Compare commits

...

177 Commits

Author SHA1 Message Date
Matt Williams
21b1cfd967 Apply suggestion from @mattwill-amd 2025-10-24 13:55:07 -04:00
Matt Williams
58d932f0fd Apply suggestion from @mattwill-amd 2025-10-24 13:55:01 -04:00
Matt Williams
d9c2cd6047 Apply suggestion from @mattwill-amd 2025-10-24 13:54:55 -04:00
Matt Williams
b0960ee73e CVS links and references 2025-10-20 12:11:47 -04:00
Adel Johar
2ec051dec5 Merge pull request #5531 from adeljo-amd/ci_examples
[Ex CI] Add libomp-dev, MIVisionX, rocDecode and dependencies
2025-10-20 09:55:02 +02:00
Pratik Basyal
fd6bbe18a7 PLDM update for MI250 and MI210 [Develop] (#5537)
* PLDM update for MI250 and MI210

* PLDM update
2025-10-17 17:13:42 -04:00
peterjunpark
a613bd6824 JAX Maxtext v25.9 doc update (#5532)
* archive previous version (25.7)

* update docker components list for 25.9

* update template

* update docker pull tag

* update

* fix intro
2025-10-17 11:31:06 -04:00
Adel Johar
b3459da524 [Ex CI] Add libomp-dev, MIVisionX, rocDecode 2025-10-17 14:02:54 +02:00
peterjunpark
14bb59fca9 Update Megatron/PyTorch Primus 25.9 docs (#5528)
* add previous versions

* Fix heading levels in pages using embedded templates (#5468)

* update primus-megatron doc

update megatron-lm doc

update templates

fix tab

update primus-megatron model configs

Update primus-pytorch model configs

fix css class

add posttrain to pytorch-training template

update data sheets

update

update

update

update docker tags

* Add known issue and update Primus/Turbo versions

* add primus ver to histories

* update primus ver to 0.1.1

* fix leftovers from merge conflict
2025-10-16 12:51:30 -04:00
anisha-amd
a98236a4e3 Main Docs: references of accelerator removal and change to GPU (#5495)
* Docs: references of accelerator removal and change to GPU

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
Co-authored-by: Pratik Basyal <pratik.basyal@amd.com>
2025-10-16 11:22:10 -04:00
David Dixon
5cb6bfe151 Add yaml-cpp to dependencies 2025-10-16 07:26:06 -06:00
David Dixon
6e7422ded7 Update cli11.yml for Azure Pipelines (#5523) 2025-10-15 10:47:29 -06:00
Istvan Kiss
7b7ff53985 Update Radeon link (#5453) 2025-10-15 17:25:05 +02:00
David Dixon
019796dc63 [external] Create cli11.yml (#5522) 2025-10-15 09:19:56 -06:00
Pratik Basyal
f21cfe1171 GitHub issue added to 702 known issues (#5520)
* GitHub issue added to 702 known issues

* Added missing RCCL changelog
2025-10-15 09:58:23 -04:00
Jan Stephan
170cb47a4f Merge pull request #5512 from j-stephan/rocm-examples-deps
[Ex CI] Add libtiff-dev, libopencv-dev and rpp
2025-10-15 10:02:46 +02:00
Braden Stefanuk
d19a8e4a83 [superbuild] Add dependencies for hipblaslt and origami (#5487)
* ci: add deps for origami in superbuild

* ci: add rocm path to system path

* build: add pip msgpack dep
2025-10-14 16:05:24 -06:00
amd-hsivasun
3a0b8529ed [Ex CI] Added MIOpen to the test dependencies for rocm-examples (#5517) 2025-10-14 14:56:36 -04:00
Joseph Macaranas
f9d7fc2e6a [External CI] Add libsimde-dev to ROCR pipeline (#5515) 2025-10-14 14:24:45 -04:00
Nilesh M Negi
d424687191 [Ex CI] Increase RCCL build time limit to 120mins (#5516) 2025-10-14 12:59:40 -05:00
Jan Stephan
35e6e50888 [Ex CI] Add libopencv-dev
Signed-off-by: Jan Stephan <jan.stephan@amd.com>
2025-10-13 20:00:25 +02:00
Jan Stephan
91cfe98eb3 [Ex CI] Add libtiff-dev and rpp
Signed-off-by: Jan Stephan <jan.stephan@amd.com>
2025-10-13 17:42:59 +02:00
Pratik Basyal
036aaa2e78 ROCm for HPC topic updated Develop (#5504)
* ROCm for HPC topic updated

* ROCm for HPC topic udpated

* Minor editorial
2025-10-10 22:31:51 -04:00
Pratik Basyal
78258e0f85 702 compatibility Footnote updated (#5502)
* Footnote updated

* Minor update

* Minor update

* Break added

* Line break added

* Line break

* Footnote updated

* Minor correction
2025-10-10 21:23:07 -04:00
amd-hsong
c79d9f74ef Merge pull request #5490 Re-enable device_merge_inplace unit test for rocPRIM 2025-10-10 15:03:23 -06:00
amd-hsivasun
fb1b78c6f0 [Ex CI] Added Component and Module Dependencies (#5489)
* [Ex CI] Added Component and Module Dependencies

* Add registerROCmPackages flag
2025-10-10 16:01:11 -04:00
peterjunpark
3a70d75f5e Fix documented AMD SMI version (ROCm 7.0.2) (#5496) 2025-10-10 15:09:20 -04:00
alexxu-amd
61e1f088a1 Merge pull request #5492 from ROCm/sync-dev-from-internal
Sync dev from internal for 7.0.2 GA
2025-10-10 11:17:32 -04:00
Pratik Basyal
1f6e5c5e04 Update compatibility-matrix.rst 2025-10-10 11:10:48 -04:00
Pratik Basyal
e8a0769842 Update RELEASE.md 2025-10-10 11:07:51 -04:00
Alex Xu
6f9579d052 Merge remote-tracking branch 'internal/develop' into sync-dev-from-internal 2025-10-10 11:02:33 -04:00
Pratik Basyal
245d53a021 Merge pull request #579 from prbasyal-amd/post-rc3-702-update
GPU resiliency highlight updated 702
2025-10-10 11:00:59 -04:00
Alex Xu
35dbbb22bc fix linting 2025-10-10 10:29:13 -04:00
alexxu-amd
03dc8cee00 Merge pull request #584 from ROCm/sync-dev-from-external
Sync dev from external
2025-10-10 10:14:56 -04:00
Alex Xu
323e5fd27a Merge remote-tracking branch 'external/develop' into sync-dev-from-external 2025-10-10 10:13:08 -04:00
alexxu-amd
b11fd7b492 Update versions.md (#583) 2025-10-10 09:31:24 -04:00
srayasam-amd
5e2efa05a6 7.0.2 GA update (#5491)
* 7.0.2 GA update

* Create rocm-7.0.2.xml
2025-10-10 18:47:48 +05:30
Hao Song
29a90f0271 [rocPRIM] Re-enable device_merge_inplace unit test for rocPRIM 2025-10-09 21:48:11 +00:00
randyh62
c06242bb89 Update RELEASE.md (#581)
* Update RELEASE.md

Remove support for rocBlas and hipBlasLt

* Update CHANGELOG.md

Removed from the Changelog as well.
2025-10-09 13:15:08 -07:00
peterjunpark
68e8453ca5 Update vLLM doc for 10/6 release and bump rocm-docs-core to 1.26.0 (#5481)
* archive previous doc version

* update model/docker data and doc templates

* Update "Reproducing the Docker image"

* fix: truncated commit hash doesn't work for some reason

* bump rocm-docs-core to 1.26.0

* fix numbering

fix

* update docker tag

* update .wordlist.txt
2025-10-08 16:23:40 -04:00
Pratik Basyal
503b8bcc86 Framework and changelog updated (#5483)
* Framework and chaneglog updated

* Wordlist updated
2025-10-08 15:05:11 -04:00
amd-hsivasun
e3d97d339a [Ex CI] Added rocJPEG and rocprofiler-sdk 2025-10-08 14:47:44 -04:00
alexxu-amd
978c58d196 Merge pull request #577 from ROCm/sync-develop-from-external
Sync develop from external
2025-10-08 14:25:03 -04:00
alexxu-amd
a366048b64 Merge branch 'develop' into sync-develop-from-external 2025-10-08 14:12:14 -04:00
Pratik Basyal
4c3e33c291 Compatibility matrix and changelog synced for ROCm 7.0.2 (#576)
* Compatibility matrix and changelog synced

* Indentation updated

* OS updated
2025-10-08 14:11:15 -04:00
Alex Xu
89758e67d8 Merge remote-tracking branch 'external/develop' into sync-develop-from-external 2025-10-08 14:03:34 -04:00
Pratik Basyal
5d0f201b4d 7.0.2 review update (#575)
* 7.0.2 review update

* Tensorflow footnote updated

* Wordlist added
2025-10-08 12:35:14 -04:00
Pratik Basyal
e3677d89a6 PLDM bundle info updated for 7.0.2 (#574)
* PLDM bundle info updated

* Driver dependency added to GPU resiliency

* Known issue for Migrpahx added

* Footnote added

* Known issue for OpenCV updated

* Leo's feedback incorporated

* Radeon 9060 updated

* Known issues updated
2025-10-08 11:00:42 -04:00
amd-hsivasun
f20edab8fc [Ex CI] Update CMake Flags for hipTensor 2025-10-07 15:21:39 -04:00
Pratik Basyal
6f84d50011 ROCm 7.0.2 Post RC3 update (#573)
* Space minimized

* OS support updated

* Minor change
2025-10-06 14:08:01 -04:00
Pratik Basyal
57dd082f28 Post RC2 7.0.2 review feedback updated (#571)
* Known issue updated

* Space optimized

* Changelog updated

* Apply suggestions from code review

Leo's review feedback incorporated

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Highlight changes

* Highlight and OS support updated

* GPU resiliency highlight updated

* Highlights updated

* ROCm-EP deprecation added

* Apply suggestions from code review

leo's feedback incorporated

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* PLDM update

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-10-06 12:04:09 -04:00
peterjunpark
eeea0d2180 Fix heading levels in pages using embedded templates (#5468) 2025-10-03 13:33:14 -04:00
anisha-amd
93c6d17922 Docs: frameworks 25.09 - compatibility - FlashInfer and llama.cpp (#5462) 2025-10-02 13:51:36 -04:00
amd-hsivasun
f91c2b9b4a Update dependencies-rocm.yml 2025-10-01 15:31:35 -04:00
amd-hsivasun
5e6b66ca39 Remove tasks to locate test dir 2025-10-01 15:30:37 -04:00
amd-hsivasun
6b8b359d03 Updated test dir to s/build/tests 2025-10-01 15:30:37 -04:00
amd-hsivasun
38e659e5f0 Update testDir 2025-10-01 15:30:37 -04:00
amd-hsivasun
0894547f5a Update setupenv 2025-10-01 15:30:37 -04:00
amd-hsivasun
aca31170c4 Update setupenv 2025-10-01 15:30:37 -04:00
amd-hsivasun
d21ec9eea5 Updated testDir 2025-10-01 15:30:37 -04:00
amd-hsivasun
189c269350 Added Debug 2025-10-01 15:30:37 -04:00
amd-hsivasun
774cb7a1b3 Changed testDir 2025-10-01 15:30:37 -04:00
amd-hsivasun
024cb4db76 Added testDir 2025-10-01 15:30:37 -04:00
amd-hsivasun
945fb286f7 Find tests Task 2025-10-01 15:30:37 -04:00
amd-hsivasun
ee93101541 Change list files 2025-10-01 15:30:37 -04:00
amd-hsivasun
e31841312b Update testDir 2025-10-01 15:30:37 -04:00
amd-hsivasun
41b5298659 Added a list for all rp-systems files 2025-10-01 15:30:37 -04:00
amd-hsivasun
58790154b2 Add a script to look for setup-env.sh 2025-10-01 15:30:37 -04:00
amd-hsivasun
6f7f73ac0b Update workingDirectories 2025-10-01 15:30:37 -04:00
amd-hsivasun
b2e3bc8565 [Ex CI] Updated rp-systems CMakeBuildDir 2025-10-01 15:30:37 -04:00
amd-hsivasun
52979e2fdb [Ex CI] Updated testDir for rp-systems tests 2025-10-01 15:30:37 -04:00
peterjunpark
0ea5216ace docs: update article_info in conf.py (#5454) 2025-10-01 13:17:50 -04:00
peterjunpark
2e1b4dd5ee Add multi-node setup instructions for training perf Dockers (#5449)
---------

Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
2025-09-30 14:53:38 -04:00
Pratik Basyal
5c7b993c0c 7.0.2 release changes (#568)
* Initial changes for 7.0.2

* Heading level updated

* Release notes changes

* rocsolver added

* Known issues updated

* Highlights updated

* RN changes

* Release highlights for AI applications updated

* AI developer contents added

* leo's review feedback added

* Compatibility matrix updated

* GPU driver support
2025-09-30 14:02:04 -04:00
amd-hsivasun
2d79b3c4bd [Ex CI] Added rocm-cmake dependency 2025-09-30 14:00:16 -04:00
Peter Park
fd59b5fbac fix links in docs (#5446) 2025-09-29 15:27:32 -04:00
amd-hsivasun
0a643f4686 [Ex CI] Enable aqlprofile 2025-09-26 14:42:15 -04:00
amd-hsivasun
d9e5744f7a Update testExecutable 2025-09-26 14:01:02 -04:00
amd-hsivasun
ccb849ec02 Added python3-pip to aptModules 2025-09-26 14:01:02 -04:00
amd-hsivasun
42d4867964 Removed more aptPackages 2025-09-26 14:01:02 -04:00
amd-hsivasun
375359a5dd Added ninja to aptPackages 2025-09-26 14:01:02 -04:00
amd-hsivasun
e92745f1ff Removed apt and pip modules 2025-09-26 14:01:02 -04:00
amd-hsivasun
0fa72358d3 Remove registerROCm packages flag 2025-09-26 14:01:02 -04:00
amd-hsivasun
6fec268a4e Removed package manager 2025-09-26 14:01:02 -04:00
amd-hsivasun
ff14cd1ff5 Added pyyaml 2025-09-26 14:01:02 -04:00
amd-hsivasun
8f65688653 Added registerROCmPackages 2025-09-26 14:01:02 -04:00
amd-hsivasun
33d1493adb Removed dependencies 2025-09-26 14:01:02 -04:00
amd-hsivasun
4b6c7776a2 Updated parameters 2025-09-26 14:01:02 -04:00
amd-hsivasun
af811daa1b Added GPUTarget 2025-09-26 14:01:02 -04:00
amd-hsivasun
d6c045e482 Update test parameters 2025-09-26 14:01:02 -04:00
amd-hsivasun
78b24cad39 Update test pool 2025-09-26 14:01:02 -04:00
amd-hsivasun
753a94c0bb Add test step to buildjob 2025-09-26 14:01:02 -04:00
amd-hsivasun
6ecad57c62 Revert pool changes 2025-09-26 14:01:02 -04:00
amd-hsivasun
977554809a Changed cmake prefix path 2025-09-26 14:01:02 -04:00
amd-hsivasun
7b00f4493b Removed module and prefix path 2025-09-26 14:01:02 -04:00
amd-hsivasun
95c439a272 Removed Compiler Path 2025-09-26 14:01:02 -04:00
amd-hsivasun
94e04fbdc0 Updated testpool 2025-09-26 14:01:02 -04:00
amd-hsivasun
7ab59de8af Update testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
175c817563 Change testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
25516d312e Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
30c345629a Changed testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
210dc94bbb Removed testExecutable 2025-09-26 14:01:02 -04:00
amd-hsivasun
a54023ccb8 Changed testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
17e3362dc7 Add Checkout to testjob 2025-09-26 14:01:02 -04:00
amd-hsivasun
0f9c0d884d Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
c890de4b16 Added Path to Gtest 2025-09-26 14:01:02 -04:00
amd-hsivasun
4ea77ab515 Added Tests 2025-09-26 14:01:02 -04:00
amd-hsivasun
c0512612f4 Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
1c81ac3747 Updated testdir path 2025-09-26 14:01:02 -04:00
amd-hsivasun
4bafa42e52 Updated test parameters 2025-09-26 14:01:02 -04:00
amd-hsivasun
493801e670 Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
1a5152b7b3 Removed testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
874c881012 Fixed testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
bdcaeea74c Updated testdir 2025-09-26 14:01:02 -04:00
amd-hsivasun
b02669acf7 Fixed Dependencies 2025-09-26 14:01:02 -04:00
amd-hsivasun
844f10b2b1 Updated denendecies-other variables 2025-09-26 14:01:02 -04:00
amd-hsivasun
d6c14920b4 External CI: Build pipeline for aqlprofile 2025-09-26 14:01:02 -04:00
amd-hsivasun
4affe10a7c [Ex CI] Update pipeline Id for rdc to monorepo 2025-09-26 12:38:57 -04:00
amd-hsivasun
81341ef435 Add New Line 2025-09-26 11:41:21 -04:00
amd-hsivasun
abacd328f9 [Ex CI] Added rocRand to rocmDependencies 2025-09-26 11:41:21 -04:00
amd-hsivasun
80b2fb6e26 [Ex CI] Add hipRAND to rocmDependencies 2025-09-26 11:41:21 -04:00
amd-hsivasun
b53e8decfc [Ex CI] Enable rdc monorepo 2025-09-26 11:41:21 -04:00
amd-hsivasun
5fcc2eafde [Ex CI] Update pipeline Id for rocprofiler-sdk to monorepo 2025-09-25 16:49:07 -04:00
amd-hsivasun
2eb0d77bc6 Updated testDir 2025-09-25 13:20:37 -04:00
amd-hsivasun
d84b41908f Changed Testdir 2025-09-25 13:20:37 -04:00
amd-hsivasun
986f8284d1 [Ex CI] Update testDir for rocprofiler-sdk 2025-09-25 13:20:37 -04:00
Pratik Basyal
d92d9268dc Use of Radeon and Ryzen reference updated [Develop] (#5432)
* Use of Radeon and Ryzen reference updated

* Pytorch link update
2025-09-24 19:07:41 -05:00
Ibrahim Wani
1629d3f0ea Add origami yaml based tests to azure pipelines (#5431)
* Add origami yaml tests

* Dependency fix in origami.yml

* Fix almalinux dependency; get publish test results step working

* Fix almalinux dependency issue
2025-09-24 14:49:51 -06:00
Pratik Basyal
6cf6b34b2e TOC for ROCm on Radeon and Ryzen updated (#5429) 2025-09-24 13:58:26 -05:00
Pratik Basyal
c35a0a121a ROR link and text updated (#5426) 2025-09-24 13:28:13 -05:00
amd-hsivasun
412e383654 [Ex CI] Update pipeline Id for rocprofiler-sdk 2025-09-23 15:56:49 -04:00
Pratik Basyal
39f6fc187d rocm-core version updated (#5418) 2025-09-23 15:49:33 -04:00
amd-hsivasun
05b480fb28 Update rocm-examples.yml 2025-09-23 12:10:11 -04:00
amd-hsivasun
4fa44d90db Updated dependencies-cmake-custom.yml default ver 2025-09-23 12:10:11 -04:00
amd-hsivasun
c9ef13d823 Added Custom Cmake to testjobs 2025-09-23 12:10:11 -04:00
amd-hsivasun
f02172050b Added rocWMMA dependency 2025-09-23 12:10:11 -04:00
amd-hsivasun
154dbe297a Updated File to take custom cmake version 2025-09-23 12:10:11 -04:00
amd-hsivasun
993a0a4fd4 [Ex CI] Update cmake 2025-09-23 12:10:11 -04:00
amd-hsivasun
c03662f410 [Ex CI] Update pipeline Id for origami to monorepo 2025-09-23 11:17:39 -04:00
Peter Park
442d7e4750 Add env var note to vllm.rst for MoE models and fix links in docs (#5415)
* docs(vllm.rst): add performance note for MoE models

* docs: fix links

update vllm readme link 20250521

fix links
2025-09-22 15:58:43 -04:00
Pratik Basyal
a09a8f517e PLDM version for 7.0.0 updated (#5412) 2025-09-22 11:14:07 -04:00
Pratik Basyal
0bbaab645d rocSHMEM and ROCprofiler-SDK highlight update (#5408) (#5409)
* rocSHMEM and ROCprofiler-SDK highlight update (#5408)

* Update RELEASE.md
2025-09-22 10:26:12 -04:00
Ibrahim Wani
4b80405e2e Add set -e to exit when test fails (#5398) 2025-09-19 10:43:35 -06:00
Peter Park
d92e5b6c12 Update Primus Megatron doc v25.8 (#5396)
* megatron: update previous versions list

update

wording

* megatron: update rst and yaml

update primus repo link

update mig guide

* update headings and anchors

* megatron: update doc

* update docker hub urls
2025-09-19 08:09:21 -04:00
Pratik Basyal
91fce2e134 rocpd highlight updated (#5393) 2025-09-18 19:00:36 -04:00
Peter Park
27d53cf082 Remove duplicate ML FW docker image support table (#5389) 2025-09-18 17:06:53 -04:00
Pratik Basyal
bc084246be Reference to AMD GPU Driver 30.10 release notes updated (#5380) 2025-09-18 13:34:46 -05:00
Peter Park
9827ba7ff2 docs: MaxText v25.7 patch update (#5372)
* remove jax 0.6.0 nanoo fp8 caveat note

* reorder maxtext docker images in data sheet
2025-09-17 16:25:46 -04:00
Pratik Basyal
bafda50153 Link updated (#5369) 2025-09-17 15:03:29 -05:00
Pratik Basyal
cae65c6c43 Link reset (#5368) 2025-09-17 13:49:04 -05:00
pbhandar-amd
6a66167486 Merge pull request #5367 from ROCm/amd/pbhandar/rocm_701_internal_to_external_sync
Sync internal to external develop branch for ROCm 7.0.1
2025-09-17 14:26:03 -04:00
Parag Bhandari
0f3543d6e8 Merge branch 'develop-internal' into develop 2025-09-17 14:15:05 -04:00
pbhandar-amd
678691c3d7 Merge pull request #563 from ROCm/amd/pbhandar/rocm_701_external_to_internal_sync
Sync external develop into internal develop for ROCm 7.0.1
2025-09-17 14:14:40 -04:00
pbhandar-amd
5cb3debed9 Merge branch 'develop' into amd/pbhandar/rocm_701_external_to_internal_sync 2025-09-17 14:09:59 -04:00
pbhandar-amd
dd5d710727 Update versions.md 2025-09-17 14:09:49 -04:00
pbhandar-amd
eca1ecde92 Merge branch 'develop' into amd/pbhandar/rocm_701_external_to_internal_sync 2025-09-17 13:48:36 -04:00
pbhandar-amd
ed1e414710 Update versions.md 2025-09-17 13:42:20 -04:00
Pratik Basyal
20c90fc406 Footnote updated (#564) 2025-09-17 12:24:03 -05:00
JeniferC99
6e39614b22 7.0.1 GA update (#5365)
* Update default.xml - Change 7.0.0 to 7.0.1

* add rocm-7.0.1.xml
2025-09-17 13:18:01 -04:00
Pratik Basyal
f7873ac74e Long cell in compatibility matrix updated 701 (#562)
* Long cell updated

* Long cell updated

* Historical comaptibility updated
2025-09-17 11:57:35 -05:00
Parag Bhandari
a86fba556b Merge branch 'develop' into develop-internal 2025-09-17 12:35:50 -04:00
Pratik Basyal
7603fed080 Release 7.0.1 demo release notes (#536)
* Mono repo highlight added

* Leo's feedback incorporated

* Minor wording change

* Randy's feedback incorp

* Update for upcoming change

* Minor feedback added

* Ram's feedback incorporated

* Reworded for clarity

* ROCM 7.0.1 draft

* Minor change

* Release 7.0.0 notes appended

* Heading order updated for 7.0.1

* 700 GA changes synced

* Issue updated

* Review feedback added

* Conf file updated

* Tensorflow change added

* review feedback added

* GPU depencency matrix updated

* Compatibility updated

* Minor change

* New update note

* AMD GPU Driver notes updated

* Footnotes updated
2025-09-17 10:57:15 -05:00
Braden Stefanuk
9932cd4ac2 [hipsparselt] Update compile command for new build system (#5244) 2025-09-16 15:36:20 -06:00
Peter Park
e8d104124f Fix PyTorch training benchmark doc template (#5357)
* fix template

* update wordlist
2025-09-16 17:21:57 -04:00
Peter Park
26f708da87 Add Stable Diffusion XL to PyT training benchmark doc and fix paths in SGLang Disagg Inference doc (#5282)
* add sdxl to pytorch-training

* fix sphinx warnings

fix links

* fix paths in cmds and links in sglang disagg

* fix col width

* update release highlights

* fix

quickfix
2025-09-16 16:49:33 -04:00
Pratik Basyal
5a5e4dbb6e Compatibility updated (#5355) 2025-09-16 15:49:13 -05:00
randyh62
1c3dae75e1 Revert "Update RELEASE.md (#560)" (#561)
This reverts commit f216b371a0.
2025-09-16 13:02:13 -07:00
Peter Park
bab853a0d3 Add NCF to pytorch training benchmark doc (#5352)
* add previous version (25.6)

* fix template

* Formatting and wording fixes

* add caveats

* update yaml

* add note to pytorch-training

* fix template

* make model name shorter
2025-09-16 13:29:28 -04:00
Pratik Basyal
5c7ccb3c26 Github Issue Links updated (#5350)
* 7.0.0 compatibility updated

* GIM link updated
2025-09-16 12:55:58 -04:00
randyh62
f216b371a0 Update RELEASE.md (#560)
Update llvm-project URL
2025-09-16 09:39:26 -07:00
randyh62
37faf170b1 Update RELEASE.md (#5349)
* Update RELEASE.md

update llvm-project URL

* Update .wordlist.txt

add spelling errors
2025-09-16 09:38:23 -07:00
Peter Park
8c40d14d7e fix pldm note (#5346) 2025-09-16 11:09:19 -05:00
Peter Park
d5101532f7 docs: Add SGLang disaggregated P/D inference w/ Mooncake guide (#5335)
* add main content

* Update content and format

add clarification

update

update data

* fix

fix

fix

* fix: deepseek v3

* add ki

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-09-16 10:33:58 -05:00
Peter Park
ef4e7ca1fe docs(PyTorch training v25.8): Add Primus and update PyTorch training benchmark docs (#5331)
* pyt: update previous versions list

update conf.py

* pyt: update yaml and rst

update

update toc

* update headings and anchors

* pyt: update doc

* update docker hub urls
2025-09-16 10:33:53 -05:00
Pratik Basyal
be68246824 Compatibility updated for 7.0.0 (#5332)
* Compatibility udpated

* Minor fix
2025-09-16 10:01:49 -05:00
Pratik Basyal
1626ee4d8b Post GA fixes develop (#5329)
* Develop link updated

* Release notes and compatibilty update

* Compatibilitbity updated

* RPP link updated
2025-09-16 09:30:12 -05:00
Pratik Basyal
7316031fe6 7.0.0 Release notes update Batch 9 (#559)
* Changelog synced

* Compatibilty updated

* Compatibilty update

* Compiler highlight updated

* wordlist updated
2025-09-16 07:03:32 -04:00
165 changed files with 11544 additions and 4238 deletions

View File

@@ -79,7 +79,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- task: Bash@3
displayName: Add lit to PATH
inputs:

View File

@@ -131,7 +131,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -212,7 +212,7 @@ jobs:
parameters:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -37,6 +37,7 @@ parameters:
- libdrm-dev
- libelf-dev
- libnuma-dev
- libsimde-dev
- ninja-build
- pkg-config
- name: rocmDependencies

View File

@@ -0,0 +1,174 @@
parameters:
- name: componentName
type: string
default: aqlprofile
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
type: boolean
default: false
- name: aptPackages
type: object
default:
- cmake
- git
- ninja-build
- python3-pip
- name: rocmDependencies
type: object
default:
- clr
- llvm-project
- ROCR-Runtime
- name: rocmTestDependencies
type: object
default:
- clr
- llvm-project
- ROCR-Runtime
- rocprofiler-register
- name: jobMatrix
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
testJobs:
- { os: ubuntu2204, packageManager: apt, target: gfx942 }
- { os: ubuntu2204, packageManager: apt, target: gfx90a }
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ variables.MEDIUM_BUILD_POOL }}
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
consolidateBuildAndInstall: true
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_MODULE_PATH=$(Agent.BuildDirectory)/aqlprofile/cmake_modules
-DAQLPROFILE_BUILD_TESTS=ON
-DGPU_TARGETS=${{ job.target }}
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- ${{ if eq(job.os, 'ubuntu2204') }}:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.os }}_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.os }}_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
preTargetFilter: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
os: ${{ job.os }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: $(Agent.BuildDirectory)/rocm/share/hsa-amd-aqlprofile/
testExecutable: ./run_tests.sh
testParameters: ''
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}

View File

@@ -77,6 +77,7 @@ parameters:
- clr
- hipBLAS-common
- llvm-project
- rocm-cmake
- rocminfo
- rocm_smi_lib
- rocprofiler-register
@@ -144,7 +145,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -40,6 +40,7 @@ parameters:
- gfortran
- libgfortran5
- libopenblas-dev
- liblapack-dev
- name: pipModules
type: object
default:
@@ -53,6 +54,7 @@ parameters:
- hipSPARSE
- llvm-project
- rocBLAS
- rocm-cmake
- rocm_smi_lib
- rocminfo
- rocprofiler-register
@@ -66,6 +68,7 @@ parameters:
- llvm-project
- hipBLAS-common
- hipBLASLt
- rocm-cmake
- rocBLAS
- rocminfo
- rocprofiler-register
@@ -109,7 +112,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -125,10 +128,13 @@ jobs:
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
# NOTE: content between `---` is for transition support between old/new build systems
# and should be removed once transition is complete.
# -----------------------------
# Build and install gtest and lapack
# $(Pipeline.Workspace)/deps is a temporary folder for the build process
# $(Pipeline.Workspace)/s/deps is part of the hipSPARSELt repo
- script: mkdir $(Pipeline.Workspace)/deps
- script: mkdir -p $(Pipeline.Workspace)/deps
displayName: Create temp folder for external dependencies
# hipSPARSELt already has a CMake script for external deps, so we can just run that
# https://github.com/ROCm/hipSPARSELt/blob/develop/deps/CMakeLists.txt
@@ -144,22 +150,35 @@ jobs:
- script: sudo make install
displayName: Install hipSPARSELt external dependencies
workingDirectory: $(Pipeline.Workspace)/deps
# -----------------------------
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
# NOTE: the following options are old build only
# and can be removed after full transition to new build
# -DAMDGPU_TARGETS=${{ job.target }}
# -DCMAKE_Fortran_COMPILER=f95
# -DTensile_LOGIC=
# -DTensile_CPU_THREADS=
# -DTensile_LIBRARY_FORMAT=msgpack
# -DROCM_PATH=$(Agent.BuildDirectory)/rocm
# -DBUILD_CLIENTS_TESTS=ON
# -DBUILD_USE_LOCAL_TENSILE=OFF
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
-DCMAKE_Fortran_COMPILER=f95
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm"
-DGPU_TARGETS=${{ job.target }}
-DAMDGPU_TARGETS=${{ job.target }}
-DCMAKE_Fortran_COMPILER=f95
-DTensile_LOGIC=
-DTensile_CPU_THREADS=
-DTensile_LIBRARY_FORMAT=msgpack
-DCMAKE_PREFIX_PATH="$(Agent.BuildDirectory)/rocm"
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DBUILD_CLIENTS_TESTS=ON
-DBUILD_USE_LOCAL_TENSILE=OFF
-DHIPSPARSELT_ENABLE_FETCH=ON
-GNinja
${{ if ne(parameters.sparseCheckoutDir, '') }}:
cmakeSourceDir: $(Build.SourcesDirectory)/projects/hipsparselt

View File

@@ -77,6 +77,7 @@ jobs:
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/rocm/llvm
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DCMAKE_C_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang
-DROCM_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_BUILD_TYPE=Release
-DHIPTENSOR_BUILD_TESTS=ON

View File

@@ -71,7 +71,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -39,6 +39,9 @@ parameters:
- python3
- python3-dev
- python3-pip
- libgtest-dev
- libboost-filesystem-dev
- libboost-program-options-dev
- name: pipModules
type: object
default:
@@ -107,8 +110,12 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-vendor.yml
parameters:
dependencyList:
- gtest
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
@@ -125,7 +132,7 @@ jobs:
parameters:
os: ${{ job.os }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm;$(Agent.BuildDirectory)/vendor
-DCMAKE_CXX_COMPILER=$(Agent.BuildDirectory)/rocm/llvm/bin/amdclang++
-DORIGAMI_BUILD_SHARED_LIBS=ON
-DORIGAMI_ENABLE_PYTHON=ON
@@ -206,7 +213,15 @@ jobs:
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
os: ${{ job.os }}
testDir: '$(Agent.BuildDirectory)/rocm/bin'
testExecutable: './origami-tests'
testParameters: '--yaml origami-tests.yaml --gtest_output=xml:./test_output.xml --gtest_color=yes'
- script: |
set -e
export PYTHONPATH=$(Agent.BuildDirectory)/s/build/python:$PYTHONPATH
echo "--- Running origami_test.py ---"

View File

@@ -70,7 +70,7 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: rccl_build_${{ job.target }}
timeoutInMinutes: 90
timeoutInMinutes: 120
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -83,7 +83,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -1,10 +1,29 @@
parameters:
- name: componentName
type: string
default: rdc
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
# monorepo related parameters
- name: sparseCheckoutDir
type: string
default: ''
- name: triggerDownstreamJobs
type: boolean
default: false
- name: downstreamAggregateNames
type: string
default: ''
- name: buildDependsOn
type: object
default: null
- name: unifiedBuild
type: boolean
default: false
# set to true if doing full build of ROCm stack
# and dependencies are pulled from same pipeline
- name: aggregatePipeline
@@ -33,6 +52,7 @@ parameters:
- clr
- hipBLAS-common
- hipBLASLt
- hipRAND
- llvm-project
- rocBLAS
- rocm-cmake
@@ -43,6 +63,7 @@ parameters:
- rocprofiler
- rocprofiler-register
- rocprofiler-sdk
- rocRAND
- ROCR-Runtime
- name: rocmTestDependencies
type: object
@@ -74,7 +95,11 @@ parameters:
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: rdc_build_${{ job.target }}
- job: ${{ parameters.componentName }}_build_${{ job.target }}
${{ if parameters.buildDependsOn }}:
dependsOn:
- ${{ each build in parameters.buildDependsOn }}:
- ${{ build }}_${{ job.target }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
@@ -85,16 +110,22 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
checkoutRepo: ${{ parameters.checkoutRepo }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmDependencies }}
gpuTarget: ${{ job.target }}
aggregatePipeline: ${{ parameters.aggregatePipeline }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
# Build grpc
- task: Bash@3
displayName: 'git clone grpc'
@@ -104,6 +135,7 @@ jobs:
workingDirectory: $(Build.SourcesDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
cmakeBuildDir: $(Build.SourcesDirectory)/grpc/build
cmakeSourceDir: $(Build.SourcesDirectory)/grpc
installDir: $(Build.SourcesDirectory)/bin
@@ -117,6 +149,7 @@ jobs:
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
componentName: ${{ parameters.componentName }}
extraBuildFlags: >-
-DCMAKE_PREFIX_PATH=$(Agent.BuildDirectory)/rocm
-DGRPC_ROOT="$(Build.SourcesDirectory)/bin"
@@ -126,9 +159,12 @@ jobs:
-DAMDGPU_TARGETS=${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
componentName: ${{ parameters.componentName }}
sparseCheckoutDir: ${{ parameters.sparseCheckoutDir }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
componentName: ${{ parameters.componentName }}
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-links.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
@@ -136,60 +172,64 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
gpuTarget: ${{ job.target }}
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: rdc_test_${{ job.target }}
dependsOn: rdc_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), variables['Build.DefinitionName'])),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: ROCM_DIR
value: $(Agent.BuildDirectory)/rocm
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
- task: Bash@3
displayName: Setup test environment
inputs:
targetType: inline
script: |
sudo ln -s $(Agent.BuildDirectory)/rocm/bin/rdcd /usr/sbin/rdcd
echo $(Agent.BuildDirectory)/rocm/lib/rdc/grpc/lib | sudo tee /etc/ld.so.conf.d/grpc.conf
sudo ldconfig -v
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: Test rdc
inputs:
targetType: inline
script: >-
$(Agent.BuildDirectory)/rocm/share/rdc/rdctst_tests/rdctst
--batch_mode
--start_rdcd
--unauth_comm
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
extraPaths: /home/user/workspace/rocm/bin
- ${{ if eq(parameters.unifiedBuild, False) }}:
- ${{ each job in parameters.jobMatrix.testJobs }}:
- job: ${{ parameters.componentName }}_test_${{ job.target }}
dependsOn: ${{ parameters.componentName }}_build_${{ job.target }}
condition:
and(succeeded(),
eq(variables['ENABLE_${{ upper(job.target) }}_TESTS'], 'true'),
not(containsValue(split(variables['DISABLED_${{ upper(job.target) }}_TESTS'], ','), '${{ parameters.componentName }}')),
eq(${{ parameters.aggregatePipeline }}, False)
)
variables:
- group: common
- template: /.azuredevops/variables-global.yml
- name: ROCM_PATH
value: $(Agent.BuildDirectory)/rocm
- name: ROCM_DIR
value: $(Agent.BuildDirectory)/rocm
pool: ${{ job.target }}_test_pool
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/local-artifact-download.yml
parameters:
gpuTarget: ${{ job.target }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-aqlprofile.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-rocm.yml
parameters:
checkoutRef: ${{ parameters.checkoutRef }}
dependencyList: ${{ parameters.rocmTestDependencies }}
gpuTarget: ${{ job.target }}
${{ if parameters.triggerDownstreamJobs }}:
downstreamAggregateNames: ${{ parameters.downstreamAggregateNames }}
- task: Bash@3
displayName: Setup test environment
inputs:
targetType: inline
script: |
sudo ln -s $(Agent.BuildDirectory)/rocm/bin/rdcd /usr/sbin/rdcd
echo $(Agent.BuildDirectory)/rocm/lib/rdc/grpc/lib | sudo tee /etc/ld.so.conf.d/grpc.conf
sudo ldconfig -v
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/gpu-diagnostics.yml
- task: Bash@3
displayName: Test rdc
inputs:
targetType: inline
script: >-
$(Agent.BuildDirectory)/rocm/share/rdc/rdctst_tests/rdctst
--batch_mode
--start_rdcd
--unauth_comm
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
environment: test
gpuTarget: ${{ job.target }}
extraPaths: /home/user/workspace/rocm/bin

View File

@@ -70,6 +70,7 @@ parameters:
- hipBLAS-common
- hipBLASLt
- llvm-project
- rocm-cmake
- rocminfo
- rocprofiler-register
- rocm_smi_lib
@@ -154,7 +155,7 @@ jobs:
aptPackages: ${{ parameters.aptPackages }}
pipModules: ${{ parameters.pipModules }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -210,7 +210,7 @@ jobs:
parameters:
componentName: ${{ parameters.componentName }}
testDir: '$(Agent.BuildDirectory)/rocm/bin/rocprim'
extraTestParameters: '-I ${{ job.shard }},,${{ job.shardCount }} -E device_merge_inplace'
extraTestParameters: '-I ${{ job.shard }},,${{ job.shardCount }}'
os: ${{ job.os }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:

View File

@@ -14,9 +14,17 @@ parameters:
type: object
default:
- cmake
- libdw-dev
- libglfw3-dev
- libmsgpack-dev
- libomp-dev
- libopencv-dev
- libtbb-dev
- libtiff-dev
- libva-amdgpu-dev
- libavcodec-dev
- libavformat-dev
- libavutil-dev
- ninja-build
- python3-pip
- name: rocmDependencies
@@ -33,16 +41,24 @@ parameters:
- hipRAND
- hipSOLVER
- hipSPARSE
- hipTensor
- llvm-project
- MIOpen
- MIVisionX
- rocBLAS
- rocDecode
- rocFFT
- rocJPEG
- rocPRIM
- rocprofiler-register
- rocprofiler-sdk
- ROCR-Runtime
- rocRAND
- rocSOLVER
- rocSPARSE
- rocThrust
- rocWMMA
- rpp
- name: rocmTestDependencies
type: object
default:
@@ -57,18 +73,26 @@ parameters:
- hipRAND
- hipSOLVER
- hipSPARSE
- hipTensor
- llvm-project
- MIOpen
- MIVisionX
- rocBLAS
- rocDecode
- rocFFT
- rocminfo
- rocPRIM
- rocJPEG
- rocprofiler-register
- rocprofiler-sdk
- ROCR-Runtime
- rocRAND
- rocSOLVER
- rocSPARSE
- rocThrust
- roctracer
- rocWMMA
- rpp
- name: jobMatrix
type: object
@@ -97,6 +121,10 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:
@@ -158,6 +186,10 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
registerROCmPackages: true
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
parameters:
cmakeVersion: '3.25.0'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/checkout.yml
parameters:

View File

@@ -43,9 +43,14 @@ parameters:
- ninja-build
- python3-pip
- python3-venv
- googletest
- libgtest-dev
- libgmock-dev
- libboost-filesystem-dev
- name: pipModules
type: object
default:
- msgpack
- joblib
- "packaging>=22.0"
- pytest
@@ -102,7 +107,7 @@ jobs:
workspace:
clean: all
steps:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-latest.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-cmake-custom.yml
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
@@ -147,6 +152,13 @@ jobs:
echo "##vso[task.prependpath]$USER_BASE/bin"
echo "##vso[task.setvariable variable=PytestCmakePath]$USER_BASE/share/Pytest/cmake"
displayName: Set cmake configure paths
- task: Bash@3
displayName: Add ROCm binaries to PATH
inputs:
targetType: inline
script: |
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/bin"
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}

View File

@@ -213,6 +213,7 @@ jobs:
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: $(Agent.BuildDirectory)/s/build
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/docker-container.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}

View File

@@ -226,8 +226,11 @@ jobs:
echo "##vso[task.prependpath]$(Agent.BuildDirectory)/rocm/llvm/bin"
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
cmakeSourceDir: $(Agent.BuildDirectory)/s/projects/rocprofiler-systems
# build flags reference: https://rocm.docs.amd.com/projects/omnitrace/en/latest/install/install.html
extraBuildFlags: >-
-DCMAKE_INSTALL_PREFIX=$(Agent.BuildDirectory)/rocprofiler-systems
-DROCPROFSYS_USE_PYTHON=ON
-DROCPROFSYS_BUILD_TESTING=ON
-DROCPROFSYS_BUILD_DYNINST=ON
-DROCPROFSYS_BUILD_LIBUNWIND=ON
@@ -245,11 +248,13 @@ jobs:
displayName: Set up rocprofiler-systems env
inputs:
targetType: inline
script: source share/rocprofiler-systems/setup-env.sh
workingDirectory: build
script: source $(Agent.BuildDirectory)/rocprofiler-systems/share/rocprofiler-systems/setup-env.sh
workingDirectory: $(Agent.BuildDirectory)/rocprofiler-systems/share/rocprofiler-systems
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/test.yml
parameters:
componentName: ${{ parameters.componentName }}
testDir: $(Agent.BuildDirectory)/s/build/tests/
testParameters: '--output-on-failure'
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/manifest.yml
parameters:
gpuTarget: ${{ job.target }}

View File

@@ -0,0 +1,63 @@
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: cli11Version
type: string
default: ''
- name: aptPackages
type: object
default:
- cmake
- git
- ninja-build
- name: jobMatrix
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt}
- { os: almalinux8, packageManager: dnf}
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: cli11_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: 'ubuntu-22.04'
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- task: Bash@3
displayName: Clone cli11 ${{ parameters.cli11Version }}
inputs:
targetType: inline
script: git clone https://github.com/CLIUtils/CLI11.git -b ${{ parameters.cli11Version }}
workingDirectory: $(Agent.BuildDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
cmakeBuildDir: $(Agent.BuildDirectory)/CLI11/build
cmakeSourceDir: $(Agent.BuildDirectory)/CLI11
useAmdclang: false
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
os: ${{ job.os }}

View File

@@ -0,0 +1,66 @@
parameters:
- name: checkoutRepo
type: string
default: 'self'
- name: checkoutRef
type: string
default: ''
- name: yamlcppVersion
type: string
default: ''
- name: aptPackages
type: object
default:
- cmake
- git
- ninja-build
- name: jobMatrix
type: object
default:
buildJobs:
- { os: ubuntu2204, packageManager: apt}
- { os: almalinux8, packageManager: dnf}
jobs:
- ${{ each job in parameters.jobMatrix.buildJobs }}:
- job: yamlcpp_${{ job.os }}
variables:
- group: common
- template: /.azuredevops/variables-global.yml
pool:
vmImage: 'ubuntu-22.04'
${{ if eq(job.os, 'almalinux8') }}:
container:
image: rocmexternalcicd.azurecr.io/manylinux228:latest
endpoint: ContainerService3
workspace:
clean: all
steps:
- checkout: none
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/dependencies-other.yml
parameters:
aptPackages: ${{ parameters.aptPackages }}
packageManager: ${{ job.packageManager }}
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/preamble.yml
- task: Bash@3
displayName: Clone yaml-cpp ${{ parameters.yamlcppVersion }}
inputs:
targetType: inline
script: git clone https://github.com/jbeder/yaml-cpp.git -b ${{ parameters.yamlcppVersion }}
workingDirectory: $(Agent.BuildDirectory)
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/build-cmake.yml
parameters:
os: ${{ job.os }}
cmakeBuildDir: $(Agent.BuildDirectory)/yaml-cpp/build
cmakeSourceDir: $(Agent.BuildDirectory)/yaml-cpp
useAmdclang: false
extraBuildFlags: >-
-DCMAKE_BUILD_TYPE=Release
-DYAML_CPP_BUILD_TOOLS=OFF
-DYAML_BUILD_SHARED_LIBS=OFF
-DYAML_CPP_INSTALL=ON
-GNinja
- template: ${{ variables.CI_TEMPLATE_PATH }}/steps/artifact-upload.yml
parameters:
os: ${{ job.os }}

View File

@@ -0,0 +1,23 @@
variables:
- group: common
- template: /.azuredevops/variables-global.yml
parameters:
- name: cli11Version
type: string
default: "main"
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_DEPENDENCIES_PATH }}/cli11.yml
parameters:
cli11Version: ${{ parameters.cli11Version }}

View File

@@ -0,0 +1,24 @@
variables:
- group: common
- template: /.azuredevops/variables-global.yml
parameters:
- name: yamlcppVersion
type: string
default: "0.8.0"
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
trigger: none
pr: none
jobs:
- template: ${{ variables.CI_DEPENDENCIES_PATH }}/yamlcpp.yml
parameters:
yamlcppVersion: ${{ parameters.yamlcppVersion }}

View File

@@ -1,10 +1,15 @@
parameters:
- name: cmakeVersion
type: string
default: '3.31.0'
steps:
- task: Bash@3
displayName: Install CMake 3.31
displayName: Install CMake ${{ parameters.cmakeVersion }}
inputs:
targetType: inline
script: |
CMAKE_VERSION=3.31.0
CMAKE_VERSION=${{ parameters.cmakeVersion }}
CMAKE_ROOT="$(Pipeline.Workspace)/cmake"
echo "Downloading CMake $CMAKE_VERSION..."

View File

@@ -46,6 +46,10 @@ parameters:
pipelineId: 115
developBranch: aomp-dev
hasGpuTarget: false
aqlprofile:
pipelineId: 365
developBranch: develop
hasGpuTarget: false
clr:
pipelineId: 335
developBranch: develop
@@ -126,13 +130,17 @@ parameters:
pipelineId: 80
developBranch: develop
hasGpuTarget: true
origami:
pipelineId: 364
developBranch: develop
hasGpuTarget: true
rccl:
pipelineId: 107
developBranch: develop
hasGpuTarget: true
rdc:
pipelineId: 100
developBranch: amd-staging
pipelineId: 360
developBranch: develop
hasGpuTarget: false
rocAL:
pipelineId: 151
@@ -219,8 +227,8 @@ parameters:
developBranch: develop
hasGpuTarget: true
rocprofiler-systems:
pipelineId: 255
developBranch: amd-staging
pipelineId: 345
developBranch: develop
hasGpuTarget: true
rocPyDecode:
pipelineId: 239

View File

@@ -43,6 +43,7 @@ Blit
Blockwise
Bluefield
Bootloader
Broadcom
CAS
CCD
CDNA
@@ -72,6 +73,7 @@ CU
CUDA
CUs
CXX
CX
Cavium
CentOS
ChatGPT
@@ -118,6 +120,8 @@ Dependabot
Deprecations
DevCap
DirectX
Disaggregated
disaggregated
Dockerfile
Dockerized
Doxygen
@@ -127,6 +131,7 @@ ENDPGM
EPYC
ESXi
EoS
etcd
fas
FBGEMM
FIFOs
@@ -142,6 +147,8 @@ Filesystem
FindDb
Flang
FlashAttention
FlashInfers
FlashInfer
FluxBenchmark
Fortran
Fuyu
@@ -178,6 +185,7 @@ GPUs
Graphbolt
GraphSage
GRBM
GRE
GenAI
GenZ
GitHub
@@ -301,9 +309,11 @@ MirroredStrategy
Mixtral
MosaicML
MoEs
Mooncake
Mpops
Multicore
Multithreaded
MXFP
MyEnvironment
MyST
NANOO
@@ -445,6 +455,7 @@ SKU
SKUs
SLES
SLURM
Slurm
SMEM
SMFMA
SMI
@@ -473,6 +484,7 @@ TCI
TCIU
TCP
TCR
TVM
THREADGROUPS
threadgroups
TensorRT
@@ -615,6 +627,7 @@ coalescable
codename
collater
comgr
compat
completers
composable
concretization
@@ -662,6 +675,7 @@ detections
dev
devicelibs
devsel
dgl
dimensionality
disambiguates
distro
@@ -701,6 +715,7 @@ githooks
github
globals
gnupg
gpu
grayscale
gx
gzip
@@ -755,6 +770,7 @@ invariants
invocating
ipo
jax
json
kdb
kfd
kv
@@ -776,6 +792,7 @@ lossy
macOS
matchers
maxtext
megablocks
megatron
microarchitecture
migraphx
@@ -934,6 +951,7 @@ softmax
spack
spmm
src
stanford
stochastically
strided
subcommand
@@ -953,6 +971,7 @@ tabindex
targetContainer
td
tensorfloat
tf
th
tokenization
tokenize
@@ -965,6 +984,7 @@ toolset
toolsets
torchtitan
torchvision
tp
tqdm
tracebacks
txt

View File

@@ -4,9 +4,123 @@ This page is a historical overview of changes made to ROCm components. This
consolidated changelog documents key modifications and improvements across
different versions of the ROCm software stack and its components.
## ROCm 7.0.2
See the [ROCm 7.0.2 release notes](https://rocm.docs.amd.com/en/docs-7.0.2/about/release-notes.html#rocm-7-0-2-release-notes)
for a complete overview of this release.
### **AMD SMI** (26.0.2)
#### Added
* Added `bad_page_threshold_exceeded` field to `amd-smi static --ras`, which compares retired pages count against bad page threshold. This field displays `True` if retired pages exceed the threshold, `False` if within threshold, or `N/A` if threshold data is unavailable. Note that `sudo` is required to have the `bad_page_threshold_exceeded` field populated.
#### Removed
* Removed gpuboard and baseboard temperatures enums in amdsmi Python Library.
* `AmdSmiTemperatureType` had issues with referencing the correct attribute. As such, the following duplicate enums have been removed:
- `AmdSmiTemperatureType.GPUBOARD_NODE_FIRST`
- `AmdSmiTemperatureType.GPUBOARD_VR_FIRST`
- `AmdSmiTemperatureType.BASEBOARD_FIRST`
#### Resolved Issues
* Fixed `attribute error` in `amd-smi monitor` on Linux Guest systems, where the violations argument caused CLI to break.
* Fixed certain output in `amd-smi monitor` when GPUs are partitioned.
* It fixes the amd-smi monitor such as: `amd-smi monitor -Vqt`, `amd-smi monitor -g 0 -Vqt -w 1`, `amd-smi monitor -Vqt --file /tmp/test1`, etc. These commands will now be able to display as normal in partitioned GPU scenarios.
* Fixed an issue where using `amd-smi ras --folder <folder_name>` was forcing the created folder's name to be lowercase. This fix also allows all string input options to be case insensitive.
* Fixed an issue of some processes not being detected by AMD SMI despite making use of KFD resources. This fix, with the addition of KFD Fallback for process detection, ensures that all KFD processes will be detected.
* Multiple CPER issues were fixed.
- Issue of being unable to query for additional CPERs after 20 were generated on a single device.
- Issue where the RAS HBM CRC read was failing due to an incorrect AFID value.
- Issue where RAS injections were not consistently producing related CPERs.
### **HIP** (7.0.2)
#### Added
* Support for the `hipMemAllocationTypeUncached` flag, enabling developers to allocate uncached memory. This flag is now supported in the following APIs:
- `hipMemGetAllocationGranularity` determines the recommended allocation granularity for uncached memory.
- `hipMemCreate` allocates memory with uncached properties.
#### Resolved issues
* A compilation failure affecting applications that compile kernels using `hiprtc` with the compiler option `std=c++11`.
* A permission-related error occurred during the execution of `hipLaunchHostFunc`. This API is now supported and permitted to run during stream capture, aligning its behavior with CUDA.
* A numerical error during graph capture of kernels that rely on a remainder in `globalWorkSize`, in frameworks like MIOpen and PyTorch, where the grid size is not a multiple of the block size. To ensure correct replay behavior, HIP runtime now stores this remainder in `hip::GraphKernelNode` during `hipExtModuleLaunchKernel` capture, enabling accurate execution and preventing corruption.
* A page fault occurred during viewport rendering while running the file undo.blend in Blender. The issue was resolved by the HIP runtime, which reused the same context during image creation.
* Resolved a segmentation fault in `gpu_metrics`, which is used in threshold logic for command submission patches to GPU device(s) during CPU synchronization.
### **hipBLAS** (3.0.2)
#### Added
* Enabled support for gfx1150, gfx1151, gfx1200, and gfx1201 AMD hardware.
### **RCCL** (2.26.6)
#### Added
* Enabled double-buffering in `reduceCopyPacks` to trigger pipelining, especially to overlap bf16 arithmetic.
* Added `--force-reduce-pipeline` as an option that can be passed to the `install.sh` script. Passing this option will enable software-triggered pipelining `bfloat16` reductions (that is, `all_reduce`, `reduce_scatter`, and `reduce`).
### **rocBLAS** (5.0.2)
#### Added
* Enabled gfx1150 and gfx1151.
* The `ROCBLAS_USE_HIPBLASLT_BATCHED` variable to independently control the batched hipblaslt backend. Set `ROCBLAS_USE_HIPBLASLT_BATCHED=0` to disable batched GEMM use of the hipblaslt backend.
#### Resolved issues
* Set the imaginary portion of the main diagonal of the output matrix to zero in syrk and herk.
### **ROCdbgapi** (0.77.4)
#### Added
* ROCdbgapi documentation link in the README.md file.
### **ROCm Systems Profiler** (1.1.1)
#### Resolved issues
* Fixed an issue where ROC-TX ranges were displayed as two separate events instead of a single spanning event.
### **rocPRIM** (4.0.1)
#### Resolved issues
* Fixed compilation issue when using `rocprim::texture_cache_iterator`.
* Fixed a HIP version check used to determine whether `hipStreamLegacy` is supported. This resolves runtime errors that occur when `hipStreamLegacy` is used in ROCm 7.0.0 and later.
### **rocSPARSE** (4.0.3)
#### Resolved issues
* Fixed an issue causing premature deallocation of internal buffers while still in use.
### **rocSOLVER** (3.30.1)
#### Optimized
Improved the performance of:
* LARFT and downstream functions such as GEQRF and ORMTR.
* LARF and downstream functions such as GEQR2.
* ORMTR and downstream functions such as SYEVD.
* GEQR2 and downstream functions such as GEQRF.
## ROCm 7.0.1
ROCm 7.0.1 is a quality release that resolves the existing issue. There is no change in component from the previous ROCm 7.0.0 release. See the [ROCm 7.0.1 release notes](https://rocm.docs.amd.com/en/docs-7.0.1/about/release-notes.html#rocm-7-0-1-release-notes) for a complete overview of this release.
## ROCm 7.0.0
See the [ROCm 7.0.0 release notes](https://rocm-stg.amd.com/en/latest/about/release-notes.html#rocm-7-0-0-release-notes)
See the [ROCm 7.0.0 release notes](https://rocm.docs.amd.com/en/docs-7.0.0/about/release-notes.html#rocm-7-0-0-release-notes)
for a complete overview of this release.
### **AMD SMI** (26.0.0)
@@ -798,11 +912,15 @@ HIP runtime has the following functional improvements which improves runtime per
* Compatibility with NCCL 2.25.1.
* Compatibility with NCCL 2.26.6.
#### Optimized
* Improved the performance of the `FP8` Sum operation by upcasting to `FP16`.
#### Resolved issues
* Resolved an issue when using more than 64 channels when multiple collectives are used in the same `ncclGroup()` call.
* Fixed unit test failures in tests ending with the `ManagedMem` and `ManagedMemGraph` suffixes.
* Fixed a suboptimal algorithmic switching point for AllReduce on the AMD Instinct MI300X.
* Fixed broken functionality within the LL protocol on gfx950 by disabling inlining of LLGenericOp kernels.
* Fixed the known issue "When splitting a communicator using `ncclCommSplit` in some GPU configurations, MSCCL initialization can cause a segmentation fault" with a design change to use `comm` instead of `rank` for `mscclStatus`. The global map for `comm` to `mscclStatus` is still not thread safe but should be explicitly handled by mutexes for read-write operations. This is tested for correctness, but there is a plan to use a thread-safe map data structure in an upcoming release.
### **rocAL** (2.3.0)
@@ -3998,7 +4116,7 @@ memory partition modes upon an invalid argument return from memory partition mod
- JSON output plugin for `rocprofv2`. The JSON file matches Google Trace Format making it easy to load on Perfetto, Chrome tracing, or Speedscope. For Speedscope, use `--disable-json-data-flows` option as speedscope doesn't work with data flows.
- `--no-serialization` flag to disable kernel serialization when `rocprofv2` is in counter collection mode. This allows `rocprofv2` to avoid deadlock when profiling certain programs in counter collection mode.
- `FP64_ACTIVE` and `ENGINE_ACTIVE` metrics to AMD Instinct MI300 accelerator
- `FP64_ACTIVE` and `ENGINE_ACTIVE` metrics to AMD Instinct MI300 GPU
- New HIP APIs with struct defined inside union.
- Early checks to confirm the eligibility of ELF file in ATT plugin
- Support for kernel name filtering in `rocprofv2`
@@ -4022,18 +4140,18 @@ memory partition modes upon an invalid argument return from memory partition mod
#### Resolved issues
- Bandwidth measurement in AMD Instinct MI300 accelerator
- Bandwidth measurement in AMD Instinct MI300 GPU
- Perfetto plugin issue of `roctx` trace not getting displayed
- `--help` for counter collection
- Signal management issues in `queue.cpp`
- Perfetto tracks for multi-GPU
- Perfetto plugin usage with `rocsys`
- Incorrect number of columns in the output CSV files for counter collection and kernel tracing
- The ROCProfiler hang issue when running kernel trace, thread trace, or counter collection on Iree benchmark for AMD Instinct MI300 accelerator
- The ROCProfiler hang issue when running kernel trace, thread trace, or counter collection on Iree benchmark for AMD Instinct MI300 GPU
- Build errors thrown during parsing of unions
- The system hang caused while running `--kernel-trace` with Perfetto for certain applications
- Missing profiler records issue caused while running `--trace-period`
- The hang issue of `ProfilerAPITest` of `runFeatureTests` on AMD Instinct MI300 accelerator
- The hang issue of `ProfilerAPITest` of `runFeatureTests` on AMD Instinct MI300 GPU
- Segmentation fault on Navi32
@@ -5430,7 +5548,7 @@ See [issue #3499](https://github.com/ROCm/ROCm/issues/3499) on GitHub.
intermediary script to call the application with the necessary arguments, then call the script with Omniperf. This
issue is fixed in a future release of Omniperf. See [#347](https://github.com/ROCm/rocprofiler-compute/issues/347).
- Omniperf might not work with AMD Instinct MI300 accelerators out of the box, resulting in the following error:
- Omniperf might not work with AMD Instinct MI300 GPUs out of the box, resulting in the following error:
"*ERROR gfx942 is not enabled rocprofv1. Available profilers include: ['rocprofv2']*". As a workaround, add the
environment variable `export ROCPROF=rocprofv2`.
@@ -5546,7 +5664,7 @@ See [issue #3498](https://github.com/ROCm/ROCm/issues/3498) on GitHub.
#### Optimized
* Improved performance of Level 1 `dot_batched` and `dot_strided_batched` for all precisions. Performance enhanced by 6 times for bigger problem sizes, as measured on an Instinct MI210 accelerator.
* Improved performance of Level 1 `dot_batched` and `dot_strided_batched` for all precisions. Performance enhanced by 6 times for bigger problem sizes, as measured on an Instinct MI210 GPU.
#### Removed

2451
RELEASE.md

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote name="rocm-org" fetch="https://github.com/ROCm/" />
<default revision="refs/tags/rocm-7.0.0"
<default revision="refs/tags/rocm-7.0.2"
remote="rocm-org"
sync-c="true"
sync-j="4" />
@@ -41,7 +41,6 @@
<project groups="mathlibs" name="MIVisionX" />
<project groups="mathlibs" name="ROCmValidationSuite" />
<project groups="mathlibs" name="composable_kernel" />
<project groups="mathlibs" name="hipSOLVER" />
<project groups="mathlibs" name="hipTensor" />
<project groups="mathlibs" name="hipfort" />
<project groups="mathlibs" name="rccl" />
@@ -57,7 +56,6 @@
<project groups="mathlibs" name="rocm-libraries" />
<project groups="mathlibs" name="rocPyDecode" />
<project groups="mathlibs" name="rocSHMEM" />
<project groups="mathlibs" name="rocSOLVER" />
<project groups="mathlibs" name="rocWMMA" />
<project groups="mathlibs" name="rocm-cmake" />
<project groups="mathlibs" name="rpp" />

View File

@@ -30,6 +30,7 @@ additional licenses. Please review individual repositories for more information.
| [aomp](https://github.com/ROCm/aomp/) | [Apache 2.0](https://github.com/ROCm/aomp/blob/aomp-dev/LICENSE) |
| [aomp-extras](https://github.com/ROCm/aomp-extras/) | [MIT](https://github.com/ROCm/aomp-extras/blob/aomp-dev/LICENSE) |
| [AQLprofile](https://github.com/rocm/aqlprofile/) | [MIT](https://github.com/ROCm/aqlprofile/blob/amd-staging/LICENSE.md) |
| [Cluster Validation Suite](https://github.com/ROCm/cvs) | [MIT](https://github.com/ROCm/cvs/blob/main/LICENSE) |
| [Code Object Manager (Comgr)](https://github.com/ROCm/llvm-project/tree/amd-staging/amd/comgr) | [The University of Illinois/NCSA](https://github.com/ROCm/llvm-project/blob/amd-staging/amd/comgr/LICENSE.txt) |
| [Composable Kernel](https://github.com/ROCm/composable_kernel) | [MIT](https://github.com/ROCm/composable_kernel/blob/develop/LICENSE) |
| [half](https://github.com/ROCm/half/) | [MIT](https://github.com/ROCm/half/blob/rocm/LICENSE.txt) |

View File

@@ -1,134 +1,137 @@
ROCm Version,7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.3,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP7,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 9, 8 [#ol-700-mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,Debian 12,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-630-past-60]_,Azure Linux 3.0 [#az-mi300x-630-past-60]_,,,,,,,,,,,,
,Rocky Linux 9,,,,,,,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,,,,,,,,,,,,,,,,,,
,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA4,RDNA4,RDNA4,RDNA4,,,,,,,,,,,,,,,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx950,,,,,,,,,,,,,,,,,,
,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.7, 2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.19.1, 2.18.1","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.6.0,0.4.35,0.4.35,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A,
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`,N/A,N/A,N/A,N/A,N/A,85f95ae,85f95ae,85f95ae,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>`,N/A,N/A,N/A,N/A,N/A,0.7.0,0.7.0,0.7.0,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,1.8.0b1,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.20.0,1.20.0,1.20.0,1.20.0,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
Thrust,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,,,,
KMD & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.13.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.5.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,1.0.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,1.1.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.6.0,0.3.1,0.3.1,0.3.1,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,2.0.0,1.9.10,1.9.10,1.9.10,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.26.6,2.22.3,2.22.3,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
:doc:`rocSHMEM <rocshmem:index>`,3.0.0,2.0.1,2.0.1,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,1.0.0,0.12.1,0.12.1,0.12.1,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.20,1.0.18,1.0.18,1.0.18,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.7.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,3.0.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,4.0.1,3.2.0,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.4,0.2.3,0.2.3,0.2.3,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,4.0.0,3.2.3,3.2.3,3.2.3,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,5.0.0,4.4.1,4.4.1,4.4.0,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.34,1.0.32,1.0.32,1.0.32,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.30.0,3.28.2,3.28.2,3.28.0,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,4.0.2,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,2.0.0,1.7.0,1.7.0,1.7.0,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.43.0,4.43.0,4.43.0,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,4.0.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,4.0.0,3.4.1,3.4.1,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,7.0.51830,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,26.0.0,25.5.1,25.5.1,25.4.2,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,1.1.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.7.0,7.5.0,7.5.0,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.2.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.2.3,3.1.1,3.1.1,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.1.0,1.0.2,1.0.2,1.0.1,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70000,2.0.60403,2.0.60402,2.0.60401,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.70000,4.1.60403,4.1.60402,4.1.60401,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,20.0.0,19.0.0,19.0.0,19.0.0,19.0.0,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.3,0.77.2,0.77.2,0.77.2,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.0.4,2.0.4,2.0.4,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.15.0,1.15.0,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
ROCm Version,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0, 6.1.5, 6.1.2, 6.1.1, 6.1.0, 6.0.2, 6.0.0
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,Ubuntu 24.04.2,"Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04","Ubuntu 24.04.1, 24.04",Ubuntu 24.04,,,,,,
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5,"Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4","Ubuntu 22.04.5, 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3","Ubuntu 22.04.4, 22.04.3, 22.04.2","Ubuntu 22.04.4, 22.04.3, 22.04.2"
,,,,,,,,,,,,,,,"Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5","Ubuntu 20.04.6, 20.04.5"
,"RHEL 10.0 [#rhel-10-702-past-60]_, 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_","RHEL 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_","RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.6, 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.5, 9.4","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.4, 9.3, 9.2","RHEL 9.3, 9.2","RHEL 9.3, 9.2"
,RHEL 8.10 [#rhel-700-past-60]_,RHEL 8.10 [#rhel-700-past-60]_,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,RHEL 8.10,"RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.10, 8.9","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8","RHEL 8.9, 8.8"
,SLES 15 SP7 [#sles-db-700-past-60]_,SLES 15 SP7 [#sles-db-700-past-60]_,"SLES 15 SP7, SP6","SLES 15 SP7, SP6",SLES 15 SP6,SLES 15 SP6,"SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP6, SP5","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4","SLES 15 SP5, SP4"
,,,,,,,,,,,,,,,,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9,CentOS 7.9
,"Oracle Linux 10, 9, 8 [#ol-700-mi300x-past-60]_","Oracle Linux 9, 8 [#ol-700-mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_","Oracle Linux 9, 8 [#mi300x-past-60]_",Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.10 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,Oracle Linux 8.9 [#mi300x-past-60]_,,,
,"Debian 13 [#db-mi300x-past-60]_, 12 [#sles-db-700-past-60]_",Debian 12 [#sles-db-700-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,Debian 12 [#single-node-past-60]_,,,,,,,,,,,
,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-past-60]_,Azure Linux 3.0 [#az-mi300x-630-past-60]_,Azure Linux 3.0 [#az-mi300x-630-past-60]_,,,,,,,,,,,,
,Rocky Linux 9 [#rl-700-past-60]_,Rocky Linux 9 [#rl-700-past-60]_,,,,,,,,,,,,,,,,,,
,.. _architecture-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,CDNA4,,,,,,,,,,,,,,,,,,
,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA,CDNA
,RDNA4,RDNA4,RDNA4,RDNA4,RDNA4,,,,,,,,,,,,,,,
,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx950 [#mi350x-os-past-60]_,gfx950 [#mi350x-os-past-60]_,,,,,,,,,,,,,,,,,,
,gfx1201 [#RDNA-OS-700-past-60]_,gfx1201 [#RDNA-OS-700-past-60]_,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,gfx1201 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1200 [#RDNA-OS-700-past-60]_,gfx1200 [#RDNA-OS-700-past-60]_,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,gfx1200 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1101 [#RDNA-OS-700-past-60]_ [#rd-v710-past-60]_,gfx1101 [#RDNA-OS-700-past-60]_ [#rd-v710-past-60]_,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_,gfx1101 [#RDNA-OS-past-60]_,,,,,,,,,,,,,,,
,gfx1100 [#RDNA-OS-700-past-60]_,gfx1100 [#RDNA-OS-700-past-60]_,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100,gfx1100
,gfx1030 [#RDNA-OS-700-past-60]_ [#rd-v620-past-60]_,gfx1030 [#RDNA-OS-700-past-60]_ [#rd-v620-past-60]_,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030,gfx1030
,gfx942 [#mi325x-os-past-60]_ [#mi300x-os-past-60]_ [#mi300A-os-past-60]_,gfx942 [#mi325x-os-past-60]_ [#mi300x-os-past-60]_ [#mi300A-os-past-60]_,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942,gfx942 [#mi300_624-past-60]_,gfx942 [#mi300_622-past-60]_,gfx942 [#mi300_621-past-60]_,gfx942 [#mi300_620-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_612-past-60]_, gfx942 [#mi300_611-past-60]_, gfx942 [#mi300_610-past-60]_, gfx942 [#mi300_602-past-60]_, gfx942 [#mi300_600-past-60]_
,gfx90a [#mi200x-os-past-60]_,gfx90a [#mi200x-os-past-60]_,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a,gfx90a
,gfx908 [#mi100-os-past-60]_,gfx908 [#mi100-os-past-60]_,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908,gfx908
,,,,,,,,,,,,,,,,,,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.8, 2.7, 2.6","2.7, 2.6, 2.5","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 1.13","2.4, 2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.3, 2.2, 2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13","2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_","2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.17.0, 2.16.2, 2.15.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.16.1, 2.15.1, 2.14.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.15.0, 2.14.0, 2.13.1","2.14.0, 2.13.1, 2.12.1","2.14.0, 2.13.1, 2.12.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.6.0,0.6.0,0.4.35,0.4.35,0.4.35,0.4.35,0.4.31,0.4.31,0.4.31,0.4.31,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26,0.4.26
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.3.0.post0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,85f95ae,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat-past-60]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,1.8.0b1,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat-past-60]_,N/A,N/A,N/A,N/A,2.48.0.post0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat-past-60]_,N/A,b6356,b6356,b6356,b6356,b5997,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`FlashInfer <../compatibility/ml-compatibility/flashinfer-compatibility>` [#flashinfer_compat-past-60]_,N/A,N/A,N/A,N/A,v0.2.5,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.22.0,1.20.0,1.20.0,1.20.0,1.20.0,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.4.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.3.0,>=1.2.0,>=1.2.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.15.0,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1,>=1.14.1
,,,,,,,,,,,,,,,,,,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
Thrust,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
CUB,2.6.0,2.6.0,2.5.0,2.5.0,2.5.0,2.5.0,2.3.2,2.3.2,2.3.2,2.3.2,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.1,2.0.1
,,,,,,,,,,,,,,,,,,,,
DRIVER & USER SPACE [#kfd_support-past-60]_,.. _kfd-userspace-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x","30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x","6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x"
,,,,,,,,,,,,,,,,,,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.13.0,2.13.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.0,2.11.0,2.11.0,2.11.0,2.10.0,2.10.0,2.10.0,2.10.0,2.9.0,2.9.0,2.9.0,2.9.0,2.8.0,2.8.0
:doc:`MIOpen <miopen:index>`,3.5.0,3.5.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`MIVisionX <mivisionx:index>`,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0,2.5.0
:doc:`rocAL <rocal:index>`,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0,2.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`rocDecode <rocdecode:index>`,1.0.0,1.0.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,N/A,N/A
:doc:`rocJPEG <rocjpeg:index>`,1.1.0,1.1.0,0.8.0,0.8.0,0.8.0,0.8.0,0.6.0,0.6.0,0.6.0,0.6.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`rocPyDecode <rocpydecode:index>`,0.6.0,0.6.0,0.3.1,0.3.1,0.3.1,0.3.1,0.2.0,0.2.0,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`RPP <rpp:index>`,2.0.0,2.0.0,1.9.10,1.9.10,1.9.10,1.9.10,1.9.1,1.9.1,1.9.1,1.9.1,1.8.0,1.8.0,1.8.0,1.8.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0
,,,,,,,,,,,,,,,,,,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`RCCL <rccl:index>`,2.26.6,2.26.6,2.22.3,2.22.3,2.22.3,2.22.3,2.21.5,2.21.5,2.21.5,2.21.5,2.20.5,2.20.5,2.20.5,2.20.5,2.18.6,2.18.6,2.18.6,2.18.6,2.18.3,2.18.3
:doc:`rocSHMEM <rocshmem:index>`,3.0.0,3.0.0,2.0.1,2.0.1,2.0.0,2.0.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
,,,,,,,,,,,,,,,,,,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,3.0.2,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.0,2.1.0,2.1.0,2.1.0,2.0.0,2.0.0
:doc:`hipBLASLt <hipblaslt:index>`,1.0.0,1.0.0,0.12.1,0.12.1,0.12.1,0.12.0,0.10.0,0.10.0,0.10.0,0.10.0,0.8.0,0.8.0,0.8.0,0.8.0,0.7.0,0.7.0,0.7.0,0.7.0,0.6.0,0.6.0
:doc:`hipFFT <hipfft:index>`,1.0.20,1.0.20,1.0.18,1.0.18,1.0.18,1.0.18,1.0.17,1.0.17,1.0.17,1.0.17,1.0.16,1.0.15,1.0.15,1.0.14,1.0.14,1.0.14,1.0.14,1.0.14,1.0.13,1.0.13
:doc:`hipfort <hipfort:index>`,0.7.0,0.7.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.1,0.5.1,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0
:doc:`hipRAND <hiprand:index>`,3.0.0,3.0.0,2.12.0,2.12.0,2.12.0,2.12.0,2.11.1,2.11.1,2.11.1,2.11.0,2.11.1,2.11.0,2.11.0,2.11.0,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16,2.10.16
:doc:`hipSOLVER <hipsolver:index>`,3.0.0,3.0.0,2.4.0,2.4.0,2.4.0,2.4.0,2.3.0,2.3.0,2.3.0,2.3.0,2.2.0,2.2.0,2.2.0,2.2.0,2.1.1,2.1.1,2.1.1,2.1.0,2.0.0,2.0.0
:doc:`hipSPARSE <hipsparse:index>`,4.0.1,4.0.1,3.2.0,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.1.1,3.1.1,3.1.1,3.1.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.4,0.2.4,0.2.3,0.2.3,0.2.3,0.2.3,0.2.2,0.2.2,0.2.2,0.2.2,0.2.1,0.2.1,0.2.1,0.2.1,0.2.0,0.2.0,0.1.0,0.1.0,0.1.0,0.1.0
:doc:`rocALUTION <rocalution:index>`,4.0.0,4.0.0,3.2.3,3.2.3,3.2.3,3.2.2,3.2.1,3.2.1,3.2.1,3.2.1,3.2.1,3.2.0,3.2.0,3.2.0,3.1.1,3.1.1,3.1.1,3.1.1,3.0.3,3.0.3
:doc:`rocBLAS <rocblas:index>`,5.0.2,5.0.0,4.4.1,4.4.1,4.4.0,4.4.0,4.3.0,4.3.0,4.3.0,4.3.0,4.2.4,4.2.1,4.2.1,4.2.0,4.1.2,4.1.2,4.1.0,4.1.0,4.0.0,4.0.0
:doc:`rocFFT <rocfft:index>`,1.0.34,1.0.34,1.0.32,1.0.32,1.0.32,1.0.32,1.0.31,1.0.31,1.0.31,1.0.31,1.0.30,1.0.29,1.0.29,1.0.28,1.0.27,1.0.27,1.0.27,1.0.26,1.0.25,1.0.23
:doc:`rocRAND <rocrand:index>`,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.0,3.2.0,3.2.0,3.2.0,3.1.1,3.1.0,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,2.10.17
:doc:`rocSOLVER <rocsolver:index>`,3.30.1,3.30.0,3.28.2,3.28.2,3.28.0,3.28.0,3.27.0,3.27.0,3.27.0,3.27.0,3.26.2,3.26.0,3.26.0,3.26.0,3.25.0,3.25.0,3.25.0,3.25.0,3.24.0,3.24.0
:doc:`rocSPARSE <rocsparse:index>`,4.0.2,4.0.2,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.2,3.1.2,3.1.2,3.1.2,3.0.2,3.0.2
:doc:`rocWMMA <rocwmma:index>`,2.0.0,2.0.0,1.7.0,1.7.0,1.7.0,1.7.0,1.6.0,1.6.0,1.6.0,1.6.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.44.0,4.43.0,4.43.0,4.43.0,4.43.0,4.42.0,4.42.0,4.42.0,4.42.0,4.41.0,4.41.0,4.41.0,4.41.0,4.40.0,4.40.0,4.40.0,4.40.0,4.39.0,4.39.0
,,,,,,,,,,,,,,,,,,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`hipCUB <hipcub:index>`,4.0.0,4.0.0,3.4.0,3.4.0,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.1,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,2.0.0,1.5.0,1.5.0,1.5.0,1.5.0,1.4.0,1.4.0,1.4.0,1.4.0,1.3.0,1.3.0,1.3.0,1.3.0,1.2.0,1.2.0,1.2.0,1.2.0,1.1.0,1.1.0
:doc:`rocPRIM <rocprim:index>`,4.0.1,4.0.0,3.4.1,3.4.1,3.4.0,3.4.0,3.3.0,3.3.0,3.3.0,3.3.0,3.2.2,3.2.0,3.2.0,3.2.0,3.1.0,3.1.0,3.1.0,3.1.0,3.0.0,3.0.0
:doc:`rocThrust <rocthrust:index>`,4.0.0,4.0.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.3.0,3.1.1,3.1.0,3.1.0,3.0.1,3.0.1,3.0.1,3.0.1,3.0.1,3.0.0,3.0.0
,,,,,,,,,,,,,,,,,,,,
SUPPORT LIBS,,,,,,,,,,,,,,,,,,,,
`hipother <https://github.com/ROCm/hipother>`_,7.0.51830,7.0.51830,6.4.43483,6.4.43483,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.2,7.0.1/7.0.0,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6.2.0,6.1.5,6.1.2,6.1.1,6.1.0,6.0.2,6.0.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,N/A [#ROCT-rocr-past-60]_,20240607.5.7,20240607.5.7,20240607.4.05,20240607.1.4246,20240125.5.08,20240125.5.08,20240125.5.08,20240125.3.30,20231016.2.245,20231016.2.245
,,,,,,,,,,,,,,,,,,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`AMD SMI <amdsmi:index>`,26.0.2,26.0.0,25.5.1,25.5.1,25.4.2,25.3.0,24.7.1,24.7.1,24.7.1,24.7.1,24.6.3,24.6.3,24.6.3,24.6.2,24.5.1,24.5.1,24.5.1,24.4.1,23.4.2,23.4.2
:doc:`ROCm Data Center Tool <rdc:index>`,1.1.0,1.1.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.8.0,7.7.0,7.5.0,7.5.0,7.5.0,7.4.0,7.4.0,7.4.0,7.4.0,7.3.0,7.3.0,7.3.0,7.3.0,7.2.0,7.2.0,7.0.0,7.0.0,6.0.2,6.0.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.2.0,1.2.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.1.0,1.0.60204,1.0.60202,1.0.60201,1.0.60200,1.0.60105,1.0.60102,1.0.60101,1.0.60100,1.0.60002,1.0.60000
,,,,,,,,,,,,,,,,,,,,
PERFORMANCE TOOLS,,,,,,,,,,,,,,,,,,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,2.6.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.2.3,3.2.3,3.1.1,3.1.1,3.1.0,3.1.0,3.0.0,3.0.0,3.0.0,3.0.0,2.0.1,2.0.1,2.0.1,2.0.1,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.1.1,1.1.0,1.0.2,1.0.2,1.0.1,1.0.0,0.1.2,0.1.1,0.1.0,0.1.0,1.11.2,1.11.2,1.11.2,1.11.2,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70002,2.0.70000,2.0.60403,2.0.60402,2.0.60401,2.0.60400,2.0.60303,2.0.60302,2.0.60301,2.0.60300,2.0.60204,2.0.60202,2.0.60201,2.0.60200,2.0.60105,2.0.60102,2.0.60101,2.0.60100,2.0.60002,2.0.60000
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,1.0.0,0.6.0,0.6.0,0.6.0,0.6.0,0.5.0,0.5.0,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`ROCTracer <roctracer:index>`,4.1.70002,4.1.70000,4.1.60403,4.1.60402,4.1.60401,4.1.60400,4.1.60303,4.1.60302,4.1.60301,4.1.60300,4.1.60204,4.1.60202,4.1.60201,4.1.60200,4.1.60105,4.1.60102,4.1.60101,4.1.60100,4.1.60002,4.1.60000
,,,,,,,,,,,,,,,,,,,,
DEVELOPMENT TOOLS,,,,,,,,,,,,,,,,,,,,
:doc:`HIPIFY <hipify:index>`,20.0.0,20.0.0,19.0.0,19.0.0,19.0.0,19.0.0,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.14.0,0.13.0,0.13.0,0.13.0,0.13.0,0.12.0,0.12.0,0.12.0,0.12.0,0.11.0,0.11.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.4,0.77.3,0.77.2,0.77.2,0.77.2,0.77.2,0.77.0,0.77.0,0.77.0,0.77.0,0.76.0,0.76.0,0.76.0,0.76.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0,0.71.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,16.3.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,15.2.0,14.2.0,14.2.0,14.2.0,14.2.0,14.1.0,14.1.0,14.1.0,14.1.0,13.2.0,13.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.5.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.4.0,0.3.0,0.3.0,0.3.0,0.3.0,N/A,N/A
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.1.0,2.0.4,2.0.4,2.0.4,2.0.4,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3,2.0.3
,,,,,,,,,,,,,,,,,,,,
COMPILERS,.. _compilers-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0,0.5.0
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.1.1,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0,1.0.0
`Flang <https://github.com/ROCm/flang>`_,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24455,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
:doc:`llvm-project <llvm-project:index>`,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.0.25385,20.0.0.25314,19.0.0.25224,19.0.0.25224,19.0.0.25184,19.0.0.25133,18.0.0.25012,18.0.0.25012,18.0.0.24491,18.0.0.24491,18.0.0.24392,18.0.0.24355,18.0.0.24355,18.0.0.24232,17.0.0.24193,17.0.0.24193,17.0.0.24154,17.0.0.24103,17.0.0.24012,17.0.0.23483
,,,,,,,,,,,,,,,,,,,,
RUNTIMES,.. _runtime-support-compatibility-matrix-past-60:,,,,,,,,,,,,,,,,,,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
:doc:`HIP <hip:index>`,7.0.51831,7.0.51830,6.4.43484,6.4.43484,6.4.43483,6.4.43482,6.3.42134,6.3.42134,6.3.42133,6.3.42131,6.2.41134,6.2.41134,6.2.41134,6.2.41133,6.1.40093,6.1.40093,6.1.40092,6.1.40091,6.1.32831,6.1.32830
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.15.0,1.15.0,1.15.0,1.15.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.14.0,1.13.0,1.13.0,1.13.0,1.13.0,1.13.0,1.12.0,1.12.0
1 ROCm Version 7.0.0 7.0.2 7.0.1/7.0.0 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
2 :ref:`Operating systems & kernels <OS-kernel-versions>` Ubuntu 24.04.3 Ubuntu 24.04.3 Ubuntu 24.04.3 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.2 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04.1, 24.04 Ubuntu 24.04
3 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4 Ubuntu 22.04.5, 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3 Ubuntu 22.04.4, 22.04.3, 22.04.2 Ubuntu 22.04.4, 22.04.3, 22.04.2
4 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5 Ubuntu 20.04.6, 20.04.5
5 RHEL 9.6, 9.4 RHEL 10.0 [#rhel-10-702-past-60]_, 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_ RHEL 9.6 [#rhel-10-702-past-60]_, 9.4 [#rhel-94-702-past-60]_ RHEL 9.6, 9.4 RHEL 9.6, 9.4 RHEL 9.6, 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.5, 9.4 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.4, 9.3, 9.2 RHEL 9.3, 9.2 RHEL 9.3, 9.2
6 RHEL 8.10 RHEL 8.10 [#rhel-700-past-60]_ RHEL 8.10 [#rhel-700-past-60]_ RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.10, 8.9 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8 RHEL 8.9, 8.8
7 SLES 15 SP7 SLES 15 SP7 [#sles-db-700-past-60]_ SLES 15 SP7 [#sles-db-700-past-60]_ SLES 15 SP7, SP6 SLES 15 SP7, SP6 SLES 15 SP6 SLES 15 SP6 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP6, SP5 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4 SLES 15 SP5, SP4
8 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9 CentOS 7.9
9 Oracle Linux 9, 8 [#ol-700-mi300x-past-60]_ Oracle Linux 10, 9, 8 [#ol-700-mi300x-past-60]_ Oracle Linux 9, 8 [#ol-700-mi300x-past-60]_ Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 9, 8 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.10 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_ Oracle Linux 8.9 [#mi300x-past-60]_
10 Debian 12 Debian 13 [#db-mi300x-past-60]_, 12 [#sles-db-700-past-60]_ Debian 12 [#sles-db-700-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_ Debian 12 [#single-node-past-60]_
11 Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 [#az-mi300x-past-60]_ Azure Linux 3.0 [#az-mi300x-630-past-60]_ Azure Linux 3.0 [#az-mi300x-630-past-60]_
12 Rocky Linux 9 Rocky Linux 9 [#rl-700-past-60]_ Rocky Linux 9 [#rl-700-past-60]_
13 .. _architecture-support-compatibility-matrix-past-60: .. _architecture-support-compatibility-matrix-past-60:
14 :doc:`Architecture <rocm-install-on-linux:reference/system-requirements>` CDNA4 CDNA4 CDNA4
15 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3 CDNA3
16 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2 CDNA2
17 CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA CDNA
18 RDNA4 RDNA4 RDNA4 RDNA4 RDNA4 RDNA4
19 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3 RDNA3
20 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2 RDNA2
21 .. _gpu-support-compatibility-matrix-past-60: .. _gpu-support-compatibility-matrix-past-60:
22 :doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>` gfx950 gfx950 [#mi350x-os-past-60]_ gfx950 [#mi350x-os-past-60]_
23 gfx1201 [#RDNA-OS-past-60]_ gfx1201 [#RDNA-OS-700-past-60]_ gfx1201 [#RDNA-OS-700-past-60]_ gfx1201 [#RDNA-OS-past-60]_ gfx1201 [#RDNA-OS-past-60]_ gfx1201 [#RDNA-OS-past-60]_
24 gfx1200 [#RDNA-OS-past-60]_ gfx1200 [#RDNA-OS-700-past-60]_ gfx1200 [#RDNA-OS-700-past-60]_ gfx1200 [#RDNA-OS-past-60]_ gfx1200 [#RDNA-OS-past-60]_ gfx1200 [#RDNA-OS-past-60]_
25 gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_ gfx1101 [#RDNA-OS-700-past-60]_ [#rd-v710-past-60]_ gfx1101 [#RDNA-OS-700-past-60]_ [#rd-v710-past-60]_ gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_ gfx1101 [#RDNA-OS-past-60]_ [#7700XT-OS-past-60]_ gfx1101 [#RDNA-OS-past-60]_
26 gfx1100 gfx1100 [#RDNA-OS-700-past-60]_ gfx1100 [#RDNA-OS-700-past-60]_ gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100 gfx1100
27 gfx1030 gfx1030 [#RDNA-OS-700-past-60]_ [#rd-v620-past-60]_ gfx1030 [#RDNA-OS-700-past-60]_ [#rd-v620-past-60]_ gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030 gfx1030
28 gfx942 gfx942 [#mi325x-os-past-60]_ [#mi300x-os-past-60]_ [#mi300A-os-past-60]_ gfx942 [#mi325x-os-past-60]_ [#mi300x-os-past-60]_ [#mi300A-os-past-60]_ gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 gfx942 [#mi300_624-past-60]_ gfx942 [#mi300_622-past-60]_ gfx942 [#mi300_621-past-60]_ gfx942 [#mi300_620-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_612-past-60]_ gfx942 [#mi300_611-past-60]_ gfx942 [#mi300_610-past-60]_ gfx942 [#mi300_602-past-60]_ gfx942 [#mi300_600-past-60]_
29 gfx90a gfx90a [#mi200x-os-past-60]_ gfx90a [#mi200x-os-past-60]_ gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a gfx90a
30 gfx908 gfx908 [#mi100-os-past-60]_ gfx908 [#mi100-os-past-60]_ gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908 gfx908
31
32 FRAMEWORK SUPPORT .. _framework-support-compatibility-matrix-past-60: .. _framework-support-compatibility-matrix-past-60:
33 :doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>` 2.7, 2.6, 2.5, 2.4, 2.3 2.8, 2.7, 2.6 2.7, 2.6, 2.5 2.6, 2.5, 2.4, 2.3 2.6, 2.5, 2.4, 2.3 2.6, 2.5, 2.4, 2.3 2.6, 2.5, 2.4, 2.3 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 1.13 2.4, 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.3, 2.2, 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13 2.1, 2.0, 1.13
34 :doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>` 2.19.1, 2.18.1 2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_ 2.19.1, 2.18.1, 2.17.1 [#tf-mi350-past-60]_ 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.18.1, 2.17.1, 2.16.2 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.17.0, 2.16.2, 2.15.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.16.1, 2.15.1, 2.14.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.15.0, 2.14.0, 2.13.1 2.14.0, 2.13.1, 2.12.1 2.14.0, 2.13.1, 2.12.1
35 :doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>` 0.6.0 0.6.0 0.6.0 0.4.35 0.4.35 0.4.35 0.4.35 0.4.31 0.4.31 0.4.31 0.4.31 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26 0.4.26
36 :doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_ :doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat-past-60]_ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.3.0.post0 N/A N/A N/A N/A N/A N/A
37 :doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` :doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>` [#stanford-megatron-lm_compat-past-60]_ N/A N/A N/A N/A N/A N/A N/A 85f95ae N/A 85f95ae N/A 85f95ae N/A 85f95ae N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
38 :doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_ :doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat-past-60]_ N/A N/A N/A N/A N/A N/A 2.4.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
39 :doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` :doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat-past-60]_ N/A N/A N/A N/A N/A N/A N/A 0.7.0 N/A 0.7.0 N/A 0.7.0 N/A 0.7.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
40 :doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_ :doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat-past-60]_ N/A N/A N/A N/A N/A N/A N/A N/A 1.8.0b1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
41 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ :doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat-past-60]_ 1.22.0 N/A N/A 1.20.0 N/A 1.20.0 N/A 1.20.0 2.48.0.post0 1.20.0 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.17.3 N/A 1.14.1 N/A 1.14.1 N/A
42 :doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat-past-60]_ N/A b6356 b6356 b6356 b6356 b5997 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
43 :doc:`FlashInfer <../compatibility/ml-compatibility/flashinfer-compatibility>` [#flashinfer_compat-past-60]_ N/A N/A N/A N/A v0.2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
44 THIRD PARTY COMMS `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ .. _thirdpartycomms-support-compatibility-matrix-past-60: 1.22.0 1.22.0 1.20.0 1.20.0 1.20.0 1.20.0 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
45 `UCC <https://github.com/ROCm/ucc>`_ >=1.4.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
46 `UCX <https://github.com/ROCm/ucx>`_ >=1.17.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.15.0 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1 >=1.14.1
47 THIRD PARTY COMMS .. _thirdpartycomms-support-compatibility-matrix-past-60:
48 THIRD PARTY ALGORITHM `UCC <https://github.com/ROCm/ucc>`_ .. _thirdpartyalgorithm-support-compatibility-matrix-past-60: >=1.4.0 >=1.4.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.3.0 >=1.2.0 >=1.2.0
49 Thrust `UCX <https://github.com/ROCm/ucx>`_ 2.6.0 >=1.17.0 >=1.17.0 2.5.0 >=1.15.0 2.5.0 >=1.15.0 2.5.0 >=1.15.0 2.5.0 >=1.15.0 2.3.2 >=1.15.0 2.3.2 >=1.15.0 2.3.2 >=1.15.0 2.3.2 >=1.15.0 2.2.0 >=1.15.0 2.2.0 >=1.15.0 2.2.0 >=1.15.0 2.2.0 >=1.15.0 2.1.0 >=1.14.1 2.1.0 >=1.14.1 2.1.0 >=1.14.1 2.1.0 >=1.14.1 2.0.1 >=1.14.1 2.0.1 >=1.14.1
50 CUB 2.6.0 2.5.0 2.5.0 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
51 THIRD PARTY ALGORITHM .. _thirdpartyalgorithm-support-compatibility-matrix-past-60:
52 KMD & USER SPACE [#kfd_support-past-60]_ Thrust .. _kfd-userspace-support-compatibility-matrix-past-60: 2.6.0 2.6.0 2.5.0 2.5.0 2.5.0 2.5.0 2.3.2 2.3.2 2.3.2 2.3.2 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.1 2.0.1
53 :doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` CUB 30.10, 6.4.x, 6.3.x, 6.2.x 2.6.0 2.6.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.5.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.3.2 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.3.2 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.3.2 6.4.x, 6.3.x, 6.2.x, 6.1.x 2.3.2 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.2.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.2.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.2.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 2.2.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 2.1.0 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 2.0.1 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 2.0.1
54
55 ML & COMPUTER VISION DRIVER & USER SPACE [#kfd_support-past-60]_ .. _mllibs-support-compatibility-matrix-past-60: .. _kfd-userspace-support-compatibility-matrix-past-60:
56 :doc:`Composable Kernel <composable_kernel:index>` :doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>` 1.1.0 30.10.2, 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x 30.10.1 [#driver_patch-past-60]_, 30.10, 6.4.x, 6.3.x, 6.2.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 1.1.0 6.4.x, 6.3.x, 6.2.x, 6.1.x, 6.0.x, 5.7.x 1.1.0 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x 1.1.0 6.2.x, 6.1.x, 6.0.x, 5.7.x, 5.6.x
57 :doc:`MIGraphX <amdmigraphx:index>` 2.13.0 2.12.0 2.12.0 2.12.0 2.12.0 2.11.0 2.11.0 2.11.0 2.11.0 2.10.0 2.10.0 2.10.0 2.10.0 2.9.0 2.9.0 2.9.0 2.9.0 2.8.0 2.8.0
58 :doc:`MIOpen <miopen:index>` ML & COMPUTER VISION 3.5.0 .. _mllibs-support-compatibility-matrix-past-60: 3.4.0 3.4.0 3.4.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.0 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
59 :doc:`MIVisionX <mivisionx:index>` :doc:`Composable Kernel <composable_kernel:index>` 3.3.0 1.1.0 1.1.0 3.2.0 1.1.0 3.2.0 1.1.0 3.2.0 1.1.0 3.2.0 1.1.0 3.1.0 1.1.0 3.1.0 1.1.0 3.1.0 1.1.0 3.1.0 1.1.0 3.0.0 1.1.0 3.0.0 1.1.0 3.0.0 1.1.0 3.0.0 1.1.0 2.5.0 1.1.0 2.5.0 1.1.0 2.5.0 1.1.0 2.5.0 1.1.0 2.5.0 1.1.0 2.5.0 1.1.0
60 :doc:`rocAL <rocal:index>` :doc:`MIGraphX <amdmigraphx:index>` 2.3.0 2.13.0 2.13.0 2.2.0 2.12.0 2.2.0 2.12.0 2.2.0 2.12.0 2.2.0 2.12.0 2.1.0 2.11.0 2.1.0 2.11.0 2.1.0 2.11.0 2.1.0 2.11.0 2.0.0 2.10.0 2.0.0 2.10.0 2.0.0 2.10.0 1.0.0 2.10.0 1.0.0 2.9.0 1.0.0 2.9.0 1.0.0 2.9.0 1.0.0 2.9.0 1.0.0 2.8.0 1.0.0 2.8.0
61 :doc:`rocDecode <rocdecode:index>` :doc:`MIOpen <miopen:index>` 1.0.0 3.5.0 3.5.0 0.10.0 3.4.0 0.10.0 3.4.0 0.10.0 3.4.0 0.10.0 3.4.0 0.8.0 3.3.0 0.8.0 3.3.0 0.8.0 3.3.0 0.8.0 3.3.0 0.6.0 3.2.0 0.6.0 3.2.0 0.6.0 3.2.0 0.6.0 3.2.0 0.6.0 3.1.0 0.6.0 3.1.0 0.5.0 3.1.0 0.5.0 3.1.0 N/A 3.0.0 N/A 3.0.0
62 :doc:`rocJPEG <rocjpeg:index>` :doc:`MIVisionX <mivisionx:index>` 1.1.0 3.3.0 3.3.0 0.8.0 3.2.0 0.8.0 3.2.0 0.8.0 3.2.0 0.8.0 3.2.0 0.6.0 3.1.0 0.6.0 3.1.0 0.6.0 3.1.0 0.6.0 3.1.0 N/A 3.0.0 N/A 3.0.0 N/A 3.0.0 N/A 3.0.0 N/A 2.5.0 N/A 2.5.0 N/A 2.5.0 N/A 2.5.0 N/A 2.5.0 N/A 2.5.0
63 :doc:`rocPyDecode <rocpydecode:index>` :doc:`rocAL <rocal:index>` 0.6.0 2.3.0 2.3.0 0.3.1 2.2.0 0.3.1 2.2.0 0.3.1 2.2.0 0.3.1 2.2.0 0.2.0 2.1.0 0.2.0 2.1.0 0.2.0 2.1.0 0.2.0 2.1.0 0.1.0 2.0.0 0.1.0 2.0.0 0.1.0 2.0.0 0.1.0 1.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0 N/A 1.0.0
64 :doc:`RPP <rpp:index>` :doc:`rocDecode <rocdecode:index>` 2.0.0 1.0.0 1.0.0 1.9.10 0.10.0 1.9.10 0.10.0 1.9.10 0.10.0 1.9.10 0.10.0 1.9.1 0.8.0 1.9.1 0.8.0 1.9.1 0.8.0 1.9.1 0.8.0 1.8.0 0.6.0 1.8.0 0.6.0 1.8.0 0.6.0 1.8.0 0.6.0 1.5.0 0.6.0 1.5.0 0.6.0 1.5.0 0.5.0 1.5.0 0.5.0 1.4.0 N/A 1.4.0 N/A
65 :doc:`rocJPEG <rocjpeg:index>` 1.1.0 1.1.0 0.8.0 0.8.0 0.8.0 0.8.0 0.6.0 0.6.0 0.6.0 0.6.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
66 COMMUNICATION :doc:`rocPyDecode <rocpydecode:index>` .. _commlibs-support-compatibility-matrix-past-60: 0.6.0 0.6.0 0.3.1 0.3.1 0.3.1 0.3.1 0.2.0 0.2.0 0.2.0 0.2.0 0.1.0 0.1.0 0.1.0 0.1.0 N/A N/A N/A N/A N/A N/A
67 :doc:`RCCL <rccl:index>` :doc:`RPP <rpp:index>` 2.26.6 2.0.0 2.0.0 2.22.3 1.9.10 2.22.3 1.9.10 2.22.3 1.9.10 2.22.3 1.9.10 2.21.5 1.9.1 2.21.5 1.9.1 2.21.5 1.9.1 2.21.5 1.9.1 2.20.5 1.8.0 2.20.5 1.8.0 2.20.5 1.8.0 2.20.5 1.8.0 2.18.6 1.5.0 2.18.6 1.5.0 2.18.6 1.5.0 2.18.6 1.5.0 2.18.3 1.4.0 2.18.3 1.4.0
68 :doc:`rocSHMEM <rocshmem:index>` 3.0.0 2.0.1 2.0.1 2.0.0 2.0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
69 COMMUNICATION .. _commlibs-support-compatibility-matrix-past-60:
70 MATH LIBS :doc:`RCCL <rccl:index>` .. _mathlibs-support-compatibility-matrix-past-60: 2.26.6 2.26.6 2.22.3 2.22.3 2.22.3 2.22.3 2.21.5 2.21.5 2.21.5 2.21.5 2.20.5 2.20.5 2.20.5 2.20.5 2.18.6 2.18.6 2.18.6 2.18.6 2.18.3 2.18.3
71 `half <https://github.com/ROCm/half>`_ :doc:`rocSHMEM <rocshmem:index>` 1.12.0 3.0.0 3.0.0 1.12.0 2.0.1 1.12.0 2.0.1 1.12.0 2.0.0 1.12.0 2.0.0 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A 1.12.0 N/A
72 :doc:`hipBLAS <hipblas:index>` 3.0.0 2.4.0 2.4.0 2.4.0 2.4.0 2.3.0 2.3.0 2.3.0 2.3.0 2.2.0 2.2.0 2.2.0 2.2.0 2.1.0 2.1.0 2.1.0 2.1.0 2.0.0 2.0.0
73 :doc:`hipBLASLt <hipblaslt:index>` MATH LIBS 1.0.0 .. _mathlibs-support-compatibility-matrix-past-60: 0.12.1 0.12.1 0.12.1 0.12.0 0.10.0 0.10.0 0.10.0 0.10.0 0.8.0 0.8.0 0.8.0 0.8.0 0.7.0 0.7.0 0.7.0 0.7.0 0.6.0 0.6.0
74 :doc:`hipFFT <hipfft:index>` `half <https://github.com/ROCm/half>`_ 1.0.20 1.12.0 1.12.0 1.0.18 1.12.0 1.0.18 1.12.0 1.0.18 1.12.0 1.0.18 1.12.0 1.0.17 1.12.0 1.0.17 1.12.0 1.0.17 1.12.0 1.0.17 1.12.0 1.0.16 1.12.0 1.0.15 1.12.0 1.0.15 1.12.0 1.0.14 1.12.0 1.0.14 1.12.0 1.0.14 1.12.0 1.0.14 1.12.0 1.0.14 1.12.0 1.0.13 1.12.0 1.0.13 1.12.0
75 :doc:`hipfort <hipfort:index>` :doc:`hipBLAS <hipblas:index>` 0.7.0 3.0.2 3.0.0 0.6.0 2.4.0 0.6.0 2.4.0 0.6.0 2.4.0 0.6.0 2.4.0 0.5.1 2.3.0 0.5.1 2.3.0 0.5.0 2.3.0 0.5.0 2.3.0 0.4.0 2.2.0 0.4.0 2.2.0 0.4.0 2.2.0 0.4.0 2.2.0 0.4.0 2.1.0 0.4.0 2.1.0 0.4.0 2.1.0 0.4.0 2.1.0 0.4.0 2.0.0 0.4.0 2.0.0
76 :doc:`hipRAND <hiprand:index>` :doc:`hipBLASLt <hipblaslt:index>` 3.0.0 1.0.0 1.0.0 2.12.0 0.12.1 2.12.0 0.12.1 2.12.0 0.12.1 2.12.0 0.12.0 2.11.1 0.10.0 2.11.1 0.10.0 2.11.1 0.10.0 2.11.0 0.10.0 2.11.1 0.8.0 2.11.0 0.8.0 2.11.0 0.8.0 2.11.0 0.8.0 2.10.16 0.7.0 2.10.16 0.7.0 2.10.16 0.7.0 2.10.16 0.7.0 2.10.16 0.6.0 2.10.16 0.6.0
77 :doc:`hipSOLVER <hipsolver:index>` :doc:`hipFFT <hipfft:index>` 3.0.0 1.0.20 1.0.20 2.4.0 1.0.18 2.4.0 1.0.18 2.4.0 1.0.18 2.4.0 1.0.18 2.3.0 1.0.17 2.3.0 1.0.17 2.3.0 1.0.17 2.3.0 1.0.17 2.2.0 1.0.16 2.2.0 1.0.15 2.2.0 1.0.15 2.2.0 1.0.14 2.1.1 1.0.14 2.1.1 1.0.14 2.1.1 1.0.14 2.1.0 1.0.14 2.0.0 1.0.13 2.0.0 1.0.13
78 :doc:`hipSPARSE <hipsparse:index>` :doc:`hipfort <hipfort:index>` 4.0.1 0.7.0 0.7.0 3.2.0 0.6.0 3.2.0 0.6.0 3.2.0 0.6.0 3.2.0 0.6.0 3.1.2 0.5.1 3.1.2 0.5.1 3.1.2 0.5.0 3.1.2 0.5.0 3.1.1 0.4.0 3.1.1 0.4.0 3.1.1 0.4.0 3.1.1 0.4.0 3.0.1 0.4.0 3.0.1 0.4.0 3.0.1 0.4.0 3.0.1 0.4.0 3.0.0 0.4.0 3.0.0 0.4.0
79 :doc:`hipSPARSELt <hipsparselt:index>` :doc:`hipRAND <hiprand:index>` 0.2.4 3.0.0 3.0.0 0.2.3 2.12.0 0.2.3 2.12.0 0.2.3 2.12.0 0.2.3 2.12.0 0.2.2 2.11.1 0.2.2 2.11.1 0.2.2 2.11.1 0.2.2 2.11.0 0.2.1 2.11.1 0.2.1 2.11.0 0.2.1 2.11.0 0.2.1 2.11.0 0.2.0 2.10.16 0.2.0 2.10.16 0.1.0 2.10.16 0.1.0 2.10.16 0.1.0 2.10.16 0.1.0 2.10.16
80 :doc:`rocALUTION <rocalution:index>` :doc:`hipSOLVER <hipsolver:index>` 4.0.0 3.0.0 3.0.0 3.2.3 2.4.0 3.2.3 2.4.0 3.2.3 2.4.0 3.2.2 2.4.0 3.2.1 2.3.0 3.2.1 2.3.0 3.2.1 2.3.0 3.2.1 2.3.0 3.2.1 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.2.0 2.2.0 3.1.1 2.1.1 3.1.1 2.1.1 3.1.1 2.1.1 3.1.1 2.1.0 3.0.3 2.0.0 3.0.3 2.0.0
81 :doc:`rocBLAS <rocblas:index>` :doc:`hipSPARSE <hipsparse:index>` 5.0.0 4.0.1 4.0.1 4.4.1 3.2.0 4.4.1 3.2.0 4.4.0 3.2.0 4.4.0 3.2.0 4.3.0 3.1.2 4.3.0 3.1.2 4.3.0 3.1.2 4.3.0 3.1.2 4.2.4 3.1.1 4.2.1 3.1.1 4.2.1 3.1.1 4.2.0 3.1.1 4.1.2 3.0.1 4.1.2 3.0.1 4.1.0 3.0.1 4.1.0 3.0.1 4.0.0 3.0.0 4.0.0 3.0.0
82 :doc:`rocFFT <rocfft:index>` :doc:`hipSPARSELt <hipsparselt:index>` 1.0.34 0.2.4 0.2.4 1.0.32 0.2.3 1.0.32 0.2.3 1.0.32 0.2.3 1.0.32 0.2.3 1.0.31 0.2.2 1.0.31 0.2.2 1.0.31 0.2.2 1.0.31 0.2.2 1.0.30 0.2.1 1.0.29 0.2.1 1.0.29 0.2.1 1.0.28 0.2.1 1.0.27 0.2.0 1.0.27 0.2.0 1.0.27 0.1.0 1.0.26 0.1.0 1.0.25 0.1.0 1.0.23 0.1.0
83 :doc:`rocRAND <rocrand:index>` :doc:`rocALUTION <rocalution:index>` 4.0.0 4.0.0 4.0.0 3.3.0 3.2.3 3.3.0 3.2.3 3.3.0 3.2.3 3.3.0 3.2.2 3.2.0 3.2.1 3.2.0 3.2.1 3.2.0 3.2.1 3.2.0 3.2.1 3.1.1 3.2.1 3.1.0 3.2.0 3.1.0 3.2.0 3.1.0 3.2.0 3.0.1 3.1.1 3.0.1 3.1.1 3.0.1 3.1.1 3.0.1 3.1.1 3.0.0 3.0.3 2.10.17 3.0.3
84 :doc:`rocSOLVER <rocsolver:index>` :doc:`rocBLAS <rocblas:index>` 3.30.0 5.0.2 5.0.0 3.28.2 4.4.1 3.28.2 4.4.1 3.28.0 4.4.0 3.28.0 4.4.0 3.27.0 4.3.0 3.27.0 4.3.0 3.27.0 4.3.0 3.27.0 4.3.0 3.26.2 4.2.4 3.26.0 4.2.1 3.26.0 4.2.1 3.26.0 4.2.0 3.25.0 4.1.2 3.25.0 4.1.2 3.25.0 4.1.0 3.25.0 4.1.0 3.24.0 4.0.0 3.24.0 4.0.0
85 :doc:`rocSPARSE <rocsparse:index>` :doc:`rocFFT <rocfft:index>` 4.0.2 1.0.34 1.0.34 3.4.0 1.0.32 3.4.0 1.0.32 3.4.0 1.0.32 3.4.0 1.0.32 3.3.0 1.0.31 3.3.0 1.0.31 3.3.0 1.0.31 3.3.0 1.0.31 3.2.1 1.0.30 3.2.0 1.0.29 3.2.0 1.0.29 3.2.0 1.0.28 3.1.2 1.0.27 3.1.2 1.0.27 3.1.2 1.0.27 3.1.2 1.0.26 3.0.2 1.0.25 3.0.2 1.0.23
86 :doc:`rocWMMA <rocwmma:index>` :doc:`rocRAND <rocrand:index>` 2.0.0 4.0.0 4.0.0 1.7.0 3.3.0 1.7.0 3.3.0 1.7.0 3.3.0 1.7.0 3.3.0 1.6.0 3.2.0 1.6.0 3.2.0 1.6.0 3.2.0 1.6.0 3.2.0 1.5.0 3.1.1 1.5.0 3.1.0 1.5.0 3.1.0 1.5.0 3.1.0 1.4.0 3.0.1 1.4.0 3.0.1 1.4.0 3.0.1 1.4.0 3.0.1 1.3.0 3.0.0 1.3.0 2.10.17
87 :doc:`Tensile <tensile:src/index>` :doc:`rocSOLVER <rocsolver:index>` 4.44.0 3.30.1 3.30.0 4.43.0 3.28.2 4.43.0 3.28.2 4.43.0 3.28.0 4.43.0 3.28.0 4.42.0 3.27.0 4.42.0 3.27.0 4.42.0 3.27.0 4.42.0 3.27.0 4.41.0 3.26.2 4.41.0 3.26.0 4.41.0 3.26.0 4.41.0 3.26.0 4.40.0 3.25.0 4.40.0 3.25.0 4.40.0 3.25.0 4.40.0 3.25.0 4.39.0 3.24.0 4.39.0 3.24.0
88 :doc:`rocSPARSE <rocsparse:index>` 4.0.2 4.0.2 3.4.0 3.4.0 3.4.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.1 3.2.0 3.2.0 3.2.0 3.1.2 3.1.2 3.1.2 3.1.2 3.0.2 3.0.2
89 PRIMITIVES :doc:`rocWMMA <rocwmma:index>` .. _primitivelibs-support-compatibility-matrix-past-60: 2.0.0 2.0.0 1.7.0 1.7.0 1.7.0 1.7.0 1.6.0 1.6.0 1.6.0 1.6.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0
90 :doc:`hipCUB <hipcub:index>` :doc:`Tensile <tensile:src/index>` 4.0.0 4.44.0 4.44.0 3.4.0 4.43.0 3.4.0 4.43.0 3.4.0 4.43.0 3.4.0 4.43.0 3.3.0 4.42.0 3.3.0 4.42.0 3.3.0 4.42.0 3.3.0 4.42.0 3.2.1 4.41.0 3.2.0 4.41.0 3.2.0 4.41.0 3.2.0 4.41.0 3.1.0 4.40.0 3.1.0 4.40.0 3.1.0 4.40.0 3.1.0 4.40.0 3.0.0 4.39.0 3.0.0 4.39.0
91 :doc:`hipTensor <hiptensor:index>` 2.0.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0 1.3.0 1.3.0 1.2.0 1.2.0 1.2.0 1.2.0 1.1.0 1.1.0
92 :doc:`rocPRIM <rocprim:index>` PRIMITIVES 4.0.0 .. _primitivelibs-support-compatibility-matrix-past-60: 3.4.1 3.4.1 3.4.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.2 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
93 :doc:`rocThrust <rocthrust:index>` :doc:`hipCUB <hipcub:index>` 4.0.0 4.0.0 4.0.0 3.3.0 3.4.0 3.3.0 3.4.0 3.3.0 3.4.0 3.3.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.1.1 3.2.1 3.1.0 3.2.0 3.1.0 3.2.0 3.0.1 3.2.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.1 3.1.0 3.0.0 3.0.0
94 :doc:`hipTensor <hiptensor:index>` 2.0.0 2.0.0 1.5.0 1.5.0 1.5.0 1.5.0 1.4.0 1.4.0 1.4.0 1.4.0 1.3.0 1.3.0 1.3.0 1.3.0 1.2.0 1.2.0 1.2.0 1.2.0 1.1.0 1.1.0
95 SUPPORT LIBS :doc:`rocPRIM <rocprim:index>` 4.0.1 4.0.0 3.4.1 3.4.1 3.4.0 3.4.0 3.3.0 3.3.0 3.3.0 3.3.0 3.2.2 3.2.0 3.2.0 3.2.0 3.1.0 3.1.0 3.1.0 3.1.0 3.0.0 3.0.0
96 `hipother <https://github.com/ROCm/hipother>`_ :doc:`rocThrust <rocthrust:index>` 7.0.51830 4.0.0 4.0.0 6.4.43483 3.3.0 6.4.43483 3.3.0 6.4.43483 3.3.0 6.4.43482 3.3.0 6.3.42134 3.3.0 6.3.42134 3.3.0 6.3.42133 3.3.0 6.3.42131 3.3.0 6.2.41134 3.1.1 6.2.41134 3.1.0 6.2.41134 3.1.0 6.2.41133 3.0.1 6.1.40093 3.0.1 6.1.40093 3.0.1 6.1.40092 3.0.1 6.1.40091 3.0.1 6.1.32831 3.0.0 6.1.32830 3.0.0
97 `rocm-core <https://github.com/ROCm/rocm-core>`_ 7.0.0 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
98 `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ SUPPORT LIBS N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 20240607.5.7 20240607.5.7 20240607.4.05 20240607.1.4246 20240125.5.08 20240125.5.08 20240125.5.08 20240125.3.30 20231016.2.245 20231016.2.245
99 `hipother <https://github.com/ROCm/hipother>`_ 7.0.51830 7.0.51830 6.4.43483 6.4.43483 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
100 SYSTEM MGMT TOOLS `rocm-core <https://github.com/ROCm/rocm-core>`_ .. _tools-support-compatibility-matrix-past-60: 7.0.2 7.0.1/7.0.0 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
101 :doc:`AMD SMI <amdsmi:index>` `ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_ 26.0.0 N/A [#ROCT-rocr-past-60]_ N/A [#ROCT-rocr-past-60]_ 25.5.1 N/A [#ROCT-rocr-past-60]_ 25.5.1 N/A [#ROCT-rocr-past-60]_ 25.4.2 N/A [#ROCT-rocr-past-60]_ 25.3.0 N/A [#ROCT-rocr-past-60]_ 24.7.1 N/A [#ROCT-rocr-past-60]_ 24.7.1 N/A [#ROCT-rocr-past-60]_ 24.7.1 N/A [#ROCT-rocr-past-60]_ 24.7.1 N/A [#ROCT-rocr-past-60]_ 24.6.3 20240607.5.7 24.6.3 20240607.5.7 24.6.3 20240607.4.05 24.6.2 20240607.1.4246 24.5.1 20240125.5.08 24.5.1 20240125.5.08 24.5.1 20240125.5.08 24.4.1 20240125.3.30 23.4.2 20231016.2.245 23.4.2 20231016.2.245
102 :doc:`ROCm Data Center Tool <rdc:index>` 1.1.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0 0.3.0
103 :doc:`rocminfo <rocminfo:index>` SYSTEM MGMT TOOLS 1.0.0 .. _tools-support-compatibility-matrix-past-60: 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
104 :doc:`ROCm SMI <rocm_smi_lib:index>` :doc:`AMD SMI <amdsmi:index>` 7.8.0 26.0.2 26.0.0 7.7.0 25.5.1 7.5.0 25.5.1 7.5.0 25.4.2 7.5.0 25.3.0 7.4.0 24.7.1 7.4.0 24.7.1 7.4.0 24.7.1 7.4.0 24.7.1 7.3.0 24.6.3 7.3.0 24.6.3 7.3.0 24.6.3 7.3.0 24.6.2 7.2.0 24.5.1 7.2.0 24.5.1 7.0.0 24.5.1 7.0.0 24.4.1 6.0.2 23.4.2 6.0.0 23.4.2
105 :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` :doc:`ROCm Data Center Tool <rdc:index>` 1.2.0 1.1.0 1.1.0 1.1.0 0.3.0 1.1.0 0.3.0 1.1.0 0.3.0 1.1.0 0.3.0 1.1.0 0.3.0 1.1.0 0.3.0 1.1.0 0.3.0 1.1.0 0.3.0 1.0.60204 0.3.0 1.0.60202 0.3.0 1.0.60201 0.3.0 1.0.60200 0.3.0 1.0.60105 0.3.0 1.0.60102 0.3.0 1.0.60101 0.3.0 1.0.60100 0.3.0 1.0.60002 0.3.0 1.0.60000 0.3.0
106 :doc:`rocminfo <rocminfo:index>` 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
107 PERFORMANCE TOOLS :doc:`ROCm SMI <rocm_smi_lib:index>` 7.8.0 7.8.0 7.7.0 7.5.0 7.5.0 7.5.0 7.4.0 7.4.0 7.4.0 7.4.0 7.3.0 7.3.0 7.3.0 7.3.0 7.2.0 7.2.0 7.0.0 7.0.0 6.0.2 6.0.0
108 :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` :doc:`ROCm Validation Suite <rocmvalidationsuite:index>` 2.6.0 1.2.0 1.2.0 1.4.0 1.1.0 1.4.0 1.1.0 1.4.0 1.1.0 1.4.0 1.1.0 1.4.0 1.1.0 1.4.0 1.1.0 1.4.0 1.1.0 1.4.0 1.1.0 1.4.0 1.0.60204 1.4.0 1.0.60202 1.4.0 1.0.60201 1.4.0 1.0.60200 1.4.0 1.0.60105 1.4.0 1.0.60102 1.4.0 1.0.60101 1.4.0 1.0.60100 1.4.0 1.0.60002 1.4.0 1.0.60000
109 :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 3.2.3 3.1.1 3.1.1 3.1.0 3.1.0 3.0.0 3.0.0 3.0.0 3.0.0 2.0.1 2.0.1 2.0.1 2.0.1 N/A N/A N/A N/A N/A N/A
110 :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` PERFORMANCE TOOLS 1.1.0 1.0.2 1.0.2 1.0.1 1.0.0 0.1.2 0.1.1 0.1.0 0.1.0 1.11.2 1.11.2 1.11.2 1.11.2 N/A N/A N/A N/A N/A N/A
111 :doc:`ROCProfiler <rocprofiler:index>` :doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>` 2.0.70000 2.6.0 2.6.0 2.0.60403 1.4.0 2.0.60402 1.4.0 2.0.60401 1.4.0 2.0.60400 1.4.0 2.0.60303 1.4.0 2.0.60302 1.4.0 2.0.60301 1.4.0 2.0.60300 1.4.0 2.0.60204 1.4.0 2.0.60202 1.4.0 2.0.60201 1.4.0 2.0.60200 1.4.0 2.0.60105 1.4.0 2.0.60102 1.4.0 2.0.60101 1.4.0 2.0.60100 1.4.0 2.0.60002 1.4.0 2.0.60000 1.4.0
112 :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` 1.0.0 3.2.3 3.2.3 0.6.0 3.1.1 0.6.0 3.1.1 0.6.0 3.1.0 0.6.0 3.1.0 0.5.0 3.0.0 0.5.0 3.0.0 0.5.0 3.0.0 0.5.0 3.0.0 0.4.0 2.0.1 0.4.0 2.0.1 0.4.0 2.0.1 0.4.0 2.0.1 N/A N/A N/A N/A N/A N/A
113 :doc:`ROCTracer <roctracer:index>` :doc:`ROCm Systems Profiler <rocprofiler-systems:index>` 4.1.70000 1.1.1 1.1.0 4.1.60403 1.0.2 4.1.60402 1.0.2 4.1.60401 1.0.1 4.1.60400 1.0.0 4.1.60303 0.1.2 4.1.60302 0.1.1 4.1.60301 0.1.0 4.1.60300 0.1.0 4.1.60204 1.11.2 4.1.60202 1.11.2 4.1.60201 1.11.2 4.1.60200 1.11.2 4.1.60105 N/A 4.1.60102 N/A 4.1.60101 N/A 4.1.60100 N/A 4.1.60002 N/A 4.1.60000 N/A
114 :doc:`ROCProfiler <rocprofiler:index>` 2.0.70002 2.0.70000 2.0.60403 2.0.60402 2.0.60401 2.0.60400 2.0.60303 2.0.60302 2.0.60301 2.0.60300 2.0.60204 2.0.60202 2.0.60201 2.0.60200 2.0.60105 2.0.60102 2.0.60101 2.0.60100 2.0.60002 2.0.60000
115 DEVELOPMENT TOOLS :doc:`ROCprofiler-SDK <rocprofiler-sdk:index>` 1.0.0 1.0.0 0.6.0 0.6.0 0.6.0 0.6.0 0.5.0 0.5.0 0.5.0 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 N/A N/A N/A N/A N/A N/A
116 :doc:`HIPIFY <hipify:index>` :doc:`ROCTracer <roctracer:index>` 20.0.0 4.1.70002 4.1.70000 19.0.0 4.1.60403 19.0.0 4.1.60402 19.0.0 4.1.60401 19.0.0 4.1.60400 18.0.0.25012 4.1.60303 18.0.0.25012 4.1.60302 18.0.0.24491 4.1.60301 18.0.0.24455 4.1.60300 18.0.0.24392 4.1.60204 18.0.0.24355 4.1.60202 18.0.0.24355 4.1.60201 18.0.0.24232 4.1.60200 17.0.0.24193 4.1.60105 17.0.0.24193 4.1.60102 17.0.0.24154 4.1.60101 17.0.0.24103 4.1.60100 17.0.0.24012 4.1.60002 17.0.0.23483 4.1.60000
117 :doc:`ROCm CMake <rocmcmakebuildtools:index>` 0.14.0 0.14.0 0.14.0 0.14.0 0.14.0 0.14.0 0.14.0 0.14.0 0.14.0 0.13.0 0.13.0 0.13.0 0.13.0 0.12.0 0.12.0 0.12.0 0.12.0 0.11.0 0.11.0
118 :doc:`ROCdbgapi <rocdbgapi:index>` DEVELOPMENT TOOLS 0.77.3 0.77.2 0.77.2 0.77.2 0.77.2 0.77.0 0.77.0 0.77.0 0.77.0 0.76.0 0.76.0 0.76.0 0.76.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0 0.71.0
119 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` :doc:`HIPIFY <hipify:index>` 16.3.0 20.0.0 20.0.0 15.2.0 19.0.0 15.2.0 19.0.0 15.2.0 19.0.0 15.2.0 19.0.0 15.2.0 18.0.0.25012 15.2.0 18.0.0.25012 15.2.0 18.0.0.24491 15.2.0 18.0.0.24455 14.2.0 18.0.0.24392 14.2.0 18.0.0.24355 14.2.0 18.0.0.24355 14.2.0 18.0.0.24232 14.1.0 17.0.0.24193 14.1.0 17.0.0.24193 14.1.0 17.0.0.24154 14.1.0 17.0.0.24103 13.2.0 17.0.0.24012 13.2.0 17.0.0.23483
120 `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ :doc:`ROCm CMake <rocmcmakebuildtools:index>` 0.5.0 0.14.0 0.14.0 0.4.0 0.14.0 0.4.0 0.14.0 0.4.0 0.14.0 0.4.0 0.14.0 0.4.0 0.14.0 0.4.0 0.14.0 0.4.0 0.14.0 0.4.0 0.14.0 0.4.0 0.13.0 0.4.0 0.13.0 0.4.0 0.13.0 0.4.0 0.13.0 0.3.0 0.12.0 0.3.0 0.12.0 0.3.0 0.12.0 0.3.0 0.12.0 N/A 0.11.0 N/A 0.11.0
121 :doc:`ROCr Debug Agent <rocr_debug_agent:index>` :doc:`ROCdbgapi <rocdbgapi:index>` 2.1.0 0.77.4 0.77.3 2.0.4 0.77.2 2.0.4 0.77.2 2.0.4 0.77.2 2.0.4 0.77.2 2.0.3 0.77.0 2.0.3 0.77.0 2.0.3 0.77.0 2.0.3 0.77.0 2.0.3 0.76.0 2.0.3 0.76.0 2.0.3 0.76.0 2.0.3 0.76.0 2.0.3 0.71.0 2.0.3 0.71.0 2.0.3 0.71.0 2.0.3 0.71.0 2.0.3 0.71.0 2.0.3 0.71.0
122 :doc:`ROCm Debugger (ROCgdb) <rocgdb:index>` 16.3.0 16.3.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 14.2.0 14.2.0 14.2.0 14.2.0 14.1.0 14.1.0 14.1.0 14.1.0 13.2.0 13.2.0
123 COMPILERS `rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_ .. _compilers-support-compatibility-matrix-past-60: 0.5.0 0.5.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.4.0 0.3.0 0.3.0 0.3.0 0.3.0 N/A N/A
124 `clang-ocl <https://github.com/ROCm/clang-ocl>`_ :doc:`ROCr Debug Agent <rocr_debug_agent:index>` N/A 2.1.0 2.1.0 N/A 2.0.4 N/A 2.0.4 N/A 2.0.4 N/A 2.0.4 N/A 2.0.3 N/A 2.0.3 N/A 2.0.3 N/A 2.0.3 N/A 2.0.3 N/A 2.0.3 N/A 2.0.3 N/A 2.0.3 0.5.0 2.0.3 0.5.0 2.0.3 0.5.0 2.0.3 0.5.0 2.0.3 0.5.0 2.0.3 0.5.0 2.0.3
125 :doc:`hipCC <hipcc:index>` 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
126 `Flang <https://github.com/ROCm/flang>`_ COMPILERS 20.0.0.25314 .. _compilers-support-compatibility-matrix-past-60: 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
127 :doc:`llvm-project <llvm-project:index>` `clang-ocl <https://github.com/ROCm/clang-ocl>`_ 20.0.0.25314 N/A N/A 19.0.0.25224 N/A 19.0.0.25224 N/A 19.0.0.25184 N/A 19.0.0.25133 N/A 18.0.0.25012 N/A 18.0.0.25012 N/A 18.0.0.24491 N/A 18.0.0.24491 N/A 18.0.0.24392 N/A 18.0.0.24355 N/A 18.0.0.24355 N/A 18.0.0.24232 N/A 17.0.0.24193 0.5.0 17.0.0.24193 0.5.0 17.0.0.24154 0.5.0 17.0.0.24103 0.5.0 17.0.0.24012 0.5.0 17.0.0.23483 0.5.0
128 `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ :doc:`hipCC <hipcc:index>` 20.0.0.25314 1.1.1 1.1.1 19.0.0.25224 1.1.1 19.0.0.25224 1.1.1 19.0.0.25184 1.1.1 19.0.0.25133 1.1.1 18.0.0.25012 1.1.1 18.0.0.25012 1.1.1 18.0.0.24491 1.1.1 18.0.0.24491 1.1.1 18.0.0.24392 1.1.1 18.0.0.24355 1.1.1 18.0.0.24355 1.1.1 18.0.0.24232 1.1.1 17.0.0.24193 1.0.0 17.0.0.24193 1.0.0 17.0.0.24154 1.0.0 17.0.0.24103 1.0.0 17.0.0.24012 1.0.0 17.0.0.23483 1.0.0
129 `Flang <https://github.com/ROCm/flang>`_ 20.0.0.25385 20.0.0.25314 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24455 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
130 RUNTIMES :doc:`llvm-project <llvm-project:index>` .. _runtime-support-compatibility-matrix-past-60: 20.0.0.25385 20.0.0.25314 19.0.0.25224 19.0.0.25224 19.0.0.25184 19.0.0.25133 18.0.0.25012 18.0.0.25012 18.0.0.24491 18.0.0.24491 18.0.0.24392 18.0.0.24355 18.0.0.24355 18.0.0.24232 17.0.0.24193 17.0.0.24193 17.0.0.24154 17.0.0.24103 17.0.0.24012 17.0.0.23483
131 :doc:`AMD CLR <hip:understand/amd_clr>` `OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_ 7.0.51830 20.0.0.25385 20.0.0.25314 6.4.43484 19.0.0.25224 6.4.43484 19.0.0.25224 6.4.43483 19.0.0.25184 6.4.43482 19.0.0.25133 6.3.42134 18.0.0.25012 6.3.42134 18.0.0.25012 6.3.42133 18.0.0.24491 6.3.42131 18.0.0.24491 6.2.41134 18.0.0.24392 6.2.41134 18.0.0.24355 6.2.41134 18.0.0.24355 6.2.41133 18.0.0.24232 6.1.40093 17.0.0.24193 6.1.40093 17.0.0.24193 6.1.40092 17.0.0.24154 6.1.40091 17.0.0.24103 6.1.32831 17.0.0.24012 6.1.32830 17.0.0.23483
132 :doc:`HIP <hip:index>` 7.0.51830 6.4.43484 6.4.43484 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
133 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ RUNTIMES 2.0.0 .. _runtime-support-compatibility-matrix-past-60: 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
134 :doc:`ROCr Runtime <rocr-runtime:index>` :doc:`AMD CLR <hip:understand/amd_clr>` 1.18.0 7.0.51831 7.0.51830 1.15.0 6.4.43484 1.15.0 6.4.43484 1.15.0 6.4.43483 1.15.0 6.4.43482 1.14.0 6.3.42134 1.14.0 6.3.42134 1.14.0 6.3.42133 1.14.0 6.3.42131 1.14.0 6.2.41134 1.14.0 6.2.41134 1.14.0 6.2.41134 1.13.0 6.2.41133 1.13.0 6.1.40093 1.13.0 6.1.40093 1.13.0 6.1.40092 1.13.0 6.1.40091 1.12.0 6.1.32831 1.12.0 6.1.32830
135 :doc:`HIP <hip:index>` 7.0.51831 7.0.51830 6.4.43484 6.4.43484 6.4.43483 6.4.43482 6.3.42134 6.3.42134 6.3.42133 6.3.42131 6.2.41134 6.2.41134 6.2.41134 6.2.41133 6.1.40093 6.1.40093 6.1.40092 6.1.40091 6.1.32831 6.1.32830
136 `OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_ 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
137 :doc:`ROCr Runtime <rocr-runtime:index>` 1.18.0 1.18.0 1.15.0 1.15.0 1.15.0 1.15.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.14.0 1.13.0 1.13.0 1.13.0 1.13.0 1.13.0 1.12.0 1.12.0

View File

@@ -10,10 +10,9 @@ Use this matrix to view the ROCm compatibility and system requirements across su
You can also refer to the :ref:`past versions of ROCm compatibility matrix<past-rocm-compatibility-matrix>`.
Accelerators and GPUs listed in the following table support compute workloads (no display
information or graphics). If youre using ROCm with AMD Radeon or Radeon Pro GPUs for graphics
workloads, see the `Use ROCm on Radeon GPU documentation
<https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility.html>`_ to verify
GPUs listed in the following table support compute workloads (no display
information or graphics). If youre using ROCm with AMD Radeon GPUs or Ryzen APUs for graphics
workloads, see the :docs:`Use ROCm on Radeon and Ryzen <radeon:index.html>` to verify
compatibility and system requirements.
.. |br| raw:: html
@@ -23,20 +22,20 @@ compatibility and system requirements.
.. container:: format-big-table
.. csv-table::
:header: "ROCm Version", "7.0.0", "6.4.3", "6.3.0"
:header: "ROCm Version", "7.0.2", "7.0.1/7.0.0", "6.4.0"
:stub-columns: 1
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.3,Ubuntu 24.04.2,Ubuntu 24.04.2
:ref:`Operating systems & kernels <OS-kernel-versions>`,Ubuntu 24.04.3,Ubuntu 24.04.3,Ubuntu 24.04.2
,Ubuntu 22.04.5,Ubuntu 22.04.5,Ubuntu 22.04.5
,"RHEL 9.6, 9.4","RHEL 9.6, 9.4","RHEL 9.5, 9.4"
,RHEL 8.10 [#rhel-700]_,RHEL 8.10 [#rhel-700],RHEL 8.10 [#rhel-700]
,SLES 15 SP7,"SLES 15 SP7, SP6","SLES 15 SP6, SP5"
,"Oracle Linux 9, 8 [#ol-700-mi300x]_","Oracle Linux 9, 8 [#ol-mi300x]_",Oracle Linux 8.10 [#ol-mi300x]_
,Debian 12,Debian 12 [#single-node]_,
,Azure Linux 3.0 [#az-mi300x]_,Azure Linux 3.0 [#az-mi300x]_,
,Rocky Linux 9 [#rl-700]_,,
,"RHEL 10.0 [#rhel-10-702]_, 9.6 [#rhel-10-702]_, 9.4 [#rhel-94-702]_","RHEL 9.6 [#rhel-10-702]_, 9.4 [#rhel-94-702]_","RHEL 9.5, 9.4"
,RHEL 8.10 [#rhel-700]_,RHEL 8.10 [#rhel-700]_,RHEL 8.10
,SLES 15 SP7 [#sles-db-700]_,SLES 15 SP7 [#sles-db-700]_,SLES 15 SP6
,"Oracle Linux 10, 9, 8 [#ol-700-mi300x]_","Oracle Linux 9, 8 [#ol-700-mi300x]_","Oracle Linux 9, 8 [#ol-mi300x]_"
,"Debian 13 [#db-mi300x]_, 12 [#sles-db-700]_",Debian 12 [#sles-db-700]_,Debian 12 [#single-node]_
,Azure Linux 3.0 [#az-mi300x]_,Azure Linux 3.0 [#az-mi300x]_,Azure Linux 3.0 [#az-mi300x]_
,Rocky Linux 9 [#rl-700]_,Rocky Linux 9 [#rl-700]_,
,.. _architecture-support-compatibility-matrix:,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,,
:doc:`Architecture <rocm-install-on-linux:reference/system-requirements>`,CDNA4,CDNA4,
,CDNA3,CDNA3,CDNA3
,CDNA2,CDNA2,CDNA2
,CDNA,CDNA,CDNA
@@ -44,131 +43,143 @@ compatibility and system requirements.
,RDNA3,RDNA3,RDNA3
,RDNA2,RDNA2,RDNA2
,.. _gpu-support-compatibility-matrix:,,
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx950,,
,gfx1201 [#RDNA-OS]_,gfx1201 [#RDNA-OS]_,
,gfx1200 [#RDNA-OS]_,gfx1200 [#RDNA-OS]_,
,gfx1101 [#RDNA-OS]_ [#7700XT-OS]_,gfx1101 [#RDNA-OS]_ [#7700XT-OS]_,
,gfx1100,gfx1100,gfx1100
,gfx1030,gfx1030,gfx1030
,gfx942,gfx942,gfx942
,gfx90a,gfx90a,gfx90a
,gfx908,gfx908,gfx908
:doc:`GPU / LLVM target <rocm-install-on-linux:reference/system-requirements>`,gfx950 [#mi350x-os]_,gfx950 [#mi350x-os]_,
,gfx1201 [#RDNA-OS-700]_,gfx1201 [#RDNA-OS-700]_,
,gfx1200 [#RDNA-OS-700]_,gfx1200 [#RDNA-OS-700]_,
,gfx1101 [#RDNA-OS-700]_ [#rd-v710]_,gfx1101 [#RDNA-OS-700]_ [#rd-v710]_,
,gfx1100 [#RDNA-OS-700]_,gfx1100 [#RDNA-OS-700]_,gfx1100
,gfx1030 [#RDNA-OS-700]_ [#rd-v620]_,gfx1030 [#RDNA-OS-700]_ [#rd-v620]_,gfx1030
,gfx942 [#mi325x-os]_ [#mi300x-os]_ [#mi300A-os]_,gfx942 [#mi325x-os]_ [#mi300x-os]_ [#mi300A-os]_,gfx942
,gfx90a [#mi200x-os]_,gfx90a [#mi200x-os]_,gfx90a
,gfx908 [#mi100-os]_,gfx908 [#mi100-os]_,gfx908
,,,
FRAMEWORK SUPPORT,.. _framework-support-compatibility-matrix:,,
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.7, 2.6, 2.5, 2.4, 2.3","2.6, 2.5, 2.4, 2.3","2.4, 2.3, 2.2, 2.1, 2.0, 1.13"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.19.1, 2.18.1","2.18.1, 2.17.1, 2.16.2","2.17.0, 2.16.2, 2.15.1"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.6.0,0.4.35,0.4.31
:doc:`verl <../compatibility/ml-compatibility/verl-compatibility>` [#verl_compat]_,N/A,N/A,N/A
:doc:`Stanford Megatron-LM <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`,N/A,N/A,85f95ae
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,N/A
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>`,N/A,N/A,0.7.0
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_,N/A,N/A,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.20.0,1.17.3
:doc:`PyTorch <../compatibility/ml-compatibility/pytorch-compatibility>`,"2.8, 2.7, 2.6","2.7, 2.6, 2.5","2.6, 2.5, 2.4, 2.3"
:doc:`TensorFlow <../compatibility/ml-compatibility/tensorflow-compatibility>`,"2.19.1, 2.18.1, 2.17.1 [#tf-mi350]_","2.19.1, 2.18.1, 2.17.1 [#tf-mi350]_","2.18.1, 2.17.1, 2.16.2"
:doc:`JAX <../compatibility/ml-compatibility/jax-compatibility>`,0.6.0,0.6.0,0.4.35
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,2.4.0
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_,N/A,b6356,b5997
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.22.0,1.22.0,1.20.0
,,,
THIRD PARTY COMMS,.. _thirdpartycomms-support-compatibility-matrix:,,
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.3.0,>=1.3.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.15.0,>=1.15.0
`UCC <https://github.com/ROCm/ucc>`_,>=1.4.0,>=1.4.0,>=1.3.0
`UCX <https://github.com/ROCm/ucx>`_,>=1.17.0,>=1.17.0,>=1.15.0
,,,
THIRD PARTY ALGORITHM,.. _thirdpartyalgorithm-support-compatibility-matrix:,,
Thrust,2.6.0,2.5.0,2.3.2
CUB,2.6.0,2.5.0,2.3.2
Thrust,2.6.0,2.6.0,2.5.0
CUB,2.6.0,2.6.0,2.5.0
,,,
KMD & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
:doc:`KMD versions <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10, 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
DRIVER & USER SPACE [#kfd_support]_,.. _kfd-userspace-support-compatibility-matrix:,,
:doc:`AMD GPU Driver <rocm-install-on-linux:reference/user-kernel-space-compat-matrix>`,"30.10.2, 30.10.1 [#driver_patch]_, |br| 30.10, 6.4.x, 6.3.x","30.10.1 [#driver_patch]_, 30.10, |br| 6.4.x, 6.3.x, 6.2.x","6.4.x, 6.3.x, 6.2.x, 6.1.x"
,,,
ML & COMPUTER VISION,.. _mllibs-support-compatibility-matrix:,,
:doc:`Composable Kernel <composable_kernel:index>`,1.1.0,1.1.0,1.1.0
:doc:`MIGraphX <amdmigraphx:index>`,2.13.0,2.12.0,2.11.0
:doc:`MIOpen <miopen:index>`,3.5.0,3.4.0,3.3.0
:doc:`MIVisionX <mivisionx:index>`,3.3.0,3.2.0,3.1.0
:doc:`rocAL <rocal:index>`,2.3.0,2.2.0,2.1.0
:doc:`rocDecode <rocdecode:index>`,1.0.0,0.10.0,0.8.0
:doc:`rocJPEG <rocjpeg:index>`,1.1.0,0.8.0,0.6.0
:doc:`rocPyDecode <rocpydecode:index>`,0.6.0,0.3.1,0.2.0
:doc:`RPP <rpp:index>`,2.0.0,1.9.10,1.9.1
:doc:`MIGraphX <amdmigraphx:index>`,2.13.0,2.13.0,2.12.0
:doc:`MIOpen <miopen:index>`,3.5.0,3.5.0,3.4.0
:doc:`MIVisionX <mivisionx:index>`,3.3.0,3.3.0,3.2.0
:doc:`rocAL <rocal:index>`,2.3.0,2.3.0,2.2.0
:doc:`rocDecode <rocdecode:index>`,1.0.0,1.0.0,0.10.0
:doc:`rocJPEG <rocjpeg:index>`,1.1.0,1.1.0,0.8.0
:doc:`rocPyDecode <rocpydecode:index>`,0.6.0,0.6.0,0.3.1
:doc:`RPP <rpp:index>`,2.0.0,2.0.0,1.9.10
,,,
COMMUNICATION,.. _commlibs-support-compatibility-matrix:,,
:doc:`RCCL <rccl:index>`,2.26.6,2.22.3,2.21.5
:doc:`rocSHMEM <rocshmem:index>`,3.0.0,2.0.1,N/A
:doc:`RCCL <rccl:index>`,2.26.6,2.26.6,2.22.3
:doc:`rocSHMEM <rocshmem:index>`,3.0.0,3.0.0,2.0.0
,,,
MATH LIBS,.. _mathlibs-support-compatibility-matrix:,,
`half <https://github.com/ROCm/half>`_ ,1.12.0,1.12.0,1.12.0
:doc:`hipBLAS <hipblas:index>`,3.0.0,2.4.0,2.3.0
:doc:`hipBLASLt <hipblaslt:index>`,1.0.0,0.12.1,0.10.0
:doc:`hipFFT <hipfft:index>`,1.0.20,1.0.18,1.0.17
:doc:`hipfort <hipfort:index>`,0.7.0,0.6.0,0.5.0
:doc:`hipRAND <hiprand:index>`,3.0.0,2.12.0,2.11.0
:doc:`hipSOLVER <hipsolver:index>`,3.0.0,2.4.0,2.3.0
:doc:`hipSPARSE <hipsparse:index>`,4.0.1,3.2.0,3.1.2
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.4,0.2.3,0.2.2
:doc:`rocALUTION <rocalution:index>`,4.0.0,3.2.3,3.2.1
:doc:`rocBLAS <rocblas:index>`,5.0.0,4.4.1,4.3.0
:doc:`rocFFT <rocfft:index>`,1.0.34,1.0.32,1.0.31
:doc:`rocRAND <rocrand:index>`,4.0.0,3.3.0,3.2.0
:doc:`rocSOLVER <rocsolver:index>`,3.30.0,3.28.2,3.27.0
:doc:`rocSPARSE <rocsparse:index>`,4.0.2,3.4.0,3.3.0
:doc:`rocWMMA <rocwmma:index>`,2.0.0,1.7.0,1.6.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.43.0,4.42.0
:doc:`hipBLAS <hipblas:index>`,3.0.2,3.0.0,2.4.0
:doc:`hipBLASLt <hipblaslt:index>`,1.0.0,1.0.0,0.12.0
:doc:`hipFFT <hipfft:index>`,1.0.20,1.0.20,1.0.18
:doc:`hipfort <hipfort:index>`,0.7.0,0.7.0,0.6.0
:doc:`hipRAND <hiprand:index>`,3.0.0,3.0.0,2.12.0
:doc:`hipSOLVER <hipsolver:index>`,3.0.0,3.0.0,2.4.0
:doc:`hipSPARSE <hipsparse:index>`,4.0.1,4.0.1,3.2.0
:doc:`hipSPARSELt <hipsparselt:index>`,0.2.4,0.2.4,0.2.3
:doc:`rocALUTION <rocalution:index>`,4.0.0,4.0.0,3.2.2
:doc:`rocBLAS <rocblas:index>`,5.0.2,5.0.0,4.4.0
:doc:`rocFFT <rocfft:index>`,1.0.34,1.0.34,1.0.32
:doc:`rocRAND <rocrand:index>`,4.0.0,4.0.0,3.3.0
:doc:`rocSOLVER <rocsolver:index>`,3.30.1,3.30.0,3.28.0
:doc:`rocSPARSE <rocsparse:index>`,4.0.2,4.0.2,3.4.0
:doc:`rocWMMA <rocwmma:index>`,2.0.0,2.0.0,1.7.0
:doc:`Tensile <tensile:src/index>`,4.44.0,4.44.0,4.43.0
,,,
PRIMITIVES,.. _primitivelibs-support-compatibility-matrix:,,
:doc:`hipCUB <hipcub:index>`,4.0.0,3.4.0,3.3.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,1.5.0,1.4.0
:doc:`rocPRIM <rocprim:index>`,4.0.0,3.4.1,3.3.0
:doc:`rocThrust <rocthrust:index>`,4.0.0,3.3.0,3.3.0
:doc:`hipCUB <hipcub:index>`,4.0.0,4.0.0,3.4.0
:doc:`hipTensor <hiptensor:index>`,2.0.0,2.0.0,1.5.0
:doc:`rocPRIM <rocprim:index>`,4.0.1,4.0.0,3.4.0
:doc:`rocThrust <rocthrust:index>`,4.0.0,4.0.0,3.3.0
,,,
SUPPORT LIBS,,,
`hipother <https://github.com/ROCm/hipother>`_,7.0.51830,6.4.43483,6.3.42131
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.0,6.4.3,6.3.0
`hipother <https://github.com/ROCm/hipother>`_,7.0.51830,7.0.51830,6.4.43482
`rocm-core <https://github.com/ROCm/rocm-core>`_,7.0.2,7.0.1/7.0.0,6.4.0
`ROCT-Thunk-Interface <https://github.com/ROCm/ROCT-Thunk-Interface>`_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_,N/A [#ROCT-rocr]_
,,,
SYSTEM MGMT TOOLS,.. _tools-support-compatibility-matrix:,,
:doc:`AMD SMI <amdsmi:index>`,26.0.0,25.5.1,24.7.1
:doc:`ROCm Data Center Tool <rdc:index>`,1.1.0,0.3.0,0.3.0
:doc:`AMD SMI <amdsmi:index>`,26.0.2,26.0.0,25.3.0
:doc:`ROCm Data Center Tool <rdc:index>`,1.1.0,1.1.0,0.3.0
:doc:`rocminfo <rocminfo:index>`,1.0.0,1.0.0,1.0.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.7.0,7.4.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.2.0,1.1.0,1.1.0
:doc:`ROCm SMI <rocm_smi_lib:index>`,7.8.0,7.8.0,7.5.0
:doc:`ROCm Validation Suite <rocmvalidationsuite:index>`,1.2.0,1.2.0,1.1.0
:doc:`Cluster Validation Suite <cvs:index>`,1.0.0,1.0.0,N/A
,,,
PERFORMANCE TOOLS,,,
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,1.4.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.2.3,3.1.1,3.0.0
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.1.0,1.0.2,0.1.0
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70000,2.0.60403,2.0.60300
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,0.6.0,0.5.0
:doc:`ROCTracer <roctracer:index>`,4.1.70000,4.1.60403,4.1.60300
:doc:`ROCm Bandwidth Test <rocm_bandwidth_test:index>`,2.6.0,2.6.0,1.4.0
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>`,3.2.3,3.2.3,3.1.0
:doc:`ROCm Systems Profiler <rocprofiler-systems:index>`,1.1.1,1.1.0,1.0.0
:doc:`ROCProfiler <rocprofiler:index>`,2.0.70002,2.0.70000,2.0.60400
:doc:`ROCprofiler-SDK <rocprofiler-sdk:index>`,1.0.0,1.0.0,0.6.0
:doc:`ROCTracer <roctracer:index>`,4.1.70002,4.1.70000,4.1.60400
,,,
DEVELOPMENT TOOLS,,,
:doc:`HIPIFY <hipify:index>`,20.0.0,19.0.0,18.0.0.24455
:doc:`HIPIFY <hipify:index>`,20.0.0,20.0.0,19.0.0
:doc:`ROCm CMake <rocmcmakebuildtools:index>`,0.14.0,0.14.0,0.14.0
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.3,0.77.2,0.77.0
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,15.2.0,15.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.4.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.0.4,2.0.3
:doc:`ROCdbgapi <rocdbgapi:index>`,0.77.4,0.77.3,0.77.2
:doc:`ROCm Debugger (ROCgdb) <rocgdb:index>`,16.3.0,16.3.0,15.2.0
`rocprofiler-register <https://github.com/ROCm/rocprofiler-register>`_,0.5.0,0.5.0,0.4.0
:doc:`ROCr Debug Agent <rocr_debug_agent:index>`,2.1.0,2.1.0,2.0.4
,,,
COMPILERS,.. _compilers-support-compatibility-matrix:,,
`clang-ocl <https://github.com/ROCm/clang-ocl>`_,N/A,N/A,N/A
:doc:`hipCC <hipcc:index>`,1.1.1,1.1.1,1.1.1
`Flang <https://github.com/ROCm/flang>`_,20.0.0.25314,19.0.0.25224,18.0.0.24455
:doc:`llvm-project <llvm-project:index>`,20.0.0.25314,19.0.0.25224,18.0.0.24491
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.0.25314,19.0.0.25224,18.0.0.24491
`Flang <https://github.com/ROCm/flang>`_,20.0.0.25385,20.0.0.25314,19.0.0.25133
:doc:`llvm-project <llvm-project:index>`,20.0.0.25385,20.0.0.25314,19.0.0.25133
`OpenMP <https://github.com/ROCm/llvm-project/tree/amd-staging/openmp>`_,20.0.0.25385,20.0.0.25314,19.0.0.25133
,,,
RUNTIMES,.. _runtime-support-compatibility-matrix:,,
:doc:`AMD CLR <hip:understand/amd_clr>`,7.0.51830,6.4.43484,6.3.42131
:doc:`HIP <hip:index>`,7.0.51830,6.4.43484,6.3.42131
:doc:`AMD CLR <hip:understand/amd_clr>`,7.0.51831,7.0.51830,6.4.43482
:doc:`HIP <hip:index>`,7.0.51831,7.0.51830,6.4.43482
`OpenCL Runtime <https://github.com/ROCm/clr/tree/develop/opencl>`_,2.0.0,2.0.0,2.0.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.15.0,1.14.0
:doc:`ROCr Runtime <rocr-runtime:index>`,1.18.0,1.18.0,1.15.0
.. rubric:: Footnotes
.. [#rhel-700] RHEL 8.10 is only supported on AMD Instinct MI300X, MI300A, MI250X, MI250, MI210, and MI100 GPUs.
.. [#ol-700-mi300x] **For ROCm 7.0** - Oracle Linux 9 is supported only on AMD Instinct MI300X, MI350X, and MI355X. Oracle Linux 8 is only supported on AMD Instinct MI300X.
.. [#ol-mi300x] **Prior ROCm 7.0** - Oracle Linux is supported only on AMD Instinct MI300X.
.. [#sles-db-700] SLES 15 SP7 and Debian 12 are only supported on AMD Instinct MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
.. [#az-mi300x] Starting ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710.
.. [#rl-700] Rocky Linux 9 is only supported on AMD Instinct MI300X and MI300A GPUs.
.. [#single-node] **Prior to ROCm 7.0.0** - Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#az-mi300x] Starting from ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710.
.. [#RDNA-OS] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#7700XT-OS] Radeon RX 7700 XT (gfx1101) is supported only on Ubuntu 24.04.2 and RHEL 9.6.
.. [#kfd_support] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#rhel-10-702] RHEL 10.0 and RHEL 9.6 are supported on all listed :ref:`supported_GPUs` except AMD Radeon PRO V620 GPU.
.. [#rhel-94-702] RHEL 9.4 is supported on all AMD Instinct GPUs listed under :ref:`supported_GPUs`.
.. [#rhel-700] RHEL 8.10 is supported only on AMD Instinct MI300X, MI300A, MI250X, MI250, MI210, and MI100 GPUs.
.. [#ol-700-mi300x] **For ROCm 7.0.x** - Oracle Linux 10 and 9 are supported only on AMD Instinct MI355X, MI350X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPU.
.. [#ol-mi300x] **Prior ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X GPUs.
.. [#db-mi300x] **For ROCm 7.0.2** - Debian 13 is supported only on AMD Instinct MI300X GPUs.
.. [#sles-db-700] **For ROCm 7.0.x** - SLES 15 SP7 and Debian 12 are supported only on AMD Instinct MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
.. [#az-mi300x] Starting ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710 GPUs.
.. [#rl-700] Rocky Linux 9 is supported only on AMD Instinct MI300X and MI300A GPUs.
.. [#single-node] **Prior to ROCm 7.0.0** - Debian 12 is supported only on AMD Instinct MI300X GPUs for single-node functionality.
.. [#mi350x-os] AMD Instinct MI355X (gfx950) and MI350X(gfx950) GPUs are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, Oracle Linux 10, and Oracle Linux 9.
.. [#RDNA-OS-700] **For ROCm 7.0.x** - AMD Radeon PRO AI PRO R9700 (gfx1201), AMD Radeon RX 9070 XT (gfx1201), AMD Radeon RX 9070 GRE (gfx1201), AMD Radeon RX 9070 (gfx1201), AMD Radeon RX 9060 XT (gfx1200), AMD Radeon RX 9060 (gfx1200), AMD Radeon RX 7800 XT (gfx1101), AMD Radeon RX 7700 XT (gfx1101), AMD Radeon PRO W7700 (gfx1101), and AMD Radeon PRO W6800 (gfx1030) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, and RHEL 9.6.
.. [#rd-v710] **For ROCm 7.0.x** - AMD Radeon PRO V710 (gfx1101) GPUs are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, and Azure Linux 3.0.
.. [#rd-v620] **For ROCm 7.0.x** - AMD Radeon PRO V620 (gfx1030) GPUs are supported only on Ubuntu 24.04.3 and Ubuntu 22.04.5.
.. [#mi325x-os] **For ROCm 7.0.x** - AMD Instinct MI325X GPUs (gfx942) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#mi300x-os] **For ROCm 7.0.x** - AMD Instinct MI300X GPUs (gfx942) are supported on all listed :ref:`supported_distributions`.
.. [#mi300A-os] **For ROCm 7.0.x** - AMD Instinct MI300A GPUs (gfx942) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, Debian 12, and Rocky Linux 9.
.. [#mi200x-os] **For ROCm 7.0.x** - AMD Instinct MI200 Series GPUs (gfx90a) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, and Debian 12.
.. [#mi100-os] **For ROCm 7.0.x** - AMD Instinct MI100 GPUs (gfx908) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, and RHEL 8.10.
.. [#tf-mi350] TensorFlow 2.17.1 is not supported on AMD Instinct MI350 Series GPUs. Use TensorFlow 2.19.1 or 2.18.1 with MI350 Series GPUs instead.
.. [#dgl_compat] DGL is supported only on ROCm 6.4.0.
.. [#llama-cpp_compat] llama.cpp is supported only on ROCm 7.0.0 and ROCm 6.4.x.
.. [#driver_patch] AMD GPU Driver (amdgpu) 30.10.1 is a quality release that resolves an issue identified in the 30.10 release. There are no other significant changes or feature additions in ROCm 7.0.1 from ROCm 7.0.0. AMD GPU Driver (amdgpu) 30.10.1 is compatible with ROCm 7.0.1 and ROCm 7.0.0.
.. [#kfd_support] As of ROCm 6.4.0, forward and backward compatibility between the AMD GPU Driver (amdgpu) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and AMD GPU Driver support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.
@@ -190,6 +201,8 @@ Use this lookup table to confirm which operating system and kernel versions are
,,
`Ubuntu <https://ubuntu.com/about/release-cycle#ubuntu-kernel-release-cycle>`_, 22.04.5, "5.15 [GA], 6.8 [HWE]", 2.35
,,
`Red Hat Enterprise Linux (RHEL 10) <https://access.redhat.com/articles/3078#RHEL9>`_, 10.0, 6.12.0-55, 2.39
,,
`Red Hat Enterprise Linux (RHEL 9) <https://access.redhat.com/articles/3078#RHEL9>`_, 9.6, 5.14.0-570, 2.34
,9.5, 5.14+, 2.34
,9.4, 5.14.0-427, 2.34
@@ -202,10 +215,12 @@ Use this lookup table to confirm which operating system and kernel versions are
,,
`Rocky Linux <https://wiki.rockylinux.org/rocky/version/>`_, 9, 5.14.0-570, 2.34
,,
`Oracle Linux <https://blogs.oracle.com/scoter/post/oracle-linux-and-unbreakable-enterprise-kernel-uek-releases>`_, 9, 6.12.0 (UEK), 2.34
`Oracle Linux <https://blogs.oracle.com/scoter/post/oracle-linux-and-unbreakable-enterprise-kernel-uek-releases>`_, 10, 6.12.0 (UEK), 2.39
,9, 6.12.0 (UEK), 2.34
,8, 5.15.0 (UEK), 2.28
,,
`Debian <https://www.debian.org/download>`_,12, 6.1.0, 2.36
`Debian <https://www.debian.org/download>`_,13, 6.12, 2.35
,12, 6.1.0, 2.36
,,
`Azure Linux <https://techcommunity.microsoft.com/blog/linuxandopensourceblog/azure-linux-3-0-now-in-preview-on-azure-kubernetes-service-v1-31/4287229>`_,3.0, 6.6.92, 2.38
,,
@@ -240,29 +255,47 @@ Expand for full historical view of:
.. rubric:: Footnotes
.. [#ol-700-mi300x-past-60] **For ROCm 7.0.0** - Oracle Linux 9 is supported only on AMD Instinct MI300X, MI350X, and MI355X. Oracle Linux 8 is only supported on AMD Instinct MI300X.
.. [#mi300x-past-60] **Prior to ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X.
.. [#single-node-past-60] **Prior to ROCm 7.0.0 ** - Debian 12 is supported only on AMD Instinct MI300X for single-node functionality.
.. [#az-mi300x-past-60] Starting from ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710.
.. [#az-mi300x-630-past-60] **Prior ROCm 6.4.0**- Azure Linux 3.0 is supported only on AMD Instinct MI300X.
.. [#RDNA-OS-past-60] Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#7700XT-OS-past-60] Radeon RX 7700 XT (gfx1101) is supported only on Ubuntu 24.04.2 and RHEL 9.6.
.. [#rhel-10-702-past-60] RHEL 10.0 and RHEL 9.6 are supported on all listed :ref:`supported_GPUs` except AMD Radeon PRO V620 GPU.
.. [#rhel-94-702-past-60] RHEL 9.4 is supported on all AMD Instinct GPUs listed under :ref:`supported_GPUs`.
.. [#rhel-700-past-60] **For ROCm 7.0.x** - RHEL 8.10 is supported only on AMD Instinct MI300X, MI300A, MI250X, MI250, MI210, and MI100 GPUs.
.. [#ol-700-mi300x-past-60] **For ROCm 7.0.x** - Oracle Linux 10 and 9 are supported only on AMD Instinct MI355X, MI350X, and MI300X GPUs. Oracle Linux 8 is supported only on AMD Instinct MI300X GPU.
.. [#mi300x-past-60] **Prior ROCm 7.0.0** - Oracle Linux is supported only on AMD Instinct MI300X GPUs.
.. [#db-mi300x-past-60] **For ROCm 7.0.2** - Debian 13 is supported only on AMD Instinct MI300X GPUs.
.. [#sles-db-700-past-60] **For ROCm 7.0.x** - SLES 15 SP7 and Debian 12 are supported only on AMD Instinct MI300X, MI300A, MI250X, MI250, and MI210 GPUs.
.. [#single-node-past-60] **Prior to ROCm 7.0.0** - Debian 12 is supported only on AMD Instinct MI300X GPUs for single-node functionality.
.. [#az-mi300x-past-60] Starting from ROCm 6.4.0, Azure Linux 3.0 is supported only on AMD Instinct MI300X and AMD Radeon PRO V710 GPUs.
.. [#az-mi300x-630-past-60] **Prior ROCm 6.4.0**- Azure Linux 3.0 is supported only on AMD Instinct MI300X GPUs.
.. [#rl-700-past-60] Rocky Linux 9 is supported only on AMD Instinct MI300X and MI300A GPUs.
.. [#mi350x-os-past-60] AMD Instinct MI355X (gfx950) and MI350X(gfx950) GPUs are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, RHEL 9.4, and Oracle Linux 9.
.. [#RDNA-OS-700-past-60] **For ROCm 7.0.x** AMD Radeon PRO AI PRO R9700 (gfx1201), AMD Radeon RX 9070 XT (gfx1201), AMD Radeon RX 9070 GRE (gfx1201), AMD Radeon RX 9070 (gfx1201), AMD Radeon RX 9060 XT (gfx1200), AMD Radeon RX 9060 (gfx1200), AMD Radeon RX 7800 XT (gfx1101), AMD Radeon RX 7700 XT (gfx1101), AMD Radeon PRO W7700 (gfx1101), and AMD Radeon PRO W6800 (gfx1030) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, Oracle Linux 10, and Oracle Linux 9.
.. [#RDNA-OS-past-60] **Prior ROCm 7.0.0** - Radeon AI PRO R9700, Radeon RX 9070 XT (gfx1201), Radeon RX 9060 XT (gfx1200), Radeon PRO W7700 (gfx1101), and Radeon RX 7800 XT (gfx1101) are supported only on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#rd-v710-past-60] **For ROCm 7.0.x** - AMD Radeon PRO V710 (gfx1101) is supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, and Azure Linux 3.0.
.. [#rd-v620-past-60] **For ROCm 7.0.x** - AMD Radeon PRO V620 (gfx1030) is supported only on Ubuntu 24.04.3 and Ubuntu 22.04.5.
.. [#mi325x-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI325X GPU (gfx942) is supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 9.6, and RHEL 9.4.
.. [#mi300x-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI300X GPU (gfx942) is supported on all listed :ref:`supported_distributions`.
.. [#mi300A-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI300A GPU (gfx942) is supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, Debian 12, and Rocky Linux 9.
.. [#mi200x-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI200 Series GPUs (gfx90a) are supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, RHEL 8.10, SLES 15 SP7, and Debian 12.
.. [#mi100-os-past-60] **For ROCm 7.0.x** - AMD Instinct MI100 GPU (gfx908) is supported only on Ubuntu 24.04.3, Ubuntu 22.04.5, RHEL 10.0, RHEL 9.6, RHEL 9.4, and RHEL 8.10.
.. [#7700XT-OS-past-60] **Prior to ROCm 7.0.0** - Radeon RX 7700 XT (gfx1101) is supported only on Ubuntu 24.04.2 and RHEL 9.6.
.. [#mi300_624-past-60] **For ROCm 6.2.4** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_622-past-60] **For ROCm 6.2.2** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_621-past-60] **For ROCm 6.2.1** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_620-past-60] **For ROCm 6.2.0** - MI300X (gfx942) is supported on listed operating systems *except* Ubuntu 22.04.5 [6.8 HWE] and Ubuntu 22.04.4 [6.5 HWE].
.. [#mi300_612-past-60] **For ROCm 6.1.2** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4 and Oracle Linux.
.. [#mi300_611-past-60] **For ROCm 6.1.1** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4 and Oracle Linux.
.. [#mi300_610-past-60] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.4.
.. [#mi300_602-past-60] **For ROCm 6.0.2** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is only supported on Ubuntu 22.04.3.
.. [#verl_compat] verl is only supported on ROCm 6.2.0.
.. [#stanford-megatron-lm_compat] Stanford Megatron-LM is only supported on ROCm 6.3.0.
.. [#dgl_compat] DGL is only supported on ROCm 6.4.0.
.. [#megablocks_compat] Megablocks is only supported on ROCm 6.3.0.
.. [#taichi_compat] Taichi is only supported on ROCm 6.3.2.
.. [#ray_compat] Ray is only supported on ROCm 6.4.1.
.. [#llama-cpp_compat] llama.cpp is only supported on ROCm 6.4.0.
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#mi300_612-past-60] **For ROCm 6.1.2** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.4 and Oracle Linux.
.. [#mi300_611-past-60] **For ROCm 6.1.1** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.4 and Oracle Linux.
.. [#mi300_610-past-60] **For ROCm 6.1.0** - MI300A (gfx942) is supported on Ubuntu 22.04.4, RHEL 9.4, RHEL 9.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.4.
.. [#mi300_602-past-60] **For ROCm 6.0.2** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.3.
.. [#mi300_600-past-60] **For ROCm 6.0.0** - MI300A (gfx942) is supported on Ubuntu 22.04.3, RHEL 8.9, and SLES 15 SP5. MI300X (gfx942) is supported only on Ubuntu 22.04.3.
.. [#tf-mi350-past-60] TensorFlow 2.17.1 is not supported on AMD Instinct MI350 Series GPUs. Use TensorFlow 2.19.1 or 2.18.1 with MI350 Series GPUs instead.
.. [#verl_compat-past-60] verl is supported only on ROCm 6.2.0.
.. [#stanford-megatron-lm_compat-past-60] Stanford Megatron-LM is supported only on ROCm 6.3.0.
.. [#dgl_compat-past-60] DGL is supported only on ROCm 6.4.0.
.. [#megablocks_compat-past-60] Megablocks is supported only on ROCm 6.3.0.
.. [#taichi_compat-past-60] Taichi is supported only on ROCm 6.3.2.
.. [#ray_compat-past-60] Ray is supported only on ROCm 6.4.1.
.. [#llama-cpp_compat-past-60] llama.cpp is supported only on ROCm 7.0.0 and 6.4.x.
.. [#flashinfer_compat-past-60] FlashInfer is supported only on ROCm 6.4.1.
.. [#driver_patch-past-60] AMD GPU Driver (amdgpu) 30.10.1 is a quality release that resolves an issue identified in the 30.10 release. There are no other significant changes or feature additions in ROCm 7.0.1 from ROCm 7.0.0. AMD GPU Driver (amdgpu) 30.10.1 is compatible with ROCm 7.0.1 and ROCm 7.0.0.
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD GPU Driver (amdgpu) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The supported user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and AMD GPU Driver support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.

View File

@@ -0,0 +1,107 @@
:orphan:
.. meta::
:description: FlashInfer deep learning framework compatibility
:keywords: GPU, LLM, FlashInfer, compatibility
.. version-set:: rocm_version latest
********************************************************************************
FlashInfer compatibility
********************************************************************************
`FlashInfer <https://docs.flashinfer.ai/index.html>`__ is a library and kernel generator
for Large Language Models (LLMs) that provides high-performance implementation of graphics
processing units (GPUs) kernels. FlashInfer focuses on LLM serving and inference, as well
as advanced performance across diverse scenarios.
FlashInfer features highly efficient attention kernels, load-balanced scheduling, and memory-optimized
techniques, while supporting customized attention variants. Its compatible with ``torch.compile``, and
offers high-performance LLM-specific operators, with easy integration through PyTorch, and C++ APIs.
.. note::
The ROCm port of FlashInfer is under active development, and some features are not yet available.
For the latest feature compatibility matrix, refer to the ``README`` of the
`https://github.com/ROCm/flashinfer <https://github.com/ROCm/flashinfer>`__ repository.
Support for the ROCm port of FlashInfer is available as follows:
- ROCm support for FlashInfer is hosted in the `https://github.com/ROCm/flashinfer
<https://github.com/ROCm/flashinfer>`__ repository. This location differs from the
`https://github.com/flashinfer-ai/flashinfer <https://github.com/flashinfer-ai/flashinfer>`_
upstream repository.
- To install FlashInfer, use the prebuilt :ref:`Docker image <flashinfer-docker-compat>`,
which includes ROCm, FlashInfer, and all required dependencies.
- See the :doc:`ROCm FlashInfer installation guide <rocm-install-on-linux:install/3rd-party/flashinfer-install>`
to install and get started.
- See the `Installation guide <https://docs.flashinfer.ai/installation.html>`__
in the upstream FlashInfer documentation.
.. note::
Flashinfer is supported on ROCm 6.4.1.
Supported devices
================================================================================
**Officially Supported**: AMD Instinct™ MI300X
.. _flashinfer-recommendations:
Use cases and recommendations
================================================================================
This release of FlashInfer on ROCm provides the decode functionality for LLM inferencing.
In the decode phase, tokens are generated sequentially, with the model predicting each new
token based on the previously generated tokens and the input context.
FlashInfer on ROCm brings over upstream features such as load balancing, sparse and dense
attention optimizations, and batching support, enabling efficient execution on AMD Instinct™ MI300X GPUs.
Because large LLMs often require substantial KV caches or long context windows, FlashInfer on ROCm
also implements cascade attention from upstream to reduce memory usage.
For currently supported use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for examples and best practices to optimize your workloads on AMD GPUs.
.. _flashinfer-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `ROCm FlashInfer images <https://hub.docker.com/r/rocm/flashinfer/tags>`__
with ROCm and Pytorch backends on Docker Hub. The following Docker image tags and associated
inventories represent the FlashInfer version from the official Docker Hub.
The Docker images have been validated for `ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__.
Click |docker-icon| to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- ROCm
- FlashInfer
- PyTorch
- Ubuntu
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/flashinfer/flashinfer-0.2.5_rocm6.4_ubuntu24.04_py3.12_pytorch2.7/images/sha256-558914838821c88c557fb6d42cfbc1bdb67d79d19759f37c764a9ee801f93313"><i class="fab fa-docker fa-lg"></i> rocm/flashinfer</a>
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- `v0.2.5 <https://github.com/flashinfer-ai/flashinfer/releases/tag/v0.2.5>`__
- `2.7.1 <https://github.com/ROCm/pytorch/releases/tag/v2.7.1>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-3129/>`__

View File

@@ -79,7 +79,7 @@ Use cases and recommendations
* The `MI300X workload optimization guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html>`_
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. The page is aimed at helping users achieve optimal
GPU using ROCm. The page is aimed at helping users achieve optimal
performance for deep learning and other high-performance computing tasks on
the MI300X GPU.
@@ -90,75 +90,15 @@ For more use cases and recommendations, see `ROCm JAX blog posts <https://rocm.b
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
AMD provides preconfigured Docker images with JAX and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/jax>`__ and are the
recommended way to get started with deep learning with JAX on ROCm.
For ``jax-community`` images, see `rocm/jax-community
<https://hub.docker.com/r/rocm/jax-community/tags>`__ on Docker Hub.
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest JAX version from the official Docker Hub and are validated for
`ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table:: JAX Docker image components
:header-rows: 1
* - Docker image
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.2-jax0.4.35-py3.12/images/sha256-8918fa806a172c1a10eb2f57131eb31b5d7c8fa1656b8729fe7d3d736112de83"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax/rocm6.4.2-jax0.4.35-py3.10/images/sha256-a394be13c67b7fc602216abee51233afd4b6cb7adaa57ca97e688fba82f9ad79"><i class="fab fa-docker fa-lg"></i> rocm/jax</a>
- `0.4.35 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.4.35>`_
- Ubuntu 22.04
- `3.10.17 <https://www.python.org/downloads/release/python-31017/>`_
AMD publishes `Community ROCm JAX Docker images <https://hub.docker.com/r/rocm/jax-community>`_
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories are tested for `ROCm 6.3.2 <https://repo.radeon.com/rocm/apt/6.3.2/>`_.
.. list-table:: JAX community Docker image components
:header-rows: 1
* - Docker image
- JAX
- Linux
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.12.8/images/sha256-25dfaa0183e274bd0a3554a309af3249c6f16a1793226cb5373f418e39d3146a"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.12.8 <https://www.python.org/downloads/release/python-3128/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.11.11/images/sha256-ff9baeca9067d13e6c279c911e5a9e5beed0817d24fafd424367cc3d5bd381d7"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.11.11 <https://www.python.org/downloads/release/python-31111/>`_
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/jax-community/rocm6.3.2-jax0.5.0-py3.10.16/images/sha256-8bab484be1713655f74da51a191ed824bb9d03db1104fd63530a1ac3c37cf7b1"><i class="fab fa-docker fa-lg"></i> rocm/jax-community</a>
- `0.5.0 <https://github.com/ROCm/jax/releases/tag/rocm-jax-v0.5.0>`_
- Ubuntu 22.04
- `3.10.16 <https://www.python.org/downloads/release/python-31016/>`_
To find the right image tag, see the :ref:`JAX on ROCm installation
documentation <rocm-install-on-linux:jax-docker-support>` for a list of
available ``rocm/jax`` images.
.. _key_rocm_libraries:

View File

@@ -16,7 +16,7 @@ for Large Language Model (LLM) inference that runs on both central processing un
a simple, dependency-free setup.
The framework supports multiple quantization options, from 1.5-bit to 8-bit integers,
to speed up inference and reduce memory usage. Originally built as a CPU-first library,
to accelerate inference and reduce memory usage. Originally built as a CPU-first library,
llama.cpp is easy to integrate with other programming environments and is widely
adopted across diverse platforms, including consumer devices.
@@ -40,12 +40,12 @@ with ROCm support:
.. note::
llama.cpp is supported on ROCm 6.4.0.
llama.cpp is supported on ROCm 7.0.0 and ROCm 6.4.x.
Supported devices
================================================================================
**Officially Supported**: AMD Instinct™ MI300X, MI210
**Officially Supported**: AMD Instinct™ MI300X, MI325X, MI210
Use cases and recommendations
@@ -70,7 +70,7 @@ llama.cpp is also used in a range of real-world applications, including:
For more use cases and recommendations, refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`__,
where you can search for llama.cpp examples and best practices to optimize your workloads on AMD GPUs.
- The `Llama.cpp Meets Instinct: A New Era of Open-Source AI Acceleration <https://rocm.blogs.amd.com/ecosystems-and-partners/llama-cpp/README.html>`__,
- The `Llama.cpp Meets Instinct: A New Era of Open-Source AI Acceleration <https://rocm.blogs.amd.com/ecosystems-and-partners/llama-cpp/README.html>`__
blog post outlines how the open-source llama.cpp framework enables efficient LLM inference—including interactive inference with ``llama-cli``,
server deployment with ``llama-server``, GGUF model preparation and quantization, performance benchmarking, and optimizations tailored for
AMD Instinct GPUs within the ROCm ecosystem.
@@ -84,9 +84,9 @@ Docker image compatibility
<i class="fab fa-docker"></i>
AMD validates and publishes `ROCm llama.cpp Docker images <https://hub.docker.com/r/rocm/llama.cpp>`__
AMD validates and publishes `ROCm llama.cpp Docker images <https://hub.docker.com/r/rocm/llama.cpp/tags>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__.
inventories represent the available llama.cpp versions from the official Docker Hub.
Click |docker-icon| to view the image on Docker Hub.
.. important::
@@ -105,8 +105,115 @@ Click |docker-icon| to view the image on Docker Hub.
- Server Docker
- Light Docker
- llama.cpp
- ROCm
- Ubuntu
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu24.04_full/images/sha256-a2ecd635eaa65bb289a9041330128677f3ae88bee6fee0597424b17e38d4903c"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu24.04_server/images/sha256-cb46b47df415addb5ceb6e6fdf0be70bf9d7f6863bbe6e10c2441ecb84246d52"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu24.04_light/images/sha256-8f8536eec4b05c0ff1c022f9fc6c527ad1c89e6c1ca0906e4d39e4de73edbde9"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- 24.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu22.04_full/images/sha256-f36de2a3b03ae53e81c85422cb3780368c9891e1ac7884b04403a921fe2ea45d"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu22.04_server/images/sha256-df15e8ab11a6837cd3736644fec1e047465d49e37d610ab0b79df000371327df"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm7.0.0_ubuntu22.04_light/images/sha256-4ea2d5bb7964f0ee3ea9b30ba7f343edd6ddfab1b1037669ca7eafad2e3c2bd7"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `7.0.0 <https://repo.radeon.com/rocm/apt/7.0/>`__
- 22.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu24.04_full/images/sha256-5960fc850024a8a76451f9eaadd89b7e59981ae9f393b407310c1ddf18892577"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu24.04_server/images/sha256-1b79775d9f546065a6aaf9ca426e1dd4ed4de0b8f6ee83687758cc05af6538e6"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu24.04_light/images/sha256-8f863c4c2857ae42bebd64e4f1a0a1e7cc3ec4503f243e32b4a4dcad070ec361"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__
- 24.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu22.04_full/images/sha256-888879b3ee208f9247076d7984524b8d1701ac72611689e89854a1588bec9867"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu22.04_server/images/sha256-90e4ff99a66743e33fd00728cd71a768588e5f5ef355aaa196669fe65ac70672"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.3_ubuntu22.04_light/images/sha256-bd447a049939cb99054f8fbf3f2352870fe906a75e2dc3339c845c08b9c53f9b"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.3 <https://repo.radeon.com/rocm/apt/6.4.3/>`__
- 22.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu24.04_full/images/sha256-5b3a1bc4889c1fcade434b937fbf9cc1c22ff7dc0317c130339b0c9238bc88c4"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu24.04_server/images/sha256-5228ff99d0f627a9032d668f4381b2e80dc1e301adc3e0821f26d8354b175271"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu24.04_light/images/sha256-b12723b332a826a89b7252dddf868cbe4d1a869562fc4aa4032f59e1a683b968"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__
- 24.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu22.04_full/images/sha256-cd6e21a6a73f59b35dd5309b09dd77654a94d783bf13a55c14eb8dbf8e9c2615"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu22.04_server/images/sha256-c2b4689ab2c47e6626e8fea22d7a63eb03d47c0fde9f5ef8c9f158d15c423e58"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.2_ubuntu22.04_light/images/sha256-1acc28f29ed87db9cbda629cb29e1989b8219884afe05f9105522be929e94da4"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__
- 22.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu24.04_full/images/sha256-2f8ae8a44510d96d52dea6cb398b224f7edeb7802df7ec488c6f63d206b3cdc9"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu24.04_server/images/sha256-fece497ff9f4a28b12f645de52766941da8ead8471aa1ea84b61d4b4568e51f2"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu24.04_light/images/sha256-3e14352fa6f8c6128b23cf9342531c20dbfb522550b626e09d83b260a1947022"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- 24.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu22.04_full/images/sha256-80763062ef0bec15038c35fd01267f1fc99a5dd171d4b48583cc668b15efad69"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu22.04_server/images/sha256-db2a6c957555ed83b819bbc54aea884a93192da0fb512dae63d32e0dc4e8ab8f"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b6356_rocm6.4.1_ubuntu22.04_light/images/sha256-c6dbb07cc655fb079d5216e4b77451cb64a9daa0585d23b6fb8b32cb22021197"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b6356 <https://github.com/ROCm/llama.cpp/tree/release/b6356>`__
- `6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`__
- 22.04
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b5997_rocm6.4.0_ubuntu24.04_full/images/sha256-f78f6c81ab2f8e957469415fe2370a1334fe969c381d1fe46050c85effaee9d5"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
@@ -117,40 +224,52 @@ Click |docker-icon| to view the image on Docker Hub.
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b5997_rocm6.4.0_ubuntu24.04_light/images/sha256-cc324e6faeedf0e400011f07b49d2dc41a16bae257b2b7befa0f4e2e97231320"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b5997 <https://github.com/ROCm/llama.cpp/tree/release/b5997>`__
- `6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__
- 24.04
Key ROCm libraries for llama.cpp
================================================================================
llama.cpp functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers.
feature set available to developers. Ensure you have the required libraries for
your corresponding ROCm version.
.. list-table::
:header-rows: 1
* - ROCm library
- Version
- ROCm 7.0.0 version
- ROCm 6.4.x version
- Purpose
- Usage
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`__
- :version-ref:`hipBLAS rocm_version`
- 3.0.0
- 2.4.0
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations such as matrix multiplication, matrix-vector
products, and tensor contractions. Utilized in both dense and batched
linear algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`__
- :version-ref:`hipBLASLt rocm_version`
- 1.0.0
- 0.12.0
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- By setting the flag ``ROCBLAS_USE_HIPBLASLT``, you can dispatch hipblasLt
kernels where possible.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`__
- :version-ref:`rocWMMA rocm_version`
- 2.0.0
- 1.7.0
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
- Can be used to enhance the flash attention performance on AMD compute, by enabling
the flag during compile time.
the flag during compile time.
Previous versions
===============================================================================
See :doc:`rocm-install-on-linux:install/3rd-party/previous-versions/llama-cpp-history` to find documentation for previous releases
of the ``ROCm/llama.cpp`` Docker image.

View File

@@ -28,7 +28,7 @@ Supported devices
================================================================================
- **Officially Supported**: AMD Instinct MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210
Supported models and features
================================================================================

View File

@@ -73,9 +73,9 @@ Use cases and recommendations
* The :doc:`Instinct MI300X workload optimization guide </how-to/rocm-for-ai/inference-optimization/workload>`
provides detailed guidance on optimizing workloads for the AMD Instinct MI300X
accelerator using ROCm. This guide helps users achieve optimal performance for
GPU using ROCm. This guide helps users achieve optimal performance for
deep learning and other high-performance computing tasks on the MI300X
accelerator.
GPU.
* The :doc:`Inception with PyTorch documentation </conceptual/ai-pytorch-inception>`
describes how PyTorch integrates with ROCm for AI workloads It outlines the
@@ -89,141 +89,13 @@ For more use cases and recommendations, see `ROCm PyTorch blog posts <https://ro
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
AMD provides preconfigured Docker images with PyTorch and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/pytorch>`__ and are the
recommended way to get started with deep learning with PyTorch on ROCm.
<i class="fab fa-docker"></i>
AMD validates and publishes `PyTorch images <https://hub.docker.com/r/rocm/pytorch>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__.
Click |docker-icon| to view the image on Docker Hub.
.. list-table:: PyTorch Docker image components
:header-rows: 1
:class: docker-image-compatibility
* - Docker
- PyTorch
- Ubuntu
- Python
- Apex
- torchvision
- TensorBoard
- MAGMA
- UCX
- OMPI
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.6.0/images/sha256-6a287591500b4048a9556c1ecc92bc411fd3d552f6c8233bc399f18eb803e8d6"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`__
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.6.0/images/sha256-06b967629ba6657709f04169832cd769a11e6b491e8b1394c361d42d7a0c8b43"><i class="fab fa-docker fa-lg"></i></a>
- `2.6.0 <https://github.com/ROCm/pytorch/tree/release/2.6>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.6.0 <https://github.com/ROCm/apex/tree/release/1.6.0>`__
- `0.21.0 <https://github.com/pytorch/vision/tree/v0.21.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.5.1/images/sha256-62022414217ef6de33ac5b1341e57db8a48e8573fa2ace12d48aa5edd4b99ef0"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.10.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.11_pytorch_release_2.5.1/images/sha256-469a7f74fc149aff31797e011ee41978f6a190adc69fa423b3c6a718a77bd985"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 22.04
- `3.11 <https://www.python.org/downloads/release/python-31113/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.5.1/images/sha256-37f41a1cd94019688669a1b20d33ea74156e0c129ef6b8270076ef214a6a1a2c"><i class="fab fa-docker fa-lg"></i></a>
- `2.5.1 <https://github.com/ROCm/pytorch/tree/release/2.5>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.5.0 <https://github.com/ROCm/apex/tree/release/1.5.0>`__
- `0.20.1 <https://github.com/pytorch/vision/tree/v0.20.1>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.4.1/images/sha256-60824ba83dc1b9d94164925af1f81c0235c105dd555091ec04c57e05177ead1b"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`__
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu22.04_py3.10_pytorch_release_2.4.1/images/sha256-fe944fe083312f901be6891ab4d3ffebf2eaf2cf4f5f0f435ef0b76ec714fabd"><i class="fab fa-docker fa-lg"></i></a>
- `2.4.1 <https://github.com/ROCm/pytorch/tree/release/2.4>`__
- 22.04
- `3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `1.4.0 <https://github.com/ROCm/apex/tree/release/1.4.0>`__
- `0.19.0 <https://github.com/pytorch/vision/tree/v0.19.0>`__
- `2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.12.1~rc2-1 <https://github.com/openucx/ucx/tree/v1.12.1>`__
- `4.1.2-2ubuntu1 <https://github.com/open-mpi/ompi/tree/v4.1.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/pytorch/rocm6.4.2_ubuntu24.04_py3.12_pytorch_release_2.3.0/images/sha256-1d59251c47170c5b8960d1172a4dbe52f5793d8966edd778f168eaf32d56661a"><i class="fab fa-docker fa-lg"></i></a>
- `2.3.0 <https://github.com/ROCm/pytorch/tree/release/2.3>`__
- 24.04
- `3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `1.3.0 <https://github.com/ROCm/apex/tree/release/1.3.0>`__
- `0.18.0 <https://github.com/pytorch/vision/tree/v0.18.0>`__
- `2.13.0 <https://github.com/tensorflow/tensorboard/tree/2.13>`__
- `master <https://bitbucket.org/icl/magma/src/master/>`__
- `1.16.0+ds-5ubuntu1 <https://github.com/openucx/ucx/tree/v1.16.0>`__
- `4.1.6-7ubuntu2 <https://github.com/open-mpi/ompi/tree/v4.1.6>`__
To find the right image tag, see the :ref:`PyTorch on ROCm installation
documentation <rocm-install-on-linux:pytorch-docker-support>` for a list of
available ``rocm/pytorch`` images.
Key ROCm libraries for PyTorch
================================================================================
@@ -466,7 +338,7 @@ with ROCm.
* - Library
- Description
* - `torchaudio <https://docs.pytorch.org/audio/stable/index.html>`_
* - `torchaudio <https://docs.pytorch.org/audio/stable/index.html>`_
- Audio and signal processing library for PyTorch. Provides utilities for
audio I/O, signal and data processing functions, datasets, model
implementations, and application components for audio and speech
@@ -493,11 +365,11 @@ with ROCm.
and popular datasets for natural language processing, including
tokenization, vocabulary management, and text embeddings.
**Note:** ``torchtext`` does not implement ROCm-specific kernels.
**Note:** ``torchtext`` does not implement ROCm-specific kernels.
ROCm acceleration is provided through the underlying PyTorch framework
and ROCm library integration. Only official release exists.
* - `torchdata <https://docs.pytorch.org/data/beta/index.html>`_
* - `torchdata <https://meta-pytorch.org/data/beta/index.html#torchdata>`_
- Beta library of common modular data loading primitives for easily
constructing flexible and performant data pipelines, with features still
in prototype stage.
@@ -545,7 +417,7 @@ Key features and enhancements for PyTorch 2.7 with ROCm 7.0
- Expanded GPU architecture support: Provides optimized support for newer GPU
architectures, including gfx1200 and gfx1201 with preferred hipBLASLt backend
selection, along with improvements for gfx950 and gfx1100 series GPUs.
selection, along with improvements for gfx950 and gfx1100 Series GPUs.
- Advanced Triton Integration: AOTriton 0.10b introduces official support for
gfx950 and gfx1201, along with experimental support for gfx1101, gfx1151,
@@ -599,7 +471,7 @@ Known issues and notes for PyTorch 2.7 with ROCm 7.0
================================================================================
- The ``matmul.allow_fp16_reduced_precision_reduction`` and
``matmul.allow_bf16_reduced_precision_reduction`` options under
``torch.backends.cuda`` are not supported. As a result,
``matmul.allow_bf16_reduced_precision_reduction`` options under
``torch.backends.cuda`` are not supported. As a result,
reduced-precision reductions using FP16 or BF16 accumulation types are not
available.

View File

@@ -27,7 +27,7 @@ Supported Devices
================================================================================
- **Officially Supported**: AMD Instinct MI300X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210X
- **Partially Supported** (functionality or performance limitations): AMD Instinct MI250X, MI210
Supported models and features

View File

@@ -30,8 +30,8 @@ visual effects in film and gaming, and general-purpose computing.
Supported devices and features
===============================================================================
There is support through the ROCm software stack for all Taichi GPU features on AMD Instinct MI250X and MI210X series GPUs with the exception of Taichis GPU rendering system, CGUI.
AMD Instinct MI300X series GPUs will be supported by November.
There is support through the ROCm software stack for all Taichi GPU features on AMD Instinct MI250X and MI210X Series GPUs with the exception of Taichis GPU rendering system, CGUI.
AMD Instinct MI300X Series GPUs will be supported by November.
.. _taichi-recommendations:

View File

@@ -47,80 +47,15 @@ fixes, updates, and support for the latest ROCM versions.
.. _tensorflow-docker-compat:
Docker image compatibility
===============================================================================
================================================================================
.. |docker-icon| raw:: html
AMD provides preconfigured Docker images with TensorFlow and the ROCm backend.
These images are published on `Docker Hub <https://hub.docker.com/r/rocm/tensorflow>`__ and are the
recommended way to get started with deep learning with TensorFlow on ROCm.
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `TensorFlow images
<https://hub.docker.com/r/rocm/tensorflow>`__ with ROCm backends on
Docker Hub. The following Docker image tags and associated inventories are
validated for `ROCm 6.4.2 <https://repo.radeon.com/rocm/apt/6.4.2/>`__. Click
the |docker-icon| icon to view the image on Docker Hub.
.. list-table:: TensorFlow Docker image components
:header-rows: 1
* - Docker image
- TensorFlow
- Ubuntu
- Python
- TensorBoard
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.18-dev/images/sha256-96754ce2d30f729e19b497279915b5212ba33d5e408e7e5dd3f2304d87e3441e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.18.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.18-dev/images/sha256-fa741508d383858e86985a9efac85174529127408102558ae2e3a4ac894eea1e"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.18.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.18.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.18.0 <https://github.com/tensorflow/tensorboard/tree/2.18.0>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.17-dev/images/sha256-3a0aef09f2a8833c2b64b85874dd9449ffc2ad257351857338ff5b706c03a418"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.17.1-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.17-dev/images/sha256-bc7341a41ebe7ab261aa100732874507c452421ef733e408ac4f05ed453b0bc5"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.17.1 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.17.1-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.17.1 <https://github.com/tensorflow/tensorboard/tree/2.17.1>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.12-tf2.16-dev/images/sha256-4841a8df7c340dab79bf9362dad687797649a00d594e0832eb83ea6880a40d3b"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.16.2-cp312-cp312-manylinux_2_28_x86_64.whl>`__
- 24.04
- `Python 3.12 <https://www.python.org/downloads/release/python-31210/>`__
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`__
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/tensorflow/rocm6.4.2-py3.10-tf2.16-dev/images/sha256-883fa95aba960c58a3e46fceaa18f03ede2c7df89b8e9fd603ab2d47e0852897"><i class="fab fa-docker fa-lg"></i> rocm/tensorflow</a>
- `tensorflow-rocm 2.16.2 <https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4.2/tensorflow_rocm-2.16.2-cp310-cp310-manylinux_2_28_x86_64.whl>`__
- 22.04
- `Python 3.10 <https://www.python.org/downloads/release/python-31017/>`__
- `TensorBoard 2.16.2 <https://github.com/tensorflow/tensorboard/tree/2.16.2>`__
To find the right image tag, see the :ref:`TensorFlow on ROCm installation
documentation <rocm-install-on-linux:tensorflow-docker-support>` for a list of
available ``rocm/tensorflow`` images.
Critical ROCm libraries for TensorFlow

View File

@@ -13,22 +13,22 @@
:gutter: 1
:::{grid-item-card}
**AMD Instinct MI300 series**
**AMD Instinct MI300 Series**
Review hardware aspects of the AMD Instinct™ MI300 series of GPU accelerators and the CDNA™ 3
Review hardware aspects of the AMD Instinct™ MI300 Series GPUs and the CDNA™ 3
architecture.
* [AMD Instinct™ MI300 microarchitecture](./gpu-arch/mi300.md)
* [AMD Instinct MI300/CDNA3 ISA](https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/amd-instinct-mi300-cdna3-instruction-set-architecture.pdf)
* [White paper](https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf)
* [MI300 performance counters](./gpu-arch/mi300-mi200-performance-counters.rst)
* [MI350 series performance counters](./gpu-arch/mi350-performance-counters.rst)
* [MI350 Series performance counters](./gpu-arch/mi350-performance-counters.rst)
:::
:::{grid-item-card}
**AMD Instinct MI200 series**
**AMD Instinct MI200 Series**
Review hardware aspects of the AMD Instinct™ MI200 series of GPU accelerators and the CDNA™ 2
Review hardware aspects of the AMD Instinct™ MI200 Series GPUs and the CDNA™ 2
architecture.
* [AMD Instinct™ MI250 microarchitecture](./gpu-arch/mi250.md)
@@ -41,7 +41,7 @@ architecture.
:::{grid-item-card}
**AMD Instinct MI100**
Review hardware aspects of the AMD Instinct™ MI100 series of GPU accelerators and the CDNA™ 1
Review hardware aspects of the AMD Instinct™ MI100 Series GPUs and the CDNA™ 1
architecture.
* [AMD Instinct™ MI100 microarchitecture](./gpu-arch/mi100.md)

View File

@@ -1,14 +1,14 @@
---
myst:
html_meta:
"description lang=en": "Learn about the AMD Instinct MI100 series architecture."
"description lang=en": "Learn about the AMD Instinct MI100 Series architecture."
"keywords": "Instinct, MI100, microarchitecture, AMD, ROCm"
---
# AMD Instinct™ MI100 microarchitecture
The following image shows the node-level architecture of a system that
comprises two AMD EPYC™ processors and (up to) eight AMD Instinct™ accelerators.
comprises two AMD EPYC™ processors and (up to) eight AMD Instinct™ GPUs.
The two EPYC processors are connected to each other with the AMD Infinity™
fabric which provides a high-bandwidth (up to 18 GT/sec) and coherent links such
that each processor can access the available node memory as a single
@@ -18,29 +18,29 @@ available to connect the processors plus one PCIe Gen 4 x16 link per processor
can attach additional I/O devices such as the host adapters for the network
fabric.
![Structure of a single GCD in the AMD Instinct MI100 accelerator](../../data/conceptual/gpu-arch/image004.png "Node-level system architecture with two AMD EPYC™ processors and eight AMD Instinct™ accelerators.")
![Structure of a single GCD in the AMD Instinct MI100 GPU](../../data/conceptual/gpu-arch/image004.png "Node-level system architecture with two AMD EPYC™ processors and eight AMD Instinct™ GPUs.")
In a typical node configuration, each processor can host up to four AMD
Instinct™ accelerators that are attached using PCIe Gen 4 links at 16 GT/sec,
Instinct™ GPUs that are attached using PCIe Gen 4 links at 16 GT/sec,
which corresponds to a peak bidirectional link bandwidth of 32 GB/sec. Each hive
of four accelerators can participate in a fully connected, coherent AMD
Instinct™ fabric that connects the four accelerators using 23 GT/sec AMD
of four GPUs can participate in a fully connected, coherent AMD
Instinct™ fabric that connects the four GPUs using 23 GT/sec AMD
Infinity fabric links that run at a higher frequency than the inter-processor
links. This inter-GPU link can be established in certified server systems if the
GPUs are mounted in neighboring PCIe slots by installing the AMD Infinity
Fabric™ bridge for the AMD Instinct™ accelerators.
Fabric™ bridge for the AMD Instinct™ GPUs.
## Microarchitecture
The microarchitecture of the AMD Instinct accelerators is based on the AMD CDNA
The microarchitecture of the AMD Instinct GPUs is based on the AMD CDNA
architecture, which targets compute applications such as high-performance
computing (HPC) and AI & machine learning (ML) that run on everything from
individual servers to the world's largest exascale supercomputers. The overall
system architecture is designed for extreme scalability and compute performance.
![Structure of the AMD Instinct accelerator (MI100 generation)](../../data/conceptual/gpu-arch/image005.png "Structure of the AMD Instinct accelerator (MI100 generation)")
![Structure of the AMD Instinct GPU (MI100 generation)](../../data/conceptual/gpu-arch/image005.png "Structure of the AMD Instinct GPU (MI100 generation)")
The above image shows the AMD Instinct accelerator with its PCIe Gen 4 x16
The above image shows the AMD Instinct GPU with its PCIe Gen 4 x16
link (16 GT/sec, at the bottom) that connects the GPU to (one of) the host
processor(s). It also shows the three AMD Infinity Fabric ports that provide
high-speed links (23 GT/sec, also at the bottom) to the other GPUs of the local
@@ -48,7 +48,7 @@ hive.
On the left and right of the floor plan, the High Bandwidth Memory (HBM)
attaches via the GPU memory controller. The MI100 generation of the AMD
Instinct accelerator offers four stacks of HBM generation 2 (HBM2) for a total
Instinct GPU offers four stacks of HBM generation 2 (HBM2) for a total
of 32GB with a 4,096bit-wide memory interface. The peak memory bandwidth of the
attached HBM2 is 1.228 TB/sec at a memory clock frequency of 1.2 GHz.
@@ -64,7 +64,7 @@ Therefore, the theoretical maximum FP64 peak performance is 11.5 TFLOPS
![Block diagram of an MI100 compute unit with detailed SIMD view of the AMD CDNA architecture](../../data/conceptual/gpu-arch/image006.png "An MI100 compute unit with detailed SIMD view of the AMD CDNA architecture")
The preceding image shows the block diagram of a single CU of an AMD Instinct™
MI100 accelerator and summarizes how instructions flow through the execution
MI100 GPU and summarizes how instructions flow through the execution
engines. The CU fetches the instructions via a 32KB instruction cache and moves
them forward to execution via a dispatcher. The CU can handle up to ten
wavefronts at a time and feed their instructions into the execution unit. The

View File

@@ -1,13 +1,13 @@
---
myst:
html_meta:
"description lang=en": "Learn about the AMD Instinct MI250 series architecture."
"description lang=en": "Learn about the AMD Instinct MI250 Series architecture."
"keywords": "Instinct, MI250, microarchitecture, AMD, ROCm"
---
# AMD Instinct™ MI250 microarchitecture
The microarchitecture of the AMD Instinct MI250 accelerators is based on the
The microarchitecture of the AMD Instinct MI250 GPU is based on the
AMD CDNA 2 architecture that targets compute applications such as HPC,
artificial intelligence (AI), and machine learning (ML) and that run on
everything from individual servers to the worlds largest exascale
@@ -40,7 +40,7 @@ execution units (also called matrix cores), which are geared toward executing
matrix operations like matrix-matrix multiplications. For FP64, the peak
performance of these units amounts to 90.5 TFLOPS.
![Structure of a single GCD in the AMD Instinct MI250 accelerator.](../../data/conceptual/gpu-arch/image001.png "Structure of a single GCD in the AMD Instinct MI250 accelerator.")
![Structure of a single GCD in the AMD Instinct MI250 GPU.](../../data/conceptual/gpu-arch/image001.png "Structure of a single GCD in the AMD Instinct MI250 GPU.")
```{list-table} Peak-performance capabilities of the MI250 OAM for different data types.
:header-rows: 1
@@ -84,16 +84,9 @@ performance of these units amounts to 90.5 TFLOPS.
- 362.1
```
The above table summarizes the aggregated peak performance of the AMD
Instinct MI250 OCP Open Accelerator Modules (OAM, OCP is short for Open Compute
Platform) and its two GCDs for different data types and execution units. The
middle column lists the peak performance (number of data elements processed in a
single instruction) of a single compute unit if a SIMD (or matrix) instruction
is being retired in each clock cycle. The third column lists the theoretical
peak performance of the OAM module. The theoretical aggregated peak memory
bandwidth of the GPU is 3.2 TB/sec (1.6 TB/sec per GCD).
The above table summarizes the aggregated peak performance of the AMD Instinct MI250 Open Compute Platform (OCP) Open Accelerator Modules (OAMs) and its two GCDs for different data types and execution units. The middle column lists the peak performance (number of data elements processed in a single instruction) of a single compute unit if a SIMD (or matrix) instruction is being retired in each clock cycle. The third column lists the theoretical peak performance of the OAM module. The theoretical aggregated peak memory bandwidth of the GPU is 3.2 TB/sec (1.6 TB/sec per GCD).
![Dual-GCD architecture of the AMD Instinct MI250 accelerators](../../data/conceptual/gpu-arch/image002.png "Dual-GCD architecture of the AMD Instinct MI250 accelerators")
![Dual-GCD architecture of the AMD Instinct MI250 GPUs](../../data/conceptual/gpu-arch/image002.png "Dual-GCD architecture of the AMD Instinct MI250 GPUs")
The following image shows the block diagram of an OAM package that consists
of two GCDs, each of which constitutes one GPU device in the system. The two
@@ -105,18 +98,18 @@ between the two GCDs of an OAM, or a bidirectional peak transfer bandwidth of
## Node-level architecture
The following image shows the node-level architecture of a system that is
based on the AMD Instinct MI250 accelerator. The MI250 OAMs attach to the host
based on the AMD Instinct MI250 GPU. The MI250 OAMs attach to the host
system via PCIe Gen 4 x16 links (yellow lines). Each GCD maintains its own PCIe
x16 link to the host part of the system. Depending on the server platform, the
GCD can attach to the AMD EPYC processor directly or via an optional PCIe switch
. Note that some platforms may offer an x8 interface to the GCDs, which reduces
the available host-to-GPU bandwidth.
![Block diagram of AMD Instinct MI250 Accelerators with 3rd Generation AMD EPYC processor](../../data/conceptual/gpu-arch/image003.png "Block diagram of AMD Instinct MI250 Accelerators with 3rd Generation AMD EPYC processor")
![Block diagram of AMD Instinct MI250 GPUs with 3rd Generation AMD EPYC processor](../../data/conceptual/gpu-arch/image003.png "Block diagram of AMD Instinct MI250 GPUs with 3rd Generation AMD EPYC processor")
The preceding image shows the node-level architecture of a system with AMD
EPYC processors in a dual-socket configuration and four AMD Instinct MI250
accelerators. The MI250 OAMs attach to the host processors system via PCIe Gen 4
GPUs. The MI250 OAMs attach to the host processors system via PCIe Gen 4
x16 links (yellow lines). Depending on the system design, a PCIe switch may
exist to make more PCIe lanes available for additional components like network
interfaces and/or storage devices. Each GCD maintains its own PCIe x16 link to

View File

@@ -1,16 +1,16 @@
.. meta::
:description: MI300 and MI200 series performance counters and metrics
:description: MI300 and MI200 Series performance counters and metrics
:keywords: MI300, MI200, performance counters, command processor counters
***************************************************************************************************
MI300 and MI200 series performance counters and metrics
MI300 and MI200 Series performance counters and metrics
***************************************************************************************************
This document lists and describes the hardware performance counters and derived metrics available
for the AMD Instinct™ MI300 and MI200 GPU. You can also access this information using the
:doc:`ROCprofiler-SDK <rocprofiler-sdk:how-to/using-rocprofv3>`.
MI300 and MI200 series performance counters
MI300 and MI200 Series performance counters
===============================================================
Series performance counters include the following categories:
@@ -27,7 +27,7 @@ The following sections provide additional details for each category.
.. note::
Preliminary validation of all MI300 and MI200 series performance counters is in progress. Those with
Preliminary validation of all MI300 and MI200 Series performance counters is in progress. Those with
an asterisk (*) require further evaluation.
.. _command-processor-counters:
@@ -171,7 +171,7 @@ Instruction mix
"``SQ_INSTS_SMEM``", "Instr", "Number of scalar memory instructions issued"
"``SQ_INSTS_SMEM_NORM``", "Instr", "Number of scalar memory instructions normalized to match ``smem_level`` issued"
"``SQ_INSTS_FLAT``", "Instr", "Number of flat instructions issued"
"``SQ_INSTS_FLAT_LDS_ONLY``", "Instr", "**MI200 series only** Number of FLAT instructions that read/write only from/to LDS issued. Works only if ``EARLY_TA_DONE`` is enabled."
"``SQ_INSTS_FLAT_LDS_ONLY``", "Instr", "**MI200 Series only** Number of FLAT instructions that read/write only from/to LDS issued. Works only if ``EARLY_TA_DONE`` is enabled."
"``SQ_INSTS_LDS``", "Instr", "Number of LDS instructions issued **(MI200: includes flat; MI300: does not include flat)**"
"``SQ_INSTS_GDS``", "Instr", "Number of global data share instructions issued"
"``SQ_INSTS_EXP_GDS``", "Instr", "Number of EXP and global data share instructions excluding skipped export instructions issued"
@@ -396,9 +396,9 @@ Texture cache per pipe counters
"``TCP_UTCL1_TRANSLATION_MISS[n]``", "Req", "Number of unified translation cache (L1) translation misses", "0-15"
"``TCP_UTCL1_PERMISSION_MISS[n]``", "Req", "Number of unified translation cache (L1) permission misses", "0-15"
"``TCP_TOTAL_CACHE_ACCESSES[n]``", "Req", "Number of vector L1d cache accesses including hits and misses", "0-15"
"``TCP_TCP_LATENCY[n]``", "Cycles", "**MI200 series only** Accumulated wave access latency to vL1D over all wavefronts", "0-15"
"``TCP_TCC_READ_REQ_LATENCY[n]``", "Cycles", "**MI200 series only** Total vL1D to L2 request latency over all wavefronts for reads and atomics with return", "0-15"
"``TCP_TCC_WRITE_REQ_LATENCY[n]``", "Cycles", "**MI200 series only** Total vL1D to L2 request latency over all wavefronts for writes and atomics without return", "0-15"
"``TCP_TCP_LATENCY[n]``", "Cycles", "**MI200 Series only** Accumulated wave access latency to vL1D over all wavefronts", "0-15"
"``TCP_TCC_READ_REQ_LATENCY[n]``", "Cycles", "**MI200 Series only** Total vL1D to L2 request latency over all wavefronts for reads and atomics with return", "0-15"
"``TCP_TCC_WRITE_REQ_LATENCY[n]``", "Cycles", "**MI200 Series only** Total vL1D to L2 request latency over all wavefronts for writes and atomics without return", "0-15"
"``TCP_TCC_READ_REQ[n]``", "Req", "Number of read requests to L2 cache", "0-15"
"``TCP_TCC_WRITE_REQ[n]``", "Req", "Number of write requests to L2 cache", "0-15"
"``TCP_TCC_ATOMIC_WITH_RET_REQ[n]``", "Req", "Number of atomic requests to L2 cache with return", "0-15"
@@ -560,7 +560,7 @@ Note the following:
``TCC_TAG_STALL[n]``, probes can stall the pipeline at a variety of places. There is no single point that
can accurately measure the total stalls
MI300 and MI200 series derived metrics list
MI300 and MI200 Series derived metrics list
==============================================================
.. csv-table::

View File

@@ -1,21 +1,21 @@
---
myst:
html_meta:
"description lang=en": "Learn about the AMD Instinct MI300 series architecture."
"description lang=en": "Learn about the AMD Instinct MI300 Series architecture."
"keywords": "Instinct, MI300X, MI300A, microarchitecture, AMD, ROCm"
---
# AMD Instinct™ MI300 series microarchitecture
# AMD Instinct™ MI300 Series microarchitecture
The AMD Instinct MI300 series accelerators are based on the AMD CDNA 3
The AMD Instinct MI300 Series GPUs are based on the AMD CDNA 3
architecture which was designed to deliver leadership performance for HPC, artificial intelligence (AI), and machine
learning (ML) workloads. The AMD Instinct MI300 series accelerators are well-suited for extreme scalability and compute performance, running
learning (ML) workloads. The AMD Instinct MI300 Series GPUs are well-suited for extreme scalability and compute performance, running
on everything from individual servers to the worlds largest exascale supercomputers.
With the MI300 series, AMD is introducing the Accelerator Complex Die (XCD), which contains the
With the MI300 Series, AMD is introducing the Accelerator Complex Die (XCD), which contains the
GPU computational elements of the processor along with the lower levels of the cache hierarchy.
The following image depicts the structure of a single XCD in the AMD Instinct MI300 accelerator series.
The following image depicts the structure of a single XCD in the AMD Instinct MI300 GPU Series.
```{figure} ../../data/shared/xcd-sys-arch.png
---
@@ -39,7 +39,7 @@ infrastructure) using the AMD Infinity Fabric™ technology as interconnect.
The Matrix Cores inside the CDNA 3 CUs have significant improvements, emphasizing AI and machine
learning, enhancing throughput of existing data types while adding support for new data types.
CDNA 2 Matrix Cores support FP16 and BF16, while offering INT8 for inference. Compared to MI250X
accelerators, CDNA 3 Matrix Cores triple the performance for FP16 and BF16, while providing a
GPUs, CDNA 3 Matrix Cores triple the performance for FP16 and BF16, while providing a
performance gain of 6.8 times for INT8. FP8 has a performance gain of 16 times compared to FP32,
while TF32 has a gain of 4 times compared to FP32.
@@ -105,7 +105,7 @@ name: mi300-arch
alt:
align: center
---
MI300 series system architecture showing MI300A (left) with 6 XCDs and 3 CCDs, while the MI300X (right) has 8 XCDs.
MI300 Series system architecture showing MI300A (left) with 6 XCDs and 3 CCDs, while the MI300X (right) has 8 XCDs.
```
## Node-level architecture
@@ -116,11 +116,11 @@ name: mi300-node
align: center
---
MI300 series node-level architecture showing 8 fully interconnected MI300X OAM modules connected to (optional) PCIEe switches via retimers and HGX connectors.
MI300 Series node-level architecture showing 8 fully interconnected MI300X OAM modules connected to (optional) PCIEe switches via retimers and HGX connectors.
```
The image above shows the node-level architecture of a system with AMD EPYC processors in a
dual-socket configuration and eight AMD Instinct MI300X accelerators. The MI300X OAMs attach to the
dual-socket configuration and eight AMD Instinct MI300X GPUs. The MI300X OAMs attach to the
host system via PCIe Gen 5 x16 links (yellow lines). The GPUs are using seven high-bandwidth,
low-latency AMD Infinity Fabric™ links (red lines) to form a fully connected 8-GPU system.

View File

@@ -1,12 +1,12 @@
.. meta::
:description: MI355 series performance counters and metrics
:description: MI355 Series performance counters and metrics
:keywords: MI355, MI355X, MI3XX
***********************************
MI350 series performance counters
MI350 Series performance counters
***********************************
This topic lists and describes the hardware performance counters and derived metrics available on the AMD Instinct MI350 and MI355 accelerators. These counters are available for profiling using `ROCprofiler-SDK <https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/index.html>`_ and `ROCm Compute Profiler <https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/>`_.
This topic lists and describes the hardware performance counters and derived metrics available on the AMD Instinct MI350 and MI355 GPUs. These counters are available for profiling using `ROCprofiler-SDK <https://rocm.docs.amd.com/projects/rocprofiler-sdk/en/latest/index.html>`_ and `ROCm Compute Profiler <https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/>`_.
The following sections list the performance counters based on the IP blocks.

View File

@@ -89,15 +89,15 @@ project = "ROCm Documentation"
project_path = os.path.abspath(".").replace("\\", "/")
author = "Advanced Micro Devices, Inc."
copyright = "Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved."
version = "7.0.0"
release = "7.0.0"
version = "7.0.2"
release = "7.0.2"
setting_all_article_info = True
all_article_info_os = ["linux", "windows"]
all_article_info_author = ""
# pages with specific settings
article_pages = [
{"file": "about/release-notes", "os": ["linux"], "date": "2025-09-16"},
{"file": "about/release-notes", "os": ["linux"], "date": "2025-10-10"},
{"file": "release/changelog", "os": ["linux"],},
{"file": "compatibility/compatibility-matrix", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/pytorch-compatibility", "os": ["linux"]},
@@ -110,11 +110,15 @@ article_pages = [
{"file": "compatibility/ml-compatibility/taichi-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/ray-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/llama-cpp-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/flashinfer-compatibility", "os": ["linux"]},
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/install", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/multi-node-setup", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/prerequisite-system-validation", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/system-setup/system-health-check", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/index", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/train-a-model", "os": ["linux"]},
@@ -127,7 +131,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.6", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/megatron-lm-primus-migration-guide", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/primus-megatron-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/primus-megatron", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-history", "os": ["linux"]},
@@ -135,6 +141,9 @@ article_pages = [
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.4", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.5", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.6", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/pytorch-training-v25.7", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/primus-pytorch", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-history", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/training/benchmark-docker/previous-versions/jax-maxtext-v25.4", "os": ["linux"]},
@@ -225,7 +234,7 @@ suppress_warnings = ["autosectionlabel.*"]
html_context = {
"project_path" : {project_path},
"gpu_type" : [('AMD Instinct accelerators', 'intrinsic'), ('AMD gfx families', 'gfx'), ('NVIDIA families', 'nvidia') ],
"gpu_type" : [('AMD Instinct GPUs', 'intrinsic'), ('AMD gfx families', 'gfx'), ('NVIDIA families', 'nvidia') ],
"atomics_type" : [('HW atomics', 'hw-atomics'), ('CAS emulation', 'cas-atomics')],
"pcie_type" : [('No PCIe atomics', 'nopcie'), ('PCIe atomics', 'pcie')],
"memory_type" : [('Device DRAM', 'device-dram'), ('Migratable Host DRAM', 'migratable-host-dram'), ('Pinned Host DRAM', 'pinned-host-dram')],

View File

@@ -0,0 +1,188 @@
dockers:
- pull_tag: rocm/vllm:rocm6.4.1_vllm_0.10.1_20250909
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.10.1_20250909/images/sha256-1113268572e26d59b205792047bea0e61e018e79aeadceba118b7bf23cb3715c
components:
ROCm: 6.4.1
vLLM: 0.10.1 (0.10.1rc2.dev409+g0b6bf6691.rocm641)
PyTorch: 2.7.0+gitf717b2a
hipBLASLt: 0.15
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 4096
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 65536
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 65536
max_num_batched_tokens: 65536
max_model_len: 8192
- group: Qwen
tag: qwen
models:
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 16384
max_num_batched_tokens: 16384
max_model_len: 8192

View File

@@ -0,0 +1,32 @@
dockers:
- pull_tag: lmsysorg/sglang:v0.5.2rc1-rocm700-mi30x
docker_hub_url: https://hub.docker.com/layers/lmsysorg/sglang/v0.5.2rc1-rocm700-mi30x/images/sha256-10c4ee502ddba44dd8c13325e6e03868bfe7f43d23d0a44780a8ee8b393f4729
components:
ROCm: 7.0.0
SGLang: v0.5.2rc1
pytorch-triton-rocm: 3.4.0+rocm7.0.0.gitf9e5bf54
model_groups:
- group: Dense models
tag: dense-models
models:
- model: Llama 3.1 8B Instruct
model_repo: Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
- model: Llama 3.1 405B FP8 KV
model_repo: Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
- model: Llama 3.3 70B FP8 KV
model_repo: amd-Llama-3.3-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
- model: Qwen3 32B
model_repo: Qwen3-32B
url: https://huggingface.co/Qwen/Qwen3-32B
- group: Small experts models
tag: small-experts-models
models:
- model: DeepSeek V3
model_repo: DeepSeek-V3
url: https://huggingface.co/deepseek-ai/DeepSeek-V3
- model: Mixtral 8x7B v0.1
model_repo: Mixtral-8x7B-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

View File

@@ -1,188 +1,316 @@
dockers:
- pull_tag: rocm/vllm:rocm6.4.1_vllm_0.10.1_20250909
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.10.1_20250909/images/sha256-1113268572e26d59b205792047bea0e61e018e79aeadceba118b7bf23cb3715c
- pull_tag: rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006
docker_hub_url: https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5
components:
ROCm: 6.4.1
vLLM: 0.10.1 (0.10.1rc2.dev409+g0b6bf6691.rocm641)
PyTorch: 2.7.0+gitf717b2a
hipBLASLt: 0.15
ROCm: 7.0.0
vLLM: 0.10.2 (0.11.0rc2.dev160+g790d22168.rocm700)
PyTorch: 2.9.0a0+git1c57644
hipBLASLt: 1.0.0
dockerfile:
commit: 790d22168820507f3105fef29596549378cfe399
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 70B
mad_tag: pyt_vllm_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 4096
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 70B FP8
mad_tag: pyt_vllm_llama-3.1-70b_fp8
model_repo: amd/Llama-3.1-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 2 70B
mad_tag: pyt_vllm_llama-2-70b
model_repo: meta-llama/Llama-2-70b-chat-hf
url: https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 4096
max_model_len: 4096
- model: Llama 3.1 8B
mad_tag: pyt_vllm_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 8B FP8
mad_tag: pyt_vllm_llama-3.1-8b_fp8
model_repo: amd/Llama-3.1-8B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV
precision: float8
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B
mad_tag: pyt_vllm_llama-3.1-405b
model_repo: meta-llama/Llama-3.1-405B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B FP8
mad_tag: pyt_vllm_llama-3.1-405b_fp8
model_repo: amd/Llama-3.1-405B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.1 405B MXFP4
mad_tag: pyt_vllm_llama-3.1-405b_fp4
model_repo: amd/Llama-3.1-405B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.1-405B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B
mad_tag: pyt_vllm_llama-3.3-70b
model_repo: meta-llama/Llama-3.3-70B-Instruct
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B FP8
mad_tag: pyt_vllm_llama-3.3-70b_fp8
model_repo: amd/Llama-3.3-70B-Instruct-FP8-KV
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 3.3 70B MXFP4
mad_tag: pyt_vllm_llama-3.3-70b_fp4
model_repo: amd/Llama-3.3-70B-Instruct-MXFP4-Preview
url: https://huggingface.co/amd/Llama-3.3-70B-Instruct-MXFP4-Preview
precision: float4
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Llama 4 Scout 17Bx16E
mad_tag: pyt_vllm_llama-4-scout-17b-16e
model_repo: meta-llama/Llama-4-Scout-17B-16E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E
mad_tag: pyt_vllm_llama-4-maverick-17b-128e
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Llama 4 Maverick 17Bx128E FP8
mad_tag: pyt_vllm_llama-4-maverick-17b-128e_fp8
model_repo: meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
url: https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 131072
max_model_len: 8192
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek R1 0528 FP8
mad_tag: pyt_vllm_deepseek-r1
model_repo: deepseek-ai/DeepSeek-R1-0528
url: https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_seqs: 1024
max_num_batched_tokens: 131072
max_model_len: 8192
- group: OpenAI GPT OSS
tag: gpt-oss
models:
- model: GPT OSS 20B
mad_tag: pyt_vllm_gpt-oss-20b
model_repo: openai/gpt-oss-20b
url: https://huggingface.co/openai/gpt-oss-20b
precision: bfloat16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- model: GPT OSS 120B
mad_tag: pyt_vllm_gpt-oss-120b
model_repo: openai/gpt-oss-120b
url: https://huggingface.co/openai/gpt-oss-120b
precision: bfloat16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 8192
max_model_len: 8192
- group: Mistral AI
tag: mistral
models:
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 65536
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_seq_len_to_capture: 65536
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x7B
mad_tag: pyt_vllm_mixtral-8x7b
model_repo: mistralai/Mixtral-8x7B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x7B FP8
mad_tag: pyt_vllm_mixtral-8x7b_fp8
model_repo: amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Mixtral MoE 8x22B
mad_tag: pyt_vllm_mixtral-8x22b
model_repo: mistralai/Mixtral-8x22B-Instruct-v0.1
url: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 65536
max_model_len: 8192
- model: Mixtral MoE 8x22B FP8
mad_tag: pyt_vllm_mixtral-8x22b_fp8
model_repo: amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
url: https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 65536
max_model_len: 8192
- group: Qwen
tag: qwen
models:
- model: QwQ-32B
mad_tag: pyt_vllm_qwq-32b
model_repo: Qwen/QwQ-32B
url: https://huggingface.co/Qwen/QwQ-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 131072
max_num_batched_tokens: 131072
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 32768
max_num_batched_tokens: 32768
max_model_len: 8192
- model: Qwen3 8B
mad_tag: pyt_vllm_qwen3-8b
model_repo: Qwen/Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 32B
mad_tag: pyt_vllm_qwen3-32b
model_repo: Qwen/Qwen3-32b
url: https://huggingface.co/Qwen/Qwen3-32B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B
mad_tag: pyt_vllm_qwen3-30b-a3b
model_repo: Qwen/Qwen3-30B-A3B
url: https://huggingface.co/Qwen/Qwen3-30B-A3B
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 30B A3B FP8
mad_tag: pyt_vllm_qwen3-30b-a3b_fp8
model_repo: Qwen/Qwen3-30B-A3B-FP8
url: https://huggingface.co/Qwen/Qwen3-30B-A3B-FP8
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B
mad_tag: pyt_vllm_qwen3-235b-a22b
model_repo: Qwen/Qwen3-235B-A22B
url: https://huggingface.co/Qwen/Qwen3-235B-A22B
precision: float16
config:
tp: 8
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 40960
max_model_len: 8192
- model: Qwen3 235B A22B FP8
mad_tag: pyt_vllm_qwen3-235b-a22b_fp8
model_repo: Qwen/Qwen3-235B-A22B-FP8
url: https://huggingface.co/Qwen/Qwen3-235B-A22B-FP8
precision: float8
config:
tp: 8
dtype: auto
kv_cache_dtype: fp8
max_num_batched_tokens: 40960
max_model_len: 8192
- group: Microsoft Phi
tag: phi
models:
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_seq_len_to_capture: 16384
max_num_batched_tokens: 16384
max_model_len: 8192
- model: Phi-4
mad_tag: pyt_vllm_phi-4
model_repo: microsoft/phi-4
url: https://huggingface.co/microsoft/phi-4
precision: float16
config:
tp: 1
dtype: auto
kv_cache_dtype: auto
max_num_batched_tokens: 16384
max_model_len: 8192

View File

@@ -1,47 +1,16 @@
dockers:
- pull_tag: rocm/jax-training:maxtext-v25.7
- pull_tag: rocm/jax-training:maxtext-v25.9
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.5.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
ROCm: 7.0.0
JAX: 0.6.2
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+c91bac54
hipBLASLt: 1.x.x
- pull_tag: rocm/jax-training:maxtext-v25.7-jax060
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.6.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.1.0-499ece1c21
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: jax_maxtext_train_llama-3.3-70b
model_repo: Llama-3.3-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 8B
mad_tag: jax_maxtext_train_llama-3.1-8b
model_repo: Llama-3.1-8B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 70B
mad_tag: jax_maxtext_train_llama-3.1-70b
model_repo: Llama-3.1-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3 8B
mad_tag: jax_maxtext_train_llama-3-8b
multinode_training_script: llama3_8b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3 70B
mad_tag: jax_maxtext_train_llama-3-70b
multinode_training_script: llama3_70b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 2 7B
mad_tag: jax_maxtext_train_llama-2-7b
model_repo: Llama-2-7B
@@ -54,6 +23,29 @@ model_groups:
precision: bf16
multinode_training_script: llama2_70b_multinode.sh
doc_options: ["single-node", "multi-node"]
- model: Llama 3 8B (multi-node)
mad_tag: jax_maxtext_train_llama-3-8b
multinode_training_script: llama3_8b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3 70B (multi-node)
mad_tag: jax_maxtext_train_llama-3-70b
multinode_training_script: llama3_70b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3.1 8B
mad_tag: jax_maxtext_train_llama-3.1-8b
model_repo: Llama-3.1-8B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 70B
mad_tag: jax_maxtext_train_llama-3.1-70b
model_repo: Llama-3.1-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.3 70B
mad_tag: jax_maxtext_train_llama-3.3-70b
model_repo: Llama-3.3-70B
precision: bf16
doc_options: ["single-node"]
- group: DeepSeek
tag: deepseek
models:

View File

@@ -1,15 +1,21 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
MI355X and MI350X:
pull_tag: rocm/megatron-lm:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: aab4234
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/megatron-lm:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama
@@ -20,8 +26,6 @@ model_groups:
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 3.1 70B (proxy)
mad_tag: pyt_megatron_lm_train_llama-3.1-70b-proxy
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B

View File

@@ -0,0 +1,72 @@
dockers:
- pull_tag: rocm/jax-training:maxtext-v25.7-jax060
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.6.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.1.0-499ece1c21
- pull_tag: rocm/jax-training:maxtext-v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.7/images/sha256-45f4c727d4019a63fc47313d3a5f5a5105569539294ddfd2d742218212ae9025
components:
ROCm: 6.4.1
JAX: 0.5.0
Python: 3.10.12
Transformer Engine: 2.1.0+90d703dd
hipBLASLt: 1.x.x
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: jax_maxtext_train_llama-3.3-70b
model_repo: Llama-3.3-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 8B
mad_tag: jax_maxtext_train_llama-3.1-8b
model_repo: Llama-3.1-8B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3.1 70B
mad_tag: jax_maxtext_train_llama-3.1-70b
model_repo: Llama-3.1-70B
precision: bf16
doc_options: ["single-node"]
- model: Llama 3 8B
mad_tag: jax_maxtext_train_llama-3-8b
multinode_training_script: llama3_8b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 3 70B
mad_tag: jax_maxtext_train_llama-3-70b
multinode_training_script: llama3_70b_multinode.sh
doc_options: ["multi-node"]
- model: Llama 2 7B
mad_tag: jax_maxtext_train_llama-2-7b
model_repo: Llama-2-7B
precision: bf16
multinode_training_script: llama2_7b_multinode.sh
doc_options: ["single-node", "multi-node"]
- model: Llama 2 70B
mad_tag: jax_maxtext_train_llama-2-70b
model_repo: Llama-2-70B
precision: bf16
multinode_training_script: llama2_70b_multinode.sh
doc_options: ["single-node", "multi-node"]
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V2-Lite (16B)
mad_tag: jax_maxtext_train_deepseek-v2-lite-16b
model_repo: DeepSeek-V2-lite
precision: bf16
doc_options: ["single-node"]
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: jax_maxtext_train_mixtral-8x7b
model_repo: Mixtral-8x7B
precision: bf16
doc_options: ["single-node"]

View File

@@ -0,0 +1,49 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 3.1 70B (proxy)
mad_tag: pyt_megatron_lm_train_llama-3.1-70b-proxy
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B (proxy)
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: pyt_megatron_lm_train_qwen2.5-7b
- model: Qwen 2.5 72B
mad_tag: pyt_megatron_lm_train_qwen2.5-72b

View File

@@ -0,0 +1,48 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.8_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.8_py310/images/sha256-50fc824361054e445e86d5d88d5f58817f61f8ec83ad4a7e43ea38bbc4a142c0
components:
ROCm: 6.4.3
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
hipBLASLt: d1b517fc7a
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: pyt_megatron_lm_train_llama-3.3-70b
- model: Llama 3.1 8B
mad_tag: pyt_megatron_lm_train_llama-3.1-8b
- model: Llama 3.1 70B
mad_tag: pyt_megatron_lm_train_llama-3.1-70b
- model: Llama 3.1 70B (proxy)
mad_tag: pyt_megatron_lm_train_llama-3.1-70b-proxy
- model: Llama 2 7B
mad_tag: pyt_megatron_lm_train_llama-2-7b
- model: Llama 2 70B
mad_tag: pyt_megatron_lm_train_llama-2-70b
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: pyt_megatron_lm_train_deepseek-v3-proxy
- model: DeepSeek-V2-Lite
mad_tag: pyt_megatron_lm_train_deepseek-v2-lite-16b
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: pyt_megatron_lm_train_mixtral-8x7b
- model: Mixtral 8x22B (proxy)
mad_tag: pyt_megatron_lm_train_mixtral-8x22b-proxy
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: pyt_megatron_lm_train_qwen2.5-7b
- model: Qwen 2.5 72B
mad_tag: pyt_megatron_lm_train_qwen2.5-72b

View File

@@ -0,0 +1,58 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.3-70b
config_name: llama3.3_70B-pretrain.yaml
- model: Llama 3.1 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-70b
config_name: llama3.1_70B-pretrain.yaml
- model: Llama 3.1 8B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-8b
config_name: llama3.1_8B-pretrain.yaml
- model: Llama 2 7B
mad_tag: primus_pyt_megatron_lm_train_llama-2-7b
config_name: llama2_7B-pretrain.yaml
- model: Llama 2 70B
mad_tag: primus_pyt_megatron_lm_train_llama-2-70b
config_name: llama2_70B-pretrain.yaml
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: primus_pyt_megatron_lm_train_deepseek-v3-proxy
config_name: deepseek_v3-pretrain.yaml
- model: DeepSeek-V2-Lite
mad_tag: primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
config_name: deepseek_v2_lite-pretrain.yaml
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x7b
config_name: mixtral_8x7B_v0.1-pretrain.yaml
- model: Mixtral 8x22B (proxy)
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
config_name: mixtral_8x22B_v0.1-pretrain.yaml
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-7b
config_name: primus_qwen2.5_7B-pretrain.yaml
- model: Qwen 2.5 72B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-72b
config_name: qwen2.5_72B-pretrain.yaml

View File

@@ -0,0 +1,58 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.8_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.8_py310/images/sha256-50fc824361054e445e86d5d88d5f58817f61f8ec83ad4a7e43ea38bbc4a142c0
components:
ROCm: 6.4.3
Primus: 927a717
PyTorch: 2.8.0a0+gitd06a406
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
hipBLASLt: d1b517fc7a
Triton: 3.3.0
RCCL: 2.22.3
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.3 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.3-70b
config_name: llama3.3_70B-pretrain.yaml
- model: Llama 3.1 70B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-70b
config_name: llama3.1_70B-pretrain.yaml
- model: Llama 3.1 8B
mad_tag: primus_pyt_megatron_lm_train_llama-3.1-8b
config_name: llama3.1_8B-pretrain.yaml
- model: Llama 2 7B
mad_tag: primus_pyt_megatron_lm_train_llama-2-7b
config_name: llama2_7B-pretrain.yaml
- model: Llama 2 70B
mad_tag: primus_pyt_megatron_lm_train_llama-2-70b
config_name: llama2_70B-pretrain.yaml
- group: DeepSeek
tag: deepseek
models:
- model: DeepSeek-V3 (proxy)
mad_tag: primus_pyt_megatron_lm_train_deepseek-v3-proxy
config_name: deepseek_v3-pretrain.yaml
- model: DeepSeek-V2-Lite
mad_tag: primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
config_name: deepseek_v2_lite-pretrain.yaml
- group: Mistral AI
tag: mistral
models:
- model: Mixtral 8x7B
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x7b
config_name: mixtral_8x7B_v0.1-pretrain.yaml
- model: Mixtral 8x22B (proxy)
mad_tag: primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
config_name: mixtral_8x22B_v0.1-pretrain.yaml
- group: Qwen
tag: qwen
models:
- model: Qwen 2.5 7B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-7b
config_name: primus_qwen2.5_7B-pretrain.yaml
- model: Qwen 2.5 72B
mad_tag: primus_pyt_megatron_lm_train_qwen2.5-72b
config_name: qwen2.5_72B-pretrain.yaml

View File

@@ -0,0 +1,24 @@
dockers:
- pull_tag: rocm/pytorch-training:v25.8
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.8/images/sha256-5082ae01d73fec6972b0d84e5dad78c0926820dcf3c19f301d6c8eb892e573c5
components:
ROCm: 6.4.3
PyTorch: 2.8.0a0+gitd06a406
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+a1e66aae
Flash Attention: 3.0.0.post1
hipBLASLt: 1.1.0-d1b517fc7a
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: primus_pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
- model: Llama 3.1 70B
mad_tag: primus_pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16

View File

@@ -0,0 +1,162 @@
dockers:
- pull_tag: rocm/pytorch-training:v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.7/images/sha256-cc6fd840ab89cb81d926fc29eca6d075aee9875a55a522675a4b9231c9a0a712
components:
ROCm: 6.4.2
PyTorch: 2.8.0a0+gitd06a406
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+94e53dd8
Flash Attention: 3.0.0.post1
hipBLASLt: 1.1.0-4b9a52edfc
Triton: 3.3.0
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 4 Scout 17B-16E
mad_tag: pyt_train_llama-4-scout-17b-16e
model_repo: Llama-4-17B_16E
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.3 70B
mad_tag: pyt_train_llama-3.3-70b
model_repo: Llama-3.3-70B
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.2 1B
mad_tag: pyt_train_llama-3.2-1b
model_repo: Llama-3.2-1B
url: https://huggingface.co/meta-llama/Llama-3.2-1B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 3B
mad_tag: pyt_train_llama-3.2-3b
model_repo: Llama-3.2-3B
url: https://huggingface.co/meta-llama/Llama-3.2-3B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 Vision 11B
mad_tag: pyt_train_llama-3.2-vision-11b
model_repo: Llama-3.2-Vision-11B
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.2 Vision 90B
mad_tag: pyt_train_llama-3.2-vision-90b
model_repo: Llama-3.2-Vision-90B
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora, HF_pretrain]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora]
- model: Llama 3.1 405B
mad_tag: pyt_train_llama-3.1-405b
model_repo: Llama-3.1-405B
url: https://huggingface.co/meta-llama/Llama-3.1-405B
precision: BF16
training_modes: [finetune_qlora]
- model: Llama 3 8B
mad_tag: pyt_train_llama-3-8b
model_repo: Llama-3-8B
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3 70B
mad_tag: pyt_train_llama-3-70b
model_repo: Llama-3-70B
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 7B
mad_tag: pyt_train_llama-2-7b
model_repo: Llama-2-7B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 2 13B
mad_tag: pyt_train_llama-2-13b
model_repo: Llama-2-13B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 70B
mad_tag: pyt_train_llama-2-70b
model_repo: Llama-2-70B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_lora, finetune_qlora]
- group: OpenAI
tag: openai
models:
- model: GPT OSS 20B
mad_tag: pyt_train_gpt_oss_20b
model_repo: GPT-OSS-20B
url: https://huggingface.co/openai/gpt-oss-20b
precision: BF16
training_modes: [HF_finetune_lora]
- model: GPT OSS 120B
mad_tag: pyt_train_gpt_oss_120b
model_repo: GPT-OSS-120B
url: https://huggingface.co/openai/gpt-oss-120b
precision: BF16
training_modes: [HF_finetune_lora]
- group: Qwen
tag: qwen
models:
- model: Qwen 3 8B
mad_tag: pyt_train_qwen3-8b
model_repo: Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 3 32B
mad_tag: pyt_train_qwen3-32b
model_repo: Qwen3-32
url: https://huggingface.co/Qwen/Qwen3-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 32B
mad_tag: pyt_train_qwen2.5-32b
model_repo: Qwen2.5-32B
url: https://huggingface.co/Qwen/Qwen2.5-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 72B
mad_tag: pyt_train_qwen2.5-72b
model_repo: Qwen2.5-72B
url: https://huggingface.co/Qwen/Qwen2.5-72B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2 1.5B
mad_tag: pyt_train_qwen2-1.5b
model_repo: Qwen2-1.5B
url: https://huggingface.co/Qwen/Qwen2-1.5B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 2 7B
mad_tag: pyt_train_qwen2-7b
model_repo: Qwen2-7B
url: https://huggingface.co/Qwen/Qwen2-7B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- group: Flux
tag: flux
models:
- model: FLUX.1-dev
mad_tag: pyt_train_flux
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [pretrain]

View File

@@ -0,0 +1,178 @@
dockers:
- pull_tag: rocm/pytorch-training:v25.8
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.8/images/sha256-5082ae01d73fec6972b0d84e5dad78c0926820dcf3c19f301d6c8eb892e573c5
components:
ROCm: 6.4.3
PyTorch: 2.8.0a0+gitd06a406
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+a1e66aae
Flash Attention: 3.0.0.post1
hipBLASLt: 1.1.0-d1b517fc7a
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 4 Scout 17B-16E
mad_tag: pyt_train_llama-4-scout-17b-16e
model_repo: Llama-4-17B_16E
url: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.3 70B
mad_tag: pyt_train_llama-3.3-70b
model_repo: Llama-3.3-70B
url: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 3.2 1B
mad_tag: pyt_train_llama-3.2-1b
model_repo: Llama-3.2-1B
url: https://huggingface.co/meta-llama/Llama-3.2-1B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 3B
mad_tag: pyt_train_llama-3.2-3b
model_repo: Llama-3.2-3B
url: https://huggingface.co/meta-llama/Llama-3.2-3B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3.2 Vision 11B
mad_tag: pyt_train_llama-3.2-vision-11b
model_repo: Llama-3.2-Vision-11B
url: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.2 Vision 90B
mad_tag: pyt_train_llama-3.2-vision-90b
model_repo: Llama-3.2-Vision-90B
url: https://huggingface.co/meta-llama/Llama-3.2-90B-Vision
precision: BF16
training_modes: [finetune_fw]
- model: Llama 3.1 8B
mad_tag: pyt_train_llama-3.1-8b
model_repo: Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora, HF_pretrain]
- model: Llama 3.1 70B
mad_tag: pyt_train_llama-3.1-70b
model_repo: Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
precision: BF16
training_modes: [pretrain, finetune_fw, finetune_lora]
- model: Llama 3.1 405B
mad_tag: pyt_train_llama-3.1-405b
model_repo: Llama-3.1-405B
url: https://huggingface.co/meta-llama/Llama-3.1-405B
precision: BF16
training_modes: [finetune_qlora]
- model: Llama 3 8B
mad_tag: pyt_train_llama-3-8b
model_repo: Llama-3-8B
url: https://huggingface.co/meta-llama/Meta-Llama-3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 3 70B
mad_tag: pyt_train_llama-3-70b
model_repo: Llama-3-70B
url: https://huggingface.co/meta-llama/Meta-Llama-3-70B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 7B
mad_tag: pyt_train_llama-2-7b
model_repo: Llama-2-7B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora, finetune_qlora]
- model: Llama 2 13B
mad_tag: pyt_train_llama-2-13b
model_repo: Llama-2-13B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Llama 2 70B
mad_tag: pyt_train_llama-2-70b
model_repo: Llama-2-70B
url: https://github.com/meta-llama/llama-models/tree/main/models/llama2
precision: BF16
training_modes: [finetune_lora, finetune_qlora]
- group: OpenAI
tag: openai
models:
- model: GPT OSS 20B
mad_tag: pyt_train_gpt_oss_20b
model_repo: GPT-OSS-20B
url: https://huggingface.co/openai/gpt-oss-20b
precision: BF16
training_modes: [HF_finetune_lora]
- model: GPT OSS 120B
mad_tag: pyt_train_gpt_oss_120b
model_repo: GPT-OSS-120B
url: https://huggingface.co/openai/gpt-oss-120b
precision: BF16
training_modes: [HF_finetune_lora]
- group: Qwen
tag: qwen
models:
- model: Qwen 3 8B
mad_tag: pyt_train_qwen3-8b
model_repo: Qwen3-8B
url: https://huggingface.co/Qwen/Qwen3-8B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 3 32B
mad_tag: pyt_train_qwen3-32b
model_repo: Qwen3-32
url: https://huggingface.co/Qwen/Qwen3-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 32B
mad_tag: pyt_train_qwen2.5-32b
model_repo: Qwen2.5-32B
url: https://huggingface.co/Qwen/Qwen2.5-32B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2.5 72B
mad_tag: pyt_train_qwen2.5-72b
model_repo: Qwen2.5-72B
url: https://huggingface.co/Qwen/Qwen2.5-72B
precision: BF16
training_modes: [finetune_lora]
- model: Qwen 2 1.5B
mad_tag: pyt_train_qwen2-1.5b
model_repo: Qwen2-1.5B
url: https://huggingface.co/Qwen/Qwen2-1.5B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- model: Qwen 2 7B
mad_tag: pyt_train_qwen2-7b
model_repo: Qwen2-7B
url: https://huggingface.co/Qwen/Qwen2-7B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- group: Stable Diffusion
tag: sd
models:
- model: Stable Diffusion XL
mad_tag: pyt_huggingface_stable_diffusion_xl_2k_lora_finetuning
model_repo: SDXL
url: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
precision: BF16
training_modes: [finetune_lora]
- group: Flux
tag: flux
models:
- model: FLUX.1-dev
mad_tag: pyt_train_flux
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [pretrain]
- group: NCF
tag: ncf
models:
- model: NCF
mad_tag: pyt_ncf_training
model_repo:
url: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
precision: FP32

View File

@@ -1,15 +1,22 @@
dockers:
- pull_tag: rocm/megatron-lm:v25.7_py310
docker_hub_url: https://hub.docker.com/layers/rocm/megatron-lm/v25.7_py310/images/sha256-6189df849feeeee3ae31bb1e97aef5006d69d2b90c134e97708c19632e20ab5a
components:
ROCm: 6.4.2
Primus: v0.1.0-rc1
PyTorch: 2.8.0a0+gitd06a406
MI355X and MI350X:
pull_tag: rocm/primus:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.1.0.dev0+ba586519
hipBLASLt: 37ba1d36
Triton: 3.3.0
RCCL: 2.22.3
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/primus:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama

View File

@@ -0,0 +1,39 @@
dockers:
MI355X and MI350X:
pull_tag: rocm/primus:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: 0.3.0
Primus Turbo: 0.1.1
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/primus:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/primus/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama
models:
- model: Llama 3.1 8B
mad_tag: primus_pyt_train_llama-3.1-8b
model_repo: meta-llama/Llama-3.1-8B
url: https://huggingface.co/meta-llama/Llama-3.1-8B
precision: BF16
config_file:
bf16: "./llama3_8b_fsdp_bf16.toml"
fp8: "./llama3_8b_fsdp_fp8.toml"
- model: Llama 3.1 70B
mad_tag: primus_pyt_train_llama-3.1-70b
model_repo: meta-llama/Llama-3.1-70B
url: https://huggingface.co/meta-llama/Llama-3.1-70B
precision: BF16
config_file:
bf16: "./llama3_70b_fsdp_bf16.toml"
fp8: "./llama3_70b_fsdp_fp8.toml"

View File

@@ -1,14 +1,21 @@
dockers:
- pull_tag: rocm/pytorch-training:v25.7
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.7/images/sha256-cc6fd840ab89cb81d926fc29eca6d075aee9875a55a522675a4b9231c9a0a712
components:
ROCm: 6.4.2
PyTorch: 2.8.0a0+gitd06a406
Python: 3.10.18
Transformer Engine: 2.2.0.dev0+94e53dd8
Flash Attention: 3.0.0.post1
hipBLASLt: 1.1.0-4b9a52edfc
Triton: 3.3.0
MI355X and MI350X:
pull_tag: rocm/pytorch-training:v25.9_gfx950
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.9_gfx950/images/sha256-1a198be32f49efd66d0ff82066b44bd99b3e6b04c8e0e9b36b2c481e13bff7b6
components: &docker_components
ROCm: 7.0.0
Primus: aab4234
PyTorch: 2.9.0.dev20250821+rocm7.0.0.lw.git125803b7
Python: "3.10"
Transformer Engine: 2.2.0.dev0+54dd2bdc
Flash Attention: 2.8.3
hipBLASLt: 911283acd1
Triton: 3.4.0+rocm7.0.0.git56765e8c
RCCL: 2.26.6
MI325X and MI300X:
pull_tag: rocm/pytorch-training:v25.9_gfx942
docker_hub_url: https://hub.docker.com/layers/rocm/pytorch-training/v25.9_gfx942/images/sha256-df6ab8f45b4b9ceb100fb24e19b2019a364e351ee3b324dbe54466a1d67f8357
components: *docker_components
model_groups:
- group: Meta Llama
tag: llama
@@ -151,6 +158,15 @@ model_groups:
url: https://huggingface.co/Qwen/Qwen2-7B
precision: BF16
training_modes: [finetune_fw, finetune_lora]
- group: Stable Diffusion
tag: sd
models:
- model: Stable Diffusion XL
mad_tag: pyt_huggingface_stable_diffusion_xl_2k_lora_finetuning
model_repo: SDXL
url: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
precision: BF16
training_modes: [posttrain-p]
- group: Flux
tag: flux
models:
@@ -159,4 +175,12 @@ model_groups:
model_repo: Flux
url: https://huggingface.co/black-forest-labs/FLUX.1-dev
precision: BF16
training_modes: [pretrain]
training_modes: [posttrain-p]
- group: NCF
tag: ncf
models:
- model: NCF
mad_tag: pyt_ncf_training
model_repo:
url: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/NCF
precision: FP32

View File

@@ -1,4 +1,4 @@
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X series,MI300A,MI350X series
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X Series,MI300A,MI350X Series
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
1 Atomic MI100 MI200 PCIe MI200 A+A MI300X series MI300X Series MI300A MI350X series MI350X Series
2 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
3 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
4 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS

View File

@@ -1,4 +1,4 @@
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X series,MI300A,MI350X series
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X Series,MI300A,MI350X Series
32 bit atomicAdd,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicSub,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
32 bit atomicMin,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS,✅ CAS
1 Atomic MI100 MI200 PCIe MI200 A+A MI300X series MI300X Series MI300A MI350X series MI350X Series
2 32 bit atomicAdd ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
3 32 bit atomicSub ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS
4 32 bit atomicMin ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS ✅ CAS

View File

@@ -1,4 +1,4 @@
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X series,MI300A,MI350X series
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X Series,MI300A,MI350X Series
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
1 Atomic MI100 MI200 PCIe MI200 A+A MI300X series MI300X Series MI300A MI350X series MI350X Series
2 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
3 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
4 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native

View File

@@ -1,4 +1,4 @@
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X series,MI300A,MI350X series
Atomic,MI100,MI200 PCIe,MI200 A+A,MI300X Series,MI300A,MI350X Series
32 bit atomicAdd,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicSub,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
32 bit atomicMin,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native,✅ Native
1 Atomic MI100 MI200 PCIe MI200 A+A MI300X series MI300X Series MI300A MI350X series MI350X Series
2 32 bit atomicAdd ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
3 32 bit atomicSub ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native
4 32 bit atomicMin ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native ✅ Native

View File

@@ -10,7 +10,7 @@ Deep learning frameworks provide environments for machine learning, training, fi
ROCm offers a complete ecosystem for developing and running deep learning applications efficiently. It also provides ROCm-compatible versions of popular frameworks and libraries, such as PyTorch, TensorFlow, JAX, and others.
The AMD ROCm organization actively contributes to open-source development and collaborates closely with framework organizations. This collaboration ensures that framework-specific optimizations effectively leverage AMD GPUs and accelerators.
The AMD ROCm organization actively contributes to open-source development and collaborates closely with framework organizations. This collaboration ensures that framework-specific optimizations effectively leverage AMD GPUs.
The table below summarizes information about ROCm-enabled deep learning frameworks. It includes details on ROCm compatibility and third-party tool support, installation steps and options, and links to GitHub resources. For a complete list of supported framework versions on ROCm, see the :doc:`Compatibility matrix <../compatibility/compatibility-matrix>` topic.
@@ -128,10 +128,22 @@ The table below summarizes information about ROCm-enabled deep learning framewor
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/llama-cpp-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/llama-cpp-install.html#use-a-prebuilt-docker-image-with-llama-cpp-pre-installed>`__
- `ROCm Base Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/llama-cpp-install.html#build-your-own-docker-image>`__
- .. raw:: html
<a href="https://github.com/ROCm/llama.cpp"><i class="fab fa-github fa-lg"></i></a>
* - `FlashInfer <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/flashinfer-compatibility.html>`__
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/flashinfer-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/flashinfer-install.html#use-a-prebuilt-docker-image-with-flashinfer-pre-installed>`__
- `ROCm Base Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/flashinfer-install.html#build-your-own-docker-image>`__
- .. raw:: html
<a href="https://github.com/ROCm/flashinfer"><i class="fab fa-github fa-lg"></i></a>
Learn how to use your ROCm deep learning environment for training, fine-tuning, inference, and performance optimization
through the following guides.

View File

@@ -1,5 +1,5 @@
.. meta::
:description: How to configure MI300X accelerators to fully leverage their capabilities and achieve optimal performance.
:description: How to configure MI300X GPUs to fully leverage their capabilities and achieve optimal performance.
:keywords: ROCm, AI, machine learning, MI300X, LLM, usage, tutorial, optimization, tuning
**************************************
@@ -7,11 +7,11 @@ AMD Instinct MI300X performance guides
**************************************
The following performance guides provide essential guidance on the necessary
steps to properly `configure your system for AMD Instinct™ MI300X accelerators
steps to properly `configure your system for AMD Instinct™ MI300X GPUs
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
They include detailed instructions on system settings and application
:doc:`workload tuning </how-to/rocm-for-ai/inference-optimization/workload>` to
help you leverage the maximum capabilities of these accelerators and achieve
help you leverage the maximum capabilities of these GPUs and achieve
superior performance.
* `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__
@@ -19,9 +19,9 @@ superior performance.
your AMD Instinct MI300X system for performance.
* :doc:`/how-to/rocm-for-ai/inference-optimization/workload` covers steps to
optimize the performance of AMD Instinct MI300X series accelerators for HPC
optimize the performance of AMD Instinct MI300X Series GPUs for HPC
and deep learning operations.
* :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm` introduces a preconfigured
environment for LLM inference, designed to help you test performance with
popular models on AMD Instinct MI300X series accelerators.
popular models on AMD Instinct MI300X Series GPUs.

View File

@@ -25,7 +25,7 @@ execute on AMD GPUs while maintaining compatibility with CUDA-based systems.
OpenCL (Open Computing Language) is an open standard for cross-platform,
parallel programming of diverse processors. ROCm supports OpenCL for developers
who want to use standard frameworks across different hardware platforms,
including CPUs, GPUs, and other accelerators. For more information, see
including CPUs, GPUs, and APUs. For more information, see
`OpenCL <https://www.khronos.org/opencl/>`_.
Python bindings can be found at https://github.com/ROCm/hip-python.

View File

@@ -11,10 +11,10 @@ Fine-tuning using ROCm involves leveraging AMD's GPU-accelerated :doc:`libraries
ecosystem for deep learning development, including open-source libraries for optimized deep learning operations and
ROCm-aware versions of :doc:`deep learning frameworks <../../deep-learning-rocm>` such as PyTorch, TensorFlow, and JAX.
Single-accelerator systems, such as a machine equipped with a single accelerator or GPU, are commonly used for
Single-accelerator systems, such as a machine equipped with a single GPU, are commonly used for
smaller-scale deep learning tasks, including fine-tuning pre-trained models and running inference on moderately
sized datasets. See :doc:`single-gpu-fine-tuning-and-inference`.
Multi-accelerator systems, on the other hand, consist of multiple accelerators working in parallel. These systems are
Multi-accelerator systems, on the other hand, consist of multiple GPUs working in parallel. These systems are
typically used in LLMs and other large-scale deep learning tasks where performance, scalability, and the handling of
massive datasets are crucial. See :doc:`multi-gpu-fine-tuning-and-inference`.

View File

@@ -3,11 +3,11 @@
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, multi-GPU, distributed, inference, accelerators, PyTorch, HuggingFace, torchtune
*****************************************************
Fine-tuning and inference using multiple accelerators
Fine-tuning and inference using multiple GPUs
*****************************************************
This section explains how to fine-tune a model on a multi-accelerator system. See
:doc:`Single-accelerator fine-tuning <single-gpu-fine-tuning-and-inference>` for a single accelerator or GPU setup.
:doc:`Single-accelerator fine-tuning <single-gpu-fine-tuning-and-inference>` for a single GPU setup.
.. _fine-tuning-llms-multi-gpu-env:
@@ -20,7 +20,7 @@ This section was tested using the following hardware and software environment.
:stub-columns: 1
* - Hardware
- 4 AMD Instinct MI300X accelerators
- 4 AMD Instinct MI300X GPUs
* - Software
- ROCm 6.1, Ubuntu 22.04, PyTorch 2.1.2, Python 3.10
@@ -40,13 +40,13 @@ Setting up the base implementation environment
:doc:`PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`. For consistent
installation, its recommended to use official ROCm prebuilt Docker images with the framework pre-installed.
#. In the Docker container, check the availability of ROCM-capable accelerators using the following command.
#. In the Docker container, check the availability of ROCm-capable GPUs using the following command.
.. code-block:: shell
rocm-smi --showproductname
#. Check that your accelerators are available to PyTorch.
#. Check that your GPUs are available to PyTorch.
.. code-block:: python
@@ -66,7 +66,7 @@ Setting up the base implementation environment
.. tip::
During training and inference, you can check the memory usage by running the ``rocm-smi`` command in your terminal.
This tool helps you see shows which accelerators or GPUs are involved.
This tool helps you see shows which GPUs are involved.
.. _fine-tuning-llms-multi-gpu-hugging-face-accelerate:
@@ -74,9 +74,9 @@ Setting up the base implementation environment
Hugging Face Accelerate for fine-tuning and inference
===========================================================
`Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`_ is a library that simplifies turning raw
PyTorch code for a single accelerator into code for multiple accelerators for LLM fine-tuning and inference. It is
integrated with `Transformers <https://huggingface.co/docs/transformers/en/index>`_ allowing you to scale your PyTorch
`Hugging Face Accelerate <https://huggingface.co/docs/accelerate/en/index>`__ is a library that simplifies turning raw
PyTorch code for a single GPU into code for multiple GPUs for LLM fine-tuning and inference. It is
integrated with `Transformers <https://huggingface.co/docs/transformers/en/index>`__, so you can scale your PyTorch
code while maintaining performance and flexibility.
As a brief example of model fine-tuning and inference using multiple GPUs, let's use Transformers and load in the Llama
@@ -107,7 +107,7 @@ Now, it's important to adjust how you load the model. Add the ``device_map`` par
(``"auto"``, ``"balanced"``, ``"balanced_low_0"``, ``"sequential"``).
It's recommended to set the ``device_map`` parameter to ``“auto”`` to allow Accelerate to automatically and
efficiently allocate the model given the available resources (4 accelerators in this case).
efficiently allocate the model given the available resources (four GPUs in this case).
When you have more GPU memory available than the model size, here is the difference between each ``device_map``
option:
@@ -130,8 +130,8 @@ After loading the model in this way, the model is fully ready to use the resourc
torchtune for fine-tuning and inference
=============================================
`torchtune <https://pytorch.org/torchtune/main/>`_ is a PyTorch-native library for easy single and multi-accelerator or
GPU model fine-tuning and inference with LLMs.
`torchtune <https://pytorch.org/torchtune/main/>`_ is a PyTorch-native library for easy single and multi-GPU
model fine-tuning and inference with LLMs.
#. Install torchtune using pip.

View File

@@ -30,7 +30,7 @@ The challenge of fine-tuning models
However, the computational cost of fine-tuning is still high, especially for complex models and large datasets, which
poses distinct challenges related to substantial computational and memory requirements. This might be a barrier for
accelerators or GPUs with low computing power or limited device memory resources.
GPUs with low computing power or limited device memory resources.
For example, suppose we have a language model with 7 billion (7B) parameters, represented by a weight matrix :math:`W`.
During backpropagation, the model needs to learn a :math:`ΔW` matrix, which updates the original weights to minimize the
@@ -84,8 +84,8 @@ Walkthrough
===========
To demonstrate the benefits of LoRA and the ideal compute compatibility of using PEFT and TRL libraries on AMD
ROCm-compatible accelerators and GPUs, let's step through a comprehensive implementation of the fine-tuning process
using the Llama 2 7B model with LoRA tailored specifically for question-and-answer tasks on AMD MI300X accelerators.
ROCm-compatible GPUs, let's step through a comprehensive implementation of the fine-tuning process
using the Llama 2 7B model with LoRA tailored specifically for question-and-answer tasks on AMD MI300X GPUs.
Before starting, review and understand the key components of this walkthrough:

View File

@@ -3,12 +3,11 @@
:keywords: ROCm, LLM, fine-tuning, usage, tutorial, single-GPU, LoRA, PEFT, inference, SFTTrainer
****************************************************
Fine-tuning and inference using a single accelerator
Fine-tuning and inference using a single GPU
****************************************************
This section explains model fine-tuning and inference techniques on a single-accelerator system. See
:doc:`Multi-accelerator fine-tuning <multi-gpu-fine-tuning-and-inference>` for a setup with multiple accelerators or
GPUs.
:doc:`Multi-accelerator fine-tuning <multi-gpu-fine-tuning-and-inference>` for a setup with multiple GPUs.
.. _fine-tuning-llms-single-gpu-env:
@@ -21,7 +20,7 @@ This section was tested using the following hardware and software environment.
:stub-columns: 1
* - Hardware
- AMD Instinct MI300X accelerator
- AMD Instinct MI300X GPU
* - Software
- ROCm 6.1, Ubuntu 22.04, PyTorch 2.1.2, Python 3.10
@@ -41,7 +40,7 @@ Setting up the base implementation environment
:doc:`PyTorch installation guide <rocm-install-on-linux:install/3rd-party/pytorch-install>`. For a consistent
installation, its recommended to use official ROCm prebuilt Docker images with the framework pre-installed.
#. In the Docker container, check the availability of ROCm-capable accelerators using the following command.
#. In the Docker container, check the availability of ROCm-capable GPUs using the following command.
.. code-block:: shell
@@ -53,14 +52,14 @@ Setting up the base implementation environment
============================ ROCm System Management Interface ============================
====================================== Product Info ======================================
GPU[0] : Card series: AMD Instinct MI300X OAM
GPU[0] : Card Series: AMD Instinct MI300X OAM
GPU[0] : Card model: 0x74a1
GPU[0] : Card vendor: Advanced Micro Devices, Inc. [AMD/ATI]
GPU[0] : Card SKU: MI3SRIOV
==========================================================================================
================================== End of ROCm SMI Log ===================================
#. Check that your accelerators are available to PyTorch.
#. Check that your GPUs are available to PyTorch.
.. code-block:: python
@@ -502,9 +501,9 @@ Let's look at achieving model inference using these types of models.
# Token generation
print(pipe("What is a large language model?")[0]["generated_text"])
If using multiple accelerators, see
If using multiple GPUs, see
:ref:`Multi-accelerator fine-tuning and inference <fine-tuning-llms-multi-gpu-hugging-face-accelerate>` to explore
popular libraries that simplify fine-tuning and inference in a multi-accelerator system.
popular libraries that simplify fine-tuning and inference in a multiple-GPU system.
Read more about inference frameworks like vLLM and Hugging Face TGI in
:doc:`LLM inference frameworks <../inference/llm-inference-frameworks>`.

View File

@@ -45,7 +45,7 @@ ROCm provides two different implementations of Flash Attention 2 modules. They c
# Install from source
git clone https://github.com/ROCm/flash-attention.git
cd flash-attention/
GPU_ARCHS=gfx942 python setup.py install #MI300 series
GPU_ARCHS=gfx942 python setup.py install #MI300 Series
Hugging Face Transformers can easily deploy the CK Flash Attention 2 module by passing an argument
``attn_implementation="flash_attention_2"`` in the ``from_pretrained`` class.
@@ -526,7 +526,7 @@ follow these instructions:
python -m pytest -v -rsx -s -W ignore::pytest.PytestCollectionWarning split_table_batched_embeddings_test.py
To run the FBGEMM_GPU ``uvm`` test, use these commands. These tests only support the AMD MI210 and
more recent accelerators.
more recent GPUs.
.. code-block:: shell

View File

@@ -7,7 +7,7 @@ Model quantization techniques
*****************************
Quantization reduces the model size compared to its native full-precision version, making it easier to fit large models
onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using AMD Quark, GPTQ
onto GPUs with limited memory usage. This section explains how to perform LLM quantization using AMD Quark, GPTQ
and bitsandbytes on AMD Instinct hardware.
.. _quantize-llms-quark:
@@ -311,7 +311,7 @@ ExLlama-v2 support
ExLlama is a Python/C++/CUDA implementation of the Llama model that is
designed for faster inference with 4-bit GPTQ weights. The ExLlama
kernel is activated by default when users create a ``GPTQConfig`` object. To
boost inference speed even further on Instinct accelerators, use the ExLlama-v2
boost inference speed even further on Instinct GPUs, use the ExLlama-v2
kernels by configuring the ``exllama_config`` parameter as the following.
.. code-block:: python
@@ -332,7 +332,7 @@ The `ROCm-aware bitsandbytes <https://github.com/ROCm/bitsandbytes>`_ library is
a lightweight Python wrapper around CUDA custom functions, in particular 8-bit optimizer, matrix multiplication, and
8-bit and 4-bit quantization functions. The library includes quantization primitives for 8-bit and 4-bit operations
through ``bitsandbytes.nn.Linear8bitLt`` and ``bitsandbytes.nn.Linear4bit`` and 8-bit optimizers through the
``bitsandbytes.optim`` module. These modules are supported on AMD Instinct accelerators.
``bitsandbytes.optim`` module. These modules are supported on AMD Instinct GPUs.
Installing bitsandbytes
-----------------------

View File

@@ -9,13 +9,13 @@ myst:
The AMD ROCm Composable Kernel (CK) library provides a programming model for writing performance-critical kernels for machine learning workloads. It generates a general-purpose kernel during the compilation phase through a C++ template, enabling developers to achieve operation fusions on different data precisions.
This article gives a high-level overview of CK General Matrix Multiplication (GEMM) kernel based on the design example of `03_gemm_bias_relu`. It also outlines the steps to construct the kernel and run it. Moreover, the article provides a detailed implementation of running SmoothQuant quantized INT8 models on AMD Instinct MI300X accelerators using CK.
This article gives a high-level overview of CK General Matrix Multiplication (GEMM) kernel based on the design example of `03_gemm_bias_relu`. It also outlines the steps to construct the kernel and run it. Moreover, the article provides a detailed implementation of running SmoothQuant quantized INT8 models on AMD Instinct MI300X GPUs using CK.
## High-level overview: a CK GEMM instance
GEMM is a fundamental block in linear algebra, machine learning, and deep neural networks. It is defined as the operation:
{math}`E = α \times (A \times B) + β \times (D)`, with A and B as matrix inputs, α and β as scalar inputs, and D as a pre-existing matrix.
Take the commonly used linear transformation in a fully connected layer as an example. These terms correspond to input activation (A), weight (B), bias (D), and output (E), respectively. The example employs a `DeviceGemmMultipleD_Xdl_CShuffle` struct from CK library as the fundamental instance to explore the compute capability of AMD Instinct accelerators for the computation of GEMM. The implementation of the instance contains two phases:
Take the commonly used linear transformation in a fully connected layer as an example. These terms correspond to input activation (A), weight (B), bias (D), and output (E), respectively. The example employs a `DeviceGemmMultipleD_Xdl_CShuffle` struct from CK library as the fundamental instance to explore the compute capability of AMD Instinct GPUs for the computation of GEMM. The implementation of the instance contains two phases:
- [Template parameter definition](#template-parameter-definition)
- [Instantiating and running the templated kernel](#instantiating-and-running-the-templated-kernel)
@@ -108,7 +108,7 @@ These parameters include Block Size, M/N/K Per Block, M/N per XDL, AK1, BK1, etc
- Block Size determines the number of threads in the thread block.
- M/N/K Per Block determines the size of tile that each thread block is responsible for calculating.
- M/N Per XDL refers to M/N size for Instinct accelerator Matrix Fused Multiply Add (MFMA) instructions operating on a per-wavefront basis.
- M/N Per XDL refers to M/N size for Instinct GPU Matrix Fused Multiply Add (MFMA) instructions operating on a per-wavefront basis.
- A/B K1 is related to the data type. It can be any value ranging from 1 to K Per Block. To achieve the optimal load/store performance, 128bit per load is suggested. In addition, the A/B loading parameters must be changed accordingly to match the A/B K1 value; otherwise, it will result in compilation errors.
Conditions for achieving computational load balancing on different hardware platforms can vary.
@@ -133,7 +133,7 @@ Templated kernel launching consists of kernel instantiation, making arguments by
## Developing fused INT8 kernels for SmoothQuant models
[SmoothQuant](https://github.com/mit-han-lab/smoothquant) (SQ) is a quantization algorithm that enables an INT8 quantization of both weights and activations for all the matrix multiplications in LLM. The required GPU kernel functionalities used to accelerate the inference of SQ models on Instinct accelerators are shown in the following table.
[SmoothQuant](https://github.com/mit-han-lab/smoothquant) (SQ) is a quantization algorithm that enables an INT8 quantization of both weights and activations for all the matrix multiplications in LLM. The required GPU kernel functionalities used to accelerate the inference of SQ models on Instinct GPUs are shown in the following table.
:::{table} Functionalities used to implement SmoothQuant model inference.
@@ -164,7 +164,7 @@ The CK library contains many fundamental instances that implement different func
Second, consider whether the format of input data meets your actual calculation needs. For SQ models, the 8-bit integer data format (INT8) is applied for matrix calculations.
Third, consider the platform for implementing CK instances. The instances suffixed with `xdl` only run on AMD Instinct accelerators after being compiled and cannot run on Radeon-series GPUs. This is due to the underlying device-specific instruction sets for implementing these basic instances.
Third, consider the platform for implementing CK instances. The instances suffixed with `xdl` only run on AMD Instinct GPUs after being compiled and cannot run on Radeon-Series GPUs. This is due to the underlying device-specific instruction sets for implementing these basic instances.
Here, we use [DeviceBatchedGemmMultiD_Xdl](https://github.com/ROCm/composable_kernel/tree/develop/example/24_batched_gemm) as the fundamental instance to implement the functionalities in the previous table.
@@ -435,7 +435,7 @@ The implementation architecture of running SmoothQuant models on MI300X GPUs is
### Figure 7
================ -->
```{figure} ../../../data/how-to/llm-fine-tuning-optimization/ck-inference_flow.jpg
The implementation architecture of running SmoothQuant models on AMD MI300X accelerators.
The implementation architecture of running SmoothQuant models on AMD MI300X GPUs.
```
For the target [SQ quantized model](https://huggingface.co/mit-han-lab/opt-13b-smoothquant), each decoder layer contains three major components: attention calculation, layer normalization, and linear transformation in fully connected layers. The corresponding implementation classes for these components are:
@@ -447,21 +447,21 @@ For the target [SQ quantized model](https://huggingface.co/mit-han-lab/opt-13b-s
These classes' underlying implementation logits will harness the functions in previous table. Note that for the example, the `LayerNormQ` module is implemented by the torch native module.
Testing environment:
The hardware platform used for testing equips with 256 AMD EPYC 9534 64-Core Processor, 8 AMD Instinct MI300X accelerators and 1.5T memory. The testing was done in a publicly available Docker image from Docker Hub:
The hardware platform used for testing equips with 256 AMD EPYC 9534 64-Core Processor, 8 AMD Instinct MI300X GPUs and 1.5T memory. The testing was done in a publicly available Docker image from Docker Hub:
[`rocm/pytorch:rocm6.1_ubuntu22.04_py3.10_pytorch_2.1.2`](https://hub.docker.com/layers/rocm/pytorch/rocm6.1_ubuntu22.04_py3.10_pytorch_2.1.2/images/sha256-f6ea7cee8aae299c7f6368187df7beed29928850c3929c81e6f24b34271d652b)
The tested models are OPT-1.3B, 2.7B, 6.7B and 13B FP16 models and the corresponding SmoothQuant INT8 OPT models were obtained from Hugging Face.
Note that since the default values were used for the tunable parameters of the fundamental instance, the performance of the INT8 kernel is suboptimal.
Figure 8 shows the performance comparisons between the original FP16 and the SmoothQuant-quantized INT8 models on a single MI300X accelerator. The GPU memory footprints of SmoothQuant-quantized models are significantly reduced. It also indicates the per-sample inference latency is significantly reduced for all SmoothQuant-quantized OPT models (illustrated in (b)). Notably, the performance of the CK instance-based INT8 kernel steadily improves with an increase in model size.
Figure 8 shows the performance comparisons between the original FP16 and the SmoothQuant-quantized INT8 models on a single MI300X GPU. The GPU memory footprints of SmoothQuant-quantized models are significantly reduced. It also indicates the per-sample inference latency is significantly reduced for all SmoothQuant-quantized OPT models (illustrated in (b)). Notably, the performance of the CK instance-based INT8 kernel steadily improves with an increase in model size.
<!--
================
### Figure 8
================ -->
```{figure} ../../../data/how-to/llm-fine-tuning-optimization/ck-comparisons.jpg
Performance comparisons between the original FP16 and the SmoothQuant-quantized INT8 models on a single MI300X accelerator.
Performance comparisons between the original FP16 and the SmoothQuant-quantized INT8 models on a single MI300X GPU.
```
For accuracy comparisons between the original FP16 and INT8 models, the evaluation is done by using the first 1,000 samples from the LAMBADA dataset's validation set. We employ the same Last Token Prediction Accuracy method introduced in [SmoothQuant Real-INT8 Inference for PyTorch](https://github.com/mit-han-lab/smoothquant/blob/main/examples/smoothquant_opt_real_int8_demo.ipynb) as our evaluation metric. The comparison results are shown in Table 2.
@@ -482,4 +482,4 @@ CK provides a rich set of template parameters for generating flexible accelerate
CK supports multiple instruction sets of AMD Instinct GPUs, operator fusion and different data precisions. Its composability helps users quickly construct operator performance verification.
With CK, you can build more effective AI applications with higher flexibility and better performance on different AMD accelerator platforms.
With CK, you can build more effective AI applications with higher flexibility and better performance on different AMD GPU platforms.

View File

@@ -1,15 +1,15 @@
.. meta::
:description: Learn about workload tuning on AMD Instinct MI300X accelerators for optimal performance.
:description: Learn about workload tuning on AMD Instinct MI300X GPUs for optimal performance.
:keywords: AMD, Instinct, MI300X, HPC, tuning, BIOS settings, NBIO, ROCm,
environment variable, performance, HIP, Triton, PyTorch TunableOp, vLLM, RCCL,
MIOpen, accelerator, GPU, resource utilization
MIOpen, GPU, resource utilization
*****************************************
AMD Instinct MI300X workload optimization
*****************************************
This document provides guidelines for optimizing the performance of AMD
Instinct™ MI300X accelerators, with a particular focus on GPU kernel
Instinct™ MI300X GPUs, with a particular focus on GPU kernel
programming, high-performance computing (HPC), and deep learning operations
using PyTorch. It delves into specific workloads such as
:ref:`model inference <mi300x-vllm-optimization>`, offering strategies to
@@ -25,7 +25,7 @@ Workload tuning strategy
By following a structured approach, you can systematically address
performance issues and enhance the efficiency of your workloads on AMD Instinct
MI300X accelerators.
MI300X GPUs.
Measure the current workload
----------------------------
@@ -86,7 +86,7 @@ Optimize model inference with vLLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
vLLM provides tools and techniques specifically designed for efficient model
inference on AMD Instinct MI300X accelerators. See :ref:`fine-tuning-llms-vllm`
inference on AMD Instinct MI300X GPUs. See :ref:`fine-tuning-llms-vllm`
for installation guidance. Optimizing performance with vLLM
involves configuring tensor parallelism, leveraging advanced features, and
ensuring efficient execution. Heres how to optimize vLLM performance:
@@ -239,7 +239,7 @@ benchmarking process.
With AMD's profiling tools, developers are able to gain important insight into how efficiently their application is
using hardware resources and effectively diagnose potential bottlenecks contributing to poor performance. Developers
working with AMD Instinct accelerators have multiple tools depending on their specific profiling needs; these include:
working with AMD Instinct GPUs have multiple tools depending on their specific profiling needs; these include:
* :ref:`ROCProfiler <mi300x-rocprof>`
@@ -257,11 +257,11 @@ metrics, commonly called *performance counters*. These counters quantify the per
showcasing which pieces of the computational pipeline and memory hierarchy are being utilized.
Your ROCm installation contains a script or executable command called ``rocprof`` which provides the ability to list all
available hardware counters for your specific accelerator or GPU, and run applications while collecting counters during
available hardware counters for your specific GPU, and run applications while collecting counters during
their execution.
This ``rocprof`` utility also depends on the :doc:`ROCTracer and ROC-TX libraries <roctracer:index>`, giving it the
ability to collect timeline traces of the accelerator software stack as well as user-annotated code regions.
ability to collect timeline traces of the GPU software stack as well as user-annotated code regions.
.. note::
@@ -276,16 +276,16 @@ ROCm Compute Profiler
^^^^^^^^^^^^^^^^^^^^^
:doc:`ROCm Compute Profiler <rocprofiler-compute:index>` is a system performance profiler for high-performance computing (HPC) and
machine learning (ML) workloads using Instinct accelerators. Under the hood, ROCm Compute Profiler uses
machine learning (ML) workloads using Instinct GPUs. Under the hood, ROCm Compute Profiler uses
:ref:`ROCProfiler <mi300x-rocprof>` to collect hardware performance counters. The ROCm Compute Profiler tool performs
system profiling based on all approved hardware counters for Instinct
accelerator architectures. It provides high level performance analysis features including System Speed-of-Light, IP
GPU architectures. It provides high level performance analysis features including System Speed-of-Light, IP
block Speed-of-Light, Memory Chart Analysis, Roofline Analysis, Baseline Comparisons, and more.
ROCm Compute Profiler takes the guesswork out of profiling by removing the need to provide text input files with lists of counters
to collect and analyze raw CSV output files as is the case with ROCProfiler. Instead, ROCm Compute Profiler automates the collection
of all available hardware counters in one command and provides graphical interfaces to help users understand and
analyze bottlenecks and stressors for their computational workloads on AMD Instinct accelerators.
analyze bottlenecks and stressors for their computational workloads on AMD Instinct GPUs.
.. note::
@@ -411,7 +411,7 @@ for additional performance tips. :ref:`fine-tuning-llms-vllm` describes vLLM
usage with ROCm.
ROCm provides a prebuilt optimized Docker image for validating the performance
of LLM inference with vLLM on MI300X series accelerators. The Docker image includes
of LLM inference with vLLM on MI300X Series GPUs. The Docker image includes
ROCm, vLLM, and PyTorch. For more information, see
:doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
@@ -449,7 +449,7 @@ Maximizing vLLM instances on a single node
The general guideline is to maximize per-node throughput by running as many vLLM instances as possible.
However, running too many instances might lead to insufficient memory for the KV-cache, which can affect performance.
The Instinct MI300X accelerator is equipped with 192GB of HBM3 memory capacity and bandwidth.
The Instinct MI300X GPU is equipped with 192 GB of HBM3 memory capacity and bandwidth.
For models that fit in one GPU -- to maximize the accumulated throughput -- you can run as many as eight vLLM instances
simultaneously on one MI300X node (with eight GPUs). To do so, use the GPU isolation environment
variable ``CUDA_VISIBLE_DEVICES``.
@@ -468,7 +468,7 @@ The total throughput achieved by running ``N`` instances of vLLM is generally mu
single vLLM instance across ``N`` GPUs simultaneously (that is, configuring ``tensor_parallel_size`` as N or
using the ``-tp`` N option, where ``1 < N ≤ 8``).
vLLM on MI300X accelerators can run a variety of model weights, including Llama 2 (7b, 13b, 70b), Llama 3 (8b, 70b), Qwen2 (7b, 72b), Mixtral-8x7b, Mixtral-8x22b, and so on.
vLLM on MI300X GPUs can run a variety of model weights, including Llama 2 (7b, 13b, 70b), Llama 3 (8b, 70b), Qwen2 (7b, 72b), Mixtral-8x7b, Mixtral-8x22b, and so on.
Notable configurations include Llama2-70b and Llama3-70b models on a single MI300X GPU, and the Llama3.1 405b model can fit on one single node with 8 MI300X GPUs.
.. _mi300x-vllm-gpu-memory-utilization:
@@ -917,7 +917,7 @@ ROCm library tuning involves optimizing the performance of routine computational
operations (such as ``GEMM``) provided by ROCm libraries like
:ref:`hipBLASLt <mi300x-hipblaslt>`, :ref:`Composable Kernel <mi300x-ck>`,
:ref:`MIOpen <mi300x-miopen>`, and :ref:`RCCL <mi300x-rccl>`. This tuning aims
to maximize efficiency and throughput on Instinct MI300X accelerators to gain
to maximize efficiency and throughput on Instinct MI300X GPUs to gain
improved application performance.
.. _mi300x-library-gemm:
@@ -1451,7 +1451,7 @@ you can only use a fraction of the potential bandwidth on the node.
The following figure shows an
:doc:`MI300X node-level architecture </conceptual/gpu-arch/mi300>` of a
system with AMD EPYC processors in a dual-socket configuration and eight
AMD Instinct MI300X accelerators. The MI300X OAMs attach to the host system via
AMD Instinct MI300X GPUs. The MI300X OAMs attach to the host system via
PCIe Gen 5 x16 links (yellow lines). The GPUs use seven high-bandwidth,
low-latency AMD Infinity Fabric™ links (red lines) to form a fully connected
8-GPU system.
@@ -1460,7 +1460,7 @@ low-latency AMD Infinity Fabric™ links (red lines) to form a fully connected
.. figure:: ../../../data/shared/mi300-node-level-arch.png
MI300 series node-level architecture showing 8 fully interconnected MI300X
MI300 Series node-level architecture showing 8 fully interconnected MI300X
OAM modules connected to (optional) PCIe switches via re-timers and HGX
connectors.
@@ -1653,7 +1653,7 @@ Auto-tunable kernel configuration involves adjusting memory access and computati
resources assigned to each compute unit. It encompasses the usage of
:ref:`LDS <mi300x-cu-fig>`, register, and task scheduling on a compute unit.
The accelerator or GPU contains global memory, local data share (LDS), and
The GPU contains global memory, local data share (LDS), and
registers. Global memory has high access latency, but is large. LDS access has
much lower latency, but is smaller. It is a fast on-CU software-managed memory
that can be used to efficiently share data between all work items in a block.
@@ -1666,11 +1666,11 @@ Register access is the fastest yet smallest among the three.
Schematic representation of a CU in the CDNA2 or CDNA3 architecture.
The following is a list of kernel arguments used for tuning performance and
resource allocation on AMD accelerators, which helps in optimizing the
resource allocation on AMD GPUs, which helps in optimizing the
efficiency and throughput of various computational kernels.
``num_stages=n``
Adjusts the number of pipeline stages for different types of kernels. On AMD accelerators, set ``num_stages``
Adjusts the number of pipeline stages for different types of kernels. On AMD GPUs, set ``num_stages``
according to the following rules:
* For kernels with a single GEMM, set to ``2``.
@@ -1697,15 +1697,15 @@ efficiency and throughput of various computational kernels.
* The occupancy of the kernel is limited by VGPR usage, and
* The current VGPR usage is only a few above a boundary in
:ref:`Occupancy related to VGPR usage in an Instinct MI300X accelerator <mi300x-occupancy-vgpr-table>`.
:ref:`Occupancy related to VGPR usage in an Instinct MI300X GPU <mi300x-occupancy-vgpr-table>`.
.. _mi300x-occupancy-vgpr-table:
.. figure:: ../../../data/shared/occupancy-vgpr.png
:alt: Occupancy related to VGPR usage in an Instinct MI300X accelerator.
:alt: Occupancy related to VGPR usage in an Instinct MI300X GPU.
:align: center
Occupancy related to VGPRs usage on an Instinct MI300X accelerator
Occupancy related to VGPRs usage on an Instinct MI300X GPU
For example, according to the table, each Execution Unit (EU) has 512 available
VGPRs, which are allocated in blocks of 16. If the current VGPR usage is 170,
@@ -1730,7 +1730,7 @@ VGPR usage so that it might fit 3 waves per EU.
- ``matrix_instr_nonkdim = 32``: ``mfma_32x32`` is used.
For GEMM kernels on an MI300X accelerator, ``mfma_16x16`` typically outperforms ``mfma_32x32``, even for large
For GEMM kernels on an MI300X GPU, ``mfma_16x16`` typically outperforms ``mfma_32x32``, even for large
tile/GEMM sizes.
@@ -1749,7 +1749,7 @@ the number of CUs a kernel can distribute its task across.
XCD-level system architecture showing 40 compute units,
each with 32 KB L1 cache, a unified compute system with 4 ACE compute
accelerators, shared 4MB of L2 cache, and a hardware scheduler (HWS).
GPUs, shared 4MB of L2 cache, and a hardware scheduler (HWS).
You can query hardware resources with the command ``rocminfo`` in the
``/opt/rocm/bin`` directory. For instance, query the number of CUs, number of

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -23,9 +23,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
inference performance on AMD Instinct™ MI300X Series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
.. list-table::
:header-rows: 1
@@ -47,7 +47,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-812>` for
MI300X series accelerators.
MI300X Series GPUs.
What's new
==========
@@ -139,7 +139,7 @@ page provides reference throughput and serving measurements for inferencing popu
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
System validation
=================
@@ -424,7 +424,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -0,0 +1,448 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. caution::
This documentation does not reflect the latest version of ROCm vLLM
inference performance documentation. See :doc:`../vllm` for the latest version.
.. _vllm-benchmark-unified-docker-909:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20250909-benchmark-models.yaml
{% set docker = data.dockers[0] %}
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X Series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
accelerators and includes the following components:
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-909>` for
MI300X Series accelerators.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <vllm-history>`.
* Upgraded to vLLM v0.10.1.
* Set ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1`` by default for better performance.
* Set ``VLLM_ROCM_USE_AITER_RMSNORM=0`` by default to avoid various issues with torch compile.
.. _vllm-benchmark-supported-models-909:
Supported models
================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20250909-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-909:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-3 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. _vllm-benchmark-vllm-909:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% if model.precision == "float8" and model.model_repo.startswith("amd") %}
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD accelerators.
{% endif %}
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-909:
Performance measurements
========================
To evaluate performance, the
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
page provides reference throughput and serving measurements for inferencing popular AI models.
.. important::
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/previous-versions/vllm_0.10.1_20250909-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
Benchmarking
============
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-909:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{model.mad_tag}}
.. tab-set::
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-909` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd MAD
pip install -r requirements.txt
2. Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the :literal:`{{model.precision}}` data type on the host machine.
.. code-block:: shell
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output \
--timeout 28800
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-909>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
{% if model.tunableop %}
.. note::
For improved performance, consider enabling :ref:`PyTorch TunableOp <mi300x-tunableop>`.
TunableOp automatically explores different implementations and configurations of certain PyTorch
operators to find the fastest one for your hardware.
By default, ``{{model.mad_tag}}`` runs with TunableOp disabled (see
`<https://github.com/ROCm/MAD/blob/develop/models.json>`__). To enable it, include
the ``--tunableop on`` argument in your run.
Enabling TunableOp triggers a two-pass run -- a warm-up followed by the
performance-collection run.
{% endif %}
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-909` to switch to another available model.
.. seealso::
For more information on configuration, see the `config files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__
in the MAD repository. Refer to the `vLLM engine <https://docs.vllm.ai/en/latest/configuration/engine_args.html#engineargs>`__
for descriptions of available configuration options
and `Benchmarking vLLM <https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md>`__ for
additional benchmarking information.
.. rubric:: Launch the container
You can run the vLLM benchmark tool independently by starting the
`Docker container <{{ docker.docker_hub_url }}>`_ as shown
in the following snippet.
.. code-block:: shell
docker pull {{ docker.pull_tag }}
docker run -it \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--shm-size 16G \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--cap-add=SYS_PTRACE \
-v $(pwd):/workspace \
--env HUGGINGFACE_HUB_CACHE=/workspace \
--name test \
{{ docker.pull_tag }}
.. rubric:: Throughput command
Use the following command to start the throughput benchmark.
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
num_prompts=1024
in=128
out=128
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=1024
max_seq_len_to_capture={{ model.config.max_seq_len_to_capture }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm bench throughput --model $model \
-tp $tp \
--num-prompts $num_prompts \
--input-len $in \
--output-len $out \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-seq-len-to-capture $max_seq_len_to_capture \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--trust-remote-code \
--output-json ${model}_throughput.json \
--gpu-memory-utilization 0.9
.. rubric:: Serving command
1. Start the server using the following command:
.. code-block:: shell
model={{ model.model_repo }}
tp={{ model.config.tp }}
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=256
max_seq_len_to_capture={{ model.config.max_seq_len_to_capture }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
vllm serve $model \
-tp $tp \
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-seq-len-to-capture $max_seq_len_to_capture \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--no-enable-prefix-caching \
--swap-space 16 \
--disable-log-requests \
--trust-remote-code \
--gpu-memory-utilization 0.9
Wait until the model has loaded and the server is ready to accept requests.
2. On another terminal on the same machine, run the benchmark:
.. code-block:: shell
# Connect to the container
docker exec -it test bash
# Wait for the server to start
until curl -s http://localhost:8000/v1/models; do sleep 30; done
# Run the benchmark
model={{ model.model_repo }}
max_concurrency=1
num_prompts=10
in=128
out=128
vllm bench serve --model $model \
--percentile-metrics "ttft,tpot,itl,e2el" \
--dataset-name random \
--ignore-eos \
--max-concurrency $max_concurrency \
--num-prompts $num_prompts \
--random-input-len $in \
--random-output-len $out \
--trust-remote-code \
--save-result \
--result-filename ${model}_serving.json
.. note::
For improved performance with certain Mixture of Experts models, such as Mixtral 8x22B,
try adding ``export VLLM_ROCM_USE_AITER=1`` to your commands.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
.. code-block::
OSError: You are trying to access a gated repo.
# pass your HF_TOKEN
export HF_TOKEN=$your_personal_hf_token
.. raw:: html
<style>
mjx-container[jax="CHTML"][display="true"] {
text-align: left;
margin: 0;
}
</style>
.. note::
Throughput is calculated as:
- .. math:: throughput\_tot = requests \times (\mathsf{\text{input lengths}} + \mathsf{\text{output lengths}}) / elapsed\_time
- .. math:: throughput\_gen = requests \times \mathsf{\text{output lengths}} / elapsed\_time
{% endfor %}
{% endfor %}
Advanced usage
==============
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/docs/dev-docker/README.md>`__.
Reproducing the Docker image
----------------------------
To reproduce this ROCm/vLLM Docker image release, follow these steps:
1. Clone the `vLLM repository <https://github.com/ROCm/vllm>`__.
.. code-block:: shell
git clone https://github.com/ROCm/vllm.git
2. Checkout the specific release commit.
.. code-block:: shell
cd vllm
git checkout 6663000a391911eba96d7864a26ac42b07f6ef29
3. Build the Docker image. Replace ``vllm-rocm`` with your desired image tag.
.. code-block:: shell
docker build -f docker/Dockerfile.rocm -t vllm-rocm .
Further reading
===============
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
a brief introduction to vLLM and optimization strategies.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`vllm-history` to find documentation for previous releases
of the ``ROCm/vllm`` Docker image.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -18,9 +18,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
(LLM) inference performance on the AMD Instinct™ MI300X GPU. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
MI300X GPU and includes the following components:
* `ROCm 6.2.0 <https://github.com/ROCm/ROCm>`_
@@ -31,7 +31,7 @@ MI300X accelerator and includes the following components:
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
performance numbers on the MI300X GPU. This topic also provides tips on
optimizing performance with popular AI models.
.. _vllm-benchmark-vllm:
@@ -51,7 +51,7 @@ Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
MI300X GPU with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
@@ -267,7 +267,7 @@ Options
.. _vllm-benchmark-run-benchmark-v043:
Running the benchmark on the MI300X accelerator
Running the benchmark on the MI300X GPU
-----------------------------------------------
Here are some examples of running the benchmark with various options.
@@ -328,7 +328,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the unified
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the unified
ROCm Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -18,9 +18,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment designed for validating large language model
(LLM) inference performance on the AMD Instinct™ MI300X accelerator. This
(LLM) inference performance on the AMD Instinct™ MI300X GPU. This
ROCm vLLM Docker image integrates vLLM and PyTorch tailored specifically for the
MI300X accelerator and includes the following components:
MI300X GPU and includes the following components:
* `ROCm 6.2.1 <https://github.com/ROCm/ROCm>`_
@@ -31,7 +31,7 @@ MI300X accelerator and includes the following components:
* Tuning files (in CSV format)
With this Docker image, you can quickly validate the expected inference
performance numbers on the MI300X accelerator. This topic also provides tips on
performance numbers on the MI300X GPU. This topic also provides tips on
optimizing performance with popular AI models.
.. hlist::
@@ -74,7 +74,7 @@ Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
MI300X GPU with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
@@ -332,7 +332,7 @@ Options
.. _vllm-benchmark-run-benchmark-v064:
Running the benchmark on the MI300X accelerator
Running the benchmark on the MI300X GPU
-----------------------------------------------
Here are some examples of running the benchmark with various options.
@@ -398,7 +398,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -18,9 +18,9 @@ LLM inference performance validation on AMD Instinct MI300X
The `ROCm vLLM Docker <https://hub.docker.com/r/rocm/vllm/tags>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on the AMD Instinct™ MI300X accelerator. This ROCm vLLM
inference performance on the AMD Instinct™ MI300X GPU. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for the MI300X
accelerator and includes the following components:
GPU and includes the following components:
* `ROCm 6.3.1 <https://github.com/ROCm/ROCm>`_
@@ -29,7 +29,7 @@ accelerator and includes the following components:
* `PyTorch 2.7.0 (2.7.0a0+git3a58512) <https://github.com/pytorch/pytorch>`_
With this Docker image, you can quickly validate the expected inference
performance numbers for the MI300X accelerator. This topic also provides tips on
performance numbers for the MI300X GPU. This topic also provides tips on
optimizing performance with popular AI models. For more information, see the lists of
:ref:`available models for MAD-integrated benchmarking <vllm-benchmark-mad-v066-models>`
and :ref:`standalone benchmarking <vllm-benchmark-standalone-v066-options>`.
@@ -47,7 +47,7 @@ Getting started
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
MI300X GPU with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
@@ -377,7 +377,7 @@ Options and available models
.. _vllm-benchmark-run-benchmark-v066:
Running the benchmark on the MI300X accelerator
Running the benchmark on the MI300X GPU
-----------------------------------------------
Here are some examples of running the benchmark with various options.
@@ -443,7 +443,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -23,9 +23,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerator. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
inference performance on AMD Instinct™ MI300X Series GPU. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
@@ -37,7 +37,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-v073>` for
MI300X series accelerators.
MI300X Series GPUs.
.. _vllm-benchmark-available-models-v073:
@@ -110,7 +110,7 @@ vLLM inference performance testing
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
Advanced features and known issues
==================================
@@ -122,7 +122,7 @@ vLLM inference performance testing
===============
Use the following procedures to reproduce the benchmark results on an
MI300X accelerator with the prebuilt vLLM Docker image.
MI300X GPU with the prebuilt vLLM Docker image.
.. _vllm-benchmark-get-started:
@@ -311,7 +311,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -18,9 +18,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
inference performance on AMD Instinct™ MI300X Series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
@@ -32,7 +32,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-v083>` for
MI300X series accelerators.
MI300X Series GPUs.
.. _vllm-benchmark-available-models-v083:
@@ -105,7 +105,7 @@ vLLM inference performance testing
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
Advanced features and known issues
==================================
@@ -327,7 +327,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -23,9 +23,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
inference performance on AMD Instinct™ MI300X Series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
@@ -37,7 +37,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-v085-20250513>` for
MI300X series accelerators.
MI300X Series GPUs.
.. _vllm-benchmark-available-models-v085-20250513:
@@ -114,7 +114,7 @@ vLLM inference performance testing
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the :doc:`latest version of this inference benchmarking environment <../vllm>`.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
Advanced features and known issues
==================================
@@ -333,7 +333,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -23,9 +23,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
inference performance on AMD Instinct™ MI300X Series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
@@ -37,7 +37,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-v085-20250521>` for
MI300X series accelerators.
MI300X Series GPUs.
.. _vllm-benchmark-available-models-v085-20250521:
@@ -114,13 +114,13 @@ vLLM inference performance testing
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
should not be interpreted as the peak performance achievable by AMD
Instinct MI325X and MI300X accelerators or ROCm software.
Instinct MI325X and MI300X GPUs or ROCm software.
Advanced features and known issues
==================================
For information on experimental features and known issues related to ROCm optimization efforts on vLLM,
see the developer's guide at `<https://github.com/ROCm/vllm/blob/main/docs/dev-docker/README.md>`__.
see the developer's guide at `<https://github.com/ROCm/vllm/blob/7bb0618b1fe725b7d4fad9e525aa44da12c94a8b/docs/dev-docker/README.md>`__.
System validation
=================
@@ -333,7 +333,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -23,9 +23,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
inference performance on AMD Instinct™ MI300X Series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
@@ -37,7 +37,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-v0901-20250605>` for
MI300X series accelerators.
MI300X Series GPUs.
.. _vllm-benchmark-available-models-v0901-20250605:
@@ -113,7 +113,7 @@ vLLM inference performance testing
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
Advanced features and known issues
==================================
@@ -332,7 +332,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -23,9 +23,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
inference performance on AMD Instinct™ MI300X Series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
* `ROCm {{ unified_docker.rocm_version }} <https://github.com/ROCm/ROCm>`_
@@ -37,7 +37,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-20250702>` for
MI300X series accelerators.
MI300X Series GPUs.
.. _vllm-benchmark-available-models-20250702:
@@ -113,7 +113,7 @@ vLLM inference performance testing
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
Advanced features and known issues
==================================
@@ -332,7 +332,7 @@ Further reading
see `<https://github.com/ROCm/vllm/tree/main/benchmarks>`_.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -1,7 +1,7 @@
:orphan:
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
@@ -23,9 +23,9 @@ vLLM inference performance testing
The `ROCm vLLM Docker <{{ unified_docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
inference performance on AMD Instinct™ MI300X Series GPUs. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X Series
GPUs and includes the following components:
.. list-table::
:header-rows: 1
@@ -47,7 +47,7 @@ vLLM inference performance testing
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-715>` for
MI300X series accelerators.
MI300X Series GPUs.
What's new
==========
@@ -145,7 +145,7 @@ page provides reference throughput and latency measurements for inferencing popu
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X GPUs or ROCm software.
System validation
=================
@@ -429,7 +429,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -7,7 +7,7 @@ vLLM inference performance testing version history
This table lists previous versions of the ROCm vLLM inference Docker image for
inference performance testing. For detailed information about available models
for benchmarking, see the version-specific documentation. You can find tagged
previous releases of the ``ROCm/vllm`` Docker image on `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.10.1_20250909/images/sha256-1113268572e26d59b205792047bea0e61e018e79aeadceba118b7bf23cb3715c>`__.
previous releases of the ``ROCm/vllm`` Docker image on `Docker Hub <https://hub.docker.com/r/rocm/vllm/tags>`__.
.. list-table::
:header-rows: 1
@@ -16,14 +16,23 @@ previous releases of the ``ROCm/vllm`` Docker image on `Docker Hub <https://hub.
- Components
- Resources
* - ``rocm/vllm:rocm6.4.1_vllm_0.10.1_20250909``
* - ``rocm/vllm:rocm7.0.0_vllm_0.10.2_20251006``
(latest)
-
* ROCm 7.0.0
* vLLM 0.10.2
* PyTorch 2.9.0
-
* :doc:`Documentation <../vllm>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm7.0.0_vllm_0.10.2_20251006/images/sha256-94fd001964e1cf55c3224a445b1fb5be31a7dac302315255db8422d813edd7f5>`__
* - ``rocm/vllm:rocm6.4.1_vllm_0.10.1_20250909``
-
* ROCm 6.4.1
* vLLM 0.10.1
* PyTorch 2.7.0
-
* :doc:`Documentation <../vllm>`
* :doc:`Documentation <vllm-0.10.1-20250909>`
* `Docker Hub <https://hub.docker.com/layers/rocm/vllm/rocm6.4.1_vllm_0.10.1_20250909/images/sha256-1113268572e26d59b205792047bea0e61e018e79aeadceba118b7bf23cb3715c>`__
* - ``rocm/vllm:rocm6.4.1_vllm_0.10.0_20250812``

View File

@@ -1,5 +1,5 @@
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the
ROCm PyTorch Docker image.
:keywords: model, MAD, automation, dashboarding, validate, pytorch
@@ -15,8 +15,8 @@ PyTorch inference performance testing
{% set model_groups = data.pytorch_inference_benchmark.model_groups %}
The `ROCm PyTorch Docker <https://hub.docker.com/r/rocm/pytorch/tags>`_ image offers a prebuilt,
optimized environment for testing model inference performance on AMD Instinct™ MI300X series
accelerators. This guide demonstrates how to use the AMD Model Automation and Dashboarding (MAD)
optimized environment for testing model inference performance on AMD Instinct™ MI300X Series
GPUs. This guide demonstrates how to use the AMD Model Automation and Dashboarding (MAD)
tool with the ROCm PyTorch container to test inference performance on various models efficiently.
.. _pytorch-inference-benchmark-available-models:
@@ -175,7 +175,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`../../inference-optimization/workload`.

View File

@@ -0,0 +1,257 @@
.. meta::
:description: SGLang multi-node disaggregated distributed inference using Mooncake
:keywords: model, sglang, mooncake, disagg, disaggregated, distributed, multi-node, docker
******************************************
SGLang distributed inference with Mooncake
******************************************
As LLM inference increasingly demands handling massive models and dynamic workloads, efficient
distributed inference becomes essential. Traditional co-located architectures face bottlenecks due
to tightly coupled memory and compute resources, which limits scalability and flexibility.
Disaggregated inference refers to the process of splitting the inference of LLMs into distinct
phases. This architecture, facilitated by libraries like Mooncake, uses high-bandwidth
RDMA to transfer the Key-Value (KV) cache between prefill and decode nodes.
This allows for independent resource scaling and optimization, resulting in
improved efficiency and throughput.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/sglang-distributed-benchmark-models.yaml
{% set docker = data.dockers[0] %}
`SGLang <https://docs.sglang.ai>`__ is a high-performance inference and
serving engine for large language models (LLMs) and vision models. The
ROCm-enabled `SGLang base Docker image <{{ docker.docker_hub_url }}>`__
bundles SGLang with PyTorch, which is optimized for AMD Instinct MI300X Series
GPUs. It includes the following software components:
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
The following guides on setting up and running SGLang and Mooncake for disaggregated
distributed inference on a Slurm cluster using AMD Instinct MI300X Series GPUs backed by
Mellanox CX-7 NICs.
Prerequisites
=============
Before starting, ensure you have:
* A Slurm cluster with at least three nodes: one for the proxy, one for prefill (``xP``), and one for decode (``yD``).
``Nodes -> xP + yD + 1``
* A Dockerized environment with SGLang, Mooncake, etcd, and NIC drivers built in. See :ref:`sglang-disagg-inf-build-docker-image` for instructions.
* A shared filesystem for storing models, scripts, and logs (cluster-specific).
Supported models
================
The following models are supported for SGLang disaggregated prefill/decode
inference. Some instructions, commands, and recommendations in this
documentation might vary by selected model.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/sglang-distributed-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model type</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-6 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.model_repo | lower }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.model_repo | lower }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.model_repo }}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`__ to learn more about this model.
Some models require access authorization prior to use through an external license agreement with a third party.
{% endfor %}
{% endfor %}
.. _sglang-disagg-inf-build-docker-image:
Build the Docker image
----------------------
Get the Dockerfile located in
`<https://github.com/ROCm/MAD/blob/develop/docker/sglang_disagg_inference.ubuntu.amd.Dockerfile>`__.
It uses `lmsysorg/sglang:v0.5.2rc1-rocm700-mi30x
<https://hub.docker.com/layers/lmsysorg/sglang/v0.4.9.post1-rocm630/images/sha256-2f6b1748e4bcc70717875a7da76c87795fd8aa46a9646e08d38aa7232fc78538>`__
as the base Docker image and installs the necessary components for Mooncake, etcd, and Mellanox network
drivers.
.. code-block:: shell
git clone https://github.com/ROCm/MAD.git
cd MAD/docker
docker build \
-t sglang_disagg_pd_image \
-f sglang_disagg_inference.ubuntu.amd.Dockerfile .
Benchmarking
============
The `<https://github.com/ROCm/MAD/tree/develop/scripts/sglang_disagg>`__
repository contains scripts to launch SGLang inference with prefill/decode
disaggregation via Mooncake for supported models.
* `scripts/sglang_dissag/run_xPyD_models.slurm <https://github.com/ROCm/MAD/blob/develop/scripts/sglang_disagg/run_xPyD_models.slurm>`__
-- the main Slurm batch script to launch Docker containers on all nodes using ``sbatch`` or ``salloc``.
* `scripts/sglang_dissag/sglang_disagg_server.sh <https://github.com/ROCm/MAD/blob/develop/scripts/sglang_disagg/sglang_disagg_server.sh>`__
-- the entrypoint script that runs inside each container to start the correct service -- proxy, prefill, or decode.
* `scripts/sglang_dissag/benchmark_xPyD.sh <https://github.com/ROCm/MAD/blob/develop/scripts/sglang_disagg/benchmark_xPyD.sh>`__
-- the benchmark script to run the GSM8K accuracy benchmark and the SGLang benchmarking tool for performance measurement.
* `scripts/sglang_dissag/benchmark_parser.py <https://github.com/ROCm/MAD/blob/develop/scripts/sglang_disagg/benchmark_parser.py>`__
-- the log parser script to be run on the concurrency benchmark log file to generate tabulated data.
Launch the service
------------------
The service is deployed using a Slurm batch script that orchestrates the containers across the
allocated nodes.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/sglang-distributed-benchmark-models.yaml
{% set model_groups = data.model_groups %}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.model_repo }}
.. code-block:: shell
# Clone the MAD repo if you haven't already and
# navigate to the scripts directory
git clone https://github.com/ROCm/MAD.git
cd MAD/scripts/sglang_disagg/
# Slurm sbatch run command
export DOCKER_IMAGE_NAME=sglang_disagg_pd_image
export xP=<num_prefill_nodes>
export yD=<num_decode_nodes>
export MODEL_NAME={{ model.model_repo }}
# num_nodes = xP + yD + 1
sbatch -N <num_nodes> -n <num_nodes> --nodelist=<Nodes> run_xPyD_models.slurm
{% endfor %}
{% endfor %}
Post-run logs and testing
-------------------------
Logs are stored in your shared filesystem in the directory specified by the ``LOG_PATH`` variable in the Slurm script.
A new directory named after the Slurm job ID is created for each run.
Inside that directory, you can access various logs:
* ``pd_sglang_bench_serving.sh_NODE<...>.log`` -- the main log for each server node.
* ``etcd_NODE<...>.log`` -- logs for etcd services.
* ``prefill_NODE<...>.log`` -- logs for the prefill services.
* ``decode_NODE<...>.log`` -- logs for the decode services.
Use the benchmark parser script for concurrency logs to tabulate different data.
.. code-block:: shell
python3 benchmark_parser.py <log_path/benchmark_XXX_CONCURRENCY.log>
To verify the service is responsive, you can try sending a ``curl`` request to test the launched
server from the Docker container on the proxy node. For example:
.. code-block:: shell
curl -X POST http://127.0.0.1:30000/generate \
-H "Content-Type: application/json" \
-d '{ "text": "Let me tell you a story ", "sampling_params": { "temperature": 0.3 } }'
Known issues
============
When running larger models, such as DeepSeek-V3 and Llama-3.1-405B-Instruct-FP8-KV, at
higher concurrency levels (512+), the following error might occur:
.. code-block:: shell-session
<TransferEncodingError: 400, message:
Not enough data to satisfy transfer length header.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
...
This leads to dropping requests and lower throughput.
Further reading
===============
- To learn about Mooncake, see `Welcome to Mooncake <https://kvcache-ai.github.io/Mooncake/>`__.
- To learn more about the options for latency and throughput benchmark scripts,
see `<https://github.com/sgl-project/sglang/tree/main/benchmark/blog_v0_2>`__.
- See the base upstream Docker image on `Docker Hub <https://hub.docker.com/layers/lmsysorg/sglang/v0.5.2rc1-rocm700-mi30x/images/sha256-10c4ee502ddba44dd8c13325e6e03868bfe7f43d23d0a44780a8ee8b393f4729>`__.
- To learn more about system settings and management practices to configure your system for
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.
- To learn how to run community models from Hugging Face on AMD GPUs, see
:doc:`Running models from Hugging Face </how-to/rocm-for-ai/inference/hugging-face-models>`.
- To learn how to fine-tune LLMs and optimize inference, see
:doc:`Fine-tuning LLMs and inference optimization </how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference>`.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`previous-versions/sglang-history` to find documentation for previous releases
of SGLang inference performance testing.

View File

@@ -1,5 +1,5 @@
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and SGLang
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and SGLang
:keywords: model, MAD, automation, dashboarding, validate
*****************************************************************
@@ -15,8 +15,8 @@ SGLang inference performance testing DeepSeek-R1-Distill-Qwen-32B
`SGLang <https://docs.sglang.ai>`__ is a high-performance inference and
serving engine for large language models (LLMs) and vision models. The
ROCm-enabled `SGLang Docker image <{{ docker.docker_hub_url }}>`__
bundles SGLang with PyTorch, optimized for AMD Instinct MI300X series
accelerators. It includes the following software components:
bundles SGLang with PyTorch, optimized for AMD Instinct MI300X Series
GPUs. It includes the following software components:
.. list-table::
:header-rows: 1
@@ -255,7 +255,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__.
MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`__.
- For application performance optimization strategies for HPC and AI workloads,
including inference with vLLM, see :doc:`/how-to/rocm-for-ai/inference-optimization/workload`.

View File

@@ -1,50 +1,68 @@
.. meta::
:description: Learn how to validate LLM inference performance on MI300X accelerators using AMD MAD and the ROCm vLLM Docker image.
:description: Learn how to validate LLM inference performance on MI300X GPUs using AMD MAD and the ROCm vLLM Docker image.
:keywords: model, MAD, automation, dashboarding, validate
**********************************
vLLM inference performance testing
**********************************
.. _vllm-benchmark-unified-docker-909:
.. _vllm-benchmark-unified-docker-930:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set docker = data.dockers[0] %}
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers
a prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI300X series accelerators. This ROCm vLLM
Docker image integrates vLLM and PyTorch tailored specifically for MI300X series
accelerators and includes the following components:
The `ROCm vLLM Docker <{{ docker.docker_hub_url }}>`_ image offers a
prebuilt, optimized environment for validating large language model (LLM)
inference performance on AMD Instinct™ MI355X, MI350X, MI325X and MI300X
GPUs. This ROCm vLLM Docker image integrates vLLM and PyTorch tailored
specifically for AMD data center GPUs and includes the following components:
.. list-table::
:header-rows: 1
.. tab-set::
* - Software component
- Version
.. tab-item:: {{ docker.pull_tag }}
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
With this Docker image, you can quickly test the :ref:`expected
inference performance numbers <vllm-benchmark-performance-measurements-909>` for
MI300X series accelerators.
inference performance numbers <vllm-benchmark-performance-measurements-930>` for
AMD Instinct GPUs.
What's new
==========
The following is summary of notable changes since the :doc:`previous ROCm/vLLM Docker release <previous-versions/vllm-history>`.
* Upgraded to vLLM v0.10.1.
* Added support for AMD Instinct MI355X and MI350X GPUs.
* Set ``VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1`` by default for better performance.
* Added support and benchmarking instructions for the following models. See :ref:`vllm-benchmark-supported-models-930`.
* Set ``VLLM_ROCM_USE_AITER_RMSNORM=0`` by default to avoid various issues with torch compile.
* Llama 4 Scout and Maverick
.. _vllm-benchmark-supported-models-909:
* DeepSeek R1 0528 FP8
* MXFP4 models (MI355X and MI350X only): Llama 3.3 70B MXFP4 and Llama 3.1 405B MXFP4
* GPT OSS 20B and 120B
* Qwen 3 32B, 30B-A3B, and 235B-A22B
* Removed the deprecated ``--max-seq-len-to-capture`` flag.
* ``--gpu-memory-utilization`` is now configurable via the `configuration files
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__ in the MAD
repository.
.. _vllm-benchmark-supported-models-930:
Supported models
================
@@ -54,11 +72,12 @@ Supported models
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
.. _vllm-benchmark-available-models-909:
.. _vllm-benchmark-available-models-930:
The following models are supported for inference performance benchmarking
with vLLM and ROCm. Some instructions, commands, and recommendations in this
documentation might vary by model -- select one to get started.
documentation might vary by model -- select one to get started. MXFP4 models
are only supported on MI355X and MI350X GPUs.
.. raw:: html
@@ -67,7 +86,7 @@ Supported models
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-3 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
<div class="col-4 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
@@ -89,25 +108,35 @@ Supported models
</div>
</div>
.. _vllm-benchmark-vllm-909:
.. _vllm-benchmark-vllm-930:
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
{% if model.precision == "float4" %}
.. important::
MXFP4 is supported only on MI355X and MI350X GPUs.
{% endif %}
.. note::
See the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_ to learn more about your selected model.
Some models require access authorization prior to use via an external license agreement through a third party.
{% if model.precision == "float8" and model.model_repo.startswith("amd") %}
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD accelerators.
This model uses FP8 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% if model.precision == "float4" and model.model_repo.startswith("amd") %}
This model uses FP4 quantization via `AMD Quark <https://quark.docs.amd.com/latest/>`__ for efficient inference on AMD GPUs.
{% endif %}
{% endfor %}
{% endfor %}
.. _vllm-benchmark-performance-measurements-909:
.. _vllm-benchmark-performance-measurements-930:
Performance measurements
========================
@@ -121,7 +150,7 @@ page provides reference throughput and serving measurements for inferencing popu
The performance data presented in
`Performance results with AMD ROCm software <https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html>`_
only reflects the latest version of this inference benchmarking environment.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct MI325X and MI300X accelerators or ROCm software.
The listed measurements should not be interpreted as the peak performance achievable by AMD Instinct GPUs or ROCm software.
System validation
=================
@@ -138,13 +167,12 @@ To test for optimal performance, consult the recommended :ref:`System health ben
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
Pull the Docker image
=====================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Pull the Docker image
=====================
Download the `ROCm vLLM Docker image <{{ docker.docker_hub_url }}>`_.
Use the following command to pull the Docker image from Docker Hub.
@@ -153,13 +181,18 @@ system's configuration.
docker pull {{ docker.pull_tag }}
Benchmarking
============
Benchmarking
============
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
{% set docker = data.dockers[0] %}
{% set model_groups = data.model_groups %}
Once the setup is complete, choose between two options to reproduce the
benchmark results:
.. _vllm-benchmark-mad-909:
.. _vllm-benchmark-mad-930:
{% for model_group in model_groups %}
{% for model in model_group.models %}
@@ -171,7 +204,7 @@ system's configuration.
.. tab-item:: MAD-integrated benchmarking
The following run command is tailored to {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-909` to switch to another available model.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
directory and install the required packages on the host machine.
@@ -182,8 +215,9 @@ system's configuration.
cd MAD
pip install -r requirements.txt
2. Use this command to run the performance benchmark test on the `{{model.model}} <{{ model.url }}>`_ model
using one GPU with the :literal:`{{model.precision}}` data type on the host machine.
2. On the host machine, use this command to run the performance benchmark test on
the `{{model.model}} <{{ model.url }}>`_ model using one node with the
:literal:`{{model.precision}}` data type.
.. code-block:: shell
@@ -191,8 +225,7 @@ system's configuration.
madengine run \
--tags {{model.mad_tag}} \
--keep-model-dir \
--live-output \
--timeout 28800
--live-output
MAD launches a Docker container with the name
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
@@ -200,7 +233,7 @@ system's configuration.
and ``{{ model.mad_tag }}_serving.csv``.
Although the :ref:`available models
<vllm-benchmark-available-models-909>` are preconfigured to collect
<vllm-benchmark-available-models-930>` are preconfigured to collect
offline throughput and online serving performance data, you can
also change the benchmarking parameters. See the standalone
benchmarking tab for more information.
@@ -225,12 +258,12 @@ system's configuration.
.. tab-item:: Standalone benchmarking
The following commands are optimized for {{ model.model }}.
See :ref:`vllm-benchmark-supported-models-909` to switch to another available model.
See :ref:`vllm-benchmark-supported-models-930` to switch to another available model.
.. seealso::
For more information on configuration, see the `config files
<https://github.com/ROCm/MAD-private/tree/develop/scripts/vllm/configs>`__
<https://github.com/ROCm/MAD/tree/develop/scripts/vllm/configs>`__
in the MAD repository. Refer to the `vLLM engine <https://docs.vllm.ai/en/latest/configuration/engine_args.html#engineargs>`__
for descriptions of available configuration options
and `Benchmarking vLLM <https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md>`__ for
@@ -266,13 +299,12 @@ system's configuration.
model={{ model.model_repo }}
tp={{ model.config.tp }}
num_prompts=1024
in=128
out=128
dtype={{ model.config.dtype }}
num_prompts={{ model.config.num_prompts | default(1024) }}
in={{ model.config.in | default(128) }}
out={{ model.config.in | default(128) }}
dtype={{ model.config.dtype | default("auto") }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=1024
max_seq_len_to_capture={{ model.config.max_seq_len_to_capture }}
max_num_seqs={{ model.config.max_num_seqs | default(1024) }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
@@ -284,12 +316,11 @@ system's configuration.
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-seq-len-to-capture $max_seq_len_to_capture \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--trust-remote-code \
--output-json ${model}_throughput.json \
--gpu-memory-utilization 0.9
--gpu-memory-utilization {{ model.config.gpu_memory_utilization | default(0.9) }}
.. rubric:: Serving command
@@ -302,7 +333,6 @@ system's configuration.
dtype={{ model.config.dtype }}
kv_cache_dtype={{ model.config.kv_cache_dtype }}
max_num_seqs=256
max_seq_len_to_capture={{ model.config.max_seq_len_to_capture }}
max_num_batched_tokens={{ model.config.max_num_batched_tokens }}
max_model_len={{ model.config.max_model_len }}
@@ -311,7 +341,6 @@ system's configuration.
--dtype $dtype \
--kv-cache-dtype $kv_cache_dtype \
--max-num-seqs $max_num_seqs \
--max-seq-len-to-capture $max_seq_len_to_capture \
--max-num-batched-tokens $max_num_batched_tokens \
--max-model-len $max_model_len \
--no-enable-prefix-caching \
@@ -352,6 +381,9 @@ system's configuration.
.. note::
For improved performance with certain Mixture of Experts models, such as Mixtral 8x22B,
try adding ``export VLLM_ROCM_USE_AITER=1`` to your commands.
If you encounter the following error, pass your access-authorized Hugging
Face token to the gated models.
@@ -390,26 +422,31 @@ see the developer's guide at `<https://github.com/ROCm/vllm/blob/documentation/d
Reproducing the Docker image
----------------------------
To reproduce this ROCm/vLLM Docker image release, follow these steps:
To reproduce this ROCm-enabled vLLM Docker image release, follow these steps:
1. Clone the `vLLM repository <https://github.com/ROCm/vllm>`__.
.. code-block:: shell
git clone https://github.com/ROCm/vllm.git
2. Checkout the specific release commit.
1. Clone the `vLLM repository <https://github.com/vllm-project/vllm>`__.
.. code-block:: shell
git clone https://github.com/vllm-project/vllm.git
cd vllm
git checkout 6663000a391911eba96d7864a26ac42b07f6ef29
3. Build the Docker image. Replace ``vllm-rocm`` with your desired image tag.
2. Use the following command to build the image directly from the specified commit.
.. code-block:: shell
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/vllm-benchmark-models.yaml
docker build -f docker/Dockerfile.rocm -t vllm-rocm .
{% set docker = data.dockers[0] %}
.. code-block:: shell
docker build -f docker/Dockerfile.rocm \
--build-arg REMOTE_VLLM=1 \
--build-arg VLLM_REPO=https://github.com/ROCm/vllm \
--build-arg VLLM_BRANCH="{{ docker.dockerfile.commit }}" \
-t vllm-rocm .
.. tip::
Replace ``vllm-rocm`` with your desired image tag.
Further reading
===============
@@ -420,7 +457,7 @@ Further reading
- To learn more about MAD and the ``madengine`` CLI, see the `MAD usage guide <https://github.com/ROCm/MAD?tab=readme-ov-file#usage-guide>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X series accelerators, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- See :ref:`fine-tuning-llms-vllm` and :ref:`mi300x-vllm-optimization` for
a brief introduction to vLLM and optimization strategies.

View File

@@ -44,9 +44,9 @@ Validating vLLM performance
---------------------------
ROCm provides a prebuilt optimized Docker image for validating the performance of LLM inference with vLLM
on the MI300X accelerator. The Docker image includes ROCm, vLLM, PyTorch, and tuning files in the CSV
on the MI300X GPU. The Docker image includes ROCm, vLLM, PyTorch, and tuning files in the CSV
format. For more information, see the guide to
`LLM inference performance testing with vLLM on the AMD Instinct™ MI300X accelerator <https://github.com/ROCm/MAD/blob/develop/benchmark/vllm/README.md>`_
`LLM inference performance testing with vLLM on the AMD Instinct™ MI300X GPU <https://github.com/ROCm/MAD/blob/develop/benchmark/vllm/README.md>`_
on the ROCm GitHub repository.
.. _rocm-for-ai-serve-hugging-face-tgi:
@@ -61,7 +61,7 @@ The `Hugging Face Text Generation Inference <https://huggingface.co/docs/text-ge
TGI installation
----------------
The easiest way to use Hugging Face TGI with ROCm on AMD Instinct accelerators is to use the official Docker image at
The easiest way to use Hugging Face TGI with ROCm on AMD Instinct GPUs is to use the official Docker image at
`<https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference>`__.
TGI walkthrough

View File

@@ -10,7 +10,7 @@ Running models from Hugging Face
transformer models. Hugging Face models and tools significantly enhance productivity, performance, and accessibility in
developing and deploying AI solutions.
This section describes how to run popular community transformer models from Hugging Face on AMD accelerators and GPUs.
This section describes how to run popular community transformer models from Hugging Face on AMD GPUs.
.. _rocm-for-ai-hugging-face-transformers:
@@ -62,11 +62,11 @@ Using Hugging Face with Optimum-AMD
Optimum-AMD is the interface between Hugging Face libraries and the ROCm software stack.
For a deeper dive into using Hugging Face libraries on AMD accelerators and GPUs, refer to the
For a deeper dive into using Hugging Face libraries on AMD GPUs, refer to the
`Optimum-AMD <https://huggingface.co/docs/optimum/main/en/amd/amdgpu/overview>`_ page on Hugging Face for guidance on
using Flash Attention 2, GPTQ quantization and the ONNX Runtime integration.
Hugging Face libraries natively support AMD Instinct accelerators. For other
Hugging Face libraries natively support AMD Instinct GPUs. For other
:doc:`ROCm-capable hardware <rocm-install-on-linux:reference/system-requirements>`, support is currently not
validated, but most features are expected to work without issues.
@@ -139,7 +139,7 @@ To enable `GPTQ <https://arxiv.org/abs/2210.17323>`_, hosted wheels are availabl
pip install auto-gptq --no-build-isolation --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm573/
Or, to install from source for AMD accelerators supporting ROCm, specify the ``ROCM_VERSION`` environment variable.
Or, to install from source for AMD GPUs supporting ROCm, specify the ``ROCM_VERSION`` environment variable.
.. code-block:: shell

View File

@@ -9,7 +9,7 @@ AI inference is a process of deploying a trained machine learning model to make
Understanding the ROCm™ software platforms architecture and capabilities is vital for running AI inference. By leveraging the ROCm platform's capabilities, you can harness the power of high-performance computing and efficient resource management to run inference workloads, leading to faster predictions and classifications on real-time data.
Throughout the following topics, this section provides a comprehensive guide to setting up and deploying AI inference on AMD GPUs. This includes instructions on how to install ROCm, how to use Hugging Face Transformers to manage pre-trained models for natural language processing (NLP) tasks, how to validate vLLM on AMD Instinct™ MI300X accelerators and illustrate how to deploy trained models in production environments.
Throughout the following topics, this section provides a comprehensive guide to setting up and deploying AI inference on AMD GPUs. This includes instructions on how to install ROCm, how to use Hugging Face Transformers to manage pre-trained models for natural language processing (NLP) tasks, how to validate vLLM on AMD Instinct™ MI300X GPUs and illustrate how to deploy trained models in production environments.
The AI Developer Hub contains `AMD ROCm tutorials <https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/>`_ for
training, fine-tuning, and inference. It leverages popular machine learning frameworks on AMD GPUs.

View File

@@ -60,7 +60,7 @@ Installing vLLM
vllm-rocm \
bash
3. Inside the container, start the API server to run on a single accelerator on port 8000 using the following command.
3. Inside the container, start the API server to run on a single GPU on port 8000 using the following command.
.. code-block:: shell
@@ -113,7 +113,7 @@ Installing vLLM
python -m vllm.entrypoints.api_server --model /app/model --dtype float16 -tp 2 --port 8000 &
4. To run multiple instances of API Servers, specify different ports for each server, and use ``ROCR_VISIBLE_DEVICES`` to
isolate each instance to a different accelerator.
isolate each instance to a different GPU.
For example, to run two API servers, one on port 8000 using GPU 0 and 1, one on port 8001 using GPU 2 and 3, use a
a command like the following.
@@ -140,7 +140,7 @@ Installing vLLM
See :ref:`mi300x-vllm-optimization` for performance optimization tips.
ROCm provides a prebuilt optimized Docker image for validating the performance of LLM inference with vLLM
on the MI300X accelerator. The Docker image includes ROCm, vLLM, and PyTorch.
on the MI300X GPU. The Docker image includes ROCm, vLLM, and PyTorch.
For more information, see :doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _fine-tuning-llms-tgi:
@@ -178,7 +178,7 @@ Install TGI
.. tab-item:: TGI on a single-accelerator system
:sync: single
2. Inside the container, launch a model using TGI server on a single accelerator.
2. Inside the container, launch a model using TGI server on a single GPU.
.. code-block:: shell
@@ -199,7 +199,7 @@ Install TGI
.. tab-item:: TGI on a multi-accelerator system
2. Inside the container, launch a model using TGI server on multiple accelerators (4 in this case).
2. Inside the container, launch a model using TGI server on multiple GPUs (four in this case).
.. code-block:: shell

View File

@@ -47,7 +47,7 @@ Deep learning frameworks
========================
ROCm supports deep learning frameworks and libraries including `PyTorch
<https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package>`_, `TensorFlow
<https://pytorch.org>`_, `TensorFlow
<https://tensorflow.org>`_, `JAX <https://jax.readthedocs.io/en/latest>`_, and more.
Review the :doc:`framework installation documentation <../deep-learning-rocm>`. For ease-of-use, it's recommended to use official ROCm prebuilt Docker
@@ -57,4 +57,4 @@ Next steps
==========
After installing ROCm and your desired ML libraries -- and before running AI workloads -- conduct system health benchmarks
to test the optimal performance of your AMD hardware. See :doc:`system-health-check` to get started.
to test the optimal performance of your AMD hardware. See :doc:`system-setup/index` to get started.

View File

@@ -0,0 +1,40 @@
.. meta::
:description: System setup and validation steps for AI training and inference on ROCm
:keywords: AMD Instinct, ROCm, GPU, AI, training, inference, benchmarking, performance, validation
*************************************
System setup for AI workloads on ROCm
*************************************
Before you begin training or inference on AMD Instinct™ GPUs, complete
the following system setup and validation steps to ensure optimal performance.
Prerequisite system validation
==============================
First, confirm that your system meets all software and hardware prerequisites.
See :doc:`prerequisite-system-validation`.
Docker images for AMD Instinct GPUs
===================================
AMD provides prebuilt Docker images for AMD Instinct™ MI300X and MI325X
GPUs. These images include ROCm-enabled deep learning frameworks and
essential software components. They support single-node and multi-node configurations
and are ready for training and inference workloads out of the box.
Multi-node training
-------------------
For instructions on enabling multi-node training, see :doc:`multi-node-setup`.
System optimization and validation
==================================
Before running workloads, verify that the system is configured correctly and
operating at peak efficiency. Recommended steps include:
- Disabling NUMA auto-balancing
- Running system benchmarks to validate hardware performance
For details on running system health checks, see :doc:`system-health-check`.

View File

@@ -0,0 +1,320 @@
.. meta::
:description: Multi-node setup for AI training
:keywords: gpu, system, health, validation, bench, perf, performance, rvs, rccl, babel, mi300x, mi325x, flops, bandwidth, rbt, training
.. _rocm-for-ai-multi-node-setup:
*********************************
Multi-node setup for AI workloads
*********************************
AMD provides ready-to-use Docker images for AMD Instinct™ MI300X and MI325X
GPUs containing ROCm-capable deep learning frameworks and essential
software components. These Docker images can run and leverage multiple nodes if
they are available. This page describes how to enable the multi-node training
of AI workloads on AMD Instinct GPUs.
Prerequisites
=============
Before starting, ensure your environment meets the following requirements:
* Multi-node networking: your cluster should have a configured multi-node network. For setup
instructions, see the `Multi-node network configuration for AMD Instinct
GPUs
<https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/multi-node-config.html>`__
guide in the Instinct documentation.
* ROCm Docker container to simplify environment setup for AI workloads. See the following resources to get started:
* :doc:`Training a model with Megatron-LM and ROCm <../training/benchmark-docker/megatron-lm>`
* :doc:`Training a model with PyTorch and ROCm <../training/benchmark-docker/pytorch-training>`
* :doc:`Training a model with JAX MaxText and ROCm <../training/benchmark-docker/jax-maxtext>`
* Slurm workload manager to run the :ref:`provided examples <multi-node-setup-training-examples>`.
Install required packages
=========================
To run multi-node workloads, ensure you have all the required packages installed based on your
network device. For example, on Ubuntu systems:
.. code-block:: shell
apt install -y iproute2
apt install -y linux-headers-"$(uname -r)" libelf-dev
apt install -y gcc make libtool autoconf librdmacm-dev rdmacm-utils infiniband-diags ibverbs-utils perftest ethtool libibverbs-dev rdma-core strace libibmad5 libibnetdisc5 ibverbs-providers libibumad-dev libibumad3 libibverbs1 libnl-3-dev libnl-route-3-dev
Compile and install the RoCE library
------------------------------------
If you're using Broadcom NICs, you need to compile and install the RoCE (RDMA
over Converged Ethernet) library. See `RoCE cluster network configuration guide
for AMD Instinct GPUs
<https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/roce-network-config.html>`__
for more information.
See the `Ethernet networking guide for AMD
Instinct MI300X GPU clusters: Compiling Broadcom NIC software from source
<https://docs.broadcom.com/doc/957608-AN2XX#page=81>`_ for more details.
.. important::
It is crucial to install the exact same version of the RoCE library that
is installed on your host system. Also, ensure that the path to these
libraries on the host is correctly mounted into your Docker container.
Failure to do so can lead to compatibility issues and communication
failures.
1. Set ``BUILD_DIR`` to the path on the host system where the Broadcom drivers and ``bnxt_rocelib`` source are located.
Then, navigate to the ``bnxt_rocelib`` directory.
.. code-block:: shell
export BUILD_DIR=/path/to/your/broadcom_drivers_on_host
cd $BUILD_DIR/drivers_linux/bnxt_rocelib/
2. The ``bnxt_rocelib`` directory contains a version of ``libbnxt_re`` in a zipped ``.tar.gz`` file.
.. code-block:: shell
tar -xf libbnxt_re-a.b.c.d.tar.gz
cd libbnxt_re-a.b.c.d
3. Compile and install the RoCE library.
.. code-block:: shell
sh autogen.sh
./configure
make
find /usr/lib64/ /usr/lib -name "libbnxt_re-rdmav*.so" -exec mv {} {}.inbox \;
make install all
sh -c "echo /usr/local/lib >> /etc/ld.so.conf"
ldconfig
cp -f bnxt_re.driver /etc/libibverbs.d/
find . -name "*.so" -exec md5sum {} \;
BUILT_MD5SUM=$(find . -name "libbnxt_re-rdmav*.so" -exec md5sum {} \; | cut -d " " -f 1)
Environment setup
=================
Before running multi-node workloads, set these essential environment variables:
Master address
--------------
By default, ``localhost`` is used for single-node configurations. Change
``localhost`` to the master node's resolvable hostname or IP address:
.. code-block:: bash
export MASTER_ADDR="${MASTER_ADDR:-localhost}"
Number of nodes
---------------
Set the number of nodes you want to train on (for example, ``2``, ``4``, or ``8``):
.. code-block:: bash
export NNODES="${NNODES:-<num_nodes>}"
Node ranks
----------
Set the rank of each node (``0`` for master, ``1`` for the first worker node, and so on).
Node ranks should be unique across all nodes in the cluster.
.. code-block:: bash
export NODE_RANK="${NODE_RANK:-<node_rank>}"
Network interface
-----------------
Update the network interface in the script to match your system's network interface. To
find your network interface, run the following (outside of any Docker container):
.. code-block:: bash
ip a
Look for an active interface (status "UP") with an IP address in the same subnet as
your other nodes. Then, update the following variable in the script, for
example:
.. code-block:: bash
export NCCL_SOCKET_IFNAME=ens50f0np0
This variable specifies which network interface to use for inter-node communication.
Setting this variable to the incorrect interface can result in communication failures
or significantly reduced performance.
.. tip::
This command sets ``NCCL_SOCKET_IFNAME``'s value to the last RDMA interface.
.. code-block:: bash
export NCCL_SOCKET_IFNAME=$(rdma link show | awk '{print $NF}' | sort | tail -n1)
RDMA/IB interface
-----------------
Set the RDMA interfaces to be used for communication. NICs can come from different vendors and the names of the RDMA interface can be different. To get the list of all the RDMA/IB devices, run:
.. code-block:: bash
ibv_devices
The command below gets the list of all RDMA/IB devices and puts them in a
comma-separated format. If
(``rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7``) are your RDMA
interfaces, then set:
.. code-block:: bash
# If using Broadcom NIC
export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
# If using Mellanox NIC
# export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9
.. tip::
Alternatively, if you want to choose the RDMA interface automatically, you
can use the following. This command will sort the RDMA interfaces and then
select the first eight RDMA interfaces.
.. code-block:: bash
export NCCL_IB_HCA=$(ibv_devices | awk 'NR>2 {print $1}' | sort | head -n 8 | paste -sd,)
Global ID index
---------------
Update the global ID index if you're using RoCE.
.. code-block:: bash
export NCCL_IB_GID_INDEX=3
.. _multi-node-setup-training-examples:
Multi-node training examples
============================
The following examples use the Slurm workload manager to launch jobs on
multiple nodes. To run these scripts as-is, you must have a Slurm environment
configured. The scripts are designed to work with both Broadcom Thor 2 and
Mellanox NICs by automatically installing the required libraries and setting
the necessary environment variables. For systems with Broadcom NICs, the
scripts assume the host's RoCE library is located in the ``/opt`` directory.
The following benchmarking examples demonstrate the training of a Llama 3 8B model
across multiple 8-GPU nodes, using FSDP for intra-node parallelism and DP for
inter-node parallelism.
.. _rocm-for-ai-multi-node-setup-jax-train-example:
JAX MaxText
-----------
1. Download the desired multi-node benchmarking script from `<https://github.com/ROCm/MAD/tree/develop/scripts/jax-maxtext/gpu-rocm>`__.
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/MAD/refs/heads/develop/scripts/jax-maxtext/gpu-rocm/llama3_8b_multinode.sh
Or clone the `<https://github.com/ROCm/MAD>`__ repository.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd scripts/jax-maxtext/gpu-rocm
2. Run the benchmark for multi-node training.
.. code-block:: shell
sbatch -N <num_nodes> llama3_8b_multinode.sh
.. _rocm-for-ai-multi-node-setup-pyt-train-example:
PyTorch training
----------------
.. note::
The ROCm PyTorch Training Docker image now focuses on :doc:`Training a model
with Primus and PyTorch <../training/benchmark-docker/primus-pytorch>`. The
following example refers to the legacy workflow :ref:`Training a
model with PyTorch <amd-pytorch-training-multinode-examples>`.
1. Download the ``run_multinode_train.sh`` benchmarking script from `<https://github.com/ROCm/MAD/tree/develop/scripts/pytorch_train>`__.
.. code-block:: shell
wget https://raw.githubusercontent.com/ROCm/MAD/refs/heads/develop/scripts/pytorch_train/run_multinode_train.sh
Or clone the `<https://github.com/ROCm/MAD>`__ repository.
.. code-block:: shell
git clone https://github.com/ROCm/MAD
cd scripts/pytorch_train
2. Run the benchmark for multi-node training.
.. code-block:: shell
sbatch -N <num_nodes> run_multinode_train.sh
.. seealso::
See :ref:`Training a model with PyTorch <amd-pytorch-multinode-examples>` for more examples and information.
Megatron-LM
-----------
.. note::
The Megatron-LM Docker image now focuses on :ref:`Training a model with
Primus and Megatron <amd-primus-megatron-multi-node-examples>`. The
following example refers to the legacy Megatron-LM :ref:`Training a model
with Megatron-LM <amd-megatron-lm-multi-node-examples>` and might have
limited support.
1. Download the ``train_llama_slurm.sh`` benchmarking script from
`<https://github.com/ROCm/Megatron-LM/blob/rocm_dev/examples/llama/train_llama_slurm.sh>`__.
2. Set the network interface parameters as per the above guidelines and run the script.
.. code-block:: shell
cd </path/to/your/Megatron-LM>
export NETWORK_INTERFACE=$NCCL_SOCKET_IFNAME
export NCCL_IB_HCA=$NCCL_IB_HCA
export IMAGE=docker.io/rocm/megatron-lm:latest OR your preferred image
export DATA_CACHE_PATH=/nfs/mounted/repo
sbatch N <num_nodes> examples/llama/train_llama_slurm.sh <MODEL_SIZE> <MBS> <GBS> <SEQ_LENGTH> <FSDP> <RECOMPUTE>
2. For example, to run a Llama 3 8B workload in BF16 precision, use the following command.
.. code-block:: shell
MODEL_NAME=llama3 sbatch N 8 examples/llama/train_llama_slurm.sh 8 2 128 8192 0 0
# Other parameters, such as TP, FP8 datatype, can be adjusted in the script.
Further reading
===============
* `Multi-node network configuration for AMD Instinct GPUs <https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/multi-node-config.html>`__
* `Ethernet networking guide for AMD Instinct MI300X GPU clusters: Compiling Broadcom NIC software from source <https://docs.broadcom.com/doc/957608-AN2XX#page=81>`__

Some files were not shown because too many files have changed in this diff Show More