layers:
x_chunk = torch.nn.functional.linear(input, lora_layer.down)
if lora_layer.mid is not None:
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.mid)
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.up, bias=lora_layer.bias)
x_chunk *= lora_weight * lora_layer.scale()
x_chunks.append(x_chunk)
# TODO(ryand): Generalize to support concat_axis != 0.
assert concatenated_lora_layer.concat_axis == 0
x = torch.cat(x_chunks, dim=-1)
return x
def autocast_linear_forward_sidecar_patches(
orig_module: torch.nn.Linear, input: torch.Tensor, patches_and_weights: list[tuple[BaseLayerPatch, float]]
) -> torch.Tensor:
"""A function that runs a linear layer (quantized or non-quantized) with sidecar patches for a linear layer.
Compatible with both quantized and non-quantized Linear layers.
"""
# First, apply the original linear layer.
# NOTE: We slice the input to match the original weight shape in order to work with FluxControlLoRAs, which
# change the linear layer's in_features.
orig_input = input
input = orig_input[..., : orig_module.in_features]
output = orig_module._autocast_forward(input)
# Then, apply layers for which we have optimized implementations.
unprocessed_patches_and_weights: list[tuple[BaseLayerPatch, float]] = []
for patch, patch_weight in patches_and_weights:
# Shallow copy the patch so that we can cast it to the target device without modifying the original patch.
patch = copy.copy(patch)
patch.to(input.device)
if isinstance(patch, FluxControlLoRALayer):
# Note that we use the original input here, not the sliced input.
output += linear_lora_forward(orig_input, patch, patch_weight)
elif isinstance(patch, LoRALayer):
output += linear_lora_forward(input, patch, patch_weight)
elif isinstance(patch, ConcatenatedLoRALayer):
output += concatenated_lora_forward(input, patch, patch_weight)
else:
unprocessed_patches_and_weights.append((patch, patch_weight))
# Finally, apply any remaining patches.
if len(unprocessed_patches_and_weights) > 0:
# Prepare the original parameters for the patch aggregation.
orig_params = {"weight": orig_module.weight, "bias": orig_module.bias}
# Filter out None values.
orig_params = {k: v for k, v in orig_params.items() if v is not None}
aggregated_param_residuals = orig_module._aggregate_patch_parameters(
unprocessed_patches_and_weights, orig_params=orig_params, device=input.device
)
output += torch.nn.functional.linear(
input, aggregated_param_residuals["weight"], aggregated_param_residuals.get("bias", None)
)
return output
class CustomLinear(torch.nn.Linear, CustomModuleMixin):
def _autocast_forward_with_patches(self, input: torch.Tensor) -> torch.Tensor:
return autocast_linear_forward_sidecar_patches(self, input, self._patches_and_weights)
def _autocast_forward(self, input: torch.Tensor) -> torch.Tensor:
weight = cast_to_device(self.weight, input.device)
bias = cast_to_device(self.bias, input.device)
return torch.nn.functional.linear(input, weight, bias)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if len(self._patches_and_weights) > 0:
return self._autocast_forward_with_patches(input)
elif self._device_autocasting_enabled:
return self._autocast_forward(input)
else:
return super().forward(input)

View File

@@ -0,0 +1,63 @@
import copy
import torch
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
class CustomModuleMixin:
"""A mixin class for custom modules that enables device autocasting of module parameters."""
def __init__(self):
self._device_autocasting_enabled = False
self._patches_and_weights: list[tuple[BaseLayerPatch, float]] = []
def set_device_autocasting_enabled(self, enabled: bool):
"""Pass True to enable autocasting of module parameters to the same device as the input tensor. Pass False to
disable autocasting, which results in slightly faster execution speed when we know that device autocasting is
not needed.
"""
self._device_autocasting_enabled = enabled
def is_device_autocasting_enabled(self) -> bool:
"""Check if device autocasting is enabled for the module."""
return self._device_autocasting_enabled
def add_patch(self, patch: BaseLayerPatch, patch_weight: float):
"""Add a patch to the module."""
self._patches_and_weights.append((patch, patch_weight))
def clear_patches(self):
"""Clear all patches from the module."""
self._patches_and_weights = []
def get_num_patches(self) -> int:
"""Get the number of patches in the module."""
return len(self._patches_and_weights)
def _aggregate_patch_parameters(
self,
patches_and_weights: list[tuple[BaseLayerPatch, float]],
orig_params: dict[str, torch.Tensor],
device: torch.device | None = None,
):
"""Helper function that aggregates the parameters from all patches into a single dict."""
params: dict[str, torch.Tensor] = {}
for patch, patch_weight in patches_and_weights:
if device is not None:
# Shallow copy the patch so that we can cast it to the target device without modifying the original patch.
patch = copy.copy(patch)
patch.to(device)
# TODO(ryand): `self` could be a quantized module. Depending on what the patch is doing with the original
# parameters, this might fail or return incorrect results.
layer_params = patch.get_parameters(orig_params, weight=patch_weight)
for param_name, param_weight in layer_params.items():
if param_name not in params:
params[param_name] = param_weight
else:
params[param_name] += param_weight
return params

View File

@@ -0,0 +1,30 @@
from typing import overload
import torch
@overload
def add_nullable_tensors(a: None, b: None) -> None: ...
@overload
def add_nullable_tensors(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: ...
@overload
def add_nullable_tensors(a: torch.Tensor, b: None) -> torch.Tensor: ...
@overload
def add_nullable_tensors(a: None, b: torch.Tensor) -> torch.Tensor: ...
def add_nullable_tensors(a: torch.Tensor | None, b: torch.Tensor | None) -> torch.Tensor | None:
if a is None and b is None:
return None
elif a is None:
return b
elif b is None:
return a
else:
return a + b

View File

@@ -0,0 +1,105 @@
from typing import TypeVar
import torch
from invokeai.backend.flux.modules.layers import RMSNorm
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_conv1d import (
CustomConv1d,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_conv2d import (
CustomConv2d,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_embedding import (
CustomEmbedding,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_flux_rms_norm import (
CustomFluxRMSNorm,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_group_norm import (
CustomGroupNorm,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_linear import (
CustomLinear,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
AUTOCAST_MODULE_TYPE_MAPPING: dict[type[torch.nn.Module], type[torch.nn.Module]] = {
torch.nn.Linear: CustomLinear,
torch.nn.Conv1d: CustomConv1d,
torch.nn.Conv2d: CustomConv2d,
torch.nn.GroupNorm: CustomGroupNorm,
torch.nn.Embedding: CustomEmbedding,
RMSNorm: CustomFluxRMSNorm,
}
try:
# These dependencies are not expected to be present on MacOS.
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_invoke_linear_8_bit_lt import (
CustomInvokeLinear8bitLt,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_invoke_linear_nf4 import (
CustomInvokeLinearNF4,
)
from invokeai.backend.quantization.bnb_llm_int8 import InvokeLinear8bitLt
from invokeai.backend.quantization.bnb_nf4 import InvokeLinearNF4
AUTOCAST_MODULE_TYPE_MAPPING[InvokeLinear8bitLt] = CustomInvokeLinear8bitLt
AUTOCAST_MODULE_TYPE_MAPPING[InvokeLinearNF4] = CustomInvokeLinearNF4
except ImportError:
pass
AUTOCAST_MODULE_TYPE_MAPPING_INVERSE = {v: k for k, v in AUTOCAST_MODULE_TYPE_MAPPING.items()}
T = TypeVar("T", bound=torch.nn.Module)
def wrap_custom_layer(module_to_wrap: torch.nn.Module, custom_layer_type: type[T]) -> T:
# HACK(ryand): We use custom initialization logic so that we can initialize a new custom layer instance from an
# existing layer instance without calling __init__() on the original layer class. We achieve this by copying
# the attributes from the original layer instance to the new instance.
custom_layer = custom_layer_type.__new__(custom_layer_type)
# Note that we share the __dict__.
# TODO(ryand): In the future, we may want to do a shallow copy of the __dict__.
custom_layer.__dict__ = module_to_wrap.__dict__
# Initialize the CustomModuleMixin fields.
CustomModuleMixin.__init__(custom_layer) # type: ignore
return custom_layer
def unwrap_custom_layer(custom_layer: torch.nn.Module, original_layer_type: type[torch.nn.Module]):
# HACK(ryand): We use custom initialization logic so that we can initialize a new custom layer instance from an
# existing layer instance without calling __init__() on the original layer class. We achieve this by copying
# the attributes from the original layer instance to the new instance.
original_layer = original_layer_type.__new__(original_layer_type)
# Note that we share the __dict__.
# TODO(ryand): In the future, we may want to do a shallow copy of the __dict__ and strip out the CustomModuleMixin
# fields.
original_layer.__dict__ = custom_layer.__dict__
return original_layer
def apply_custom_layers_to_model(module: torch.nn.Module, device_autocasting_enabled: bool = False):
for name, submodule in module.named_children():
override_type = AUTOCAST_MODULE_TYPE_MAPPING.get(type(submodule), None)
if override_type is not None:
custom_layer = wrap_custom_layer(submodule, override_type)
# TODO(ryand): In the future, we should manage this flag on a per-module basis.
custom_layer.set_device_autocasting_enabled(device_autocasting_enabled)
setattr(module, name, custom_layer)
else:
# Recursively apply to submodules
apply_custom_layers_to_model(submodule, device_autocasting_enabled)
def remove_custom_layers_from_model(module: torch.nn.Module):
for name, submodule in module.named_children():
override_type = AUTOCAST_MODULE_TYPE_MAPPING_INVERSE.get(type(submodule), None)
if override_type is not None:
setattr(module, name, unwrap_custom_layer(submodule, override_type))
else:
remove_custom_layers_from_model(submodule)

View File

@@ -0,0 +1,20 @@
import itertools
import torch
def get_effective_device(model: torch.nn.Module) -> torch.device:
"""A utility to infer the 'effective' device of a model.
This utility handles the case where a model is partially loaded onto the GPU, so is safer than just calling:
`next(iter(model.parameters())).device`.
In the worst case, this utility has to check all model parameters, so if you already know the intended model device,
then it is better to avoid calling this function.
"""
# If all parameters are on the CPU, return the CPU device. Otherwise, return the first non-CPU device.
for p in itertools.chain(model.parameters(), model.buffers()):
if p.device.type != "cpu":
return p.device
return torch.device("cpu")

View File

@@ -18,7 +18,7 @@ from invokeai.backend.model_manager import (
SubModelType,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.patches.lora_conversions.flux_control_lora_utils import (
is_state_dict_likely_flux_control,
@@ -47,7 +47,7 @@ class LoRALoader(ModelLoader):
self,
app_config: InvokeAIAppConfig,
logger: Logger,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
):
"""Initialize the loader."""
super().__init__(app_config, logger, ram_cache)

View File

@@ -25,6 +25,7 @@ from invokeai.backend.model_manager.config import (
DiffusersConfigBase,
MainCheckpointConfig,
)
from invokeai.backend.model_manager.load.model_cache.model_cache import get_model_cache_key
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.silence_warnings import SilenceWarnings
@@ -132,5 +133,5 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
if subtype == submodel_type:
continue
if submodel := getattr(pipeline, subtype.value, None):
self._ram_cache.put(config.key, submodel_type=subtype, model=submodel)
self._ram_cache.put(get_model_cache_key(config.key, subtype), model=submodel)
return getattr(pipeline, submodel_type.value)

View File

@@ -14,6 +14,7 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.textual_inversion import TextualInversionManager, TextualInversionModelRaw
from invokeai.backend.util.devices import TorchDevice
class ModelPatcher:
@@ -122,7 +123,7 @@ class ModelPatcher:
)
model_embeddings.weight.data[token_id] = embedding.to(
device=text_encoder.device, dtype=text_encoder.dtype
device=TorchDevice.choose_torch_device(), dtype=text_encoder.dtype
)
ti_tokens.append(token_id)

View File

@@ -7,8 +7,6 @@ from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
from invokeai.backend.patches.layers.flux_control_lora_layer import FluxControlLoRALayer
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.pad_with_zeros import pad_with_zeros
from invokeai.backend.patches.sidecar_wrappers.base_sidecar_wrapper import BaseSidecarWrapper
from invokeai.backend.patches.sidecar_wrappers.utils import wrap_module_with_sidecar_wrapper
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
@@ -17,58 +15,64 @@ class LayerPatcher:
@staticmethod
@torch.no_grad()
@contextmanager
def apply_model_patches(
def apply_smart_model_patches(
model: torch.nn.Module,
patches: Iterable[Tuple[ModelPatchRaw, float]],
prefix: str,
dtype: torch.dtype,
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
force_direct_patching: bool = False,
force_sidecar_patching: bool = False,
):
"""Apply one or more LoRA patches to a model within a context manager.
Args:
model (torch.nn.Module): The model to patch.
patches (Iterable[Tuple[LoRAModelRaw, float]]): An iterator that returns tuples of LoRA patches and
associated weights. An iterator is used so that the LoRA patches do not need to be loaded into memory
all at once.
prefix (str): The keys in the patches will be filtered to only include weights with this prefix.
cached_weights (Optional[Dict[str, torch.Tensor]], optional): Read-only copy of the model's state dict in
CPU RAM, for efficient unpatching purposes.
"""Apply 'smart' model patching that chooses whether to use direct patching or a sidecar wrapper for each
module.
"""
# original_weights are stored for unpatching layers that are directly patched.
original_weights = OriginalWeightsStorage(cached_weights)
# original_modules are stored for unpatching layers that are wrapped.
original_modules: dict[str, torch.nn.Module] = {}
try:
for patch, patch_weight in patches:
LayerPatcher.apply_model_patch(
LayerPatcher.apply_smart_model_patch(
model=model,
prefix=prefix,
patch=patch,
patch_weight=patch_weight,
original_weights=original_weights,
original_modules=original_modules,
dtype=dtype,
force_direct_patching=force_direct_patching,
force_sidecar_patching=force_sidecar_patching,
)
del patch
yield
finally:
# Restore directly patched layers.
for param_key, weight in original_weights.get_changed_weights():
cur_param = model.get_parameter(param_key)
cur_param.data = weight.to(dtype=cur_param.dtype, device=cur_param.device, copy=True)
# Clear patches from all patched modules.
# Note: This logic assumes no nested modules in original_modules.
for orig_module in original_modules.values():
orig_module.clear_patches()
@staticmethod
@torch.no_grad()
def apply_model_patch(
def apply_smart_model_patch(
model: torch.nn.Module,
prefix: str,
patch: ModelPatchRaw,
patch_weight: float,
original_weights: OriginalWeightsStorage,
original_modules: dict[str, torch.nn.Module],
dtype: torch.dtype,
force_direct_patching: bool,
force_sidecar_patching: bool,
):
"""Apply a single LoRA patch to a model.
Args:
model (torch.nn.Module): The model to patch.
prefix (str): A string prefix that precedes keys used in the LoRAs weight layers.
patch (LoRAModelRaw): The LoRA model to patch in.
patch_weight (float): The weight of the LoRA patch.
original_weights (OriginalWeightsStorage): Storage for the original weights of the model, for unpatching.
"""Apply a single LoRA patch to a model using the 'smart' patching strategy that chooses whether to use direct
patching or a sidecar wrapper for each module.
"""
if patch_weight == 0:
return
@@ -89,13 +93,50 @@ class LayerPatcher:
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
)
LayerPatcher._apply_model_layer_patch(
module_to_patch=module,
module_to_patch_key=module_key,
patch=layer,
patch_weight=patch_weight,
original_weights=original_weights,
)
# Decide whether to use direct patching or a sidecar patch.
# Direct patching is preferred, because it results in better runtime speed.
# Reasons to use sidecar patching:
# - The module is quantized, so the caller passed force_sidecar_patching=True.
# - The module already has sidecar patches.
# - The module is on the CPU (and we don't want to store a second full copy of the original weights on the
# CPU, since this would double the RAM usage)
# NOTE: For now, we don't check if the layer is quantized here. We assume that this is checked in the caller
# and that the caller will set force_sidecar_patching=True if the layer is quantized.
# TODO(ryand): Handle the case where we are running without a GPU. Should we set a config flag that allows
# forcing full patching even on the CPU?
use_sidecar_patching = False
if force_direct_patching and force_sidecar_patching:
raise ValueError("Cannot force both direct and sidecar patching.")
elif force_direct_patching:
use_sidecar_patching = False
elif force_sidecar_patching:
use_sidecar_patching = True
elif module.get_num_patches() > 0:
use_sidecar_patching = True
elif LayerPatcher._is_any_part_of_layer_on_cpu(module):
use_sidecar_patching = True
if use_sidecar_patching:
LayerPatcher._apply_model_layer_wrapper_patch(
module_to_patch=module,
module_to_patch_key=module_key,
patch=layer,
patch_weight=patch_weight,
original_modules=original_modules,
dtype=dtype,
)
else:
LayerPatcher._apply_model_layer_patch(
module_to_patch=module,
module_to_patch_key=module_key,
patch=layer,
patch_weight=patch_weight,
original_weights=original_weights,
)
@staticmethod
def _is_any_part_of_layer_on_cpu(layer: torch.nn.Module) -> bool:
return any(p.device.type == "cpu" for p in layer.parameters())
@staticmethod
@torch.no_grad()
@@ -120,7 +161,9 @@ class LayerPatcher:
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
for param_name, param_weight in patch.get_parameters(module_to_patch, weight=patch_weight).items():
for param_name, param_weight in patch.get_parameters(
dict(module_to_patch.named_parameters(recurse=False)), weight=patch_weight
).items():
param_key = module_to_patch_key + "." + param_name
module_param = module_to_patch.get_parameter(param_name)
@@ -143,93 +186,9 @@ class LayerPatcher:
patch.to(device=TorchDevice.CPU_DEVICE)
@staticmethod
@torch.no_grad()
@contextmanager
def apply_model_sidecar_patches(
model: torch.nn.Module,
patches: Iterable[Tuple[ModelPatchRaw, float]],
prefix: str,
dtype: torch.dtype,
):
"""Apply one or more LoRA sidecar patches to a model within a context manager. Sidecar patches incur some
overhead compared to normal LoRA patching, but they allow for LoRA layers to applied to base layers in any
quantization format.
Args:
model (torch.nn.Module): The model to patch.
patches (Iterable[Tuple[LoRAModelRaw, float]]): An iterator that returns tuples of LoRA patches and
associated weights. An iterator is used so that the LoRA patches do not need to be loaded into memory
all at once.
prefix (str): The keys in the patches will be filtered to only include weights with this prefix.
dtype (torch.dtype): The compute dtype of the sidecar layers. This cannot easily be inferred from the model,
since the sidecar layers are typically applied on top of quantized layers whose weight dtype is
different from their compute dtype.
"""
original_modules: dict[str, torch.nn.Module] = {}
try:
for patch, patch_weight in patches:
LayerPatcher._apply_model_sidecar_patch(
model=model,
prefix=prefix,
patch=patch,
patch_weight=patch_weight,
original_modules=original_modules,
dtype=dtype,
)
yield
finally:
# Restore original modules.
# Note: This logic assumes no nested modules in original_modules.
for module_key, orig_module in original_modules.items():
module_parent_key, module_name = LayerPatcher._split_parent_key(module_key)
parent_module = model.get_submodule(module_parent_key)
LayerPatcher._set_submodule(parent_module, module_name, orig_module)
@staticmethod
def _apply_model_sidecar_patch(
model: torch.nn.Module,
patch: ModelPatchRaw,
patch_weight: float,
prefix: str,
original_modules: dict[str, torch.nn.Module],
dtype: torch.dtype,
):
"""Apply a single LoRA sidecar patch to a model."""
if patch_weight == 0:
return
# If the layer keys contain a dot, then they are not flattened, and can be directly used to access model
# submodules. If the layer keys do not contain a dot, then they are flattened, meaning that all '.' have been
# replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly
# without searching, but some legacy code still uses flattened keys.
layer_keys_are_flattened = "." not in next(iter(patch.layers.keys()))
prefix_len = len(prefix)
for layer_key, layer in patch.layers.items():
if not layer_key.startswith(prefix):
continue
module_key, module = LayerPatcher._get_submodule(
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
)
LayerPatcher._apply_model_layer_wrapper_patch(
model=model,
module_to_patch=module,
module_to_patch_key=module_key,
patch=layer,
patch_weight=patch_weight,
original_modules=original_modules,
dtype=dtype,
)
@staticmethod
@torch.no_grad()
def _apply_model_layer_wrapper_patch(
model: torch.nn.Module,
module_to_patch: torch.nn.Module,
module_to_patch_key: str,
patch: BaseLayerPatch,
@@ -237,25 +196,16 @@ class LayerPatcher:
original_modules: dict[str, torch.nn.Module],
dtype: torch.dtype,
):
"""Apply a single LoRA wrapper patch to a model."""
# Replace the original module with a BaseSidecarWrapper if it has not already been done.
if not isinstance(module_to_patch, BaseSidecarWrapper):
wrapped_module = wrap_module_with_sidecar_wrapper(orig_module=module_to_patch)
original_modules[module_to_patch_key] = module_to_patch
module_parent_key, module_name = LayerPatcher._split_parent_key(module_to_patch_key)
module_parent = model.get_submodule(module_parent_key)
LayerPatcher._set_submodule(module_parent, module_name, wrapped_module)
else:
assert module_to_patch_key in original_modules
wrapped_module = module_to_patch
"""Apply a single LoRA wrapper patch to a module."""
# Move the LoRA layer to the same device/dtype as the orig module.
first_param = next(module_to_patch.parameters())
device = first_param.device
patch.to(device=device, dtype=dtype)
# Add the patch to the sidecar wrapper.
wrapped_module.add_patch(patch, patch_weight)
if module_to_patch_key not in original_modules:
original_modules[module_to_patch_key] = module_to_patch
module_to_patch.add_patch(patch, patch_weight)
@staticmethod
def _split_parent_key(module_key: str) -> tuple[str, str]:

View File

@@ -5,7 +5,7 @@ import torch
class BaseLayerPatch(ABC):
@abstractmethod
def get_parameters(self, orig_module: torch.nn.Module, weight: float) -> dict[str, torch.Tensor]:
def get_parameters(self, orig_parameters: dict[str, torch.Tensor], weight: float) -> dict[str, torch.Tensor]:
"""Get the parameter residual updates that should be applied to the original parameters. Parameters omitted
from the returned dict are not updated.
"""

View File

@@ -30,7 +30,7 @@ class ConcatenatedLoRALayer(LoRALayerBase):
layer_weights = [lora_layer.get_weight(None) * lora_layer.scale() for lora_layer in self.lora_layers] # pyright: ignore[reportArgumentType]
return torch.cat(layer_weights, dim=self.concat_axis)
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
def get_bias(self, orig_bias: torch.Tensor | None) -> Optional[torch.Tensor]:
# TODO(ryand): Currently, we pass orig_bias=None to the sub-layers. If we want to support sub-layers that
# require this value, we will need to implement chunking of the original bias tensor here.
# Note that we must apply the sub-layer scales here.

View File

@@ -8,11 +8,11 @@ class FluxControlLoRALayer(LoRALayer):
shapes don't match.
"""
def get_parameters(self, orig_module: torch.nn.Module, weight: float) -> dict[str, torch.Tensor]:
def get_parameters(self, orig_parameters: dict[str, torch.Tensor], weight: float) -> dict[str, torch.Tensor]:
"""This overrides the base class behavior to skip the reshaping step."""
scale = self.scale()
params = {"weight": self.get_weight(orig_module.weight) * (weight * scale)}
bias = self.get_bias(orig_module.bias)
params = {"weight": self.get_weight(orig_parameters["weight"]) * (weight * scale)}
bias = self.get_bias(orig_parameters.get("bias", None))
if bias is not None:
params["bias"] = bias * (weight * scale)

View File

@@ -2,6 +2,7 @@ from typing import Dict, Optional
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
from invokeai.backend.patches.layers.lora_layer_base import LoRALayerBase
@@ -50,7 +51,7 @@ class IA3Layer(LoRALayerBase):
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
return orig_weight * weight
return cast_to_device(orig_weight, weight.device) * weight
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
super().to(device, dtype)

View File

@@ -54,19 +54,19 @@ class LoRALayerBase(BaseLayerPatch):
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
raise NotImplementedError()
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
def get_bias(self, orig_bias: torch.Tensor | None) -> Optional[torch.Tensor]:
return self.bias
def get_parameters(self, orig_module: torch.nn.Module, weight: float) -> dict[str, torch.Tensor]:
def get_parameters(self, orig_parameters: dict[str, torch.Tensor], weight: float) -> dict[str, torch.Tensor]:
scale = self.scale()
params = {"weight": self.get_weight(orig_module.weight) * (weight * scale)}
bias = self.get_bias(orig_module.bias)
params = {"weight": self.get_weight(orig_parameters["weight"]) * (weight * scale)}
bias = self.get_bias(orig_parameters.get("bias", None))
if bias is not None:
params["bias"] = bias * (weight * scale)
# Reshape all params to match the original module's shape.
for param_name, param_weight in params.items():
orig_param = orig_module.get_parameter(param_name)
orig_param = orig_parameters[param_name]
if param_weight.shape != orig_param.shape:
params[param_name] = param_weight.reshape(orig_param.shape)

View File

@@ -14,10 +14,10 @@ class SetParameterLayer(BaseLayerPatch):
self.weight = weight
self.param_name = param_name
def get_parameters(self, orig_module: torch.nn.Module, weight: float) -> dict[str, torch.Tensor]:
def get_parameters(self, orig_parameters: dict[str, torch.Tensor], weight: float) -> dict[str, torch.Tensor]:
# Note: We intentionally ignore the weight parameter here. This matches the behavior in the official FLUX
# Control LoRA implementation.
diff = self.weight - orig_module.get_parameter(self.param_name)
diff = self.weight - orig_parameters[self.param_name]
return {self.param_name: diff}
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):

View File

@@ -1,54 +0,0 @@
import torch
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
class BaseSidecarWrapper(torch.nn.Module):
"""A base class for sidecar wrappers.
A sidecar wrapper is a wrapper for an existing torch.nn.Module that applies a
list of patches as 'sidecar' patches. I.e. it applies the sidecar patches during forward inference without modifying
the original module.
Sidecar wrappers are typically used over regular patches when:
- The original module is quantized and so the weights can't be patched in the usual way.
- The original module is on the CPU and modifying the weights would require backing up the original weights and
doubling the CPU memory usage.
"""
def __init__(
self, orig_module: torch.nn.Module, patches_and_weights: list[tuple[BaseLayerPatch, float]] | None = None
):
super().__init__()
self._orig_module = orig_module
self._patches_and_weights = [] if patches_and_weights is None else patches_and_weights
@property
def orig_module(self) -> torch.nn.Module:
return self._orig_module
def add_patch(self, patch: BaseLayerPatch, patch_weight: float):
"""Add a patch to the sidecar wrapper."""
self._patches_and_weights.append((patch, patch_weight))
def _aggregate_patch_parameters(
self, patches_and_weights: list[tuple[BaseLayerPatch, float]]
) -> dict[str, torch.Tensor]:
"""Helper function that aggregates the parameters from all patches into a single dict."""
params: dict[str, torch.Tensor] = {}
for patch, patch_weight in patches_and_weights:
# TODO(ryand): self._orig_module could be quantized. Depending on what the patch is doing with the original
# module, this might fail or return incorrect results.
layer_params = patch.get_parameters(self._orig_module, weight=patch_weight)
for param_name, param_weight in layer_params.items():
if param_name not in params:
params[param_name] = param_weight
else:
params[param_name] += param_weight
return params
def forward(self, *args, **kwargs): # type: ignore
raise NotImplementedError()

View File

@@ -1,11 +0,0 @@
import torch
from invokeai.backend.patches.sidecar_wrappers.base_sidecar_wrapper import BaseSidecarWrapper
class Conv1dSidecarWrapper(BaseSidecarWrapper):
def forward(self, input: torch.Tensor) -> torch.Tensor:
aggregated_param_residuals = self._aggregate_patch_parameters(self._patches_and_weights)
return self.orig_module(input) + torch.nn.functional.conv1d(
input, aggregated_param_residuals["weight"], aggregated_param_residuals.get("bias", None)
)

View File

@@ -1,11 +0,0 @@
import torch
from invokeai.backend.patches.sidecar_wrappers.base_sidecar_wrapper import BaseSidecarWrapper
class Conv2dSidecarWrapper(BaseSidecarWrapper):
def forward(self, input: torch.Tensor) -> torch.Tensor:
aggregated_param_residuals = self._aggregate_patch_parameters(self._patches_and_weights)
return self.orig_module(input) + torch.nn.functional.conv1d(
input, aggregated_param_residuals["weight"], aggregated_param_residuals.get("bias", None)
)

View File

@@ -1,24 +0,0 @@
import torch
from invokeai.backend.patches.layers.set_parameter_layer import SetParameterLayer
from invokeai.backend.patches.sidecar_wrappers.base_sidecar_wrapper import BaseSidecarWrapper
class FluxRMSNormSidecarWrapper(BaseSidecarWrapper):
"""A sidecar wrapper for a FLUX RMSNorm layer.
This wrapper is a special case. It is added specifically to enable FLUX structural control LoRAs, which overwrite
the RMSNorm scale parameters.
"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
# Given the narrow focus of this wrapper, we only support a very particular patch configuration:
assert len(self._patches_and_weights) == 1
patch, _patch_weight = self._patches_and_weights[0]
assert isinstance(patch, SetParameterLayer)
assert patch.param_name == "scale"
# Apply the patch.
# NOTE(ryand): Currently, we ignore the patch weight when running as a sidecar. It's not clear how this should
# be handled.
return torch.nn.functional.rms_norm(input, patch.weight.shape, patch.weight, eps=1e-6)

View File

@@ -1,66 +0,0 @@
import torch
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
from invokeai.backend.patches.layers.concatenated_lora_layer import ConcatenatedLoRALayer
from invokeai.backend.patches.layers.flux_control_lora_layer import FluxControlLoRALayer
from invokeai.backend.patches.layers.lora_layer import LoRALayer
from invokeai.backend.patches.sidecar_wrappers.base_sidecar_wrapper import BaseSidecarWrapper
class LinearSidecarWrapper(BaseSidecarWrapper):
def _lora_forward(self, input: torch.Tensor, lora_layer: LoRALayer, lora_weight: float) -> torch.Tensor:
"""An optimized implementation of the residual calculation for a Linear LoRALayer."""
x = torch.nn.functional.linear(input, lora_layer.down)
if lora_layer.mid is not None:
x = torch.nn.functional.linear(x, lora_layer.mid)
x = torch.nn.functional.linear(x, lora_layer.up, bias=lora_layer.bias)
x *= lora_weight * lora_layer.scale()
return x
def _concatenated_lora_forward(
self, input: torch.Tensor, concatenated_lora_layer: ConcatenatedLoRALayer, lora_weight: float
) -> torch.Tensor:
"""An optimized implementation of the residual calculation for a Linear ConcatenatedLoRALayer."""
x_chunks: list[torch.Tensor] = []
for lora_layer in concatenated_lora_layer.lora_layers:
x_chunk = torch.nn.functional.linear(input, lora_layer.down)
if lora_layer.mid is not None:
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.mid)
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.up, bias=lora_layer.bias)
x_chunk *= lora_weight * lora_layer.scale()
x_chunks.append(x_chunk)
# TODO(ryand): Generalize to support concat_axis != 0.
assert concatenated_lora_layer.concat_axis == 0
x = torch.cat(x_chunks, dim=-1)
return x
def forward(self, input: torch.Tensor) -> torch.Tensor:
# First, apply the original linear layer.
# NOTE: We slice the input to match the original weight shape in order to work with FluxControlLoRAs, which
# change the linear layer's in_features.
orig_input = input
input = orig_input[..., : self.orig_module.in_features]
output = self.orig_module(input)
# Then, apply layers for which we have optimized implementations.
unprocessed_patches_and_weights: list[tuple[BaseLayerPatch, float]] = []
for patch, patch_weight in self._patches_and_weights:
if isinstance(patch, FluxControlLoRALayer):
# Note that we use the original input here, not the sliced input.
output += self._lora_forward(orig_input, patch, patch_weight)
elif isinstance(patch, LoRALayer):
output += self._lora_forward(input, patch, patch_weight)
elif isinstance(patch, ConcatenatedLoRALayer):
output += self._concatenated_lora_forward(input, patch, patch_weight)
else:
unprocessed_patches_and_weights.append((patch, patch_weight))
# Finally, apply any remaining patches.
if len(unprocessed_patches_and_weights) > 0:
aggregated_param_residuals = self._aggregate_patch_parameters(unprocessed_patches_and_weights)
output += torch.nn.functional.linear(
input, aggregated_param_residuals["weight"], aggregated_param_residuals.get("bias", None)
)
return output

View File

@@ -1,20 +0,0 @@
import torch
from invokeai.backend.flux.modules.layers import RMSNorm
from invokeai.backend.patches.sidecar_wrappers.conv1d_sidecar_wrapper import Conv1dSidecarWrapper
from invokeai.backend.patches.sidecar_wrappers.conv2d_sidecar_wrapper import Conv2dSidecarWrapper
from invokeai.backend.patches.sidecar_wrappers.flux_rms_norm_sidecar_wrapper import FluxRMSNormSidecarWrapper
from invokeai.backend.patches.sidecar_wrappers.linear_sidecar_wrapper import LinearSidecarWrapper
def wrap_module_with_sidecar_wrapper(orig_module: torch.nn.Module) -> torch.nn.Module:
if isinstance(orig_module, torch.nn.Linear):
return LinearSidecarWrapper(orig_module)
elif isinstance(orig_module, torch.nn.Conv1d):
return Conv1dSidecarWrapper(orig_module)
elif isinstance(orig_module, torch.nn.Conv2d):
return Conv2dSidecarWrapper(orig_module)
elif isinstance(orig_module, RMSNorm):
return FluxRMSNormSidecarWrapper(orig_module)
else:
raise ValueError(f"No sidecar wrapper found for module type: {type(orig_module)}")

View File

@@ -25,12 +25,9 @@ class InvokeInt8Params(bnb.nn.Int8Params):
self.CB = self.data
self.SCB = self.SCB.cuda()
else:
# we store the 8-bit rows-major weight
# we convert this weight to the turning/ampere weight during the first inference pass
# We quantize the weight and store in 8bit row-major
B = self.data.contiguous().half().cuda(device)
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
CB, SCB, _ = bnb.functional.int8_vectorwise_quant(B)
self.data = CB
self.CB = CB
self.SCB = SCB
@@ -55,9 +52,10 @@ class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
# See `bnb.nn.Linear8bitLt._save_to_state_dict()` for the serialization logic of SCB and weight_format.
scb = state_dict.pop(prefix + "SCB", None)
# Currently, we only support weight_format=0.
weight_format = state_dict.pop(prefix + "weight_format", None)
assert weight_format == 0
if weight_format is not None:
# Currently, we only support weight_format=0.
assert weight_format == 0
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
# rather than raising an exception to correctly implement this API.
@@ -99,6 +97,27 @@ class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
new_state.use_pool = self.state.use_pool
self.state = new_state
def forward(self, x: torch.Tensor):
# The state management in the base bnb.nn.Linear8bitLt is very convoluted. We override the forward method to
# try to simplify the state management a bit. We initialize a new MatmulLtState object for each forward pass.
# By avoiding persistent state, it is easier to move the layer between devices without worrying about keeping
# references to weights on the old device (e.g. self.state.CB).
matmul_state = bnb.MatmulLtState()
matmul_state.threshold = self.state.threshold
matmul_state.has_fp16_weights = self.state.has_fp16_weights
matmul_state.use_pool = self.state.use_pool
matmul_state.is_training = self.training
# The underlying InvokeInt8Params weight must already be quantized.
assert self.weight.CB is not None
matmul_state.CB = self.weight.CB
matmul_state.SCB = self.weight.SCB
# weights are cast automatically as Int8Params, but the bias has to be cast manually.
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
return bnb.matmul(x, self.weight, bias=self.bias, state=matmul_state)
def _convert_linear_layers_to_llm_8bit(
module: torch.nn.Module, ignore_modules: set[str], outlier_threshold: float, prefix: str = ""

View File

@@ -48,11 +48,13 @@ GGML_TENSOR_OP_TABLE = {
# Ops to run on the quantized tensor.
torch.ops.aten.detach.default: apply_to_quantized_tensor, # pyright: ignore
torch.ops.aten._to_copy.default: apply_to_quantized_tensor, # pyright: ignore
torch.ops.aten.clone.default: apply_to_quantized_tensor, # pyright: ignore
# Ops to run on dequantized tensors.
torch.ops.aten.t.default: dequantize_and_run, # pyright: ignore
torch.ops.aten.addmm.default: dequantize_and_run, # pyright: ignore
torch.ops.aten.mul.Tensor: dequantize_and_run, # pyright: ignore
torch.ops.aten.add.Tensor: dequantize_and_run, # pyright: ignore
torch.ops.aten.allclose.default: dequantize_and_run, # pyright: ignore
}
if torch.backends.mps.is_available():

View File

@@ -5,8 +5,8 @@ from typing import TYPE_CHECKING
from diffusers import UNet2DConditionModel
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.patches.model_patcher import LayerPatcher
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
if TYPE_CHECKING:
@@ -31,12 +31,16 @@ class LoRAExt(ExtensionBase):
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
lora_model = self._node_context.models.load(self._model_id).model
assert isinstance(lora_model, ModelPatchRaw)
LayerPatcher.apply_model_patch(
LayerPatcher.apply_smart_model_patch(
model=unet,
prefix="lora_unet_",
patch=lora_model,
patch_weight=self._weight,
original_weights=original_weights,
original_modules={},
dtype=unet.dtype,
force_direct_patching=True,
force_sidecar_patching=False,
)
del lora_model

View File

@@ -12,6 +12,7 @@ from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
from invokeai.backend.util.devices import TorchDevice
if TYPE_CHECKING:
from invokeai.app.invocations.model import ModelIdentifierField
@@ -89,7 +90,7 @@ class T2IAdapterExt(ExtensionBase):
width=input_width,
height=input_height,
num_channels=model.config["in_channels"],
device=model.device,
device=TorchDevice.choose_torch_device(),
dtype=model.dtype,
resize_mode=self._resize_mode,
)

View File

@@ -0,0 +1,12 @@
import logging
from typing import Any, MutableMapping
# Issue with type hints related to LoggerAdapter: https://github.com/python/typeshed/issues/7855
class PrefixedLoggerAdapter(logging.LoggerAdapter): # type: ignore
def __init__(self, logger: logging.Logger, prefix: str):
super().__init__(logger, {})
self.prefix = prefix
def process(self, msg: str, kwargs: MutableMapping[str, Any]) -> tuple[str, MutableMapping[str, Any]]:
return f"[{self.prefix}] {msg}", kwargs

Some files were not shown because too many files have changed in this diff Show More