mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-11 14:58:11 -05:00
Compare commits
135 Commits
20231011.9
...
debug
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4529fd0461 | ||
|
|
4c2bb4b7b4 | ||
|
|
d5013fd13e | ||
|
|
26f80ccbbb | ||
|
|
d2c3752dc7 | ||
|
|
4505c4549f | ||
|
|
793495c9c6 | ||
|
|
13e1d8d98a | ||
|
|
2074df40ad | ||
|
|
7b30582408 | ||
|
|
151195ab74 | ||
|
|
8146f0bd2f | ||
|
|
68e9281778 | ||
|
|
fd07cae991 | ||
|
|
6cb86a843e | ||
|
|
7db1612a5c | ||
|
|
81d6e059ac | ||
|
|
e003d0abe8 | ||
|
|
cf2513e7b1 | ||
|
|
60d8591e95 | ||
|
|
ff91982168 | ||
|
|
a6a9e524c1 | ||
|
|
732df2e263 | ||
|
|
1ee16bd256 | ||
|
|
752d775fbd | ||
|
|
4d1a6a204d | ||
|
|
0eff62a468 | ||
|
|
5a5de545c9 | ||
|
|
58f194a450 | ||
|
|
c5cf005292 | ||
|
|
12094ec49c | ||
|
|
100e5b8244 | ||
|
|
6bf51f1f1d | ||
|
|
05b498267e | ||
|
|
fa95ed30d1 | ||
|
|
788cc9157c | ||
|
|
ebfcfec338 | ||
|
|
f692a012e1 | ||
|
|
3cc643b2de | ||
|
|
bf70e80d20 | ||
|
|
7159698496 | ||
|
|
7e12d1782a | ||
|
|
bb5f133e1c | ||
|
|
3af0c6c658 | ||
|
|
3322b7264f | ||
|
|
eeb7bdd143 | ||
|
|
2d6f48821d | ||
|
|
c74b55f24e | ||
|
|
1a723645fb | ||
|
|
dfdd3b1f78 | ||
|
|
6384780d16 | ||
|
|
db0c53ae59 | ||
|
|
ce9ce3a7c8 | ||
|
|
d72da3801f | ||
|
|
9c50edc664 | ||
|
|
a1b7110550 | ||
|
|
ff15fd74f6 | ||
|
|
552b2c3ee3 | ||
|
|
795fc33001 | ||
|
|
2910841fe6 | ||
|
|
396a054856 | ||
|
|
5c66948d4f | ||
|
|
ed3dda94c0 | ||
|
|
d31d28b082 | ||
|
|
78c607e1d3 | ||
|
|
666e601dd9 | ||
|
|
ca58908e5b | ||
|
|
1f5b39f56e | ||
|
|
2da31c4109 | ||
|
|
da50a16242 | ||
|
|
ce38d49f05 | ||
|
|
2f780f0d38 | ||
|
|
d051c3a4a7 | ||
|
|
1b11c82c9d | ||
|
|
80a33d427f | ||
|
|
4125a26294 | ||
|
|
905d0103ff | ||
|
|
192b3b2c61 | ||
|
|
8f9adc4a2a | ||
|
|
70817bb50a | ||
|
|
dd37c26d36 | ||
|
|
a708879c6c | ||
|
|
bb1b49eb6f | ||
|
|
f6d41affd9 | ||
|
|
c2163488d8 | ||
|
|
54bff4611d | ||
|
|
11510d5111 | ||
|
|
32cab73a29 | ||
|
|
392bade0bf | ||
|
|
91df5f0613 | ||
|
|
df20cf9c8a | ||
|
|
c4a908c3ea | ||
|
|
6285430d8a | ||
|
|
51afe19e20 | ||
|
|
31005bcf73 | ||
|
|
f41ad87ef6 | ||
|
|
d811524a00 | ||
|
|
51e1bd1c5d | ||
|
|
db89b1bdc1 | ||
|
|
2754e2e257 | ||
|
|
ab0e870c43 | ||
|
|
fb30e8c226 | ||
|
|
a07d542400 | ||
|
|
ad55cb696f | ||
|
|
488a172292 | ||
|
|
500c4f2306 | ||
|
|
92b694db4d | ||
|
|
322874f7f9 | ||
|
|
5001db3415 | ||
|
|
71846344a2 | ||
|
|
72e27c96fc | ||
|
|
7963abb8ec | ||
|
|
98244232dd | ||
|
|
679a452139 | ||
|
|
72c0a8abc8 | ||
|
|
ea920f2955 | ||
|
|
486202377a | ||
|
|
0c38c33d0a | ||
|
|
841773fa32 | ||
|
|
0361db46f9 | ||
|
|
a012433ffd | ||
|
|
5061193da3 | ||
|
|
bff48924be | ||
|
|
825b36cbdd | ||
|
|
134441957d | ||
|
|
7cd14fdc47 | ||
|
|
e6cb5cef57 | ||
|
|
66abee8e5b | ||
|
|
4797bb89f5 | ||
|
|
205e57683a | ||
|
|
2866d665ee | ||
|
|
71d25ec5d8 | ||
|
|
202ffff67b | ||
|
|
0b77059628 | ||
|
|
a208302bb9 |
84
.github/workflows/nightly.yml
vendored
84
.github/workflows/nightly.yml
vendored
@@ -50,10 +50,11 @@ jobs:
|
||||
shell: powershell
|
||||
run: |
|
||||
./setup_venv.ps1
|
||||
$env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
|
||||
pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html
|
||||
python process_skipfiles.py
|
||||
pyinstaller .\apps\stable_diffusion\shark_sd.spec
|
||||
$env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
|
||||
pip install -e .
|
||||
pip freeze -l
|
||||
pyinstaller .\apps\shark_studio\shark_studio.spec
|
||||
mv ./dist/nodai_shark_studio.exe ./dist/nodai_shark_studio_${{ env.package_version_ }}.exe
|
||||
signtool sign /f c:\g\shark_02152023.cer /fd certHash /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/nodai_shark_studio_${{ env.package_version_ }}.exe
|
||||
|
||||
@@ -74,80 +75,3 @@ jobs:
|
||||
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
with:
|
||||
release_id: ${{ steps.create_release.outputs.id }}
|
||||
|
||||
linux-build:
|
||||
|
||||
runs-on: a100
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.11"]
|
||||
backend: [IREE, SHARK]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v3
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Setup pip cache
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pip-
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install flake8 pytest toml
|
||||
if [ -f requirements.txt ]; then pip install -r requirements.txt -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html; fi
|
||||
- name: Lint with flake8
|
||||
run: |
|
||||
# stop the build if there are Python syntax errors or undefined names
|
||||
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --exclude shark.venv,lit.cfg.py
|
||||
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
||||
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude shark.venv,lit.cfg.py
|
||||
- name: Build and validate the IREE package
|
||||
if: ${{ matrix.backend == 'IREE' }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
USE_IREE=1 VENV_DIR=iree.venv ./setup_venv.sh
|
||||
source iree.venv/bin/activate
|
||||
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
|
||||
SHARK_PACKAGE_VERSION=${package_version} \
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://openxla.github.io/iree/pip-release-links.html
|
||||
# Install the built wheel
|
||||
pip install ./wheelhouse/nodai*
|
||||
# Validate the Models
|
||||
/bin/bash "$GITHUB_WORKSPACE/build_tools/populate_sharktank_ci.sh"
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" -k "not metal" |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
if !(grep -Fxq " failed" pytest_results.txt)
|
||||
then
|
||||
export SHA=$(git log -1 --format='%h')
|
||||
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/${DATE}_$SHA
|
||||
gsutil -m cp -r gs://shark_tank/${DATE}_$SHA/* gs://shark_tank/nightly/
|
||||
fi
|
||||
rm -rf ./wheelhouse/nodai*
|
||||
|
||||
- name: Build and validate the SHARK Runtime package
|
||||
if: ${{ matrix.backend == 'SHARK' }}
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
|
||||
SHARK_PACKAGE_VERSION=${package_version} \
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html
|
||||
# Install the built wheel
|
||||
pip install ./wheelhouse/nodai*
|
||||
# Validate the Models
|
||||
pytest --ci --ci_sha=${SHORT_SHA} -k "not metal" |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
|
||||
163
.github/workflows/test-models.yml
vendored
163
.github/workflows/test-models.yml
vendored
@@ -1,163 +0,0 @@
|
||||
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: Validate Models on Shark Runtime
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'shark/examples/**'
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'shark/examples/**'
|
||||
workflow_dispatch:
|
||||
|
||||
# Ensure that only a single job or workflow using the same
|
||||
# concurrency group will run at a time. This would cancel
|
||||
# any in-progress jobs in the same github workflow and github
|
||||
# ref (e.g. refs/heads/main or refs/pull/<pr_number>/merge).
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build-validate:
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
os: [7950x, icelake, a100, MacStudio, ubuntu-latest]
|
||||
suite: [cpu,cuda,vulkan]
|
||||
python-version: ["3.11"]
|
||||
include:
|
||||
- os: ubuntu-latest
|
||||
suite: lint
|
||||
- os: MacStudio
|
||||
suite: metal
|
||||
exclude:
|
||||
- os: ubuntu-latest
|
||||
suite: vulkan
|
||||
- os: ubuntu-latest
|
||||
suite: cuda
|
||||
- os: ubuntu-latest
|
||||
suite: cpu
|
||||
- os: MacStudio
|
||||
suite: cuda
|
||||
- os: MacStudio
|
||||
suite: cpu
|
||||
- os: MacStudio
|
||||
suite: vulkan
|
||||
- os: icelake
|
||||
suite: vulkan
|
||||
- os: icelake
|
||||
suite: cuda
|
||||
- os: a100
|
||||
suite: cpu
|
||||
- os: 7950x
|
||||
suite: cpu
|
||||
- os: 7950x
|
||||
suite: cuda
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Set Environment Variables
|
||||
if: matrix.os != '7950x'
|
||||
run: |
|
||||
echo "SHORT_SHA=`git rev-parse --short=4 HEAD`" >> $GITHUB_ENV
|
||||
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
|
||||
|
||||
- name: Set up Python Version File ${{ matrix.python-version }}
|
||||
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest' || matrix.os == 'icelake'
|
||||
run: |
|
||||
# See https://github.com/actions/setup-python/issues/433
|
||||
echo ${{ matrix.python-version }} >> $GITHUB_WORKSPACE/.python-version
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest' || matrix.os == 'icelake'
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '${{ matrix.python-version }}'
|
||||
#cache: 'pip'
|
||||
#cache-dependency-path: |
|
||||
# **/requirements-importer.txt
|
||||
# **/requirements.txt
|
||||
|
||||
- name: Install dependencies
|
||||
if: matrix.suite == 'lint'
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install flake8 pytest toml black
|
||||
|
||||
- name: Lint with flake8
|
||||
if: matrix.suite == 'lint'
|
||||
run: |
|
||||
# black format check
|
||||
black --version
|
||||
black --check .
|
||||
# stop the build if there are Python syntax errors or undefined names
|
||||
flake8 . --statistics
|
||||
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
||||
flake8 . --isolated --count --exit-zero --max-complexity=10 --max-line-length=127 \
|
||||
--statistics --exclude lit.cfg.py
|
||||
|
||||
- name: Validate Models on CPU
|
||||
if: matrix.suite == 'cpu'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --forked --benchmark=native --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k cpu
|
||||
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv
|
||||
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cpu_latest.csv
|
||||
python build_tools/vicuna_testing.py
|
||||
|
||||
- name: Validate Models on NVIDIA GPU
|
||||
if: matrix.suite == 'cuda'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --forked --benchmark=native --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k cuda
|
||||
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv
|
||||
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cuda_latest.csv
|
||||
# Disabled due to black image bug
|
||||
# python build_tools/stable_diffusion_testing.py --device=cuda
|
||||
|
||||
- name: Validate Vulkan Models (MacOS)
|
||||
if: matrix.suite == 'metal' && matrix.os == 'MacStudio'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
echo $PATH
|
||||
pip list | grep -E "torch|iree"
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/Volumes/builder/anush/shark_cache" --tank_url="gs://shark_tank/nightly/" -k metal
|
||||
|
||||
- name: Validate Vulkan Models (a100)
|
||||
if: matrix.suite == 'vulkan' && matrix.os == 'a100'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --forked --benchmark="native" --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k vulkan
|
||||
python build_tools/stable_diffusion_testing.py --device=vulkan
|
||||
|
||||
- name: Validate Vulkan Models (Windows)
|
||||
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
|
||||
run: |
|
||||
./setup_venv.ps1
|
||||
pytest -k vulkan -s --ci
|
||||
|
||||
- name: Validate Stable Diffusion Models (Windows)
|
||||
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
|
||||
run: |
|
||||
./setup_venv.ps1
|
||||
python process_skipfiles.py
|
||||
pyinstaller .\apps\stable_diffusion\shark_sd.spec
|
||||
python build_tools/stable_diffusion_testing.py --device=vulkan
|
||||
85
.github/workflows/test-studio.yml
vendored
Normal file
85
.github/workflows/test-studio.yml
vendored
Normal file
@@ -0,0 +1,85 @@
|
||||
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
|
||||
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
||||
|
||||
name: Validate Shark Studio
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'shark/examples/**'
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'shark/examples/**'
|
||||
workflow_dispatch:
|
||||
|
||||
# Ensure that only a single job or workflow using the same
|
||||
# concurrency group will run at a time. This would cancel
|
||||
# any in-progress jobs in the same github workflow and github
|
||||
# ref (e.g. refs/heads/main or refs/pull/<pr_number>/merge).
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build-validate:
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
os: [nodai-ubuntu-builder-large]
|
||||
suite: [cpu] #,cuda,vulkan]
|
||||
python-version: ["3.11"]
|
||||
include:
|
||||
- os: nodai-ubuntu-builder-large
|
||||
suite: lint
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Set Environment Variables
|
||||
run: |
|
||||
echo "SHORT_SHA=`git rev-parse --short=4 HEAD`" >> $GITHUB_ENV
|
||||
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
|
||||
|
||||
- name: Set up Python Version File ${{ matrix.python-version }}
|
||||
run: |
|
||||
echo ${{ matrix.python-version }} >> $GITHUB_WORKSPACE/.python-version
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '${{ matrix.python-version }}'
|
||||
|
||||
- name: Install dependencies
|
||||
if: matrix.suite == 'lint'
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install flake8 pytest toml black
|
||||
|
||||
- name: Lint with flake8
|
||||
if: matrix.suite == 'lint'
|
||||
run: |
|
||||
# black format check
|
||||
black --version
|
||||
black --check apps/shark_studio
|
||||
# stop the build if there are Python syntax errors or undefined names
|
||||
flake8 . --statistics
|
||||
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
||||
flake8 . --isolated --count --exit-zero --max-complexity=10 --max-line-length=127 \
|
||||
--statistics --exclude lit.cfg.py
|
||||
|
||||
- name: Validate Models on CPU
|
||||
if: matrix.suite == 'cpu'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
python${{ matrix.python-version }} -m venv shark.venv
|
||||
source shark.venv/bin/activate
|
||||
pip install -r requirements.txt --no-cache-dir
|
||||
pip install -e .
|
||||
# Disabled due to hang when exporting test llama2
|
||||
# python apps/shark_studio/tests/api_test.py
|
||||
14
.gitignore
vendored
14
.gitignore
vendored
@@ -164,7 +164,7 @@ cython_debug/
|
||||
# vscode related
|
||||
.vscode
|
||||
|
||||
# Shark related artefacts
|
||||
# Shark related artifacts
|
||||
*venv/
|
||||
shark_tmp/
|
||||
*.vmfb
|
||||
@@ -172,6 +172,7 @@ shark_tmp/
|
||||
tank/dict_configs.py
|
||||
*.csv
|
||||
reproducers/
|
||||
apps/shark_studio/web/configs
|
||||
|
||||
# ORT related artefacts
|
||||
cache_models/
|
||||
@@ -182,11 +183,17 @@ generated_imgs/
|
||||
|
||||
# Custom model related artefacts
|
||||
variants.json
|
||||
models/
|
||||
/models/
|
||||
*.safetensors
|
||||
|
||||
# models folder
|
||||
apps/stable_diffusion/web/models/
|
||||
|
||||
# model artifacts (SHARK)
|
||||
*.tempfile
|
||||
*.mlir
|
||||
*.vmfb
|
||||
|
||||
# Stencil annotators.
|
||||
stencil_annotator/
|
||||
|
||||
@@ -199,3 +206,6 @@ apps/stable_diffusion/web/EBWebView/
|
||||
|
||||
# Llama2 tokenizer configs
|
||||
llama2_tokenizer_configs/
|
||||
|
||||
# Webview2 runtime artefacts
|
||||
EBWebView/
|
||||
|
||||
86
README.md
86
README.md
@@ -2,18 +2,20 @@
|
||||
|
||||
High Performance Machine Learning Distribution
|
||||
|
||||
*We are currently rebuilding SHARK to take advantage of [Turbine](https://github.com/nod-ai/SHARK-Turbine). Until that is complete make sure you use an .exe release or a checkout of the `SHARK-1.0` branch, for a working SHARK*
|
||||
|
||||
[](https://github.com/nod-ai/SHARK/actions/workflows/nightly.yml)
|
||||
[](https://github.com/nod-ai/SHARK/actions/workflows/test-models.yml)
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Prerequisites - Drivers </summary>
|
||||
|
||||
|
||||
#### Install your Windows hardware drivers
|
||||
* [AMD RDNA Users] Download the latest driver (23.2.1 is the oldest supported) [here](https://www.amd.com/en/support).
|
||||
* [macOS Users] Download and install the 1.3.216 Vulkan SDK from [here](https://sdk.lunarg.com/sdk/download/1.3.216.0/mac/vulkansdk-macos-1.3.216.0.dmg). Newer versions of the SDK will not work.
|
||||
* [macOS Users] Download and install the 1.3.216 Vulkan SDK from [here](https://sdk.lunarg.com/sdk/download/1.3.216.0/mac/vulkansdk-macos-1.3.216.0.dmg). Newer versions of the SDK will not work.
|
||||
* [Nvidia Users] Download and install the latest CUDA / Vulkan drivers from [here](https://developer.nvidia.com/cuda-downloads)
|
||||
|
||||
|
||||
#### Linux Drivers
|
||||
* MESA / RADV drivers wont work with FP16. Please use the latest AMGPU-PRO drivers (non-pro OSS drivers also wont work) or the latest NVidia Linux Drivers.
|
||||
|
||||
@@ -22,23 +24,23 @@ Other users please ensure you have your latest vendor drivers and Vulkan SDK fro
|
||||
</details>
|
||||
|
||||
|
||||
|
||||
|
||||
### Quick Start for SHARK Stable Diffusion for Windows 10/11 Users
|
||||
|
||||
Install the Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
|
||||
Install the Driver from (Prerequisites)[https://github.com/nod-ai/SHARK#install-your-hardware-drivers] above
|
||||
|
||||
Download the [stable release](https://github.com/nod-ai/shark/releases/latest)
|
||||
Download the [stable release](https://github.com/nod-ai/shark/releases/latest) or the most recent [SHARK 1.0 pre-release](https://github.com/nod-ai/shark/releases).
|
||||
|
||||
Double click the .exe and you should have the [UI](http://localhost:8080/) in the browser.
|
||||
Double click the .exe, or [run from the command line](#running) (recommended), and you should have the [UI](http://localhost:8080/) in the browser.
|
||||
|
||||
If you have custom models put them in a `models/` directory where the .exe is.
|
||||
If you have custom models put them in a `models/` directory where the .exe is.
|
||||
|
||||
Enjoy.
|
||||
Enjoy.
|
||||
|
||||
<details>
|
||||
<summary>More installation notes</summary>
|
||||
* We recommend that you download EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files with `rm *.vmfb`. You can also use `--clear_all` flag once to clean all the old files.
|
||||
* If you recently updated the driver or this binary (EXE file), we recommend you clear all the local artifacts with `--clear_all`
|
||||
* We recommend that you download EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files with `rm *.vmfb`. You can also use `--clear_all` flag once to clean all the old files.
|
||||
* If you recently updated the driver or this binary (EXE file), we recommend you clear all the local artifacts with `--clear_all`
|
||||
|
||||
## Running
|
||||
|
||||
@@ -46,17 +48,22 @@ Enjoy.
|
||||
* The first run may take few minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
|
||||
* You will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
|
||||
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/.
|
||||
* If you prefer to always run in the browser, use the `--ui=web` command argument when running the EXE.
|
||||
|
||||
## Stopping
|
||||
|
||||
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment or close the terminal.
|
||||
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment or close the terminal.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Advanced Installation (Only for developers)</summary>
|
||||
|
||||
|
||||
## Advanced Installation (Windows, Linux and macOS) for developers
|
||||
|
||||
### Windows 10/11 Users
|
||||
|
||||
* Install Git for Windows from [here](https://git-scm.com/download/win) if you don't already have it.
|
||||
|
||||
## Check out the code
|
||||
|
||||
```shell
|
||||
@@ -64,14 +71,22 @@ git clone https://github.com/nod-ai/SHARK.git
|
||||
cd SHARK
|
||||
```
|
||||
|
||||
## Switch to the Correct Branch (IMPORTANT!)
|
||||
|
||||
Currently SHARK is being rebuilt for [Turbine](https://github.com/nod-ai/SHARK-Turbine) on the `main` branch. For now you are strongly discouraged from using `main` unless you are working on the rebuild effort, and should not expect the code there to produce a working application for Image Generation, So for now you'll need switch over to the `SHARK-1.0` branch and use the stable code.
|
||||
|
||||
```shell
|
||||
git checkout SHARK-1.0
|
||||
```
|
||||
|
||||
The following setup instructions assume you are on this branch.
|
||||
|
||||
## Setup your Python VirtualEnvironment and Dependencies
|
||||
|
||||
### Windows 10/11 Users
|
||||
|
||||
* Install the latest Python 3.11.x version from [here](https://www.python.org/downloads/windows/)
|
||||
|
||||
* Install Git for Windows from [here](https://git-scm.com/download/win)
|
||||
|
||||
#### Allow the install script to run in Powershell
|
||||
```powershell
|
||||
set-executionpolicy remotesigned
|
||||
@@ -86,21 +101,20 @@ set-executionpolicy remotesigned
|
||||
|
||||
```shell
|
||||
./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
source shark1.venv/bin/activate
|
||||
```
|
||||
|
||||
|
||||
### Run Stable Diffusion on your device - WebUI
|
||||
|
||||
#### Windows 10/11 Users
|
||||
```powershell
|
||||
(shark.venv) PS C:\g\shark> cd .\apps\stable_diffusion\web\
|
||||
(shark.venv) PS C:\g\shark\apps\stable_diffusion\web> python .\index.py
|
||||
(shark1.venv) PS C:\g\shark> cd .\apps\stable_diffusion\web\
|
||||
(shark1.venv) PS C:\g\shark\apps\stable_diffusion\web> python .\index.py
|
||||
```
|
||||
#### Linux / macOS Users
|
||||
```shell
|
||||
(shark.venv) > cd apps/stable_diffusion/web
|
||||
(shark.venv) > python index.py
|
||||
(shark1.venv) > cd apps/stable_diffusion/web
|
||||
(shark1.venv) > python index.py
|
||||
```
|
||||
|
||||
#### Access Stable Diffusion on http://localhost:8080/?__theme=dark
|
||||
@@ -114,7 +128,7 @@ source shark.venv/bin/activate
|
||||
|
||||
#### Windows 10/11 Users
|
||||
```powershell
|
||||
(shark.venv) PS C:\g\shark> python .\apps\stable_diffusion\scripts\main.py --app="txt2img" --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
|
||||
(shark1.venv) PS C:\g\shark> python .\apps\stable_diffusion\scripts\main.py --app="txt2img" --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
|
||||
```
|
||||
|
||||
#### Linux / macOS Users
|
||||
@@ -142,7 +156,7 @@ Here are some samples generated:
|
||||

|
||||
|
||||
|
||||
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
|
||||
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
|
||||
|
||||
|
||||
<details>
|
||||
@@ -205,7 +219,7 @@ python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
|
||||
If you want to use Python3.11 and with TF Import tools you can use the environment variables like:
|
||||
Set `USE_IREE=1` to use upstream IREE
|
||||
```
|
||||
# PYTHON=python3.11 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
|
||||
# PYTHON=python3.11 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
|
||||
```
|
||||
|
||||
### Run any of the hundreds of SHARK tank models via the test framework
|
||||
@@ -214,7 +228,7 @@ python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use g
|
||||
# Or a pytest
|
||||
pytest tank/test_models.py -k "MiniLM"
|
||||
```
|
||||
|
||||
|
||||
### How to use your locally built IREE / Torch-MLIR with SHARK
|
||||
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
|
||||
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
|
||||
@@ -240,12 +254,12 @@ Now the SHARK will use your locally build Torch-MLIR repo.
|
||||
|
||||
## Benchmarking Dispatches
|
||||
|
||||
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your pytest command line argument.
|
||||
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your pytest command line argument.
|
||||
If you only want to compile specific dispatches, you can specify them with a space seperated string instead of `"All"`. E.G. `--dispatch_benchmarks="0 1 2 10"`
|
||||
|
||||
For example, to generate and run dispatch benchmarks for MiniLM on CUDA:
|
||||
```
|
||||
pytest -k "MiniLM and torch and static and cuda" --benchmark_dispatches=All -s --dispatch_benchmarks_dir=./my_dispatch_benchmarks
|
||||
pytest -k "MiniLM and torch and static and cuda" --benchmark_dispatches=All -s --dispatch_benchmarks_dir=./my_dispatch_benchmarks
|
||||
```
|
||||
The given command will populate `<dispatch_benchmarks_dir>/<model_name>/` with an `ordered_dispatches.txt` that lists and orders the dispatches and their latencies, as well as folders for each dispatch that contain .mlir, .vmfb, and results of the benchmark for that dispatch.
|
||||
|
||||
@@ -254,7 +268,6 @@ if you want to instead incorporate this into a python script, you can pass the `
|
||||
```
|
||||
shark_module = SharkInference(
|
||||
mlir_model,
|
||||
func_name,
|
||||
device=args.device,
|
||||
mlir_dialect="tm_tensor",
|
||||
dispatch_benchmarks="all",
|
||||
@@ -265,7 +278,7 @@ shark_module = SharkInference(
|
||||
Output will include:
|
||||
- An ordered list ordered-dispatches.txt of all the dispatches with their runtime
|
||||
- Inside the specified directory, there will be a directory for each dispatch (there will be mlir files for all dispatches, but only compiled binaries and benchmark data for the specified dispatches)
|
||||
- An .mlir file containing the dispatch benchmark
|
||||
- An .mlir file containing the dispatch benchmark
|
||||
- A compiled .vmfb file containing the dispatch benchmark
|
||||
- An .mlir file containing just the hal executable
|
||||
- A compiled .vmfb file of the hal executable
|
||||
@@ -297,7 +310,7 @@ torch_mlir, func_name = mlir_importer.import_mlir(tracing_required=True)
|
||||
# SharkInference accepts mlir in linalg, mhlo, and tosa dialect.
|
||||
|
||||
from shark.shark_inference import SharkInference
|
||||
shark_module = SharkInference(torch_mlir, func_name, device="cpu", mlir_dialect="linalg")
|
||||
shark_module = SharkInference(torch_mlir, device="cpu", mlir_dialect="linalg")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((input))
|
||||
|
||||
@@ -320,15 +333,20 @@ mhlo_ir = r"""builtin.module {
|
||||
|
||||
arg0 = np.ones((1, 4)).astype(np.float32)
|
||||
arg1 = np.ones((4, 1)).astype(np.float32)
|
||||
shark_module = SharkInference(mhlo_ir, func_name="forward", device="cpu", mlir_dialect="mhlo")
|
||||
shark_module = SharkInference(mhlo_ir, device="cpu", mlir_dialect="mhlo")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((arg0, arg1))
|
||||
```
|
||||
</details>
|
||||
|
||||
## Examples Using the REST API
|
||||
|
||||
* [Setting up SHARK for use with Blender](./docs/shark_sd_blender.md)
|
||||
* [Setting up SHARK for use with Koboldcpp](./docs/shark_sd_koboldcpp.md)
|
||||
|
||||
## Supported and Validated Models
|
||||
|
||||
SHARK is maintained to support the latest innovations in ML Models:
|
||||
SHARK is maintained to support the latest innovations in ML Models:
|
||||
|
||||
| TF HuggingFace Models | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
|---------------------|----------|----------|-------------|
|
||||
@@ -354,7 +372,7 @@ For a complete list of the models supported in SHARK, please refer to [tank/READ
|
||||
|
||||
* [Upstream IREE issues](https://github.com/google/iree/issues): Feature requests,
|
||||
bugs, and other work tracking
|
||||
* [Upstream IREE Discord server](https://discord.gg/26P4xW4): Daily development
|
||||
* [Upstream IREE Discord server](https://discord.gg/wEWh6Z9nMU): Daily development
|
||||
discussions with the core team and collaborators
|
||||
* [iree-discuss email list](https://groups.google.com/forum/#!forum/iree-discuss):
|
||||
Announcements, general and low-priority discussion
|
||||
@@ -369,7 +387,7 @@ For a complete list of the models supported in SHARK, please refer to [tank/READ
|
||||
* Weekly meetings on Mondays 9AM PST. See [here](https://discourse.llvm.org/t/community-meeting-developer-hour-refactoring-recurring-meetings/62575) for more information.
|
||||
* [MLIR topic within LLVM Discourse](https://llvm.discourse.group/c/llvm-project/mlir/31) SHARK and IREE is enabled by and heavily relies on [MLIR](https://mlir.llvm.org).
|
||||
</details>
|
||||
|
||||
|
||||
## License
|
||||
|
||||
nod.ai SHARK is licensed under the terms of the Apache 2.0 License with LLVM Exceptions.
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
## CodeGen Setup using SHARK-server
|
||||
|
||||
### Setup Server
|
||||
- clone SHARK and setup the venv
|
||||
- host the server using `python apps/stable_diffusion/web/index.py --api --server_port=<PORT>`
|
||||
- default server address is `http://0.0.0.0:8080`
|
||||
|
||||
### Setup Client
|
||||
1. fauxpilot-vscode (VSCode Extension):
|
||||
- Code for the extension can be found [here](https://github.com/Venthe/vscode-fauxpilot)
|
||||
- PreReq: VSCode extension (will need [`nodejs` and `npm`](https://nodejs.org/en/download) to compile and run the extension)
|
||||
- Compile and Run the extension on VSCode (press F5 on VSCode), this opens a new VSCode window with the extension running
|
||||
- Open VSCode settings, search for fauxpilot in settings and modify `server : http://<IP>:<PORT>`, `Model : codegen` , `Max Lines : 30`
|
||||
|
||||
2. Others (REST API curl, OpenAI Python bindings) as shown [here](https://github.com/fauxpilot/fauxpilot/blob/main/documentation/client.md)
|
||||
- using Github Copilot VSCode extension with SHARK-server needs more work to be functional.
|
||||
@@ -1,18 +0,0 @@
|
||||
# Langchain
|
||||
|
||||
## How to run the model
|
||||
|
||||
1.) Install all the dependencies by running:
|
||||
```shell
|
||||
pip install -r apps/language_models/langchain/langchain_requirements.txt
|
||||
sudo apt-get install -y libmagic-dev poppler-utils tesseract-ocr libtesseract-dev libreoffice
|
||||
```
|
||||
|
||||
2.) Create a folder named `user_path` in `apps/language_models/langchain/` directory.
|
||||
|
||||
Now, you are ready to use the model.
|
||||
|
||||
3.) To run the model, run the following command:
|
||||
```shell
|
||||
python apps/language_models/langchain/gen.py --cli=True
|
||||
```
|
||||
@@ -1,186 +0,0 @@
|
||||
import copy
|
||||
import torch
|
||||
|
||||
from evaluate_params import eval_func_param_names
|
||||
from gen import Langchain
|
||||
from prompter import non_hf_types
|
||||
from utils import clear_torch_cache, NullContext, get_kwargs
|
||||
|
||||
|
||||
def run_cli( # for local function:
|
||||
base_model=None,
|
||||
lora_weights=None,
|
||||
inference_server=None,
|
||||
debug=None,
|
||||
chat_context=None,
|
||||
examples=None,
|
||||
memory_restriction_level=None,
|
||||
# for get_model:
|
||||
score_model=None,
|
||||
load_8bit=None,
|
||||
load_4bit=None,
|
||||
load_half=None,
|
||||
load_gptq=None,
|
||||
use_safetensors=None,
|
||||
infer_devices=None,
|
||||
tokenizer_base_model=None,
|
||||
gpu_id=None,
|
||||
local_files_only=None,
|
||||
resume_download=None,
|
||||
use_auth_token=None,
|
||||
trust_remote_code=None,
|
||||
offload_folder=None,
|
||||
compile_model=None,
|
||||
# for some evaluate args
|
||||
stream_output=None,
|
||||
prompt_type=None,
|
||||
prompt_dict=None,
|
||||
temperature=None,
|
||||
top_p=None,
|
||||
top_k=None,
|
||||
num_beams=None,
|
||||
max_new_tokens=None,
|
||||
min_new_tokens=None,
|
||||
early_stopping=None,
|
||||
max_time=None,
|
||||
repetition_penalty=None,
|
||||
num_return_sequences=None,
|
||||
do_sample=None,
|
||||
chat=None,
|
||||
langchain_mode=None,
|
||||
langchain_action=None,
|
||||
document_choice=None,
|
||||
top_k_docs=None,
|
||||
chunk=None,
|
||||
chunk_size=None,
|
||||
# for evaluate kwargs
|
||||
src_lang=None,
|
||||
tgt_lang=None,
|
||||
concurrency_count=None,
|
||||
save_dir=None,
|
||||
sanitize_bot_response=None,
|
||||
model_state0=None,
|
||||
max_max_new_tokens=None,
|
||||
is_public=None,
|
||||
max_max_time=None,
|
||||
raise_generate_gpu_exceptions=None,
|
||||
load_db_if_exists=None,
|
||||
dbs=None,
|
||||
user_path=None,
|
||||
detect_user_path_changes_every_query=None,
|
||||
use_openai_embedding=None,
|
||||
use_openai_model=None,
|
||||
hf_embedding_model=None,
|
||||
db_type=None,
|
||||
n_jobs=None,
|
||||
first_para=None,
|
||||
text_limit=None,
|
||||
verbose=None,
|
||||
cli=None,
|
||||
reverse_docs=None,
|
||||
use_cache=None,
|
||||
auto_reduce_chunks=None,
|
||||
max_chunks=None,
|
||||
model_lock=None,
|
||||
force_langchain_evaluate=None,
|
||||
model_state_none=None,
|
||||
# unique to this function:
|
||||
cli_loop=None,
|
||||
):
|
||||
Langchain.check_locals(**locals())
|
||||
|
||||
score_model = "" # FIXME: For now, so user doesn't have to pass
|
||||
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
|
||||
device = "cpu" if n_gpus == 0 else "cuda"
|
||||
context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device
|
||||
|
||||
with context_class(device):
|
||||
from functools import partial
|
||||
|
||||
# get score model
|
||||
smodel, stokenizer, sdevice = Langchain.get_score_model(
|
||||
reward_type=True,
|
||||
**get_kwargs(
|
||||
Langchain.get_score_model,
|
||||
exclude_names=["reward_type"],
|
||||
**locals()
|
||||
)
|
||||
)
|
||||
|
||||
model, tokenizer, device = Langchain.get_model(
|
||||
reward_type=False,
|
||||
**get_kwargs(
|
||||
Langchain.get_model, exclude_names=["reward_type"], **locals()
|
||||
)
|
||||
)
|
||||
model_dict = dict(
|
||||
base_model=base_model,
|
||||
tokenizer_base_model=tokenizer_base_model,
|
||||
lora_weights=lora_weights,
|
||||
inference_server=inference_server,
|
||||
prompt_type=prompt_type,
|
||||
prompt_dict=prompt_dict,
|
||||
)
|
||||
model_state = dict(model=model, tokenizer=tokenizer, device=device)
|
||||
model_state.update(model_dict)
|
||||
my_db_state = [None]
|
||||
fun = partial(
|
||||
Langchain.evaluate,
|
||||
model_state,
|
||||
my_db_state,
|
||||
**get_kwargs(
|
||||
Langchain.evaluate,
|
||||
exclude_names=["model_state", "my_db_state"]
|
||||
+ eval_func_param_names,
|
||||
**locals()
|
||||
)
|
||||
)
|
||||
|
||||
example1 = examples[-1] # pick reference example
|
||||
all_generations = []
|
||||
while True:
|
||||
clear_torch_cache()
|
||||
instruction = input("\nEnter an instruction: ")
|
||||
if instruction == "exit":
|
||||
break
|
||||
|
||||
eval_vars = copy.deepcopy(example1)
|
||||
eval_vars[eval_func_param_names.index("instruction")] = eval_vars[
|
||||
eval_func_param_names.index("instruction_nochat")
|
||||
] = instruction
|
||||
eval_vars[eval_func_param_names.index("iinput")] = eval_vars[
|
||||
eval_func_param_names.index("iinput_nochat")
|
||||
] = "" # no input yet
|
||||
eval_vars[
|
||||
eval_func_param_names.index("context")
|
||||
] = "" # no context yet
|
||||
|
||||
# grab other parameters, like langchain_mode
|
||||
for k in eval_func_param_names:
|
||||
if k in locals():
|
||||
eval_vars[eval_func_param_names.index(k)] = locals()[k]
|
||||
|
||||
gener = fun(*tuple(eval_vars))
|
||||
outr = ""
|
||||
res_old = ""
|
||||
for gen_output in gener:
|
||||
res = gen_output["response"]
|
||||
extra = gen_output["sources"]
|
||||
if base_model not in non_hf_types or base_model in ["llama"]:
|
||||
if not stream_output:
|
||||
print(res)
|
||||
else:
|
||||
# then stream output for gradio that has full output each generation, so need here to show only new chars
|
||||
diff = res[len(res_old) :]
|
||||
print(diff, end="", flush=True)
|
||||
res_old = res
|
||||
outr = res # don't accumulate
|
||||
else:
|
||||
outr += res # just is one thing
|
||||
if extra:
|
||||
# show sources at end after model itself had streamed to std rest of response
|
||||
print(extra, flush=True)
|
||||
all_generations.append(outr + "\n")
|
||||
if not cli_loop:
|
||||
break
|
||||
return all_generations
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,103 +0,0 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class PromptType(Enum):
|
||||
custom = -1
|
||||
plain = 0
|
||||
instruct = 1
|
||||
quality = 2
|
||||
human_bot = 3
|
||||
dai_faq = 4
|
||||
summarize = 5
|
||||
simple_instruct = 6
|
||||
instruct_vicuna = 7
|
||||
instruct_with_end = 8
|
||||
human_bot_orig = 9
|
||||
prompt_answer = 10
|
||||
open_assistant = 11
|
||||
wizard_lm = 12
|
||||
wizard_mega = 13
|
||||
instruct_vicuna2 = 14
|
||||
instruct_vicuna3 = 15
|
||||
wizard2 = 16
|
||||
wizard3 = 17
|
||||
instruct_simple = 18
|
||||
wizard_vicuna = 19
|
||||
openai = 20
|
||||
openai_chat = 21
|
||||
gptj = 22
|
||||
prompt_answer_openllama = 23
|
||||
vicuna11 = 24
|
||||
mptinstruct = 25
|
||||
mptchat = 26
|
||||
falcon = 27
|
||||
|
||||
|
||||
class DocumentChoices(Enum):
|
||||
All_Relevant = 0
|
||||
All_Relevant_Only_Sources = 1
|
||||
Only_All_Sources = 2
|
||||
Just_LLM = 3
|
||||
|
||||
|
||||
non_query_commands = [
|
||||
DocumentChoices.All_Relevant_Only_Sources.name,
|
||||
DocumentChoices.Only_All_Sources.name,
|
||||
]
|
||||
|
||||
|
||||
class LangChainMode(Enum):
|
||||
"""LangChain mode"""
|
||||
|
||||
DISABLED = "Disabled"
|
||||
CHAT_LLM = "ChatLLM"
|
||||
LLM = "LLM"
|
||||
ALL = "All"
|
||||
WIKI = "wiki"
|
||||
WIKI_FULL = "wiki_full"
|
||||
USER_DATA = "UserData"
|
||||
MY_DATA = "MyData"
|
||||
GITHUB_H2OGPT = "github h2oGPT"
|
||||
H2O_DAI_DOCS = "DriverlessAI docs"
|
||||
|
||||
|
||||
class LangChainAction(Enum):
|
||||
"""LangChain action"""
|
||||
|
||||
QUERY = "Query"
|
||||
# WIP:
|
||||
# SUMMARIZE_MAP = "Summarize_map_reduce"
|
||||
SUMMARIZE_MAP = "Summarize"
|
||||
SUMMARIZE_ALL = "Summarize_all"
|
||||
SUMMARIZE_REFINE = "Summarize_refine"
|
||||
|
||||
|
||||
no_server_str = no_lora_str = no_model_str = "[None/Remove]"
|
||||
|
||||
# from site-packages/langchain/llms/openai.py
|
||||
# but needed since ChatOpenAI doesn't have this information
|
||||
model_token_mapping = {
|
||||
"gpt-4": 8192,
|
||||
"gpt-4-0314": 8192,
|
||||
"gpt-4-32k": 32768,
|
||||
"gpt-4-32k-0314": 32768,
|
||||
"gpt-3.5-turbo": 4096,
|
||||
"gpt-3.5-turbo-16k": 16 * 1024,
|
||||
"gpt-3.5-turbo-0301": 4096,
|
||||
"text-ada-001": 2049,
|
||||
"ada": 2049,
|
||||
"text-babbage-001": 2040,
|
||||
"babbage": 2049,
|
||||
"text-curie-001": 2049,
|
||||
"curie": 2049,
|
||||
"davinci": 2049,
|
||||
"text-davinci-003": 4097,
|
||||
"text-davinci-002": 4097,
|
||||
"code-davinci-002": 8001,
|
||||
"code-davinci-001": 8001,
|
||||
"code-cushman-002": 2048,
|
||||
"code-cushman-001": 2048,
|
||||
}
|
||||
|
||||
source_prefix = "Sources [Score | Link]:"
|
||||
source_postfix = "End Sources<p>"
|
||||
@@ -1,53 +0,0 @@
|
||||
no_default_param_names = [
|
||||
"instruction",
|
||||
"iinput",
|
||||
"context",
|
||||
"instruction_nochat",
|
||||
"iinput_nochat",
|
||||
]
|
||||
|
||||
gen_hyper = [
|
||||
"temperature",
|
||||
"top_p",
|
||||
"top_k",
|
||||
"num_beams",
|
||||
"max_new_tokens",
|
||||
"min_new_tokens",
|
||||
"early_stopping",
|
||||
"max_time",
|
||||
"repetition_penalty",
|
||||
"num_return_sequences",
|
||||
"do_sample",
|
||||
]
|
||||
|
||||
eval_func_param_names = (
|
||||
[
|
||||
"instruction",
|
||||
"iinput",
|
||||
"context",
|
||||
"stream_output",
|
||||
"prompt_type",
|
||||
"prompt_dict",
|
||||
]
|
||||
+ gen_hyper
|
||||
+ [
|
||||
"chat",
|
||||
"instruction_nochat",
|
||||
"iinput_nochat",
|
||||
"langchain_mode",
|
||||
"langchain_action",
|
||||
"top_k_docs",
|
||||
"chunk",
|
||||
"chunk_size",
|
||||
"document_choice",
|
||||
]
|
||||
)
|
||||
|
||||
# form evaluate defaults for submit_nochat_api
|
||||
eval_func_param_names_defaults = eval_func_param_names.copy()
|
||||
for k in no_default_param_names:
|
||||
if k in eval_func_param_names_defaults:
|
||||
eval_func_param_names_defaults.remove(k)
|
||||
|
||||
|
||||
eval_extra_columns = ["prompt", "response", "score"]
|
||||
@@ -1,846 +0,0 @@
|
||||
from __future__ import annotations
|
||||
from typing import (
|
||||
Any,
|
||||
Mapping,
|
||||
Optional,
|
||||
Dict,
|
||||
List,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Union,
|
||||
Protocol,
|
||||
)
|
||||
import inspect
|
||||
import json
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
import yaml
|
||||
from abc import ABC, abstractmethod
|
||||
import langchain
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.chains.question_answering import stuff_prompt
|
||||
from langchain.prompts.base import BasePromptTemplate
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.callbacks.manager import (
|
||||
CallbackManager,
|
||||
CallbackManagerForChainRun,
|
||||
Callbacks,
|
||||
)
|
||||
from langchain.load.serializable import Serializable
|
||||
from langchain.schema import RUN_KEY, BaseMemory, RunInfo
|
||||
from langchain.input import get_colored_text
|
||||
from langchain.load.dump import dumpd
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
from langchain.schema import LLMResult, PromptValue
|
||||
from pydantic import Extra, Field, root_validator, validator
|
||||
|
||||
|
||||
def _get_verbosity() -> bool:
|
||||
return langchain.verbose
|
||||
|
||||
|
||||
def format_document(doc: Document, prompt: BasePromptTemplate) -> str:
|
||||
"""Format a document into a string based on a prompt template."""
|
||||
base_info = {"page_content": doc.page_content}
|
||||
base_info.update(doc.metadata)
|
||||
missing_metadata = set(prompt.input_variables).difference(base_info)
|
||||
if len(missing_metadata) > 0:
|
||||
required_metadata = [
|
||||
iv for iv in prompt.input_variables if iv != "page_content"
|
||||
]
|
||||
raise ValueError(
|
||||
f"Document prompt requires documents to have metadata variables: "
|
||||
f"{required_metadata}. Received document with missing metadata: "
|
||||
f"{list(missing_metadata)}."
|
||||
)
|
||||
document_info = {k: base_info[k] for k in prompt.input_variables}
|
||||
return prompt.format(**document_info)
|
||||
|
||||
|
||||
class Chain(Serializable, ABC):
|
||||
"""Base interface that all chains should implement."""
|
||||
|
||||
memory: Optional[BaseMemory] = None
|
||||
callbacks: Callbacks = Field(default=None, exclude=True)
|
||||
callback_manager: Optional[BaseCallbackManager] = Field(
|
||||
default=None, exclude=True
|
||||
)
|
||||
verbose: bool = Field(
|
||||
default_factory=_get_verbosity
|
||||
) # Whether to print the response text
|
||||
tags: Optional[List[str]] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@property
|
||||
def _chain_type(self) -> str:
|
||||
raise NotImplementedError("Saving not supported for this chain type.")
|
||||
|
||||
@root_validator()
|
||||
def raise_deprecation(cls, values: Dict) -> Dict:
|
||||
"""Raise deprecation warning if callback_manager is used."""
|
||||
if values.get("callback_manager") is not None:
|
||||
warnings.warn(
|
||||
"callback_manager is deprecated. Please use callbacks instead.",
|
||||
DeprecationWarning,
|
||||
)
|
||||
values["callbacks"] = values.pop("callback_manager", None)
|
||||
return values
|
||||
|
||||
@validator("verbose", pre=True, always=True)
|
||||
def set_verbose(cls, verbose: Optional[bool]) -> bool:
|
||||
"""If verbose is None, set it.
|
||||
|
||||
This allows users to pass in None as verbose to access the global setting.
|
||||
"""
|
||||
if verbose is None:
|
||||
return _get_verbosity()
|
||||
else:
|
||||
return verbose
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Input keys this chain expects."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def output_keys(self) -> List[str]:
|
||||
"""Output keys this chain expects."""
|
||||
|
||||
def _validate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Check that all inputs are present."""
|
||||
missing_keys = set(self.input_keys).difference(inputs)
|
||||
if missing_keys:
|
||||
raise ValueError(f"Missing some input keys: {missing_keys}")
|
||||
|
||||
def _validate_outputs(self, outputs: Dict[str, Any]) -> None:
|
||||
missing_keys = set(self.output_keys).difference(outputs)
|
||||
if missing_keys:
|
||||
raise ValueError(f"Missing some output keys: {missing_keys}")
|
||||
|
||||
@abstractmethod
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""Run the logic of this chain and return the output."""
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: Union[Dict[str, Any], Any],
|
||||
return_only_outputs: bool = False,
|
||||
callbacks: Callbacks = None,
|
||||
*,
|
||||
tags: Optional[List[str]] = None,
|
||||
include_run_info: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
"""Run the logic of this chain and add to output if desired.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of inputs, or single input if chain expects
|
||||
only one param.
|
||||
return_only_outputs: boolean for whether to return only outputs in the
|
||||
response. If True, only new keys generated by this chain will be
|
||||
returned. If False, both input keys and new keys generated by this
|
||||
chain will be returned. Defaults to False.
|
||||
callbacks: Callbacks to use for this chain run. If not provided, will
|
||||
use the callbacks provided to the chain.
|
||||
include_run_info: Whether to include run info in the response. Defaults
|
||||
to False.
|
||||
"""
|
||||
input_docs = inputs["input_documents"]
|
||||
missing_keys = set(self.input_keys).difference(inputs)
|
||||
if missing_keys:
|
||||
raise ValueError(f"Missing some input keys: {missing_keys}")
|
||||
|
||||
callback_manager = CallbackManager.configure(
|
||||
callbacks, self.callbacks, self.verbose, tags, self.tags
|
||||
)
|
||||
run_manager = callback_manager.on_chain_start(
|
||||
dumpd(self),
|
||||
inputs,
|
||||
)
|
||||
|
||||
if "is_first" in inputs.keys() and not inputs["is_first"]:
|
||||
run_manager_ = run_manager
|
||||
input_list = [inputs]
|
||||
stop = None
|
||||
prompts = []
|
||||
for inputs in input_list:
|
||||
selected_inputs = {
|
||||
k: inputs[k] for k in self.prompt.input_variables
|
||||
}
|
||||
prompt = self.prompt.format_prompt(**selected_inputs)
|
||||
_colored_text = get_colored_text(prompt.to_string(), "green")
|
||||
_text = "Prompt after formatting:\n" + _colored_text
|
||||
if run_manager_:
|
||||
run_manager_.on_text(_text, end="\n", verbose=self.verbose)
|
||||
if "stop" in inputs and inputs["stop"] != stop:
|
||||
raise ValueError(
|
||||
"If `stop` is present in any inputs, should be present in all."
|
||||
)
|
||||
prompts.append(prompt)
|
||||
|
||||
prompt_strings = [p.to_string() for p in prompts]
|
||||
prompts = prompt_strings
|
||||
callbacks = run_manager_.get_child() if run_manager_ else None
|
||||
tags = None
|
||||
|
||||
"""Run the LLM on the given prompt and input."""
|
||||
# If string is passed in directly no errors will be raised but outputs will
|
||||
# not make sense.
|
||||
if not isinstance(prompts, list):
|
||||
raise ValueError(
|
||||
"Argument 'prompts' is expected to be of type List[str], received"
|
||||
f" argument of type {type(prompts)}."
|
||||
)
|
||||
params = self.llm.dict()
|
||||
params["stop"] = stop
|
||||
options = {"stop": stop}
|
||||
disregard_cache = self.llm.cache is not None and not self.llm.cache
|
||||
callback_manager = CallbackManager.configure(
|
||||
callbacks,
|
||||
self.llm.callbacks,
|
||||
self.llm.verbose,
|
||||
tags,
|
||||
self.llm.tags,
|
||||
)
|
||||
if langchain.llm_cache is None or disregard_cache:
|
||||
# This happens when langchain.cache is None, but self.cache is True
|
||||
if self.llm.cache is not None and self.cache:
|
||||
raise ValueError(
|
||||
"Asked to cache, but no cache found at `langchain.cache`."
|
||||
)
|
||||
run_manager_ = callback_manager.on_llm_start(
|
||||
dumpd(self),
|
||||
prompts,
|
||||
invocation_params=params,
|
||||
options=options,
|
||||
)
|
||||
|
||||
generations = []
|
||||
for prompt in prompts:
|
||||
inputs_ = prompt
|
||||
num_workers = None
|
||||
batch_size = None
|
||||
|
||||
if num_workers is None:
|
||||
if self.llm.pipeline._num_workers is None:
|
||||
num_workers = 0
|
||||
else:
|
||||
num_workers = self.llm.pipeline._num_workers
|
||||
if batch_size is None:
|
||||
if self.llm.pipeline._batch_size is None:
|
||||
batch_size = 1
|
||||
else:
|
||||
batch_size = self.llm.pipeline._batch_size
|
||||
|
||||
preprocess_params = {}
|
||||
generate_kwargs = {}
|
||||
preprocess_params.update(generate_kwargs)
|
||||
forward_params = generate_kwargs
|
||||
postprocess_params = {}
|
||||
# Fuse __init__ params and __call__ params without modifying the __init__ ones.
|
||||
preprocess_params = {
|
||||
**self.llm.pipeline._preprocess_params,
|
||||
**preprocess_params,
|
||||
}
|
||||
forward_params = {
|
||||
**self.llm.pipeline._forward_params,
|
||||
**forward_params,
|
||||
}
|
||||
postprocess_params = {
|
||||
**self.llm.pipeline._postprocess_params,
|
||||
**postprocess_params,
|
||||
}
|
||||
|
||||
self.llm.pipeline.call_count += 1
|
||||
if (
|
||||
self.llm.pipeline.call_count > 10
|
||||
and self.llm.pipeline.framework == "pt"
|
||||
and self.llm.pipeline.device.type == "cuda"
|
||||
):
|
||||
warnings.warn(
|
||||
"You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a"
|
||||
" dataset",
|
||||
UserWarning,
|
||||
)
|
||||
|
||||
model_inputs = self.llm.pipeline.preprocess(
|
||||
inputs_, **preprocess_params
|
||||
)
|
||||
model_outputs = self.llm.pipeline.forward(
|
||||
model_inputs, **forward_params
|
||||
)
|
||||
model_outputs["process"] = False
|
||||
return model_outputs
|
||||
output = LLMResult(generations=generations)
|
||||
run_manager_.on_llm_end(output)
|
||||
if run_manager_:
|
||||
output.run = RunInfo(run_id=run_manager_.run_id)
|
||||
response = output
|
||||
|
||||
outputs = [
|
||||
# Get the text of the top generated string.
|
||||
{self.output_key: generation[0].text}
|
||||
for generation in response.generations
|
||||
][0]
|
||||
run_manager.on_chain_end(outputs)
|
||||
final_outputs: Dict[str, Any] = self.prep_outputs(
|
||||
inputs, outputs, return_only_outputs
|
||||
)
|
||||
if include_run_info:
|
||||
final_outputs[RUN_KEY] = RunInfo(run_id=run_manager.run_id)
|
||||
return final_outputs
|
||||
else:
|
||||
_run_manager = (
|
||||
run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||||
)
|
||||
docs = inputs[self.input_key]
|
||||
# Other keys are assumed to be needed for LLM prediction
|
||||
other_keys = {
|
||||
k: v for k, v in inputs.items() if k != self.input_key
|
||||
}
|
||||
doc_strings = [
|
||||
format_document(doc, self.document_prompt) for doc in docs
|
||||
]
|
||||
# Join the documents together to put them in the prompt.
|
||||
inputs = {
|
||||
k: v
|
||||
for k, v in other_keys.items()
|
||||
if k in self.llm_chain.prompt.input_variables
|
||||
}
|
||||
inputs[self.document_variable_name] = self.document_separator.join(
|
||||
doc_strings
|
||||
)
|
||||
inputs["is_first"] = False
|
||||
inputs["input_documents"] = input_docs
|
||||
|
||||
# Call predict on the LLM.
|
||||
output = self.llm_chain(inputs, callbacks=_run_manager.get_child())
|
||||
if "process" in output.keys() and not output["process"]:
|
||||
return output
|
||||
output = output[self.llm_chain.output_key]
|
||||
extra_return_dict = {}
|
||||
extra_return_dict[self.output_key] = output
|
||||
outputs = extra_return_dict
|
||||
run_manager.on_chain_end(outputs)
|
||||
final_outputs: Dict[str, Any] = self.prep_outputs(
|
||||
inputs, outputs, return_only_outputs
|
||||
)
|
||||
if include_run_info:
|
||||
final_outputs[RUN_KEY] = RunInfo(run_id=run_manager.run_id)
|
||||
return final_outputs
|
||||
|
||||
def prep_outputs(
|
||||
self,
|
||||
inputs: Dict[str, str],
|
||||
outputs: Dict[str, str],
|
||||
return_only_outputs: bool = False,
|
||||
) -> Dict[str, str]:
|
||||
"""Validate and prep outputs."""
|
||||
self._validate_outputs(outputs)
|
||||
if self.memory is not None:
|
||||
self.memory.save_context(inputs, outputs)
|
||||
if return_only_outputs:
|
||||
return outputs
|
||||
else:
|
||||
return {**inputs, **outputs}
|
||||
|
||||
def prep_inputs(
|
||||
self, inputs: Union[Dict[str, Any], Any]
|
||||
) -> Dict[str, str]:
|
||||
"""Validate and prep inputs."""
|
||||
if not isinstance(inputs, dict):
|
||||
_input_keys = set(self.input_keys)
|
||||
if self.memory is not None:
|
||||
# If there are multiple input keys, but some get set by memory so that
|
||||
# only one is not set, we can still figure out which key it is.
|
||||
_input_keys = _input_keys.difference(
|
||||
self.memory.memory_variables
|
||||
)
|
||||
if len(_input_keys) != 1:
|
||||
raise ValueError(
|
||||
f"A single string input was passed in, but this chain expects "
|
||||
f"multiple inputs ({_input_keys}). When a chain expects "
|
||||
f"multiple inputs, please call it by passing in a dictionary, "
|
||||
"eg `chain({'foo': 1, 'bar': 2})`"
|
||||
)
|
||||
inputs = {list(_input_keys)[0]: inputs}
|
||||
if self.memory is not None:
|
||||
external_context = self.memory.load_memory_variables(inputs)
|
||||
inputs = dict(inputs, **external_context)
|
||||
self._validate_inputs(inputs)
|
||||
return inputs
|
||||
|
||||
def apply(
|
||||
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
|
||||
) -> List[Dict[str, str]]:
|
||||
"""Call the chain on all inputs in the list."""
|
||||
return [self(inputs, callbacks=callbacks) for inputs in input_list]
|
||||
|
||||
def run(
|
||||
self,
|
||||
*args: Any,
|
||||
callbacks: Callbacks = None,
|
||||
tags: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Run the chain as text in, text out or multiple variables, text out."""
|
||||
if len(self.output_keys) != 1:
|
||||
raise ValueError(
|
||||
f"`run` not supported when there is not exactly "
|
||||
f"one output key. Got {self.output_keys}."
|
||||
)
|
||||
|
||||
if args and not kwargs:
|
||||
if len(args) != 1:
|
||||
raise ValueError(
|
||||
"`run` supports only one positional argument."
|
||||
)
|
||||
return self(args[0], callbacks=callbacks, tags=tags)[
|
||||
self.output_keys[0]
|
||||
]
|
||||
|
||||
if kwargs and not args:
|
||||
return self(kwargs, callbacks=callbacks, tags=tags)[
|
||||
self.output_keys[0]
|
||||
]
|
||||
|
||||
if not kwargs and not args:
|
||||
raise ValueError(
|
||||
"`run` supported with either positional arguments or keyword arguments,"
|
||||
" but none were provided."
|
||||
)
|
||||
|
||||
raise ValueError(
|
||||
f"`run` supported with either positional arguments or keyword arguments"
|
||||
f" but not both. Got args: {args} and kwargs: {kwargs}."
|
||||
)
|
||||
|
||||
def dict(self, **kwargs: Any) -> Dict:
|
||||
"""Return dictionary representation of chain."""
|
||||
if self.memory is not None:
|
||||
raise ValueError("Saving of memory is not yet supported.")
|
||||
_dict = super().dict()
|
||||
_dict["_type"] = self._chain_type
|
||||
return _dict
|
||||
|
||||
def save(self, file_path: Union[Path, str]) -> None:
|
||||
"""Save the chain.
|
||||
|
||||
Args:
|
||||
file_path: Path to file to save the chain to.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
chain.save(file_path="path/chain.yaml")
|
||||
"""
|
||||
# Convert file to Path object.
|
||||
if isinstance(file_path, str):
|
||||
save_path = Path(file_path)
|
||||
else:
|
||||
save_path = file_path
|
||||
|
||||
directory_path = save_path.parent
|
||||
directory_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Fetch dictionary to save
|
||||
chain_dict = self.dict()
|
||||
|
||||
if save_path.suffix == ".json":
|
||||
with open(file_path, "w") as f:
|
||||
json.dump(chain_dict, f, indent=4)
|
||||
elif save_path.suffix == ".yaml":
|
||||
with open(file_path, "w") as f:
|
||||
yaml.dump(chain_dict, f, default_flow_style=False)
|
||||
else:
|
||||
raise ValueError(f"{save_path} must be json or yaml")
|
||||
|
||||
|
||||
class BaseCombineDocumentsChain(Chain, ABC):
|
||||
"""Base interface for chains combining documents."""
|
||||
|
||||
input_key: str = "input_documents" #: :meta private:
|
||||
output_key: str = "output_text" #: :meta private:
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Expect input key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.input_key]
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
"""Return output key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.output_key]
|
||||
|
||||
def prompt_length(
|
||||
self, docs: List[Document], **kwargs: Any
|
||||
) -> Optional[int]:
|
||||
"""Return the prompt length given the documents passed in.
|
||||
|
||||
Returns None if the method does not depend on the prompt length.
|
||||
"""
|
||||
return None
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, List[Document]],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, str]:
|
||||
_run_manager = (
|
||||
run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||||
)
|
||||
docs = inputs[self.input_key]
|
||||
# Other keys are assumed to be needed for LLM prediction
|
||||
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
|
||||
doc_strings = [
|
||||
format_document(doc, self.document_prompt) for doc in docs
|
||||
]
|
||||
# Join the documents together to put them in the prompt.
|
||||
inputs = {
|
||||
k: v
|
||||
for k, v in other_keys.items()
|
||||
if k in self.llm_chain.prompt.input_variables
|
||||
}
|
||||
inputs[self.document_variable_name] = self.document_separator.join(
|
||||
doc_strings
|
||||
)
|
||||
|
||||
# Call predict on the LLM.
|
||||
output, extra_return_dict = (
|
||||
self.llm_chain(inputs, callbacks=_run_manager.get_child())[
|
||||
self.llm_chain.output_key
|
||||
],
|
||||
{},
|
||||
)
|
||||
|
||||
extra_return_dict[self.output_key] = output
|
||||
return extra_return_dict
|
||||
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class Generation(Serializable):
|
||||
"""Output of a single generation."""
|
||||
|
||||
text: str
|
||||
"""Generated text output."""
|
||||
|
||||
generation_info: Optional[Dict[str, Any]] = None
|
||||
"""Raw generation info response from the provider"""
|
||||
"""May include things like reason for finishing (e.g. in OpenAI)"""
|
||||
# TODO: add log probs
|
||||
|
||||
|
||||
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
|
||||
|
||||
|
||||
class LLMChain(Chain):
|
||||
"""Chain to run queries against LLMs.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import LLMChain, OpenAI, PromptTemplate
|
||||
prompt_template = "Tell me a {adjective} joke"
|
||||
prompt = PromptTemplate(
|
||||
input_variables=["adjective"], template=prompt_template
|
||||
)
|
||||
llm = LLMChain(llm=OpenAI(), prompt=prompt)
|
||||
"""
|
||||
|
||||
@property
|
||||
def lc_serializable(self) -> bool:
|
||||
return True
|
||||
|
||||
prompt: BasePromptTemplate
|
||||
"""Prompt object to use."""
|
||||
llm: BaseLanguageModel
|
||||
output_key: str = "text" #: :meta private:
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Will be whatever keys the prompt expects.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return self.prompt.input_variables
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
"""Will always return text key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.output_key]
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, str]:
|
||||
prompts, stop = self.prep_prompts([inputs], run_manager=run_manager)
|
||||
response = self.llm.generate_prompt(
|
||||
prompts,
|
||||
stop,
|
||||
callbacks=run_manager.get_child() if run_manager else None,
|
||||
)
|
||||
return self.create_outputs(response)[0]
|
||||
|
||||
def prep_prompts(
|
||||
self,
|
||||
input_list: List[Dict[str, Any]],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Tuple[List[PromptValue], Optional[List[str]]]:
|
||||
"""Prepare prompts from inputs."""
|
||||
stop = None
|
||||
if "stop" in input_list[0]:
|
||||
stop = input_list[0]["stop"]
|
||||
prompts = []
|
||||
for inputs in input_list:
|
||||
selected_inputs = {
|
||||
k: inputs[k] for k in self.prompt.input_variables
|
||||
}
|
||||
prompt = self.prompt.format_prompt(**selected_inputs)
|
||||
_colored_text = get_colored_text(prompt.to_string(), "green")
|
||||
_text = "Prompt after formatting:\n" + _colored_text
|
||||
if run_manager:
|
||||
run_manager.on_text(_text, end="\n", verbose=self.verbose)
|
||||
if "stop" in inputs and inputs["stop"] != stop:
|
||||
raise ValueError(
|
||||
"If `stop` is present in any inputs, should be present in all."
|
||||
)
|
||||
prompts.append(prompt)
|
||||
return prompts, stop
|
||||
|
||||
def apply(
|
||||
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
|
||||
) -> List[Dict[str, str]]:
|
||||
"""Utilize the LLM generate method for speed gains."""
|
||||
callback_manager = CallbackManager.configure(
|
||||
callbacks, self.callbacks, self.verbose
|
||||
)
|
||||
run_manager = callback_manager.on_chain_start(
|
||||
dumpd(self),
|
||||
{"input_list": input_list},
|
||||
)
|
||||
try:
|
||||
response = self.generate(input_list, run_manager=run_manager)
|
||||
except (KeyboardInterrupt, Exception) as e:
|
||||
run_manager.on_chain_error(e)
|
||||
raise e
|
||||
outputs = self.create_outputs(response)
|
||||
run_manager.on_chain_end({"outputs": outputs})
|
||||
return outputs
|
||||
|
||||
def create_outputs(self, response: LLMResult) -> List[Dict[str, str]]:
|
||||
"""Create outputs from response."""
|
||||
return [
|
||||
# Get the text of the top generated string.
|
||||
{self.output_key: generation[0].text}
|
||||
for generation in response.generations
|
||||
]
|
||||
|
||||
def predict_and_parse(
|
||||
self, callbacks: Callbacks = None, **kwargs: Any
|
||||
) -> Union[str, List[str], Dict[str, Any]]:
|
||||
"""Call predict and then parse the results."""
|
||||
result = self.predict(callbacks=callbacks, **kwargs)
|
||||
if self.prompt.output_parser is not None:
|
||||
return self.prompt.output_parser.parse(result)
|
||||
else:
|
||||
return result
|
||||
|
||||
def apply_and_parse(
|
||||
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
|
||||
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
|
||||
"""Call apply and then parse the results."""
|
||||
result = self.apply(input_list, callbacks=callbacks)
|
||||
return self._parse_result(result)
|
||||
|
||||
def _parse_result(
|
||||
self, result: List[Dict[str, str]]
|
||||
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
|
||||
if self.prompt.output_parser is not None:
|
||||
return [
|
||||
self.prompt.output_parser.parse(res[self.output_key])
|
||||
for res in result
|
||||
]
|
||||
else:
|
||||
return result
|
||||
|
||||
@property
|
||||
def _chain_type(self) -> str:
|
||||
return "llm_chain"
|
||||
|
||||
@classmethod
|
||||
def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain:
|
||||
"""Create LLMChain from LLM and template."""
|
||||
prompt_template = PromptTemplate.from_template(template)
|
||||
return cls(llm=llm, prompt=prompt_template)
|
||||
|
||||
|
||||
def _get_default_document_prompt() -> PromptTemplate:
|
||||
return PromptTemplate(
|
||||
input_variables=["page_content"], template="{page_content}"
|
||||
)
|
||||
|
||||
|
||||
class StuffDocumentsChain(BaseCombineDocumentsChain):
|
||||
"""Chain that combines documents by stuffing into context."""
|
||||
|
||||
llm_chain: LLMChain
|
||||
"""LLM wrapper to use after formatting documents."""
|
||||
document_prompt: BasePromptTemplate = Field(
|
||||
default_factory=_get_default_document_prompt
|
||||
)
|
||||
"""Prompt to use to format each document."""
|
||||
document_variable_name: str
|
||||
"""The variable name in the llm_chain to put the documents in.
|
||||
If only one variable in the llm_chain, this need not be provided."""
|
||||
document_separator: str = "\n\n"
|
||||
"""The string with which to join the formatted documents"""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@root_validator(pre=True)
|
||||
def get_default_document_variable_name(cls, values: Dict) -> Dict:
|
||||
"""Get default document variable name, if not provided."""
|
||||
llm_chain_variables = values["llm_chain"].prompt.input_variables
|
||||
if "document_variable_name" not in values:
|
||||
if len(llm_chain_variables) == 1:
|
||||
values["document_variable_name"] = llm_chain_variables[0]
|
||||
else:
|
||||
raise ValueError(
|
||||
"document_variable_name must be provided if there are "
|
||||
"multiple llm_chain_variables"
|
||||
)
|
||||
else:
|
||||
if values["document_variable_name"] not in llm_chain_variables:
|
||||
raise ValueError(
|
||||
f"document_variable_name {values['document_variable_name']} was "
|
||||
f"not found in llm_chain input_variables: {llm_chain_variables}"
|
||||
)
|
||||
return values
|
||||
|
||||
def _get_inputs(self, docs: List[Document], **kwargs: Any) -> dict:
|
||||
# Format each document according to the prompt
|
||||
doc_strings = [
|
||||
format_document(doc, self.document_prompt) for doc in docs
|
||||
]
|
||||
# Join the documents together to put them in the prompt.
|
||||
inputs = {
|
||||
k: v
|
||||
for k, v in kwargs.items()
|
||||
if k in self.llm_chain.prompt.input_variables
|
||||
}
|
||||
inputs[self.document_variable_name] = self.document_separator.join(
|
||||
doc_strings
|
||||
)
|
||||
return inputs
|
||||
|
||||
def prompt_length(
|
||||
self, docs: List[Document], **kwargs: Any
|
||||
) -> Optional[int]:
|
||||
"""Get the prompt length by formatting the prompt."""
|
||||
inputs = self._get_inputs(docs, **kwargs)
|
||||
prompt = self.llm_chain.prompt.format(**inputs)
|
||||
return self.llm_chain.llm.get_num_tokens(prompt)
|
||||
|
||||
@property
|
||||
def _chain_type(self) -> str:
|
||||
return "stuff_documents_chain"
|
||||
|
||||
|
||||
class LoadingCallable(Protocol):
|
||||
"""Interface for loading the combine documents chain."""
|
||||
|
||||
def __call__(
|
||||
self, llm: BaseLanguageModel, **kwargs: Any
|
||||
) -> BaseCombineDocumentsChain:
|
||||
"""Callable to load the combine documents chain."""
|
||||
|
||||
|
||||
def _load_stuff_chain(
|
||||
llm: BaseLanguageModel,
|
||||
prompt: Optional[BasePromptTemplate] = None,
|
||||
document_variable_name: str = "context",
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs: Any,
|
||||
) -> StuffDocumentsChain:
|
||||
_prompt = prompt or stuff_prompt.PROMPT_SELECTOR.get_prompt(llm)
|
||||
llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=_prompt,
|
||||
verbose=verbose,
|
||||
callback_manager=callback_manager,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
# TODO: document prompt
|
||||
return StuffDocumentsChain(
|
||||
llm_chain=llm_chain,
|
||||
document_variable_name=document_variable_name,
|
||||
verbose=verbose,
|
||||
callback_manager=callback_manager,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def load_qa_chain(
|
||||
llm: BaseLanguageModel,
|
||||
chain_type: str = "stuff",
|
||||
verbose: Optional[bool] = None,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
**kwargs: Any,
|
||||
) -> BaseCombineDocumentsChain:
|
||||
"""Load question answering chain.
|
||||
|
||||
Args:
|
||||
llm: Language Model to use in the chain.
|
||||
chain_type: Type of document combining chain to use. Should be one of "stuff",
|
||||
"map_reduce", "map_rerank", and "refine".
|
||||
verbose: Whether chains should be run in verbose mode or not. Note that this
|
||||
applies to all chains that make up the final chain.
|
||||
callback_manager: Callback manager to use for the chain.
|
||||
|
||||
Returns:
|
||||
A chain to use for question answering.
|
||||
"""
|
||||
loader_mapping: Mapping[str, LoadingCallable] = {
|
||||
"stuff": _load_stuff_chain,
|
||||
}
|
||||
if chain_type not in loader_mapping:
|
||||
raise ValueError(
|
||||
f"Got unsupported chain type: {chain_type}. "
|
||||
f"Should be one of {loader_mapping.keys()}"
|
||||
)
|
||||
return loader_mapping[chain_type](
|
||||
llm, verbose=verbose, callback_manager=callback_manager, **kwargs
|
||||
)
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,380 +0,0 @@
|
||||
import inspect
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import Dict, Any, Optional, List
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from pydantic import root_validator
|
||||
from langchain.llms import gpt4all
|
||||
from dotenv import dotenv_values
|
||||
|
||||
from utils import FakeTokenizer
|
||||
|
||||
|
||||
def get_model_tokenizer_gpt4all(base_model, **kwargs):
|
||||
# defaults (some of these are generation parameters, so need to be passed in at generation time)
|
||||
model_kwargs = dict(
|
||||
n_threads=os.cpu_count() // 2,
|
||||
temp=kwargs.get("temperature", 0.2),
|
||||
top_p=kwargs.get("top_p", 0.75),
|
||||
top_k=kwargs.get("top_k", 40),
|
||||
n_ctx=2048 - 256,
|
||||
)
|
||||
env_gpt4all_file = ".env_gpt4all"
|
||||
model_kwargs.update(dotenv_values(env_gpt4all_file))
|
||||
# make int or float if can to satisfy types for class
|
||||
for k, v in model_kwargs.items():
|
||||
try:
|
||||
if float(v) == int(v):
|
||||
model_kwargs[k] = int(v)
|
||||
else:
|
||||
model_kwargs[k] = float(v)
|
||||
except:
|
||||
pass
|
||||
|
||||
if base_model == "llama":
|
||||
if "model_path_llama" not in model_kwargs:
|
||||
raise ValueError("No model_path_llama in %s" % env_gpt4all_file)
|
||||
model_path = model_kwargs.pop("model_path_llama")
|
||||
# FIXME: GPT4All version of llama doesn't handle new quantization, so use llama_cpp_python
|
||||
from llama_cpp import Llama
|
||||
|
||||
# llama sets some things at init model time, not generation time
|
||||
func_names = list(inspect.signature(Llama.__init__).parameters)
|
||||
model_kwargs = {
|
||||
k: v for k, v in model_kwargs.items() if k in func_names
|
||||
}
|
||||
model_kwargs["n_ctx"] = int(model_kwargs["n_ctx"])
|
||||
model = Llama(model_path=model_path, **model_kwargs)
|
||||
elif base_model in "gpt4all_llama":
|
||||
if (
|
||||
"model_name_gpt4all_llama" not in model_kwargs
|
||||
and "model_path_gpt4all_llama" not in model_kwargs
|
||||
):
|
||||
raise ValueError(
|
||||
"No model_name_gpt4all_llama or model_path_gpt4all_llama in %s"
|
||||
% env_gpt4all_file
|
||||
)
|
||||
model_name = model_kwargs.pop("model_name_gpt4all_llama")
|
||||
model_type = "llama"
|
||||
from gpt4all import GPT4All as GPT4AllModel
|
||||
|
||||
model = GPT4AllModel(model_name=model_name, model_type=model_type)
|
||||
elif base_model in "gptj":
|
||||
if (
|
||||
"model_name_gptj" not in model_kwargs
|
||||
and "model_path_gptj" not in model_kwargs
|
||||
):
|
||||
raise ValueError(
|
||||
"No model_name_gpt4j or model_path_gpt4j in %s"
|
||||
% env_gpt4all_file
|
||||
)
|
||||
model_name = model_kwargs.pop("model_name_gptj")
|
||||
model_type = "gptj"
|
||||
from gpt4all import GPT4All as GPT4AllModel
|
||||
|
||||
model = GPT4AllModel(model_name=model_name, model_type=model_type)
|
||||
else:
|
||||
raise ValueError("No such base_model %s" % base_model)
|
||||
return model, FakeTokenizer(), "cpu"
|
||||
|
||||
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
|
||||
|
||||
class H2OStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler):
|
||||
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
||||
"""Run on new LLM token. Only available when streaming is enabled."""
|
||||
# streaming to std already occurs without this
|
||||
# sys.stdout.write(token)
|
||||
# sys.stdout.flush()
|
||||
pass
|
||||
|
||||
|
||||
def get_model_kwargs(env_kwargs, default_kwargs, cls, exclude_list=[]):
|
||||
# default from class
|
||||
model_kwargs = {
|
||||
k: v.default
|
||||
for k, v in dict(inspect.signature(cls).parameters).items()
|
||||
if k not in exclude_list
|
||||
}
|
||||
# from our defaults
|
||||
model_kwargs.update(default_kwargs)
|
||||
# from user defaults
|
||||
model_kwargs.update(env_kwargs)
|
||||
# ensure only valid keys
|
||||
func_names = list(inspect.signature(cls).parameters)
|
||||
model_kwargs = {k: v for k, v in model_kwargs.items() if k in func_names}
|
||||
return model_kwargs
|
||||
|
||||
|
||||
def get_llm_gpt4all(
|
||||
model_name,
|
||||
model=None,
|
||||
max_new_tokens=256,
|
||||
temperature=0.1,
|
||||
repetition_penalty=1.0,
|
||||
top_k=40,
|
||||
top_p=0.7,
|
||||
streaming=False,
|
||||
callbacks=None,
|
||||
prompter=None,
|
||||
verbose=False,
|
||||
):
|
||||
assert prompter is not None
|
||||
env_gpt4all_file = ".env_gpt4all"
|
||||
env_kwargs = dotenv_values(env_gpt4all_file)
|
||||
n_ctx = env_kwargs.pop("n_ctx", 2048 - max_new_tokens)
|
||||
default_kwargs = dict(
|
||||
context_erase=0.5,
|
||||
n_batch=1,
|
||||
n_ctx=n_ctx,
|
||||
n_predict=max_new_tokens,
|
||||
repeat_last_n=64 if repetition_penalty != 1.0 else 0,
|
||||
repeat_penalty=repetition_penalty,
|
||||
temp=temperature,
|
||||
temperature=temperature,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
use_mlock=True,
|
||||
verbose=verbose,
|
||||
)
|
||||
if model_name == "llama":
|
||||
cls = H2OLlamaCpp
|
||||
model_path = (
|
||||
env_kwargs.pop("model_path_llama") if model is None else model
|
||||
)
|
||||
model_kwargs = get_model_kwargs(
|
||||
env_kwargs, default_kwargs, cls, exclude_list=["lc_kwargs"]
|
||||
)
|
||||
model_kwargs.update(
|
||||
dict(
|
||||
model_path=model_path,
|
||||
callbacks=callbacks,
|
||||
streaming=streaming,
|
||||
prompter=prompter,
|
||||
)
|
||||
)
|
||||
llm = cls(**model_kwargs)
|
||||
llm.client.verbose = verbose
|
||||
elif model_name == "gpt4all_llama":
|
||||
cls = H2OGPT4All
|
||||
model_path = (
|
||||
env_kwargs.pop("model_path_gpt4all_llama")
|
||||
if model is None
|
||||
else model
|
||||
)
|
||||
model_kwargs = get_model_kwargs(
|
||||
env_kwargs, default_kwargs, cls, exclude_list=["lc_kwargs"]
|
||||
)
|
||||
model_kwargs.update(
|
||||
dict(
|
||||
model=model_path,
|
||||
backend="llama",
|
||||
callbacks=callbacks,
|
||||
streaming=streaming,
|
||||
prompter=prompter,
|
||||
)
|
||||
)
|
||||
llm = cls(**model_kwargs)
|
||||
elif model_name == "gptj":
|
||||
cls = H2OGPT4All
|
||||
model_path = (
|
||||
env_kwargs.pop("model_path_gptj") if model is None else model
|
||||
)
|
||||
model_kwargs = get_model_kwargs(
|
||||
env_kwargs, default_kwargs, cls, exclude_list=["lc_kwargs"]
|
||||
)
|
||||
model_kwargs.update(
|
||||
dict(
|
||||
model=model_path,
|
||||
backend="gptj",
|
||||
callbacks=callbacks,
|
||||
streaming=streaming,
|
||||
prompter=prompter,
|
||||
)
|
||||
)
|
||||
llm = cls(**model_kwargs)
|
||||
else:
|
||||
raise RuntimeError("No such model_name %s" % model_name)
|
||||
return llm
|
||||
|
||||
|
||||
class H2OGPT4All(gpt4all.GPT4All):
|
||||
model: Any
|
||||
prompter: Any
|
||||
"""Path to the pre-trained GPT4All model file."""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that the python package exists in the environment."""
|
||||
try:
|
||||
if isinstance(values["model"], str):
|
||||
from gpt4all import GPT4All as GPT4AllModel
|
||||
|
||||
full_path = values["model"]
|
||||
model_path, delimiter, model_name = full_path.rpartition("/")
|
||||
model_path += delimiter
|
||||
|
||||
values["client"] = GPT4AllModel(
|
||||
model_name=model_name,
|
||||
model_path=model_path or None,
|
||||
model_type=values["backend"],
|
||||
allow_download=False,
|
||||
)
|
||||
if values["n_threads"] is not None:
|
||||
# set n_threads
|
||||
values["client"].model.set_thread_count(
|
||||
values["n_threads"]
|
||||
)
|
||||
else:
|
||||
values["client"] = values["model"]
|
||||
try:
|
||||
values["backend"] = values["client"].model_type
|
||||
except AttributeError:
|
||||
# The below is for compatibility with GPT4All Python bindings <= 0.2.3.
|
||||
values["backend"] = values["client"].model.model_type
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import gpt4all python package. "
|
||||
"Please install it with `pip install gpt4all`."
|
||||
)
|
||||
return values
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
# Roughly 4 chars per token if natural language
|
||||
prompt = prompt[-self.n_ctx * 4 :]
|
||||
|
||||
# use instruct prompting
|
||||
data_point = dict(context="", instruction=prompt, input="")
|
||||
prompt = self.prompter.generate_prompt(data_point)
|
||||
|
||||
verbose = False
|
||||
if verbose:
|
||||
print("_call prompt: %s" % prompt, flush=True)
|
||||
# FIXME: GPT4ALl doesn't support yield during generate, so cannot support streaming except via itself to stdout
|
||||
return super()._call(prompt, stop=stop, run_manager=run_manager)
|
||||
|
||||
|
||||
from langchain.llms import LlamaCpp
|
||||
|
||||
|
||||
class H2OLlamaCpp(LlamaCpp):
|
||||
model_path: Any
|
||||
prompter: Any
|
||||
"""Path to the pre-trained GPT4All model file."""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that llama-cpp-python library is installed."""
|
||||
if isinstance(values["model_path"], str):
|
||||
model_path = values["model_path"]
|
||||
model_param_names = [
|
||||
"lora_path",
|
||||
"lora_base",
|
||||
"n_ctx",
|
||||
"n_parts",
|
||||
"seed",
|
||||
"f16_kv",
|
||||
"logits_all",
|
||||
"vocab_only",
|
||||
"use_mlock",
|
||||
"n_threads",
|
||||
"n_batch",
|
||||
"use_mmap",
|
||||
"last_n_tokens_size",
|
||||
]
|
||||
model_params = {k: values[k] for k in model_param_names}
|
||||
# For backwards compatibility, only include if non-null.
|
||||
if values["n_gpu_layers"] is not None:
|
||||
model_params["n_gpu_layers"] = values["n_gpu_layers"]
|
||||
|
||||
try:
|
||||
from llama_cpp import Llama
|
||||
|
||||
values["client"] = Llama(model_path, **model_params)
|
||||
except ImportError:
|
||||
raise ModuleNotFoundError(
|
||||
"Could not import llama-cpp-python library. "
|
||||
"Please install the llama-cpp-python library to "
|
||||
"use this embedding model: pip install llama-cpp-python"
|
||||
)
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
f"Could not load Llama model from path: {model_path}. "
|
||||
f"Received error {e}"
|
||||
)
|
||||
else:
|
||||
values["client"] = values["model_path"]
|
||||
return values
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
verbose = False
|
||||
# tokenize twice, just to count tokens, since llama cpp python wrapper has no way to truncate
|
||||
# still have to avoid crazy sizes, else hit llama_tokenize: too many tokens -- might still hit, not fatal
|
||||
prompt = prompt[-self.n_ctx * 4 :]
|
||||
prompt_tokens = self.client.tokenize(b" " + prompt.encode("utf-8"))
|
||||
num_prompt_tokens = len(prompt_tokens)
|
||||
if num_prompt_tokens > self.n_ctx:
|
||||
# conservative by using int()
|
||||
chars_per_token = int(len(prompt) / num_prompt_tokens)
|
||||
prompt = prompt[-self.n_ctx * chars_per_token :]
|
||||
if verbose:
|
||||
print(
|
||||
"reducing tokens, assuming average of %s chars/token: %s"
|
||||
% chars_per_token,
|
||||
flush=True,
|
||||
)
|
||||
prompt_tokens2 = self.client.tokenize(
|
||||
b" " + prompt.encode("utf-8")
|
||||
)
|
||||
num_prompt_tokens2 = len(prompt_tokens2)
|
||||
print(
|
||||
"reduced tokens from %d -> %d"
|
||||
% (num_prompt_tokens, num_prompt_tokens2),
|
||||
flush=True,
|
||||
)
|
||||
|
||||
# use instruct prompting
|
||||
data_point = dict(context="", instruction=prompt, input="")
|
||||
prompt = self.prompter.generate_prompt(data_point)
|
||||
|
||||
if verbose:
|
||||
print("_call prompt: %s" % prompt, flush=True)
|
||||
|
||||
if self.streaming:
|
||||
text_callback = None
|
||||
if run_manager:
|
||||
text_callback = partial(
|
||||
run_manager.on_llm_new_token, verbose=self.verbose
|
||||
)
|
||||
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
|
||||
if text_callback:
|
||||
text_callback(prompt)
|
||||
text = ""
|
||||
for token in self.stream(
|
||||
prompt=prompt, stop=stop, run_manager=run_manager
|
||||
):
|
||||
text_chunk = token["choices"][0]["text"]
|
||||
# self.stream already calls text_callback
|
||||
# if text_callback:
|
||||
# text_callback(text_chunk)
|
||||
text += text_chunk
|
||||
return text
|
||||
else:
|
||||
params = self._get_parameters(stop)
|
||||
params = {**params, **kwargs}
|
||||
result = self.client(prompt=prompt, **params)
|
||||
return result["choices"][0]["text"]
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,93 +0,0 @@
|
||||
import traceback
|
||||
from typing import Callable
|
||||
import os
|
||||
|
||||
from gradio_client.client import Job
|
||||
|
||||
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
|
||||
|
||||
from gradio_client import Client
|
||||
|
||||
|
||||
class GradioClient(Client):
|
||||
"""
|
||||
Parent class of gradio client
|
||||
To handle automatically refreshing client if detect gradio server changed
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.args = args
|
||||
self.kwargs = kwargs
|
||||
super().__init__(*args, **kwargs)
|
||||
self.server_hash = self.get_server_hash()
|
||||
|
||||
def get_server_hash(self):
|
||||
"""
|
||||
Get server hash using super without any refresh action triggered
|
||||
Returns: git hash of gradio server
|
||||
"""
|
||||
return super().submit(api_name="/system_hash").result()
|
||||
|
||||
def refresh_client_if_should(self):
|
||||
# get current hash in order to update api_name -> fn_index map in case gradio server changed
|
||||
# FIXME: Could add cli api as hash
|
||||
server_hash = self.get_server_hash()
|
||||
if self.server_hash != server_hash:
|
||||
self.refresh_client()
|
||||
self.server_hash = server_hash
|
||||
else:
|
||||
self.reset_session()
|
||||
|
||||
def refresh_client(self):
|
||||
"""
|
||||
Ensure every client call is independent
|
||||
Also ensure map between api_name and fn_index is updated in case server changed (e.g. restarted with new code)
|
||||
Returns:
|
||||
"""
|
||||
# need session hash to be new every time, to avoid "generator already executing"
|
||||
self.reset_session()
|
||||
|
||||
client = Client(*self.args, **self.kwargs)
|
||||
for k, v in client.__dict__.items():
|
||||
setattr(self, k, v)
|
||||
|
||||
def submit(
|
||||
self,
|
||||
*args,
|
||||
api_name: str | None = None,
|
||||
fn_index: int | None = None,
|
||||
result_callbacks: Callable | list[Callable] | None = None,
|
||||
) -> Job:
|
||||
# Note predict calls submit
|
||||
try:
|
||||
self.refresh_client_if_should()
|
||||
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
|
||||
except Exception as e:
|
||||
print("Hit e=%s" % str(e), flush=True)
|
||||
# force reconfig in case only that
|
||||
self.refresh_client()
|
||||
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
|
||||
|
||||
# see if immediately failed
|
||||
e = job.future._exception
|
||||
if e is not None:
|
||||
print(
|
||||
"GR job failed: %s %s"
|
||||
% (str(e), "".join(traceback.format_tb(e.__traceback__))),
|
||||
flush=True,
|
||||
)
|
||||
# force reconfig in case only that
|
||||
self.refresh_client()
|
||||
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
|
||||
e2 = job.future._exception
|
||||
if e2 is not None:
|
||||
print(
|
||||
"GR job failed again: %s\n%s"
|
||||
% (
|
||||
str(e2),
|
||||
"".join(traceback.format_tb(e2.__traceback__)),
|
||||
),
|
||||
flush=True,
|
||||
)
|
||||
|
||||
return job
|
||||
@@ -1,765 +0,0 @@
|
||||
import os
|
||||
from apps.stable_diffusion.src.utils.utils import _compile_module
|
||||
from io import BytesIO
|
||||
import torch_mlir
|
||||
|
||||
from stopping import get_stopping
|
||||
from prompter import Prompter, PromptType
|
||||
|
||||
from transformers import TextGenerationPipeline
|
||||
from transformers.pipelines.text_generation import ReturnType
|
||||
from transformers.generation import (
|
||||
GenerationConfig,
|
||||
LogitsProcessorList,
|
||||
StoppingCriteriaList,
|
||||
)
|
||||
import copy
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoModelForCausalLM
|
||||
import gc
|
||||
from pathlib import Path
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_public_file
|
||||
from shark.shark_importer import import_with_fx, save_mlir
|
||||
from apps.stable_diffusion.src import args
|
||||
|
||||
# Brevitas
|
||||
from typing import List, Tuple
|
||||
from brevitas_examples.llm.llm_quant.quantize import quantize_model
|
||||
from brevitas_examples.llm.llm_quant.run_utils import get_model_impl
|
||||
|
||||
|
||||
# fmt: off
|
||||
def quant〇matmul_rhs_group_quant〡shape(lhs: List[int], rhs: List[int], rhs_scale: List[int], rhs_zero_point: List[int], rhs_bit_width: int, rhs_group_size: int) -> List[int]:
|
||||
if len(lhs) == 3 and len(rhs) == 2:
|
||||
return [lhs[0], lhs[1], rhs[0]]
|
||||
elif len(lhs) == 2 and len(rhs) == 2:
|
||||
return [lhs[0], rhs[0]]
|
||||
else:
|
||||
raise ValueError("Input shapes not supported.")
|
||||
|
||||
|
||||
def quant〇matmul_rhs_group_quant〡dtype(lhs_rank_dtype: Tuple[int, int], rhs_rank_dtype: Tuple[int, int], rhs_scale_rank_dtype: Tuple[int, int], rhs_zero_point_rank_dtype: Tuple[int, int], rhs_bit_width: int, rhs_group_size: int) -> int:
|
||||
# output dtype is the dtype of the lhs float input
|
||||
lhs_rank, lhs_dtype = lhs_rank_dtype
|
||||
return lhs_dtype
|
||||
|
||||
|
||||
def quant〇matmul_rhs_group_quant〡has_value_semantics(lhs, rhs, rhs_scale, rhs_zero_point, rhs_bit_width, rhs_group_size) -> None:
|
||||
return
|
||||
|
||||
|
||||
brevitas_matmul_rhs_group_quant_library = [
|
||||
quant〇matmul_rhs_group_quant〡shape,
|
||||
quant〇matmul_rhs_group_quant〡dtype,
|
||||
quant〇matmul_rhs_group_quant〡has_value_semantics]
|
||||
# fmt: on
|
||||
|
||||
global_device = "cuda"
|
||||
global_precision = "fp16"
|
||||
|
||||
if not args.run_docuchat_web:
|
||||
args.device = global_device
|
||||
args.precision = global_precision
|
||||
tensor_device = "cpu" if args.device == "cpu" else "cuda"
|
||||
|
||||
|
||||
class H2OGPTModel(torch.nn.Module):
|
||||
def __init__(self, device, precision):
|
||||
super().__init__()
|
||||
torch_dtype = (
|
||||
torch.float32
|
||||
if precision == "fp32" or device == "cpu"
|
||||
else torch.float16
|
||||
)
|
||||
device_map = {"": "cpu"} if device == "cpu" else {"": 0}
|
||||
model_kwargs = {
|
||||
"local_files_only": False,
|
||||
"torch_dtype": torch_dtype,
|
||||
"resume_download": True,
|
||||
"use_auth_token": False,
|
||||
"trust_remote_code": True,
|
||||
"offload_folder": "offline_folder",
|
||||
"device_map": device_map,
|
||||
}
|
||||
config = AutoConfig.from_pretrained(
|
||||
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
||||
use_auth_token=False,
|
||||
trust_remote_code=True,
|
||||
offload_folder="offline_folder",
|
||||
)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
||||
config=config,
|
||||
**model_kwargs,
|
||||
)
|
||||
if precision in ["int4", "int8"]:
|
||||
print("Applying weight quantization..")
|
||||
weight_bit_width = 4 if precision == "int4" else 8
|
||||
quantize_model(
|
||||
self.model.transformer.h,
|
||||
dtype=torch.float32,
|
||||
weight_bit_width=weight_bit_width,
|
||||
weight_param_method="stats",
|
||||
weight_scale_precision="float",
|
||||
weight_quant_type="asym",
|
||||
weight_quant_granularity="per_group",
|
||||
weight_group_size=128,
|
||||
quantize_weight_zero_point=False,
|
||||
)
|
||||
print("Weight quantization applied.")
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
input_dict = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"past_key_values": None,
|
||||
"use_cache": True,
|
||||
}
|
||||
output = self.model(
|
||||
**input_dict,
|
||||
return_dict=True,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
)
|
||||
return output.logits[:, -1, :]
|
||||
|
||||
|
||||
class H2OGPTSHARKModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
model_name = "h2ogpt_falcon_7b"
|
||||
extended_model_name = (
|
||||
model_name + "_" + args.precision + "_" + args.device
|
||||
)
|
||||
vmfb_path = Path(extended_model_name + ".vmfb")
|
||||
mlir_path = Path(model_name + "_" + args.precision + ".mlir")
|
||||
shark_module = None
|
||||
|
||||
need_to_compile = False
|
||||
if not vmfb_path.exists():
|
||||
need_to_compile = True
|
||||
# Downloading VMFB from shark_tank
|
||||
print("Trying to download pre-compiled vmfb from shark tank.")
|
||||
download_public_file(
|
||||
"gs://shark_tank/langchain/" + str(vmfb_path),
|
||||
vmfb_path.absolute(),
|
||||
single_file=True,
|
||||
)
|
||||
if vmfb_path.exists():
|
||||
print(
|
||||
"Pre-compiled vmfb downloaded from shark tank successfully."
|
||||
)
|
||||
need_to_compile = False
|
||||
|
||||
if need_to_compile:
|
||||
if not mlir_path.exists():
|
||||
print("Trying to download pre-generated mlir from shark tank.")
|
||||
# Downloading MLIR from shark_tank
|
||||
download_public_file(
|
||||
"gs://shark_tank/langchain/" + str(mlir_path),
|
||||
mlir_path.absolute(),
|
||||
single_file=True,
|
||||
)
|
||||
if mlir_path.exists():
|
||||
with open(mlir_path, "rb") as f:
|
||||
bytecode = f.read()
|
||||
else:
|
||||
# Generating the mlir
|
||||
bytecode = self.get_bytecode(tensor_device, args.precision)
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module=bytecode,
|
||||
device=args.device,
|
||||
mlir_dialect="linalg",
|
||||
)
|
||||
print(f"[DEBUG] generating vmfb.")
|
||||
shark_module = _compile_module(
|
||||
shark_module, extended_model_name, []
|
||||
)
|
||||
print("Saved newly generated vmfb.")
|
||||
|
||||
if shark_module is None:
|
||||
if vmfb_path.exists():
|
||||
print("Compiled vmfb found. Loading it from: ", vmfb_path)
|
||||
shark_module = SharkInference(
|
||||
None, device=args.device, mlir_dialect="linalg"
|
||||
)
|
||||
shark_module.load_module(str(vmfb_path))
|
||||
print("Compiled vmfb loaded successfully.")
|
||||
else:
|
||||
raise ValueError("Unable to download/generate a vmfb.")
|
||||
|
||||
self.model = shark_module
|
||||
|
||||
def get_bytecode(self, device, precision):
|
||||
h2ogpt_model = H2OGPTModel(device, precision)
|
||||
|
||||
compilation_input_ids = torch.randint(
|
||||
low=1, high=10000, size=(1, 400)
|
||||
).to(device=device)
|
||||
compilation_attention_mask = torch.ones(1, 400, dtype=torch.int64).to(
|
||||
device=device
|
||||
)
|
||||
|
||||
h2ogptCompileInput = (
|
||||
compilation_input_ids,
|
||||
compilation_attention_mask,
|
||||
)
|
||||
|
||||
print(f"[DEBUG] generating torchscript graph")
|
||||
ts_graph = import_with_fx(
|
||||
h2ogpt_model,
|
||||
h2ogptCompileInput,
|
||||
is_f16=False,
|
||||
precision=precision,
|
||||
f16_input_mask=[False, False],
|
||||
mlir_type="torchscript",
|
||||
)
|
||||
del h2ogpt_model
|
||||
del self.src_model
|
||||
|
||||
print(f"[DEBUG] generating torch mlir")
|
||||
if precision in ["int4", "int8"]:
|
||||
from torch_mlir.compiler_utils import (
|
||||
run_pipeline_with_repro_report,
|
||||
)
|
||||
|
||||
module = torch_mlir.compile(
|
||||
ts_graph,
|
||||
[*h2ogptCompileInput],
|
||||
output_type=torch_mlir.OutputType.TORCH,
|
||||
backend_legal_ops=["quant.matmul_rhs_group_quant"],
|
||||
extra_library=brevitas_matmul_rhs_group_quant_library,
|
||||
use_tracing=False,
|
||||
verbose=False,
|
||||
)
|
||||
print(f"[DEBUG] converting torch to linalg")
|
||||
run_pipeline_with_repro_report(
|
||||
module,
|
||||
"builtin.module(func.func(torch-unpack-quant-tensor),func.func(torch-convert-custom-quant-op),torch-backend-to-linalg-on-tensors-backend-pipeline)",
|
||||
description="Lowering Torch Backend IR -> Linalg-on-Tensors Backend IR",
|
||||
)
|
||||
else:
|
||||
module = torch_mlir.compile(
|
||||
ts_graph,
|
||||
[*h2ogptCompileInput],
|
||||
torch_mlir.OutputType.LINALG_ON_TENSORS,
|
||||
use_tracing=False,
|
||||
verbose=False,
|
||||
)
|
||||
del ts_graph
|
||||
|
||||
print(f"[DEBUG] converting to bytecode")
|
||||
bytecode_stream = BytesIO()
|
||||
module.operation.write_bytecode(bytecode_stream)
|
||||
bytecode = bytecode_stream.getvalue()
|
||||
del module
|
||||
|
||||
bytecode = save_mlir(
|
||||
bytecode,
|
||||
model_name=f"h2ogpt_{precision}",
|
||||
frontend="torch",
|
||||
)
|
||||
return bytecode
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
result = torch.from_numpy(
|
||||
self.model(
|
||||
"forward",
|
||||
(input_ids.to(device="cpu"), attention_mask.to(device="cpu")),
|
||||
)
|
||||
).to(device=tensor_device)
|
||||
return result
|
||||
|
||||
|
||||
def decode_tokens(tokenizer, res_tokens):
|
||||
for i in range(len(res_tokens)):
|
||||
if type(res_tokens[i]) != int:
|
||||
res_tokens[i] = int(res_tokens[i][0])
|
||||
|
||||
res_str = tokenizer.decode(res_tokens, skip_special_tokens=True)
|
||||
return res_str
|
||||
|
||||
|
||||
def generate_token(h2ogpt_shark_model, model, tokenizer, **generate_kwargs):
|
||||
del generate_kwargs["max_time"]
|
||||
generate_kwargs["input_ids"] = generate_kwargs["input_ids"].to(
|
||||
device=tensor_device
|
||||
)
|
||||
generate_kwargs["attention_mask"] = generate_kwargs["attention_mask"].to(
|
||||
device=tensor_device
|
||||
)
|
||||
truncated_input_ids = []
|
||||
stopping_criteria = generate_kwargs["stopping_criteria"]
|
||||
|
||||
generation_config_ = GenerationConfig.from_model_config(model.config)
|
||||
generation_config = copy.deepcopy(generation_config_)
|
||||
model_kwargs = generation_config.update(**generate_kwargs)
|
||||
|
||||
logits_processor = LogitsProcessorList()
|
||||
stopping_criteria = (
|
||||
stopping_criteria
|
||||
if stopping_criteria is not None
|
||||
else StoppingCriteriaList()
|
||||
)
|
||||
|
||||
eos_token_id = generation_config.eos_token_id
|
||||
generation_config.pad_token_id = eos_token_id
|
||||
|
||||
(
|
||||
inputs_tensor,
|
||||
model_input_name,
|
||||
model_kwargs,
|
||||
) = model._prepare_model_inputs(
|
||||
None, generation_config.bos_token_id, model_kwargs
|
||||
)
|
||||
|
||||
model_kwargs["output_attentions"] = generation_config.output_attentions
|
||||
model_kwargs[
|
||||
"output_hidden_states"
|
||||
] = generation_config.output_hidden_states
|
||||
model_kwargs["use_cache"] = generation_config.use_cache
|
||||
|
||||
input_ids = (
|
||||
inputs_tensor
|
||||
if model_input_name == "input_ids"
|
||||
else model_kwargs.pop("input_ids")
|
||||
)
|
||||
|
||||
input_ids_seq_length = input_ids.shape[-1]
|
||||
|
||||
generation_config.max_length = (
|
||||
generation_config.max_new_tokens + input_ids_seq_length
|
||||
)
|
||||
|
||||
logits_processor = model._get_logits_processor(
|
||||
generation_config=generation_config,
|
||||
input_ids_seq_length=input_ids_seq_length,
|
||||
encoder_input_ids=inputs_tensor,
|
||||
prefix_allowed_tokens_fn=None,
|
||||
logits_processor=logits_processor,
|
||||
)
|
||||
|
||||
stopping_criteria = model._get_stopping_criteria(
|
||||
generation_config=generation_config,
|
||||
stopping_criteria=stopping_criteria,
|
||||
)
|
||||
|
||||
logits_warper = model._get_logits_warper(generation_config)
|
||||
|
||||
(
|
||||
input_ids,
|
||||
model_kwargs,
|
||||
) = model._expand_inputs_for_generation(
|
||||
input_ids=input_ids,
|
||||
expand_size=generation_config.num_return_sequences, # 1
|
||||
is_encoder_decoder=model.config.is_encoder_decoder, # False
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
if isinstance(eos_token_id, int):
|
||||
eos_token_id = [eos_token_id]
|
||||
eos_token_id_tensor = (
|
||||
torch.tensor(eos_token_id).to(device=tensor_device)
|
||||
if eos_token_id is not None
|
||||
else None
|
||||
)
|
||||
|
||||
pad_token_id = generation_config.pad_token_id
|
||||
eos_token_id = eos_token_id
|
||||
|
||||
output_scores = generation_config.output_scores # False
|
||||
return_dict_in_generate = (
|
||||
generation_config.return_dict_in_generate # False
|
||||
)
|
||||
|
||||
# init attention / hidden states / scores tuples
|
||||
scores = () if (return_dict_in_generate and output_scores) else None
|
||||
|
||||
# keep track of which sequences are already finished
|
||||
unfinished_sequences = torch.ones(
|
||||
input_ids.shape[0],
|
||||
dtype=torch.long,
|
||||
device=input_ids.device,
|
||||
)
|
||||
|
||||
timesRan = 0
|
||||
import time
|
||||
|
||||
start = time.time()
|
||||
print("\n")
|
||||
|
||||
res_tokens = []
|
||||
while True:
|
||||
model_inputs = model.prepare_inputs_for_generation(
|
||||
input_ids, **model_kwargs
|
||||
)
|
||||
|
||||
outputs = h2ogpt_shark_model.forward(
|
||||
model_inputs["input_ids"], model_inputs["attention_mask"]
|
||||
)
|
||||
|
||||
if args.precision == "fp16":
|
||||
outputs = outputs.to(dtype=torch.float32)
|
||||
next_token_logits = outputs
|
||||
|
||||
# pre-process distribution
|
||||
next_token_scores = logits_processor(input_ids, next_token_logits)
|
||||
next_token_scores = logits_warper(input_ids, next_token_scores)
|
||||
|
||||
# sample
|
||||
probs = torch.nn.functional.softmax(next_token_scores, dim=-1)
|
||||
|
||||
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
|
||||
# finished sentences should have their next token be a padding token
|
||||
if eos_token_id is not None:
|
||||
if pad_token_id is None:
|
||||
raise ValueError(
|
||||
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
|
||||
)
|
||||
next_token = next_token * unfinished_sequences + pad_token_id * (
|
||||
1 - unfinished_sequences
|
||||
)
|
||||
|
||||
input_ids = torch.cat([input_ids, next_token[:, None]], dim=-1)
|
||||
|
||||
model_kwargs["past_key_values"] = None
|
||||
if "attention_mask" in model_kwargs:
|
||||
attention_mask = model_kwargs["attention_mask"]
|
||||
model_kwargs["attention_mask"] = torch.cat(
|
||||
[
|
||||
attention_mask,
|
||||
attention_mask.new_ones((attention_mask.shape[0], 1)),
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
truncated_input_ids.append(input_ids[:, 0])
|
||||
input_ids = input_ids[:, 1:]
|
||||
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, 1:]
|
||||
|
||||
new_word = tokenizer.decode(
|
||||
next_token.cpu().numpy(),
|
||||
add_special_tokens=False,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=True,
|
||||
)
|
||||
|
||||
res_tokens.append(next_token)
|
||||
if new_word == "<0x0A>":
|
||||
print("\n", end="", flush=True)
|
||||
else:
|
||||
print(f"{new_word}", end=" ", flush=True)
|
||||
|
||||
part_str = decode_tokens(tokenizer, res_tokens)
|
||||
yield part_str
|
||||
|
||||
# if eos_token was found in one sentence, set sentence to finished
|
||||
if eos_token_id_tensor is not None:
|
||||
unfinished_sequences = unfinished_sequences.mul(
|
||||
next_token.tile(eos_token_id_tensor.shape[0], 1)
|
||||
.ne(eos_token_id_tensor.unsqueeze(1))
|
||||
.prod(dim=0)
|
||||
)
|
||||
# stop when each sentence is finished
|
||||
if unfinished_sequences.max() == 0 or stopping_criteria(
|
||||
input_ids, scores
|
||||
):
|
||||
break
|
||||
timesRan = timesRan + 1
|
||||
|
||||
end = time.time()
|
||||
print(
|
||||
"\n\nTime taken is {:.2f} seconds/token\n".format(
|
||||
(end - start) / timesRan
|
||||
)
|
||||
)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
res_str = decode_tokens(tokenizer, res_tokens)
|
||||
yield res_str
|
||||
|
||||
|
||||
def pad_or_truncate_inputs(
|
||||
input_ids, attention_mask, max_padding_length=400, do_truncation=False
|
||||
):
|
||||
inp_shape = input_ids.shape
|
||||
if inp_shape[1] < max_padding_length:
|
||||
# do padding
|
||||
num_add_token = max_padding_length - inp_shape[1]
|
||||
padded_input_ids = torch.cat(
|
||||
[
|
||||
torch.tensor([[11] * num_add_token]).to(device=tensor_device),
|
||||
input_ids,
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
padded_attention_mask = torch.cat(
|
||||
[
|
||||
torch.tensor([[0] * num_add_token]).to(device=tensor_device),
|
||||
attention_mask,
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
return padded_input_ids, padded_attention_mask
|
||||
elif inp_shape[1] > max_padding_length or do_truncation:
|
||||
# do truncation
|
||||
num_remove_token = inp_shape[1] - max_padding_length
|
||||
truncated_input_ids = input_ids[:, num_remove_token:]
|
||||
truncated_attention_mask = attention_mask[:, num_remove_token:]
|
||||
return truncated_input_ids, truncated_attention_mask
|
||||
else:
|
||||
return input_ids, attention_mask
|
||||
|
||||
|
||||
class H2OTextGenerationPipeline(TextGenerationPipeline):
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
debug=False,
|
||||
chat=False,
|
||||
stream_output=False,
|
||||
sanitize_bot_response=False,
|
||||
use_prompter=True,
|
||||
prompter=None,
|
||||
prompt_type=None,
|
||||
prompt_dict=None,
|
||||
max_input_tokens=2048 - 256,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
HF-like pipeline, but handle instruction prompting and stopping (for some models)
|
||||
:param args:
|
||||
:param debug:
|
||||
:param chat:
|
||||
:param stream_output:
|
||||
:param sanitize_bot_response:
|
||||
:param use_prompter: Whether to use prompter. If pass prompt_type, will make prompter
|
||||
:param prompter: prompter, can pass if have already
|
||||
:param prompt_type: prompt_type, e.g. human_bot. See prompt_type to model mapping in from prompter.py.
|
||||
If use_prompter, then will make prompter and use it.
|
||||
:param prompt_dict: dict of get_prompt(, return_dict=True) for prompt_type=custom
|
||||
:param max_input_tokens:
|
||||
:param kwargs:
|
||||
"""
|
||||
super().__init__(*args, **kwargs)
|
||||
self.prompt_text = None
|
||||
self.use_prompter = use_prompter
|
||||
self.prompt_type = prompt_type
|
||||
self.prompt_dict = prompt_dict
|
||||
self.prompter = prompter
|
||||
if self.use_prompter:
|
||||
if self.prompter is not None:
|
||||
assert self.prompter.prompt_type is not None
|
||||
else:
|
||||
self.prompter = Prompter(
|
||||
self.prompt_type,
|
||||
self.prompt_dict,
|
||||
debug=debug,
|
||||
chat=chat,
|
||||
stream_output=stream_output,
|
||||
)
|
||||
self.human = self.prompter.humanstr
|
||||
self.bot = self.prompter.botstr
|
||||
self.can_stop = True
|
||||
else:
|
||||
self.prompter = None
|
||||
self.human = None
|
||||
self.bot = None
|
||||
self.can_stop = False
|
||||
self.sanitize_bot_response = sanitize_bot_response
|
||||
self.max_input_tokens = (
|
||||
max_input_tokens # not for generate, so ok that not kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def limit_prompt(prompt_text, tokenizer, max_prompt_length=None):
|
||||
verbose = bool(int(os.getenv("VERBOSE_PIPELINE", "0")))
|
||||
|
||||
if hasattr(tokenizer, "model_max_length"):
|
||||
# model_max_length only defined for generate.py, not raw use of h2oai_pipeline.py
|
||||
model_max_length = tokenizer.model_max_length
|
||||
if max_prompt_length is not None:
|
||||
model_max_length = min(model_max_length, max_prompt_length)
|
||||
# cut at some upper likely limit to avoid excessive tokenization etc
|
||||
# upper bound of 10 chars/token, e.g. special chars sometimes are long
|
||||
if len(prompt_text) > model_max_length * 10:
|
||||
len0 = len(prompt_text)
|
||||
prompt_text = prompt_text[-model_max_length * 10 :]
|
||||
if verbose:
|
||||
print(
|
||||
"Cut of input: %s -> %s" % (len0, len(prompt_text)),
|
||||
flush=True,
|
||||
)
|
||||
else:
|
||||
# unknown
|
||||
model_max_length = None
|
||||
|
||||
num_prompt_tokens = None
|
||||
if model_max_length is not None:
|
||||
# can't wait for "hole" if not plain prompt_type, since would lose prefix like <human>:
|
||||
# For https://github.com/h2oai/h2ogpt/issues/192
|
||||
for trial in range(0, 3):
|
||||
prompt_tokens = tokenizer(prompt_text)["input_ids"]
|
||||
num_prompt_tokens = len(prompt_tokens)
|
||||
if num_prompt_tokens > model_max_length:
|
||||
# conservative by using int()
|
||||
chars_per_token = int(len(prompt_text) / num_prompt_tokens)
|
||||
# keep tail, where question is if using langchain
|
||||
prompt_text = prompt_text[
|
||||
-model_max_length * chars_per_token :
|
||||
]
|
||||
if verbose:
|
||||
print(
|
||||
"reducing %s tokens, assuming average of %s chars/token for %s characters"
|
||||
% (
|
||||
num_prompt_tokens,
|
||||
chars_per_token,
|
||||
len(prompt_text),
|
||||
),
|
||||
flush=True,
|
||||
)
|
||||
else:
|
||||
if verbose:
|
||||
print(
|
||||
"using %s tokens with %s chars"
|
||||
% (num_prompt_tokens, len(prompt_text)),
|
||||
flush=True,
|
||||
)
|
||||
break
|
||||
|
||||
return prompt_text, num_prompt_tokens
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
prompt_text,
|
||||
prefix="",
|
||||
handle_long_generation=None,
|
||||
**generate_kwargs,
|
||||
):
|
||||
(
|
||||
prompt_text,
|
||||
num_prompt_tokens,
|
||||
) = H2OTextGenerationPipeline.limit_prompt(prompt_text, self.tokenizer)
|
||||
|
||||
data_point = dict(context="", instruction=prompt_text, input="")
|
||||
if self.prompter is not None:
|
||||
prompt_text = self.prompter.generate_prompt(data_point)
|
||||
self.prompt_text = prompt_text
|
||||
if handle_long_generation is None:
|
||||
# forces truncation of inputs to avoid critical failure
|
||||
handle_long_generation = None # disable with new approaches
|
||||
return super().preprocess(
|
||||
prompt_text,
|
||||
prefix=prefix,
|
||||
handle_long_generation=handle_long_generation,
|
||||
**generate_kwargs,
|
||||
)
|
||||
|
||||
def postprocess(
|
||||
self,
|
||||
model_outputs,
|
||||
return_type=ReturnType.FULL_TEXT,
|
||||
clean_up_tokenization_spaces=True,
|
||||
):
|
||||
records = super().postprocess(
|
||||
model_outputs,
|
||||
return_type=return_type,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
)
|
||||
for rec in records:
|
||||
if self.use_prompter:
|
||||
outputs = rec["generated_text"]
|
||||
outputs = self.prompter.get_response(
|
||||
outputs,
|
||||
prompt=self.prompt_text,
|
||||
sanitize_bot_response=self.sanitize_bot_response,
|
||||
)
|
||||
elif self.bot and self.human:
|
||||
outputs = (
|
||||
rec["generated_text"]
|
||||
.split(self.bot)[1]
|
||||
.split(self.human)[0]
|
||||
)
|
||||
else:
|
||||
outputs = rec["generated_text"]
|
||||
rec["generated_text"] = outputs
|
||||
print(
|
||||
"prompt: %s\noutputs: %s\n\n" % (self.prompt_text, outputs),
|
||||
flush=True,
|
||||
)
|
||||
return records
|
||||
|
||||
def _forward(self, model_inputs, **generate_kwargs):
|
||||
if self.can_stop:
|
||||
stopping_criteria = get_stopping(
|
||||
self.prompt_type,
|
||||
self.prompt_dict,
|
||||
self.tokenizer,
|
||||
self.device,
|
||||
human=self.human,
|
||||
bot=self.bot,
|
||||
model_max_length=self.tokenizer.model_max_length,
|
||||
)
|
||||
generate_kwargs["stopping_criteria"] = stopping_criteria
|
||||
# return super()._forward(model_inputs, **generate_kwargs)
|
||||
return self.__forward(model_inputs, **generate_kwargs)
|
||||
|
||||
# FIXME: Copy-paste of original _forward, but removed copy.deepcopy()
|
||||
# FIXME: https://github.com/h2oai/h2ogpt/issues/172
|
||||
def __forward(self, model_inputs, **generate_kwargs):
|
||||
input_ids = model_inputs["input_ids"]
|
||||
attention_mask = model_inputs.get("attention_mask", None)
|
||||
# Allow empty prompts
|
||||
if input_ids.shape[1] == 0:
|
||||
input_ids = None
|
||||
attention_mask = None
|
||||
in_b = 1
|
||||
else:
|
||||
in_b = input_ids.shape[0]
|
||||
prompt_text = model_inputs.pop("prompt_text")
|
||||
|
||||
## If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
|
||||
## generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
|
||||
# generate_kwargs = copy.deepcopy(generate_kwargs)
|
||||
prefix_length = generate_kwargs.pop("prefix_length", 0)
|
||||
if prefix_length > 0:
|
||||
has_max_new_tokens = "max_new_tokens" in generate_kwargs or (
|
||||
"generation_config" in generate_kwargs
|
||||
and generate_kwargs["generation_config"].max_new_tokens
|
||||
is not None
|
||||
)
|
||||
if not has_max_new_tokens:
|
||||
generate_kwargs["max_length"] = (
|
||||
generate_kwargs.get("max_length")
|
||||
or self.model.config.max_length
|
||||
)
|
||||
generate_kwargs["max_length"] += prefix_length
|
||||
has_min_new_tokens = "min_new_tokens" in generate_kwargs or (
|
||||
"generation_config" in generate_kwargs
|
||||
and generate_kwargs["generation_config"].min_new_tokens
|
||||
is not None
|
||||
)
|
||||
if not has_min_new_tokens and "min_length" in generate_kwargs:
|
||||
generate_kwargs["min_length"] += prefix_length
|
||||
|
||||
# BS x SL
|
||||
# pad or truncate the input_ids and attention_mask
|
||||
max_padding_length = 400
|
||||
input_ids, attention_mask = pad_or_truncate_inputs(
|
||||
input_ids, attention_mask, max_padding_length=max_padding_length
|
||||
)
|
||||
|
||||
return_dict = {
|
||||
"model": self.model,
|
||||
"tokenizer": self.tokenizer,
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
return_dict = {**return_dict, **generate_kwargs}
|
||||
return return_dict
|
||||
@@ -1,247 +0,0 @@
|
||||
"""
|
||||
Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py
|
||||
But accepts preloaded model to avoid slowness in use and CUDA forking issues
|
||||
|
||||
Loader that loads image captions
|
||||
By default, the loader utilizes the pre-trained BLIP image captioning model.
|
||||
https://huggingface.co/Salesforce/blip-image-captioning-base
|
||||
|
||||
"""
|
||||
from typing import List, Union, Any, Tuple
|
||||
|
||||
import requests
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.document_loaders import ImageCaptionLoader
|
||||
|
||||
from utils import get_device, NullContext
|
||||
|
||||
import pkg_resources
|
||||
|
||||
try:
|
||||
assert pkg_resources.get_distribution("bitsandbytes") is not None
|
||||
have_bitsandbytes = True
|
||||
except (pkg_resources.DistributionNotFound, AssertionError):
|
||||
have_bitsandbytes = False
|
||||
|
||||
|
||||
class H2OImageCaptionLoader(ImageCaptionLoader):
|
||||
"""Loader that loads the captions of an image"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path_images: Union[str, List[str]] = None,
|
||||
blip_processor: str = None,
|
||||
blip_model: str = None,
|
||||
caption_gpu=True,
|
||||
load_in_8bit=True,
|
||||
# True doesn't seem to work, even though https://huggingface.co/Salesforce/blip2-flan-t5-xxl#in-8-bit-precision-int8
|
||||
load_half=False,
|
||||
load_gptq="",
|
||||
use_safetensors=False,
|
||||
min_new_tokens=20,
|
||||
max_tokens=50,
|
||||
):
|
||||
if blip_model is None or blip_model is None:
|
||||
blip_processor = "Salesforce/blip-image-captioning-base"
|
||||
blip_model = "Salesforce/blip-image-captioning-base"
|
||||
|
||||
super().__init__(path_images, blip_processor, blip_model)
|
||||
self.blip_processor = blip_processor
|
||||
self.blip_model = blip_model
|
||||
self.processor = None
|
||||
self.model = None
|
||||
self.caption_gpu = caption_gpu
|
||||
self.context_class = NullContext
|
||||
self.device = "cpu"
|
||||
self.load_in_8bit = (
|
||||
load_in_8bit and have_bitsandbytes
|
||||
) # only for blip2
|
||||
self.load_half = load_half
|
||||
self.load_gptq = load_gptq
|
||||
self.use_safetensors = use_safetensors
|
||||
self.gpu_id = "auto"
|
||||
# default prompt
|
||||
self.prompt = "image of"
|
||||
self.min_new_tokens = min_new_tokens
|
||||
self.max_tokens = max_tokens
|
||||
|
||||
def set_context(self):
|
||||
if get_device() == "cuda" and self.caption_gpu:
|
||||
import torch
|
||||
|
||||
n_gpus = (
|
||||
torch.cuda.device_count() if torch.cuda.is_available else 0
|
||||
)
|
||||
if n_gpus > 0:
|
||||
self.context_class = torch.device
|
||||
self.device = "cuda"
|
||||
|
||||
def load_model(self):
|
||||
try:
|
||||
import transformers
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"`transformers` package not found, please install with "
|
||||
"`pip install transformers`."
|
||||
)
|
||||
self.set_context()
|
||||
if self.caption_gpu:
|
||||
if self.gpu_id == "auto":
|
||||
# blip2 has issues with multi-GPU. Error says need to somehow set language model in device map
|
||||
# device_map = 'auto'
|
||||
device_map = {"": 0}
|
||||
else:
|
||||
if self.device == "cuda":
|
||||
device_map = {"": self.gpu_id}
|
||||
else:
|
||||
device_map = {"": "cpu"}
|
||||
else:
|
||||
device_map = {"": "cpu"}
|
||||
import torch
|
||||
|
||||
with torch.no_grad():
|
||||
with self.context_class(self.device):
|
||||
context_class_cast = (
|
||||
NullContext if self.device == "cpu" else torch.autocast
|
||||
)
|
||||
with context_class_cast(self.device):
|
||||
if "blip2" in self.blip_processor.lower():
|
||||
from transformers import (
|
||||
Blip2Processor,
|
||||
Blip2ForConditionalGeneration,
|
||||
)
|
||||
|
||||
if self.load_half and not self.load_in_8bit:
|
||||
self.processor = Blip2Processor.from_pretrained(
|
||||
self.blip_processor, device_map=device_map
|
||||
).half()
|
||||
self.model = (
|
||||
Blip2ForConditionalGeneration.from_pretrained(
|
||||
self.blip_model, device_map=device_map
|
||||
).half()
|
||||
)
|
||||
else:
|
||||
self.processor = Blip2Processor.from_pretrained(
|
||||
self.blip_processor,
|
||||
load_in_8bit=self.load_in_8bit,
|
||||
device_map=device_map,
|
||||
)
|
||||
self.model = (
|
||||
Blip2ForConditionalGeneration.from_pretrained(
|
||||
self.blip_model,
|
||||
load_in_8bit=self.load_in_8bit,
|
||||
device_map=device_map,
|
||||
)
|
||||
)
|
||||
else:
|
||||
from transformers import (
|
||||
BlipForConditionalGeneration,
|
||||
BlipProcessor,
|
||||
)
|
||||
|
||||
self.load_half = False # not supported
|
||||
if self.caption_gpu:
|
||||
if device_map == "auto":
|
||||
# Blip doesn't support device_map='auto'
|
||||
if self.device == "cuda":
|
||||
if self.gpu_id == "auto":
|
||||
device_map = {"": 0}
|
||||
else:
|
||||
device_map = {"": self.gpu_id}
|
||||
else:
|
||||
device_map = {"": "cpu"}
|
||||
else:
|
||||
device_map = {"": "cpu"}
|
||||
self.processor = BlipProcessor.from_pretrained(
|
||||
self.blip_processor, device_map=device_map
|
||||
)
|
||||
self.model = (
|
||||
BlipForConditionalGeneration.from_pretrained(
|
||||
self.blip_model, device_map=device_map
|
||||
)
|
||||
)
|
||||
return self
|
||||
|
||||
def set_image_paths(self, path_images: Union[str, List[str]]):
|
||||
"""
|
||||
Load from a list of image files
|
||||
"""
|
||||
if isinstance(path_images, str):
|
||||
self.image_paths = [path_images]
|
||||
else:
|
||||
self.image_paths = path_images
|
||||
|
||||
def load(self, prompt=None) -> List[Document]:
|
||||
if self.processor is None or self.model is None:
|
||||
self.load_model()
|
||||
results = []
|
||||
for path_image in self.image_paths:
|
||||
caption, metadata = self._get_captions_and_metadata(
|
||||
model=self.model,
|
||||
processor=self.processor,
|
||||
path_image=path_image,
|
||||
prompt=prompt,
|
||||
)
|
||||
doc = Document(page_content=caption, metadata=metadata)
|
||||
results.append(doc)
|
||||
|
||||
return results
|
||||
|
||||
def _get_captions_and_metadata(
|
||||
self, model: Any, processor: Any, path_image: str, prompt=None
|
||||
) -> Tuple[str, dict]:
|
||||
"""
|
||||
Helper function for getting the captions and metadata of an image
|
||||
"""
|
||||
if prompt is None:
|
||||
prompt = self.prompt
|
||||
try:
|
||||
from PIL import Image
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"`PIL` package not found, please install with `pip install pillow`"
|
||||
)
|
||||
|
||||
try:
|
||||
if path_image.startswith("http://") or path_image.startswith(
|
||||
"https://"
|
||||
):
|
||||
image = Image.open(
|
||||
requests.get(path_image, stream=True).raw
|
||||
).convert("RGB")
|
||||
else:
|
||||
image = Image.open(path_image).convert("RGB")
|
||||
except Exception:
|
||||
raise ValueError(f"Could not get image data for {path_image}")
|
||||
|
||||
import torch
|
||||
|
||||
with torch.no_grad():
|
||||
with self.context_class(self.device):
|
||||
context_class_cast = (
|
||||
NullContext if self.device == "cpu" else torch.autocast
|
||||
)
|
||||
with context_class_cast(self.device):
|
||||
if self.load_half:
|
||||
inputs = processor(
|
||||
image, prompt, return_tensors="pt"
|
||||
).half()
|
||||
else:
|
||||
inputs = processor(image, prompt, return_tensors="pt")
|
||||
min_length = len(prompt) // 4 + self.min_new_tokens
|
||||
self.max_tokens = max(self.max_tokens, min_length)
|
||||
output = model.generate(
|
||||
**inputs,
|
||||
min_length=min_length,
|
||||
max_length=self.max_tokens,
|
||||
)
|
||||
|
||||
caption: str = processor.decode(
|
||||
output[0], skip_special_tokens=True
|
||||
)
|
||||
prompti = caption.find(prompt)
|
||||
if prompti >= 0:
|
||||
caption = caption[prompti + len(prompt) :]
|
||||
metadata: dict = {"image_path": path_image}
|
||||
|
||||
return caption, metadata
|
||||
@@ -1,120 +0,0 @@
|
||||
# for generate (gradio server) and finetune
|
||||
datasets==2.13.0
|
||||
sentencepiece==0.1.99
|
||||
huggingface_hub==0.16.4
|
||||
appdirs==1.4.4
|
||||
fire==0.5.0
|
||||
docutils==0.20.1
|
||||
evaluate==0.4.0
|
||||
rouge_score==0.1.2
|
||||
sacrebleu==2.3.1
|
||||
scikit-learn==1.2.2
|
||||
alt-profanity-check==1.2.2
|
||||
better-profanity==0.7.0
|
||||
numpy==1.24.3
|
||||
pandas==2.0.2
|
||||
matplotlib==3.7.1
|
||||
loralib==0.1.1
|
||||
bitsandbytes==0.39.0
|
||||
accelerate==0.20.3
|
||||
peft==0.4.0
|
||||
# 4.31.0+ breaks load_in_8bit=True (https://github.com/huggingface/transformers/issues/25026)
|
||||
transformers==4.30.2
|
||||
tokenizers==0.13.3
|
||||
APScheduler==3.10.1
|
||||
|
||||
# optional for generate
|
||||
pynvml==11.5.0
|
||||
psutil==5.9.5
|
||||
boto3==1.26.101
|
||||
botocore==1.29.101
|
||||
|
||||
# optional for finetune
|
||||
tensorboard==2.13.0
|
||||
neptune==1.2.0
|
||||
|
||||
# for gradio client
|
||||
gradio_client==0.2.10
|
||||
beautifulsoup4==4.12.2
|
||||
markdown==3.4.3
|
||||
|
||||
# data and testing
|
||||
pytest==7.2.2
|
||||
pytest-xdist==3.2.1
|
||||
nltk==3.8.1
|
||||
textstat==0.7.3
|
||||
# pandoc==2.3
|
||||
pypandoc==1.11; sys_platform == "darwin" and platform_machine == "arm64"
|
||||
pypandoc_binary==1.11; platform_machine == "x86_64"
|
||||
pypandoc_binary==1.11; sys_platform == "win32"
|
||||
openpyxl==3.1.2
|
||||
lm_dataformat==0.0.20
|
||||
bioc==2.0
|
||||
|
||||
# falcon
|
||||
einops==0.6.1
|
||||
instructorembedding==1.0.1
|
||||
|
||||
# for gpt4all .env file, but avoid worrying about imports
|
||||
python-dotenv==1.0.0
|
||||
|
||||
text-generation==0.6.0
|
||||
# for tokenization when don't have HF tokenizer
|
||||
tiktoken==0.4.0
|
||||
# optional: for OpenAI endpoint or embeddings (requires key)
|
||||
openai==0.27.8
|
||||
|
||||
# optional for chat with PDF
|
||||
langchain==0.0.202
|
||||
pypdf==3.12.2
|
||||
# avoid textract, requires old six
|
||||
#textract==1.6.5
|
||||
|
||||
# for HF embeddings
|
||||
sentence_transformers==2.2.2
|
||||
|
||||
# local vector db
|
||||
chromadb==0.3.25
|
||||
# server vector db
|
||||
#pymilvus==2.2.8
|
||||
|
||||
# weak url support, if can't install opencv etc. If comment-in this one, then comment-out unstructured[local-inference]==0.6.6
|
||||
# unstructured==0.8.1
|
||||
|
||||
# strong support for images
|
||||
# Requires on Ubuntu: sudo apt-get install libmagic-dev poppler-utils tesseract-ocr libtesseract-dev libreoffice
|
||||
unstructured[local-inference]==0.7.4
|
||||
#pdf2image==1.16.3
|
||||
#pytesseract==0.3.10
|
||||
pillow
|
||||
|
||||
pdfminer.six==20221105
|
||||
urllib3
|
||||
requests_file
|
||||
|
||||
#pdf2image==1.16.3
|
||||
#pytesseract==0.3.10
|
||||
tabulate==0.9.0
|
||||
# FYI pandoc already part of requirements.txt
|
||||
|
||||
# JSONLoader, but makes some trouble for some users
|
||||
# jq==1.4.1
|
||||
|
||||
# to check licenses
|
||||
# Run: pip-licenses|grep -v 'BSD\|Apache\|MIT'
|
||||
pip-licenses==4.3.0
|
||||
|
||||
# weaviate vector db
|
||||
weaviate-client==3.22.1
|
||||
|
||||
gpt4all==1.0.5
|
||||
llama-cpp-python==0.1.73
|
||||
|
||||
arxiv==1.4.8
|
||||
pymupdf==1.22.5 # AGPL license
|
||||
# extract-msg==0.41.1 # GPL3
|
||||
|
||||
# sometimes unstructured fails, these work in those cases. See https://github.com/h2oai/h2ogpt/issues/320
|
||||
playwright==1.36.0
|
||||
# requires Chrome binary to be in path
|
||||
selenium==4.10.0
|
||||
@@ -1,124 +0,0 @@
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
import transformers
|
||||
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
||||
from flash_attn.bert_padding import unpad_input, pad_input
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[
|
||||
torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]
|
||||
]:
|
||||
"""Input shape: Batch x Time x Channel
|
||||
attention_mask: [bsz, q_len]
|
||||
"""
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = (
|
||||
self.q_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
key_states = (
|
||||
self.k_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
value_states = (
|
||||
self.v_proj(hidden_states)
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
# [bsz, q_len, nh, hd]
|
||||
# [bsz, nh, q_len, hd]
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
assert past_key_value is None, "past_key_value is not supported"
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(
|
||||
query_states, key_states, cos, sin, position_ids
|
||||
)
|
||||
# [bsz, nh, t, hd]
|
||||
assert not output_attentions, "output_attentions is not supported"
|
||||
assert not use_cache, "use_cache is not supported"
|
||||
|
||||
# Flash attention codes from
|
||||
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
|
||||
|
||||
# transform the data into the format required by flash attention
|
||||
qkv = torch.stack(
|
||||
[query_states, key_states, value_states], dim=2
|
||||
) # [bsz, nh, 3, q_len, hd]
|
||||
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
|
||||
# We have disabled _prepare_decoder_attention_mask in LlamaModel
|
||||
# the attention_mask should be the same as the key_padding_mask
|
||||
key_padding_mask = attention_mask
|
||||
|
||||
if key_padding_mask is None:
|
||||
qkv = rearrange(qkv, "b s ... -> (b s) ...")
|
||||
max_s = q_len
|
||||
cu_q_lens = torch.arange(
|
||||
0,
|
||||
(bsz + 1) * q_len,
|
||||
step=q_len,
|
||||
dtype=torch.int32,
|
||||
device=qkv.device,
|
||||
)
|
||||
output = flash_attn_unpadded_qkvpacked_func(
|
||||
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
||||
)
|
||||
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
|
||||
else:
|
||||
nheads = qkv.shape[-2]
|
||||
x = rearrange(qkv, "b s three h d -> b s (three h d)")
|
||||
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
|
||||
x_unpad = rearrange(
|
||||
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads
|
||||
)
|
||||
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
||||
x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
||||
)
|
||||
output = rearrange(
|
||||
pad_input(
|
||||
rearrange(output_unpad, "nnz h d -> nnz (h d)"),
|
||||
indices,
|
||||
bsz,
|
||||
q_len,
|
||||
),
|
||||
"b s (h d) -> b s h d",
|
||||
h=nheads,
|
||||
)
|
||||
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, None
|
||||
|
||||
|
||||
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
||||
# requires the attention mask to be the same as the key_padding_mask
|
||||
def _prepare_decoder_attention_mask(
|
||||
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
||||
):
|
||||
# [bsz, seq_len]
|
||||
return attention_mask
|
||||
|
||||
|
||||
def replace_llama_attn_with_flash_attn():
|
||||
print(
|
||||
"Replacing original LLaMa attention with flash attention", flush=True
|
||||
)
|
||||
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
|
||||
_prepare_decoder_attention_mask
|
||||
)
|
||||
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
||||
@@ -1,109 +0,0 @@
|
||||
import functools
|
||||
|
||||
|
||||
def get_loaders(model_name, reward_type, llama_type=None, load_gptq=""):
|
||||
# NOTE: Some models need specific new prompt_type
|
||||
# E.g. t5_xxl_true_nli_mixture has input format: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".)
|
||||
if load_gptq:
|
||||
from transformers import AutoTokenizer
|
||||
from auto_gptq import AutoGPTQForCausalLM
|
||||
|
||||
use_triton = False
|
||||
functools.partial(
|
||||
AutoGPTQForCausalLM.from_quantized,
|
||||
quantize_config=None,
|
||||
use_triton=use_triton,
|
||||
)
|
||||
return AutoGPTQForCausalLM.from_quantized, AutoTokenizer
|
||||
if llama_type is None:
|
||||
llama_type = "llama" in model_name.lower()
|
||||
if llama_type:
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
return LlamaForCausalLM.from_pretrained, LlamaTokenizer
|
||||
elif "distilgpt2" in model_name.lower():
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
return AutoModelForCausalLM.from_pretrained, AutoTokenizer
|
||||
elif "gpt2" in model_name.lower():
|
||||
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
||||
|
||||
return GPT2LMHeadModel.from_pretrained, GPT2Tokenizer
|
||||
elif "mbart-" in model_name.lower():
|
||||
from transformers import (
|
||||
MBartForConditionalGeneration,
|
||||
MBart50TokenizerFast,
|
||||
)
|
||||
|
||||
return (
|
||||
MBartForConditionalGeneration.from_pretrained,
|
||||
MBart50TokenizerFast,
|
||||
)
|
||||
elif (
|
||||
"t5" == model_name.lower()
|
||||
or "t5-" in model_name.lower()
|
||||
or "flan-" in model_name.lower()
|
||||
):
|
||||
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
||||
|
||||
return T5ForConditionalGeneration.from_pretrained, AutoTokenizer
|
||||
elif "bigbird" in model_name:
|
||||
from transformers import (
|
||||
BigBirdPegasusForConditionalGeneration,
|
||||
AutoTokenizer,
|
||||
)
|
||||
|
||||
return (
|
||||
BigBirdPegasusForConditionalGeneration.from_pretrained,
|
||||
AutoTokenizer,
|
||||
)
|
||||
elif (
|
||||
"bart-large-cnn-samsum" in model_name
|
||||
or "flan-t5-base-samsum" in model_name
|
||||
):
|
||||
from transformers import pipeline
|
||||
|
||||
return pipeline, "summarization"
|
||||
elif (
|
||||
reward_type
|
||||
or "OpenAssistant/reward-model".lower() in model_name.lower()
|
||||
):
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
AutoTokenizer,
|
||||
)
|
||||
|
||||
return (
|
||||
AutoModelForSequenceClassification.from_pretrained,
|
||||
AutoTokenizer,
|
||||
)
|
||||
else:
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
model_loader = AutoModelForCausalLM
|
||||
tokenizer_loader = AutoTokenizer
|
||||
return model_loader.from_pretrained, tokenizer_loader
|
||||
|
||||
|
||||
def get_tokenizer(
|
||||
tokenizer_loader,
|
||||
tokenizer_base_model,
|
||||
local_files_only,
|
||||
resume_download,
|
||||
use_auth_token,
|
||||
):
|
||||
tokenizer = tokenizer_loader.from_pretrained(
|
||||
tokenizer_base_model,
|
||||
local_files_only=local_files_only,
|
||||
resume_download=resume_download,
|
||||
use_auth_token=use_auth_token,
|
||||
padding_side="left",
|
||||
)
|
||||
|
||||
tokenizer.pad_token_id = 0 # different from the eos token
|
||||
# when generating, we will use the logits of right-most token to predict the next token
|
||||
# so the padding should be on the left,
|
||||
# e.g. see: https://huggingface.co/transformers/v4.11.3/model_doc/t5.html#inference
|
||||
tokenizer.padding_side = "left" # Allow batched inference
|
||||
|
||||
return tokenizer
|
||||
@@ -1,203 +0,0 @@
|
||||
import os
|
||||
|
||||
from gpt_langchain import (
|
||||
path_to_docs,
|
||||
get_some_dbs_from_hf,
|
||||
all_db_zips,
|
||||
some_db_zips,
|
||||
create_or_update_db,
|
||||
)
|
||||
from utils import get_ngpus_vis
|
||||
|
||||
|
||||
def glob_to_db(
|
||||
user_path,
|
||||
chunk=True,
|
||||
chunk_size=512,
|
||||
verbose=False,
|
||||
fail_any_exception=False,
|
||||
n_jobs=-1,
|
||||
url=None,
|
||||
enable_captions=True,
|
||||
captions_model=None,
|
||||
caption_loader=None,
|
||||
enable_ocr=False,
|
||||
):
|
||||
sources1 = path_to_docs(
|
||||
user_path,
|
||||
verbose=verbose,
|
||||
fail_any_exception=fail_any_exception,
|
||||
n_jobs=n_jobs,
|
||||
chunk=chunk,
|
||||
chunk_size=chunk_size,
|
||||
url=url,
|
||||
enable_captions=enable_captions,
|
||||
captions_model=captions_model,
|
||||
caption_loader=caption_loader,
|
||||
enable_ocr=enable_ocr,
|
||||
)
|
||||
return sources1
|
||||
|
||||
|
||||
def make_db_main(
|
||||
use_openai_embedding: bool = False,
|
||||
hf_embedding_model: str = None,
|
||||
persist_directory: str = "db_dir_UserData",
|
||||
user_path: str = "user_path",
|
||||
url: str = None,
|
||||
add_if_exists: bool = True,
|
||||
collection_name: str = "UserData",
|
||||
verbose: bool = False,
|
||||
chunk: bool = True,
|
||||
chunk_size: int = 512,
|
||||
fail_any_exception: bool = False,
|
||||
download_all: bool = False,
|
||||
download_some: bool = False,
|
||||
download_one: str = None,
|
||||
download_dest: str = "./",
|
||||
n_jobs: int = -1,
|
||||
enable_captions: bool = True,
|
||||
captions_model: str = "Salesforce/blip-image-captioning-base",
|
||||
pre_load_caption_model: bool = False,
|
||||
caption_gpu: bool = True,
|
||||
enable_ocr: bool = False,
|
||||
db_type: str = "chroma",
|
||||
):
|
||||
"""
|
||||
# To make UserData db for generate.py, put pdfs, etc. into path user_path and run:
|
||||
python make_db.py
|
||||
|
||||
# once db is made, can use in generate.py like:
|
||||
|
||||
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --langchain_mode=UserData
|
||||
|
||||
or zip-up the db_dir_UserData and share:
|
||||
|
||||
zip -r db_dir_UserData.zip db_dir_UserData
|
||||
|
||||
# To get all db files (except large wiki_full) do:
|
||||
python make_db.py --download_some=True
|
||||
|
||||
# To get a single db file from HF:
|
||||
python make_db.py --download_one=db_dir_DriverlessAI_docs.zip
|
||||
|
||||
:param use_openai_embedding: Whether to use OpenAI embedding
|
||||
:param hf_embedding_model: HF embedding model to use. Like generate.py, uses 'hkunlp/instructor-large' if have GPUs, else "sentence-transformers/all-MiniLM-L6-v2"
|
||||
:param persist_directory: where to persist db
|
||||
:param user_path: where to pull documents from (None means url is not None. If url is not None, this is ignored.)
|
||||
:param url: url to generate documents from (None means user_path is not None)
|
||||
:param add_if_exists: Add to db if already exists, but will not add duplicate sources
|
||||
:param collection_name: Collection name for new db if not adding
|
||||
:param verbose: whether to show verbose messages
|
||||
:param chunk: whether to chunk data
|
||||
:param chunk_size: chunk size for chunking
|
||||
:param fail_any_exception: whether to fail if any exception hit during ingestion of files
|
||||
:param download_all: whether to download all (including 23GB Wikipedia) example databases from h2o.ai HF
|
||||
:param download_some: whether to download some small example databases from h2o.ai HF
|
||||
:param download_one: whether to download one chosen example databases from h2o.ai HF
|
||||
:param download_dest: Destination for downloads
|
||||
:param n_jobs: Number of cores to use for ingesting multiple files
|
||||
:param enable_captions: Whether to enable captions on images
|
||||
:param captions_model: See generate.py
|
||||
:param pre_load_caption_model: See generate.py
|
||||
:param caption_gpu: Caption images on GPU if present
|
||||
:param enable_ocr: Whether to enable OCR on images
|
||||
:param db_type: Type of db to create. Currently only 'chroma' and 'weaviate' is supported.
|
||||
:return: None
|
||||
"""
|
||||
db = None
|
||||
|
||||
# match behavior of main() in generate.py for non-HF case
|
||||
n_gpus = get_ngpus_vis()
|
||||
if n_gpus == 0:
|
||||
if hf_embedding_model is None:
|
||||
# if no GPUs, use simpler embedding model to avoid cost in time
|
||||
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
||||
else:
|
||||
if hf_embedding_model is None:
|
||||
# if still None, then set default
|
||||
hf_embedding_model = "hkunlp/instructor-large"
|
||||
|
||||
if download_all:
|
||||
print("Downloading all (and unzipping): %s" % all_db_zips, flush=True)
|
||||
get_some_dbs_from_hf(download_dest, db_zips=all_db_zips)
|
||||
if verbose:
|
||||
print("DONE", flush=True)
|
||||
return db, collection_name
|
||||
elif download_some:
|
||||
print(
|
||||
"Downloading some (and unzipping): %s" % some_db_zips, flush=True
|
||||
)
|
||||
get_some_dbs_from_hf(download_dest, db_zips=some_db_zips)
|
||||
if verbose:
|
||||
print("DONE", flush=True)
|
||||
return db, collection_name
|
||||
elif download_one:
|
||||
print("Downloading %s (and unzipping)" % download_one, flush=True)
|
||||
get_some_dbs_from_hf(
|
||||
download_dest, db_zips=[[download_one, "", "Unknown License"]]
|
||||
)
|
||||
if verbose:
|
||||
print("DONE", flush=True)
|
||||
return db, collection_name
|
||||
|
||||
if enable_captions and pre_load_caption_model:
|
||||
# preload, else can be too slow or if on GPU have cuda context issues
|
||||
# Inside ingestion, this will disable parallel loading of multiple other kinds of docs
|
||||
# However, if have many images, all those images will be handled more quickly by preloaded model on GPU
|
||||
from image_captions import H2OImageCaptionLoader
|
||||
|
||||
caption_loader = H2OImageCaptionLoader(
|
||||
None,
|
||||
blip_model=captions_model,
|
||||
blip_processor=captions_model,
|
||||
caption_gpu=caption_gpu,
|
||||
).load_model()
|
||||
else:
|
||||
if enable_captions:
|
||||
caption_loader = "gpu" if caption_gpu else "cpu"
|
||||
else:
|
||||
caption_loader = False
|
||||
|
||||
if verbose:
|
||||
print("Getting sources", flush=True)
|
||||
assert (
|
||||
user_path is not None or url is not None
|
||||
), "Can't have both user_path and url as None"
|
||||
if not url:
|
||||
assert os.path.isdir(user_path), (
|
||||
"user_path=%s does not exist" % user_path
|
||||
)
|
||||
sources = glob_to_db(
|
||||
user_path,
|
||||
chunk=chunk,
|
||||
chunk_size=chunk_size,
|
||||
verbose=verbose,
|
||||
fail_any_exception=fail_any_exception,
|
||||
n_jobs=n_jobs,
|
||||
url=url,
|
||||
enable_captions=enable_captions,
|
||||
captions_model=captions_model,
|
||||
caption_loader=caption_loader,
|
||||
enable_ocr=enable_ocr,
|
||||
)
|
||||
exceptions = [x for x in sources if x.metadata.get("exception")]
|
||||
print("Exceptions: %s" % exceptions, flush=True)
|
||||
sources = [x for x in sources if "exception" not in x.metadata]
|
||||
|
||||
assert len(sources) > 0, "No sources found"
|
||||
db = create_or_update_db(
|
||||
db_type,
|
||||
persist_directory,
|
||||
collection_name,
|
||||
sources,
|
||||
use_openai_embedding,
|
||||
add_if_exists,
|
||||
verbose,
|
||||
hf_embedding_model,
|
||||
)
|
||||
|
||||
assert db is not None
|
||||
if verbose:
|
||||
print("DONE", flush=True)
|
||||
return db, collection_name
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,403 +0,0 @@
|
||||
"""Load Data from a MediaWiki dump xml."""
|
||||
import ast
|
||||
import glob
|
||||
import pickle
|
||||
import uuid
|
||||
from typing import List, Optional
|
||||
import os
|
||||
import bz2
|
||||
import csv
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.document_loaders import MWDumpLoader
|
||||
|
||||
# path where downloaded wiki files exist, to be processed
|
||||
root_path = "/data/jon/h2o-llm"
|
||||
|
||||
|
||||
def unescape(x):
|
||||
try:
|
||||
x = ast.literal_eval(x)
|
||||
except:
|
||||
try:
|
||||
x = x.encode("ascii", "ignore").decode("unicode_escape")
|
||||
except:
|
||||
pass
|
||||
return x
|
||||
|
||||
|
||||
def get_views():
|
||||
# views = pd.read_csv('wiki_page_views_more_1000month.csv')
|
||||
views = pd.read_csv("wiki_page_views_more_5000month.csv")
|
||||
views.index = views["title"]
|
||||
views = views["views"]
|
||||
views = views.to_dict()
|
||||
views = {str(unescape(str(k))): v for k, v in views.items()}
|
||||
views2 = {k.replace("_", " "): v for k, v in views.items()}
|
||||
# views has _ but pages has " "
|
||||
views.update(views2)
|
||||
return views
|
||||
|
||||
|
||||
class MWDumpDirectLoader(MWDumpLoader):
|
||||
def __init__(
|
||||
self,
|
||||
data: str,
|
||||
encoding: Optional[str] = "utf8",
|
||||
title_words_limit=None,
|
||||
use_views=True,
|
||||
verbose=True,
|
||||
):
|
||||
"""Initialize with file path."""
|
||||
self.data = data
|
||||
self.encoding = encoding
|
||||
self.title_words_limit = title_words_limit
|
||||
self.verbose = verbose
|
||||
if use_views:
|
||||
# self.views = get_views()
|
||||
# faster to use global shared values
|
||||
self.views = global_views
|
||||
else:
|
||||
self.views = None
|
||||
|
||||
def load(self) -> List[Document]:
|
||||
"""Load from file path."""
|
||||
import mwparserfromhell
|
||||
import mwxml
|
||||
|
||||
dump = mwxml.Dump.from_page_xml(self.data)
|
||||
|
||||
docs = []
|
||||
|
||||
for page in dump.pages:
|
||||
if self.views is not None and page.title not in self.views:
|
||||
if self.verbose:
|
||||
print("Skipped %s low views" % page.title, flush=True)
|
||||
continue
|
||||
for revision in page:
|
||||
if self.title_words_limit is not None:
|
||||
num_words = len(" ".join(page.title.split("_")).split(" "))
|
||||
if num_words > self.title_words_limit:
|
||||
if self.verbose:
|
||||
print("Skipped %s" % page.title, flush=True)
|
||||
continue
|
||||
if self.verbose:
|
||||
if self.views is not None:
|
||||
print(
|
||||
"Kept %s views: %s"
|
||||
% (page.title, self.views[page.title]),
|
||||
flush=True,
|
||||
)
|
||||
else:
|
||||
print("Kept %s" % page.title, flush=True)
|
||||
|
||||
code = mwparserfromhell.parse(revision.text)
|
||||
text = code.strip_code(
|
||||
normalize=True, collapse=True, keep_template_params=False
|
||||
)
|
||||
title_url = str(page.title).replace(" ", "_")
|
||||
metadata = dict(
|
||||
title=page.title,
|
||||
source="https://en.wikipedia.org/wiki/" + title_url,
|
||||
id=page.id,
|
||||
redirect=page.redirect,
|
||||
views=self.views[page.title]
|
||||
if self.views is not None
|
||||
else -1,
|
||||
)
|
||||
metadata = {k: v for k, v in metadata.items() if v is not None}
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
|
||||
return docs
|
||||
|
||||
|
||||
def search_index(search_term, index_filename):
|
||||
byte_flag = False
|
||||
data_length = start_byte = 0
|
||||
index_file = open(index_filename, "r")
|
||||
csv_reader = csv.reader(index_file, delimiter=":")
|
||||
for line in csv_reader:
|
||||
if not byte_flag and search_term == line[2]:
|
||||
start_byte = int(line[0])
|
||||
byte_flag = True
|
||||
elif byte_flag and int(line[0]) != start_byte:
|
||||
data_length = int(line[0]) - start_byte
|
||||
break
|
||||
index_file.close()
|
||||
return start_byte, data_length
|
||||
|
||||
|
||||
def get_start_bytes(index_filename):
|
||||
index_file = open(index_filename, "r")
|
||||
csv_reader = csv.reader(index_file, delimiter=":")
|
||||
start_bytes = set()
|
||||
for line in csv_reader:
|
||||
start_bytes.add(int(line[0]))
|
||||
index_file.close()
|
||||
return sorted(start_bytes)
|
||||
|
||||
|
||||
def get_wiki_filenames():
|
||||
# requires
|
||||
# wget http://ftp.acc.umu.se/mirror/wikimedia.org/dumps/enwiki/20230401/enwiki-20230401-pages-articles-multistream-index.txt.bz2
|
||||
base_path = os.path.join(
|
||||
root_path, "enwiki-20230401-pages-articles-multistream"
|
||||
)
|
||||
index_file = "enwiki-20230401-pages-articles-multistream-index.txt"
|
||||
index_filename = os.path.join(base_path, index_file)
|
||||
wiki_filename = os.path.join(
|
||||
base_path, "enwiki-20230401-pages-articles-multistream.xml.bz2"
|
||||
)
|
||||
return index_filename, wiki_filename
|
||||
|
||||
|
||||
def get_documents_by_search_term(search_term):
|
||||
index_filename, wiki_filename = get_wiki_filenames()
|
||||
start_byte, data_length = search_index(search_term, index_filename)
|
||||
with open(wiki_filename, "rb") as wiki_file:
|
||||
wiki_file.seek(start_byte)
|
||||
data = bz2.BZ2Decompressor().decompress(wiki_file.read(data_length))
|
||||
|
||||
loader = MWDumpDirectLoader(data.decode())
|
||||
documents = loader.load()
|
||||
return documents
|
||||
|
||||
|
||||
def get_one_chunk(
|
||||
wiki_filename,
|
||||
start_byte,
|
||||
end_byte,
|
||||
return_file=True,
|
||||
title_words_limit=None,
|
||||
use_views=True,
|
||||
):
|
||||
data_length = end_byte - start_byte
|
||||
with open(wiki_filename, "rb") as wiki_file:
|
||||
wiki_file.seek(start_byte)
|
||||
data = bz2.BZ2Decompressor().decompress(wiki_file.read(data_length))
|
||||
|
||||
loader = MWDumpDirectLoader(
|
||||
data.decode(), title_words_limit=title_words_limit, use_views=use_views
|
||||
)
|
||||
documents1 = loader.load()
|
||||
if return_file:
|
||||
base_tmp = "temp_wiki"
|
||||
if not os.path.isdir(base_tmp):
|
||||
os.makedirs(base_tmp, exist_ok=True)
|
||||
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
|
||||
with open(filename, "wb") as f:
|
||||
pickle.dump(documents1, f)
|
||||
return filename
|
||||
return documents1
|
||||
|
||||
|
||||
from joblib import Parallel, delayed
|
||||
|
||||
global_views = get_views()
|
||||
|
||||
|
||||
def get_all_documents(small_test=2, n_jobs=None, use_views=True):
|
||||
print("DO get all wiki docs: %s" % small_test, flush=True)
|
||||
index_filename, wiki_filename = get_wiki_filenames()
|
||||
start_bytes = get_start_bytes(index_filename)
|
||||
end_bytes = start_bytes[1:]
|
||||
start_bytes = start_bytes[:-1]
|
||||
|
||||
if small_test:
|
||||
start_bytes = start_bytes[:small_test]
|
||||
end_bytes = end_bytes[:small_test]
|
||||
if n_jobs is None:
|
||||
n_jobs = 5
|
||||
else:
|
||||
if n_jobs is None:
|
||||
n_jobs = os.cpu_count() // 4
|
||||
|
||||
# default loky backend leads to name space conflict problems
|
||||
return_file = True # large return from joblib hangs
|
||||
documents = Parallel(n_jobs=n_jobs, verbose=10, backend="multiprocessing")(
|
||||
delayed(get_one_chunk)(
|
||||
wiki_filename,
|
||||
start_byte,
|
||||
end_byte,
|
||||
return_file=return_file,
|
||||
use_views=use_views,
|
||||
)
|
||||
for start_byte, end_byte in zip(start_bytes, end_bytes)
|
||||
)
|
||||
if return_file:
|
||||
# then documents really are files
|
||||
files = documents.copy()
|
||||
documents = []
|
||||
for fil in files:
|
||||
with open(fil, "rb") as f:
|
||||
documents.extend(pickle.load(f))
|
||||
os.remove(fil)
|
||||
else:
|
||||
from functools import reduce
|
||||
from operator import concat
|
||||
|
||||
documents = reduce(concat, documents)
|
||||
assert isinstance(documents, list)
|
||||
|
||||
print("DONE get all wiki docs", flush=True)
|
||||
return documents
|
||||
|
||||
|
||||
def test_by_search_term():
|
||||
search_term = "Apollo"
|
||||
assert len(get_documents_by_search_term(search_term)) == 100
|
||||
|
||||
search_term = "Abstract (law)"
|
||||
assert len(get_documents_by_search_term(search_term)) == 100
|
||||
|
||||
search_term = "Artificial languages"
|
||||
assert len(get_documents_by_search_term(search_term)) == 100
|
||||
|
||||
|
||||
def test_start_bytes():
|
||||
index_filename, wiki_filename = get_wiki_filenames()
|
||||
assert len(get_start_bytes(index_filename)) == 227850
|
||||
|
||||
|
||||
def test_get_all_documents():
|
||||
small_test = 20 # 227850
|
||||
n_jobs = os.cpu_count() // 4
|
||||
|
||||
assert (
|
||||
len(
|
||||
get_all_documents(
|
||||
small_test=small_test, n_jobs=n_jobs, use_views=False
|
||||
)
|
||||
)
|
||||
== small_test * 100
|
||||
)
|
||||
|
||||
assert (
|
||||
len(
|
||||
get_all_documents(
|
||||
small_test=small_test, n_jobs=n_jobs, use_views=True
|
||||
)
|
||||
)
|
||||
== 429
|
||||
)
|
||||
|
||||
|
||||
def get_one_pageviews(fil):
|
||||
df1 = pd.read_csv(
|
||||
fil,
|
||||
sep=" ",
|
||||
header=None,
|
||||
names=["region", "title", "views", "foo"],
|
||||
quoting=csv.QUOTE_NONE,
|
||||
)
|
||||
df1.index = df1["title"]
|
||||
df1 = df1[df1["region"] == "en"]
|
||||
df1 = df1.drop("region", axis=1)
|
||||
df1 = df1.drop("foo", axis=1)
|
||||
df1 = df1.drop("title", axis=1) # already index
|
||||
|
||||
base_tmp = "temp_wiki_pageviews"
|
||||
if not os.path.isdir(base_tmp):
|
||||
os.makedirs(base_tmp, exist_ok=True)
|
||||
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.csv")
|
||||
df1.to_csv(filename, index=True)
|
||||
return filename
|
||||
|
||||
|
||||
def test_agg_pageviews(gen_files=False):
|
||||
if gen_files:
|
||||
path = os.path.join(
|
||||
root_path,
|
||||
"wiki_pageviews/dumps.wikimedia.org/other/pageviews/2023/2023-04",
|
||||
)
|
||||
files = glob.glob(os.path.join(path, "pageviews*.gz"))
|
||||
# files = files[:2] # test
|
||||
n_jobs = os.cpu_count() // 2
|
||||
csv_files = Parallel(
|
||||
n_jobs=n_jobs, verbose=10, backend="multiprocessing"
|
||||
)(delayed(get_one_pageviews)(fil) for fil in files)
|
||||
else:
|
||||
# to continue without redoing above
|
||||
csv_files = glob.glob(
|
||||
os.path.join(root_path, "temp_wiki_pageviews/*.csv")
|
||||
)
|
||||
|
||||
df_list = []
|
||||
for csv_file in csv_files:
|
||||
print(csv_file)
|
||||
df1 = pd.read_csv(csv_file)
|
||||
df_list.append(df1)
|
||||
df = pd.concat(df_list, axis=0)
|
||||
df = df.groupby("title")["views"].sum().reset_index()
|
||||
df.to_csv("wiki_page_views.csv", index=True)
|
||||
|
||||
|
||||
def test_reduce_pageview():
|
||||
filename = "wiki_page_views.csv"
|
||||
df = pd.read_csv(filename)
|
||||
df = df[df["views"] < 1e7]
|
||||
#
|
||||
plt.hist(df["views"], bins=100, log=True)
|
||||
views_avg = np.mean(df["views"])
|
||||
views_median = np.median(df["views"])
|
||||
plt.title("Views avg: %s median: %s" % (views_avg, views_median))
|
||||
plt.savefig(filename.replace(".csv", ".png"))
|
||||
plt.close()
|
||||
#
|
||||
views_limit = 5000
|
||||
df = df[df["views"] > views_limit]
|
||||
filename = "wiki_page_views_more_5000month.csv"
|
||||
df.to_csv(filename, index=True)
|
||||
#
|
||||
plt.hist(df["views"], bins=100, log=True)
|
||||
views_avg = np.mean(df["views"])
|
||||
views_median = np.median(df["views"])
|
||||
plt.title("Views avg: %s median: %s" % (views_avg, views_median))
|
||||
plt.savefig(filename.replace(".csv", ".png"))
|
||||
plt.close()
|
||||
|
||||
|
||||
@pytest.mark.skip("Only if doing full processing again, some manual steps")
|
||||
def test_do_wiki_full_all():
|
||||
# Install other requirements for wiki specific conversion:
|
||||
# pip install -r reqs_optional/requirements_optional_wikiprocessing.txt
|
||||
|
||||
# Use "Transmission" in Ubuntu to get wiki dump using torrent:
|
||||
# See: https://meta.wikimedia.org/wiki/Data_dump_torrents
|
||||
# E.g. magnet:?xt=urn:btih:b2c74af2b1531d0b63f1166d2011116f44a8fed0&dn=enwiki-20230401-pages-articles-multistream.xml.bz2&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337
|
||||
|
||||
# Get index
|
||||
os.system(
|
||||
"wget http://ftp.acc.umu.se/mirror/wikimedia.org/dumps/enwiki/20230401/enwiki-20230401-pages-articles-multistream-index.txt.bz2"
|
||||
)
|
||||
|
||||
# Test that can use LangChain to get docs from subset of wiki as sampled out of full wiki directly using bzip multistream
|
||||
test_get_all_documents()
|
||||
|
||||
# Check can search wiki multistream
|
||||
test_by_search_term()
|
||||
|
||||
# Test can get all start bytes in index
|
||||
test_start_bytes()
|
||||
|
||||
# Get page views, e.g. for entire month of April 2023
|
||||
os.system(
|
||||
"wget -b -m -k -o wget.log -e robots=off https://dumps.wikimedia.org/other/pageviews/2023/2023-04/"
|
||||
)
|
||||
|
||||
# Aggregate page views from many files into single file
|
||||
test_agg_pageviews(gen_files=True)
|
||||
|
||||
# Reduce page views to some limit, so processing of full wiki is not too large
|
||||
test_reduce_pageview()
|
||||
|
||||
# Start generate.py with requesting wiki_full in prep. This will use page views as referenced in get_views.
|
||||
# Note get_views as global() function done once is required to avoid very slow processing
|
||||
# WARNING: Requires alot of memory to handle, used up to 300GB system RAM at peak
|
||||
"""
|
||||
python generate.py --langchain_mode='wiki_full' --visible_langchain_modes="['wiki_full', 'UserData', 'MyData', 'github h2oGPT', 'DriverlessAI docs']" &> lc_out.log
|
||||
"""
|
||||
@@ -1,121 +0,0 @@
|
||||
import torch
|
||||
from transformers import StoppingCriteria, StoppingCriteriaList
|
||||
|
||||
from enums import PromptType
|
||||
|
||||
|
||||
class StoppingCriteriaSub(StoppingCriteria):
|
||||
def __init__(
|
||||
self, stops=[], encounters=[], device="cuda", model_max_length=None
|
||||
):
|
||||
super().__init__()
|
||||
assert (
|
||||
len(stops) % len(encounters) == 0
|
||||
), "Number of stops and encounters must match"
|
||||
self.encounters = encounters
|
||||
self.stops = [stop.to(device) for stop in stops]
|
||||
self.num_stops = [0] * len(stops)
|
||||
self.model_max_length = model_max_length
|
||||
|
||||
def __call__(
|
||||
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
||||
) -> bool:
|
||||
for stopi, stop in enumerate(self.stops):
|
||||
if torch.all((stop == input_ids[0][-len(stop) :])).item():
|
||||
self.num_stops[stopi] += 1
|
||||
if (
|
||||
self.num_stops[stopi]
|
||||
>= self.encounters[stopi % len(self.encounters)]
|
||||
):
|
||||
# print("Stopped", flush=True)
|
||||
return True
|
||||
if (
|
||||
self.model_max_length is not None
|
||||
and input_ids[0].shape[0] >= self.model_max_length
|
||||
):
|
||||
# critical limit
|
||||
return True
|
||||
# print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True)
|
||||
# print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True)
|
||||
return False
|
||||
|
||||
|
||||
def get_stopping(
|
||||
prompt_type,
|
||||
prompt_dict,
|
||||
tokenizer,
|
||||
device,
|
||||
human="<human>:",
|
||||
bot="<bot>:",
|
||||
model_max_length=None,
|
||||
):
|
||||
# FIXME: prompt_dict unused currently
|
||||
if prompt_type in [
|
||||
PromptType.human_bot.name,
|
||||
PromptType.instruct_vicuna.name,
|
||||
PromptType.instruct_with_end.name,
|
||||
]:
|
||||
if prompt_type == PromptType.human_bot.name:
|
||||
# encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
|
||||
# stopping only starts once output is beyond prompt
|
||||
# 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
|
||||
stop_words = [human, bot, "\n" + human, "\n" + bot]
|
||||
encounters = [1, 2]
|
||||
elif prompt_type == PromptType.instruct_vicuna.name:
|
||||
# even below is not enough, generic strings and many ways to encode
|
||||
stop_words = [
|
||||
"### Human:",
|
||||
"""
|
||||
### Human:""",
|
||||
"""
|
||||
### Human:
|
||||
""",
|
||||
"### Assistant:",
|
||||
"""
|
||||
### Assistant:""",
|
||||
"""
|
||||
### Assistant:
|
||||
""",
|
||||
]
|
||||
encounters = [1, 2]
|
||||
else:
|
||||
# some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
|
||||
stop_words = ["### End"]
|
||||
encounters = [1]
|
||||
stop_words_ids = [
|
||||
tokenizer(stop_word, return_tensors="pt")["input_ids"].squeeze()
|
||||
for stop_word in stop_words
|
||||
]
|
||||
# handle single token case
|
||||
stop_words_ids = [
|
||||
x if len(x.shape) > 0 else torch.tensor([x])
|
||||
for x in stop_words_ids
|
||||
]
|
||||
stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
|
||||
# avoid padding in front of tokens
|
||||
if (
|
||||
tokenizer._pad_token
|
||||
): # use hidden variable to avoid annoying properly logger bug
|
||||
stop_words_ids = [
|
||||
x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x
|
||||
for x in stop_words_ids
|
||||
]
|
||||
# handle fake \n added
|
||||
stop_words_ids = [
|
||||
x[1:] if y[0] == "\n" else x
|
||||
for x, y in zip(stop_words_ids, stop_words)
|
||||
]
|
||||
# build stopper
|
||||
stopping_criteria = StoppingCriteriaList(
|
||||
[
|
||||
StoppingCriteriaSub(
|
||||
stops=stop_words_ids,
|
||||
encounters=encounters,
|
||||
device=device,
|
||||
model_max_length=model_max_length,
|
||||
)
|
||||
]
|
||||
)
|
||||
else:
|
||||
stopping_criteria = StoppingCriteriaList()
|
||||
return stopping_criteria
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,69 +0,0 @@
|
||||
from typing import Any, Dict, List, Union, Optional
|
||||
import time
|
||||
import queue
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import LLMResult
|
||||
|
||||
|
||||
class StreamingGradioCallbackHandler(BaseCallbackHandler):
|
||||
"""
|
||||
Similar to H2OTextIteratorStreamer that is for HF backend, but here LangChain backend
|
||||
"""
|
||||
|
||||
def __init__(self, timeout: Optional[float] = None, block=True):
|
||||
super().__init__()
|
||||
self.text_queue = queue.SimpleQueue()
|
||||
self.stop_signal = None
|
||||
self.do_stop = False
|
||||
self.timeout = timeout
|
||||
self.block = block
|
||||
|
||||
def on_llm_start(
|
||||
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
||||
) -> None:
|
||||
"""Run when LLM starts running. Clean the queue."""
|
||||
while not self.text_queue.empty():
|
||||
try:
|
||||
self.text_queue.get(block=False)
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
||||
"""Run on new LLM token. Only available when streaming is enabled."""
|
||||
self.text_queue.put(token)
|
||||
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
"""Run when LLM ends running."""
|
||||
self.text_queue.put(self.stop_signal)
|
||||
|
||||
def on_llm_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
"""Run when LLM errors."""
|
||||
self.text_queue.put(self.stop_signal)
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
while True:
|
||||
try:
|
||||
value = (
|
||||
self.stop_signal
|
||||
) # value looks unused in pycharm, not true
|
||||
if self.do_stop:
|
||||
print("hit stop", flush=True)
|
||||
# could raise or break, maybe best to raise and make parent see if any exception in thread
|
||||
raise StopIteration()
|
||||
# break
|
||||
value = self.text_queue.get(
|
||||
block=self.block, timeout=self.timeout
|
||||
)
|
||||
break
|
||||
except queue.Empty:
|
||||
time.sleep(0.01)
|
||||
if value == self.stop_signal:
|
||||
raise StopIteration()
|
||||
else:
|
||||
return value
|
||||
@@ -1,442 +0,0 @@
|
||||
from pathlib import Path
|
||||
import argparse
|
||||
from argparse import RawTextHelpFormatter
|
||||
import re, gc
|
||||
|
||||
"""
|
||||
This script can be used as a standalone utility to convert IRs to dynamic + combine them.
|
||||
Following are the various ways this script can be used :-
|
||||
a. To convert a single Linalg IR to dynamic IR:
|
||||
--dynamic --first_ir_path=<PATH TO FIRST IR>
|
||||
b. To convert two Linalg IRs to dynamic IR:
|
||||
--dynamic --first_ir_path=<PATH TO SECOND IR> --first_ir_path=<PATH TO SECOND IR>
|
||||
c. To combine two Linalg IRs into one:
|
||||
--combine --first_ir_path=<PATH TO FIRST IR> --second_ir_path=<PATH TO SECOND IR>
|
||||
d. To convert both IRs into dynamic as well as combine the IRs:
|
||||
--dynamic --combine --first_ir_path=<PATH TO FIRST IR> --second_ir_path=<PATH TO SECOND IR>
|
||||
|
||||
NOTE: For dynamic you'll also need to provide the following set of flags:-
|
||||
i. For First Llama : --dynamic_input_size (DEFAULT: 19)
|
||||
ii. For Second Llama: --model_name (DEFAULT: llama2_7b)
|
||||
--precision (DEFAULT: 'int4')
|
||||
You may use --save_dynamic to also save the dynamic IR in option d above.
|
||||
Else for option a. and b. the dynamic IR(s) will get saved by default.
|
||||
"""
|
||||
|
||||
|
||||
def combine_mlir_scripts(
|
||||
first_vicuna_mlir,
|
||||
second_vicuna_mlir,
|
||||
output_name,
|
||||
return_ir=True,
|
||||
):
|
||||
print(f"[DEBUG] combining first and second mlir")
|
||||
print(f"[DEBUG] output_name = {output_name}")
|
||||
maps1 = []
|
||||
maps2 = []
|
||||
constants = set()
|
||||
f1 = []
|
||||
f2 = []
|
||||
|
||||
print(f"[DEBUG] processing first vicuna mlir")
|
||||
first_vicuna_mlir = first_vicuna_mlir.splitlines()
|
||||
while first_vicuna_mlir:
|
||||
line = first_vicuna_mlir.pop(0)
|
||||
if re.search("#map\d*\s*=", line):
|
||||
maps1.append(line)
|
||||
elif re.search("arith.constant", line):
|
||||
constants.add(line)
|
||||
elif not re.search("module", line):
|
||||
line = re.sub("forward", "first_vicuna_forward", line)
|
||||
f1.append(line)
|
||||
f1 = f1[:-1]
|
||||
del first_vicuna_mlir
|
||||
gc.collect()
|
||||
|
||||
for i, map_line in enumerate(maps1):
|
||||
map_var = map_line.split(" ")[0]
|
||||
map_line = re.sub(f"{map_var}(?!\d)", map_var + "_0", map_line)
|
||||
maps1[i] = map_line
|
||||
f1 = [
|
||||
re.sub(f"{map_var}(?!\d)", map_var + "_0", func_line)
|
||||
for func_line in f1
|
||||
]
|
||||
|
||||
print(f"[DEBUG] processing second vicuna mlir")
|
||||
second_vicuna_mlir = second_vicuna_mlir.splitlines()
|
||||
while second_vicuna_mlir:
|
||||
line = second_vicuna_mlir.pop(0)
|
||||
if re.search("#map\d*\s*=", line):
|
||||
maps2.append(line)
|
||||
elif "global_seed" in line:
|
||||
continue
|
||||
elif re.search("arith.constant", line):
|
||||
constants.add(line)
|
||||
elif not re.search("module", line):
|
||||
line = re.sub("forward", "second_vicuna_forward", line)
|
||||
f2.append(line)
|
||||
f2 = f2[:-1]
|
||||
del second_vicuna_mlir
|
||||
gc.collect()
|
||||
|
||||
for i, map_line in enumerate(maps2):
|
||||
map_var = map_line.split(" ")[0]
|
||||
map_line = re.sub(f"{map_var}(?!\d)", map_var + "_1", map_line)
|
||||
maps2[i] = map_line
|
||||
f2 = [
|
||||
re.sub(f"{map_var}(?!\d)", map_var + "_1", func_line)
|
||||
for func_line in f2
|
||||
]
|
||||
|
||||
module_start = 'module attributes {torch.debug_module_name = "_lambda"} {'
|
||||
module_end = "}"
|
||||
|
||||
global_vars = []
|
||||
vnames = []
|
||||
global_var_loading1 = []
|
||||
global_var_loading2 = []
|
||||
|
||||
print(f"[DEBUG] processing constants")
|
||||
counter = 0
|
||||
constants = list(constants)
|
||||
while constants:
|
||||
constant = constants.pop(0)
|
||||
vname, vbody = constant.split("=")
|
||||
vname = re.sub("%", "", vname)
|
||||
vname = vname.strip()
|
||||
vbody = re.sub("arith.constant", "", vbody)
|
||||
vbody = vbody.strip()
|
||||
if len(vbody.split(":")) < 2:
|
||||
print(constant)
|
||||
vdtype = vbody.split(":")[-1].strip()
|
||||
fixed_vdtype = vdtype
|
||||
if "c1_i64" in vname:
|
||||
print(constant)
|
||||
counter += 1
|
||||
if counter == 2:
|
||||
counter = 0
|
||||
print("detected duplicate")
|
||||
continue
|
||||
vnames.append(vname)
|
||||
if "true" not in vname:
|
||||
global_vars.append(
|
||||
f"ml_program.global private @{vname}({vbody}) : {fixed_vdtype}"
|
||||
)
|
||||
global_var_loading1.append(
|
||||
f"\t\t%{vname} = ml_program.global_load_const @{vname} : {fixed_vdtype}"
|
||||
)
|
||||
global_var_loading2.append(
|
||||
f"\t\t%{vname} = ml_program.global_load_const @{vname} : {fixed_vdtype}"
|
||||
)
|
||||
else:
|
||||
global_vars.append(
|
||||
f"ml_program.global private @{vname}({vbody}) : i1"
|
||||
)
|
||||
global_var_loading1.append(
|
||||
f"\t\t%{vname} = ml_program.global_load_const @{vname} : i1"
|
||||
)
|
||||
global_var_loading2.append(
|
||||
f"\t\t%{vname} = ml_program.global_load_const @{vname} : i1"
|
||||
)
|
||||
|
||||
new_f1, new_f2 = [], []
|
||||
|
||||
print(f"[DEBUG] processing f1")
|
||||
for line in f1:
|
||||
if "func.func" in line:
|
||||
new_f1.append(line)
|
||||
for global_var in global_var_loading1:
|
||||
new_f1.append(global_var)
|
||||
else:
|
||||
new_f1.append(line)
|
||||
|
||||
print(f"[DEBUG] processing f2")
|
||||
for line in f2:
|
||||
if "func.func" in line:
|
||||
new_f2.append(line)
|
||||
for global_var in global_var_loading2:
|
||||
if (
|
||||
"c20_i64 = arith.addi %dim_i64, %c1_i64 : i64"
|
||||
in global_var
|
||||
):
|
||||
print(global_var)
|
||||
new_f2.append(global_var)
|
||||
else:
|
||||
new_f2.append(line)
|
||||
|
||||
f1 = new_f1
|
||||
f2 = new_f2
|
||||
|
||||
del new_f1
|
||||
del new_f2
|
||||
gc.collect()
|
||||
|
||||
print(
|
||||
[
|
||||
"c20_i64 = arith.addi %dim_i64, %c1_i64 : i64" in x
|
||||
for x in [maps1, maps2, global_vars, f1, f2]
|
||||
]
|
||||
)
|
||||
|
||||
# doing it this way rather than assembling the whole string
|
||||
# to prevent OOM with 64GiB RAM when encoding the file.
|
||||
|
||||
print(f"[DEBUG] Saving mlir to {output_name}")
|
||||
with open(output_name, "w+") as f_:
|
||||
f_.writelines(line + "\n" for line in maps1)
|
||||
f_.writelines(line + "\n" for line in maps2)
|
||||
f_.writelines(line + "\n" for line in [module_start])
|
||||
f_.writelines(line + "\n" for line in global_vars)
|
||||
f_.writelines(line + "\n" for line in f1)
|
||||
f_.writelines(line + "\n" for line in f2)
|
||||
f_.writelines(line + "\n" for line in [module_end])
|
||||
|
||||
del maps1
|
||||
del maps2
|
||||
del module_start
|
||||
del global_vars
|
||||
del f1
|
||||
del f2
|
||||
del module_end
|
||||
gc.collect()
|
||||
|
||||
if return_ir:
|
||||
print(f"[DEBUG] Reading combined mlir back in")
|
||||
with open(output_name, "rb") as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def write_in_dynamic_inputs0(module, dynamic_input_size):
|
||||
print("[DEBUG] writing dynamic inputs to first vicuna")
|
||||
# Current solution for ensuring mlir files support dynamic inputs
|
||||
# TODO: find a more elegant way to implement this
|
||||
new_lines = []
|
||||
module = module.splitlines()
|
||||
while module:
|
||||
line = module.pop(0)
|
||||
line = re.sub(f"{dynamic_input_size}x", "?x", line)
|
||||
if "?x" in line:
|
||||
line = re.sub("tensor.empty\(\)", "tensor.empty(%dim)", line)
|
||||
line = re.sub(f" {dynamic_input_size},", " %dim,", line)
|
||||
if "tensor.empty" in line and "?x?" in line:
|
||||
line = re.sub(
|
||||
"tensor.empty\(%dim\)", "tensor.empty(%dim, %dim)", line
|
||||
)
|
||||
if "arith.cmpi" in line:
|
||||
line = re.sub(f"c{dynamic_input_size}", "dim", line)
|
||||
if "%0 = tensor.empty(%dim) : tensor<?xi64>" in line:
|
||||
new_lines.append("%dim = tensor.dim %arg0, %c1 : tensor<1x?xi64>")
|
||||
if "%dim = tensor.dim %arg0, %c1 : tensor<1x?xi64>" in line:
|
||||
continue
|
||||
|
||||
new_lines.append(line)
|
||||
return "\n".join(new_lines)
|
||||
|
||||
|
||||
def write_in_dynamic_inputs1(module, model_name, precision):
|
||||
print("[DEBUG] writing dynamic inputs to second vicuna")
|
||||
|
||||
def remove_constant_dim(line):
|
||||
if "c19_i64" in line:
|
||||
line = re.sub("c19_i64", "dim_i64", line)
|
||||
if "19x" in line:
|
||||
line = re.sub("19x", "?x", line)
|
||||
line = re.sub("tensor.empty\(\)", "tensor.empty(%dim)", line)
|
||||
if "tensor.empty" in line and "?x?" in line:
|
||||
line = re.sub(
|
||||
"tensor.empty\(%dim\)",
|
||||
"tensor.empty(%dim, %dim)",
|
||||
line,
|
||||
)
|
||||
if "arith.cmpi" in line:
|
||||
line = re.sub("c19", "dim", line)
|
||||
if " 19," in line:
|
||||
line = re.sub(" 19,", " %dim,", line)
|
||||
if "x20x" in line or "<20x" in line:
|
||||
line = re.sub("20x", "?x", line)
|
||||
line = re.sub("tensor.empty\(\)", "tensor.empty(%dimp1)", line)
|
||||
if " 20," in line:
|
||||
line = re.sub(" 20,", " %dimp1,", line)
|
||||
return line
|
||||
|
||||
module = module.splitlines()
|
||||
new_lines = []
|
||||
|
||||
# Using a while loop and the pop method to avoid creating a copy of module
|
||||
if "llama2_13b" in model_name:
|
||||
pkv_tensor_shape = "tensor<1x40x?x128x"
|
||||
elif "llama2_70b" in model_name:
|
||||
pkv_tensor_shape = "tensor<1x8x?x128x"
|
||||
else:
|
||||
pkv_tensor_shape = "tensor<1x32x?x128x"
|
||||
if precision in ["fp16", "int4", "int8"]:
|
||||
pkv_tensor_shape += "f16>"
|
||||
else:
|
||||
pkv_tensor_shape += "f32>"
|
||||
|
||||
while module:
|
||||
line = module.pop(0)
|
||||
if "%c19_i64 = arith.constant 19 : i64" in line:
|
||||
new_lines.append("%c2 = arith.constant 2 : index")
|
||||
new_lines.append(
|
||||
f"%dim_4_int = tensor.dim %arg1, %c2 : {pkv_tensor_shape}"
|
||||
)
|
||||
new_lines.append(
|
||||
"%dim_i64 = arith.index_cast %dim_4_int : index to i64"
|
||||
)
|
||||
continue
|
||||
if "%c2 = arith.constant 2 : index" in line:
|
||||
continue
|
||||
if "%c20_i64 = arith.constant 20 : i64" in line:
|
||||
new_lines.append("%c1_i64 = arith.constant 1 : i64")
|
||||
new_lines.append("%c20_i64 = arith.addi %dim_i64, %c1_i64 : i64")
|
||||
new_lines.append(
|
||||
"%dimp1 = arith.index_cast %c20_i64 : i64 to index"
|
||||
)
|
||||
continue
|
||||
line = remove_constant_dim(line)
|
||||
new_lines.append(line)
|
||||
|
||||
return "\n".join(new_lines)
|
||||
|
||||
|
||||
def save_dynamic_ir(ir_to_save, output_file):
|
||||
if not ir_to_save:
|
||||
return
|
||||
# We only get string output from the dynamic conversion utility.
|
||||
from contextlib import redirect_stdout
|
||||
|
||||
with open(output_file, "w") as f:
|
||||
with redirect_stdout(f):
|
||||
print(ir_to_save)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
prog="llama ir utility",
|
||||
description="\tThis script can be used as a standalone utility to convert IRs to dynamic + combine them.\n"
|
||||
+ "\tFollowing are the various ways this script can be used :-\n"
|
||||
+ "\t\ta. To convert a single Linalg IR to dynamic IR:\n"
|
||||
+ "\t\t\t--dynamic --first_ir_path=<PATH TO FIRST IR>\n"
|
||||
+ "\t\tb. To convert two Linalg IRs to dynamic IR:\n"
|
||||
+ "\t\t\t--dynamic --first_ir_path=<PATH TO SECOND IR> --first_ir_path=<PATH TO SECOND IR>\n"
|
||||
+ "\t\tc. To combine two Linalg IRs into one:\n"
|
||||
+ "\t\t\t--combine --first_ir_path=<PATH TO FIRST IR> --second_ir_path=<PATH TO SECOND IR>\n"
|
||||
+ "\t\td. To convert both IRs into dynamic as well as combine the IRs:\n"
|
||||
+ "\t\t\t--dynamic --combine --first_ir_path=<PATH TO FIRST IR> --second_ir_path=<PATH TO SECOND IR>\n\n"
|
||||
+ "\tNOTE: For dynamic you'll also need to provide the following set of flags:-\n"
|
||||
+ "\t\t i. For First Llama : --dynamic_input_size (DEFAULT: 19)\n"
|
||||
+ "\t\tii. For Second Llama: --model_name (DEFAULT: llama2_7b)\n"
|
||||
+ "\t\t\t--precision (DEFAULT: 'int4')\n"
|
||||
+ "\t You may use --save_dynamic to also save the dynamic IR in option d above.\n"
|
||||
+ "\t Else for option a. and b. the dynamic IR(s) will get saved by default.\n",
|
||||
formatter_class=RawTextHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precision",
|
||||
"-p",
|
||||
default="int4",
|
||||
choices=["fp32", "fp16", "int8", "int4"],
|
||||
help="Precision of the concerned IR",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
type=str,
|
||||
default="llama2_7b",
|
||||
choices=["vicuna", "llama2_7b", "llama2_13b", "llama2_70b"],
|
||||
help="Specify which model to run.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--first_ir_path",
|
||||
default=None,
|
||||
help="path to first llama mlir file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--second_ir_path",
|
||||
default=None,
|
||||
help="path to second llama mlir file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dynamic_input_size",
|
||||
type=int,
|
||||
default=19,
|
||||
help="Specify the static input size to replace with dynamic dim.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dynamic",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Converts the IR(s) to dynamic",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dynamic",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Save the individual IR(s) after converting to dynamic",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--combine",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Converts the IR(s) to dynamic",
|
||||
)
|
||||
|
||||
args, unknown = parser.parse_known_args()
|
||||
|
||||
dynamic = args.dynamic
|
||||
combine = args.combine
|
||||
assert (
|
||||
dynamic or combine
|
||||
), "neither `dynamic` nor `combine` flag is turned on"
|
||||
first_ir_path = args.first_ir_path
|
||||
second_ir_path = args.second_ir_path
|
||||
assert first_ir_path or second_ir_path, "no input ir has been provided"
|
||||
if combine:
|
||||
assert (
|
||||
first_ir_path and second_ir_path
|
||||
), "you will need to provide both IRs to combine"
|
||||
precision = args.precision
|
||||
model_name = args.model_name
|
||||
dynamic_input_size = args.dynamic_input_size
|
||||
save_dynamic = args.save_dynamic
|
||||
|
||||
print(f"Dynamic conversion utility is turned {'ON' if dynamic else 'OFF'}")
|
||||
print(f"Combining IR utility is turned {'ON' if combine else 'OFF'}")
|
||||
|
||||
if dynamic and not combine:
|
||||
save_dynamic = True
|
||||
|
||||
first_ir = None
|
||||
first_dynamic_ir_name = None
|
||||
second_ir = None
|
||||
second_dynamic_ir_name = None
|
||||
if first_ir_path:
|
||||
first_dynamic_ir_name = f"{Path(first_ir_path).stem}_dynamic"
|
||||
with open(first_ir_path, "r") as f:
|
||||
first_ir = f.read()
|
||||
if second_ir_path:
|
||||
second_dynamic_ir_name = f"{Path(second_ir_path).stem}_dynamic"
|
||||
with open(second_ir_path, "r") as f:
|
||||
second_ir = f.read()
|
||||
if dynamic:
|
||||
first_ir = (
|
||||
write_in_dynamic_inputs0(first_ir, dynamic_input_size)
|
||||
if first_ir
|
||||
else None
|
||||
)
|
||||
second_ir = (
|
||||
write_in_dynamic_inputs1(second_ir, model_name, precision)
|
||||
if second_ir
|
||||
else None
|
||||
)
|
||||
if save_dynamic:
|
||||
save_dynamic_ir(first_ir, f"{first_dynamic_ir_name}.mlir")
|
||||
save_dynamic_ir(second_ir, f"{second_dynamic_ir_name}.mlir")
|
||||
|
||||
if combine:
|
||||
combine_mlir_scripts(
|
||||
first_ir,
|
||||
second_ir,
|
||||
f"{model_name}_{precision}.mlir",
|
||||
return_ir=False,
|
||||
)
|
||||
@@ -1,211 +0,0 @@
|
||||
import torch
|
||||
import torch_mlir
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
StoppingCriteria,
|
||||
)
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from apps.language_models.utils import (
|
||||
get_torch_mlir_module_bytecode,
|
||||
get_vmfb_from_path,
|
||||
)
|
||||
|
||||
|
||||
class StopOnTokens(StoppingCriteria):
|
||||
def __call__(
|
||||
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
||||
) -> bool:
|
||||
stop_ids = [50278, 50279, 50277, 1, 0]
|
||||
for stop_id in stop_ids:
|
||||
if input_ids[0][-1] == stop_id:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def shouldStop(tokens):
|
||||
stop_ids = [50278, 50279, 50277, 1, 0]
|
||||
for stop_id in stop_ids:
|
||||
if tokens[0][-1] == stop_id:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
MAX_SEQUENCE_LENGTH = 256
|
||||
|
||||
|
||||
def user(message, history):
|
||||
# Append the user's message to the conversation history
|
||||
return "", history + [[message, ""]]
|
||||
|
||||
|
||||
def compile_stableLM(
|
||||
model,
|
||||
model_inputs,
|
||||
model_name,
|
||||
model_vmfb_name,
|
||||
device="cuda",
|
||||
precision="fp32",
|
||||
debug=False,
|
||||
):
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
# device = "cuda" # "cpu"
|
||||
# TODO: vmfb and mlir name should include precision and device
|
||||
vmfb_path = (
|
||||
Path(model_name + f"_{device}.vmfb")
|
||||
if model_vmfb_name is None
|
||||
else Path(model_vmfb_name)
|
||||
)
|
||||
shark_module = get_vmfb_from_path(
|
||||
vmfb_path, device, mlir_dialect="tm_tensor"
|
||||
)
|
||||
if shark_module is not None:
|
||||
return shark_module
|
||||
|
||||
mlir_path = Path(model_name + ".mlir")
|
||||
print(
|
||||
f"[DEBUG] mlir path {mlir_path} {'exists' if mlir_path.exists() else 'does not exist'}"
|
||||
)
|
||||
if mlir_path.exists():
|
||||
with open(mlir_path, "rb") as f:
|
||||
bytecode = f.read()
|
||||
else:
|
||||
ts_graph = get_torch_mlir_module_bytecode(model, model_inputs)
|
||||
module = torch_mlir.compile(
|
||||
ts_graph,
|
||||
[*model_inputs],
|
||||
torch_mlir.OutputType.LINALG_ON_TENSORS,
|
||||
use_tracing=False,
|
||||
verbose=False,
|
||||
)
|
||||
bytecode_stream = BytesIO()
|
||||
module.operation.write_bytecode(bytecode_stream)
|
||||
bytecode = bytecode_stream.getvalue()
|
||||
f_ = open(model_name + ".mlir", "wb")
|
||||
f_.write(bytecode)
|
||||
print("Saved mlir")
|
||||
f_.close()
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module=bytecode, device=device, mlir_dialect="tm_tensor"
|
||||
)
|
||||
shark_module.compile()
|
||||
|
||||
path = shark_module.save_module(
|
||||
vmfb_path.parent.absolute(), vmfb_path.stem, debug=debug
|
||||
)
|
||||
print("Saved vmfb at ", str(path))
|
||||
|
||||
return shark_module
|
||||
|
||||
|
||||
class StableLMModel(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
combine_input_dict = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
output = self.model(**combine_input_dict)
|
||||
return output.logits
|
||||
|
||||
|
||||
# Initialize a StopOnTokens object
|
||||
system_prompt = """<|SYSTEM|># StableLM Tuned (Alpha version)
|
||||
- StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
|
||||
- StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
||||
- StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
|
||||
- StableLM will refuse to participate in anything that could harm a human.
|
||||
"""
|
||||
|
||||
|
||||
def get_tokenizer():
|
||||
model_path = "stabilityai/stablelm-tuned-alpha-3b"
|
||||
tok = AutoTokenizer.from_pretrained(model_path)
|
||||
tok.add_special_tokens({"pad_token": "<PAD>"})
|
||||
print("Sucessfully loaded the tokenizer to the memory")
|
||||
return tok
|
||||
|
||||
|
||||
# sharkStableLM = compile_stableLM
|
||||
# (
|
||||
# None,
|
||||
# tuple([input_ids, attention_mask]),
|
||||
# "stableLM_linalg_f32_seqLen256",
|
||||
# "/home/shark/vivek/stableLM_shark_f32_seqLen256"
|
||||
# )
|
||||
def generate(
|
||||
new_text,
|
||||
max_new_tokens,
|
||||
sharkStableLM,
|
||||
tokenizer=None,
|
||||
):
|
||||
if tokenizer is None:
|
||||
tokenizer = get_tokenizer()
|
||||
# Construct the input message string for the model by
|
||||
# concatenating the current system message and conversation history
|
||||
# Tokenize the messages string
|
||||
# sharkStableLM = compile_stableLM
|
||||
# (
|
||||
# None,
|
||||
# tuple([input_ids, attention_mask]),
|
||||
# "stableLM_linalg_f32_seqLen256",
|
||||
# "/home/shark/vivek/stableLM_shark_f32_seqLen256"
|
||||
# )
|
||||
words_list = []
|
||||
for i in range(max_new_tokens):
|
||||
# numWords = len(new_text.split())
|
||||
# if(numWords>220):
|
||||
# break
|
||||
params = {
|
||||
"new_text": new_text,
|
||||
}
|
||||
generated_token_op = generate_new_token(
|
||||
sharkStableLM, tokenizer, params
|
||||
)
|
||||
detok = generated_token_op["detok"]
|
||||
stop_generation = generated_token_op["stop_generation"]
|
||||
if stop_generation:
|
||||
break
|
||||
print(detok, end="", flush=True)
|
||||
words_list.append(detok)
|
||||
if detok == "":
|
||||
break
|
||||
new_text = new_text + detok
|
||||
return words_list
|
||||
|
||||
|
||||
def generate_new_token(shark_model, tokenizer, params):
|
||||
new_text = params["new_text"]
|
||||
model_inputs = tokenizer(
|
||||
[new_text],
|
||||
padding="max_length",
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
sum_attentionmask = torch.sum(model_inputs.attention_mask)
|
||||
# sharkStableLM = compile_stableLM(None, tuple([input_ids, attention_mask]), "stableLM_linalg_f32_seqLen256", "/home/shark/vivek/stableLM_shark_f32_seqLen256")
|
||||
output = shark_model(
|
||||
"forward", [model_inputs.input_ids, model_inputs.attention_mask]
|
||||
)
|
||||
output = torch.from_numpy(output)
|
||||
next_toks = torch.topk(output, 1)
|
||||
stop_generation = False
|
||||
if shouldStop(next_toks.indices):
|
||||
stop_generation = True
|
||||
new_token = next_toks.indices[0][int(sum_attentionmask) - 1]
|
||||
detok = tokenizer.decode(
|
||||
new_token,
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
ret_dict = {
|
||||
"new_token": new_token,
|
||||
"detok": detok,
|
||||
"stop_generation": stop_generation,
|
||||
}
|
||||
return ret_dict
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,94 +0,0 @@
|
||||
# -*- mode: python ; coding: utf-8 -*-
|
||||
from PyInstaller.utils.hooks import collect_data_files
|
||||
from PyInstaller.utils.hooks import collect_submodules
|
||||
from PyInstaller.utils.hooks import copy_metadata
|
||||
|
||||
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
|
||||
|
||||
datas = []
|
||||
datas += collect_data_files('torch')
|
||||
datas += copy_metadata('torch')
|
||||
datas += copy_metadata('tqdm')
|
||||
datas += copy_metadata('regex')
|
||||
datas += copy_metadata('requests')
|
||||
datas += copy_metadata('packaging')
|
||||
datas += copy_metadata('filelock')
|
||||
datas += copy_metadata('numpy')
|
||||
datas += copy_metadata('tokenizers')
|
||||
datas += copy_metadata('importlib_metadata')
|
||||
datas += copy_metadata('torch-mlir')
|
||||
datas += copy_metadata('omegaconf')
|
||||
datas += copy_metadata('safetensors')
|
||||
datas += copy_metadata('huggingface-hub')
|
||||
datas += copy_metadata('sentencepiece')
|
||||
datas += copy_metadata("pyyaml")
|
||||
datas += collect_data_files("tokenizers")
|
||||
datas += collect_data_files("tiktoken")
|
||||
datas += collect_data_files("accelerate")
|
||||
datas += collect_data_files('diffusers')
|
||||
datas += collect_data_files('transformers')
|
||||
datas += collect_data_files('opencv-python')
|
||||
datas += collect_data_files('pytorch_lightning')
|
||||
datas += collect_data_files('skimage')
|
||||
datas += collect_data_files('gradio')
|
||||
datas += collect_data_files('gradio_client')
|
||||
datas += collect_data_files('iree')
|
||||
datas += collect_data_files('google-cloud-storage')
|
||||
datas += collect_data_files('py-cpuinfo')
|
||||
datas += collect_data_files("shark", include_py_files=True)
|
||||
datas += collect_data_files("timm", include_py_files=True)
|
||||
datas += collect_data_files("tqdm")
|
||||
datas += collect_data_files("tkinter")
|
||||
datas += collect_data_files("webview")
|
||||
datas += collect_data_files("sentencepiece")
|
||||
datas += collect_data_files("jsonschema")
|
||||
datas += collect_data_files("jsonschema_specifications")
|
||||
datas += collect_data_files("cpuinfo")
|
||||
datas += collect_data_files("langchain")
|
||||
|
||||
binaries = []
|
||||
|
||||
block_cipher = None
|
||||
|
||||
hiddenimports = ['shark', 'shark.shark_inference', 'apps']
|
||||
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
|
||||
hiddenimports += [x for x in collect_submodules("iree") if "tests" not in x]
|
||||
|
||||
a = Analysis(
|
||||
['scripts/vicuna.py'],
|
||||
pathex=['.'],
|
||||
binaries=binaries,
|
||||
datas=datas,
|
||||
hiddenimports=hiddenimports,
|
||||
hookspath=[],
|
||||
hooksconfig={},
|
||||
runtime_hooks=[],
|
||||
excludes=[],
|
||||
win_no_prefer_redirects=False,
|
||||
win_private_assemblies=False,
|
||||
cipher=block_cipher,
|
||||
noarchive=False,
|
||||
)
|
||||
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
|
||||
|
||||
exe = EXE(
|
||||
pyz,
|
||||
a.scripts,
|
||||
a.binaries,
|
||||
a.zipfiles,
|
||||
a.datas,
|
||||
[],
|
||||
name='shark_llama_cli',
|
||||
debug=False,
|
||||
bootloader_ignore_signals=False,
|
||||
strip=False,
|
||||
upx=True,
|
||||
upx_exclude=[],
|
||||
runtime_tmpdir=None,
|
||||
console=True,
|
||||
disable_windowed_traceback=False,
|
||||
argv_emulation=False,
|
||||
target_arch=None,
|
||||
codesign_identity=None,
|
||||
entitlements_file=None,
|
||||
)
|
||||
@@ -1,22 +0,0 @@
|
||||
import torch
|
||||
|
||||
|
||||
class FalconModel(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
input_dict = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"past_key_values": None,
|
||||
"use_cache": True,
|
||||
}
|
||||
output = self.model(
|
||||
**input_dict,
|
||||
return_dict=True,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
)[0]
|
||||
return output[:, -1, :]
|
||||
@@ -1,503 +0,0 @@
|
||||
import torch
|
||||
import dataclasses
|
||||
from enum import auto, Enum
|
||||
from typing import List, Any
|
||||
from transformers import StoppingCriteria
|
||||
|
||||
|
||||
from brevitas_examples.llm.llm_quant.quantize import quantize_model
|
||||
from brevitas_examples.llm.llm_quant.run_utils import get_model_impl
|
||||
|
||||
|
||||
class LayerNorm(torch.nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm to handle fp16."""
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
orig_type = x.dtype
|
||||
ret = super().forward(x.type(torch.float32))
|
||||
return ret.type(orig_type)
|
||||
|
||||
|
||||
class VisionModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
ln_vision,
|
||||
visual_encoder,
|
||||
precision="fp32",
|
||||
weight_group_size=128,
|
||||
):
|
||||
super().__init__()
|
||||
self.ln_vision = ln_vision
|
||||
self.visual_encoder = visual_encoder
|
||||
if precision in ["int4", "int8"]:
|
||||
print("Vision Model applying weight quantization to ln_vision")
|
||||
weight_bit_width = 4 if precision == "int4" else 8
|
||||
quantize_model(
|
||||
self.ln_vision,
|
||||
dtype=torch.float32,
|
||||
weight_bit_width=weight_bit_width,
|
||||
weight_param_method="stats",
|
||||
weight_scale_precision="float",
|
||||
weight_quant_type="asym",
|
||||
weight_quant_granularity="per_group",
|
||||
weight_group_size=weight_group_size,
|
||||
quantize_weight_zero_point=False,
|
||||
)
|
||||
print("Weight quantization applied.")
|
||||
print(
|
||||
"Vision Model applying weight quantization to visual_encoder"
|
||||
)
|
||||
quantize_model(
|
||||
self.visual_encoder,
|
||||
dtype=torch.float32,
|
||||
weight_bit_width=weight_bit_width,
|
||||
weight_param_method="stats",
|
||||
weight_scale_precision="float",
|
||||
weight_quant_type="asym",
|
||||
weight_quant_granularity="per_group",
|
||||
weight_group_size=weight_group_size,
|
||||
quantize_weight_zero_point=False,
|
||||
)
|
||||
print("Weight quantization applied.")
|
||||
|
||||
def forward(self, image):
|
||||
image_embeds = self.ln_vision(self.visual_encoder(image))
|
||||
return image_embeds
|
||||
|
||||
|
||||
class QformerBertModel(torch.nn.Module):
|
||||
def __init__(self, qformer_bert):
|
||||
super().__init__()
|
||||
self.qformer_bert = qformer_bert
|
||||
|
||||
def forward(self, query_tokens, image_embeds, image_atts):
|
||||
query_output = self.qformer_bert(
|
||||
query_embeds=query_tokens,
|
||||
encoder_hidden_states=image_embeds,
|
||||
encoder_attention_mask=image_atts,
|
||||
return_dict=True,
|
||||
)
|
||||
return query_output.last_hidden_state
|
||||
|
||||
|
||||
class FirstLlamaModel(torch.nn.Module):
|
||||
def __init__(self, model, precision="fp32", weight_group_size=128):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
print("SHARK: Loading LLAMA Done")
|
||||
if precision in ["int4", "int8"]:
|
||||
print("First Llama applying weight quantization")
|
||||
weight_bit_width = 4 if precision == "int4" else 8
|
||||
quantize_model(
|
||||
self.model,
|
||||
dtype=torch.float32,
|
||||
weight_bit_width=weight_bit_width,
|
||||
weight_param_method="stats",
|
||||
weight_scale_precision="float",
|
||||
weight_quant_type="asym",
|
||||
weight_quant_granularity="per_group",
|
||||
weight_group_size=weight_group_size,
|
||||
quantize_weight_zero_point=False,
|
||||
)
|
||||
print("Weight quantization applied.")
|
||||
|
||||
def forward(self, inputs_embeds, position_ids, attention_mask):
|
||||
print("************************************")
|
||||
print(
|
||||
"inputs_embeds: ",
|
||||
inputs_embeds.shape,
|
||||
" dtype: ",
|
||||
inputs_embeds.dtype,
|
||||
)
|
||||
print(
|
||||
"position_ids: ",
|
||||
position_ids.shape,
|
||||
" dtype: ",
|
||||
position_ids.dtype,
|
||||
)
|
||||
print(
|
||||
"attention_mask: ",
|
||||
attention_mask.shape,
|
||||
" dtype: ",
|
||||
attention_mask.dtype,
|
||||
)
|
||||
print("************************************")
|
||||
config = {
|
||||
"inputs_embeds": inputs_embeds,
|
||||
"position_ids": position_ids,
|
||||
"past_key_values": None,
|
||||
"use_cache": True,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
output = self.model(
|
||||
**config,
|
||||
return_dict=True,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
)
|
||||
return_vals = []
|
||||
return_vals.append(output.logits)
|
||||
temp_past_key_values = output.past_key_values
|
||||
for item in temp_past_key_values:
|
||||
return_vals.append(item[0])
|
||||
return_vals.append(item[1])
|
||||
return tuple(return_vals)
|
||||
|
||||
|
||||
class SecondLlamaModel(torch.nn.Module):
|
||||
def __init__(self, model, precision="fp32", weight_group_size=128):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
print("SHARK: Loading LLAMA Done")
|
||||
if precision in ["int4", "int8"]:
|
||||
print("Second Llama applying weight quantization")
|
||||
weight_bit_width = 4 if precision == "int4" else 8
|
||||
quantize_model(
|
||||
self.model,
|
||||
dtype=torch.float32,
|
||||
weight_bit_width=weight_bit_width,
|
||||
weight_param_method="stats",
|
||||
weight_scale_precision="float",
|
||||
weight_quant_type="asym",
|
||||
weight_quant_granularity="per_group",
|
||||
weight_group_size=weight_group_size,
|
||||
quantize_weight_zero_point=False,
|
||||
)
|
||||
print("Weight quantization applied.")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
i1,
|
||||
i2,
|
||||
i3,
|
||||
i4,
|
||||
i5,
|
||||
i6,
|
||||
i7,
|
||||
i8,
|
||||
i9,
|
||||
i10,
|
||||
i11,
|
||||
i12,
|
||||
i13,
|
||||
i14,
|
||||
i15,
|
||||
i16,
|
||||
i17,
|
||||
i18,
|
||||
i19,
|
||||
i20,
|
||||
i21,
|
||||
i22,
|
||||
i23,
|
||||
i24,
|
||||
i25,
|
||||
i26,
|
||||
i27,
|
||||
i28,
|
||||
i29,
|
||||
i30,
|
||||
i31,
|
||||
i32,
|
||||
i33,
|
||||
i34,
|
||||
i35,
|
||||
i36,
|
||||
i37,
|
||||
i38,
|
||||
i39,
|
||||
i40,
|
||||
i41,
|
||||
i42,
|
||||
i43,
|
||||
i44,
|
||||
i45,
|
||||
i46,
|
||||
i47,
|
||||
i48,
|
||||
i49,
|
||||
i50,
|
||||
i51,
|
||||
i52,
|
||||
i53,
|
||||
i54,
|
||||
i55,
|
||||
i56,
|
||||
i57,
|
||||
i58,
|
||||
i59,
|
||||
i60,
|
||||
i61,
|
||||
i62,
|
||||
i63,
|
||||
i64,
|
||||
):
|
||||
print("************************************")
|
||||
print("input_ids: ", input_ids.shape, " dtype: ", input_ids.dtype)
|
||||
print(
|
||||
"position_ids: ",
|
||||
position_ids.shape,
|
||||
" dtype: ",
|
||||
position_ids.dtype,
|
||||
)
|
||||
print(
|
||||
"attention_mask: ",
|
||||
attention_mask.shape,
|
||||
" dtype: ",
|
||||
attention_mask.dtype,
|
||||
)
|
||||
print("past_key_values: ", i1.shape, i2.shape, i63.shape, i64.shape)
|
||||
print("past_key_values dtype: ", i1.dtype)
|
||||
print("************************************")
|
||||
config = {
|
||||
"input_ids": input_ids,
|
||||
"position_ids": position_ids,
|
||||
"past_key_values": (
|
||||
(i1, i2),
|
||||
(
|
||||
i3,
|
||||
i4,
|
||||
),
|
||||
(
|
||||
i5,
|
||||
i6,
|
||||
),
|
||||
(
|
||||
i7,
|
||||
i8,
|
||||
),
|
||||
(
|
||||
i9,
|
||||
i10,
|
||||
),
|
||||
(
|
||||
i11,
|
||||
i12,
|
||||
),
|
||||
(
|
||||
i13,
|
||||
i14,
|
||||
),
|
||||
(
|
||||
i15,
|
||||
i16,
|
||||
),
|
||||
(
|
||||
i17,
|
||||
i18,
|
||||
),
|
||||
(
|
||||
i19,
|
||||
i20,
|
||||
),
|
||||
(
|
||||
i21,
|
||||
i22,
|
||||
),
|
||||
(
|
||||
i23,
|
||||
i24,
|
||||
),
|
||||
(
|
||||
i25,
|
||||
i26,
|
||||
),
|
||||
(
|
||||
i27,
|
||||
i28,
|
||||
),
|
||||
(
|
||||
i29,
|
||||
i30,
|
||||
),
|
||||
(
|
||||
i31,
|
||||
i32,
|
||||
),
|
||||
(
|
||||
i33,
|
||||
i34,
|
||||
),
|
||||
(
|
||||
i35,
|
||||
i36,
|
||||
),
|
||||
(
|
||||
i37,
|
||||
i38,
|
||||
),
|
||||
(
|
||||
i39,
|
||||
i40,
|
||||
),
|
||||
(
|
||||
i41,
|
||||
i42,
|
||||
),
|
||||
(
|
||||
i43,
|
||||
i44,
|
||||
),
|
||||
(
|
||||
i45,
|
||||
i46,
|
||||
),
|
||||
(
|
||||
i47,
|
||||
i48,
|
||||
),
|
||||
(
|
||||
i49,
|
||||
i50,
|
||||
),
|
||||
(
|
||||
i51,
|
||||
i52,
|
||||
),
|
||||
(
|
||||
i53,
|
||||
i54,
|
||||
),
|
||||
(
|
||||
i55,
|
||||
i56,
|
||||
),
|
||||
(
|
||||
i57,
|
||||
i58,
|
||||
),
|
||||
(
|
||||
i59,
|
||||
i60,
|
||||
),
|
||||
(
|
||||
i61,
|
||||
i62,
|
||||
),
|
||||
(
|
||||
i63,
|
||||
i64,
|
||||
),
|
||||
),
|
||||
"use_cache": True,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
output = self.model(
|
||||
**config,
|
||||
return_dict=True,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
)
|
||||
return_vals = []
|
||||
return_vals.append(output.logits)
|
||||
temp_past_key_values = output.past_key_values
|
||||
for item in temp_past_key_values:
|
||||
return_vals.append(item[0])
|
||||
return_vals.append(item[1])
|
||||
return tuple(return_vals)
|
||||
|
||||
|
||||
class SeparatorStyle(Enum):
|
||||
"""Different separator style."""
|
||||
|
||||
SINGLE = auto()
|
||||
TWO = auto()
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Conversation:
|
||||
"""A class that keeps all conversation history."""
|
||||
|
||||
system: str
|
||||
roles: List[str]
|
||||
messages: List[List[str]]
|
||||
offset: int
|
||||
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
||||
sep: str = "###"
|
||||
sep2: str = None
|
||||
|
||||
skip_next: bool = False
|
||||
conv_id: Any = None
|
||||
|
||||
def get_prompt(self):
|
||||
if self.sep_style == SeparatorStyle.SINGLE:
|
||||
ret = self.system + self.sep
|
||||
for role, message in self.messages:
|
||||
if message:
|
||||
ret += role + ": " + message + self.sep
|
||||
else:
|
||||
ret += role + ":"
|
||||
return ret
|
||||
elif self.sep_style == SeparatorStyle.TWO:
|
||||
seps = [self.sep, self.sep2]
|
||||
ret = self.system + seps[0]
|
||||
for i, (role, message) in enumerate(self.messages):
|
||||
if message:
|
||||
ret += role + ": " + message + seps[i % 2]
|
||||
else:
|
||||
ret += role + ":"
|
||||
return ret
|
||||
else:
|
||||
raise ValueError(f"Invalid style: {self.sep_style}")
|
||||
|
||||
def append_message(self, role, message):
|
||||
self.messages.append([role, message])
|
||||
|
||||
def to_gradio_chatbot(self):
|
||||
ret = []
|
||||
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
||||
if i % 2 == 0:
|
||||
ret.append([msg, None])
|
||||
else:
|
||||
ret[-1][-1] = msg
|
||||
return ret
|
||||
|
||||
def copy(self):
|
||||
return Conversation(
|
||||
system=self.system,
|
||||
roles=self.roles,
|
||||
messages=[[x, y] for x, y in self.messages],
|
||||
offset=self.offset,
|
||||
sep_style=self.sep_style,
|
||||
sep=self.sep,
|
||||
sep2=self.sep2,
|
||||
conv_id=self.conv_id,
|
||||
)
|
||||
|
||||
def dict(self):
|
||||
return {
|
||||
"system": self.system,
|
||||
"roles": self.roles,
|
||||
"messages": self.messages,
|
||||
"offset": self.offset,
|
||||
"sep": self.sep,
|
||||
"sep2": self.sep2,
|
||||
"conv_id": self.conv_id,
|
||||
}
|
||||
|
||||
|
||||
class StoppingCriteriaSub(StoppingCriteria):
|
||||
def __init__(self, stops=[], encounters=1):
|
||||
super().__init__()
|
||||
self.stops = stops
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
||||
for stop in self.stops:
|
||||
if torch.all((stop == input_ids[0][-len(stop) :])).item():
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
CONV_VISION = Conversation(
|
||||
system="Give the following image: <Img>ImageContent</Img>. "
|
||||
"You will be able to see the image once I provide it to you. Please answer my questions.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=[],
|
||||
offset=2,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
@@ -1,15 +0,0 @@
|
||||
import torch
|
||||
|
||||
|
||||
class StableLMModel(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
combine_input_dict = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
output = self.model(**combine_input_dict)
|
||||
return output.logits
|
||||
@@ -1,876 +0,0 @@
|
||||
import argparse
|
||||
import json
|
||||
import re
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from typing import List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
import iree.runtime
|
||||
import itertools
|
||||
import subprocess
|
||||
|
||||
import torch
|
||||
import torch_mlir
|
||||
from torch_mlir import TensorPlaceholder
|
||||
from torch_mlir.compiler_utils import run_pipeline_with_repro_report
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForCausalLM,
|
||||
LlamaPreTrainedModel,
|
||||
)
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
SequenceClassifierOutputWithPast,
|
||||
)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
logging,
|
||||
replace_return_docstrings,
|
||||
)
|
||||
|
||||
from apps.language_models.src.pipelines.SharkLLMBase import SharkLLMBase
|
||||
from apps.language_models.src.model_wrappers.vicuna_sharded_model import (
|
||||
FirstVicunaLayer,
|
||||
SecondVicunaLayer,
|
||||
CompiledVicunaLayer,
|
||||
ShardedVicunaModel,
|
||||
LMHead,
|
||||
LMHeadCompiled,
|
||||
VicunaEmbedding,
|
||||
VicunaEmbeddingCompiled,
|
||||
VicunaNorm,
|
||||
VicunaNormCompiled,
|
||||
)
|
||||
from apps.language_models.src.model_wrappers.vicuna_model import (
|
||||
FirstVicuna,
|
||||
SecondVicuna7B,
|
||||
)
|
||||
from apps.language_models.utils import (
|
||||
get_vmfb_from_path,
|
||||
)
|
||||
from shark.shark_downloader import download_public_file
|
||||
from shark.shark_importer import get_f16_inputs
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
from transformers.models.llama.configuration_llama import LlamaConfig
|
||||
from transformers.models.llama.modeling_llama import (
|
||||
LlamaDecoderLayer,
|
||||
LlamaRMSNorm,
|
||||
_make_causal_mask,
|
||||
_expand_mask,
|
||||
)
|
||||
from torch import nn
|
||||
from time import time
|
||||
|
||||
|
||||
class LlamaModel(LlamaPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: LlamaConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = nn.Embedding(
|
||||
config.vocab_size, config.hidden_size, self.padding_idx
|
||||
)
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
LlamaDecoderLayer(config)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||
def _prepare_decoder_attention_mask(
|
||||
self,
|
||||
attention_mask,
|
||||
input_shape,
|
||||
inputs_embeds,
|
||||
past_key_values_length,
|
||||
):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
inputs_embeds.dtype,
|
||||
device=inputs_embeds.device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = _expand_mask(
|
||||
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
||||
).to(inputs_embeds.device)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask
|
||||
if combined_attention_mask is None
|
||||
else expanded_attn_mask + combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
):
|
||||
t1 = time()
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = (
|
||||
use_cache if use_cache is not None else self.config.use_cache
|
||||
)
|
||||
|
||||
return_dict = (
|
||||
return_dict
|
||||
if return_dict is not None
|
||||
else self.config.use_return_dict
|
||||
)
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError(
|
||||
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
||||
)
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError(
|
||||
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
||||
)
|
||||
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = (
|
||||
seq_length_with_past + past_key_values_length
|
||||
)
|
||||
|
||||
if position_ids is None:
|
||||
device = (
|
||||
input_ids.device
|
||||
if input_ids is not None
|
||||
else inputs_embeds.device
|
||||
)
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length,
|
||||
seq_length + past_key_values_length,
|
||||
dtype=torch.long,
|
||||
device=device,
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
(batch_size, seq_length_with_past),
|
||||
dtype=torch.bool,
|
||||
device=inputs_embeds.device,
|
||||
)
|
||||
|
||||
attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask,
|
||||
(batch_size, seq_length),
|
||||
inputs_embeds,
|
||||
past_key_values_length,
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for idx, decoder_layer in enumerate(self.compressedlayers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = (
|
||||
past_key_values[8 * idx : 8 * (idx + 1)]
|
||||
if past_key_values is not None
|
||||
else None
|
||||
)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer.forward(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[1:],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
try:
|
||||
hidden_states = np.asarray(hidden_states, hidden_states.dtype)
|
||||
except:
|
||||
_ = 10
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
next_cache = tuple(itertools.chain.from_iterable(next_cache))
|
||||
print(f"Token generated in {time() - t1} seconds")
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
next_cache,
|
||||
all_hidden_states,
|
||||
all_self_attns,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
class EightLayerLayerSV(torch.nn.Module):
|
||||
def __init__(self, layers):
|
||||
super().__init__()
|
||||
assert len(layers) == 8
|
||||
self.layers = layers
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
pkv00,
|
||||
pkv01,
|
||||
pkv10,
|
||||
pkv11,
|
||||
pkv20,
|
||||
pkv21,
|
||||
pkv30,
|
||||
pkv31,
|
||||
pkv40,
|
||||
pkv41,
|
||||
pkv50,
|
||||
pkv51,
|
||||
pkv60,
|
||||
pkv61,
|
||||
pkv70,
|
||||
pkv71,
|
||||
):
|
||||
pkvs = [
|
||||
(pkv00, pkv01),
|
||||
(pkv10, pkv11),
|
||||
(pkv20, pkv21),
|
||||
(pkv30, pkv31),
|
||||
(pkv40, pkv41),
|
||||
(pkv50, pkv51),
|
||||
(pkv60, pkv61),
|
||||
(pkv70, pkv71),
|
||||
]
|
||||
new_pkvs = []
|
||||
for layer, pkv in zip(self.layers, pkvs):
|
||||
outputs = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=(
|
||||
pkv[0],
|
||||
pkv[1],
|
||||
),
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
new_pkvs.append(
|
||||
(
|
||||
outputs[-1][0],
|
||||
outputs[-1][1],
|
||||
)
|
||||
)
|
||||
(
|
||||
(new_pkv00, new_pkv01),
|
||||
(new_pkv10, new_pkv11),
|
||||
(new_pkv20, new_pkv21),
|
||||
(new_pkv30, new_pkv31),
|
||||
(new_pkv40, new_pkv41),
|
||||
(new_pkv50, new_pkv51),
|
||||
(new_pkv60, new_pkv61),
|
||||
(new_pkv70, new_pkv71),
|
||||
) = new_pkvs
|
||||
return (
|
||||
hidden_states,
|
||||
new_pkv00,
|
||||
new_pkv01,
|
||||
new_pkv10,
|
||||
new_pkv11,
|
||||
new_pkv20,
|
||||
new_pkv21,
|
||||
new_pkv30,
|
||||
new_pkv31,
|
||||
new_pkv40,
|
||||
new_pkv41,
|
||||
new_pkv50,
|
||||
new_pkv51,
|
||||
new_pkv60,
|
||||
new_pkv61,
|
||||
new_pkv70,
|
||||
new_pkv71,
|
||||
)
|
||||
|
||||
|
||||
class EightLayerLayerFV(torch.nn.Module):
|
||||
def __init__(self, layers):
|
||||
super().__init__()
|
||||
assert len(layers) == 8
|
||||
self.layers = layers
|
||||
|
||||
def forward(self, hidden_states, attention_mask, position_ids):
|
||||
new_pkvs = []
|
||||
for layer in self.layers:
|
||||
outputs = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=None,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
new_pkvs.append(
|
||||
(
|
||||
outputs[-1][0],
|
||||
outputs[-1][1],
|
||||
)
|
||||
)
|
||||
(
|
||||
(new_pkv00, new_pkv01),
|
||||
(new_pkv10, new_pkv11),
|
||||
(new_pkv20, new_pkv21),
|
||||
(new_pkv30, new_pkv31),
|
||||
(new_pkv40, new_pkv41),
|
||||
(new_pkv50, new_pkv51),
|
||||
(new_pkv60, new_pkv61),
|
||||
(new_pkv70, new_pkv71),
|
||||
) = new_pkvs
|
||||
return (
|
||||
hidden_states,
|
||||
new_pkv00,
|
||||
new_pkv01,
|
||||
new_pkv10,
|
||||
new_pkv11,
|
||||
new_pkv20,
|
||||
new_pkv21,
|
||||
new_pkv30,
|
||||
new_pkv31,
|
||||
new_pkv40,
|
||||
new_pkv41,
|
||||
new_pkv50,
|
||||
new_pkv51,
|
||||
new_pkv60,
|
||||
new_pkv61,
|
||||
new_pkv70,
|
||||
new_pkv71,
|
||||
)
|
||||
|
||||
|
||||
class CompiledEightLayerLayerSV(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
past_key_value,
|
||||
output_attentions=False,
|
||||
use_cache=True,
|
||||
):
|
||||
hidden_states = hidden_states.detach()
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
(
|
||||
(pkv00, pkv01),
|
||||
(pkv10, pkv11),
|
||||
(pkv20, pkv21),
|
||||
(pkv30, pkv31),
|
||||
(pkv40, pkv41),
|
||||
(pkv50, pkv51),
|
||||
(pkv60, pkv61),
|
||||
(pkv70, pkv71),
|
||||
) = past_key_value
|
||||
pkv00 = pkv00.detatch()
|
||||
pkv01 = pkv01.detatch()
|
||||
pkv10 = pkv10.detatch()
|
||||
pkv11 = pkv11.detatch()
|
||||
pkv20 = pkv20.detatch()
|
||||
pkv21 = pkv21.detatch()
|
||||
pkv30 = pkv30.detatch()
|
||||
pkv31 = pkv31.detatch()
|
||||
pkv40 = pkv40.detatch()
|
||||
pkv41 = pkv41.detatch()
|
||||
pkv50 = pkv50.detatch()
|
||||
pkv51 = pkv51.detatch()
|
||||
pkv60 = pkv60.detatch()
|
||||
pkv61 = pkv61.detatch()
|
||||
pkv70 = pkv70.detatch()
|
||||
pkv71 = pkv71.detatch()
|
||||
|
||||
output = self.model(
|
||||
"forward",
|
||||
(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
pkv00,
|
||||
pkv01,
|
||||
pkv10,
|
||||
pkv11,
|
||||
pkv20,
|
||||
pkv21,
|
||||
pkv30,
|
||||
pkv31,
|
||||
pkv40,
|
||||
pkv41,
|
||||
pkv50,
|
||||
pkv51,
|
||||
pkv60,
|
||||
pkv61,
|
||||
pkv70,
|
||||
pkv71,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
return (
|
||||
output[0],
|
||||
(output[1][0], output[1][1]),
|
||||
(output[2][0], output[2][1]),
|
||||
(output[3][0], output[3][1]),
|
||||
(output[4][0], output[4][1]),
|
||||
(output[5][0], output[5][1]),
|
||||
(output[6][0], output[6][1]),
|
||||
(output[7][0], output[7][1]),
|
||||
(output[8][0], output[8][1]),
|
||||
)
|
||||
|
||||
|
||||
def forward_compressed(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
):
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError(
|
||||
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
||||
)
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError(
|
||||
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
||||
)
|
||||
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
|
||||
if position_ids is None:
|
||||
device = (
|
||||
input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
)
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length,
|
||||
seq_length + past_key_values_length,
|
||||
dtype=torch.long,
|
||||
device=device,
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
(batch_size, seq_length_with_past),
|
||||
dtype=torch.bool,
|
||||
device=inputs_embeds.device,
|
||||
)
|
||||
attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask,
|
||||
(batch_size, seq_length),
|
||||
inputs_embeds,
|
||||
past_key_values_length,
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for idx, decoder_layer in enumerate(self.compressedlayers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = (
|
||||
past_key_values[8 * idx : 8 * (idx + 1)]
|
||||
if past_key_values is not None
|
||||
else None
|
||||
)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (
|
||||
layer_outputs[2 if output_attentions else 1],
|
||||
)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
next_cache,
|
||||
all_hidden_states,
|
||||
all_self_attns,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
class CompiledEightLayerLayer(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
use_cache=True,
|
||||
):
|
||||
t2 = time()
|
||||
if past_key_value is None:
|
||||
try:
|
||||
hidden_states = np.asarray(hidden_states, hidden_states.dtype)
|
||||
except:
|
||||
pass
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
t1 = time()
|
||||
|
||||
output = self.model(
|
||||
"first_vicuna_forward",
|
||||
(hidden_states, attention_mask, position_ids),
|
||||
send_to_host=False,
|
||||
)
|
||||
output2 = (
|
||||
output[0],
|
||||
(
|
||||
output[1],
|
||||
output[2],
|
||||
),
|
||||
(
|
||||
output[3],
|
||||
output[4],
|
||||
),
|
||||
(
|
||||
output[5],
|
||||
output[6],
|
||||
),
|
||||
(
|
||||
output[7],
|
||||
output[8],
|
||||
),
|
||||
(
|
||||
output[9],
|
||||
output[10],
|
||||
),
|
||||
(
|
||||
output[11],
|
||||
output[12],
|
||||
),
|
||||
(
|
||||
output[13],
|
||||
output[14],
|
||||
),
|
||||
(
|
||||
output[15],
|
||||
output[16],
|
||||
),
|
||||
)
|
||||
return output2
|
||||
else:
|
||||
(
|
||||
(pkv00, pkv01),
|
||||
(pkv10, pkv11),
|
||||
(pkv20, pkv21),
|
||||
(pkv30, pkv31),
|
||||
(pkv40, pkv41),
|
||||
(pkv50, pkv51),
|
||||
(pkv60, pkv61),
|
||||
(pkv70, pkv71),
|
||||
) = past_key_value
|
||||
|
||||
try:
|
||||
hidden_states = hidden_states.detach()
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
pkv00 = pkv00.detach()
|
||||
pkv01 = pkv01.detach()
|
||||
pkv10 = pkv10.detach()
|
||||
pkv11 = pkv11.detach()
|
||||
pkv20 = pkv20.detach()
|
||||
pkv21 = pkv21.detach()
|
||||
pkv30 = pkv30.detach()
|
||||
pkv31 = pkv31.detach()
|
||||
pkv40 = pkv40.detach()
|
||||
pkv41 = pkv41.detach()
|
||||
pkv50 = pkv50.detach()
|
||||
pkv51 = pkv51.detach()
|
||||
pkv60 = pkv60.detach()
|
||||
pkv61 = pkv61.detach()
|
||||
pkv70 = pkv70.detach()
|
||||
pkv71 = pkv71.detach()
|
||||
except:
|
||||
x = 10
|
||||
|
||||
t1 = time()
|
||||
if type(hidden_states) == iree.runtime.array_interop.DeviceArray:
|
||||
hidden_states = np.array(hidden_states, hidden_states.dtype)
|
||||
hidden_states = torch.tensor(hidden_states)
|
||||
hidden_states = hidden_states.detach()
|
||||
|
||||
output = self.model(
|
||||
"second_vicuna_forward",
|
||||
(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
pkv00,
|
||||
pkv01,
|
||||
pkv10,
|
||||
pkv11,
|
||||
pkv20,
|
||||
pkv21,
|
||||
pkv30,
|
||||
pkv31,
|
||||
pkv40,
|
||||
pkv41,
|
||||
pkv50,
|
||||
pkv51,
|
||||
pkv60,
|
||||
pkv61,
|
||||
pkv70,
|
||||
pkv71,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
print(f"{time() - t1}")
|
||||
del pkv00
|
||||
del pkv01
|
||||
del pkv10
|
||||
del pkv11
|
||||
del pkv20
|
||||
del pkv21
|
||||
del pkv30
|
||||
del pkv31
|
||||
del pkv40
|
||||
del pkv41
|
||||
del pkv50
|
||||
del pkv51
|
||||
del pkv60
|
||||
del pkv61
|
||||
del pkv70
|
||||
del pkv71
|
||||
output2 = (
|
||||
output[0],
|
||||
(
|
||||
output[1],
|
||||
output[2],
|
||||
),
|
||||
(
|
||||
output[3],
|
||||
output[4],
|
||||
),
|
||||
(
|
||||
output[5],
|
||||
output[6],
|
||||
),
|
||||
(
|
||||
output[7],
|
||||
output[8],
|
||||
),
|
||||
(
|
||||
output[9],
|
||||
output[10],
|
||||
),
|
||||
(
|
||||
output[11],
|
||||
output[12],
|
||||
),
|
||||
(
|
||||
output[13],
|
||||
output[14],
|
||||
),
|
||||
(
|
||||
output[15],
|
||||
output[16],
|
||||
),
|
||||
)
|
||||
return output2
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,231 +0,0 @@
|
||||
import torch
|
||||
|
||||
|
||||
class FirstVicunaLayer(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(self, hidden_states, attention_mask, position_ids):
|
||||
outputs = self.model(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
use_cache=True,
|
||||
)
|
||||
next_hidden_states = outputs[0]
|
||||
past_key_value_out0, past_key_value_out1 = (
|
||||
outputs[-1][0],
|
||||
outputs[-1][1],
|
||||
)
|
||||
|
||||
return (
|
||||
next_hidden_states,
|
||||
past_key_value_out0,
|
||||
past_key_value_out1,
|
||||
)
|
||||
|
||||
|
||||
class SecondVicunaLayer(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
past_key_value0,
|
||||
past_key_value1,
|
||||
):
|
||||
outputs = self.model(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=(
|
||||
past_key_value0,
|
||||
past_key_value1,
|
||||
),
|
||||
use_cache=True,
|
||||
)
|
||||
next_hidden_states = outputs[0]
|
||||
past_key_value_out0, past_key_value_out1 = (
|
||||
outputs[-1][0],
|
||||
outputs[-1][1],
|
||||
)
|
||||
|
||||
return (
|
||||
next_hidden_states,
|
||||
past_key_value_out0,
|
||||
past_key_value_out1,
|
||||
)
|
||||
|
||||
|
||||
class ShardedVicunaModel(torch.nn.Module):
|
||||
def __init__(self, model, layers, lmhead, embedding, norm):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
# assert len(layers) == len(model.model.layers)
|
||||
self.model.model.config.use_cache = True
|
||||
self.model.model.config.output_attentions = False
|
||||
self.layers = layers
|
||||
self.norm = norm
|
||||
self.embedding = embedding
|
||||
self.lmhead = lmhead
|
||||
self.model.model.norm = self.norm
|
||||
self.model.model.embed_tokens = self.embedding
|
||||
self.model.lm_head = self.lmhead
|
||||
self.model.model.layers = torch.nn.modules.container.ModuleList(
|
||||
self.layers
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
is_first=True,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
):
|
||||
return self.model.forward(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
|
||||
class LMHead(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(self, hidden_states):
|
||||
output = self.model(hidden_states)
|
||||
return output
|
||||
|
||||
|
||||
class LMHeadCompiled(torch.nn.Module):
|
||||
def __init__(self, shark_module):
|
||||
super().__init__()
|
||||
self.model = shark_module
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = hidden_states.detach()
|
||||
output = self.model("forward", (hidden_states,))
|
||||
output = torch.tensor(output)
|
||||
return output
|
||||
|
||||
|
||||
class VicunaNorm(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(self, hidden_states):
|
||||
output = self.model(hidden_states)
|
||||
return output
|
||||
|
||||
|
||||
class VicunaNormCompiled(torch.nn.Module):
|
||||
def __init__(self, shark_module):
|
||||
super().__init__()
|
||||
self.model = shark_module
|
||||
|
||||
def forward(self, hidden_states):
|
||||
try:
|
||||
hidden_states.detach()
|
||||
except:
|
||||
pass
|
||||
output = self.model("forward", (hidden_states,))
|
||||
output = torch.tensor(output)
|
||||
return output
|
||||
|
||||
|
||||
class VicunaEmbedding(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(self, input_ids):
|
||||
output = self.model(input_ids)
|
||||
return output
|
||||
|
||||
|
||||
class VicunaEmbeddingCompiled(torch.nn.Module):
|
||||
def __init__(self, shark_module):
|
||||
super().__init__()
|
||||
self.model = shark_module
|
||||
|
||||
def forward(self, input_ids):
|
||||
input_ids.detach()
|
||||
output = self.model("forward", (input_ids,))
|
||||
output = torch.tensor(output)
|
||||
return output
|
||||
|
||||
|
||||
class CompiledVicunaLayer(torch.nn.Module):
|
||||
def __init__(self, shark_module):
|
||||
super().__init__()
|
||||
self.model = shark_module
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
use_cache=True,
|
||||
):
|
||||
if past_key_value is None:
|
||||
hidden_states = hidden_states.detach()
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
output = self.model(
|
||||
"first_vicuna_forward",
|
||||
(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
),
|
||||
)
|
||||
|
||||
output0 = torch.tensor(output[0])
|
||||
output1 = torch.tensor(output[1])
|
||||
output2 = torch.tensor(output[2])
|
||||
|
||||
return (
|
||||
output0,
|
||||
(
|
||||
output1,
|
||||
output2,
|
||||
),
|
||||
)
|
||||
else:
|
||||
hidden_states = hidden_states.detach()
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
pkv0 = past_key_value[0].detach()
|
||||
pkv1 = past_key_value[1].detach()
|
||||
output = self.model(
|
||||
"second_vicuna_forward",
|
||||
(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
pkv0,
|
||||
pkv1,
|
||||
),
|
||||
)
|
||||
|
||||
output0 = torch.tensor(output[0])
|
||||
output1 = torch.tensor(output[1])
|
||||
output2 = torch.tensor(output[2])
|
||||
|
||||
return (
|
||||
output0,
|
||||
(
|
||||
output1,
|
||||
output2,
|
||||
),
|
||||
)
|
||||
@@ -1,44 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class SharkLLMBase(ABC):
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
hf_model_path=None,
|
||||
max_num_tokens=512,
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self.hf_model_path = hf_model_path
|
||||
self.max_num_tokens = max_num_tokens
|
||||
self.shark_model = None
|
||||
self.device = "cpu"
|
||||
self.precision = "fp32"
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def compile(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def generate(self, prompt):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def generate_new_token(self, params):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def get_tokenizer(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def get_src_model(self):
|
||||
pass
|
||||
|
||||
def load_init_from_config(self):
|
||||
pass
|
||||
@@ -1,567 +0,0 @@
|
||||
from apps.language_models.src.model_wrappers.falcon_model import FalconModel
|
||||
from apps.language_models.src.pipelines.SharkLLMBase import SharkLLMBase
|
||||
from apps.language_models.utils import (
|
||||
get_vmfb_from_path,
|
||||
)
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from contextlib import redirect_stdout
|
||||
from shark.shark_downloader import download_public_file
|
||||
from shark.shark_importer import import_with_fx, save_mlir
|
||||
from shark.shark_inference import SharkInference
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, GPTQConfig
|
||||
from transformers.generation import (
|
||||
GenerationConfig,
|
||||
LogitsProcessorList,
|
||||
StoppingCriteriaList,
|
||||
)
|
||||
import copy
|
||||
|
||||
import re
|
||||
import torch
|
||||
import torch_mlir
|
||||
import os
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
prog="falcon runner",
|
||||
description="runs a falcon model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--falcon_variant_to_use", default="7b", help="7b, 40b, 180b"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precision", "-p", default="fp16", choices=["fp32", "fp16", "int4"]
|
||||
)
|
||||
parser.add_argument("--device", "-d", default="cuda", help="vulkan, cpu, cuda")
|
||||
parser.add_argument(
|
||||
"--falcon_vmfb_path", default=None, help="path to falcon's vmfb"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--falcon_mlir_path",
|
||||
default=None,
|
||||
help="path to falcon's mlir file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_precompiled_model",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="use the precompiled vmfb",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--load_mlir_from_shark_tank",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="download precompile mlir from shark tank",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cli",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Run model in cli mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf_auth_token",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Specify your own huggingface authentication token for falcon-180B model.",
|
||||
)
|
||||
|
||||
|
||||
class Falcon(SharkLLMBase):
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
hf_model_path="tiiuae/falcon-7b-instruct",
|
||||
hf_auth_token: str = None,
|
||||
max_num_tokens=150,
|
||||
device="cuda",
|
||||
precision="fp32",
|
||||
falcon_mlir_path=None,
|
||||
falcon_vmfb_path=None,
|
||||
debug=False,
|
||||
) -> None:
|
||||
super().__init__(model_name, hf_model_path, max_num_tokens)
|
||||
print("hf_model_path: ", self.hf_model_path)
|
||||
|
||||
if "180b" in self.model_name and hf_auth_token == None:
|
||||
raise ValueError(
|
||||
""" HF auth token required for falcon-180b. Pass it using
|
||||
--hf_auth_token flag. You can ask for the access to the model
|
||||
here: https://huggingface.co/tiiuae/falcon-180B-chat."""
|
||||
)
|
||||
self.hf_auth_token = hf_auth_token
|
||||
self.max_padding_length = 100
|
||||
self.device = device
|
||||
self.precision = precision
|
||||
self.falcon_vmfb_path = falcon_vmfb_path
|
||||
self.falcon_mlir_path = falcon_mlir_path
|
||||
self.debug = debug
|
||||
self.tokenizer = self.get_tokenizer()
|
||||
self.src_model = self.get_src_model()
|
||||
self.shark_model = self.compile()
|
||||
|
||||
def get_tokenizer(self):
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
self.hf_model_path,
|
||||
trust_remote_code=True,
|
||||
token=self.hf_auth_token,
|
||||
)
|
||||
tokenizer.padding_side = "left"
|
||||
tokenizer.pad_token_id = 11
|
||||
return tokenizer
|
||||
|
||||
def get_src_model(self):
|
||||
print("Loading src model: ", self.model_name)
|
||||
kwargs = {
|
||||
"torch_dtype": torch.float,
|
||||
"trust_remote_code": True,
|
||||
"token": self.hf_auth_token,
|
||||
}
|
||||
if self.precision == "int4":
|
||||
quantization_config = GPTQConfig(bits=4, disable_exllama=True)
|
||||
kwargs["quantization_config"] = quantization_config
|
||||
kwargs["load_gptq_on_cpu"] = True
|
||||
kwargs["device_map"] = "cpu" if self.device == "cpu" else "cuda:0"
|
||||
falcon_model = AutoModelForCausalLM.from_pretrained(
|
||||
self.hf_model_path, **kwargs
|
||||
)
|
||||
if self.precision == "int4":
|
||||
falcon_model = falcon_model.to(torch.float32)
|
||||
return falcon_model
|
||||
|
||||
def compile(self):
|
||||
if args.use_precompiled_model:
|
||||
if not self.falcon_vmfb_path.exists():
|
||||
# Downloading VMFB from shark_tank
|
||||
download_public_file(
|
||||
"gs://shark_tank/falcon/"
|
||||
+ "falcon_"
|
||||
+ args.falcon_variant_to_use
|
||||
+ "_"
|
||||
+ self.precision
|
||||
+ "_"
|
||||
+ self.device
|
||||
+ ".vmfb",
|
||||
self.falcon_vmfb_path.absolute(),
|
||||
single_file=True,
|
||||
)
|
||||
vmfb = get_vmfb_from_path(
|
||||
self.falcon_vmfb_path, self.device, "linalg"
|
||||
)
|
||||
if vmfb is not None:
|
||||
return vmfb
|
||||
|
||||
print(f"[DEBUG] vmfb not found at {self.falcon_vmfb_path.absolute()}")
|
||||
if self.falcon_mlir_path.exists():
|
||||
print(f"[DEBUG] mlir found at {self.falcon_mlir_path.absolute()}")
|
||||
with open(self.falcon_mlir_path, "rb") as f:
|
||||
bytecode = f.read()
|
||||
else:
|
||||
mlir_generated = False
|
||||
print(
|
||||
f"[DEBUG] mlir not found at {self.falcon_mlir_path.absolute()}"
|
||||
)
|
||||
if args.load_mlir_from_shark_tank:
|
||||
# Downloading MLIR from shark_tank
|
||||
print(f"[DEBUG] Trying to download mlir from shark_tank")
|
||||
download_public_file(
|
||||
"gs://shark_tank/falcon/"
|
||||
+ "falcon_"
|
||||
+ args.falcon_variant_to_use
|
||||
+ "_"
|
||||
+ self.precision
|
||||
+ ".mlir",
|
||||
self.falcon_mlir_path.absolute(),
|
||||
single_file=True,
|
||||
)
|
||||
if self.falcon_mlir_path.exists():
|
||||
print(
|
||||
f"[DEBUG] mlir found at {self.falcon_mlir_path.absolute()}"
|
||||
)
|
||||
mlir_generated = True
|
||||
|
||||
if not mlir_generated:
|
||||
print(f"[DEBUG] generating MLIR locally")
|
||||
compilation_input_ids = torch.randint(
|
||||
low=1, high=10000, size=(1, 100)
|
||||
)
|
||||
compilation_attention_mask = torch.ones(
|
||||
1, 100, dtype=torch.int64
|
||||
)
|
||||
falconCompileInput = (
|
||||
compilation_input_ids,
|
||||
compilation_attention_mask,
|
||||
)
|
||||
model = FalconModel(self.src_model)
|
||||
|
||||
print(f"[DEBUG] generating torchscript graph")
|
||||
ts_graph = import_with_fx(
|
||||
model,
|
||||
falconCompileInput,
|
||||
is_f16=self.precision in ["fp16", "int4"],
|
||||
f16_input_mask=[False, False],
|
||||
mlir_type="torchscript",
|
||||
is_gptq=self.precision == "int4",
|
||||
)
|
||||
del model
|
||||
print(f"[DEBUG] generating torch mlir")
|
||||
|
||||
module = torch_mlir.compile(
|
||||
ts_graph,
|
||||
[*falconCompileInput],
|
||||
torch_mlir.OutputType.LINALG_ON_TENSORS,
|
||||
use_tracing=False,
|
||||
verbose=False,
|
||||
)
|
||||
del ts_graph
|
||||
|
||||
print(f"[DEBUG] converting to bytecode")
|
||||
bytecode_stream = BytesIO()
|
||||
module.operation.write_bytecode(bytecode_stream)
|
||||
bytecode = bytecode_stream.getvalue()
|
||||
del module
|
||||
|
||||
f_ = open(self.falcon_mlir_path, "wb")
|
||||
f_.write(bytecode)
|
||||
print("Saved falcon mlir at ", str(self.falcon_mlir_path))
|
||||
f_.close()
|
||||
del bytecode
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module=self.falcon_mlir_path,
|
||||
device=self.device,
|
||||
mlir_dialect="linalg",
|
||||
)
|
||||
path = shark_module.save_module(
|
||||
self.falcon_vmfb_path.parent.absolute(),
|
||||
self.falcon_vmfb_path.stem,
|
||||
extra_args=[
|
||||
"--iree-vm-target-truncate-unsupported-floats",
|
||||
"--iree-codegen-check-ir-before-llvm-conversion=false",
|
||||
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
|
||||
]
|
||||
+ [
|
||||
"--iree-llvmcpu-use-fast-min-max-ops",
|
||||
]
|
||||
if self.precision == "int4"
|
||||
else [],
|
||||
debug=self.debug,
|
||||
)
|
||||
print("Saved falcon vmfb at ", str(path))
|
||||
shark_module.load_module(path)
|
||||
|
||||
return shark_module
|
||||
|
||||
def generate(self, prompt):
|
||||
model_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.max_padding_length,
|
||||
add_special_tokens=False,
|
||||
return_tensors="pt",
|
||||
)
|
||||
model_inputs["prompt_text"] = prompt
|
||||
|
||||
input_ids = model_inputs["input_ids"]
|
||||
attention_mask = model_inputs.get("attention_mask", None)
|
||||
|
||||
# Allow empty prompts
|
||||
if input_ids.shape[1] == 0:
|
||||
input_ids = None
|
||||
attention_mask = None
|
||||
in_b = 1
|
||||
else:
|
||||
in_b = input_ids.shape[0]
|
||||
|
||||
generate_kwargs = {
|
||||
"max_length": self.max_num_tokens,
|
||||
"do_sample": True,
|
||||
"top_k": 10,
|
||||
"num_return_sequences": 1,
|
||||
"eos_token_id": 11,
|
||||
}
|
||||
generate_kwargs["input_ids"] = input_ids
|
||||
generate_kwargs["attention_mask"] = attention_mask
|
||||
generation_config_ = GenerationConfig.from_model_config(
|
||||
self.src_model.config
|
||||
)
|
||||
generation_config = copy.deepcopy(generation_config_)
|
||||
model_kwargs = generation_config.update(**generate_kwargs)
|
||||
|
||||
logits_processor = LogitsProcessorList()
|
||||
stopping_criteria = StoppingCriteriaList()
|
||||
|
||||
eos_token_id = generation_config.eos_token_id
|
||||
generation_config.pad_token_id = eos_token_id
|
||||
|
||||
(
|
||||
inputs_tensor,
|
||||
model_input_name,
|
||||
model_kwargs,
|
||||
) = self.src_model._prepare_model_inputs(
|
||||
None, generation_config.bos_token_id, model_kwargs
|
||||
)
|
||||
batch_size = inputs_tensor.shape[0]
|
||||
|
||||
model_kwargs["output_attentions"] = generation_config.output_attentions
|
||||
model_kwargs[
|
||||
"output_hidden_states"
|
||||
] = generation_config.output_hidden_states
|
||||
model_kwargs["use_cache"] = generation_config.use_cache
|
||||
|
||||
input_ids = (
|
||||
inputs_tensor
|
||||
if model_input_name == "input_ids"
|
||||
else model_kwargs.pop("input_ids")
|
||||
)
|
||||
|
||||
self.logits_processor = self.src_model._get_logits_processor(
|
||||
generation_config=generation_config,
|
||||
input_ids_seq_length=input_ids.shape[-1],
|
||||
encoder_input_ids=inputs_tensor,
|
||||
prefix_allowed_tokens_fn=None,
|
||||
logits_processor=logits_processor,
|
||||
)
|
||||
|
||||
self.stopping_criteria = self.src_model._get_stopping_criteria(
|
||||
generation_config=generation_config,
|
||||
stopping_criteria=stopping_criteria,
|
||||
)
|
||||
|
||||
self.logits_warper = self.src_model._get_logits_warper(
|
||||
generation_config
|
||||
)
|
||||
|
||||
(
|
||||
self.input_ids,
|
||||
self.model_kwargs,
|
||||
) = self.src_model._expand_inputs_for_generation(
|
||||
input_ids=input_ids,
|
||||
expand_size=generation_config.num_return_sequences, # 1
|
||||
is_encoder_decoder=self.src_model.config.is_encoder_decoder, # False
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
if isinstance(eos_token_id, int):
|
||||
eos_token_id = [eos_token_id]
|
||||
self.eos_token_id_tensor = (
|
||||
torch.tensor(eos_token_id) if eos_token_id is not None else None
|
||||
)
|
||||
|
||||
self.pad_token_id = generation_config.pad_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
|
||||
output_scores = generation_config.output_scores # False
|
||||
output_attentions = generation_config.output_attentions # False
|
||||
output_hidden_states = generation_config.output_hidden_states # False
|
||||
return_dict_in_generate = (
|
||||
generation_config.return_dict_in_generate # False
|
||||
)
|
||||
|
||||
# init attention / hidden states / scores tuples
|
||||
self.scores = (
|
||||
() if (return_dict_in_generate and output_scores) else None
|
||||
)
|
||||
decoder_attentions = (
|
||||
() if (return_dict_in_generate and output_attentions) else None
|
||||
)
|
||||
cross_attentions = (
|
||||
() if (return_dict_in_generate and output_attentions) else None
|
||||
)
|
||||
decoder_hidden_states = (
|
||||
() if (return_dict_in_generate and output_hidden_states) else None
|
||||
)
|
||||
|
||||
# keep track of which sequences are already finished
|
||||
self.unfinished_sequences = torch.ones(
|
||||
input_ids.shape[0], dtype=torch.long, device=input_ids.device
|
||||
)
|
||||
|
||||
all_text = prompt
|
||||
|
||||
for i in range(self.max_num_tokens - 1):
|
||||
next_token = self.generate_new_token()
|
||||
new_word = self.tokenizer.decode(
|
||||
next_token.cpu().numpy(),
|
||||
add_special_tokens=False,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=True,
|
||||
)
|
||||
|
||||
all_text = all_text + new_word
|
||||
|
||||
print(f"{new_word}", end="", flush=True)
|
||||
|
||||
# if eos_token was found in one sentence, set sentence to finished
|
||||
if self.eos_token_id_tensor is not None:
|
||||
self.unfinished_sequences = self.unfinished_sequences.mul(
|
||||
next_token.tile(self.eos_token_id_tensor.shape[0], 1)
|
||||
.ne(self.eos_token_id_tensor.unsqueeze(1))
|
||||
.prod(dim=0)
|
||||
)
|
||||
# stop when each sentence is finished
|
||||
if (
|
||||
self.unfinished_sequences.max() == 0
|
||||
or self.stopping_criteria(input_ids, self.scores)
|
||||
):
|
||||
break
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
return all_text
|
||||
|
||||
def generate_new_token(self):
|
||||
model_inputs = self.src_model.prepare_inputs_for_generation(
|
||||
self.input_ids, **self.model_kwargs
|
||||
)
|
||||
outputs = torch.from_numpy(
|
||||
self.shark_model(
|
||||
"forward",
|
||||
(model_inputs["input_ids"], model_inputs["attention_mask"]),
|
||||
)
|
||||
)
|
||||
if self.precision in ["fp16", "int4"]:
|
||||
outputs = outputs.to(dtype=torch.float32)
|
||||
next_token_logits = outputs
|
||||
|
||||
# pre-process distribution
|
||||
next_token_scores = self.logits_processor(
|
||||
self.input_ids, next_token_logits
|
||||
)
|
||||
next_token_scores = self.logits_warper(
|
||||
self.input_ids, next_token_scores
|
||||
)
|
||||
|
||||
# sample
|
||||
probs = torch.nn.functional.softmax(next_token_scores, dim=-1)
|
||||
|
||||
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
|
||||
# finished sentences should have their next token be a padding token
|
||||
if self.eos_token_id is not None:
|
||||
if self.pad_token_id is None:
|
||||
raise ValueError(
|
||||
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
|
||||
)
|
||||
next_token = (
|
||||
next_token * self.unfinished_sequences
|
||||
+ self.pad_token_id * (1 - self.unfinished_sequences)
|
||||
)
|
||||
|
||||
self.input_ids = torch.cat(
|
||||
[self.input_ids, next_token[:, None]], dim=-1
|
||||
)
|
||||
|
||||
self.model_kwargs["past_key_values"] = None
|
||||
if "attention_mask" in self.model_kwargs:
|
||||
attention_mask = self.model_kwargs["attention_mask"]
|
||||
self.model_kwargs["attention_mask"] = torch.cat(
|
||||
[
|
||||
attention_mask,
|
||||
attention_mask.new_ones((attention_mask.shape[0], 1)),
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
self.input_ids = self.input_ids[:, 1:]
|
||||
self.model_kwargs["attention_mask"] = self.model_kwargs[
|
||||
"attention_mask"
|
||||
][:, 1:]
|
||||
|
||||
return next_token
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
falcon_mlir_path = (
|
||||
Path(
|
||||
"falcon_"
|
||||
+ args.falcon_variant_to_use
|
||||
+ "_"
|
||||
+ args.precision
|
||||
+ ".mlir"
|
||||
)
|
||||
if args.falcon_mlir_path is None
|
||||
else Path(args.falcon_mlir_path)
|
||||
)
|
||||
falcon_vmfb_path = (
|
||||
Path(
|
||||
"falcon_"
|
||||
+ args.falcon_variant_to_use
|
||||
+ "_"
|
||||
+ args.precision
|
||||
+ "_"
|
||||
+ args.device
|
||||
+ ".vmfb"
|
||||
)
|
||||
if args.falcon_vmfb_path is None
|
||||
else Path(args.falcon_vmfb_path)
|
||||
)
|
||||
|
||||
if args.precision == "int4":
|
||||
if args.falcon_variant_to_use == "180b":
|
||||
hf_model_path_value = "TheBloke/Falcon-180B-Chat-GPTQ"
|
||||
else:
|
||||
hf_model_path_value = (
|
||||
"TheBloke/falcon-"
|
||||
+ args.falcon_variant_to_use
|
||||
+ "-instruct-GPTQ"
|
||||
)
|
||||
else:
|
||||
if args.falcon_variant_to_use == "180b":
|
||||
hf_model_path_value = "tiiuae/falcon-180B-chat"
|
||||
else:
|
||||
hf_model_path_value = (
|
||||
"tiiuae/falcon-" + args.falcon_variant_to_use + "-instruct"
|
||||
)
|
||||
|
||||
falcon = Falcon(
|
||||
model_name="falcon_" + args.falcon_variant_to_use,
|
||||
hf_model_path=hf_model_path_value,
|
||||
device=args.device,
|
||||
precision=args.precision,
|
||||
falcon_mlir_path=falcon_mlir_path,
|
||||
falcon_vmfb_path=falcon_vmfb_path,
|
||||
)
|
||||
|
||||
import gc
|
||||
|
||||
default_prompt_text = "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:"
|
||||
continue_execution = True
|
||||
|
||||
print("\n-----\nScript executing for the following config: \n")
|
||||
print("Falcon Model: ", falcon.model_name)
|
||||
print("Precision: ", args.precision)
|
||||
print("Device: ", args.device)
|
||||
|
||||
while continue_execution:
|
||||
use_default_prompt = input(
|
||||
"\nDo you wish to use the default prompt text? Y/N ?: "
|
||||
)
|
||||
if use_default_prompt in ["Y", "y"]:
|
||||
prompt = default_prompt_text
|
||||
else:
|
||||
prompt = input("Please enter the prompt text: ")
|
||||
print("\nPrompt Text: ", prompt)
|
||||
|
||||
prompt_template = f"""A helpful assistant who helps the user with any questions asked.
|
||||
User: {prompt}
|
||||
Assistant:"""
|
||||
|
||||
res_str = falcon.generate(prompt_template)
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
print(
|
||||
"\n\n-----\nHere's the complete formatted result: \n\n",
|
||||
res_str,
|
||||
)
|
||||
continue_execution = input(
|
||||
"\nDo you wish to run script one more time? Y/N ?: "
|
||||
)
|
||||
continue_execution = (
|
||||
True if continue_execution in ["Y", "y"] else False
|
||||
)
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,68 +0,0 @@
|
||||
"""
|
||||
Copyright (c) 2022, salesforce.com, inc.
|
||||
All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
from omegaconf import OmegaConf
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
|
||||
class BaseProcessor:
|
||||
def __init__(self):
|
||||
self.transform = lambda x: x
|
||||
return
|
||||
|
||||
def __call__(self, item):
|
||||
return self.transform(item)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg=None):
|
||||
return cls()
|
||||
|
||||
def build(self, **kwargs):
|
||||
cfg = OmegaConf.create(kwargs)
|
||||
|
||||
return self.from_config(cfg)
|
||||
|
||||
|
||||
class BlipImageBaseProcessor(BaseProcessor):
|
||||
def __init__(self, mean=None, std=None):
|
||||
if mean is None:
|
||||
mean = (0.48145466, 0.4578275, 0.40821073)
|
||||
if std is None:
|
||||
std = (0.26862954, 0.26130258, 0.27577711)
|
||||
|
||||
self.normalize = transforms.Normalize(mean, std)
|
||||
|
||||
|
||||
class Blip2ImageEvalProcessor(BlipImageBaseProcessor):
|
||||
def __init__(self, image_size=224, mean=None, std=None):
|
||||
super().__init__(mean=mean, std=std)
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(
|
||||
(image_size, image_size),
|
||||
interpolation=InterpolationMode.BICUBIC,
|
||||
),
|
||||
transforms.ToTensor(),
|
||||
self.normalize,
|
||||
]
|
||||
)
|
||||
|
||||
def __call__(self, item):
|
||||
return self.transform(item)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg=None):
|
||||
if cfg is None:
|
||||
cfg = OmegaConf.create()
|
||||
|
||||
image_size = cfg.get("image_size", 224)
|
||||
|
||||
mean = cfg.get("mean", None)
|
||||
std = cfg.get("std", None)
|
||||
|
||||
return cls(image_size=image_size, mean=mean, std=std)
|
||||
@@ -1,5 +0,0 @@
|
||||
datasets:
|
||||
cc_sbu_align:
|
||||
data_type: images
|
||||
build_info:
|
||||
storage: /path/to/cc_sbu_align/
|
||||
@@ -1,33 +0,0 @@
|
||||
model:
|
||||
arch: mini_gpt4
|
||||
|
||||
# vit encoder
|
||||
image_size: 224
|
||||
drop_path_rate: 0
|
||||
use_grad_checkpoint: False
|
||||
vit_precision: "fp16"
|
||||
freeze_vit: True
|
||||
freeze_qformer: True
|
||||
|
||||
# Q-Former
|
||||
num_query_token: 32
|
||||
|
||||
# Vicuna
|
||||
llama_model: "lmsys/vicuna-7b-v1.3"
|
||||
|
||||
# generation configs
|
||||
prompt: ""
|
||||
|
||||
preprocess:
|
||||
vis_processor:
|
||||
train:
|
||||
name: "blip2_image_train"
|
||||
image_size: 224
|
||||
eval:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
eval:
|
||||
name: "blip_caption"
|
||||
@@ -1,25 +0,0 @@
|
||||
model:
|
||||
arch: mini_gpt4
|
||||
model_type: pretrain_vicuna
|
||||
freeze_vit: True
|
||||
freeze_qformer: True
|
||||
max_txt_len: 160
|
||||
end_sym: "###"
|
||||
low_resource: False
|
||||
prompt_path: "apps/language_models/src/pipelines/minigpt4_utils/prompts/alignment.txt"
|
||||
prompt_template: '###Human: {} ###Assistant: '
|
||||
ckpt: 'prerained_minigpt4_7b.pth'
|
||||
|
||||
|
||||
datasets:
|
||||
cc_sbu_align:
|
||||
vis_processor:
|
||||
train:
|
||||
name: "blip2_image_eval"
|
||||
image_size: 224
|
||||
text_processor:
|
||||
train:
|
||||
name: "blip_caption"
|
||||
|
||||
run:
|
||||
task: image_text_pretrain
|
||||
@@ -1,629 +0,0 @@
|
||||
# Based on EVA, BEIT, timm and DeiT code bases
|
||||
# https://github.com/baaivision/EVA
|
||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
||||
# https://github.com/microsoft/unilm/tree/master/beit
|
||||
# https://github.com/facebookresearch/deit/
|
||||
# https://github.com/facebookresearch/dino
|
||||
# --------------------------------------------------------'
|
||||
import math
|
||||
import requests
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
||||
|
||||
|
||||
def _cfg(url="", **kwargs):
|
||||
return {
|
||||
"url": url,
|
||||
"num_classes": 1000,
|
||||
"input_size": (3, 224, 224),
|
||||
"pool_size": None,
|
||||
"crop_pct": 0.9,
|
||||
"interpolation": "bicubic",
|
||||
"mean": (0.5, 0.5, 0.5),
|
||||
"std": (0.5, 0.5, 0.5),
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
||||
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "p={}".format(self.drop_prob)
|
||||
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
drop=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
# x = self.drop(x)
|
||||
# commit this for the orignal BERT implement
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
attn_drop=0.0,
|
||||
proj_drop=0.0,
|
||||
window_size=None,
|
||||
attn_head_dim=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
if attn_head_dim is not None:
|
||||
head_dim = attn_head_dim
|
||||
all_head_dim = head_dim * self.num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
||||
if qkv_bias:
|
||||
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
||||
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
||||
else:
|
||||
self.q_bias = None
|
||||
self.v_bias = None
|
||||
|
||||
if window_size:
|
||||
self.window_size = window_size
|
||||
self.num_relative_distance = (2 * window_size[0] - 1) * (
|
||||
2 * window_size[1] - 1
|
||||
) + 3
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
torch.zeros(self.num_relative_distance, num_heads)
|
||||
) # 2*Wh-1 * 2*Ww-1, nH
|
||||
# cls to token & token 2 cls & cls to cls
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(window_size[0])
|
||||
coords_w = torch.arange(window_size[1])
|
||||
coords = torch.stack(
|
||||
torch.meshgrid([coords_h, coords_w])
|
||||
) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = (
|
||||
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
||||
) # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(
|
||||
1, 2, 0
|
||||
).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += (
|
||||
window_size[0] - 1
|
||||
) # shift to start from 0
|
||||
relative_coords[:, :, 1] += window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
||||
relative_position_index = torch.zeros(
|
||||
size=(window_size[0] * window_size[1] + 1,) * 2,
|
||||
dtype=relative_coords.dtype,
|
||||
)
|
||||
relative_position_index[1:, 1:] = relative_coords.sum(
|
||||
-1
|
||||
) # Wh*Ww, Wh*Ww
|
||||
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
||||
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
||||
relative_position_index[0, 0] = self.num_relative_distance - 1
|
||||
|
||||
self.register_buffer(
|
||||
"relative_position_index", relative_position_index
|
||||
)
|
||||
else:
|
||||
self.window_size = None
|
||||
self.relative_position_bias_table = None
|
||||
self.relative_position_index = None
|
||||
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(all_head_dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, rel_pos_bias=None):
|
||||
B, N, C = x.shape
|
||||
qkv_bias = None
|
||||
if self.q_bias is not None:
|
||||
qkv_bias = torch.cat(
|
||||
(
|
||||
self.q_bias,
|
||||
torch.zeros_like(self.v_bias, requires_grad=False),
|
||||
self.v_bias,
|
||||
)
|
||||
)
|
||||
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = (
|
||||
qkv[0],
|
||||
qkv[1],
|
||||
qkv[2],
|
||||
) # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
q = q * self.scale
|
||||
attn = q @ k.transpose(-2, -1)
|
||||
|
||||
if self.relative_position_bias_table is not None:
|
||||
relative_position_bias = self.relative_position_bias_table[
|
||||
self.relative_position_index.view(-1)
|
||||
].view(
|
||||
self.window_size[0] * self.window_size[1] + 1,
|
||||
self.window_size[0] * self.window_size[1] + 1,
|
||||
-1,
|
||||
) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.permute(
|
||||
2, 0, 1
|
||||
).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
if rel_pos_bias is not None:
|
||||
attn = attn + rel_pos_bias
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads,
|
||||
mlp_ratio=4.0,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
drop=0.0,
|
||||
attn_drop=0.0,
|
||||
drop_path=0.0,
|
||||
init_values=None,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.LayerNorm,
|
||||
window_size=None,
|
||||
attn_head_dim=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=drop,
|
||||
window_size=window_size,
|
||||
attn_head_dim=attn_head_dim,
|
||||
)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = (
|
||||
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
)
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
if init_values is not None and init_values > 0:
|
||||
self.gamma_1 = nn.Parameter(
|
||||
init_values * torch.ones((dim)), requires_grad=True
|
||||
)
|
||||
self.gamma_2 = nn.Parameter(
|
||||
init_values * torch.ones((dim)), requires_grad=True
|
||||
)
|
||||
else:
|
||||
self.gamma_1, self.gamma_2 = None, None
|
||||
|
||||
def forward(self, x, rel_pos_bias=None):
|
||||
if self.gamma_1 is None:
|
||||
x = x + self.drop_path(
|
||||
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)
|
||||
)
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(
|
||||
self.gamma_1
|
||||
* self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)
|
||||
)
|
||||
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""Image to Patch Embedding"""
|
||||
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
||||
super().__init__()
|
||||
img_size = to_2tuple(img_size)
|
||||
patch_size = to_2tuple(patch_size)
|
||||
num_patches = (img_size[1] // patch_size[1]) * (
|
||||
img_size[0] // patch_size[0]
|
||||
)
|
||||
self.patch_shape = (
|
||||
img_size[0] // patch_size[0],
|
||||
img_size[1] // patch_size[1],
|
||||
)
|
||||
self.img_size = img_size
|
||||
self.patch_size = patch_size
|
||||
self.num_patches = num_patches
|
||||
|
||||
self.proj = nn.Conv2d(
|
||||
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
|
||||
)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
# FIXME look at relaxing size constraints
|
||||
assert (
|
||||
H == self.img_size[0] and W == self.img_size[1]
|
||||
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
||||
x = self.proj(x).flatten(2).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class RelativePositionBias(nn.Module):
|
||||
def __init__(self, window_size, num_heads):
|
||||
super().__init__()
|
||||
self.window_size = window_size
|
||||
self.num_relative_distance = (2 * window_size[0] - 1) * (
|
||||
2 * window_size[1] - 1
|
||||
) + 3
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
torch.zeros(self.num_relative_distance, num_heads)
|
||||
) # 2*Wh-1 * 2*Ww-1, nH
|
||||
# cls to token & token 2 cls & cls to cls
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(window_size[0])
|
||||
coords_w = torch.arange(window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = (
|
||||
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
||||
) # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(
|
||||
1, 2, 0
|
||||
).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
||||
relative_position_index = torch.zeros(
|
||||
size=(window_size[0] * window_size[1] + 1,) * 2,
|
||||
dtype=relative_coords.dtype,
|
||||
)
|
||||
relative_position_index[1:, 1:] = relative_coords.sum(
|
||||
-1
|
||||
) # Wh*Ww, Wh*Ww
|
||||
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
||||
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
||||
relative_position_index[0, 0] = self.num_relative_distance - 1
|
||||
|
||||
self.register_buffer(
|
||||
"relative_position_index", relative_position_index
|
||||
)
|
||||
|
||||
# trunc_normal_(self.relative_position_bias_table, std=.02)
|
||||
|
||||
def forward(self):
|
||||
relative_position_bias = self.relative_position_bias_table[
|
||||
self.relative_position_index.view(-1)
|
||||
].view(
|
||||
self.window_size[0] * self.window_size[1] + 1,
|
||||
self.window_size[0] * self.window_size[1] + 1,
|
||||
-1,
|
||||
) # Wh*Ww,Wh*Ww,nH
|
||||
return relative_position_bias.permute(
|
||||
2, 0, 1
|
||||
).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
|
||||
|
||||
class VisionTransformer(nn.Module):
|
||||
"""Vision Transformer with support for patch or hybrid CNN input stage"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4.0,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
drop_rate=0.0,
|
||||
attn_drop_rate=0.0,
|
||||
drop_path_rate=0.0,
|
||||
norm_layer=nn.LayerNorm,
|
||||
init_values=None,
|
||||
use_abs_pos_emb=True,
|
||||
use_rel_pos_bias=False,
|
||||
use_shared_rel_pos_bias=False,
|
||||
use_mean_pooling=True,
|
||||
init_scale=0.001,
|
||||
use_checkpoint=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.image_size = img_size
|
||||
self.num_classes = num_classes
|
||||
self.num_features = (
|
||||
self.embed_dim
|
||||
) = embed_dim # num_features for consistency with other models
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size,
|
||||
patch_size=patch_size,
|
||||
in_chans=in_chans,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
if use_abs_pos_emb:
|
||||
self.pos_embed = nn.Parameter(
|
||||
torch.zeros(1, num_patches + 1, embed_dim)
|
||||
)
|
||||
else:
|
||||
self.pos_embed = None
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
if use_shared_rel_pos_bias:
|
||||
self.rel_pos_bias = RelativePositionBias(
|
||||
window_size=self.patch_embed.patch_shape, num_heads=num_heads
|
||||
)
|
||||
else:
|
||||
self.rel_pos_bias = None
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
dpr = [
|
||||
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
||||
] # stochastic depth decay rule
|
||||
self.use_rel_pos_bias = use_rel_pos_bias
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
Block(
|
||||
dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
drop=drop_rate,
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[i],
|
||||
norm_layer=norm_layer,
|
||||
init_values=init_values,
|
||||
window_size=self.patch_embed.patch_shape
|
||||
if use_rel_pos_bias
|
||||
else None,
|
||||
)
|
||||
for i in range(depth)
|
||||
]
|
||||
)
|
||||
# self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
||||
# self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
||||
# self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
if self.pos_embed is not None:
|
||||
trunc_normal_(self.pos_embed, std=0.02)
|
||||
trunc_normal_(self.cls_token, std=0.02)
|
||||
# trunc_normal_(self.mask_token, std=.02)
|
||||
# if isinstance(self.head, nn.Linear):
|
||||
# trunc_normal_(self.head.weight, std=.02)
|
||||
self.apply(self._init_weights)
|
||||
self.fix_init_weight()
|
||||
|
||||
# if isinstance(self.head, nn.Linear):
|
||||
# self.head.weight.data.mul_(init_scale)
|
||||
# self.head.bias.data.mul_(init_scale)
|
||||
|
||||
def fix_init_weight(self):
|
||||
def rescale(param, layer_id):
|
||||
param.div_(math.sqrt(2.0 * layer_id))
|
||||
|
||||
for layer_id, layer in enumerate(self.blocks):
|
||||
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
||||
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=0.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
def get_classifier(self):
|
||||
return self.head
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool=""):
|
||||
self.num_classes = num_classes
|
||||
self.head = (
|
||||
nn.Linear(self.embed_dim, num_classes)
|
||||
if num_classes > 0
|
||||
else nn.Identity()
|
||||
)
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x)
|
||||
batch_size, seq_len, _ = x.size()
|
||||
|
||||
cls_tokens = self.cls_token.expand(
|
||||
batch_size, -1, -1
|
||||
) # stole cls_tokens impl from Phil Wang, thanks
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
rel_pos_bias = (
|
||||
self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
||||
)
|
||||
for blk in self.blocks:
|
||||
if self.use_checkpoint:
|
||||
x = checkpoint.checkpoint(blk, x, rel_pos_bias)
|
||||
else:
|
||||
x = blk(x, rel_pos_bias)
|
||||
return x
|
||||
|
||||
# x = self.norm(x)
|
||||
|
||||
# if self.fc_norm is not None:
|
||||
# t = x[:, 1:, :]
|
||||
# return self.fc_norm(t.mean(1))
|
||||
# else:
|
||||
# return x[:, 0]
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
# x = self.head(x)
|
||||
return x
|
||||
|
||||
def get_intermediate_layers(self, x):
|
||||
x = self.patch_embed(x)
|
||||
batch_size, seq_len, _ = x.size()
|
||||
|
||||
cls_tokens = self.cls_token.expand(
|
||||
batch_size, -1, -1
|
||||
) # stole cls_tokens impl from Phil Wang, thanks
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
features = []
|
||||
rel_pos_bias = (
|
||||
self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
||||
)
|
||||
for blk in self.blocks:
|
||||
x = blk(x, rel_pos_bias)
|
||||
features.append(x)
|
||||
|
||||
return features
|
||||
|
||||
|
||||
def interpolate_pos_embed(model, checkpoint_model):
|
||||
if "pos_embed" in checkpoint_model:
|
||||
pos_embed_checkpoint = checkpoint_model["pos_embed"].float()
|
||||
embedding_size = pos_embed_checkpoint.shape[-1]
|
||||
num_patches = model.patch_embed.num_patches
|
||||
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
||||
# height (== width) for the checkpoint position embedding
|
||||
orig_size = int(
|
||||
(pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5
|
||||
)
|
||||
# height (== width) for the new position embedding
|
||||
new_size = int(num_patches**0.5)
|
||||
# class_token and dist_token are kept unchanged
|
||||
if orig_size != new_size:
|
||||
print(
|
||||
"Position interpolate from %dx%d to %dx%d"
|
||||
% (orig_size, orig_size, new_size, new_size)
|
||||
)
|
||||
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
||||
# only the position tokens are interpolated
|
||||
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
||||
pos_tokens = pos_tokens.reshape(
|
||||
-1, orig_size, orig_size, embedding_size
|
||||
).permute(0, 3, 1, 2)
|
||||
pos_tokens = torch.nn.functional.interpolate(
|
||||
pos_tokens,
|
||||
size=(new_size, new_size),
|
||||
mode="bicubic",
|
||||
align_corners=False,
|
||||
)
|
||||
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
||||
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
||||
checkpoint_model["pos_embed"] = new_pos_embed
|
||||
|
||||
|
||||
def convert_weights_to_fp16(model: nn.Module):
|
||||
"""Convert applicable model parameters to fp16"""
|
||||
|
||||
def _convert_weights_to_fp16(l):
|
||||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
||||
# l.weight.data = l.weight.data.half()
|
||||
l.weight.data = l.weight.data
|
||||
if l.bias is not None:
|
||||
# l.bias.data = l.bias.data.half()
|
||||
l.bias.data = l.bias.data
|
||||
|
||||
# if isinstance(l, (nn.MultiheadAttention, Attention)):
|
||||
# for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
||||
# tensor = getattr(l, attr)
|
||||
# if tensor is not None:
|
||||
# tensor.data = tensor.data.half()
|
||||
|
||||
model.apply(_convert_weights_to_fp16)
|
||||
|
||||
|
||||
def create_eva_vit_g(
|
||||
img_size=224, drop_path_rate=0.4, use_checkpoint=False, precision="fp16"
|
||||
):
|
||||
model = VisionTransformer(
|
||||
img_size=img_size,
|
||||
patch_size=14,
|
||||
use_mean_pooling=False,
|
||||
embed_dim=1408,
|
||||
depth=39,
|
||||
num_heads=1408 // 88,
|
||||
mlp_ratio=4.3637,
|
||||
qkv_bias=True,
|
||||
drop_path_rate=drop_path_rate,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
use_checkpoint=use_checkpoint,
|
||||
)
|
||||
url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth"
|
||||
|
||||
local_filename = "eva_vit_g.pth"
|
||||
response = requests.get(url)
|
||||
if response.status_code == 200:
|
||||
with open(local_filename, "wb") as f:
|
||||
f.write(response.content)
|
||||
print("File downloaded successfully.")
|
||||
state_dict = torch.load(local_filename, map_location="cpu")
|
||||
interpolate_pos_embed(model, state_dict)
|
||||
|
||||
incompatible_keys = model.load_state_dict(state_dict, strict=False)
|
||||
|
||||
if precision == "fp16":
|
||||
# model.to("cuda")
|
||||
convert_weights_to_fp16(model)
|
||||
return model
|
||||
@@ -1,4 +0,0 @@
|
||||
<Img><ImageHere></Img> Describe this image in detail.
|
||||
<Img><ImageHere></Img> Take a look at this image and describe what you notice.
|
||||
<Img><ImageHere></Img> Please provide a detailed description of the picture.
|
||||
<Img><ImageHere></Img> Could you describe the contents of this image for me?
|
||||
@@ -1,187 +0,0 @@
|
||||
import torch
|
||||
import torch_mlir
|
||||
from transformers import AutoTokenizer, StoppingCriteria, AutoModelForCausalLM
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from apps.language_models.utils import (
|
||||
get_torch_mlir_module_bytecode,
|
||||
get_vmfb_from_path,
|
||||
)
|
||||
from apps.language_models.src.pipelines.SharkLLMBase import SharkLLMBase
|
||||
from apps.language_models.src.model_wrappers.stablelm_model import (
|
||||
StableLMModel,
|
||||
)
|
||||
|
||||
|
||||
class StopOnTokens(StoppingCriteria):
|
||||
def __call__(
|
||||
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
||||
) -> bool:
|
||||
stop_ids = [50278, 50279, 50277, 1, 0]
|
||||
for stop_id in stop_ids:
|
||||
if input_ids[0][-1] == stop_id:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class SharkStableLM(SharkLLMBase):
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
hf_model_path="stabilityai/stablelm-tuned-alpha-3b",
|
||||
max_num_tokens=512,
|
||||
device="cuda",
|
||||
precision="fp32",
|
||||
debug="False",
|
||||
) -> None:
|
||||
super().__init__(model_name, hf_model_path, max_num_tokens)
|
||||
self.max_sequence_len = 256
|
||||
self.device = device
|
||||
self.precision = precision
|
||||
self.debug = debug
|
||||
self.tokenizer = self.get_tokenizer()
|
||||
self.shark_model = self.compile()
|
||||
|
||||
def shouldStop(self, tokens):
|
||||
stop_ids = [50278, 50279, 50277, 1, 0]
|
||||
for stop_id in stop_ids:
|
||||
if tokens[0][-1] == stop_id:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_src_model(self):
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
self.hf_model_path, torch_dtype=torch.float32
|
||||
)
|
||||
return model
|
||||
|
||||
def get_model_inputs(self):
|
||||
input_ids = torch.randint(3, (1, self.max_sequence_len))
|
||||
attention_mask = torch.randint(3, (1, self.max_sequence_len))
|
||||
return input_ids, attention_mask
|
||||
|
||||
def compile(self):
|
||||
tmp_model_name = (
|
||||
f"stableLM_linalg_{self.precision}_seqLen{self.max_sequence_len}"
|
||||
)
|
||||
|
||||
# device = "cuda" # "cpu"
|
||||
# TODO: vmfb and mlir name should include precision and device
|
||||
model_vmfb_name = None
|
||||
vmfb_path = (
|
||||
Path(tmp_model_name + f"_{self.device}.vmfb")
|
||||
if model_vmfb_name is None
|
||||
else Path(model_vmfb_name)
|
||||
)
|
||||
shark_module = get_vmfb_from_path(
|
||||
vmfb_path, self.device, mlir_dialect="tm_tensor"
|
||||
)
|
||||
if shark_module is not None:
|
||||
return shark_module
|
||||
|
||||
mlir_path = Path(tmp_model_name + ".mlir")
|
||||
print(
|
||||
f"[DEBUG] mlir path {mlir_path} {'exists' if mlir_path.exists() else 'does not exist'}"
|
||||
)
|
||||
if mlir_path.exists():
|
||||
with open(mlir_path, "rb") as f:
|
||||
bytecode = f.read()
|
||||
else:
|
||||
model = StableLMModel(self.get_src_model())
|
||||
model_inputs = self.get_model_inputs()
|
||||
ts_graph = get_torch_mlir_module_bytecode(model, model_inputs)
|
||||
module = torch_mlir.compile(
|
||||
ts_graph,
|
||||
[*model_inputs],
|
||||
torch_mlir.OutputType.LINALG_ON_TENSORS,
|
||||
use_tracing=False,
|
||||
verbose=False,
|
||||
)
|
||||
bytecode_stream = BytesIO()
|
||||
module.operation.write_bytecode(bytecode_stream)
|
||||
bytecode = bytecode_stream.getvalue()
|
||||
f_ = open(tmp_model_name + ".mlir", "wb")
|
||||
f_.write(bytecode)
|
||||
print("Saved mlir")
|
||||
f_.close()
|
||||
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module=bytecode, device=self.device, mlir_dialect="tm_tensor"
|
||||
)
|
||||
shark_module.compile()
|
||||
|
||||
path = shark_module.save_module(
|
||||
vmfb_path.parent.absolute(), vmfb_path.stem, debug=self.debug
|
||||
)
|
||||
print("Saved vmfb at ", str(path))
|
||||
|
||||
return shark_module
|
||||
|
||||
def get_tokenizer(self):
|
||||
tok = AutoTokenizer.from_pretrained(self.hf_model_path)
|
||||
tok.add_special_tokens({"pad_token": "<PAD>"})
|
||||
# print("[DEBUG] Sucessfully loaded the tokenizer to the memory")
|
||||
return tok
|
||||
|
||||
def generate(self, prompt):
|
||||
words_list = []
|
||||
for i in range(self.max_num_tokens):
|
||||
params = {
|
||||
"new_text": prompt,
|
||||
}
|
||||
|
||||
generated_token_op = self.generate_new_token(params)
|
||||
|
||||
detok = generated_token_op["detok"]
|
||||
stop_generation = generated_token_op["stop_generation"]
|
||||
|
||||
if stop_generation:
|
||||
break
|
||||
|
||||
print(detok, end="", flush=True) # this is for CLI and DEBUG
|
||||
words_list.append(detok)
|
||||
if detok == "":
|
||||
break
|
||||
prompt = prompt + detok
|
||||
return words_list
|
||||
|
||||
def generate_new_token(self, params):
|
||||
new_text = params["new_text"]
|
||||
model_inputs = self.tokenizer(
|
||||
[new_text],
|
||||
padding="max_length",
|
||||
max_length=self.max_sequence_len,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
sum_attentionmask = torch.sum(model_inputs.attention_mask)
|
||||
output = self.shark_model(
|
||||
"forward", [model_inputs.input_ids, model_inputs.attention_mask]
|
||||
)
|
||||
output = torch.from_numpy(output)
|
||||
next_toks = torch.topk(output, 1)
|
||||
stop_generation = False
|
||||
if self.shouldStop(next_toks.indices):
|
||||
stop_generation = True
|
||||
new_token = next_toks.indices[0][int(sum_attentionmask) - 1]
|
||||
detok = self.tokenizer.decode(
|
||||
new_token,
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
ret_dict = {
|
||||
"new_token": new_token,
|
||||
"detok": detok,
|
||||
"stop_generation": stop_generation,
|
||||
}
|
||||
return ret_dict
|
||||
|
||||
|
||||
# Initialize a StopOnTokens object
|
||||
system_prompt = """<|SYSTEM|># StableLM Tuned (Alpha version)
|
||||
- StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
|
||||
- StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
||||
- StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
|
||||
- StableLM will refuse to participate in anything that could harm a human.
|
||||
"""
|
||||
@@ -1,48 +0,0 @@
|
||||
import torch
|
||||
from torch.fx.experimental.proxy_tensor import make_fx
|
||||
from torch._decomp import get_decompositions
|
||||
from typing import List
|
||||
from pathlib import Path
|
||||
from shark.shark_downloader import download_public_file
|
||||
|
||||
|
||||
# expects a Path / str as arg
|
||||
# returns None if path not found or SharkInference module
|
||||
def get_vmfb_from_path(vmfb_path, device, mlir_dialect, device_id=None):
|
||||
if not isinstance(vmfb_path, Path):
|
||||
vmfb_path = Path(vmfb_path)
|
||||
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
if not vmfb_path.exists():
|
||||
return None
|
||||
|
||||
print("Loading vmfb from: ", vmfb_path)
|
||||
print("Device from get_vmfb_from_path - ", device)
|
||||
shark_module = SharkInference(
|
||||
None, device=device, mlir_dialect=mlir_dialect, device_idx=device_id
|
||||
)
|
||||
shark_module.load_module(vmfb_path)
|
||||
print("Successfully loaded vmfb")
|
||||
return shark_module
|
||||
|
||||
|
||||
def get_vmfb_from_config(
|
||||
shark_container,
|
||||
model,
|
||||
precision,
|
||||
device,
|
||||
vmfb_path,
|
||||
padding=None,
|
||||
device_id=None,
|
||||
):
|
||||
vmfb_url = (
|
||||
f"gs://shark_tank/{shark_container}/{model}_{precision}_{device}"
|
||||
)
|
||||
if padding:
|
||||
vmfb_url = vmfb_url + f"_{padding}"
|
||||
vmfb_url = vmfb_url + ".vmfb"
|
||||
download_public_file(vmfb_url, vmfb_path.absolute(), single_file=True)
|
||||
return get_vmfb_from_path(
|
||||
vmfb_path, device, "tm_tensor", device_id=device_id
|
||||
)
|
||||
107
apps/shark_studio/api/controlnet.py
Normal file
107
apps/shark_studio/api/controlnet.py
Normal file
@@ -0,0 +1,107 @@
|
||||
# from turbine_models.custom_models.controlnet import control_adapter, preprocessors
|
||||
import os
|
||||
import PIL
|
||||
import numpy as np
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
get_generated_imgs_path,
|
||||
)
|
||||
from datetime import datetime
|
||||
from PIL import Image
|
||||
from gradio.components.image_editor import (
|
||||
EditorValue,
|
||||
)
|
||||
|
||||
|
||||
class control_adapter:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
):
|
||||
self.model = None
|
||||
|
||||
def export_control_adapter_model(model_keyword):
|
||||
return None
|
||||
|
||||
def export_xl_control_adapter_model(model_keyword):
|
||||
return None
|
||||
|
||||
|
||||
class preprocessors:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
):
|
||||
self.model = None
|
||||
|
||||
def export_controlnet_model(model_keyword):
|
||||
return None
|
||||
|
||||
|
||||
control_adapter_map = {
|
||||
"sd15": {
|
||||
"canny": {"initializer": control_adapter.export_control_adapter_model},
|
||||
"openpose": {"initializer": control_adapter.export_control_adapter_model},
|
||||
"scribble": {"initializer": control_adapter.export_control_adapter_model},
|
||||
"zoedepth": {"initializer": control_adapter.export_control_adapter_model},
|
||||
},
|
||||
"sdxl": {
|
||||
"canny": {"initializer": control_adapter.export_xl_control_adapter_model},
|
||||
},
|
||||
}
|
||||
preprocessor_model_map = {
|
||||
"canny": {"initializer": preprocessors.export_controlnet_model},
|
||||
"openpose": {"initializer": preprocessors.export_controlnet_model},
|
||||
"scribble": {"initializer": preprocessors.export_controlnet_model},
|
||||
"zoedepth": {"initializer": preprocessors.export_controlnet_model},
|
||||
}
|
||||
|
||||
|
||||
class PreprocessorModel:
|
||||
def __init__(
|
||||
self,
|
||||
hf_model_id,
|
||||
device="cpu",
|
||||
):
|
||||
self.model = hf_model_id
|
||||
self.device = device
|
||||
|
||||
def compile(self):
|
||||
print("compile not implemented for preprocessor.")
|
||||
return
|
||||
|
||||
def run(self, inputs):
|
||||
print("run not implemented for preprocessor.")
|
||||
return inputs
|
||||
|
||||
|
||||
def cnet_preview(model, input_image):
|
||||
curr_datetime = datetime.now().strftime("%Y-%m-%d.%H-%M-%S")
|
||||
control_imgs_path = os.path.join(get_generated_imgs_path(), "control_hints")
|
||||
if not os.path.exists(control_imgs_path):
|
||||
os.mkdir(control_imgs_path)
|
||||
img_dest = os.path.join(control_imgs_path, model + curr_datetime + ".png")
|
||||
match model:
|
||||
case "canny":
|
||||
canny = PreprocessorModel("canny")
|
||||
result = canny(
|
||||
np.array(input_image),
|
||||
100,
|
||||
200,
|
||||
)
|
||||
Image.fromarray(result).save(fp=img_dest)
|
||||
return result, img_dest
|
||||
case "openpose":
|
||||
openpose = PreprocessorModel("openpose")
|
||||
result = openpose(np.array(input_image))
|
||||
Image.fromarray(result[0]).save(fp=img_dest)
|
||||
return result, img_dest
|
||||
case "zoedepth":
|
||||
zoedepth = PreprocessorModel("ZoeDepth")
|
||||
result = zoedepth(np.array(input_image))
|
||||
Image.fromarray(result).save(fp=img_dest)
|
||||
return result, img_dest
|
||||
case "scribble":
|
||||
input_image.save(fp=img_dest)
|
||||
return input_image, img_dest
|
||||
case _:
|
||||
return None, None
|
||||
125
apps/shark_studio/api/initializers.py
Normal file
125
apps/shark_studio/api/initializers.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import importlib
|
||||
import os
|
||||
import signal
|
||||
import sys
|
||||
import warnings
|
||||
import json
|
||||
from threading import Thread
|
||||
|
||||
from apps.shark_studio.modules.timer import startup_timer
|
||||
|
||||
from apps.shark_studio.web.utils.tmp_configs import (
|
||||
config_tmp,
|
||||
clear_tmp_mlir,
|
||||
clear_tmp_imgs,
|
||||
shark_tmp,
|
||||
)
|
||||
|
||||
|
||||
def imports():
|
||||
import torch # noqa: F401
|
||||
|
||||
startup_timer.record("import torch")
|
||||
warnings.filterwarnings(
|
||||
action="ignore", category=DeprecationWarning, module="torch"
|
||||
)
|
||||
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
|
||||
warnings.filterwarnings(action="ignore", category=UserWarning, module="torch")
|
||||
|
||||
import gradio # noqa: F401
|
||||
|
||||
startup_timer.record("import gradio")
|
||||
|
||||
import apps.shark_studio.web.utils.globals as global_obj
|
||||
|
||||
global_obj._init()
|
||||
startup_timer.record("initialize globals")
|
||||
|
||||
from apps.shark_studio.modules import (
|
||||
img_processing,
|
||||
) # noqa: F401
|
||||
|
||||
startup_timer.record("other imports")
|
||||
|
||||
|
||||
def initialize():
|
||||
configure_sigint_handler()
|
||||
# Setup to use shark_tmp for gradio's temporary image files and clear any
|
||||
# existing temporary images there if they exist. Then we can import gradio.
|
||||
# It has to be in this order or gradio ignores what we've set up.
|
||||
|
||||
config_tmp()
|
||||
# clear_tmp_mlir()
|
||||
clear_tmp_imgs()
|
||||
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
create_model_folders,
|
||||
)
|
||||
|
||||
# Create custom models folders if they don't exist
|
||||
create_model_folders()
|
||||
|
||||
import gradio as gr
|
||||
|
||||
# initialize_rest(reload_script_modules=False)
|
||||
|
||||
|
||||
def initialize_rest(*, reload_script_modules=False):
|
||||
"""
|
||||
Called both from initialize() and when reloading the webui.
|
||||
"""
|
||||
# Keep this for adding reload options to the webUI.
|
||||
|
||||
|
||||
def dumpstacks():
|
||||
import threading
|
||||
import traceback
|
||||
|
||||
id2name = {th.ident: th.name for th in threading.enumerate()}
|
||||
code = []
|
||||
for threadId, stack in sys._current_frames().items():
|
||||
code.append(f"\n# Thread: {id2name.get(threadId, '')}({threadId})")
|
||||
for filename, lineno, name, line in traceback.extract_stack(stack):
|
||||
code.append(f"""File: "{filename}", line {lineno}, in {name}""")
|
||||
if line:
|
||||
code.append(" " + line.strip())
|
||||
with open(os.path.join(shark_tmp, "stack_dump.log"), "w") as f:
|
||||
f.write("\n".join(code))
|
||||
|
||||
|
||||
def setup_middleware(app):
|
||||
from starlette.middleware.gzip import GZipMiddleware
|
||||
|
||||
app.middleware_stack = (
|
||||
None # reset current middleware to allow modifying user provided list
|
||||
)
|
||||
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
||||
configure_cors_middleware(app)
|
||||
app.build_middleware_stack() # rebuild middleware stack on-the-fly
|
||||
|
||||
|
||||
def configure_cors_middleware(app):
|
||||
from starlette.middleware.cors import CORSMiddleware
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
|
||||
cors_options = {
|
||||
"allow_methods": ["*"],
|
||||
"allow_headers": ["*"],
|
||||
"allow_credentials": True,
|
||||
}
|
||||
if cmd_opts.api_accept_origin:
|
||||
cors_options["allow_origins"] = cmd_opts.api_accept_origin.split(",")
|
||||
|
||||
app.add_middleware(CORSMiddleware, **cors_options)
|
||||
|
||||
|
||||
def configure_sigint_handler():
|
||||
# make the program just exit at ctrl+c without waiting for anything
|
||||
def sigint_handler(sig, frame):
|
||||
print(f"Interrupted with signal {sig} in {frame}")
|
||||
|
||||
dumpstacks()
|
||||
|
||||
os._exit(0)
|
||||
|
||||
signal.signal(signal.SIGINT, sigint_handler)
|
||||
475
apps/shark_studio/api/llm.py
Normal file
475
apps/shark_studio/api/llm.py
Normal file
@@ -0,0 +1,475 @@
|
||||
from turbine_models.custom_models import stateless_llama
|
||||
from turbine_models.model_runner import vmfbRunner
|
||||
from turbine_models.gen_external_params.gen_external_params import gen_external_params
|
||||
import time
|
||||
from shark.iree_utils.compile_utils import compile_module_to_flatbuffer
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
get_resource_path,
|
||||
get_checkpoints_path,
|
||||
)
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
from apps.shark_studio.api.utils import parse_device
|
||||
from urllib.request import urlopen
|
||||
import iree.runtime as ireert
|
||||
from itertools import chain
|
||||
import gc
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
llm_model_map = {
|
||||
"meta-llama/Llama-2-7b-chat-hf": {
|
||||
"initializer": stateless_llama.export_transformer_model,
|
||||
"hf_model_name": "meta-llama/Llama-2-7b-chat-hf",
|
||||
"compile_flags": ["--iree-opt-const-expr-hoisting=False"],
|
||||
"stop_token": 2,
|
||||
"max_tokens": 4096,
|
||||
"system_prompt": """<s>[INST] <<SYS>>Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>>""",
|
||||
},
|
||||
"Trelis/Llama-2-7b-chat-hf-function-calling-v2": {
|
||||
"initializer": stateless_llama.export_transformer_model,
|
||||
"hf_model_name": "Trelis/Llama-2-7b-chat-hf-function-calling-v2",
|
||||
"compile_flags": ["--iree-opt-const-expr-hoisting=False"],
|
||||
"stop_token": 2,
|
||||
"max_tokens": 4096,
|
||||
"system_prompt": """<s>[INST] <<SYS>>Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>>""",
|
||||
},
|
||||
"TinyPixel/small-llama2": {
|
||||
"initializer": stateless_llama.export_transformer_model,
|
||||
"hf_model_name": "TinyPixel/small-llama2",
|
||||
"compile_flags": ["--iree-opt-const-expr-hoisting=True"],
|
||||
"stop_token": 2,
|
||||
"max_tokens": 1024,
|
||||
"system_prompt": """<s>[INST] <<SYS>>Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>>""",
|
||||
},
|
||||
}
|
||||
|
||||
B_INST, E_INST = "[INST]", "[/INST]"
|
||||
B_SYS, E_SYS = "<s>", "</s>"
|
||||
|
||||
DEFAULT_CHAT_SYS_PROMPT = """<s>[INST] <<SYS>>
|
||||
Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n <</SYS>>\n\n
|
||||
"""
|
||||
|
||||
|
||||
def append_user_prompt(history, input_prompt):
|
||||
user_prompt = f"{B_INST} {input_prompt} {E_INST}"
|
||||
history += user_prompt
|
||||
return history
|
||||
|
||||
|
||||
class LanguageModel:
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
hf_auth_token=None,
|
||||
device=None,
|
||||
quantization="int4",
|
||||
precision="",
|
||||
external_weights=None,
|
||||
use_system_prompt=True,
|
||||
streaming_llm=False,
|
||||
):
|
||||
_, _, self.triple = parse_device(device)
|
||||
self.hf_model_name = llm_model_map[model_name]["hf_model_name"]
|
||||
self.device = device.split("=>")[-1].strip()
|
||||
self.backend = self.device.split("://")[0]
|
||||
self.driver = self.backend
|
||||
if "cpu" in device:
|
||||
self.device = "cpu"
|
||||
self.backend = "llvm-cpu"
|
||||
self.driver = "local-task"
|
||||
|
||||
print(f"Selected {self.backend} as IREE target backend.")
|
||||
self.precision = "f32" if "cpu" in device else "f16"
|
||||
self.quantization = quantization
|
||||
self.safe_name = self.hf_model_name.replace("/", "_").replace("-", "_")
|
||||
self.external_weight_file = None
|
||||
# TODO: find a programmatic solution for model arch spec instead of hardcoding llama2
|
||||
self.file_spec = "_".join(
|
||||
[
|
||||
self.safe_name,
|
||||
self.precision,
|
||||
]
|
||||
)
|
||||
if self.quantization != "None":
|
||||
self.file_spec += "_" + self.quantization
|
||||
|
||||
if external_weights in ["safetensors", "gguf"]:
|
||||
self.external_weight_file = get_resource_path(
|
||||
os.path.join("..", self.file_spec + "." + external_weights)
|
||||
)
|
||||
else:
|
||||
self.external_weights = None
|
||||
self.external_weight_file = None
|
||||
|
||||
if streaming_llm:
|
||||
# Add streaming suffix to file spec after setting external weights filename.
|
||||
self.file_spec += "_streaming"
|
||||
self.streaming_llm = streaming_llm
|
||||
|
||||
self.tempfile_name = get_resource_path(
|
||||
os.path.join("..", f"{self.file_spec}.tempfile")
|
||||
)
|
||||
# TODO: Tag vmfb with target triple of device instead of HAL backend
|
||||
self.vmfb_name = str(
|
||||
get_resource_path(
|
||||
os.path.join("..", f"{self.file_spec}_{self.backend}.vmfb.tempfile")
|
||||
)
|
||||
)
|
||||
|
||||
self.max_tokens = llm_model_map[model_name]["max_tokens"]
|
||||
self.iree_module_dict = None
|
||||
self.use_system_prompt = use_system_prompt
|
||||
self.global_iter = 0
|
||||
self.prev_token_len = 0
|
||||
self.first_input = True
|
||||
self.hf_auth_token = hf_auth_token
|
||||
if self.external_weight_file is not None:
|
||||
if not os.path.exists(self.external_weight_file):
|
||||
print(
|
||||
f"External weight file {self.external_weight_file} does not exist. Generating..."
|
||||
)
|
||||
gen_external_params(
|
||||
hf_model_name=self.hf_model_name,
|
||||
quantization=self.quantization,
|
||||
weight_path=self.external_weight_file,
|
||||
hf_auth_token=hf_auth_token,
|
||||
precision=self.precision,
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"External weight file {self.external_weight_file} found for {self.vmfb_name}"
|
||||
)
|
||||
self.external_weight_file = str(self.external_weight_file)
|
||||
|
||||
if os.path.exists(self.vmfb_name) and (
|
||||
external_weights is None or os.path.exists(str(self.external_weight_file))
|
||||
):
|
||||
self.runner = vmfbRunner(
|
||||
device=self.driver,
|
||||
vmfb_path=self.vmfb_name,
|
||||
external_weight_path=self.external_weight_file,
|
||||
)
|
||||
if self.streaming_llm:
|
||||
self.model = self.runner.ctx.modules.streaming_state_update
|
||||
else:
|
||||
self.model = self.runner.ctx.modules.state_update
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
self.hf_model_name,
|
||||
use_fast=False,
|
||||
use_auth_token=hf_auth_token,
|
||||
)
|
||||
elif not os.path.exists(self.tempfile_name):
|
||||
self.torch_ir, self.tokenizer = llm_model_map[self.hf_model_name][
|
||||
"initializer"
|
||||
](
|
||||
self.hf_model_name,
|
||||
hf_auth_token,
|
||||
compile_to="torch",
|
||||
external_weights=external_weights,
|
||||
precision=self.precision,
|
||||
quantization=self.quantization,
|
||||
streaming_llm=self.streaming_llm,
|
||||
decomp_attn=True,
|
||||
)
|
||||
with open(self.tempfile_name, "w+") as f:
|
||||
f.write(self.torch_ir)
|
||||
del self.torch_ir
|
||||
gc.collect()
|
||||
self.compile()
|
||||
else:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
self.hf_model_name,
|
||||
use_fast=False,
|
||||
use_auth_token=hf_auth_token,
|
||||
)
|
||||
self.compile()
|
||||
# Reserved for running HF torch model as reference.
|
||||
self.hf_mod = None
|
||||
|
||||
def compile(self) -> None:
|
||||
# this comes with keys: "vmfb", "config", and "temp_file_to_unlink".
|
||||
# ONLY architecture/api-specific compile-time flags for each backend, if needed.
|
||||
# hf_model_id-specific global flags currently in model map.
|
||||
flags = []
|
||||
if "cpu" in self.backend:
|
||||
flags.extend(
|
||||
[
|
||||
"--iree-global-opt-enable-quantized-matmul-reassociation",
|
||||
]
|
||||
)
|
||||
elif self.backend == "vulkan":
|
||||
flags.extend(["--iree-stream-resource-max-allocation-size=4294967296"])
|
||||
elif self.backend == "rocm":
|
||||
flags.extend(
|
||||
[
|
||||
"--iree-codegen-llvmgpu-enable-transform-dialect-jit=false",
|
||||
"--iree-llvmgpu-enable-prefetch=true",
|
||||
"--iree-opt-outer-dim-concat=true",
|
||||
"--iree-flow-enable-aggressive-fusion",
|
||||
]
|
||||
)
|
||||
if "gfx9" in self.triple:
|
||||
flags.extend(
|
||||
[
|
||||
f"--iree-codegen-transform-dialect-library={get_mfma_spec_path(self.triple, get_checkpoints_path())}",
|
||||
"--iree-codegen-llvmgpu-use-vector-distribution=true",
|
||||
]
|
||||
)
|
||||
flags.extend(llm_model_map[self.hf_model_name]["compile_flags"])
|
||||
flatbuffer_blob = compile_module_to_flatbuffer(
|
||||
self.tempfile_name,
|
||||
device=self.device,
|
||||
frontend="auto",
|
||||
model_config_path=None,
|
||||
extra_args=flags,
|
||||
write_to=self.vmfb_name,
|
||||
)
|
||||
self.runner = vmfbRunner(
|
||||
device=self.driver,
|
||||
vmfb_path=self.vmfb_name,
|
||||
external_weight_path=self.external_weight_file,
|
||||
)
|
||||
if self.streaming_llm:
|
||||
self.model = self.runner.ctx.modules.streaming_state_update
|
||||
else:
|
||||
self.model = self.runner.ctx.modules.state_update
|
||||
|
||||
def sanitize_prompt(self, prompt):
|
||||
if isinstance(prompt, list):
|
||||
prompt = list(chain.from_iterable(prompt))
|
||||
prompt = " ".join([x for x in prompt if isinstance(x, str)])
|
||||
prompt = prompt.replace("\n", " ")
|
||||
prompt = prompt.replace("\t", " ")
|
||||
prompt = prompt.replace("\r", " ")
|
||||
if self.use_system_prompt and self.global_iter == 0:
|
||||
prompt = append_user_prompt(DEFAULT_CHAT_SYS_PROMPT, prompt)
|
||||
return prompt
|
||||
else:
|
||||
return f"{B_INST} {prompt} {E_INST}"
|
||||
|
||||
def chat(self, prompt):
|
||||
prompt = self.sanitize_prompt(prompt)
|
||||
|
||||
input_tensor = self.tokenizer(prompt, return_tensors="pt").input_ids
|
||||
|
||||
def format_out(results):
|
||||
return torch.tensor(results.to_host()[0][0])
|
||||
|
||||
history = []
|
||||
for iter in range(self.max_tokens):
|
||||
if self.streaming_llm:
|
||||
token_slice = max(self.prev_token_len - 1, 0)
|
||||
input_tensor = input_tensor[:, token_slice:]
|
||||
if self.streaming_llm and self.model["get_seq_step"]() > 600:
|
||||
print("Evicting cache space!")
|
||||
self.model["evict_kvcache_space"]()
|
||||
token_len = input_tensor.shape[-1]
|
||||
device_inputs = [
|
||||
ireert.asdevicearray(self.runner.config.device, input_tensor)
|
||||
]
|
||||
if self.first_input or not self.streaming_llm:
|
||||
st_time = time.time()
|
||||
token = self.model["run_initialize"](*device_inputs)
|
||||
total_time = time.time() - st_time
|
||||
token_len += 1
|
||||
self.first_input = False
|
||||
else:
|
||||
st_time = time.time()
|
||||
token = self.model["run_cached_initialize"](*device_inputs)
|
||||
total_time = time.time() - st_time
|
||||
token_len += 1
|
||||
|
||||
history.append(format_out(token))
|
||||
while (
|
||||
format_out(token) != llm_model_map[self.hf_model_name]["stop_token"]
|
||||
and len(history) < self.max_tokens
|
||||
):
|
||||
dec_time = time.time()
|
||||
if self.streaming_llm and self.model["get_seq_step"]() > 600:
|
||||
print("Evicting cache space!")
|
||||
self.model["evict_kvcache_space"]()
|
||||
token = self.model["run_forward"](token)
|
||||
history.append(format_out(token))
|
||||
total_time = time.time() - dec_time
|
||||
yield self.tokenizer.decode(history), total_time
|
||||
|
||||
self.prev_token_len = token_len + len(history)
|
||||
|
||||
if format_out(token) == llm_model_map[self.hf_model_name]["stop_token"]:
|
||||
break
|
||||
|
||||
for i in range(len(history)):
|
||||
if type(history[i]) != int:
|
||||
history[i] = int(history[i])
|
||||
result_output = self.tokenizer.decode(history)
|
||||
self.global_iter += 1
|
||||
return result_output, total_time
|
||||
|
||||
# Reference HF model function for sanity checks.
|
||||
def chat_hf(self, prompt):
|
||||
if self.hf_mod is None:
|
||||
self.hf_mod = AutoModelForCausalLM.from_pretrained(
|
||||
self.hf_model_name,
|
||||
torch_dtype=torch.float,
|
||||
token=self.hf_auth_token,
|
||||
)
|
||||
prompt = self.sanitize_prompt(prompt)
|
||||
|
||||
input_tensor = self.tokenizer(prompt, return_tensors="pt").input_ids
|
||||
history = []
|
||||
for iter in range(self.max_tokens):
|
||||
token_len = input_tensor.shape[-1]
|
||||
if self.first_input:
|
||||
st_time = time.time()
|
||||
result = self.hf_mod(input_tensor)
|
||||
token = torch.argmax(result.logits[:, -1, :], dim=1)
|
||||
total_time = time.time() - st_time
|
||||
token_len += 1
|
||||
pkv = result.past_key_values
|
||||
self.first_input = False
|
||||
|
||||
history.append(int(token))
|
||||
while token != llm_model_map[self.hf_model_name]["stop_token"]:
|
||||
dec_time = time.time()
|
||||
result = self.hf_mod(token.reshape([1, 1]), past_key_values=pkv)
|
||||
history.append(int(token))
|
||||
total_time = time.time() - dec_time
|
||||
token = torch.argmax(result.logits[:, -1, :], dim=1)
|
||||
pkv = result.past_key_values
|
||||
yield self.tokenizer.decode(history), total_time
|
||||
|
||||
self.prev_token_len = token_len + len(history)
|
||||
|
||||
if token == llm_model_map[self.hf_model_name]["stop_token"]:
|
||||
break
|
||||
for i in range(len(history)):
|
||||
if type(history[i]) != int:
|
||||
history[i] = int(history[i])
|
||||
result_output = self.tokenizer.decode(history)
|
||||
self.global_iter += 1
|
||||
return result_output, total_time
|
||||
|
||||
|
||||
def get_mfma_spec_path(target_chip, save_dir):
|
||||
url = "https://raw.githubusercontent.com/iree-org/iree/main/build_tools/pkgci/external_test_suite/attention_and_matmul_spec.mlir"
|
||||
attn_spec = urlopen(url).read().decode("utf-8")
|
||||
spec_path = os.path.join(save_dir, "attention_and_matmul_spec_mfma.mlir")
|
||||
if os.path.exists(spec_path):
|
||||
return spec_path
|
||||
with open(spec_path, "w") as f:
|
||||
f.write(attn_spec)
|
||||
return spec_path
|
||||
|
||||
|
||||
def llm_chat_api(InputData: dict):
|
||||
from datetime import datetime as dt
|
||||
|
||||
import apps.shark_studio.web.utils.globals as global_obj
|
||||
|
||||
print(f"Input keys : {InputData.keys()}")
|
||||
|
||||
# print(f"model : {InputData['model']}")
|
||||
|
||||
is_chat_completion_api = (
|
||||
"messages" in InputData.keys()
|
||||
) # else it is the legacy `completion` api
|
||||
|
||||
# For Debugging input data from API
|
||||
if is_chat_completion_api:
|
||||
print(f"message -> role : {InputData['messages'][0]['role']}")
|
||||
print(f"message -> content : {InputData['messages'][0]['content']}")
|
||||
else:
|
||||
print(f"prompt : {InputData['prompt']}")
|
||||
|
||||
model_name = (
|
||||
InputData["model"]
|
||||
if "model" in InputData.keys()
|
||||
else "meta-llama/Llama-2-7b-chat-hf"
|
||||
)
|
||||
model_path = llm_model_map[model_name]
|
||||
device = InputData["device"] if "device" in InputData.keys() else "cpu"
|
||||
precision = "fp16"
|
||||
max_tokens = InputData["max_tokens"] if "max_tokens" in InputData.keys() else 4096
|
||||
|
||||
device_id = None
|
||||
if not global_obj.get_llm_obj():
|
||||
print("\n[LOG] Initializing new pipeline...")
|
||||
global_obj.clear_cache()
|
||||
gc.collect()
|
||||
if "cuda" in device:
|
||||
device = "cuda"
|
||||
elif "vulkan" in device:
|
||||
device_id = int(device.split("://")[1])
|
||||
device = "vulkan"
|
||||
elif "cpu" in device:
|
||||
device = "cpu"
|
||||
precision = "fp32"
|
||||
else:
|
||||
print("unrecognized device")
|
||||
llm_model = LanguageModel(
|
||||
model_name=model_name,
|
||||
hf_auth_token=cmd_opts.hf_auth_token,
|
||||
device=device,
|
||||
quantization=cmd_opts.quantization,
|
||||
external_weights="safetensors",
|
||||
use_system_prompt=True,
|
||||
streaming_llm=False,
|
||||
)
|
||||
global_obj.set_llm_obj(llm_model)
|
||||
else:
|
||||
llm_model = global_obj.get_llm_obj()
|
||||
|
||||
llm_model.max_tokens = max_tokens
|
||||
# TODO: add role dict for different models
|
||||
if is_chat_completion_api:
|
||||
# TODO: add funtionality for multiple messages
|
||||
prompt = append_user_prompt(
|
||||
InputData["messages"][0]["role"], InputData["messages"][0]["content"]
|
||||
)
|
||||
else:
|
||||
prompt = InputData["prompt"]
|
||||
print("prompt = ", prompt)
|
||||
|
||||
for res_op, _ in llm_model.chat(prompt):
|
||||
if is_chat_completion_api:
|
||||
choices = [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": res_op, # since we are yeilding the result
|
||||
},
|
||||
"finish_reason": "stop", # or length
|
||||
}
|
||||
]
|
||||
else:
|
||||
choices = [
|
||||
{
|
||||
"text": res_op,
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop", # or length
|
||||
}
|
||||
]
|
||||
end_time = dt.now().strftime("%Y%m%d%H%M%S%f")
|
||||
return {
|
||||
"id": end_time,
|
||||
"object": "chat.completion" if is_chat_completion_api else "text_completion",
|
||||
"created": int(end_time),
|
||||
"choices": choices,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
lm = LanguageModel(
|
||||
"Trelis/Llama-2-7b-chat-hf-function-calling-v2",
|
||||
hf_auth_token=None,
|
||||
device="cpu-task",
|
||||
external_weights="safetensors",
|
||||
)
|
||||
|
||||
print("model loaded")
|
||||
for i in lm.chat("hi, what are you?"):
|
||||
print(i)
|
||||
505
apps/shark_studio/api/sd.py
Normal file
505
apps/shark_studio/api/sd.py
Normal file
@@ -0,0 +1,505 @@
|
||||
import gc
|
||||
import torch
|
||||
import gradio as gr
|
||||
import time
|
||||
import os
|
||||
import json
|
||||
import numpy as np
|
||||
import copy
|
||||
import importlib.util
|
||||
import sys
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from pathlib import Path
|
||||
from random import randint
|
||||
from turbine_models.custom_models.sd_inference.sd_pipeline import SharkSDPipeline
|
||||
from turbine_models.custom_models.sdxl_inference.sdxl_compiled_pipeline import (
|
||||
SharkSDXLPipeline,
|
||||
)
|
||||
|
||||
|
||||
from apps.shark_studio.api.controlnet import control_adapter_map
|
||||
from apps.shark_studio.api.utils import parse_device
|
||||
from apps.shark_studio.web.utils.state import status_label
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
safe_name,
|
||||
get_resource_path,
|
||||
get_checkpoints_path,
|
||||
)
|
||||
|
||||
from apps.shark_studio.modules.img_processing import (
|
||||
save_output_img,
|
||||
)
|
||||
|
||||
from apps.shark_studio.modules.ckpt_processing import (
|
||||
preprocessCKPT,
|
||||
save_irpa,
|
||||
)
|
||||
|
||||
EMPTY_SD_MAP = {
|
||||
"clip": None,
|
||||
"scheduler": None,
|
||||
"unet": None,
|
||||
"vae_decode": None,
|
||||
}
|
||||
|
||||
EMPTY_SDXL_MAP = {
|
||||
"prompt_encoder": None,
|
||||
"scheduled_unet": None,
|
||||
"vae_decode": None,
|
||||
"pipeline": None,
|
||||
"full_pipeline": None,
|
||||
}
|
||||
|
||||
EMPTY_FLAGS = {
|
||||
"clip": None,
|
||||
"unet": None,
|
||||
"vae": None,
|
||||
"pipeline": None,
|
||||
}
|
||||
|
||||
|
||||
def load_script(source, module_name):
|
||||
"""
|
||||
reads file source and loads it as a module
|
||||
|
||||
:param source: file to load
|
||||
:param module_name: name of module to register in sys.modules
|
||||
:return: loaded module
|
||||
"""
|
||||
|
||||
spec = importlib.util.spec_from_file_location(module_name, source)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
sys.modules[module_name] = module
|
||||
spec.loader.exec_module(module)
|
||||
|
||||
return module
|
||||
|
||||
|
||||
class StableDiffusion:
|
||||
# This class is responsible for executing image generation and creating
|
||||
# /managing a set of compiled modules to run Stable Diffusion. The init
|
||||
# aims to be as general as possible, and the class will infer and compile
|
||||
# a list of necessary modules or a combined "pipeline module" for a
|
||||
# specified job based on the inference task.
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
base_model_id,
|
||||
height: int,
|
||||
width: int,
|
||||
batch_size: int,
|
||||
steps: int,
|
||||
scheduler: str,
|
||||
precision: str,
|
||||
device: str,
|
||||
target_triple: str = None,
|
||||
custom_vae: str = None,
|
||||
num_loras: int = 0,
|
||||
import_ir: bool = True,
|
||||
is_controlled: bool = False,
|
||||
external_weights: str = "safetensors",
|
||||
):
|
||||
self.precision = precision
|
||||
self.compiled_pipeline = False
|
||||
self.base_model_id = base_model_id
|
||||
self.custom_vae = custom_vae
|
||||
self.is_sdxl = "xl" in self.base_model_id.lower()
|
||||
self.is_custom = ".py" in self.base_model_id.lower()
|
||||
if self.is_custom:
|
||||
custom_module = load_script(
|
||||
os.path.join(get_checkpoints_path("scripts"), self.base_model_id),
|
||||
"custom_pipeline",
|
||||
)
|
||||
self.turbine_pipe = custom_module.StudioPipeline
|
||||
self.model_map = custom_module.MODEL_MAP
|
||||
elif self.is_sdxl:
|
||||
self.turbine_pipe = SharkSDXLPipeline
|
||||
self.model_map = EMPTY_SDXL_MAP
|
||||
else:
|
||||
self.turbine_pipe = SharkSDPipeline
|
||||
self.model_map = EMPTY_SD_MAP
|
||||
max_length = 64
|
||||
target_backend, self.rt_device, triple = parse_device(device, target_triple)
|
||||
pipe_id_list = [
|
||||
safe_name(base_model_id),
|
||||
str(batch_size),
|
||||
str(max_length),
|
||||
f"{str(height)}x{str(width)}",
|
||||
precision,
|
||||
triple,
|
||||
]
|
||||
if num_loras > 0:
|
||||
pipe_id_list.append(str(num_loras) + "lora")
|
||||
if is_controlled:
|
||||
pipe_id_list.append("controlled")
|
||||
if custom_vae:
|
||||
pipe_id_list.append(custom_vae)
|
||||
self.pipe_id = "_".join(pipe_id_list)
|
||||
self.pipeline_dir = Path(os.path.join(get_checkpoints_path(), self.pipe_id))
|
||||
self.weights_path = Path(
|
||||
os.path.join(
|
||||
get_checkpoints_path(), safe_name(self.base_model_id + "_" + precision)
|
||||
)
|
||||
)
|
||||
if not os.path.exists(self.weights_path):
|
||||
os.mkdir(self.weights_path)
|
||||
|
||||
decomp_attn = True
|
||||
attn_spec = None
|
||||
if triple in ["gfx940", "gfx942", "gfx90a"]:
|
||||
decomp_attn = False
|
||||
attn_spec = "mfma"
|
||||
elif triple in ["gfx1100", "gfx1103", "gfx1150"]:
|
||||
decomp_attn = False
|
||||
attn_spec = "wmma"
|
||||
if triple in ["gfx1103", "gfx1150"]:
|
||||
# external weights have issues on igpu
|
||||
external_weights = None
|
||||
elif target_backend == "llvm-cpu":
|
||||
decomp_attn = False
|
||||
|
||||
self.sd_pipe = self.turbine_pipe(
|
||||
hf_model_name=base_model_id,
|
||||
scheduler_id=scheduler,
|
||||
height=height,
|
||||
width=width,
|
||||
precision=precision,
|
||||
max_length=max_length,
|
||||
batch_size=batch_size,
|
||||
num_inference_steps=steps,
|
||||
device=target_backend,
|
||||
iree_target_triple=triple,
|
||||
ireec_flags=EMPTY_FLAGS,
|
||||
attn_spec=attn_spec,
|
||||
decomp_attn=decomp_attn,
|
||||
pipeline_dir=self.pipeline_dir,
|
||||
external_weights_dir=self.weights_path,
|
||||
external_weights=external_weights,
|
||||
custom_vae=custom_vae,
|
||||
)
|
||||
print(f"\n[LOG] Pipeline initialized with pipe_id: {self.pipe_id}.")
|
||||
gc.collect()
|
||||
|
||||
def prepare_pipe(
|
||||
self, custom_weights, adapters, embeddings, is_img2img, compiled_pipeline
|
||||
):
|
||||
print(f"\n[LOG] Preparing pipeline...")
|
||||
self.is_img2img = False
|
||||
mlirs = copy.deepcopy(self.model_map)
|
||||
vmfbs = copy.deepcopy(self.model_map)
|
||||
weights = copy.deepcopy(self.model_map)
|
||||
if not self.is_sdxl:
|
||||
compiled_pipeline = False
|
||||
self.compiled_pipeline = compiled_pipeline
|
||||
|
||||
if custom_weights:
|
||||
custom_weights = os.path.join(
|
||||
get_checkpoints_path("checkpoints"),
|
||||
safe_name(self.base_model_id.split("/")[-1]),
|
||||
custom_weights,
|
||||
)
|
||||
diffusers_weights_path = preprocessCKPT(custom_weights, self.precision)
|
||||
for key in weights:
|
||||
if key in ["scheduled_unet", "unet"]:
|
||||
unet_weights_path = os.path.join(
|
||||
diffusers_weights_path,
|
||||
"unet",
|
||||
"diffusion_pytorch_model.safetensors",
|
||||
)
|
||||
weights[key] = save_irpa(unet_weights_path, "unet.")
|
||||
|
||||
elif key in ["clip", "prompt_encoder"]:
|
||||
if not self.is_sdxl:
|
||||
sd1_path = os.path.join(
|
||||
diffusers_weights_path, "text_encoder", "model.safetensors"
|
||||
)
|
||||
weights[key] = save_irpa(sd1_path, "text_encoder_model.")
|
||||
else:
|
||||
clip_1_path = os.path.join(
|
||||
diffusers_weights_path, "text_encoder", "model.safetensors"
|
||||
)
|
||||
clip_2_path = os.path.join(
|
||||
diffusers_weights_path,
|
||||
"text_encoder_2",
|
||||
"model.safetensors",
|
||||
)
|
||||
weights[key] = [
|
||||
save_irpa(clip_1_path, "text_encoder_model_1."),
|
||||
save_irpa(clip_2_path, "text_encoder_model_2."),
|
||||
]
|
||||
|
||||
elif key in ["vae_decode"] and weights[key] is None:
|
||||
vae_weights_path = os.path.join(
|
||||
diffusers_weights_path,
|
||||
"vae",
|
||||
"diffusion_pytorch_model.safetensors",
|
||||
)
|
||||
weights[key] = save_irpa(vae_weights_path, "vae.")
|
||||
|
||||
vmfbs, weights = self.sd_pipe.check_prepared(
|
||||
mlirs, vmfbs, weights, interactive=False
|
||||
)
|
||||
print(f"\n[LOG] Loading pipeline to device {self.rt_device}.")
|
||||
self.sd_pipe.load_pipeline(
|
||||
vmfbs, weights, self.rt_device, self.compiled_pipeline
|
||||
)
|
||||
print(
|
||||
"\n[LOG] Pipeline successfully prepared for runtime. Generating images..."
|
||||
)
|
||||
return
|
||||
|
||||
def generate_images(
|
||||
self,
|
||||
prompt,
|
||||
negative_prompt,
|
||||
image,
|
||||
strength,
|
||||
guidance_scale,
|
||||
seed,
|
||||
ondemand,
|
||||
resample_type,
|
||||
control_mode,
|
||||
hints,
|
||||
):
|
||||
img = self.sd_pipe.generate_images(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
1,
|
||||
guidance_scale,
|
||||
seed,
|
||||
return_imgs=True,
|
||||
)
|
||||
return img
|
||||
|
||||
|
||||
def shark_sd_fn_dict_input(
|
||||
sd_kwargs: dict,
|
||||
):
|
||||
print("\n[LOG] Submitting Request...")
|
||||
|
||||
for key in sd_kwargs:
|
||||
if sd_kwargs[key] in [None, []]:
|
||||
sd_kwargs[key] = None
|
||||
if sd_kwargs[key] in ["None"]:
|
||||
sd_kwargs[key] = ""
|
||||
if key == "seed":
|
||||
sd_kwargs[key] = int(sd_kwargs[key])
|
||||
|
||||
# TODO: move these checks into the UI code so we don't have gradio warnings in a generalized dict input function.
|
||||
if not sd_kwargs["device"]:
|
||||
gr.Warning("No device specified. Please specify a device.")
|
||||
return None, ""
|
||||
if sd_kwargs["height"] not in [512, 1024]:
|
||||
gr.Warning("Height must be 512 or 1024. This is a temporary limitation.")
|
||||
return None, ""
|
||||
if sd_kwargs["height"] != sd_kwargs["width"]:
|
||||
gr.Warning("Height and width must be the same. This is a temporary limitation.")
|
||||
return None, ""
|
||||
if sd_kwargs["base_model_id"] == "stabilityai/sdxl-turbo":
|
||||
if sd_kwargs["steps"] > 10:
|
||||
gr.Warning("Max steps for sdxl-turbo is 10. 1 to 4 steps are recommended.")
|
||||
return None, ""
|
||||
if sd_kwargs["guidance_scale"] > 3:
|
||||
gr.Warning(
|
||||
"sdxl-turbo CFG scale should be less than 2.0 if using negative prompt, 0 otherwise."
|
||||
)
|
||||
return None, ""
|
||||
if sd_kwargs["target_triple"] == "":
|
||||
if parse_device(sd_kwargs["device"], sd_kwargs["target_triple"])[2] == "":
|
||||
gr.Warning(
|
||||
"Target device architecture could not be inferred. Please specify a target triple, e.g. 'gfx1100' for a Radeon 7900xtx."
|
||||
)
|
||||
return None, ""
|
||||
|
||||
generated_imgs = yield from shark_sd_fn(**sd_kwargs)
|
||||
return generated_imgs
|
||||
|
||||
|
||||
def shark_sd_fn(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
sd_init_image: list,
|
||||
height: int,
|
||||
width: int,
|
||||
steps: int,
|
||||
strength: float,
|
||||
guidance_scale: float,
|
||||
seed: list,
|
||||
batch_count: int,
|
||||
batch_size: int,
|
||||
scheduler: str,
|
||||
base_model_id: str,
|
||||
custom_weights: str,
|
||||
custom_vae: str,
|
||||
precision: str,
|
||||
device: str,
|
||||
target_triple: str,
|
||||
ondemand: bool,
|
||||
compiled_pipeline: bool,
|
||||
resample_type: str,
|
||||
controlnets: dict,
|
||||
embeddings: dict,
|
||||
):
|
||||
sd_kwargs = locals()
|
||||
if not isinstance(sd_init_image, list):
|
||||
sd_init_image = [sd_init_image]
|
||||
is_img2img = True if sd_init_image[0] is not None else False
|
||||
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
import apps.shark_studio.web.utils.globals as global_obj
|
||||
|
||||
adapters = {}
|
||||
is_controlled = False
|
||||
control_mode = None
|
||||
hints = []
|
||||
num_loras = 0
|
||||
import_ir = True
|
||||
for i in embeddings:
|
||||
num_loras += 1 if embeddings[i] else 0
|
||||
if "model" in controlnets:
|
||||
for i, model in enumerate(controlnets["model"]):
|
||||
if "xl" not in base_model_id.lower():
|
||||
adapters[f"control_adapter_{model}"] = {
|
||||
"hf_id": control_adapter_map["runwayml/stable-diffusion-v1-5"][
|
||||
model
|
||||
],
|
||||
"strength": controlnets["strength"][i],
|
||||
}
|
||||
else:
|
||||
adapters[f"control_adapter_{model}"] = {
|
||||
"hf_id": control_adapter_map["stabilityai/stable-diffusion-xl-1.0"][
|
||||
model
|
||||
],
|
||||
"strength": controlnets["strength"][i],
|
||||
}
|
||||
if model is not None:
|
||||
is_controlled = True
|
||||
control_mode = controlnets["control_mode"]
|
||||
for i in controlnets["hint"]:
|
||||
hints.append[i]
|
||||
|
||||
submit_pipe_kwargs = {
|
||||
"base_model_id": base_model_id,
|
||||
"height": height,
|
||||
"width": width,
|
||||
"batch_size": batch_size,
|
||||
"precision": precision,
|
||||
"device": device,
|
||||
"target_triple": target_triple,
|
||||
"custom_vae": custom_vae,
|
||||
"num_loras": num_loras,
|
||||
"import_ir": import_ir,
|
||||
"is_controlled": is_controlled,
|
||||
"steps": steps,
|
||||
"scheduler": scheduler,
|
||||
}
|
||||
submit_prep_kwargs = {
|
||||
"custom_weights": custom_weights,
|
||||
"adapters": adapters,
|
||||
"embeddings": embeddings,
|
||||
"is_img2img": is_img2img,
|
||||
"compiled_pipeline": compiled_pipeline,
|
||||
}
|
||||
submit_run_kwargs = {
|
||||
"prompt": prompt,
|
||||
"negative_prompt": negative_prompt,
|
||||
"image": sd_init_image,
|
||||
"strength": strength,
|
||||
"guidance_scale": guidance_scale,
|
||||
"seed": seed,
|
||||
"ondemand": ondemand,
|
||||
"resample_type": resample_type,
|
||||
"control_mode": control_mode,
|
||||
"hints": hints,
|
||||
}
|
||||
if (
|
||||
not global_obj.get_sd_obj()
|
||||
or global_obj.get_pipe_kwargs() != submit_pipe_kwargs
|
||||
):
|
||||
print("\n[LOG] Initializing new pipeline...")
|
||||
global_obj.clear_cache()
|
||||
gc.collect()
|
||||
|
||||
# Initializes the pipeline and retrieves IR based on all
|
||||
# parameters that are static in the turbine output format,
|
||||
# which is currently MLIR in the torch dialect.
|
||||
|
||||
sd_pipe = StableDiffusion(
|
||||
**submit_pipe_kwargs,
|
||||
)
|
||||
global_obj.set_sd_obj(sd_pipe)
|
||||
global_obj.set_pipe_kwargs(submit_pipe_kwargs)
|
||||
if (
|
||||
not global_obj.get_prep_kwargs()
|
||||
or global_obj.get_prep_kwargs() != submit_prep_kwargs
|
||||
):
|
||||
global_obj.set_prep_kwargs(submit_prep_kwargs)
|
||||
global_obj.get_sd_obj().prepare_pipe(**submit_prep_kwargs)
|
||||
|
||||
generated_imgs = []
|
||||
for current_batch in range(batch_count):
|
||||
start_time = time.time()
|
||||
out_imgs = global_obj.get_sd_obj().generate_images(**submit_run_kwargs)
|
||||
if not isinstance(out_imgs, list):
|
||||
out_imgs = [out_imgs]
|
||||
# total_time = time.time() - start_time
|
||||
# text_output = f"Total image(s) generation time: {total_time:.4f}sec"
|
||||
# print(f"\n[LOG] {text_output}")
|
||||
# if global_obj.get_sd_status() == SD_STATE_CANCEL:
|
||||
# break
|
||||
# else:
|
||||
for batch in range(batch_size):
|
||||
save_output_img(
|
||||
out_imgs[batch],
|
||||
seed,
|
||||
sd_kwargs,
|
||||
)
|
||||
generated_imgs.extend(out_imgs)
|
||||
# TODO: make seed changes over batch counts more configurable.
|
||||
submit_run_kwargs["seed"] = submit_run_kwargs["seed"] + 1
|
||||
yield generated_imgs, status_label(
|
||||
"Stable Diffusion", current_batch + 1, batch_count, batch_size
|
||||
)
|
||||
return (generated_imgs, "")
|
||||
|
||||
|
||||
def unload_sd():
|
||||
print("Unloading models.")
|
||||
import apps.shark_studio.web.utils.globals as global_obj
|
||||
|
||||
global_obj.clear_cache()
|
||||
gc.collect()
|
||||
|
||||
|
||||
def cancel_sd():
|
||||
print("Inject call to cancel longer API calls.")
|
||||
return
|
||||
|
||||
|
||||
def view_json_file(file_path):
|
||||
content = ""
|
||||
with open(file_path, "r") as fopen:
|
||||
content = fopen.read()
|
||||
return content
|
||||
|
||||
|
||||
def safe_name(name):
|
||||
return name.replace("/", "_").replace("\\", "_").replace(".", "_")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
import apps.shark_studio.web.utils.globals as global_obj
|
||||
|
||||
global_obj._init()
|
||||
|
||||
sd_json = view_json_file(
|
||||
get_resource_path(os.path.join(cmd_opts.config_dir, "default_sd_config.json"))
|
||||
)
|
||||
sd_kwargs = json.loads(sd_json)
|
||||
for arg in vars(cmd_opts):
|
||||
if arg in sd_kwargs:
|
||||
sd_kwargs[arg] = getattr(cmd_opts, arg)
|
||||
for i in shark_sd_fn_dict_input(sd_kwargs):
|
||||
print(i)
|
||||
389
apps/shark_studio/api/utils.py
Normal file
389
apps/shark_studio/api/utils.py
Normal file
@@ -0,0 +1,389 @@
|
||||
import numpy as np
|
||||
import json
|
||||
from random import (
|
||||
randint,
|
||||
seed as seed_random,
|
||||
getstate as random_getstate,
|
||||
setstate as random_setstate,
|
||||
)
|
||||
|
||||
from pathlib import Path
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
from cpuinfo import get_cpu_info
|
||||
|
||||
# TODO: migrate these utils to studio
|
||||
from shark.iree_utils.vulkan_utils import (
|
||||
set_iree_vulkan_runtime_flags,
|
||||
get_vulkan_target_triple,
|
||||
get_iree_vulkan_runtime_flags,
|
||||
)
|
||||
|
||||
|
||||
def get_available_devices():
|
||||
def get_devices_by_name(driver_name):
|
||||
from shark.iree_utils._common import iree_device_map
|
||||
|
||||
device_list = []
|
||||
try:
|
||||
driver_name = iree_device_map(driver_name)
|
||||
device_list_dict = get_all_devices(driver_name)
|
||||
print(f"{driver_name} devices are available.")
|
||||
except:
|
||||
print(f"{driver_name} devices are not available.")
|
||||
else:
|
||||
cpu_name = get_cpu_info()["brand_raw"]
|
||||
for i, device in enumerate(device_list_dict):
|
||||
device_name = (
|
||||
cpu_name if device["name"] == "default" else device["name"]
|
||||
)
|
||||
if "local" in driver_name:
|
||||
device_list.append(
|
||||
f"{device_name} => {driver_name.replace('local', 'cpu')}"
|
||||
)
|
||||
else:
|
||||
# for drivers with single devices
|
||||
# let the default device be selected without any indexing
|
||||
if len(device_list_dict) == 1:
|
||||
device_list.append(f"{device_name} => {driver_name}")
|
||||
else:
|
||||
device_list.append(f"{device_name} => {driver_name}://{i}")
|
||||
return device_list
|
||||
|
||||
set_iree_runtime_flags()
|
||||
|
||||
available_devices = []
|
||||
rocm_devices = get_devices_by_name("rocm")
|
||||
available_devices.extend(rocm_devices)
|
||||
cpu_device = get_devices_by_name("cpu-sync")
|
||||
available_devices.extend(cpu_device)
|
||||
cpu_device = get_devices_by_name("cpu-task")
|
||||
available_devices.extend(cpu_device)
|
||||
|
||||
from shark.iree_utils.vulkan_utils import (
|
||||
get_all_vulkan_devices,
|
||||
)
|
||||
|
||||
vulkaninfo_list = get_all_vulkan_devices()
|
||||
vulkan_devices = []
|
||||
id = 0
|
||||
for device in vulkaninfo_list:
|
||||
vulkan_devices.append(f"{device.strip()} => vulkan://{id}")
|
||||
id += 1
|
||||
if id != 0:
|
||||
print(f"vulkan devices are available.")
|
||||
|
||||
available_devices.extend(vulkan_devices)
|
||||
metal_devices = get_devices_by_name("metal")
|
||||
available_devices.extend(metal_devices)
|
||||
cuda_devices = get_devices_by_name("cuda")
|
||||
available_devices.extend(cuda_devices)
|
||||
hip_devices = get_devices_by_name("hip")
|
||||
available_devices.extend(hip_devices)
|
||||
|
||||
for idx, device_str in enumerate(available_devices):
|
||||
if "AMD Radeon(TM) Graphics =>" in device_str:
|
||||
igpu_id_candidates = [
|
||||
x.split("w/")[-1].split("=>")[0]
|
||||
for x in available_devices
|
||||
if "M Graphics" in x
|
||||
]
|
||||
for igpu_name in igpu_id_candidates:
|
||||
if igpu_name:
|
||||
available_devices[idx] = device_str.replace(
|
||||
"AMD Radeon(TM) Graphics", igpu_name
|
||||
)
|
||||
break
|
||||
return available_devices
|
||||
|
||||
|
||||
def set_init_device_flags():
|
||||
if "vulkan" in cmd_opts.device:
|
||||
# set runtime flags for vulkan.
|
||||
set_iree_runtime_flags()
|
||||
|
||||
# set triple flag to avoid multiple calls to get_vulkan_triple_flag
|
||||
device_name, cmd_opts.device = map_device_to_name_path(cmd_opts.device)
|
||||
if not cmd_opts.iree_vulkan_target_triple:
|
||||
triple = get_vulkan_target_triple(device_name)
|
||||
if triple is not None:
|
||||
cmd_opts.iree_vulkan_target_triple = triple
|
||||
print(
|
||||
f"Found device {device_name}. Using target triple "
|
||||
f"{cmd_opts.iree_vulkan_target_triple}."
|
||||
)
|
||||
elif "cuda" in cmd_opts.device:
|
||||
cmd_opts.device = "cuda"
|
||||
elif "metal" in cmd_opts.device:
|
||||
device_name, cmd_opts.device = map_device_to_name_path(cmd_opts.device)
|
||||
if not cmd_opts.iree_metal_target_platform:
|
||||
from shark.iree_utils.metal_utils import get_metal_target_triple
|
||||
|
||||
triple = get_metal_target_triple(device_name)
|
||||
if triple is not None:
|
||||
cmd_opts.iree_metal_target_platform = triple.split("-")[-1]
|
||||
print(
|
||||
f"Found device {device_name}. Using target triple "
|
||||
f"{cmd_opts.iree_metal_target_platform}."
|
||||
)
|
||||
elif "cpu" in cmd_opts.device:
|
||||
cmd_opts.device = "cpu"
|
||||
|
||||
|
||||
def set_iree_runtime_flags():
|
||||
# TODO: This function should be device-agnostic and piped properly
|
||||
# to general runtime driver init.
|
||||
vulkan_runtime_flags = get_iree_vulkan_runtime_flags()
|
||||
if cmd_opts.enable_rgp:
|
||||
vulkan_runtime_flags += [
|
||||
f"--enable_rgp=true",
|
||||
f"--vulkan_debug_utils=true",
|
||||
]
|
||||
if cmd_opts.device_allocator_heap_key:
|
||||
vulkan_runtime_flags += [
|
||||
f"--device_allocator=caching:device_local={cmd_opts.device_allocator_heap_key}",
|
||||
]
|
||||
set_iree_vulkan_runtime_flags(flags=vulkan_runtime_flags)
|
||||
|
||||
|
||||
def parse_device(device_str, target_override=""):
|
||||
from shark.iree_utils.compile_utils import (
|
||||
clean_device_info,
|
||||
get_iree_target_triple,
|
||||
iree_target_map,
|
||||
)
|
||||
|
||||
rt_driver, device_id = clean_device_info(device_str)
|
||||
target_backend = iree_target_map(rt_driver)
|
||||
if device_id:
|
||||
rt_device = f"{rt_driver}://{device_id}"
|
||||
else:
|
||||
rt_device = rt_driver
|
||||
|
||||
if target_override:
|
||||
return target_backend, rt_device, target_override
|
||||
match target_backend:
|
||||
case "vulkan-spirv":
|
||||
triple = get_iree_target_triple(device_str)
|
||||
return target_backend, rt_device, triple
|
||||
case "rocm":
|
||||
triple = get_rocm_target_chip(device_str)
|
||||
return target_backend, rt_device, triple
|
||||
case "llvm-cpu":
|
||||
return "llvm-cpu", "local-task", "x86_64-linux-gnu"
|
||||
|
||||
|
||||
def get_rocm_target_chip(device_str):
|
||||
# TODO: Use a data file to map device_str to target chip.
|
||||
rocm_chip_map = {
|
||||
"6700": "gfx1031",
|
||||
"6800": "gfx1030",
|
||||
"6900": "gfx1030",
|
||||
"7900": "gfx1100",
|
||||
"MI300X": "gfx942",
|
||||
"MI300A": "gfx940",
|
||||
"MI210": "gfx90a",
|
||||
"MI250": "gfx90a",
|
||||
"MI100": "gfx908",
|
||||
"MI50": "gfx906",
|
||||
"MI60": "gfx906",
|
||||
"780M": "gfx1103",
|
||||
}
|
||||
for key in rocm_chip_map:
|
||||
if key in device_str:
|
||||
return rocm_chip_map[key]
|
||||
raise AssertionError(
|
||||
f"Device {device_str} not recognized. Please file an issue at https://github.com/nod-ai/SHARK/issues."
|
||||
)
|
||||
|
||||
|
||||
def get_all_devices(driver_name):
|
||||
"""
|
||||
Inputs: driver_name
|
||||
Returns a list of all the available devices for a given driver sorted by
|
||||
the iree path names of the device as in --list_devices option in iree.
|
||||
"""
|
||||
from iree.runtime import get_driver
|
||||
|
||||
driver = get_driver(driver_name)
|
||||
device_list_src = driver.query_available_devices()
|
||||
device_list_src.sort(key=lambda d: d["path"])
|
||||
return device_list_src
|
||||
|
||||
|
||||
def get_device_mapping(driver, key_combination=3):
|
||||
"""This method ensures consistent device ordering when choosing
|
||||
specific devices for execution
|
||||
Args:
|
||||
driver (str): execution driver (vulkan, cuda, rocm, etc)
|
||||
key_combination (int, optional): choice for mapping value for
|
||||
device name.
|
||||
1 : path
|
||||
2 : name
|
||||
3 : (name, path)
|
||||
Defaults to 3.
|
||||
Returns:
|
||||
dict: map to possible device names user can input mapped to desired
|
||||
combination of name/path.
|
||||
"""
|
||||
from shark.iree_utils._common import iree_device_map
|
||||
|
||||
driver = iree_device_map(driver)
|
||||
device_list = get_all_devices(driver)
|
||||
device_map = dict()
|
||||
|
||||
def get_output_value(dev_dict):
|
||||
if key_combination == 1:
|
||||
return f"{driver}://{dev_dict['path']}"
|
||||
if key_combination == 2:
|
||||
return dev_dict["name"]
|
||||
if key_combination == 3:
|
||||
return dev_dict["name"], f"{driver}://{dev_dict['path']}"
|
||||
|
||||
# mapping driver name to default device (driver://0)
|
||||
device_map[f"{driver}"] = get_output_value(device_list[0])
|
||||
for i, device in enumerate(device_list):
|
||||
# mapping with index
|
||||
device_map[f"{driver}://{i}"] = get_output_value(device)
|
||||
# mapping with full path
|
||||
device_map[f"{driver}://{device['path']}"] = get_output_value(device)
|
||||
return device_map
|
||||
|
||||
|
||||
def get_opt_flags(model, precision="fp16"):
|
||||
iree_flags = []
|
||||
if len(cmd_opts.iree_vulkan_target_triple) > 0:
|
||||
iree_flags.append(
|
||||
f"-iree-vulkan-target-triple={cmd_opts.iree_vulkan_target_triple}"
|
||||
)
|
||||
if "rocm" in cmd_opts.device:
|
||||
from shark.iree_utils.gpu_utils import get_iree_rocm_args
|
||||
|
||||
rocm_args = get_iree_rocm_args()
|
||||
iree_flags.extend(rocm_args)
|
||||
if cmd_opts.iree_constant_folding == False:
|
||||
iree_flags.append("--iree-opt-const-expr-hoisting=False")
|
||||
iree_flags.append(
|
||||
"--iree-codegen-linalg-max-constant-fold-elements=9223372036854775807"
|
||||
)
|
||||
if cmd_opts.data_tiling == False:
|
||||
iree_flags.append("--iree-opt-data-tiling=False")
|
||||
|
||||
if "vae" not in model:
|
||||
# Due to lack of support for multi-reduce, we always collapse reduction
|
||||
# dims before dispatch formation right now.
|
||||
iree_flags += ["--iree-flow-collapse-reduction-dims"]
|
||||
return iree_flags
|
||||
|
||||
|
||||
def map_device_to_name_path(device, key_combination=3):
|
||||
"""Gives the appropriate device data (supported name/path) for user
|
||||
selected execution device
|
||||
Args:
|
||||
device (str): user
|
||||
key_combination (int, optional): choice for mapping value for
|
||||
device name.
|
||||
1 : path
|
||||
2 : name
|
||||
3 : (name, path)
|
||||
Defaults to 3.
|
||||
Raises:
|
||||
ValueError:
|
||||
Returns:
|
||||
str / tuple: returns the mapping str or tuple of mapping str for
|
||||
the device depending on key_combination value
|
||||
"""
|
||||
driver = device.split("://")[0]
|
||||
device_map = get_device_mapping(driver, key_combination)
|
||||
try:
|
||||
device_mapping = device_map[device]
|
||||
except KeyError:
|
||||
raise ValueError(f"Device '{device}' is not a valid device.")
|
||||
return device_mapping
|
||||
|
||||
def get_devices_by_name(driver_name):
|
||||
from shark.iree_utils._common import iree_device_map
|
||||
|
||||
device_list = []
|
||||
try:
|
||||
driver_name = iree_device_map(driver_name)
|
||||
device_list_dict = get_all_devices(driver_name)
|
||||
print(f"{driver_name} devices are available.")
|
||||
except:
|
||||
print(f"{driver_name} devices are not available.")
|
||||
else:
|
||||
cpu_name = get_cpu_info()["brand_raw"]
|
||||
for i, device in enumerate(device_list_dict):
|
||||
device_name = (
|
||||
cpu_name if device["name"] == "default" else device["name"]
|
||||
)
|
||||
if "local" in driver_name:
|
||||
device_list.append(
|
||||
f"{device_name} => {driver_name.replace('local', 'cpu')}"
|
||||
)
|
||||
else:
|
||||
# for drivers with single devices
|
||||
# let the default device be selected without any indexing
|
||||
if len(device_list_dict) == 1:
|
||||
device_list.append(f"{device_name} => {driver_name}")
|
||||
else:
|
||||
device_list.append(f"{device_name} => {driver_name}://{i}")
|
||||
return device_list
|
||||
|
||||
set_iree_runtime_flags()
|
||||
|
||||
available_devices = []
|
||||
from shark.iree_utils.vulkan_utils import (
|
||||
get_all_vulkan_devices,
|
||||
)
|
||||
|
||||
vulkaninfo_list = get_all_vulkan_devices()
|
||||
vulkan_devices = []
|
||||
id = 0
|
||||
for device in vulkaninfo_list:
|
||||
vulkan_devices.append(f"{device.strip()} => vulkan://{id}")
|
||||
id += 1
|
||||
if id != 0:
|
||||
print(f"vulkan devices are available.")
|
||||
available_devices.extend(vulkan_devices)
|
||||
metal_devices = get_devices_by_name("metal")
|
||||
available_devices.extend(metal_devices)
|
||||
cuda_devices = get_devices_by_name("cuda")
|
||||
available_devices.extend(cuda_devices)
|
||||
rocm_devices = get_devices_by_name("rocm")
|
||||
available_devices.extend(rocm_devices)
|
||||
cpu_device = get_devices_by_name("cpu-sync")
|
||||
available_devices.extend(cpu_device)
|
||||
cpu_device = get_devices_by_name("cpu-task")
|
||||
available_devices.extend(cpu_device)
|
||||
return available_devices
|
||||
|
||||
|
||||
# Generate and return a new seed if the provided one is not in the
|
||||
# supported range (including -1)
|
||||
def sanitize_seed(seed: int | str):
|
||||
seed = int(seed)
|
||||
uint32_info = np.iinfo(np.uint32)
|
||||
uint32_min, uint32_max = uint32_info.min, uint32_info.max
|
||||
if seed < uint32_min or seed >= uint32_max:
|
||||
seed = randint(uint32_min, uint32_max)
|
||||
return seed
|
||||
|
||||
|
||||
# take a seed expression in an input format and convert it to
|
||||
# a list of integers, where possible
|
||||
def parse_seed_input(seed_input: str | list | int):
|
||||
if isinstance(seed_input, str):
|
||||
try:
|
||||
seed_input = json.loads(seed_input)
|
||||
except (ValueError, TypeError):
|
||||
seed_input = None
|
||||
|
||||
if isinstance(seed_input, int):
|
||||
return [seed_input]
|
||||
|
||||
if isinstance(seed_input, list) and all(type(seed) is int for seed in seed_input):
|
||||
return seed_input
|
||||
|
||||
raise TypeError(
|
||||
"Seed input must be an integer or an array of integers in JSON format"
|
||||
)
|
||||
145
apps/shark_studio/modules/ckpt_processing.py
Normal file
145
apps/shark_studio/modules/ckpt_processing.py
Normal file
@@ -0,0 +1,145 @@
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
import requests
|
||||
import torch
|
||||
import safetensors
|
||||
from shark_turbine.aot.params import (
|
||||
ParameterArchiveBuilder,
|
||||
)
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from omegaconf import OmegaConf
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
||||
download_from_original_stable_diffusion_ckpt,
|
||||
create_vae_diffusers_config,
|
||||
convert_ldm_vae_checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def get_path_to_diffusers_checkpoint(custom_weights, precision="fp16"):
|
||||
path = Path(custom_weights)
|
||||
diffusers_path = path.parent.absolute()
|
||||
diffusers_directory_name = os.path.join("diffusers", path.stem + f"_{precision}")
|
||||
complete_path_to_diffusers = diffusers_path / diffusers_directory_name
|
||||
complete_path_to_diffusers.mkdir(parents=True, exist_ok=True)
|
||||
path_to_diffusers = complete_path_to_diffusers.as_posix()
|
||||
return path_to_diffusers
|
||||
|
||||
|
||||
def preprocessCKPT(custom_weights, precision="fp16", is_inpaint=False):
|
||||
path_to_diffusers = get_path_to_diffusers_checkpoint(custom_weights, precision)
|
||||
if next(Path(path_to_diffusers).iterdir(), None):
|
||||
print("Checkpoint already loaded at : ", path_to_diffusers)
|
||||
return path_to_diffusers
|
||||
else:
|
||||
print(
|
||||
"Diffusers' checkpoint will be identified here : ",
|
||||
path_to_diffusers,
|
||||
)
|
||||
from_safetensors = (
|
||||
True if custom_weights.lower().endswith(".safetensors") else False
|
||||
)
|
||||
# EMA weights usually yield higher quality images for inference but
|
||||
# non-EMA weights have been yielding better results in our case.
|
||||
# TODO: Add an option `--ema` (`--no-ema`) for users to specify if
|
||||
# they want to go for EMA weight extraction or not.
|
||||
extract_ema = False
|
||||
print("Loading diffusers' pipeline from original stable diffusion checkpoint")
|
||||
num_in_channels = 9 if is_inpaint else 4
|
||||
pipe = download_from_original_stable_diffusion_ckpt(
|
||||
checkpoint_path_or_dict=custom_weights,
|
||||
extract_ema=extract_ema,
|
||||
from_safetensors=from_safetensors,
|
||||
num_in_channels=num_in_channels,
|
||||
)
|
||||
if precision == "fp16":
|
||||
pipe.to(dtype=torch.float16)
|
||||
pipe.save_pretrained(path_to_diffusers)
|
||||
del pipe
|
||||
print("Loading complete")
|
||||
return path_to_diffusers
|
||||
|
||||
|
||||
def save_irpa(weights_path, prepend_str):
|
||||
weights = safetensors.torch.load_file(weights_path)
|
||||
archive = ParameterArchiveBuilder()
|
||||
for key in weights.keys():
|
||||
new_key = prepend_str + key
|
||||
archive.add_tensor(new_key, weights[key])
|
||||
|
||||
irpa_file = weights_path.replace(".safetensors", ".irpa")
|
||||
archive.save(irpa_file)
|
||||
return irpa_file
|
||||
|
||||
|
||||
def convert_original_vae(vae_checkpoint):
|
||||
vae_state_dict = {}
|
||||
for key in list(vae_checkpoint.keys()):
|
||||
vae_state_dict["first_stage_model." + key] = vae_checkpoint.get(key)
|
||||
|
||||
config_url = (
|
||||
"https://raw.githubusercontent.com/CompVis/stable-diffusion/"
|
||||
"main/configs/stable-diffusion/v1-inference.yaml"
|
||||
)
|
||||
original_config_file = BytesIO(requests.get(config_url).content)
|
||||
original_config = OmegaConf.load(original_config_file)
|
||||
vae_config = create_vae_diffusers_config(original_config, image_size=512)
|
||||
|
||||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(vae_state_dict, vae_config)
|
||||
return converted_vae_checkpoint
|
||||
|
||||
|
||||
def process_custom_pipe_weights(custom_weights):
|
||||
if custom_weights != "":
|
||||
if custom_weights.startswith("https://civitai.com/api/"):
|
||||
# download the checkpoint from civitai if we don't already have it
|
||||
weights_path = get_civitai_checkpoint(custom_weights)
|
||||
|
||||
# act as if we were given the local file as custom_weights originally
|
||||
custom_weights_tgt = get_path_to_diffusers_checkpoint(weights_path)
|
||||
custom_weights_params = weights_path
|
||||
|
||||
else:
|
||||
assert custom_weights.lower().endswith(
|
||||
(".ckpt", ".safetensors")
|
||||
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
|
||||
custom_weights_tgt = get_path_to_diffusers_checkpoint(custom_weights)
|
||||
custom_weights_params = custom_weights
|
||||
|
||||
return custom_weights_params, custom_weights_tgt
|
||||
|
||||
|
||||
def get_civitai_checkpoint(url: str):
|
||||
with requests.get(url, allow_redirects=True, stream=True) as response:
|
||||
response.raise_for_status()
|
||||
|
||||
# civitai api returns the filename in the content disposition
|
||||
base_filename = re.findall(
|
||||
'"([^"]*)"', response.headers["Content-Disposition"]
|
||||
)[0]
|
||||
destination_path = Path.cwd() / (cmd_opts.model_dir or "models") / base_filename
|
||||
|
||||
# we don't have this model downloaded yet
|
||||
if not destination_path.is_file():
|
||||
print(f"downloading civitai model from {url} to {destination_path}")
|
||||
|
||||
size = int(response.headers["content-length"], 0)
|
||||
progress_bar = tqdm(total=size, unit="iB", unit_scale=True)
|
||||
|
||||
with open(destination_path, "wb") as f:
|
||||
for chunk in response.iter_content(chunk_size=65536):
|
||||
f.write(chunk)
|
||||
progress_bar.update(len(chunk))
|
||||
|
||||
progress_bar.close()
|
||||
|
||||
# we already have this model downloaded
|
||||
else:
|
||||
print(f"civitai model already downloaded to {destination_path}")
|
||||
|
||||
response.close()
|
||||
return destination_path.as_posix()
|
||||
185
apps/shark_studio/modules/embeddings.py
Normal file
185
apps/shark_studio/modules/embeddings.py
Normal file
@@ -0,0 +1,185 @@
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import json
|
||||
import safetensors
|
||||
from dataclasses import dataclass
|
||||
from safetensors.torch import load_file
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
get_checkpoint_pathfile,
|
||||
get_path_stem,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoRAweight:
|
||||
up: torch.tensor
|
||||
down: torch.tensor
|
||||
mid: torch.tensor
|
||||
alpha: torch.float32 = 1.0
|
||||
|
||||
|
||||
def processLoRA(model, use_lora, splitting_prefix, lora_strength=0.75):
|
||||
state_dict = ""
|
||||
if ".safetensors" in use_lora:
|
||||
state_dict = load_file(use_lora)
|
||||
else:
|
||||
state_dict = torch.load(use_lora)
|
||||
|
||||
# gather the weights from the LoRA in a more convenient form, assumes
|
||||
# everything will have an up.weight.
|
||||
weight_dict: dict[str, LoRAweight] = {}
|
||||
for key in state_dict:
|
||||
if key.startswith(splitting_prefix) and key.endswith("up.weight"):
|
||||
stem = key.split("up.weight")[0]
|
||||
weight_key = stem.removesuffix(".lora_")
|
||||
weight_key = weight_key.removesuffix("_lora_")
|
||||
weight_key = weight_key.removesuffix(".lora_linear_layer.")
|
||||
|
||||
if weight_key not in weight_dict:
|
||||
weight_dict[weight_key] = LoRAweight(
|
||||
state_dict[f"{stem}up.weight"],
|
||||
state_dict[f"{stem}down.weight"],
|
||||
state_dict.get(f"{stem}mid.weight", None),
|
||||
(
|
||||
state_dict[f"{weight_key}.alpha"]
|
||||
/ state_dict[f"{stem}up.weight"].shape[1]
|
||||
if f"{weight_key}.alpha" in state_dict
|
||||
else 1.0
|
||||
),
|
||||
)
|
||||
|
||||
# Directly update weight in model
|
||||
|
||||
# Mostly adaptions of https://github.com/kohya-ss/sd-scripts/blob/main/networks/merge_lora.py
|
||||
# and similar code in https://github.com/huggingface/diffusers/issues/3064
|
||||
|
||||
# TODO: handle mid weights (how do they even work?)
|
||||
for key, lora_weight in weight_dict.items():
|
||||
curr_layer = model
|
||||
layer_infos = key.split(".")[0].split(splitting_prefix)[-1].split("_")
|
||||
|
||||
# find the target layer
|
||||
temp_name = layer_infos.pop(0)
|
||||
while len(layer_infos) > -1:
|
||||
try:
|
||||
curr_layer = curr_layer.__getattr__(temp_name)
|
||||
if len(layer_infos) > 0:
|
||||
temp_name = layer_infos.pop(0)
|
||||
elif len(layer_infos) == 0:
|
||||
break
|
||||
except Exception:
|
||||
if len(temp_name) > 0:
|
||||
temp_name += "_" + layer_infos.pop(0)
|
||||
else:
|
||||
temp_name = layer_infos.pop(0)
|
||||
|
||||
weight = curr_layer.weight.data
|
||||
scale = lora_weight.alpha * lora_strength
|
||||
if len(weight.size()) == 2:
|
||||
if len(lora_weight.up.shape) == 4:
|
||||
weight_up = lora_weight.up.squeeze(3).squeeze(2).to(torch.float32)
|
||||
weight_down = lora_weight.down.squeeze(3).squeeze(2).to(torch.float32)
|
||||
change = torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
||||
else:
|
||||
change = torch.mm(lora_weight.up, lora_weight.down)
|
||||
elif lora_weight.down.size()[2:4] == (1, 1):
|
||||
weight_up = lora_weight.up.squeeze(3).squeeze(2).to(torch.float32)
|
||||
weight_down = lora_weight.down.squeeze(3).squeeze(2).to(torch.float32)
|
||||
change = torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
||||
else:
|
||||
change = torch.nn.functional.conv2d(
|
||||
lora_weight.down.permute(1, 0, 2, 3),
|
||||
lora_weight.up,
|
||||
).permute(1, 0, 2, 3)
|
||||
|
||||
curr_layer.weight.data += change * scale
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def update_lora_weight_for_unet(unet, use_lora, lora_strength):
|
||||
extensions = [".bin", ".safetensors", ".pt"]
|
||||
if not any([extension in use_lora for extension in extensions]):
|
||||
# We assume if it is a HF ID with standalone LoRA weights.
|
||||
unet.load_attn_procs(use_lora)
|
||||
return unet
|
||||
|
||||
main_file_name = get_path_stem(use_lora)
|
||||
if ".bin" in use_lora:
|
||||
main_file_name += ".bin"
|
||||
elif ".safetensors" in use_lora:
|
||||
main_file_name += ".safetensors"
|
||||
elif ".pt" in use_lora:
|
||||
main_file_name += ".pt"
|
||||
else:
|
||||
sys.exit("Only .bin and .safetensors format for LoRA is supported")
|
||||
|
||||
try:
|
||||
dir_name = os.path.dirname(use_lora)
|
||||
unet.load_attn_procs(dir_name, weight_name=main_file_name)
|
||||
return unet
|
||||
except:
|
||||
return processLoRA(unet, use_lora, "lora_unet_", lora_strength)
|
||||
|
||||
|
||||
def update_lora_weight(model, use_lora, model_name, lora_strength=1.0):
|
||||
if "unet" in model_name:
|
||||
return update_lora_weight_for_unet(model, use_lora, lora_strength)
|
||||
try:
|
||||
return processLoRA(model, use_lora, "lora_te_", lora_strength)
|
||||
except:
|
||||
return None
|
||||
|
||||
|
||||
def get_lora_metadata(lora_filename):
|
||||
# get the metadata from the file
|
||||
filename = get_checkpoint_pathfile(lora_filename, "lora")
|
||||
with safetensors.safe_open(filename, framework="pt", device="cpu") as f:
|
||||
metadata = f.metadata()
|
||||
|
||||
# guard clause for if there isn't any metadata
|
||||
if not metadata:
|
||||
return None
|
||||
|
||||
# metadata is a dictionary of strings, the values of the keys we're
|
||||
# interested in are actually json, and need to be loaded as such
|
||||
tag_frequencies = json.loads(metadata.get("ss_tag_frequency", str("{}")))
|
||||
dataset_dirs = json.loads(metadata.get("ss_dataset_dirs", str("{}")))
|
||||
tag_dirs = [dir for dir in tag_frequencies.keys()]
|
||||
|
||||
# gather the tag frequency information for all the datasets trained
|
||||
all_frequencies = {}
|
||||
for dataset in tag_dirs:
|
||||
frequencies = sorted(
|
||||
[entry for entry in tag_frequencies[dataset].items()],
|
||||
reverse=True,
|
||||
key=lambda x: x[1],
|
||||
)
|
||||
|
||||
# get a figure for the total number of images processed for this dataset
|
||||
# either then number actually listed or in its dataset_dir entry or
|
||||
# the highest frequency's number if that doesn't exist
|
||||
img_count = dataset_dirs.get(dir, {}).get("img_count", frequencies[0][1])
|
||||
|
||||
# add the dataset frequencies to the overall frequencies replacing the
|
||||
# frequency counts on the tags with a percentage/ratio
|
||||
all_frequencies.update(
|
||||
[(entry[0], entry[1] / img_count) for entry in frequencies]
|
||||
)
|
||||
|
||||
trained_model_id = " ".join(
|
||||
[
|
||||
metadata.get("ss_sd_model_hash", ""),
|
||||
metadata.get("ss_sd_model_name", ""),
|
||||
metadata.get("ss_base_model_version", ""),
|
||||
]
|
||||
).strip()
|
||||
|
||||
# return the topmost <count> of all frequencies in all datasets
|
||||
return {
|
||||
"model": trained_model_id,
|
||||
"frequencies": sorted(
|
||||
all_frequencies.items(), reverse=True, key=lambda x: x[1]
|
||||
),
|
||||
}
|
||||
202
apps/shark_studio/modules/img_processing.py
Normal file
202
apps/shark_studio/modules/img_processing.py
Normal file
@@ -0,0 +1,202 @@
|
||||
import os
|
||||
import re
|
||||
import json
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from csv import DictWriter
|
||||
from PIL import Image, PngImagePlugin
|
||||
from pathlib import Path
|
||||
from datetime import datetime as dt
|
||||
from base64 import decode
|
||||
|
||||
|
||||
resamplers = {
|
||||
"Lanczos": Image.Resampling.LANCZOS,
|
||||
"Nearest Neighbor": Image.Resampling.NEAREST,
|
||||
"Bilinear": Image.Resampling.BILINEAR,
|
||||
"Bicubic": Image.Resampling.BICUBIC,
|
||||
"Hamming": Image.Resampling.HAMMING,
|
||||
"Box": Image.Resampling.BOX,
|
||||
}
|
||||
|
||||
resampler_list = resamplers.keys()
|
||||
|
||||
|
||||
# save output images and the inputs corresponding to it.
|
||||
def save_output_img(output_img, img_seed, extra_info=None):
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
get_generated_imgs_path,
|
||||
get_generated_imgs_todays_subdir,
|
||||
)
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
|
||||
if extra_info is None:
|
||||
extra_info = {}
|
||||
generated_imgs_path = Path(
|
||||
get_generated_imgs_path(), get_generated_imgs_todays_subdir()
|
||||
)
|
||||
generated_imgs_path.mkdir(parents=True, exist_ok=True)
|
||||
csv_path = Path(generated_imgs_path, "imgs_details.csv")
|
||||
|
||||
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", extra_info["prompt"][0][:15])
|
||||
out_img_name = f"{dt.now().strftime('%H%M%S')}_{prompt_slice}_{img_seed}"
|
||||
|
||||
img_model = extra_info["base_model_id"]
|
||||
if extra_info["custom_weights"] not in [None, "None"]:
|
||||
img_model = Path(os.path.basename(extra_info["custom_weights"])).stem
|
||||
|
||||
img_vae = None
|
||||
if extra_info["custom_vae"]:
|
||||
img_vae = Path(os.path.basename(extra_info["custom_vae"])).stem
|
||||
|
||||
img_loras = None
|
||||
if extra_info["embeddings"]:
|
||||
img_lora = []
|
||||
for i in extra_info["embeddings"]:
|
||||
img_lora += Path(os.path.basename(cmd_opts.use_lora)).stem
|
||||
img_loras = ", ".join(img_lora)
|
||||
|
||||
if cmd_opts.output_img_format == "jpg":
|
||||
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
|
||||
output_img.save(out_img_path, quality=95, subsampling=0)
|
||||
else:
|
||||
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
|
||||
pngInfo = PngImagePlugin.PngInfo()
|
||||
|
||||
if cmd_opts.write_metadata_to_png:
|
||||
# Using a conditional expression caused problems, so setting a new
|
||||
# variable for now.
|
||||
# if cmd_opts.use_hiresfix:
|
||||
# png_size_text = (
|
||||
# f"{cmd_opts.hiresfix_width}x{cmd_opts.hiresfix_height}"
|
||||
# )
|
||||
# else:
|
||||
png_size_text = f"{extra_info['width']}x{extra_info['height']}"
|
||||
|
||||
pngInfo.add_text(
|
||||
"parameters",
|
||||
f"{extra_info['prompt'][0]}"
|
||||
f"\nNegative prompt: {extra_info['negative_prompt'][0]}"
|
||||
f"\nSteps: {extra_info['steps']},"
|
||||
f"Sampler: {extra_info['scheduler']}, "
|
||||
f"CFG scale: {extra_info['guidance_scale']}, "
|
||||
f"Seed: {img_seed},"
|
||||
f"Size: {png_size_text}, "
|
||||
f"Model: {img_model}, "
|
||||
f"VAE: {img_vae}, "
|
||||
f"LoRA: {img_loras}",
|
||||
)
|
||||
|
||||
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
|
||||
|
||||
if cmd_opts.output_img_format not in ["png", "jpg"]:
|
||||
print(
|
||||
f"[ERROR] Format {cmd_opts.output_img_format} is not "
|
||||
f"supported yet. Image saved as png instead."
|
||||
f"Supported formats: png / jpg"
|
||||
)
|
||||
|
||||
# To be as low-impact as possible to the existing CSV format, we append
|
||||
# "VAE" and "LORA" to the end. However, it does not fit the hierarchy of
|
||||
# importance for each data point. Something to consider.
|
||||
new_entry = {}
|
||||
|
||||
new_entry.update(extra_info)
|
||||
|
||||
csv_mode = "a" if os.path.isfile(csv_path) else "w"
|
||||
with open(csv_path, csv_mode, encoding="utf-8") as csv_obj:
|
||||
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
|
||||
if csv_mode == "w":
|
||||
dictwriter_obj.writeheader()
|
||||
dictwriter_obj.writerow(new_entry)
|
||||
csv_obj.close()
|
||||
|
||||
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
|
||||
with open(json_path, "w") as f:
|
||||
json.dump(new_entry, f, indent=4)
|
||||
|
||||
|
||||
# For stencil, the input image can be of any size, but we need to ensure that
|
||||
# it conforms with our model constraints :-
|
||||
# Both width and height should be in the range of [128, 768] and multiple of 8.
|
||||
# This utility function performs the transformation on the input image while
|
||||
# also maintaining the aspect ratio before sending it to the stencil pipeline.
|
||||
def resize_stencil(image: Image.Image, width, height, resampler_type=None):
|
||||
aspect_ratio = width / height
|
||||
min_size = min(width, height)
|
||||
if min_size < 128:
|
||||
n_size = 128
|
||||
if width == min_size:
|
||||
width = n_size
|
||||
height = n_size / aspect_ratio
|
||||
else:
|
||||
height = n_size
|
||||
width = n_size * aspect_ratio
|
||||
width = int(width)
|
||||
height = int(height)
|
||||
n_width = width // 8
|
||||
n_height = height // 8
|
||||
n_width *= 8
|
||||
n_height *= 8
|
||||
|
||||
min_size = min(width, height)
|
||||
if min_size > 768:
|
||||
n_size = 768
|
||||
if width == min_size:
|
||||
height = n_size
|
||||
width = n_size * aspect_ratio
|
||||
else:
|
||||
width = n_size
|
||||
height = n_size / aspect_ratio
|
||||
width = int(width)
|
||||
height = int(height)
|
||||
n_width = width // 8
|
||||
n_height = height // 8
|
||||
n_width *= 8
|
||||
n_height *= 8
|
||||
if resampler_type in resamplers:
|
||||
resampler = resamplers[resampler_type]
|
||||
else:
|
||||
resampler = resamplers["Nearest Neighbor"]
|
||||
new_image = image.resize((n_width, n_height), resampler=resampler)
|
||||
return new_image, n_width, n_height
|
||||
|
||||
|
||||
def process_sd_init_image(self, sd_init_image, resample_type):
|
||||
if isinstance(sd_init_image, list):
|
||||
images = []
|
||||
for img in sd_init_image:
|
||||
img, _ = self.process_sd_init_image(img, resample_type)
|
||||
images.append(img)
|
||||
is_img2img = True
|
||||
return images, is_img2img
|
||||
if isinstance(sd_init_image, str):
|
||||
if os.path.isfile(sd_init_image):
|
||||
sd_init_image = Image.open(sd_init_image, mode="r").convert("RGB")
|
||||
image, is_img2img = self.process_sd_init_image(sd_init_image, resample_type)
|
||||
else:
|
||||
image = None
|
||||
is_img2img = False
|
||||
elif isinstance(sd_init_image, Image.Image):
|
||||
image = sd_init_image.convert("RGB")
|
||||
elif sd_init_image:
|
||||
image = sd_init_image["image"].convert("RGB")
|
||||
else:
|
||||
image = None
|
||||
is_img2img = False
|
||||
if image:
|
||||
resample_type = (
|
||||
resamplers[resample_type]
|
||||
if resample_type in resampler_list
|
||||
# Fallback to Lanczos
|
||||
else Image.Resampling.LANCZOS
|
||||
)
|
||||
image = image.resize((self.width, self.height), resample=resample_type)
|
||||
image_arr = np.stack([np.array(i) for i in (image,)], axis=0)
|
||||
image_arr = image_arr / 255.0
|
||||
image_arr = torch.from_numpy(image_arr).permute(0, 3, 1, 2).to(self.dtype)
|
||||
image_arr = 2 * (image_arr - 0.5)
|
||||
is_img2img = True
|
||||
image = image_arr
|
||||
return image, is_img2img
|
||||
37
apps/shark_studio/modules/logger.py
Normal file
37
apps/shark_studio/modules/logger.py
Normal file
@@ -0,0 +1,37 @@
|
||||
import sys
|
||||
|
||||
|
||||
class Logger:
|
||||
def __init__(self, filename, filter=None):
|
||||
self.terminal = sys.stdout
|
||||
self.log = open(filename, "w")
|
||||
self.filter = filter
|
||||
|
||||
def write(self, message):
|
||||
for x in message.split("\n"):
|
||||
if self.filter in x:
|
||||
self.log.write(message)
|
||||
else:
|
||||
self.terminal.write(message)
|
||||
|
||||
def flush(self):
|
||||
self.terminal.flush()
|
||||
self.log.flush()
|
||||
|
||||
def isatty(self):
|
||||
return False
|
||||
|
||||
|
||||
def logger_test(x):
|
||||
print("[LOG] This is a test")
|
||||
print(f"This is another test, without the filter")
|
||||
return x
|
||||
|
||||
|
||||
def read_sd_logs():
|
||||
sys.stdout.flush()
|
||||
with open("shark_tmp/sd.log", "r") as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
sys.stdout = Logger("shark_tmp/sd.log", filter="[LOG]")
|
||||
205
apps/shark_studio/modules/pipeline.py
Normal file
205
apps/shark_studio/modules/pipeline.py
Normal file
@@ -0,0 +1,205 @@
|
||||
from shark.iree_utils.compile_utils import (
|
||||
get_iree_compiled_module,
|
||||
load_vmfb_using_mmap,
|
||||
clean_device_info,
|
||||
get_iree_target_triple,
|
||||
)
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
get_checkpoints_path,
|
||||
get_resource_path,
|
||||
)
|
||||
from apps.shark_studio.modules.shared_cmd_opts import (
|
||||
cmd_opts,
|
||||
)
|
||||
from iree import runtime as ireert
|
||||
from pathlib import Path
|
||||
import gc
|
||||
import os
|
||||
|
||||
|
||||
class SharkPipelineBase:
|
||||
# This class is a lightweight base for managing an
|
||||
# inference API class. It should provide methods for:
|
||||
# - compiling a set (model map) of torch IR modules
|
||||
# - preparing weights for an inference job
|
||||
# - loading weights for an inference job
|
||||
# - utilites like benchmarks, tests
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_map: dict,
|
||||
base_model_id: str,
|
||||
static_kwargs: dict,
|
||||
device: str,
|
||||
import_mlir: bool = True,
|
||||
):
|
||||
self.model_map = model_map
|
||||
self.pipe_map = {}
|
||||
self.static_kwargs = static_kwargs
|
||||
self.base_model_id = base_model_id
|
||||
self.triple = get_iree_target_triple(device)
|
||||
self.device, self.device_id = clean_device_info(device)
|
||||
self.import_mlir = import_mlir
|
||||
self.iree_module_dict = {}
|
||||
self.tmp_dir = get_resource_path(cmd_opts.tmp_dir)
|
||||
if not os.path.exists(self.tmp_dir):
|
||||
os.mkdir(self.tmp_dir)
|
||||
self.tempfiles = {}
|
||||
self.pipe_vmfb_path = ""
|
||||
|
||||
def get_compiled_map(self, pipe_id, submodel="None", init_kwargs={}) -> None:
|
||||
# First checks whether we have .vmfbs precompiled, then populates the map
|
||||
# with the precompiled executables and fetches executables for the rest of the map.
|
||||
# The weights aren't static here anymore so this function should be a part of pipeline
|
||||
# initialization. As soon as you have a pipeline ID unique to your static torch IR parameters,
|
||||
# and your model map is populated with any IR - unique model IDs and their static params,
|
||||
# call this method to get the artifacts associated with your map.
|
||||
self.pipe_id = self.safe_name(pipe_id)
|
||||
self.pipe_vmfb_path = Path(os.path.join(get_checkpoints_path(), self.pipe_id))
|
||||
self.pipe_vmfb_path.mkdir(parents=False, exist_ok=True)
|
||||
if submodel == "None":
|
||||
print("\n[LOG] Gathering any pre-compiled artifacts....")
|
||||
for key in self.model_map:
|
||||
self.get_compiled_map(pipe_id, submodel=key)
|
||||
else:
|
||||
self.pipe_map[submodel] = {}
|
||||
self.get_precompiled(self.pipe_id, submodel)
|
||||
ireec_flags = []
|
||||
if submodel in self.iree_module_dict:
|
||||
return
|
||||
elif "vmfb_path" in self.pipe_map[submodel]:
|
||||
return
|
||||
elif submodel not in self.tempfiles:
|
||||
print(
|
||||
f"\n[LOG] Tempfile for {submodel} not found. Fetching torch IR..."
|
||||
)
|
||||
if submodel in self.static_kwargs:
|
||||
init_kwargs = self.static_kwargs[submodel]
|
||||
for key in self.static_kwargs["pipe"]:
|
||||
if key not in init_kwargs:
|
||||
init_kwargs[key] = self.static_kwargs["pipe"][key]
|
||||
self.import_torch_ir(submodel, init_kwargs)
|
||||
self.get_compiled_map(pipe_id, submodel)
|
||||
else:
|
||||
ireec_flags = (
|
||||
self.model_map[submodel]["ireec_flags"]
|
||||
if "ireec_flags" in self.model_map[submodel]
|
||||
else []
|
||||
)
|
||||
|
||||
weights_path = self.get_io_params(submodel)
|
||||
if weights_path:
|
||||
ireec_flags.append("--iree-opt-const-eval=False")
|
||||
|
||||
self.iree_module_dict[submodel] = get_iree_compiled_module(
|
||||
self.tempfiles[submodel],
|
||||
device=self.device,
|
||||
frontend="torch",
|
||||
mmap=True,
|
||||
external_weight_file=weights_path,
|
||||
extra_args=ireec_flags,
|
||||
write_to=os.path.join(self.pipe_vmfb_path, submodel + ".vmfb"),
|
||||
)
|
||||
return
|
||||
|
||||
def get_io_params(self, submodel):
|
||||
if "external_weight_file" in self.static_kwargs[submodel]:
|
||||
# we are using custom weights
|
||||
weights_path = self.static_kwargs[submodel]["external_weight_file"]
|
||||
elif "external_weight_path" in self.static_kwargs[submodel]:
|
||||
# we are using the default weights for the HF model
|
||||
weights_path = self.static_kwargs[submodel]["external_weight_path"]
|
||||
else:
|
||||
# assume the torch IR contains the weights.
|
||||
weights_path = None
|
||||
return weights_path
|
||||
|
||||
def get_precompiled(self, pipe_id, submodel="None"):
|
||||
if submodel == "None":
|
||||
for model in self.model_map:
|
||||
self.get_precompiled(pipe_id, model)
|
||||
vmfbs = []
|
||||
for dirpath, dirnames, filenames in os.walk(self.pipe_vmfb_path):
|
||||
vmfbs.extend(filenames)
|
||||
break
|
||||
for file in vmfbs:
|
||||
if submodel in file:
|
||||
self.pipe_map[submodel]["vmfb_path"] = os.path.join(
|
||||
self.pipe_vmfb_path, file
|
||||
)
|
||||
return
|
||||
|
||||
def import_torch_ir(self, submodel, kwargs):
|
||||
torch_ir = self.model_map[submodel]["initializer"](
|
||||
**self.safe_dict(kwargs), compile_to="torch"
|
||||
)
|
||||
if submodel == "clip":
|
||||
# clip.export_clip_model returns (torch_ir, tokenizer)
|
||||
torch_ir = torch_ir[0]
|
||||
|
||||
self.tempfiles[submodel] = os.path.join(
|
||||
self.tmp_dir, f"{submodel}.torch.tempfile"
|
||||
)
|
||||
|
||||
with open(self.tempfiles[submodel], "w+") as f:
|
||||
f.write(torch_ir)
|
||||
del torch_ir
|
||||
gc.collect()
|
||||
return
|
||||
|
||||
def load_submodels(self, submodels: list):
|
||||
for submodel in submodels:
|
||||
if submodel in self.iree_module_dict:
|
||||
print(f"\n[LOG] {submodel} is ready for inference.")
|
||||
continue
|
||||
if "vmfb_path" in self.pipe_map[submodel]:
|
||||
weights_path = self.get_io_params(submodel)
|
||||
# print(
|
||||
# f"\n[LOG] Loading .vmfb for {submodel} from {self.pipe_map[submodel]['vmfb_path']}"
|
||||
# )
|
||||
self.iree_module_dict[submodel] = {}
|
||||
(
|
||||
self.iree_module_dict[submodel]["vmfb"],
|
||||
self.iree_module_dict[submodel]["config"],
|
||||
self.iree_module_dict[submodel]["temp_file_to_unlink"],
|
||||
) = load_vmfb_using_mmap(
|
||||
self.pipe_map[submodel]["vmfb_path"],
|
||||
self.device,
|
||||
device_idx=0,
|
||||
rt_flags=[],
|
||||
external_weight_file=weights_path,
|
||||
)
|
||||
else:
|
||||
self.get_compiled_map(self.pipe_id, submodel)
|
||||
return
|
||||
|
||||
def unload_submodels(self, submodels: list):
|
||||
for submodel in submodels:
|
||||
if submodel in self.iree_module_dict:
|
||||
del self.iree_module_dict[submodel]
|
||||
gc.collect()
|
||||
return
|
||||
|
||||
def run(self, submodel, inputs):
|
||||
if not isinstance(inputs, list):
|
||||
inputs = [inputs]
|
||||
inp = [
|
||||
ireert.asdevicearray(
|
||||
self.iree_module_dict[submodel]["config"].device, input
|
||||
)
|
||||
for input in inputs
|
||||
]
|
||||
return self.iree_module_dict[submodel]["vmfb"]["main"](*inp)
|
||||
|
||||
def safe_name(self, name):
|
||||
return name.replace("/", "_").replace("-", "_").replace("\\", "_")
|
||||
|
||||
def safe_dict(self, kwargs: dict):
|
||||
flat_args = {}
|
||||
for i in kwargs:
|
||||
if isinstance(kwargs[i], dict) and "pass_dict" not in kwargs[i]:
|
||||
flat_args[i] = [kwargs[i][j] for j in kwargs[i]]
|
||||
else:
|
||||
flat_args[i] = kwargs[i]
|
||||
|
||||
return flat_args
|
||||
376
apps/shark_studio/modules/prompt_encoding.py
Normal file
376
apps/shark_studio/modules/prompt_encoding.py
Normal file
@@ -0,0 +1,376 @@
|
||||
from typing import List, Optional, Union
|
||||
from iree import runtime as ireert
|
||||
import re
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
re_attention = re.compile(
|
||||
r"""
|
||||
\\\(|
|
||||
\\\)|
|
||||
\\\[|
|
||||
\\]|
|
||||
\\\\|
|
||||
\\|
|
||||
\(|
|
||||
\[|
|
||||
:([+-]?[.\d]+)\)|
|
||||
\)|
|
||||
]|
|
||||
[^\\()\[\]:]+|
|
||||
:
|
||||
""",
|
||||
re.X,
|
||||
)
|
||||
|
||||
|
||||
def parse_prompt_attention(text):
|
||||
"""
|
||||
Parses a string with attention tokens and returns a list of pairs:
|
||||
text and its associated weight.
|
||||
Accepted tokens are:
|
||||
(abc) - increases attention to abc by a multiplier of 1.1
|
||||
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
||||
[abc] - decreases attention to abc by a multiplier of 1.1
|
||||
\( - literal character '('
|
||||
\[ - literal character '['
|
||||
\) - literal character ')'
|
||||
\] - literal character ']'
|
||||
\\ - literal character '\'
|
||||
anything else - just text
|
||||
>>> parse_prompt_attention('normal text')
|
||||
[['normal text', 1.0]]
|
||||
>>> parse_prompt_attention('an (important) word')
|
||||
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
||||
>>> parse_prompt_attention('(unbalanced')
|
||||
[['unbalanced', 1.1]]
|
||||
>>> parse_prompt_attention('\(literal\]')
|
||||
[['(literal]', 1.0]]
|
||||
>>> parse_prompt_attention('(unnecessary)(parens)')
|
||||
[['unnecessaryparens', 1.1]]
|
||||
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
||||
[['a ', 1.0],
|
||||
['house', 1.5730000000000004],
|
||||
[' ', 1.1],
|
||||
['on', 1.0],
|
||||
[' a ', 1.1],
|
||||
['hill', 0.55],
|
||||
[', sun, ', 1.1],
|
||||
['sky', 1.4641000000000006],
|
||||
['.', 1.1]]
|
||||
"""
|
||||
|
||||
res = []
|
||||
round_brackets = []
|
||||
square_brackets = []
|
||||
|
||||
round_bracket_multiplier = 1.1
|
||||
square_bracket_multiplier = 1 / 1.1
|
||||
|
||||
def multiply_range(start_position, multiplier):
|
||||
for p in range(start_position, len(res)):
|
||||
res[p][1] *= multiplier
|
||||
|
||||
for m in re_attention.finditer(text):
|
||||
text = m.group(0)
|
||||
weight = m.group(1)
|
||||
|
||||
if text.startswith("\\"):
|
||||
res.append([text[1:], 1.0])
|
||||
elif text == "(":
|
||||
round_brackets.append(len(res))
|
||||
elif text == "[":
|
||||
square_brackets.append(len(res))
|
||||
elif weight is not None and len(round_brackets) > 0:
|
||||
multiply_range(round_brackets.pop(), float(weight))
|
||||
elif text == ")" and len(round_brackets) > 0:
|
||||
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
||||
elif text == "]" and len(square_brackets) > 0:
|
||||
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
||||
else:
|
||||
res.append([text, 1.0])
|
||||
|
||||
for pos in round_brackets:
|
||||
multiply_range(pos, round_bracket_multiplier)
|
||||
|
||||
for pos in square_brackets:
|
||||
multiply_range(pos, square_bracket_multiplier)
|
||||
|
||||
if len(res) == 0:
|
||||
res = [["", 1.0]]
|
||||
|
||||
# merge runs of identical weights
|
||||
i = 0
|
||||
while i + 1 < len(res):
|
||||
if res[i][1] == res[i + 1][1]:
|
||||
res[i][0] += res[i + 1][0]
|
||||
res.pop(i + 1)
|
||||
else:
|
||||
i += 1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def get_prompts_with_weights(pipe, prompt: List[str], max_length: int):
|
||||
r"""
|
||||
Tokenize a list of prompts and return its tokens with weights of each token.
|
||||
No padding, starting or ending token is included.
|
||||
"""
|
||||
tokens = []
|
||||
weights = []
|
||||
truncated = False
|
||||
for text in prompt:
|
||||
texts_and_weights = parse_prompt_attention(text)
|
||||
text_token = []
|
||||
text_weight = []
|
||||
for word, weight in texts_and_weights:
|
||||
# tokenize and discard the starting and the ending token
|
||||
token = pipe.tokenizer(word).input_ids[1:-1]
|
||||
text_token += token
|
||||
# copy the weight by length of token
|
||||
text_weight += [weight] * len(token)
|
||||
# stop if the text is too long (longer than truncation limit)
|
||||
if len(text_token) > max_length:
|
||||
truncated = True
|
||||
break
|
||||
# truncate
|
||||
if len(text_token) > max_length:
|
||||
truncated = True
|
||||
text_token = text_token[:max_length]
|
||||
text_weight = text_weight[:max_length]
|
||||
tokens.append(text_token)
|
||||
weights.append(text_weight)
|
||||
if truncated:
|
||||
print(
|
||||
"Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples"
|
||||
)
|
||||
return tokens, weights
|
||||
|
||||
|
||||
def pad_tokens_and_weights(
|
||||
tokens,
|
||||
weights,
|
||||
max_length,
|
||||
bos,
|
||||
eos,
|
||||
no_boseos_middle=True,
|
||||
chunk_length=77,
|
||||
):
|
||||
r"""
|
||||
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
||||
"""
|
||||
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
||||
weights_length = (
|
||||
max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
||||
)
|
||||
for i in range(len(tokens)):
|
||||
tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
|
||||
if no_boseos_middle:
|
||||
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
||||
else:
|
||||
w = []
|
||||
if len(weights[i]) == 0:
|
||||
w = [1.0] * weights_length
|
||||
else:
|
||||
for j in range(max_embeddings_multiples):
|
||||
w.append(1.0) # weight for starting token in this chunk
|
||||
w += weights[i][
|
||||
j
|
||||
* (chunk_length - 2) : min(
|
||||
len(weights[i]), (j + 1) * (chunk_length - 2)
|
||||
)
|
||||
]
|
||||
w.append(1.0) # weight for ending token in this chunk
|
||||
w += [1.0] * (weights_length - len(w))
|
||||
weights[i] = w[:]
|
||||
|
||||
return tokens, weights
|
||||
|
||||
|
||||
def get_unweighted_text_embeddings(
|
||||
pipe,
|
||||
text_input,
|
||||
chunk_length: int,
|
||||
no_boseos_middle: Optional[bool] = True,
|
||||
):
|
||||
"""
|
||||
When the length of tokens is a multiple of the capacity of the text encoder,
|
||||
it should be split into chunks and sent to the text encoder individually.
|
||||
"""
|
||||
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
|
||||
if max_embeddings_multiples > 1:
|
||||
text_embeddings = []
|
||||
for i in range(max_embeddings_multiples):
|
||||
# extract the i-th chunk
|
||||
text_input_chunk = text_input[
|
||||
:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2
|
||||
].clone()
|
||||
|
||||
# cover the head and the tail by the starting and the ending tokens
|
||||
text_input_chunk[:, 0] = text_input[0, 0]
|
||||
text_input_chunk[:, -1] = text_input[0, -1]
|
||||
|
||||
text_embedding = pipe.run("clip", text_input_chunk)[0].to_host()
|
||||
|
||||
if no_boseos_middle:
|
||||
if i == 0:
|
||||
# discard the ending token
|
||||
text_embedding = text_embedding[:, :-1]
|
||||
elif i == max_embeddings_multiples - 1:
|
||||
# discard the starting token
|
||||
text_embedding = text_embedding[:, 1:]
|
||||
else:
|
||||
# discard both starting and ending tokens
|
||||
text_embedding = text_embedding[:, 1:-1]
|
||||
|
||||
text_embeddings.append(text_embedding)
|
||||
# SHARK: Convert the result to tensor
|
||||
# text_embeddings = torch.concat(text_embeddings, axis=1)
|
||||
text_embeddings_np = np.concatenate(np.array(text_embeddings))
|
||||
text_embeddings = torch.from_numpy(text_embeddings_np)
|
||||
else:
|
||||
text_embeddings = pipe.run("clip", text_input)[0]
|
||||
text_embeddings = torch.from_numpy(text_embeddings.to_host())
|
||||
return text_embeddings
|
||||
|
||||
|
||||
# This function deals with NoneType values occuring in tokens after padding
|
||||
# It switches out None with 49407 as truncating None values causes matrix dimension errors,
|
||||
def filter_nonetype_tokens(tokens: List[List]):
|
||||
return [[49407 if token is None else token for token in tokens[0]]]
|
||||
|
||||
|
||||
def get_weighted_text_embeddings(
|
||||
pipe,
|
||||
prompt: List[str],
|
||||
uncond_prompt: List[str] = None,
|
||||
max_embeddings_multiples: Optional[int] = 8,
|
||||
no_boseos_middle: Optional[bool] = True,
|
||||
skip_parsing: Optional[bool] = False,
|
||||
skip_weighting: Optional[bool] = False,
|
||||
):
|
||||
max_length = (pipe.model_max_length - 2) * max_embeddings_multiples + 2
|
||||
|
||||
if not skip_parsing:
|
||||
prompt_tokens, prompt_weights = get_prompts_with_weights(
|
||||
pipe, prompt, max_length - 2
|
||||
)
|
||||
if uncond_prompt is not None:
|
||||
uncond_tokens, uncond_weights = get_prompts_with_weights(
|
||||
pipe, uncond_prompt, max_length - 2
|
||||
)
|
||||
else:
|
||||
prompt_tokens = [
|
||||
token[1:-1]
|
||||
for token in pipe.tokenizer(
|
||||
prompt, max_length=max_length, truncation=True
|
||||
).input_ids
|
||||
]
|
||||
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
|
||||
if uncond_prompt is not None:
|
||||
if isinstance(uncond_prompt, str):
|
||||
uncond_prompt = [uncond_prompt]
|
||||
uncond_tokens = [
|
||||
token[1:-1]
|
||||
for token in pipe.tokenizer(
|
||||
uncond_prompt, max_length=max_length, truncation=True
|
||||
).input_ids
|
||||
]
|
||||
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
|
||||
|
||||
# round up the longest length of tokens to a multiple of (model_max_length - 2)
|
||||
max_length = max([len(token) for token in prompt_tokens])
|
||||
if uncond_prompt is not None:
|
||||
max_length = max(max_length, max([len(token) for token in uncond_tokens]))
|
||||
max_embeddings_multiples = min(
|
||||
max_embeddings_multiples,
|
||||
(max_length - 1) // (pipe.model_max_length - 2) + 1,
|
||||
)
|
||||
max_embeddings_multiples = max(1, max_embeddings_multiples)
|
||||
|
||||
max_length = (pipe.model_max_length - 2) * max_embeddings_multiples + 2
|
||||
|
||||
# pad the length of tokens and weights
|
||||
bos = pipe.tokenizer.bos_token_id
|
||||
eos = pipe.tokenizer.eos_token_id
|
||||
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
||||
prompt_tokens,
|
||||
prompt_weights,
|
||||
max_length,
|
||||
bos,
|
||||
eos,
|
||||
no_boseos_middle=no_boseos_middle,
|
||||
chunk_length=pipe.model_max_length,
|
||||
)
|
||||
|
||||
# FIXME: This is a hacky fix caused by tokenizer padding with None values
|
||||
prompt_tokens = filter_nonetype_tokens(prompt_tokens)
|
||||
|
||||
# prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
|
||||
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device="cpu")
|
||||
if uncond_prompt is not None:
|
||||
uncond_tokens, uncond_weights = pad_tokens_and_weights(
|
||||
uncond_tokens,
|
||||
uncond_weights,
|
||||
max_length,
|
||||
bos,
|
||||
eos,
|
||||
no_boseos_middle=no_boseos_middle,
|
||||
chunk_length=pipe.model_max_length,
|
||||
)
|
||||
|
||||
# FIXME: This is a hacky fix caused by tokenizer padding with None values
|
||||
uncond_tokens = filter_nonetype_tokens(uncond_tokens)
|
||||
|
||||
# uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)
|
||||
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device="cpu")
|
||||
|
||||
# get the embeddings
|
||||
text_embeddings = get_unweighted_text_embeddings(
|
||||
pipe,
|
||||
prompt_tokens,
|
||||
pipe.model_max_length,
|
||||
no_boseos_middle=no_boseos_middle,
|
||||
)
|
||||
# prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device)
|
||||
prompt_weights = torch.tensor(prompt_weights, dtype=torch.float, device="cpu")
|
||||
if uncond_prompt is not None:
|
||||
uncond_embeddings = get_unweighted_text_embeddings(
|
||||
pipe,
|
||||
uncond_tokens,
|
||||
pipe.model_max_length,
|
||||
no_boseos_middle=no_boseos_middle,
|
||||
)
|
||||
# uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device)
|
||||
uncond_weights = torch.tensor(uncond_weights, dtype=torch.float, device="cpu")
|
||||
|
||||
# assign weights to the prompts and normalize in the sense of mean
|
||||
# TODO: should we normalize by chunk or in a whole (current implementation)?
|
||||
if (not skip_parsing) and (not skip_weighting):
|
||||
previous_mean = (
|
||||
text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
|
||||
)
|
||||
text_embeddings *= prompt_weights.unsqueeze(-1)
|
||||
current_mean = (
|
||||
text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
|
||||
)
|
||||
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
||||
if uncond_prompt is not None:
|
||||
previous_mean = (
|
||||
uncond_embeddings.float()
|
||||
.mean(axis=[-2, -1])
|
||||
.to(uncond_embeddings.dtype)
|
||||
)
|
||||
uncond_embeddings *= uncond_weights.unsqueeze(-1)
|
||||
current_mean = (
|
||||
uncond_embeddings.float()
|
||||
.mean(axis=[-2, -1])
|
||||
.to(uncond_embeddings.dtype)
|
||||
)
|
||||
uncond_embeddings *= (
|
||||
(previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
||||
)
|
||||
|
||||
if uncond_prompt is not None:
|
||||
return text_embeddings, uncond_embeddings
|
||||
return text_embeddings, None
|
||||
118
apps/shark_studio/modules/schedulers.py
Normal file
118
apps/shark_studio/modules/schedulers.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# from shark_turbine.turbine_models.schedulers import export_scheduler_model
|
||||
from diffusers import (
|
||||
LCMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
DDPMScheduler,
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
KDPM2DiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DEISMultistepScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
)
|
||||
|
||||
|
||||
def get_schedulers(model_id):
|
||||
# TODO: switch over to turbine and run all on GPU
|
||||
print(f"\n[LOG] Initializing schedulers from model id: {model_id}")
|
||||
schedulers = dict()
|
||||
schedulers["PNDM"] = PNDMScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
# schedulers["DDPM"] = DDPMScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
# schedulers["KDPM2Discrete"] = KDPM2DiscreteScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
# schedulers["LMSDiscrete"] = LMSDiscreteScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
# schedulers["DDIM"] = DDIMScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
# schedulers["LCMScheduler"] = LCMScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
# schedulers["DPMSolverMultistep"] = DPMSolverMultistepScheduler.from_pretrained(
|
||||
# model_id, subfolder="scheduler", algorithm_type="dpmsolver"
|
||||
# )
|
||||
# schedulers["DPMSolverMultistep++"] = DPMSolverMultistepScheduler.from_pretrained(
|
||||
# model_id, subfolder="scheduler", algorithm_type="dpmsolver++"
|
||||
# )
|
||||
# schedulers["DPMSolverMultistepKarras"] = (
|
||||
# DPMSolverMultistepScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# use_karras_sigmas=True,
|
||||
# )
|
||||
# )
|
||||
# schedulers["DPMSolverMultistepKarras++"] = (
|
||||
# DPMSolverMultistepScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# algorithm_type="dpmsolver++",
|
||||
# use_karras_sigmas=True,
|
||||
# )
|
||||
# )
|
||||
schedulers["EulerDiscrete"] = EulerDiscreteScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers["EulerAncestralDiscrete"] = (
|
||||
EulerAncestralDiscreteScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
)
|
||||
# schedulers["DEISMultistep"] = DEISMultistepScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
# schedulers["DPMSolverSinglestep"] = DPMSolverSinglestepScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
# schedulers["KDPM2AncestralDiscrete"] = (
|
||||
# KDPM2AncestralDiscreteScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
# )
|
||||
# schedulers["HeunDiscrete"] = HeunDiscreteScheduler.from_pretrained(
|
||||
# model_id,
|
||||
# subfolder="scheduler",
|
||||
# )
|
||||
return schedulers
|
||||
|
||||
|
||||
def export_scheduler_model(model):
|
||||
return "None", "None"
|
||||
|
||||
|
||||
scheduler_model_map = {
|
||||
"PNDM": export_scheduler_model("PNDMScheduler"),
|
||||
# "DPMSolverSDE": export_scheduler_model("DpmSolverSDEScheduler"),
|
||||
"EulerDiscrete": export_scheduler_model("EulerDiscreteScheduler"),
|
||||
"EulerAncestralDiscrete": export_scheduler_model("EulerAncestralDiscreteScheduler"),
|
||||
# "LCM": export_scheduler_model("LCMScheduler"),
|
||||
# "LMSDiscrete": export_scheduler_model("LMSDiscreteScheduler"),
|
||||
# "DDPM": export_scheduler_model("DDPMScheduler"),
|
||||
# "DDIM": export_scheduler_model("DDIMScheduler"),
|
||||
# "DPMSolverMultistep": export_scheduler_model("DPMSolverMultistepScheduler"),
|
||||
# "KDPM2Discrete": export_scheduler_model("KDPM2DiscreteScheduler"),
|
||||
# "DEISMultistep": export_scheduler_model("DEISMultistepScheduler"),
|
||||
# "DPMSolverSinglestep": export_scheduler_model("DPMSolverSingleStepScheduler"),
|
||||
# "KDPM2AncestralDiscrete": export_scheduler_model("KDPM2AncestralDiscreteScheduler"),
|
||||
# "HeunDiscrete": export_scheduler_model("HeunDiscreteScheduler"),
|
||||
}
|
||||
66
apps/shark_studio/modules/seed.py
Normal file
66
apps/shark_studio/modules/seed.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import numpy as np
|
||||
import json
|
||||
from random import (
|
||||
randint,
|
||||
seed as seed_random,
|
||||
getstate as random_getstate,
|
||||
setstate as random_setstate,
|
||||
)
|
||||
|
||||
|
||||
# Generate and return a new seed if the provided one is not in the
|
||||
# supported range (including -1)
|
||||
def sanitize_seed(seed: int | str):
|
||||
seed = int(seed)
|
||||
uint32_info = np.iinfo(np.uint32)
|
||||
uint32_min, uint32_max = uint32_info.min, uint32_info.max
|
||||
if seed < uint32_min or seed >= uint32_max:
|
||||
seed = randint(uint32_min, uint32_max)
|
||||
return seed
|
||||
|
||||
|
||||
# take a seed expression in an input format and convert it to
|
||||
# a list of integers, where possible
|
||||
def parse_seed_input(seed_input: str | list | int):
|
||||
if isinstance(seed_input, str):
|
||||
try:
|
||||
seed_input = json.loads(seed_input)
|
||||
except (ValueError, TypeError):
|
||||
seed_input = None
|
||||
|
||||
if isinstance(seed_input, int):
|
||||
return [seed_input]
|
||||
|
||||
if isinstance(seed_input, list) and all(type(seed) is int for seed in seed_input):
|
||||
return seed_input
|
||||
|
||||
raise TypeError(
|
||||
"Seed input must be an integer or an array of integers in JSON format"
|
||||
)
|
||||
|
||||
|
||||
# Generate a set of seeds from an input expression for batch_count batches,
|
||||
# optionally using that input as the rng seed for any randomly generated seeds.
|
||||
def batch_seeds(seed_input: str | list | int, batch_count: int, repeatable=False):
|
||||
# turn the input into a list if possible
|
||||
seeds = parse_seed_input(seed_input)
|
||||
|
||||
# slice or pad the list to be of batch_count length
|
||||
seeds = seeds[:batch_count] + [-1] * (batch_count - len(seeds))
|
||||
|
||||
if repeatable:
|
||||
if all(seed < 0 for seed in seeds):
|
||||
seeds[0] = sanitize_seed(seeds[0])
|
||||
|
||||
# set seed for the rng based on what we have so far
|
||||
saved_random_state = random_getstate()
|
||||
seed_random(str([n for n in seeds if n > -1]))
|
||||
|
||||
# generate any seeds that are unspecified
|
||||
seeds = [sanitize_seed(seed) for seed in seeds]
|
||||
|
||||
if repeatable:
|
||||
# reset the rng back to normal
|
||||
random_setstate(saved_random_state)
|
||||
|
||||
return seeds
|
||||
@@ -2,6 +2,8 @@ import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from apps.shark_studio.modules.img_processing import resampler_list
|
||||
|
||||
|
||||
def path_expand(s):
|
||||
return Path(s).expanduser().resolve()
|
||||
@@ -30,11 +32,11 @@ p.add_argument(
|
||||
)
|
||||
p.add_argument(
|
||||
"-p",
|
||||
"--prompts",
|
||||
"--prompt",
|
||||
nargs="+",
|
||||
default=[
|
||||
"a photo taken of the front of a super-car drifting on a road near "
|
||||
"mountains at high speeds with smokes coming off the tires, front "
|
||||
"mountains at high speeds with smoke coming off the tires, front "
|
||||
"angle, front point of view, trees in the mountains of the "
|
||||
"background, ((sharp focus))"
|
||||
],
|
||||
@@ -42,7 +44,7 @@ p.add_argument(
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--negative_prompts",
|
||||
"--negative_prompt",
|
||||
nargs="+",
|
||||
default=[
|
||||
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), "
|
||||
@@ -52,7 +54,7 @@ p.add_argument(
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--img_path",
|
||||
"--sd_init_image",
|
||||
type=str,
|
||||
help="Path to the image input for img2img/inpainting.",
|
||||
)
|
||||
@@ -83,7 +85,7 @@ p.add_argument(
|
||||
"--height",
|
||||
type=int,
|
||||
default=512,
|
||||
choices=range(128, 769, 8),
|
||||
choices=range(128, 1025, 8),
|
||||
help="The height of the output image.",
|
||||
)
|
||||
|
||||
@@ -91,7 +93,7 @@ p.add_argument(
|
||||
"--width",
|
||||
type=int,
|
||||
default=512,
|
||||
choices=range(128, 769, 8),
|
||||
choices=range(128, 1025, 8),
|
||||
help="The width of the output image.",
|
||||
)
|
||||
|
||||
@@ -128,8 +130,7 @@ p.add_argument(
|
||||
"--strength",
|
||||
type=float,
|
||||
default=0.8,
|
||||
help="The strength of change applied on the given input image for "
|
||||
"img2img.",
|
||||
help="The strength of change applied on the given input image for " "img2img.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
@@ -168,17 +169,7 @@ p.add_argument(
|
||||
"--resample_type",
|
||||
type=str,
|
||||
default="Nearest Neighbor",
|
||||
choices=[
|
||||
"Lanczos",
|
||||
"Nearest Neighbor",
|
||||
"Bilinear",
|
||||
"Bicubic",
|
||||
"Adaptive",
|
||||
"Antialias",
|
||||
"Box",
|
||||
"Affine",
|
||||
"Cubic",
|
||||
],
|
||||
choices=resampler_list,
|
||||
help="The resample type to use when resizing an image before being run "
|
||||
"through stable diffusion.",
|
||||
)
|
||||
@@ -253,28 +244,30 @@ p.add_argument(
|
||||
"--left",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="If expend left for outpainting.",
|
||||
help="If extend left for outpainting.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--right",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="If expend right for outpainting.",
|
||||
help="If extend right for outpainting.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--up",
|
||||
"--top",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="If expend top for outpainting.",
|
||||
help="If extend top for outpainting.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--down",
|
||||
"--bottom",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="If expend bottom for outpainting.",
|
||||
help="If extend bottom for outpainting.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
@@ -296,9 +289,7 @@ p.add_argument(
|
||||
# Model Config and Usage Params
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--device", type=str, default="vulkan", help="Device to run the model."
|
||||
)
|
||||
p.add_argument("--device", type=str, default="vulkan", help="Device to run the model.")
|
||||
|
||||
p.add_argument(
|
||||
"--precision", type=str, default="fp16", help="Precision to run the model."
|
||||
@@ -306,30 +297,15 @@ p.add_argument(
|
||||
|
||||
p.add_argument(
|
||||
"--import_mlir",
|
||||
default=False,
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Imports the model from torch module to shark_module otherwise "
|
||||
"downloads the model from shark_tank.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--load_vmfb",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Attempts to load the model from a precompiled flat-buffer "
|
||||
"and compiles + saves it if not found.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--save_vmfb",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Saves the compiled flat-buffer to the local directory.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--use_tuned",
|
||||
default=True,
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Download and use the tuned version of the model if available.",
|
||||
)
|
||||
@@ -344,7 +320,7 @@ p.add_argument(
|
||||
p.add_argument(
|
||||
"--scheduler",
|
||||
type=str,
|
||||
default="SharkEulerDiscrete",
|
||||
default="DDIM",
|
||||
help="Other supported schedulers are [DDIM, PNDM, LMSDiscrete, "
|
||||
"DPMSolverMultistep, DPMSolverMultistep++, DPMSolverMultistepKarras, "
|
||||
"DPMSolverMultistepKarras++, EulerDiscrete, EulerAncestralDiscrete, "
|
||||
@@ -363,7 +339,7 @@ p.add_argument(
|
||||
p.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
default=os.path.join(os.getcwd(), "generated_imgs"),
|
||||
help="Directory path to save the output images and json.",
|
||||
)
|
||||
|
||||
@@ -371,8 +347,7 @@ p.add_argument(
|
||||
"--batch_count",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of batches to be generated with random seeds in "
|
||||
"single execution.",
|
||||
help="Number of batches to be generated with random seeds in " "single execution.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
@@ -384,10 +359,10 @@ p.add_argument(
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--ckpt_loc",
|
||||
"--custom_weights",
|
||||
type=str,
|
||||
default="",
|
||||
help="Path to SD's .ckpt file.",
|
||||
help="Path to a .safetensors or .ckpt file for SD pipeline weights.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
@@ -399,7 +374,7 @@ p.add_argument(
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--hf_model_id",
|
||||
"--base_model_id",
|
||||
type=str,
|
||||
default="stabilityai/stable-diffusion-2-1-base",
|
||||
help="The repo-id of hugging face.",
|
||||
@@ -422,16 +397,22 @@ p.add_argument(
|
||||
|
||||
p.add_argument(
|
||||
"--use_stencil",
|
||||
choices=["canny", "openpose", "scribble"],
|
||||
choices=["canny", "openpose", "scribble", "zoedepth"],
|
||||
help="Enable the stencil feature.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--control_mode",
|
||||
choices=["Prompt", "Balanced", "Controlnet"],
|
||||
default="Balanced",
|
||||
help="How Controlnet injection should be prioritized.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--use_lora",
|
||||
type=str,
|
||||
default="",
|
||||
help="Use standalone LoRA weight using a HF ID or a checkpoint "
|
||||
"file (~3 MB).",
|
||||
help="Use standalone LoRA weight using a HF ID or a checkpoint " "file (~3 MB).",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
@@ -445,7 +426,7 @@ p.add_argument(
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--ondemand",
|
||||
"--lowvram",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Load and unload models for low VRAM.",
|
||||
@@ -458,6 +439,13 @@ p.add_argument(
|
||||
help="Specify your own huggingface authentication tokens for models like Llama2.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--external_weights",
|
||||
type=str,
|
||||
default=None,
|
||||
help="What type of externalized weights to use. Currently options are 'safetensors' and defaults to inlined weights.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--device_allocator_heap_key",
|
||||
type=str,
|
||||
@@ -466,6 +454,7 @@ p.add_argument(
|
||||
"Expected form: max_allocation_size;max_allocation_capacity;max_free_allocation_count"
|
||||
"Example: --device_allocator_heap_key='*;1gib' (will limit caching on device to 1 gigabyte)",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
# IREE - Vulkan supported flags
|
||||
##############################################################################
|
||||
@@ -506,8 +495,7 @@ p.add_argument(
|
||||
"--dump_isa",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="When enabled call amdllpc to get ISA dumps. "
|
||||
"Use with dispatch benchmarks.",
|
||||
help="When enabled call amdllpc to get ISA dumps. " "Use with dispatch benchmarks.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
@@ -528,8 +516,7 @@ p.add_argument(
|
||||
"--enable_rgp",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Flag for inserting debug frames between iterations "
|
||||
"for use with rgp.",
|
||||
help="Flag for inserting debug frames between iterations " "for use with rgp.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
@@ -593,25 +580,60 @@ p.add_argument(
|
||||
help="Controls constant folding in iree-compile for all SD models.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--data_tiling",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Controls data tiling in iree-compile for all SD models.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--quantization",
|
||||
type=str,
|
||||
default="None",
|
||||
help="Quantization to be used for api-exposed model.",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
# Web UI flags
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--progress_bar",
|
||||
"--webui",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Flag for removing the progress bar animation during "
|
||||
"image generation.",
|
||||
help="controls whether the webui is launched.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--ckpt_dir",
|
||||
"--progress_bar",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Flag for removing the progress bar animation during " "image generation.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--tmp_dir",
|
||||
type=str,
|
||||
default="",
|
||||
default=os.path.join(os.getcwd(), "shark_tmp"),
|
||||
help="Path to tmp directory",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--config_dir",
|
||||
type=str,
|
||||
default=os.path.join(os.getcwd(), "configs"),
|
||||
help="Path to config directory",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--model_dir",
|
||||
type=str,
|
||||
default=os.path.join(os.getcwd(), "models"),
|
||||
help="Path to directory where all .ckpts are stored in order to populate "
|
||||
"them in the web UI.",
|
||||
)
|
||||
|
||||
# TODO: replace API flag when these can be run together
|
||||
p.add_argument(
|
||||
"--ui",
|
||||
@@ -641,6 +663,18 @@ p.add_argument(
|
||||
help="Flag for enabling rest API.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--api_accept_origin",
|
||||
action="append",
|
||||
type=str,
|
||||
help="An origin to be accepted by the REST api for Cross Origin"
|
||||
"Resource Sharing (CORS). Use multiple times for multiple origins, "
|
||||
'or use --api_accept_origin="*" to accept all origins. If no origins '
|
||||
"are set no CORS headers will be returned by the api. Use, for "
|
||||
"instance, if you need to access the REST api from Javascript running "
|
||||
"in a web browser.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--debug",
|
||||
default=False,
|
||||
@@ -656,6 +690,13 @@ p.add_argument(
|
||||
"images under --output_dir in the UI.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--configs_path",
|
||||
default=None,
|
||||
type=str,
|
||||
help="Path to .json config directory.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--output_gallery_followlinks",
|
||||
default=False,
|
||||
@@ -664,6 +705,12 @@ p.add_argument(
|
||||
"follow symlinks when listing subdirectories under --output_dir.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--api_log",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Enables Compatibility API logging.",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
# SD model auto-annotation flags
|
||||
@@ -725,8 +772,20 @@ p.add_argument(
|
||||
help="Specifies whether the docuchat's web version is running or not.",
|
||||
)
|
||||
|
||||
args, unknown = p.parse_known_args()
|
||||
if args.import_debug:
|
||||
##############################################################################
|
||||
# rocm Flags
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--iree_rocm_target_chip",
|
||||
type=str,
|
||||
default="",
|
||||
help="Add the rocm device architecture ex gfx1100, gfx90a, etc. Use `hipinfo` "
|
||||
"or `iree-run-module --dump_devices=rocm` or `hipinfo` to get desired arch name",
|
||||
)
|
||||
|
||||
cmd_opts, unknown = p.parse_known_args()
|
||||
if cmd_opts.import_debug:
|
||||
os.environ["IREE_SAVE_TEMPS"] = os.path.join(
|
||||
os.getcwd(), args.hf_model_id.replace("/", "_")
|
||||
os.getcwd(), cmd_opts.hf_model_id.replace("/", "_")
|
||||
)
|
||||
106
apps/shark_studio/modules/timer.py
Normal file
106
apps/shark_studio/modules/timer.py
Normal file
@@ -0,0 +1,106 @@
|
||||
import time
|
||||
import argparse
|
||||
|
||||
|
||||
class TimerSubcategory:
|
||||
def __init__(self, timer, category):
|
||||
self.timer = timer
|
||||
self.category = category
|
||||
self.start = None
|
||||
self.original_base_category = timer.base_category
|
||||
|
||||
def __enter__(self):
|
||||
self.start = time.time()
|
||||
self.timer.base_category = self.original_base_category + self.category + "/"
|
||||
self.timer.subcategory_level += 1
|
||||
|
||||
if self.timer.print_log:
|
||||
print(f"{' ' * self.timer.subcategory_level}{self.category}:")
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
elapsed_for_subcategroy = time.time() - self.start
|
||||
self.timer.base_category = self.original_base_category
|
||||
self.timer.add_time_to_record(
|
||||
self.original_base_category + self.category,
|
||||
elapsed_for_subcategroy,
|
||||
)
|
||||
self.timer.subcategory_level -= 1
|
||||
self.timer.record(self.category, disable_log=True)
|
||||
|
||||
|
||||
class Timer:
|
||||
def __init__(self, print_log=False):
|
||||
self.start = time.time()
|
||||
self.records = {}
|
||||
self.total = 0
|
||||
self.base_category = ""
|
||||
self.print_log = print_log
|
||||
self.subcategory_level = 0
|
||||
|
||||
def elapsed(self):
|
||||
end = time.time()
|
||||
res = end - self.start
|
||||
self.start = end
|
||||
return res
|
||||
|
||||
def add_time_to_record(self, category, amount):
|
||||
if category not in self.records:
|
||||
self.records[category] = 0
|
||||
|
||||
self.records[category] += amount
|
||||
|
||||
def record(self, category, extra_time=0, disable_log=False):
|
||||
e = self.elapsed()
|
||||
|
||||
self.add_time_to_record(self.base_category + category, e + extra_time)
|
||||
|
||||
self.total += e + extra_time
|
||||
|
||||
if self.print_log and not disable_log:
|
||||
print(
|
||||
f"{' ' * self.subcategory_level}{category}: done in {e + extra_time:.3f}s"
|
||||
)
|
||||
|
||||
def subcategory(self, name):
|
||||
self.elapsed()
|
||||
|
||||
subcat = TimerSubcategory(self, name)
|
||||
return subcat
|
||||
|
||||
def summary(self):
|
||||
res = f"{self.total:.1f}s"
|
||||
|
||||
additions = [
|
||||
(category, time_taken)
|
||||
for category, time_taken in self.records.items()
|
||||
if time_taken >= 0.1 and "/" not in category
|
||||
]
|
||||
if not additions:
|
||||
return res
|
||||
|
||||
res += " ("
|
||||
res += ", ".join(
|
||||
[f"{category}: {time_taken:.1f}s" for category, time_taken in additions]
|
||||
)
|
||||
res += ")"
|
||||
|
||||
return res
|
||||
|
||||
def dump(self):
|
||||
return {"total": self.total, "records": self.records}
|
||||
|
||||
def reset(self):
|
||||
self.__init__()
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument(
|
||||
"--log-startup",
|
||||
action="store_true",
|
||||
help="print a detailed log of what's happening at startup",
|
||||
)
|
||||
args = parser.parse_known_args()[0]
|
||||
|
||||
startup_timer = Timer(print_log=args.log_startup)
|
||||
|
||||
startup_record = None
|
||||
@@ -1,5 +1,5 @@
|
||||
# -*- mode: python ; coding: utf-8 -*-
|
||||
from apps.stable_diffusion.shark_studio_imports import pathex, datas, hiddenimports
|
||||
from apps.shark_studio.studio_imports import pathex, datas, hiddenimports
|
||||
|
||||
binaries = []
|
||||
|
||||
@@ -19,6 +19,9 @@ a = Analysis(
|
||||
win_private_assemblies=False,
|
||||
cipher=block_cipher,
|
||||
noarchive=False,
|
||||
module_collection_mode={
|
||||
'gradio': 'py', # Collect gradio package as source .py files
|
||||
},
|
||||
)
|
||||
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
|
||||
|
||||
@@ -9,8 +9,6 @@ sys.setrecursionlimit(sys.getrecursionlimit() * 5)
|
||||
# python path for pyinstaller
|
||||
pathex = [
|
||||
".",
|
||||
"./apps/language_models/langchain",
|
||||
"./apps/language_models/src/pipelines/minigpt4_utils",
|
||||
]
|
||||
|
||||
# datafiles for pyinstaller
|
||||
@@ -24,64 +22,47 @@ datas += copy_metadata("packaging")
|
||||
datas += copy_metadata("filelock")
|
||||
datas += copy_metadata("numpy")
|
||||
datas += copy_metadata("importlib_metadata")
|
||||
datas += copy_metadata("torch-mlir")
|
||||
datas += copy_metadata("omegaconf")
|
||||
datas += copy_metadata("safetensors")
|
||||
datas += copy_metadata("Pillow")
|
||||
datas += copy_metadata("sentencepiece")
|
||||
datas += copy_metadata("pyyaml")
|
||||
datas += copy_metadata("huggingface-hub")
|
||||
datas += copy_metadata("gradio")
|
||||
datas += copy_metadata("scipy")
|
||||
datas += collect_data_files("torch")
|
||||
datas += collect_data_files("tokenizers")
|
||||
datas += collect_data_files("tiktoken")
|
||||
datas += collect_data_files("accelerate")
|
||||
datas += collect_data_files("diffusers")
|
||||
datas += collect_data_files("transformers")
|
||||
datas += collect_data_files("pytorch_lightning")
|
||||
datas += collect_data_files("skimage")
|
||||
datas += collect_data_files("gradio")
|
||||
datas += collect_data_files("gradio_client")
|
||||
datas += collect_data_files("iree")
|
||||
datas += collect_data_files("iree", include_py_files=True)
|
||||
datas += collect_data_files("shark", include_py_files=True)
|
||||
datas += collect_data_files("timm", include_py_files=True)
|
||||
datas += collect_data_files("tqdm")
|
||||
datas += collect_data_files("tkinter")
|
||||
datas += collect_data_files("webview")
|
||||
datas += collect_data_files("sentencepiece")
|
||||
datas += collect_data_files("jsonschema")
|
||||
datas += collect_data_files("jsonschema_specifications")
|
||||
datas += collect_data_files("cpuinfo")
|
||||
datas += collect_data_files("langchain")
|
||||
datas += collect_data_files("cv2")
|
||||
datas += collect_data_files("scipy", include_py_files=True)
|
||||
datas += [
|
||||
("src/utils/resources/prompts.json", "resources"),
|
||||
("src/utils/resources/model_db.json", "resources"),
|
||||
("src/utils/resources/opt_flags.json", "resources"),
|
||||
("src/utils/resources/base_model.json", "resources"),
|
||||
("web/ui/css/*", "ui/css"),
|
||||
("web/ui/js/*", "ui/js"),
|
||||
("web/ui/logos/*", "logos"),
|
||||
(
|
||||
"../language_models/src/pipelines/minigpt4_utils/configs/*",
|
||||
"minigpt4_utils/configs",
|
||||
),
|
||||
(
|
||||
"../language_models/src/pipelines/minigpt4_utils/prompts/*",
|
||||
"minigpt4_utils/prompts",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
# hidden imports for pyinstaller
|
||||
hiddenimports = ["shark", "shark.shark_inference", "apps"]
|
||||
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
|
||||
hiddenimports += [
|
||||
x for x in collect_submodules("diffusers") if "tests" not in x
|
||||
]
|
||||
hiddenimports = ["shark", "apps"]
|
||||
hiddenimports += [x for x in collect_submodules("gradio") if "tests" not in x]
|
||||
hiddenimports += [x for x in collect_submodules("diffusers") if "tests" not in x]
|
||||
blacklist = ["tests", "convert"]
|
||||
hiddenimports += [
|
||||
x
|
||||
for x in collect_submodules("transformers")
|
||||
if not any(kw in x for kw in blacklist)
|
||||
]
|
||||
hiddenimports += [x for x in collect_submodules("iree") if "tests" not in x]
|
||||
hiddenimports += ["iree._runtime", "iree.compiler._mlir_libs._mlir.ir"]
|
||||
hiddenimports += [x for x in collect_submodules("iree") if "test" not in x]
|
||||
hiddenimports += ["iree._runtime"]
|
||||
hiddenimports += [x for x in collect_submodules("scipy") if "test" not in x]
|
||||
58
apps/shark_studio/tests/api_test.py
Normal file
58
apps/shark_studio/tests/api_test.py
Normal file
@@ -0,0 +1,58 @@
|
||||
# Copyright 2023 Nod Labs, Inc
|
||||
#
|
||||
# Licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
# See https://llvm.org/LICENSE.txt for license information.
|
||||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
import logging
|
||||
import unittest
|
||||
import json
|
||||
import gc
|
||||
from apps.shark_studio.api.llm import LanguageModel, llm_chat_api
|
||||
from apps.shark_studio.api.sd import shark_sd_fn_dict_input, view_json_file
|
||||
from apps.shark_studio.web.utils.file_utils import get_resource_path
|
||||
|
||||
# class SDAPITest(unittest.TestCase):
|
||||
# def testSDSimple(self):
|
||||
# from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
# import apps.shark_studio.web.utils.globals as global_obj
|
||||
|
||||
# global_obj._init()
|
||||
|
||||
# sd_json = view_json_file(get_resource_path("../configs/default_sd_config.json"))
|
||||
# sd_kwargs = json.loads(sd_json)
|
||||
# for arg in vars(cmd_opts):
|
||||
# if arg in sd_kwargs:
|
||||
# sd_kwargs[arg] = getattr(cmd_opts, arg)
|
||||
# for i in shark_sd_fn_dict_input(sd_kwargs):
|
||||
# print(i)
|
||||
|
||||
|
||||
class LLMAPITest(unittest.TestCase):
|
||||
def test01_LLMSmall(self):
|
||||
lm = LanguageModel(
|
||||
"TinyPixel/small-llama2",
|
||||
hf_auth_token=None,
|
||||
device="cpu",
|
||||
precision="fp32",
|
||||
quantization="None",
|
||||
streaming_llm=True,
|
||||
)
|
||||
count = 0
|
||||
label = "Turkishoure Turkish"
|
||||
for msg, _ in lm.chat("hi, what are you?"):
|
||||
# skip first token output
|
||||
if count == 0:
|
||||
count += 1
|
||||
continue
|
||||
assert (
|
||||
msg.strip(" ") == label
|
||||
), f"LLM API failed to return correct response, expected '{label}', received {msg}"
|
||||
break
|
||||
del lm
|
||||
gc.collect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
unittest.main()
|
||||
41
apps/shark_studio/tests/export_unet.py
Normal file
41
apps/shark_studio/tests/export_unet.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import torch
|
||||
from diffusers import (
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from torch.fx.experimental.proxy_tensor import make_fx
|
||||
|
||||
|
||||
class UnetModel(torch.nn.Module):
|
||||
def __init__(self, hf_model_name):
|
||||
super().__init__()
|
||||
self.unet = UNet2DConditionModel.from_pretrained(
|
||||
hf_model_name,
|
||||
subfolder="unet",
|
||||
)
|
||||
|
||||
def forward(self, sample, timestep, encoder_hidden_states, guidance_scale):
|
||||
samples = torch.cat([sample] * 2)
|
||||
unet_out = self.unet.forward(
|
||||
samples, timestep, encoder_hidden_states, return_dict=False
|
||||
)[0]
|
||||
noise_pred_uncond, noise_pred_text = unet_out.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (
|
||||
noise_pred_text - noise_pred_uncond
|
||||
)
|
||||
return noise_pred
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
hf_model_name = "CompVis/stable-diffusion-v1-4"
|
||||
unet = UnetModel(hf_model_name)
|
||||
inputs = (torch.randn(1, 4, 64, 64), 1, torch.randn(2, 77, 768), 7.5)
|
||||
|
||||
fx_g = make_fx(
|
||||
unet,
|
||||
decomposition_table={},
|
||||
tracing_mode="symbolic",
|
||||
_allow_non_fake_inputs=True,
|
||||
_allow_fake_constant=False,
|
||||
)(*inputs)
|
||||
|
||||
print(fx_g)
|
||||
BIN
apps/shark_studio/tests/jupiter.png
Normal file
BIN
apps/shark_studio/tests/jupiter.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 347 KiB |
45
apps/shark_studio/tests/rest_api_test.py
Normal file
45
apps/shark_studio/tests/rest_api_test.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import requests
|
||||
from PIL import Image
|
||||
import base64
|
||||
from io import BytesIO
|
||||
import json
|
||||
|
||||
|
||||
def llm_chat_test(verbose=False):
|
||||
# Define values here
|
||||
prompt = "What is the significance of the number 42?"
|
||||
|
||||
url = "http://127.0.0.1:8080/v1/chat/completions"
|
||||
|
||||
headers = {
|
||||
"User-Agent": "PythonTest",
|
||||
"Accept": "*/*",
|
||||
"Accept-Encoding": "gzip, deflate, br",
|
||||
}
|
||||
|
||||
data = {
|
||||
"model": "Trelis/Llama-2-7b-chat-hf-function-calling-v2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "",
|
||||
"content": prompt,
|
||||
}
|
||||
],
|
||||
"device": "vulkan://0",
|
||||
"max_tokens": 4096,
|
||||
}
|
||||
|
||||
res = requests.post(url=url, json=data, headers=headers, timeout=1000)
|
||||
res_dict = json.loads(res.content.decode("utf-8"))
|
||||
print(f"[chat] response from server was : {res.status_code} {res.reason}")
|
||||
|
||||
if verbose or res.status_code != 200:
|
||||
print(f"\n{res_dict['choices'][0]['message']['content']}\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# "Exercises the chatbot REST API of Shark. Make sure "
|
||||
# "Shark is running in API mode on 127.0.0.1:8080 before running"
|
||||
# "this script."
|
||||
|
||||
llm_chat_test(verbose=True)
|
||||
286
apps/shark_studio/web/api/compat.py
Normal file
286
apps/shark_studio/web/api/compat.py
Normal file
@@ -0,0 +1,286 @@
|
||||
import base64
|
||||
import io
|
||||
import os
|
||||
import time
|
||||
import datetime
|
||||
import uvicorn
|
||||
import ipaddress
|
||||
import requests
|
||||
import threading
|
||||
import collections
|
||||
import gradio as gr
|
||||
from PIL import Image, PngImagePlugin
|
||||
from threading import Lock
|
||||
from io import BytesIO
|
||||
from fastapi import APIRouter, Depends, FastAPI, Request, Response
|
||||
from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||
from fastapi.exceptions import HTTPException
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
|
||||
# from sdapi_v1 import shark_sd_api
|
||||
from apps.shark_studio.api.llm import llm_chat_api
|
||||
|
||||
|
||||
def decode_base64_to_image(encoding):
|
||||
if encoding.startswith("http://") or encoding.startswith("https://"):
|
||||
headers = {}
|
||||
response = requests.get(encoding, timeout=30, headers=headers)
|
||||
try:
|
||||
image = Image.open(BytesIO(response.content))
|
||||
return image
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="Invalid image url") from e
|
||||
|
||||
if encoding.startswith("data:image/"):
|
||||
encoding = encoding.split(";")[1].split(",")[1]
|
||||
try:
|
||||
image = Image.open(BytesIO(base64.b64decode(encoding)))
|
||||
return image
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="Invalid encoded image") from e
|
||||
|
||||
|
||||
def encode_pil_to_base64(image):
|
||||
with io.BytesIO() as output_bytes:
|
||||
use_metadata = False
|
||||
metadata = PngImagePlugin.PngInfo()
|
||||
for key, value in image.info.items():
|
||||
if isinstance(key, str) and isinstance(value, str):
|
||||
metadata.add_text(key, value)
|
||||
use_metadata = True
|
||||
image.save(
|
||||
output_bytes,
|
||||
format="PNG",
|
||||
pnginfo=(metadata if use_metadata else None),
|
||||
)
|
||||
|
||||
bytes_data = output_bytes.getvalue()
|
||||
|
||||
return base64.b64encode(bytes_data)
|
||||
|
||||
|
||||
# reference: https://gist.github.com/vitaliyp/6d54dd76ca2c3cdfc1149d33007dc34a
|
||||
class FIFOLock(object):
|
||||
def __init__(self):
|
||||
self._lock = threading.Lock()
|
||||
self._inner_lock = threading.Lock()
|
||||
self._pending_threads = collections.deque()
|
||||
|
||||
def acquire(self, blocking=True):
|
||||
with self._inner_lock:
|
||||
lock_acquired = self._lock.acquire(False)
|
||||
if lock_acquired:
|
||||
return True
|
||||
elif not blocking:
|
||||
return False
|
||||
|
||||
release_event = threading.Event()
|
||||
self._pending_threads.append(release_event)
|
||||
|
||||
release_event.wait()
|
||||
return self._lock.acquire()
|
||||
|
||||
def release(self):
|
||||
with self._inner_lock:
|
||||
if self._pending_threads:
|
||||
release_event = self._pending_threads.popleft()
|
||||
release_event.set()
|
||||
|
||||
self._lock.release()
|
||||
|
||||
__enter__ = acquire
|
||||
|
||||
def __exit__(self, t, v, tb):
|
||||
self.release()
|
||||
|
||||
|
||||
def api_middleware(app: FastAPI):
|
||||
rich_available = False
|
||||
try:
|
||||
if os.environ.get("WEBUI_RICH_EXCEPTIONS", None) is not None:
|
||||
import anyio # importing just so it can be placed on silent list
|
||||
import starlette # importing just so it can be placed on silent list
|
||||
from rich.console import Console
|
||||
|
||||
console = Console()
|
||||
rich_available = True
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
@app.middleware("http")
|
||||
async def log_and_time(req: Request, call_next):
|
||||
ts = time.time()
|
||||
res: Response = await call_next(req)
|
||||
duration = str(round(time.time() - ts, 4))
|
||||
res.headers["X-Process-Time"] = duration
|
||||
endpoint = req.scope.get("path", "err")
|
||||
if cmd_opts.api_log and endpoint.startswith("/sdapi"):
|
||||
print(
|
||||
"API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}".format(
|
||||
t=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
|
||||
code=res.status_code,
|
||||
ver=req.scope.get("http_version", "0.0"),
|
||||
cli=req.scope.get("client", ("0:0.0.0", 0))[0],
|
||||
prot=req.scope.get("scheme", "err"),
|
||||
method=req.scope.get("method", "err"),
|
||||
endpoint=endpoint,
|
||||
duration=duration,
|
||||
)
|
||||
)
|
||||
return res
|
||||
|
||||
def handle_exception(request: Request, e: Exception):
|
||||
err = {
|
||||
"error": type(e).__name__,
|
||||
"detail": vars(e).get("detail", ""),
|
||||
"body": vars(e).get("body", ""),
|
||||
"errors": str(e),
|
||||
}
|
||||
if not isinstance(
|
||||
e, HTTPException
|
||||
): # do not print backtrace on known httpexceptions
|
||||
message = f"API error: {request.method}: {request.url} {err}"
|
||||
if rich_available:
|
||||
print(message)
|
||||
console.print_exception(
|
||||
show_locals=True,
|
||||
max_frames=2,
|
||||
extra_lines=1,
|
||||
suppress=[anyio, starlette],
|
||||
word_wrap=False,
|
||||
width=min([console.width, 200]),
|
||||
)
|
||||
else:
|
||||
print(message)
|
||||
raise (e)
|
||||
return JSONResponse(
|
||||
status_code=vars(e).get("status_code", 500),
|
||||
content=jsonable_encoder(err),
|
||||
)
|
||||
|
||||
@app.middleware("http")
|
||||
async def exception_handling(request: Request, call_next):
|
||||
try:
|
||||
return await call_next(request)
|
||||
except Exception as e:
|
||||
return handle_exception(request, e)
|
||||
|
||||
@app.exception_handler(Exception)
|
||||
async def fastapi_exception_handler(request: Request, e: Exception):
|
||||
return handle_exception(request, e)
|
||||
|
||||
@app.exception_handler(HTTPException)
|
||||
async def http_exception_handler(request: Request, e: HTTPException):
|
||||
return handle_exception(request, e)
|
||||
|
||||
|
||||
class ApiCompat:
|
||||
def __init__(self, app: FastAPI, queue_lock: Lock):
|
||||
self.router = APIRouter()
|
||||
self.app = app
|
||||
self.queue_lock = queue_lock
|
||||
api_middleware(self.app)
|
||||
# self.add_api_route("/sdapi/v1/txt2img", shark_sd_api, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/img2img", shark_sd_api, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/upscaler", self.upscaler_api, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse)
|
||||
# self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse)
|
||||
# self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse)
|
||||
# self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse)
|
||||
# self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel)
|
||||
# self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
|
||||
# self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem])
|
||||
# self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem])
|
||||
# self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=List[models.LatentUpscalerModeItem])
|
||||
# self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem])
|
||||
# self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem])
|
||||
# self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem])
|
||||
# self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem])
|
||||
# self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem])
|
||||
# self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem])
|
||||
# self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse)
|
||||
# self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse)
|
||||
# self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse)
|
||||
# self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse)
|
||||
# self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse)
|
||||
# self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse)
|
||||
# self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse)
|
||||
# self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
|
||||
# self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
|
||||
# self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
|
||||
|
||||
# chat APIs needed for compatibility with multiple extensions using OpenAI API
|
||||
self.add_api_route("/v1/chat/completions", llm_chat_api, methods=["POST"])
|
||||
self.add_api_route("/v1/completions", llm_chat_api, methods=["POST"])
|
||||
self.add_api_route("/chat/completions", llm_chat_api, methods=["POST"])
|
||||
self.add_api_route("/completions", llm_chat_api, methods=["POST"])
|
||||
self.add_api_route(
|
||||
"/v1/engines/codegen/completions", llm_chat_api, methods=["POST"]
|
||||
)
|
||||
|
||||
self.default_script_arg_txt2img = []
|
||||
self.default_script_arg_img2img = []
|
||||
|
||||
def add_api_route(self, path: str, endpoint, **kwargs):
|
||||
return self.app.add_api_route(path, endpoint, **kwargs)
|
||||
|
||||
# def refresh_checkpoints(self):
|
||||
# with self.queue_lock:
|
||||
# studio_data.refresh_checkpoints()
|
||||
|
||||
# def refresh_vae(self):
|
||||
# with self.queue_lock:
|
||||
# studio_data.refresh_vae_list()
|
||||
|
||||
# def unloadapi(self):
|
||||
# unload_model_weights()
|
||||
|
||||
# return {}
|
||||
|
||||
# def reloadapi(self):
|
||||
# reload_model_weights()
|
||||
|
||||
# return {}
|
||||
|
||||
# def skip(self):
|
||||
# studio.state.skip()
|
||||
|
||||
def launch(self, server_name, port, root_path):
|
||||
self.app.include_router(self.router)
|
||||
uvicorn.run(
|
||||
self.app,
|
||||
host=server_name,
|
||||
port=port,
|
||||
root_path=root_path,
|
||||
)
|
||||
|
||||
# def kill_studio(self):
|
||||
# restart.stop_program()
|
||||
|
||||
# def restart_studio(self):
|
||||
# if restart.is_restartable():
|
||||
# restart.restart_program()
|
||||
# return Response(status_code=501)
|
||||
|
||||
# def preprocess(self, args: dict):
|
||||
# try:
|
||||
# studio.state.begin(job="preprocess")
|
||||
# preprocess(**args)
|
||||
# studio.state.end()
|
||||
# return models.PreprocessResponse(info="preprocess complete")
|
||||
# except:
|
||||
# studio.state.end()
|
||||
|
||||
# def stop_studio(request):
|
||||
# studio.state.server_command = "stop"
|
||||
# return Response("Stopping.")
|
||||
1
apps/shark_studio/web/api/sd.py
Normal file
1
apps/shark_studio/web/api/sd.py
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
222
apps/shark_studio/web/index.py
Normal file
222
apps/shark_studio/web/index.py
Normal file
@@ -0,0 +1,222 @@
|
||||
from multiprocessing import Process, freeze_support
|
||||
|
||||
freeze_support()
|
||||
from PIL import Image
|
||||
|
||||
import os
|
||||
import time
|
||||
import sys
|
||||
import logging
|
||||
import apps.shark_studio.api.initializers as initialize
|
||||
|
||||
|
||||
from apps.shark_studio.modules import timer
|
||||
|
||||
startup_timer = timer.startup_timer
|
||||
startup_timer.record("launcher")
|
||||
|
||||
initialize.imports()
|
||||
|
||||
if sys.platform == "darwin":
|
||||
os.environ["DYLD_LIBRARY_PATH"] = "/usr/local/lib"
|
||||
# import before IREE to avoid MLIR library issues
|
||||
import torch_mlir
|
||||
|
||||
|
||||
def create_api(app):
|
||||
from apps.shark_studio.web.api.compat import ApiCompat, FIFOLock
|
||||
|
||||
queue_lock = FIFOLock()
|
||||
api = ApiCompat(app, queue_lock)
|
||||
return api
|
||||
|
||||
|
||||
def api_only():
|
||||
from fastapi import FastAPI
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
|
||||
initialize.initialize()
|
||||
|
||||
app = FastAPI()
|
||||
initialize.setup_middleware(app)
|
||||
api = create_api(app)
|
||||
|
||||
# from modules import script_callbacks
|
||||
# script_callbacks.before_ui_callback()
|
||||
# script_callbacks.app_started_callback(None, app)
|
||||
|
||||
print(f"Startup time: {startup_timer.summary()}.")
|
||||
api.launch(
|
||||
server_name="0.0.0.0",
|
||||
port=cmd_opts.server_port,
|
||||
root_path="",
|
||||
)
|
||||
|
||||
|
||||
def launch_webui(address):
|
||||
from tkinter import Tk
|
||||
import webview
|
||||
|
||||
window = Tk()
|
||||
|
||||
# get screen width and height of display and make it more reasonably
|
||||
# sized as we aren't making it full-screen or maximized
|
||||
width = int(window.winfo_screenwidth() * 0.81)
|
||||
height = int(window.winfo_screenheight() * 0.91)
|
||||
webview.create_window(
|
||||
"SHARK AI Studio",
|
||||
url=address,
|
||||
width=width,
|
||||
height=height,
|
||||
text_select=True,
|
||||
)
|
||||
webview.start(private_mode=False, storage_path=os.getcwd())
|
||||
|
||||
|
||||
def webui():
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
from apps.shark_studio.web.ui.utils import (
|
||||
amdicon_loc,
|
||||
amdlogo_loc,
|
||||
)
|
||||
|
||||
launch_api = cmd_opts.api
|
||||
initialize.initialize()
|
||||
|
||||
from ui.chat import chat_element
|
||||
from ui.sd import sd_element
|
||||
from ui.outputgallery import outputgallery_element
|
||||
|
||||
# required to do multiprocessing in a pyinstaller freeze
|
||||
freeze_support()
|
||||
|
||||
# if args.api or "api" in args.ui.split(","):
|
||||
# from apps.shark_studio.api.llm import (
|
||||
# chat,
|
||||
# )
|
||||
# from apps.shark_studio.web.api import sdapi
|
||||
#
|
||||
# from fastapi import FastAPI, APIRouter
|
||||
# from fastapi.middleware.cors import CORSMiddleware
|
||||
# import uvicorn
|
||||
#
|
||||
# # init global sd pipeline and config
|
||||
# global_obj._init()
|
||||
#
|
||||
# api = FastAPI()
|
||||
# api.mount("/sdapi/", sdapi)
|
||||
#
|
||||
# # chat APIs needed for compatibility with multiple extensions using OpenAI API
|
||||
# api.add_api_route(
|
||||
# "/v1/chat/completions", llm_chat_api, methods=["post"]
|
||||
# )
|
||||
# api.add_api_route("/v1/completions", llm_chat_api, methods=["post"])
|
||||
# api.add_api_route("/chat/completions", llm_chat_api, methods=["post"])
|
||||
# api.add_api_route("/completions", llm_chat_api, methods=["post"])
|
||||
# api.add_api_route(
|
||||
# "/v1/engines/codegen/completions", llm_chat_api, methods=["post"]
|
||||
# )
|
||||
# api.include_router(APIRouter())
|
||||
#
|
||||
# # deal with CORS requests if CORS accept origins are set
|
||||
# if args.api_accept_origin:
|
||||
# print(
|
||||
# f"API Configured for CORS. Accepting origins: { args.api_accept_origin }"
|
||||
# )
|
||||
# api.add_middleware(
|
||||
# CORSMiddleware,
|
||||
# allow_origins=args.api_accept_origin,
|
||||
# allow_methods=["GET", "POST"],
|
||||
# allow_headers=["*"],
|
||||
# )
|
||||
# else:
|
||||
# print("API not configured for CORS")
|
||||
#
|
||||
# uvicorn.run(api, host="0.0.0.0", port=args.server_port)
|
||||
# sys.exit(0)
|
||||
import gradio as gr
|
||||
|
||||
def resource_path(relative_path):
|
||||
"""Get absolute path to resource, works for dev and for PyInstaller"""
|
||||
base_path = getattr(sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__)))
|
||||
return os.path.join(base_path, relative_path)
|
||||
|
||||
dark_theme = resource_path("ui/css/sd_dark_theme.css")
|
||||
gradio_workarounds = resource_path("ui/js/sd_gradio_workarounds.js")
|
||||
|
||||
# from apps.shark_studio.web.ui import load_ui_from_script
|
||||
|
||||
def register_button_click(button, selectedid, inputs, outputs):
|
||||
button.click(
|
||||
lambda x: (
|
||||
x[0]["name"] if len(x) != 0 else None,
|
||||
gr.Tabs.update(selected=selectedid),
|
||||
),
|
||||
inputs,
|
||||
outputs,
|
||||
)
|
||||
|
||||
def register_outputgallery_button(button, selectedid, inputs, outputs):
|
||||
button.click(
|
||||
lambda x: (
|
||||
x,
|
||||
gr.Tabs.update(selected=selectedid),
|
||||
),
|
||||
inputs,
|
||||
outputs,
|
||||
)
|
||||
|
||||
with gr.Blocks(
|
||||
css=dark_theme,
|
||||
js=gradio_workarounds,
|
||||
analytics_enabled=False,
|
||||
title="Shark Studio 2.0 Beta",
|
||||
) as studio_web:
|
||||
amd_logo = Image.open(amdlogo_loc)
|
||||
gr.Image(
|
||||
value=amd_logo,
|
||||
show_label=False,
|
||||
interactive=False,
|
||||
elem_id="tab_bar_logo",
|
||||
show_download_button=False,
|
||||
)
|
||||
with gr.Tabs() as tabs:
|
||||
# NOTE: If adding, removing, or re-ordering tabs, make sure that they
|
||||
# have a unique id that doesn't clash with any of the other tabs,
|
||||
# and that the order in the code here is the order they should
|
||||
# appear in the ui, as the id value doesn't determine the order.
|
||||
|
||||
# Where possible, avoid changing the id of any tab that is the
|
||||
# destination of one of the 'send to' buttons. If you do have to change
|
||||
# that id, make sure you update the relevant register_button_click calls
|
||||
# further down with the new id.
|
||||
with gr.TabItem(label="Stable Diffusion", id=0):
|
||||
sd_element.render()
|
||||
with gr.TabItem(label="Output Gallery", id=1):
|
||||
outputgallery_element.render()
|
||||
with gr.TabItem(label="Chat Bot", id=2):
|
||||
chat_element.render()
|
||||
|
||||
studio_web.queue()
|
||||
|
||||
# if args.ui == "app":
|
||||
# t = Process(
|
||||
# target=launch_app, args=[f"http://localhost:{args.server_port}"]
|
||||
# )
|
||||
# t.start()
|
||||
studio_web.launch(
|
||||
share=cmd_opts.share,
|
||||
inbrowser=True,
|
||||
server_name="0.0.0.0",
|
||||
server_port=cmd_opts.server_port,
|
||||
favicon_path=amdicon_loc,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
|
||||
if cmd_opts.webui == False:
|
||||
api_only()
|
||||
else:
|
||||
webui()
|
||||
239
apps/shark_studio/web/ui/chat.py
Normal file
239
apps/shark_studio/web/ui/chat.py
Normal file
@@ -0,0 +1,239 @@
|
||||
import gradio as gr
|
||||
import time
|
||||
import os
|
||||
from pathlib import Path
|
||||
from datetime import datetime as dt
|
||||
import json
|
||||
import sys
|
||||
from apps.shark_studio.api.llm import (
|
||||
llm_model_map,
|
||||
LanguageModel,
|
||||
)
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
import apps.shark_studio.web.utils.globals as global_obj
|
||||
|
||||
B_SYS, E_SYS = "<s>", "</s>"
|
||||
|
||||
B_SYS, E_SYS = "<s>", "</s>"
|
||||
|
||||
B_SYS, E_SYS = "<s>", "</s>"
|
||||
|
||||
|
||||
def user(message, history):
|
||||
# Append the user's message to the conversation history
|
||||
return "", history + [[message, ""]]
|
||||
|
||||
|
||||
def append_bot_prompt(history, input_prompt):
|
||||
user_prompt = f"{input_prompt} {E_SYS} {E_SYS}"
|
||||
history += user_prompt
|
||||
return history
|
||||
|
||||
|
||||
language_model = None
|
||||
|
||||
|
||||
def get_default_config():
|
||||
return False
|
||||
|
||||
|
||||
# model_vmfb_key = ""
|
||||
|
||||
|
||||
def chat_fn(
|
||||
prompt_prefix,
|
||||
history,
|
||||
model,
|
||||
device,
|
||||
precision,
|
||||
download_vmfb,
|
||||
config_file,
|
||||
streaming_llm,
|
||||
cli=False,
|
||||
):
|
||||
global language_model
|
||||
if streaming_llm and prompt_prefix == "Clear":
|
||||
language_model = None
|
||||
return "Clearing history...", ""
|
||||
if language_model is None:
|
||||
history[-1][-1] = "Getting the model ready..."
|
||||
yield history, ""
|
||||
language_model = LanguageModel(
|
||||
model,
|
||||
device=device,
|
||||
precision=precision,
|
||||
external_weights="safetensors",
|
||||
use_system_prompt=prompt_prefix,
|
||||
streaming_llm=streaming_llm,
|
||||
hf_auth_token=cmd_opts.hf_auth_token,
|
||||
)
|
||||
history[-1][-1] = "Getting the model ready... Done"
|
||||
yield history, ""
|
||||
history[-1][-1] = ""
|
||||
token_count = 0
|
||||
total_time = 0.001 # In order to avoid divide by zero error
|
||||
prefill_time = 0
|
||||
is_first = True
|
||||
for text, exec_time in language_model.chat(history):
|
||||
history[-1][-1] = f"{text}{E_SYS}"
|
||||
if is_first:
|
||||
prefill_time = exec_time
|
||||
is_first = False
|
||||
yield history, f"Prefill: {prefill_time:.2f}"
|
||||
else:
|
||||
total_time += exec_time
|
||||
token_count += 1
|
||||
tokens_per_sec = token_count / total_time
|
||||
yield history, f"Prefill: {prefill_time:.2f} seconds\n Decode: {tokens_per_sec:.2f} tokens/sec"
|
||||
|
||||
|
||||
def view_json_file(file_obj):
|
||||
content = ""
|
||||
with open(file_obj.name, "r") as fopen:
|
||||
content = fopen.read()
|
||||
return content
|
||||
|
||||
|
||||
with gr.Blocks(title="Chat") as chat_element:
|
||||
with gr.Row():
|
||||
model_choices = list(llm_model_map.keys())
|
||||
model = gr.Dropdown(
|
||||
label="Select Model",
|
||||
value=model_choices[0],
|
||||
choices=model_choices,
|
||||
allow_custom_value=True,
|
||||
)
|
||||
supported_devices = global_obj.get_device_list()
|
||||
enabled = True
|
||||
if len(supported_devices) == 0:
|
||||
supported_devices = ["cpu-task"]
|
||||
supported_devices = [x for x in supported_devices if "sync" not in x]
|
||||
device = gr.Dropdown(
|
||||
label="Device",
|
||||
value=supported_devices[0],
|
||||
choices=supported_devices,
|
||||
interactive=enabled,
|
||||
allow_custom_value=True,
|
||||
)
|
||||
precision = gr.Radio(
|
||||
label="Precision",
|
||||
value="fp32",
|
||||
choices=[
|
||||
# "int4",
|
||||
# "int8",
|
||||
# "fp16",
|
||||
"fp32",
|
||||
],
|
||||
visible=False,
|
||||
)
|
||||
tokens_time = gr.Textbox(label="Tokens generated per second")
|
||||
with gr.Column():
|
||||
download_vmfb = gr.Checkbox(
|
||||
label="Download vmfb from Shark tank if available",
|
||||
value=False,
|
||||
interactive=True,
|
||||
visible=False,
|
||||
)
|
||||
streaming_llm = gr.Checkbox(
|
||||
label="Run in streaming mode (requires recompilation)",
|
||||
value=True,
|
||||
interactive=False,
|
||||
visible=False,
|
||||
)
|
||||
prompt_prefix = gr.Checkbox(
|
||||
label="Add System Prompt",
|
||||
value=True,
|
||||
interactive=True,
|
||||
)
|
||||
|
||||
chatbot = gr.Chatbot(height=500)
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
msg = gr.Textbox(
|
||||
label="Chat Message Box",
|
||||
placeholder="Chat Message Box",
|
||||
show_label=False,
|
||||
interactive=enabled,
|
||||
container=False,
|
||||
)
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
submit = gr.Button("Submit", interactive=enabled)
|
||||
stop = gr.Button("Stop", interactive=enabled)
|
||||
clear = gr.Button("Clear", interactive=enabled)
|
||||
|
||||
with gr.Row(visible=False):
|
||||
with gr.Group():
|
||||
config_file = gr.File(label="Upload sharding configuration", visible=False)
|
||||
json_view_button = gr.Button("View as JSON", visible=False)
|
||||
json_view = gr.JSON(visible=False)
|
||||
json_view_button.click(
|
||||
fn=view_json_file, inputs=[config_file], outputs=[json_view]
|
||||
)
|
||||
submit_event = msg.submit(
|
||||
fn=user,
|
||||
inputs=[msg, chatbot],
|
||||
outputs=[msg, chatbot],
|
||||
show_progress=False,
|
||||
queue=False,
|
||||
).then(
|
||||
fn=chat_fn,
|
||||
inputs=[
|
||||
prompt_prefix,
|
||||
chatbot,
|
||||
model,
|
||||
device,
|
||||
precision,
|
||||
download_vmfb,
|
||||
config_file,
|
||||
streaming_llm,
|
||||
],
|
||||
outputs=[chatbot, tokens_time],
|
||||
show_progress=False,
|
||||
queue=True,
|
||||
)
|
||||
submit_click_event = submit.click(
|
||||
fn=user,
|
||||
inputs=[msg, chatbot],
|
||||
outputs=[msg, chatbot],
|
||||
show_progress=False,
|
||||
queue=False,
|
||||
).then(
|
||||
fn=chat_fn,
|
||||
inputs=[
|
||||
prompt_prefix,
|
||||
chatbot,
|
||||
model,
|
||||
device,
|
||||
precision,
|
||||
download_vmfb,
|
||||
config_file,
|
||||
streaming_llm,
|
||||
],
|
||||
outputs=[chatbot, tokens_time],
|
||||
show_progress=False,
|
||||
queue=True,
|
||||
)
|
||||
stop.click(
|
||||
fn=None,
|
||||
inputs=None,
|
||||
outputs=None,
|
||||
cancels=[submit_event, submit_click_event],
|
||||
queue=False,
|
||||
)
|
||||
clear.click(
|
||||
fn=chat_fn,
|
||||
inputs=[
|
||||
clear,
|
||||
chatbot,
|
||||
model,
|
||||
device,
|
||||
precision,
|
||||
download_vmfb,
|
||||
config_file,
|
||||
streaming_llm,
|
||||
],
|
||||
outputs=[chatbot, tokens_time],
|
||||
show_progress=False,
|
||||
queue=True,
|
||||
).then(lambda: None, None, [chatbot], queue=False)
|
||||
67
apps/shark_studio/web/ui/common_events.py
Normal file
67
apps/shark_studio/web/ui/common_events.py
Normal file
@@ -0,0 +1,67 @@
|
||||
from apps.shark_studio.web.ui.utils import (
|
||||
HSLHue,
|
||||
hsl_color,
|
||||
)
|
||||
from apps.shark_studio.modules.embeddings import get_lora_metadata
|
||||
|
||||
|
||||
# Answers HTML to show the most frequent tags used when a LoRA was trained,
|
||||
# taken from the metadata of its .safetensors file.
|
||||
def lora_changed(lora_files):
|
||||
# tag frequency percentage, that gets maximum amount of the staring hue
|
||||
TAG_COLOR_THRESHOLD = 0.55
|
||||
# tag frequency percentage, above which a tag is displayed
|
||||
TAG_DISPLAY_THRESHOLD = 0.65
|
||||
# template for the html used to display a tag
|
||||
TAG_HTML_TEMPLATE = (
|
||||
'<span class="lora-tag" style="border: 1px solid {color};">{tag}</span>'
|
||||
)
|
||||
output = []
|
||||
for lora_file in lora_files:
|
||||
if lora_file == "":
|
||||
output.extend(["<div><i>No LoRA selected</i></div>"])
|
||||
elif not lora_file.lower().endswith(".safetensors"):
|
||||
output.extend(
|
||||
[
|
||||
"<div><i>Only metadata queries for .safetensors files are currently supported</i></div>"
|
||||
]
|
||||
)
|
||||
else:
|
||||
metadata = get_lora_metadata(lora_file)
|
||||
if metadata:
|
||||
frequencies = metadata["frequencies"]
|
||||
output.extend(
|
||||
[
|
||||
"".join(
|
||||
[
|
||||
f'<div class="lora-model">Trained against weights in: {metadata["model"]}</div>'
|
||||
]
|
||||
+ [
|
||||
TAG_HTML_TEMPLATE.format(
|
||||
color=hsl_color(
|
||||
(tag[1] - TAG_COLOR_THRESHOLD)
|
||||
/ (1 - TAG_COLOR_THRESHOLD),
|
||||
start=HSLHue.RED,
|
||||
end=HSLHue.GREEN,
|
||||
),
|
||||
tag=tag[0],
|
||||
)
|
||||
for tag in frequencies
|
||||
if tag[1] > TAG_DISPLAY_THRESHOLD
|
||||
],
|
||||
)
|
||||
]
|
||||
)
|
||||
elif metadata is None:
|
||||
output.extend(
|
||||
[
|
||||
"<div><i>This LoRA does not publish tag frequency metadata</i></div>"
|
||||
]
|
||||
)
|
||||
else:
|
||||
output.extend(
|
||||
[
|
||||
"<div><i>This LoRA has empty tag frequency metadata, or we could not parse it</i></div>"
|
||||
]
|
||||
)
|
||||
return output
|
||||
@@ -105,7 +105,19 @@ body {
|
||||
background-color: var(--background-fill-primary);
|
||||
}
|
||||
|
||||
/* display in full width for desktop devices */
|
||||
.generating.svelte-zlszon.svelte-zlszon {
|
||||
border: none;
|
||||
}
|
||||
|
||||
.generating {
|
||||
border: none !important;
|
||||
}
|
||||
|
||||
#chatbot {
|
||||
height: 100% !important;
|
||||
}
|
||||
|
||||
/* display in full width for desktop devices, but see below */
|
||||
@media (min-width: 1536px)
|
||||
{
|
||||
.gradio-container {
|
||||
@@ -113,12 +125,17 @@ body {
|
||||
}
|
||||
}
|
||||
|
||||
.gradio-container .contain {
|
||||
padding: 0 var(--size-4) !important;
|
||||
/* media rules in custom css are don't appear to be applied in
|
||||
gradio versions > 4.7, so we have to define a class which
|
||||
we will manually need add and remove using javascript.
|
||||
Remove this once this fixed in gradio.
|
||||
*/
|
||||
.gradio-container-size-full {
|
||||
max-width: var(--size-full) !important;
|
||||
}
|
||||
|
||||
#ui_title {
|
||||
padding: var(--size-2) 0 0 var(--size-1);
|
||||
.gradio-container .contain {
|
||||
padding: 0 var(--size-4) !important;
|
||||
}
|
||||
|
||||
#top_logo {
|
||||
@@ -128,6 +145,10 @@ body {
|
||||
border: 0;
|
||||
}
|
||||
|
||||
#ui_title {
|
||||
padding: var(--size-2) 0 0 var(--size-1);
|
||||
}
|
||||
|
||||
#demo_title_outer {
|
||||
border-radius: 0;
|
||||
}
|
||||
@@ -170,6 +191,7 @@ footer {
|
||||
aspect-ratio: unset;
|
||||
max-height: calc(55vh - (2 * var(--spacing-lg)));
|
||||
}
|
||||
/* fix width and height of gallery items when on very large desktop screens, but see below */
|
||||
@media (min-width: 1921px) {
|
||||
/* Force a 768px_height + 4px_margin_height + navbar_height for the gallery */
|
||||
#gallery .grid-wrap, #gallery .preview{
|
||||
@@ -181,6 +203,20 @@ footer {
|
||||
max-height: 770px !important;
|
||||
}
|
||||
}
|
||||
|
||||
/* media rules in custom css are don't appear to be applied in
|
||||
gradio versions > 4.7, so we have to define classes which
|
||||
we will manually need add and remove using javascript.
|
||||
Remove this once this fixed in gradio.
|
||||
*/
|
||||
.gallery-force-height768 .grid-wrap, .gallery-force-height768 .preview {
|
||||
min-height: calc(768px + 4px + var(--size-14)) !important;
|
||||
max-height: calc(768px + 4px + var(--size-14)) !important;
|
||||
}
|
||||
.gallery-limit-height768 .thumbnail-item.thumbnail-lg {
|
||||
max-height: 770px !important;
|
||||
}
|
||||
|
||||
/* Don't upscale when viewing in solo image mode */
|
||||
#gallery .preview img {
|
||||
object-fit: scale-down;
|
||||
@@ -222,11 +258,6 @@ footer {
|
||||
display:none;
|
||||
}
|
||||
|
||||
/* Hide the download icon from the nod logo */
|
||||
#top_logo button {
|
||||
display: none;
|
||||
}
|
||||
|
||||
/* workarounds for container=false not currently working for dropdowns */
|
||||
.dropdown_no_container {
|
||||
padding: 0 !important;
|
||||
@@ -246,10 +277,39 @@ footer {
|
||||
background-color: var(--block-label-background-fill);
|
||||
}
|
||||
|
||||
/* lora tag pills */
|
||||
.lora-tags {
|
||||
border: 1px solid var(--border-color-primary);
|
||||
color: var(--block-info-text-color) !important;
|
||||
padding: var(--block-padding);
|
||||
}
|
||||
|
||||
.lora-tag {
|
||||
display: inline-block;
|
||||
height: 2em;
|
||||
color: rgb(212 212 212) !important;
|
||||
margin-right: 5pt;
|
||||
margin-bottom: 5pt;
|
||||
padding: 2pt 5pt;
|
||||
border-radius: 5pt;
|
||||
white-space: nowrap;
|
||||
}
|
||||
|
||||
.lora-model {
|
||||
margin-bottom: var(--spacing-lg);
|
||||
color: var(--block-info-text-color) !important;
|
||||
line-height: var(--line-sm);
|
||||
}
|
||||
|
||||
/* output gallery tab */
|
||||
.output_parameters_dataframe table.table {
|
||||
/* works around a gradio bug that always shows scrollbars */
|
||||
overflow: clip auto;
|
||||
}
|
||||
|
||||
.output_parameters_dataframe tbody td {
|
||||
font-size: small;
|
||||
line-height: var(--line-xs)
|
||||
line-height: var(--line-xs);
|
||||
}
|
||||
|
||||
.output_icon_button {
|
||||
@@ -267,6 +327,15 @@ footer {
|
||||
min-height: 89vh !important;
|
||||
}
|
||||
|
||||
.sd-right-panel {
|
||||
height: calc(100vmin - var(--size-32) - var(--size-10)) !important;
|
||||
overflow-y: scroll;
|
||||
}
|
||||
|
||||
.sd-right-panel .fill {
|
||||
flex: 1;
|
||||
}
|
||||
|
||||
/* don't stretch non-square images to be square, breaking their aspect ratio */
|
||||
#outputgallery_gallery .thumbnail-item.thumbnail-lg > img {
|
||||
object-fit: contain !important;
|
||||
@@ -278,7 +347,7 @@ footer {
|
||||
width: 100%;
|
||||
}
|
||||
|
||||
#top_logo.logo_centered img{
|
||||
#top_logo.logo_centered img {
|
||||
object-fit: scale-down;
|
||||
position: absolute;
|
||||
width: 80%;
|
||||
@@ -286,3 +355,19 @@ footer {
|
||||
left: 50%;
|
||||
transform: translate(-50%, -50%);
|
||||
}
|
||||
|
||||
#tab_bar_logo {
|
||||
overflow: visible !important;
|
||||
border-width: 0 !important;
|
||||
height: 0px !important;
|
||||
padding: 0;
|
||||
margin: 0;
|
||||
}
|
||||
|
||||
#tab_bar_logo .image-container {
|
||||
object-fit: scale-down;
|
||||
position: absolute !important;
|
||||
top: 10px;
|
||||
right: 0px;
|
||||
height: 36px;
|
||||
}
|
||||
49
apps/shark_studio/web/ui/js/sd_gradio_workarounds.js
Normal file
49
apps/shark_studio/web/ui/js/sd_gradio_workarounds.js
Normal file
@@ -0,0 +1,49 @@
|
||||
// workaround gradio after 4.7, not applying any @media rules form the custom .css file
|
||||
|
||||
() => {
|
||||
console.log(`innerWidth: ${window.innerWidth}` )
|
||||
|
||||
// 1536px rules
|
||||
|
||||
const mediaQuery1536 = window.matchMedia('(min-width: 1536px)')
|
||||
|
||||
function handleWidth1536(event) {
|
||||
|
||||
// display in full width for desktop devices
|
||||
document.querySelectorAll(".gradio-container")
|
||||
.forEach( (node) => {
|
||||
if (event.matches) {
|
||||
node.classList.add("gradio-container-size-full");
|
||||
} else {
|
||||
node.classList.remove("gradio-container-size-full")
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
mediaQuery1536.addEventListener("change", handleWidth1536);
|
||||
mediaQuery1536.dispatchEvent(new MediaQueryListEvent("change", {matches: window.innerWidth >= 1536}));
|
||||
|
||||
// 1921px rules
|
||||
|
||||
const mediaQuery1921 = window.matchMedia('(min-width: 1921px)')
|
||||
|
||||
function handleWidth1921(event) {
|
||||
|
||||
/* Force a 768px_height + 4px_margin_height + navbar_height for the gallery */
|
||||
/* Limit height to 768px_height + 2px_margin_height for the thumbnails */
|
||||
document.querySelectorAll("#gallery")
|
||||
.forEach( (node) => {
|
||||
if (event.matches) {
|
||||
node.classList.add("gallery-force-height768");
|
||||
node.classList.add("gallery-limit-height768");
|
||||
} else {
|
||||
node.classList.remove("gallery-force-height768");
|
||||
node.classList.remove("gallery-limit-height768");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
mediaQuery1921.addEventListener("change", handleWidth1921);
|
||||
mediaQuery1921.dispatchEvent(new MediaQueryListEvent("change", {matches: window.innerWidth >= 1921}));
|
||||
|
||||
}
|
||||
BIN
apps/shark_studio/web/ui/logos/amd-icon.jpg
Normal file
BIN
apps/shark_studio/web/ui/logos/amd-icon.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 7.1 KiB |
BIN
apps/shark_studio/web/ui/logos/amd-logo.jpg
Normal file
BIN
apps/shark_studio/web/ui/logos/amd-logo.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 7.4 KiB |
@@ -5,13 +5,13 @@ import subprocess
|
||||
import sys
|
||||
from PIL import Image
|
||||
|
||||
from apps.stable_diffusion.src import args
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
get_generated_imgs_path,
|
||||
get_generated_imgs_todays_subdir,
|
||||
)
|
||||
from apps.stable_diffusion.web.ui.utils import nodlogo_loc
|
||||
from apps.stable_diffusion.web.utils.metadata import displayable_metadata
|
||||
from apps.shark_studio.web.ui.utils import amdlogo_loc
|
||||
from apps.shark_studio.web.utils.metadata import displayable_metadata
|
||||
|
||||
# -- Functions for file, directory and image info querying
|
||||
|
||||
@@ -22,8 +22,7 @@ def outputgallery_filenames(subdir) -> list[str]:
|
||||
new_dir_path = os.path.join(output_dir, subdir)
|
||||
if os.path.exists(new_dir_path):
|
||||
filenames = [
|
||||
glob.glob(new_dir_path + "/" + ext)
|
||||
for ext in ("*.png", "*.jpg", "*.jpeg")
|
||||
glob.glob(new_dir_path + "/" + ext) for ext in ("*.png", "*.jpg", "*.jpeg")
|
||||
]
|
||||
|
||||
return sorted(sum(filenames, []), key=os.path.getmtime, reverse=True)
|
||||
@@ -36,7 +35,7 @@ def output_subdirs() -> list[str]:
|
||||
relative_paths = [
|
||||
os.path.relpath(entry[0], output_dir)
|
||||
for entry in os.walk(
|
||||
output_dir, followlinks=args.output_gallery_followlinks
|
||||
output_dir, followlinks=cmd_opts.output_gallery_followlinks
|
||||
)
|
||||
]
|
||||
|
||||
@@ -52,11 +51,7 @@ def output_subdirs() -> list[str]:
|
||||
[path for path in relative_paths if path.isnumeric()], reverse=True
|
||||
)
|
||||
result_paths = generated_paths + sorted(
|
||||
[
|
||||
path
|
||||
for path in relative_paths
|
||||
if (not path.isnumeric()) and path != "."
|
||||
]
|
||||
[path for path in relative_paths if (not path.isnumeric()) and path != "."]
|
||||
)
|
||||
|
||||
return result_paths
|
||||
@@ -64,8 +59,8 @@ def output_subdirs() -> list[str]:
|
||||
|
||||
# --- Define UI layout for Gradio
|
||||
|
||||
with gr.Blocks() as outputgallery_web:
|
||||
nod_logo = Image.open(nodlogo_loc)
|
||||
with gr.Blocks() as outputgallery_element:
|
||||
amd_logo = Image.open(amdlogo_loc)
|
||||
|
||||
with gr.Row(elem_id="outputgallery_gallery"):
|
||||
# needed to workaround gradio issue:
|
||||
@@ -78,12 +73,13 @@ with gr.Blocks() as outputgallery_web:
|
||||
with gr.Column(scale=6):
|
||||
logo = gr.Image(
|
||||
label="Getting subdirectories...",
|
||||
value=nod_logo,
|
||||
value=amd_logo,
|
||||
interactive=False,
|
||||
visible=True,
|
||||
show_label=True,
|
||||
elem_id="top_logo",
|
||||
elem_classes="logo_centered",
|
||||
show_download_button=False,
|
||||
)
|
||||
|
||||
gallery = gr.Gallery(
|
||||
@@ -91,11 +87,11 @@ with gr.Blocks() as outputgallery_web:
|
||||
value=gallery_files.value,
|
||||
visible=False,
|
||||
show_label=True,
|
||||
columns=2,
|
||||
columns=4,
|
||||
)
|
||||
|
||||
with gr.Column(scale=4):
|
||||
with gr.Box():
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
with gr.Column(
|
||||
scale=15,
|
||||
@@ -152,40 +148,13 @@ with gr.Blocks() as outputgallery_web:
|
||||
wrap=True,
|
||||
elem_classes="output_parameters_dataframe",
|
||||
value=[["Status", "No image selected"]],
|
||||
interactive=True,
|
||||
)
|
||||
|
||||
with gr.Accordion(label="Send To", open=True):
|
||||
with gr.Row():
|
||||
outputgallery_sendto_txt2img = gr.Button(
|
||||
value="Txt2Img",
|
||||
interactive=False,
|
||||
elem_classes="outputgallery_sendto",
|
||||
size="sm",
|
||||
)
|
||||
|
||||
outputgallery_sendto_img2img = gr.Button(
|
||||
value="Img2Img",
|
||||
interactive=False,
|
||||
elem_classes="outputgallery_sendto",
|
||||
size="sm",
|
||||
)
|
||||
|
||||
outputgallery_sendto_inpaint = gr.Button(
|
||||
value="Inpaint",
|
||||
interactive=False,
|
||||
elem_classes="outputgallery_sendto",
|
||||
size="sm",
|
||||
)
|
||||
|
||||
outputgallery_sendto_outpaint = gr.Button(
|
||||
value="Outpaint",
|
||||
interactive=False,
|
||||
elem_classes="outputgallery_sendto",
|
||||
size="sm",
|
||||
)
|
||||
|
||||
outputgallery_sendto_upscaler = gr.Button(
|
||||
value="Upscaler",
|
||||
outputgallery_sendto_sd = gr.Button(
|
||||
value="Stable Diffusion",
|
||||
interactive=False,
|
||||
elem_classes="outputgallery_sendto",
|
||||
size="sm",
|
||||
@@ -195,29 +164,30 @@ with gr.Blocks() as outputgallery_web:
|
||||
|
||||
def on_clear_gallery():
|
||||
return [
|
||||
gr.Gallery.update(
|
||||
gr.Gallery(
|
||||
value=[],
|
||||
visible=False,
|
||||
),
|
||||
gr.Image.update(
|
||||
gr.Image(
|
||||
visible=True,
|
||||
),
|
||||
]
|
||||
|
||||
def on_image_columns_change(columns):
|
||||
return gr.Gallery(columns=columns)
|
||||
|
||||
def on_select_subdir(subdir) -> list:
|
||||
# evt.value is the subdirectory name
|
||||
new_images = outputgallery_filenames(subdir)
|
||||
new_label = (
|
||||
f"{len(new_images)} images in {os.path.join(output_dir, subdir)}"
|
||||
)
|
||||
new_label = f"{len(new_images)} images in {os.path.join(output_dir, subdir)}"
|
||||
return [
|
||||
new_images,
|
||||
gr.Gallery.update(
|
||||
gr.Gallery(
|
||||
value=new_images,
|
||||
label=new_label,
|
||||
visible=len(new_images) > 0,
|
||||
),
|
||||
gr.Image.update(
|
||||
gr.Image(
|
||||
label=new_label,
|
||||
visible=len(new_images) == 0,
|
||||
),
|
||||
@@ -246,21 +216,18 @@ with gr.Blocks() as outputgallery_web:
|
||||
)
|
||||
new_images = outputgallery_filenames(new_subdir)
|
||||
new_label = (
|
||||
f"{len(new_images)} images in "
|
||||
f"{os.path.join(output_dir, new_subdir)}"
|
||||
f"{len(new_images)} images in " f"{os.path.join(output_dir, new_subdir)}"
|
||||
)
|
||||
|
||||
return [
|
||||
gr.Dropdown.update(
|
||||
gr.Dropdown(
|
||||
choices=refreshed_subdirs,
|
||||
value=new_subdir,
|
||||
),
|
||||
refreshed_subdirs,
|
||||
new_images,
|
||||
gr.Gallery.update(
|
||||
value=new_images, label=new_label, visible=len(new_images) > 0
|
||||
),
|
||||
gr.Image.update(
|
||||
gr.Gallery(value=new_images, label=new_label, visible=len(new_images) > 0),
|
||||
gr.Image(
|
||||
label=new_label,
|
||||
visible=len(new_images) == 0,
|
||||
),
|
||||
@@ -286,12 +253,12 @@ with gr.Blocks() as outputgallery_web:
|
||||
|
||||
return [
|
||||
new_images,
|
||||
gr.Gallery.update(
|
||||
gr.Gallery(
|
||||
value=new_images,
|
||||
label=new_label,
|
||||
visible=len(new_images) > 0,
|
||||
),
|
||||
gr.Image.update(
|
||||
gr.Image(
|
||||
label=new_label,
|
||||
visible=len(new_images) == 0,
|
||||
),
|
||||
@@ -329,12 +296,7 @@ with gr.Blocks() as outputgallery_web:
|
||||
return [
|
||||
# disable or enable each of the sendto button based on whether
|
||||
# an image is selected
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button(interactive=exists),
|
||||
]
|
||||
|
||||
# The time first our tab is selected we need to do an initial refresh
|
||||
@@ -365,53 +327,6 @@ with gr.Blocks() as outputgallery_web:
|
||||
gr.update(),
|
||||
)
|
||||
|
||||
# Unfortunately as of gradio 3.34.0 gr.update against Galleries doesn't
|
||||
# support things set with .style, nor the elem_classes kwarg, so we have
|
||||
# to directly set things up via JavaScript if we want the client to take
|
||||
# notice of our changes to the number of columns after it decides to put
|
||||
# them back to the original number when we change something
|
||||
def js_set_columns_in_browser(timeout_length):
|
||||
return f"""
|
||||
(new_cols) => {{
|
||||
setTimeout(() => {{
|
||||
required_style = "auto ".repeat(new_cols).trim();
|
||||
gallery = document.querySelector('#outputgallery_gallery .grid-container');
|
||||
if (gallery) {{
|
||||
gallery.style.gridTemplateColumns = required_style
|
||||
}}
|
||||
}}, {timeout_length});
|
||||
return []; // prevents console error from gradio
|
||||
}}
|
||||
"""
|
||||
|
||||
# --- Wire handlers up to the actions
|
||||
|
||||
# Many actions reset the number of columns shown in the gallery on the
|
||||
# browser end, so we have to set them back to what we think they should
|
||||
# be after the initial action.
|
||||
#
|
||||
# None of the actions on this tab trigger inference, and we want the
|
||||
# user to be able to do them whilst other tabs have ongoing inference
|
||||
# running. Waiting in the queue behind inference jobs would mean the UI
|
||||
# can't fully respond until the inference tasks complete,
|
||||
# hence queue=False on all of these.
|
||||
set_gallery_columns_immediate = dict(
|
||||
fn=None,
|
||||
inputs=[image_columns],
|
||||
# gradio blanks the UI on Chrome on Linux on gallery select if
|
||||
# I don't put an output here
|
||||
outputs=[dev_null],
|
||||
_js=js_set_columns_in_browser(0),
|
||||
queue=False,
|
||||
)
|
||||
|
||||
# setting columns after selecting a gallery item needs a real
|
||||
# timeout length for the number of columns to actually be applied.
|
||||
# Not really sure why, maybe something has to finish animating?
|
||||
set_gallery_columns_delayed = dict(
|
||||
set_gallery_columns_immediate, _js=js_set_columns_in_browser(250)
|
||||
)
|
||||
|
||||
# clearing images when we need to completely change what's in the
|
||||
# gallery avoids current images being shown replacing piecemeal and
|
||||
# prevents weirdness and errors if the user selects an image during the
|
||||
@@ -423,42 +338,41 @@ with gr.Blocks() as outputgallery_web:
|
||||
queue=False,
|
||||
)
|
||||
|
||||
image_columns.change(**set_gallery_columns_immediate)
|
||||
|
||||
subdirectories.select(**clear_gallery).then(
|
||||
on_select_subdir,
|
||||
[subdirectories],
|
||||
[gallery_files, gallery, logo],
|
||||
queue=False,
|
||||
).then(**set_gallery_columns_immediate)
|
||||
)
|
||||
|
||||
open_subdir.click(
|
||||
on_open_subdir, inputs=[subdirectories], queue=False
|
||||
).then(**set_gallery_columns_immediate)
|
||||
open_subdir.click(on_open_subdir, inputs=[subdirectories], queue=False)
|
||||
|
||||
refresh.click(**clear_gallery).then(
|
||||
on_refresh,
|
||||
[subdirectories],
|
||||
[subdirectories, subdirectory_paths, gallery_files, gallery, logo],
|
||||
queue=False,
|
||||
).then(**set_gallery_columns_immediate)
|
||||
)
|
||||
|
||||
image_columns.change(
|
||||
fn=on_image_columns_change,
|
||||
inputs=[image_columns],
|
||||
outputs=[gallery],
|
||||
queue=False,
|
||||
)
|
||||
|
||||
gallery.select(
|
||||
on_select_image,
|
||||
[gallery_files],
|
||||
[outputgallery_filename, image_parameters],
|
||||
queue=False,
|
||||
).then(**set_gallery_columns_delayed)
|
||||
)
|
||||
|
||||
outputgallery_filename.change(
|
||||
on_outputgallery_filename_change,
|
||||
[outputgallery_filename],
|
||||
[
|
||||
outputgallery_sendto_txt2img,
|
||||
outputgallery_sendto_img2img,
|
||||
outputgallery_sendto_inpaint,
|
||||
outputgallery_sendto_outpaint,
|
||||
outputgallery_sendto_upscaler,
|
||||
outputgallery_sendto_sd,
|
||||
],
|
||||
queue=False,
|
||||
)
|
||||
@@ -477,7 +391,7 @@ with gr.Blocks() as outputgallery_web:
|
||||
open_subdir,
|
||||
],
|
||||
queue=False,
|
||||
).then(**set_gallery_columns_immediate)
|
||||
)
|
||||
|
||||
# We should have been passed a list of components on other tabs that update
|
||||
# when a new image has generated on that tab, so set things up so the user
|
||||
@@ -489,4 +403,4 @@ with gr.Blocks() as outputgallery_web:
|
||||
inputs=[subdirectories, subdirectory_paths, component],
|
||||
outputs=[gallery_files, gallery, logo],
|
||||
queue=False,
|
||||
).then(**set_gallery_columns_immediate)
|
||||
)
|
||||
777
apps/shark_studio/web/ui/sd.py
Normal file
777
apps/shark_studio/web/ui/sd.py
Normal file
@@ -0,0 +1,777 @@
|
||||
import os
|
||||
import json
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
from inspect import signature
|
||||
from PIL import Image
|
||||
from pathlib import Path
|
||||
from datetime import datetime as dt
|
||||
from gradio.components.image_editor import (
|
||||
EditorValue,
|
||||
)
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
get_generated_imgs_path,
|
||||
get_checkpoints_path,
|
||||
get_checkpoints,
|
||||
get_configs_path,
|
||||
write_default_sd_configs,
|
||||
)
|
||||
from apps.shark_studio.api.sd import (
|
||||
shark_sd_fn_dict_input,
|
||||
cancel_sd,
|
||||
unload_sd,
|
||||
)
|
||||
from apps.shark_studio.api.controlnet import (
|
||||
cnet_preview,
|
||||
)
|
||||
from apps.shark_studio.modules.schedulers import (
|
||||
scheduler_model_map,
|
||||
)
|
||||
from apps.shark_studio.modules.img_processing import (
|
||||
resampler_list,
|
||||
resize_stencil,
|
||||
)
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
from apps.shark_studio.web.ui.utils import (
|
||||
amdlogo_loc,
|
||||
none_to_str_none,
|
||||
str_none_to_none,
|
||||
)
|
||||
from apps.shark_studio.web.utils.state import (
|
||||
status_label,
|
||||
)
|
||||
from apps.shark_studio.web.ui.common_events import lora_changed
|
||||
from apps.shark_studio.modules import logger
|
||||
import apps.shark_studio.web.utils.globals as global_obj
|
||||
|
||||
sd_default_models = [
|
||||
"runwayml/stable-diffusion-v1-5",
|
||||
"stabilityai/stable-diffusion-2-1-base",
|
||||
"stabilityai/stable-diffusion-2-1",
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
"stabilityai/sdxl-turbo",
|
||||
]
|
||||
|
||||
|
||||
def view_json_file(file_path):
|
||||
content = ""
|
||||
with open(file_path, "r") as fopen:
|
||||
content = fopen.read()
|
||||
return content
|
||||
|
||||
|
||||
def submit_to_cnet_config(
|
||||
stencil: str,
|
||||
preprocessed_hint: str,
|
||||
cnet_strength: int,
|
||||
control_mode: str,
|
||||
curr_config: dict,
|
||||
):
|
||||
if any(i in [None, ""] for i in [stencil, preprocessed_hint]):
|
||||
return gr.update()
|
||||
if curr_config is not None:
|
||||
if "controlnets" in curr_config:
|
||||
curr_config["controlnets"]["control_mode"] = control_mode
|
||||
curr_config["controlnets"]["model"].append(stencil)
|
||||
curr_config["controlnets"]["hint"].append(preprocessed_hint)
|
||||
curr_config["controlnets"]["strength"].append(cnet_strength)
|
||||
return curr_config
|
||||
|
||||
cnet_map = {}
|
||||
cnet_map["controlnets"] = {
|
||||
"control_mode": control_mode,
|
||||
"model": [stencil],
|
||||
"hint": [preprocessed_hint],
|
||||
"strength": [cnet_strength],
|
||||
}
|
||||
return cnet_map
|
||||
|
||||
|
||||
def update_embeddings_json(embedding):
|
||||
return {"embeddings": [embedding]}
|
||||
|
||||
|
||||
def submit_to_main_config(input_cfg: dict, main_cfg: dict):
|
||||
if main_cfg in [None, "", {}]:
|
||||
return input_cfg
|
||||
|
||||
for base_key in input_cfg:
|
||||
main_cfg[base_key] = input_cfg[base_key]
|
||||
return main_cfg
|
||||
|
||||
|
||||
def pull_sd_configs(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
sd_init_image,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
strength,
|
||||
guidance_scale,
|
||||
seed,
|
||||
batch_count,
|
||||
batch_size,
|
||||
scheduler,
|
||||
base_model_id,
|
||||
custom_weights,
|
||||
custom_vae,
|
||||
precision,
|
||||
device,
|
||||
target_triple,
|
||||
ondemand,
|
||||
compiled_pipeline,
|
||||
resample_type,
|
||||
controlnets,
|
||||
embeddings,
|
||||
):
|
||||
sd_args = str_none_to_none(locals())
|
||||
sd_cfg = {}
|
||||
for arg in sd_args:
|
||||
if arg in [
|
||||
"prompt",
|
||||
"negative_prompt",
|
||||
"sd_init_image",
|
||||
]:
|
||||
sd_cfg[arg] = [sd_args[arg]]
|
||||
elif arg in ["controlnets", "embeddings"]:
|
||||
if isinstance(arg, dict):
|
||||
sd_cfg[arg] = json.loads(sd_args[arg])
|
||||
else:
|
||||
sd_cfg[arg] = {}
|
||||
else:
|
||||
sd_cfg[arg] = sd_args[arg]
|
||||
|
||||
return json.dumps(sd_cfg)
|
||||
|
||||
|
||||
def load_sd_cfg(sd_json: dict, load_sd_config: str):
|
||||
new_sd_config = none_to_str_none(json.loads(view_json_file(load_sd_config)))
|
||||
if sd_json:
|
||||
for key in new_sd_config:
|
||||
sd_json[key] = new_sd_config[key]
|
||||
else:
|
||||
sd_json = new_sd_config
|
||||
for i in sd_json["sd_init_image"]:
|
||||
if i is not None:
|
||||
if os.path.isfile(i):
|
||||
sd_image = [Image.open(i, mode="r")]
|
||||
else:
|
||||
sd_image = None
|
||||
|
||||
return [
|
||||
sd_json["prompt"][0],
|
||||
sd_json["negative_prompt"][0],
|
||||
sd_image,
|
||||
sd_json["height"],
|
||||
sd_json["width"],
|
||||
sd_json["steps"],
|
||||
sd_json["strength"],
|
||||
sd_json["guidance_scale"],
|
||||
sd_json["seed"],
|
||||
sd_json["batch_count"],
|
||||
sd_json["batch_size"],
|
||||
sd_json["scheduler"],
|
||||
sd_json["base_model_id"],
|
||||
sd_json["custom_weights"],
|
||||
sd_json["custom_vae"],
|
||||
sd_json["precision"],
|
||||
sd_json["device"],
|
||||
sd_json["target_triple"],
|
||||
sd_json["ondemand"],
|
||||
sd_json["compiled_pipeline"],
|
||||
sd_json["resample_type"],
|
||||
sd_json["controlnets"],
|
||||
sd_json["embeddings"],
|
||||
sd_json,
|
||||
]
|
||||
|
||||
|
||||
def save_sd_cfg(config: dict, save_name: str):
|
||||
if os.path.exists(save_name):
|
||||
filepath = save_name
|
||||
elif cmd_opts.configs_path:
|
||||
filepath = os.path.join(cmd_opts.configs_path, save_name)
|
||||
else:
|
||||
filepath = os.path.join(get_configs_path(), save_name)
|
||||
if ".json" not in filepath:
|
||||
filepath += ".json"
|
||||
with open(filepath, mode="w") as f:
|
||||
f.write(json.dumps(config))
|
||||
return "..."
|
||||
|
||||
|
||||
def create_canvas(width, height):
|
||||
data = Image.fromarray(
|
||||
np.zeros(
|
||||
shape=(height, width, 3),
|
||||
dtype=np.uint8,
|
||||
)
|
||||
+ 255
|
||||
)
|
||||
img_dict = {
|
||||
"background": data,
|
||||
"layers": [],
|
||||
"composite": None,
|
||||
}
|
||||
return EditorValue(img_dict)
|
||||
|
||||
|
||||
def import_original(original_img, width, height):
|
||||
if original_img is None:
|
||||
resized_img = create_canvas(width, height)
|
||||
return resized_img
|
||||
else:
|
||||
resized_img, _, _ = resize_stencil(original_img, width, height)
|
||||
img_dict = {
|
||||
"background": resized_img,
|
||||
"layers": [],
|
||||
"composite": None,
|
||||
}
|
||||
return EditorValue(img_dict)
|
||||
|
||||
|
||||
def base_model_changed(base_model_id):
|
||||
new_choices = get_checkpoints(
|
||||
os.path.join("checkpoints", os.path.basename(str(base_model_id)))
|
||||
) + get_checkpoints(model_type="checkpoints")
|
||||
|
||||
return gr.Dropdown(
|
||||
value=new_choices[0] if len(new_choices) > 0 else "None",
|
||||
choices=["None"] + new_choices,
|
||||
)
|
||||
|
||||
|
||||
with gr.Blocks(title="Stable Diffusion") as sd_element:
|
||||
with gr.Column(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=2, min_width=600):
|
||||
with gr.Accordion(
|
||||
label="\U0001F4D0\U0000FE0F Device Settings", open=False
|
||||
):
|
||||
device = gr.Dropdown(
|
||||
elem_id="device",
|
||||
label="Device",
|
||||
value=global_obj.get_device_list()[0],
|
||||
choices=global_obj.get_device_list(),
|
||||
allow_custom_value=False,
|
||||
)
|
||||
target_triple = gr.Textbox(
|
||||
elem_id="target_triple",
|
||||
label="Architecture",
|
||||
value="",
|
||||
)
|
||||
with gr.Row():
|
||||
ondemand = gr.Checkbox(
|
||||
value=cmd_opts.lowvram,
|
||||
label="Low VRAM",
|
||||
interactive=True,
|
||||
)
|
||||
precision = gr.Radio(
|
||||
label="Precision",
|
||||
value=cmd_opts.precision,
|
||||
choices=[
|
||||
"fp16",
|
||||
"fp32",
|
||||
],
|
||||
visible=True,
|
||||
)
|
||||
sd_model_info = f"Checkpoint Path: {str(get_checkpoints_path())}"
|
||||
base_model_id = gr.Dropdown(
|
||||
label="\U000026F0\U0000FE0F Base Model",
|
||||
info="Select or enter HF model ID",
|
||||
elem_id="custom_model",
|
||||
value="stabilityai/stable-diffusion-2-1-base",
|
||||
choices=sd_default_models,
|
||||
allow_custom_value=True,
|
||||
) # base_model_id
|
||||
with gr.Row():
|
||||
height = gr.Slider(
|
||||
384,
|
||||
1024,
|
||||
value=cmd_opts.height,
|
||||
step=8,
|
||||
label="\U00002195\U0000FE0F Height",
|
||||
)
|
||||
width = gr.Slider(
|
||||
384,
|
||||
1024,
|
||||
value=cmd_opts.width,
|
||||
step=8,
|
||||
label="\U00002194\U0000FE0F Width",
|
||||
)
|
||||
with gr.Accordion(
|
||||
label="\U00002696\U0000FE0F Model Weights", open=False
|
||||
):
|
||||
with gr.Column():
|
||||
custom_weights = gr.Dropdown(
|
||||
label="Checkpoint Weights",
|
||||
info="Select or enter HF model ID",
|
||||
elem_id="custom_model",
|
||||
value="None",
|
||||
allow_custom_value=True,
|
||||
choices=["None"]
|
||||
+ get_checkpoints(os.path.basename(str(base_model_id))),
|
||||
) # custom_weights
|
||||
base_model_id.change(
|
||||
fn=base_model_changed,
|
||||
inputs=[base_model_id],
|
||||
outputs=[custom_weights],
|
||||
)
|
||||
sd_vae_info = (str(get_checkpoints_path("vae"))).replace(
|
||||
"\\", "\n\\"
|
||||
)
|
||||
sd_vae_info = f"VAE Path: {sd_vae_info}"
|
||||
custom_vae = gr.Dropdown(
|
||||
label=f"VAE Model",
|
||||
info=sd_vae_info,
|
||||
elem_id="custom_model",
|
||||
value=(
|
||||
os.path.basename(cmd_opts.custom_vae)
|
||||
if cmd_opts.custom_vae
|
||||
else "None"
|
||||
),
|
||||
choices=["None"] + get_checkpoints("vae"),
|
||||
allow_custom_value=True,
|
||||
scale=1,
|
||||
)
|
||||
sd_lora_info = (str(get_checkpoints_path("loras"))).replace(
|
||||
"\\", "\n\\"
|
||||
)
|
||||
lora_opt = gr.Dropdown(
|
||||
allow_custom_value=True,
|
||||
label=f"Standalone LoRA Weights",
|
||||
info=sd_lora_info,
|
||||
elem_id="lora_weights",
|
||||
value=None,
|
||||
multiselect=True,
|
||||
choices=[] + get_checkpoints("lora"),
|
||||
scale=2,
|
||||
)
|
||||
lora_tags = gr.HTML(
|
||||
value="<div><i>No LoRA selected</i></div>",
|
||||
elem_classes="lora-tags",
|
||||
)
|
||||
embeddings_config = gr.JSON(
|
||||
label="Embeddings Options", min_width=50, scale=1
|
||||
)
|
||||
gr.on(
|
||||
triggers=[lora_opt.change],
|
||||
fn=lora_changed,
|
||||
inputs=[lora_opt],
|
||||
outputs=[lora_tags],
|
||||
queue=True,
|
||||
show_progress=False,
|
||||
).then(
|
||||
fn=update_embeddings_json,
|
||||
inputs=[lora_opt],
|
||||
outputs=[embeddings_config],
|
||||
show_progress=False,
|
||||
)
|
||||
with gr.Accordion(
|
||||
label="\U0001F9EA\U0000FE0F Input Image Processing", open=False
|
||||
):
|
||||
strength = gr.Slider(
|
||||
0,
|
||||
1,
|
||||
value=cmd_opts.strength,
|
||||
step=0.01,
|
||||
label="Denoising Strength",
|
||||
)
|
||||
resample_type = gr.Dropdown(
|
||||
value=cmd_opts.resample_type,
|
||||
choices=resampler_list,
|
||||
label="Resample Type",
|
||||
allow_custom_value=True,
|
||||
)
|
||||
with gr.Group(elem_id="prompt_box_outer"):
|
||||
prompt = gr.Textbox(
|
||||
label="\U00002795\U0000FE0F Prompt",
|
||||
value=cmd_opts.prompt[0],
|
||||
lines=2,
|
||||
elem_id="prompt_box",
|
||||
show_copy_button=True,
|
||||
)
|
||||
negative_prompt = gr.Textbox(
|
||||
label="\U00002796\U0000FE0F Negative Prompt",
|
||||
value=cmd_opts.negative_prompt[0],
|
||||
lines=2,
|
||||
elem_id="negative_prompt_box",
|
||||
show_copy_button=True,
|
||||
)
|
||||
with gr.Row(equal_height=True):
|
||||
seed = gr.Textbox(
|
||||
value=cmd_opts.seed,
|
||||
label="\U0001F331\U0000FE0F Seed",
|
||||
info="An integer or a JSON list of integers, -1 for random",
|
||||
show_copy_button=True,
|
||||
)
|
||||
scheduler = gr.Dropdown(
|
||||
elem_id="scheduler",
|
||||
label="\U0001F4C5\U0000FE0F Scheduler",
|
||||
info="\U000E0020", # forces same height as seed
|
||||
value="EulerDiscrete",
|
||||
choices=scheduler_model_map.keys(),
|
||||
allow_custom_value=False,
|
||||
)
|
||||
with gr.Row():
|
||||
steps = gr.Slider(
|
||||
1,
|
||||
100,
|
||||
value=cmd_opts.steps,
|
||||
step=1,
|
||||
label="\U0001F3C3\U0000FE0F Steps",
|
||||
)
|
||||
guidance_scale = gr.Slider(
|
||||
0,
|
||||
50,
|
||||
value=cmd_opts.guidance_scale,
|
||||
step=0.1,
|
||||
label="\U0001F5C3\U0000FE0F CFG Scale",
|
||||
)
|
||||
with gr.Accordion(
|
||||
label="Controlnet Options",
|
||||
open=False,
|
||||
visible=False,
|
||||
):
|
||||
preprocessed_hints = gr.State([])
|
||||
with gr.Column():
|
||||
sd_cnet_info = (
|
||||
str(get_checkpoints_path("controlnet"))
|
||||
).replace("\\", "\n\\")
|
||||
with gr.Row():
|
||||
cnet_config = gr.JSON()
|
||||
with gr.Column():
|
||||
clear_config = gr.ClearButton(
|
||||
value="Clear Controlnet Config",
|
||||
size="sm",
|
||||
components=cnet_config,
|
||||
)
|
||||
control_mode = gr.Radio(
|
||||
choices=["Prompt", "Balanced", "Controlnet"],
|
||||
value="Balanced",
|
||||
label="Control Mode",
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1):
|
||||
cnet_model = gr.Dropdown(
|
||||
allow_custom_value=True,
|
||||
label=f"Controlnet Model",
|
||||
info=sd_cnet_info,
|
||||
value="None",
|
||||
choices=[
|
||||
"None",
|
||||
"canny",
|
||||
"openpose",
|
||||
"scribble",
|
||||
"zoedepth",
|
||||
]
|
||||
+ get_checkpoints("controlnet"),
|
||||
)
|
||||
cnet_strength = gr.Slider(
|
||||
label="Controlnet Strength",
|
||||
minimum=0,
|
||||
maximum=100,
|
||||
value=50,
|
||||
step=1,
|
||||
)
|
||||
with gr.Row():
|
||||
canvas_width = gr.Slider(
|
||||
label="Canvas Width",
|
||||
minimum=256,
|
||||
maximum=1024,
|
||||
value=512,
|
||||
step=8,
|
||||
)
|
||||
canvas_height = gr.Slider(
|
||||
label="Canvas Height",
|
||||
minimum=256,
|
||||
maximum=1024,
|
||||
value=512,
|
||||
step=8,
|
||||
)
|
||||
make_canvas = gr.Button(
|
||||
value="Make Canvas!",
|
||||
)
|
||||
use_input_img = gr.Button(
|
||||
value="Use Original Image",
|
||||
size="sm",
|
||||
)
|
||||
cnet_input = gr.Image(
|
||||
value=None,
|
||||
type="pil",
|
||||
image_mode="RGB",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Column(scale=1):
|
||||
cnet_output = gr.Image(
|
||||
value=None,
|
||||
visible=True,
|
||||
label="Preprocessed Hint",
|
||||
interactive=False,
|
||||
show_label=True,
|
||||
)
|
||||
cnet_gen = gr.Button(
|
||||
value="Preprocess controlnet input",
|
||||
)
|
||||
use_result = gr.Button(
|
||||
"Submit",
|
||||
size="sm",
|
||||
)
|
||||
make_canvas.click(
|
||||
fn=create_canvas,
|
||||
inputs=[canvas_width, canvas_height],
|
||||
outputs=[cnet_input],
|
||||
queue=False,
|
||||
)
|
||||
cnet_gen.click(
|
||||
fn=cnet_preview,
|
||||
inputs=[
|
||||
cnet_model,
|
||||
cnet_input,
|
||||
],
|
||||
outputs=[
|
||||
cnet_output,
|
||||
preprocessed_hints,
|
||||
],
|
||||
)
|
||||
use_result.click(
|
||||
fn=submit_to_cnet_config,
|
||||
inputs=[
|
||||
cnet_model,
|
||||
cnet_output,
|
||||
cnet_strength,
|
||||
control_mode,
|
||||
cnet_config,
|
||||
],
|
||||
outputs=[
|
||||
cnet_config,
|
||||
],
|
||||
queue=False,
|
||||
)
|
||||
with gr.Column(scale=3, min_width=600):
|
||||
with gr.Tabs() as sd_tabs:
|
||||
sd_element.load(
|
||||
# Workaround for Gradio issue #7085
|
||||
# TODO: revert to setting selected= in gr.Tabs declaration
|
||||
# once this is resolved in Gradio
|
||||
lambda: gr.Tabs(selected=101),
|
||||
outputs=[sd_tabs],
|
||||
)
|
||||
with gr.Tab(label="Input Image", id=100) as sd_tab_init_image:
|
||||
with gr.Column(elem_classes=["sd-right-panel"]):
|
||||
with gr.Row(elem_classes=["fill"]):
|
||||
# TODO: make this import image prompt info if it exists
|
||||
sd_init_image = gr.Image(
|
||||
type="pil",
|
||||
interactive=True,
|
||||
show_label=False,
|
||||
)
|
||||
use_input_img.click(
|
||||
fn=import_original,
|
||||
inputs=[
|
||||
sd_init_image,
|
||||
canvas_width,
|
||||
canvas_height,
|
||||
],
|
||||
outputs=[cnet_input],
|
||||
queue=False,
|
||||
)
|
||||
with gr.Tab(label="Generate Images", id=101) as sd_tab_gallery:
|
||||
with gr.Column(elem_classes=["sd-right-panel"]):
|
||||
with gr.Row(elem_classes=["fill"]):
|
||||
sd_gallery = gr.Gallery(
|
||||
label="Generated images",
|
||||
show_label=False,
|
||||
elem_id="gallery",
|
||||
columns=2,
|
||||
object_fit="fit",
|
||||
preview=True,
|
||||
)
|
||||
with gr.Row():
|
||||
batch_count = gr.Slider(
|
||||
1,
|
||||
100,
|
||||
value=cmd_opts.batch_count,
|
||||
step=1,
|
||||
label="Batch Count",
|
||||
interactive=True,
|
||||
)
|
||||
batch_size = gr.Slider(
|
||||
1,
|
||||
4,
|
||||
value=cmd_opts.batch_size,
|
||||
step=1,
|
||||
label="Batch Size",
|
||||
interactive=True,
|
||||
visible=True,
|
||||
)
|
||||
compiled_pipeline = gr.Checkbox(
|
||||
False,
|
||||
label="Faster txt2img (SDXL only)",
|
||||
)
|
||||
with gr.Row():
|
||||
stable_diffusion = gr.Button("Start")
|
||||
unload = gr.Button("Unload Models")
|
||||
unload.click(
|
||||
fn=unload_sd,
|
||||
queue=False,
|
||||
show_progress=False,
|
||||
)
|
||||
stop_batch = gr.Button("Stop")
|
||||
with gr.Tab(label="Config", id=102) as sd_tab_config:
|
||||
with gr.Column(elem_classes=["sd-right-panel"]):
|
||||
with gr.Row(elem_classes=["fill"]):
|
||||
Path(get_configs_path()).mkdir(
|
||||
parents=True, exist_ok=True
|
||||
)
|
||||
default_config_file = os.path.join(
|
||||
get_configs_path(),
|
||||
"default_sd_config.json",
|
||||
)
|
||||
write_default_sd_configs(get_configs_path())
|
||||
sd_json = gr.JSON(
|
||||
elem_classes=["fill"],
|
||||
value=view_json_file(default_config_file),
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
load_sd_config = gr.FileExplorer(
|
||||
label="Load Config",
|
||||
file_count="single",
|
||||
root_dir=(
|
||||
cmd_opts.configs_path
|
||||
if cmd_opts.configs_path
|
||||
else get_configs_path()
|
||||
),
|
||||
height=75,
|
||||
)
|
||||
with gr.Column(scale=1):
|
||||
save_sd_config = gr.Button(
|
||||
value="Save Config", size="sm"
|
||||
)
|
||||
clear_sd_config = gr.ClearButton(
|
||||
value="Clear Config",
|
||||
size="sm",
|
||||
components=sd_json,
|
||||
)
|
||||
with gr.Row():
|
||||
sd_config_name = gr.Textbox(
|
||||
value="Config Name",
|
||||
info="Name of the file this config will be saved to.",
|
||||
interactive=True,
|
||||
show_label=False,
|
||||
)
|
||||
load_sd_config.change(
|
||||
fn=load_sd_cfg,
|
||||
inputs=[sd_json, load_sd_config],
|
||||
outputs=[
|
||||
prompt,
|
||||
negative_prompt,
|
||||
sd_init_image,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
strength,
|
||||
guidance_scale,
|
||||
seed,
|
||||
batch_count,
|
||||
batch_size,
|
||||
scheduler,
|
||||
base_model_id,
|
||||
custom_weights,
|
||||
custom_vae,
|
||||
precision,
|
||||
device,
|
||||
target_triple,
|
||||
ondemand,
|
||||
compiled_pipeline,
|
||||
resample_type,
|
||||
cnet_config,
|
||||
embeddings_config,
|
||||
sd_json,
|
||||
],
|
||||
)
|
||||
save_sd_config.click(
|
||||
fn=save_sd_cfg,
|
||||
inputs=[sd_json, sd_config_name],
|
||||
outputs=[sd_config_name],
|
||||
)
|
||||
save_sd_config.click(
|
||||
fn=save_sd_cfg,
|
||||
inputs=[sd_json, sd_config_name],
|
||||
outputs=[sd_config_name],
|
||||
)
|
||||
with gr.Tab(label="Log", id=103) as sd_tab_log:
|
||||
with gr.Row():
|
||||
std_output = gr.Textbox(
|
||||
value=f"{sd_model_info}\n"
|
||||
f"Images will be saved at "
|
||||
f"{get_generated_imgs_path()}",
|
||||
lines=2,
|
||||
elem_id="std_output",
|
||||
show_label=True,
|
||||
label="Log",
|
||||
show_copy_button=True,
|
||||
)
|
||||
sd_element.load(
|
||||
logger.read_sd_logs, None, std_output, every=1
|
||||
)
|
||||
sd_status = gr.Textbox(visible=False)
|
||||
|
||||
pull_kwargs = dict(
|
||||
fn=pull_sd_configs,
|
||||
inputs=[
|
||||
prompt,
|
||||
negative_prompt,
|
||||
sd_init_image,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
strength,
|
||||
guidance_scale,
|
||||
seed,
|
||||
batch_count,
|
||||
batch_size,
|
||||
scheduler,
|
||||
base_model_id,
|
||||
custom_weights,
|
||||
custom_vae,
|
||||
precision,
|
||||
device,
|
||||
target_triple,
|
||||
ondemand,
|
||||
compiled_pipeline,
|
||||
resample_type,
|
||||
cnet_config,
|
||||
embeddings_config,
|
||||
],
|
||||
outputs=[
|
||||
sd_json,
|
||||
],
|
||||
)
|
||||
|
||||
status_kwargs = dict(
|
||||
fn=lambda bc, bs: status_label("Stable Diffusion", 0, bc, bs),
|
||||
inputs=[batch_count, batch_size],
|
||||
outputs=sd_status,
|
||||
)
|
||||
|
||||
gen_kwargs = dict(
|
||||
fn=shark_sd_fn_dict_input,
|
||||
inputs=[sd_json],
|
||||
outputs=[
|
||||
sd_gallery,
|
||||
sd_status,
|
||||
],
|
||||
)
|
||||
|
||||
prompt_submit = prompt.submit(**status_kwargs).then(**pull_kwargs)
|
||||
neg_prompt_submit = negative_prompt.submit(**status_kwargs).then(**pull_kwargs)
|
||||
generate_click = (
|
||||
stable_diffusion.click(**status_kwargs).then(**pull_kwargs).then(**gen_kwargs)
|
||||
)
|
||||
stop_batch.click(
|
||||
fn=cancel_sd,
|
||||
cancels=[prompt_submit, neg_prompt_submit, generate_click],
|
||||
)
|
||||
43
apps/shark_studio/web/ui/utils.py
Normal file
43
apps/shark_studio/web/ui/utils.py
Normal file
@@ -0,0 +1,43 @@
|
||||
from enum import IntEnum
|
||||
import math
|
||||
import sys
|
||||
import os
|
||||
|
||||
|
||||
def resource_path(relative_path):
|
||||
"""Get absolute path to resource, works for dev and for PyInstaller"""
|
||||
base_path = getattr(sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__)))
|
||||
return os.path.join(base_path, relative_path)
|
||||
|
||||
|
||||
amdlogo_loc = resource_path("logos/amd-logo.jpg")
|
||||
amdicon_loc = resource_path("logos/amd-icon.jpg")
|
||||
|
||||
|
||||
class HSLHue(IntEnum):
|
||||
RED = 0
|
||||
YELLOW = 60
|
||||
GREEN = 120
|
||||
CYAN = 180
|
||||
BLUE = 240
|
||||
MAGENTA = 300
|
||||
|
||||
|
||||
def hsl_color(alpha: float, start, end):
|
||||
b = (end - start) * (alpha if alpha > 0 else 0)
|
||||
result = b + start
|
||||
|
||||
# Return a CSS HSL string
|
||||
return f"hsl({math.floor(result)}, 80%, 35%)"
|
||||
|
||||
|
||||
def none_to_str_none(props: dict):
|
||||
for key in props:
|
||||
props[key] = "None" if props[key] == None else props[key]
|
||||
return props
|
||||
|
||||
|
||||
def str_none_to_none(props: dict):
|
||||
for key in props:
|
||||
props[key] = None if props[key] == "None" else props[key]
|
||||
return props
|
||||
12
apps/shark_studio/web/utils.py
Normal file
12
apps/shark_studio/web/utils.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
def get_available_devices():
|
||||
return ["cpu-task"]
|
||||
|
||||
|
||||
def get_resource_path(relative_path):
|
||||
"""Get absolute path to resource, works for dev and for PyInstaller"""
|
||||
base_path = getattr(sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__)))
|
||||
return os.path.join(base_path, relative_path)
|
||||
0
apps/shark_studio/web/utils/__init__.py
Normal file
0
apps/shark_studio/web/utils/__init__.py
Normal file
95
apps/shark_studio/web/utils/default_configs.py
Normal file
95
apps/shark_studio/web/utils/default_configs.py
Normal file
@@ -0,0 +1,95 @@
|
||||
default_sd_config = r"""{
|
||||
"prompt": [
|
||||
"a photo taken of the front of a super-car drifting on a road near mountains at high speeds with smoke coming off the tires, front angle, front point of view, trees in the mountains of the background, ((sharp focus))"
|
||||
],
|
||||
"negative_prompt": [
|
||||
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"
|
||||
],
|
||||
"sd_init_image": [null],
|
||||
"height": 512,
|
||||
"width": 512,
|
||||
"steps": 50,
|
||||
"strength": 0.8,
|
||||
"guidance_scale": 7.5,
|
||||
"seed": "-1",
|
||||
"batch_count": 1,
|
||||
"batch_size": 1,
|
||||
"scheduler": "EulerDiscrete",
|
||||
"base_model_id": "stabilityai/stable-diffusion-2-1-base",
|
||||
"custom_weights": null,
|
||||
"custom_vae": null,
|
||||
"precision": "fp16",
|
||||
"device": "",
|
||||
"target_triple": "",
|
||||
"ondemand": false,
|
||||
"compiled_pipeline": false,
|
||||
"resample_type": "Nearest Neighbor",
|
||||
"controlnets": {},
|
||||
"embeddings": {}
|
||||
}"""
|
||||
|
||||
sdxl_30steps = r"""{
|
||||
"prompt": [
|
||||
"a cat under the snow with blue eyes, covered by snow, cinematic style, medium shot, professional photo, animal"
|
||||
],
|
||||
"negative_prompt": [
|
||||
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"
|
||||
],
|
||||
"sd_init_image": [null],
|
||||
"height": 1024,
|
||||
"width": 1024,
|
||||
"steps": 30,
|
||||
"strength": 0.8,
|
||||
"guidance_scale": 7.5,
|
||||
"seed": "-1",
|
||||
"batch_count": 1,
|
||||
"batch_size": 1,
|
||||
"scheduler": "EulerDiscrete",
|
||||
"base_model_id": "stabilityai/stable-diffusion-xl-base-1.0",
|
||||
"custom_weights": null,
|
||||
"custom_vae": null,
|
||||
"precision": "fp16",
|
||||
"device": "",
|
||||
"target_triple": "",
|
||||
"ondemand": false,
|
||||
"compiled_pipeline": true,
|
||||
"resample_type": "Nearest Neighbor",
|
||||
"controlnets": {},
|
||||
"embeddings": {}
|
||||
}"""
|
||||
|
||||
sdxl_turbo = r"""{
|
||||
"prompt": [
|
||||
"A cat wearing a hat that says 'TURBO' on it. The cat is sitting on a skateboard."
|
||||
],
|
||||
"negative_prompt": [
|
||||
""
|
||||
],
|
||||
"sd_init_image": [null],
|
||||
"height": 512,
|
||||
"width": 512,
|
||||
"steps": 2,
|
||||
"strength": 0.8,
|
||||
"guidance_scale": 0,
|
||||
"seed": "-1",
|
||||
"batch_count": 1,
|
||||
"batch_size": 1,
|
||||
"scheduler": "EulerAncestralDiscrete",
|
||||
"base_model_id": "stabilityai/sdxl-turbo",
|
||||
"custom_weights": null,
|
||||
"custom_vae": null,
|
||||
"precision": "fp16",
|
||||
"device": "",
|
||||
"target_triple": "",
|
||||
"ondemand": false,
|
||||
"compiled_pipeline": true,
|
||||
"resample_type": "Nearest Neighbor",
|
||||
"controlnets": {},
|
||||
"embeddings": {}
|
||||
}"""
|
||||
|
||||
default_sd_configs = {
|
||||
"default_sd_config.json": default_sd_config,
|
||||
"sdxl-30steps.json": sdxl_30steps,
|
||||
"sdxl-turbo.json": sdxl_turbo,
|
||||
}
|
||||
102
apps/shark_studio/web/utils/file_utils.py
Normal file
102
apps/shark_studio/web/utils/file_utils.py
Normal file
@@ -0,0 +1,102 @@
|
||||
import os
|
||||
import sys
|
||||
import glob
|
||||
from datetime import datetime as dt
|
||||
from pathlib import Path
|
||||
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
|
||||
checkpoints_filetypes = (
|
||||
"*.ckpt",
|
||||
"*.safetensors",
|
||||
)
|
||||
|
||||
from apps.shark_studio.web.utils.default_configs import default_sd_configs
|
||||
|
||||
|
||||
def write_default_sd_configs(path):
|
||||
for key in default_sd_configs.keys():
|
||||
config_fpath = os.path.join(path, key)
|
||||
with open(config_fpath, "w") as f:
|
||||
f.write(default_sd_configs[key])
|
||||
|
||||
|
||||
def safe_name(name):
|
||||
return name.split("/")[-1].replace("-", "_")
|
||||
|
||||
|
||||
def get_path_stem(path):
|
||||
path = Path(path)
|
||||
return path.stem
|
||||
|
||||
|
||||
def get_resource_path(path):
|
||||
"""Get absolute path to resource, works for dev and for PyInstaller"""
|
||||
if os.path.isabs(path):
|
||||
return path
|
||||
else:
|
||||
base_path = getattr(sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__)))
|
||||
result = Path(os.path.join(base_path, path)).resolve(strict=False)
|
||||
return result
|
||||
|
||||
|
||||
def get_configs_path() -> Path:
|
||||
configs = get_resource_path(cmd_opts.config_dir)
|
||||
if not os.path.exists(configs):
|
||||
os.mkdir(configs)
|
||||
return Path(configs)
|
||||
|
||||
|
||||
def get_generated_imgs_path() -> Path:
|
||||
outputs = get_resource_path(cmd_opts.output_dir)
|
||||
if not os.path.exists(outputs):
|
||||
os.mkdir(outputs)
|
||||
return Path(outputs)
|
||||
|
||||
|
||||
def get_tmp_path() -> Path:
|
||||
tmpdir = get_resource_path(cmd_opts.model_dir)
|
||||
if not os.path.exists(tmpdir):
|
||||
os.mkdir(tmpdir)
|
||||
return Path(tmpdir)
|
||||
|
||||
|
||||
def get_generated_imgs_todays_subdir() -> str:
|
||||
return dt.now().strftime("%Y%m%d")
|
||||
|
||||
|
||||
def create_model_folders():
|
||||
dir = ["checkpoints", "vae", "lora", "vmfb"]
|
||||
if not os.path.isdir(cmd_opts.model_dir):
|
||||
try:
|
||||
os.makedirs(cmd_opts.model_dir)
|
||||
except OSError:
|
||||
sys.exit(
|
||||
f"Invalid --model_dir argument, "
|
||||
f"{cmd_opts.model_dir} folder does not exist, and cannot be created."
|
||||
)
|
||||
|
||||
for root in dir:
|
||||
Path(get_checkpoints_path(root)).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def get_checkpoints_path(model_type=""):
|
||||
return get_resource_path(os.path.join(cmd_opts.model_dir, model_type))
|
||||
|
||||
|
||||
def get_checkpoints(model_type="checkpoints"):
|
||||
ckpt_files = []
|
||||
file_types = checkpoints_filetypes
|
||||
if model_type == "lora":
|
||||
file_types = file_types + ("*.pt", "*.bin")
|
||||
for extn in file_types:
|
||||
files = [
|
||||
os.path.basename(x)
|
||||
for x in glob.glob(os.path.join(get_checkpoints_path(model_type), extn))
|
||||
]
|
||||
ckpt_files.extend(files)
|
||||
return sorted(ckpt_files, key=str.casefold)
|
||||
|
||||
|
||||
def get_checkpoint_pathfile(checkpoint_name, model_type="checkpoints"):
|
||||
return os.path.join(get_checkpoints_path(model_type), checkpoint_name)
|
||||
134
apps/shark_studio/web/utils/globals.py
Normal file
134
apps/shark_studio/web/utils/globals.py
Normal file
@@ -0,0 +1,134 @@
|
||||
import gc
|
||||
from ...api.utils import get_available_devices
|
||||
|
||||
"""
|
||||
The global objects include SD pipeline and config.
|
||||
Maintaining the global objects would avoid creating extra pipeline objects when switching modes.
|
||||
Also we could avoid memory leak when switching models by clearing the cache.
|
||||
"""
|
||||
|
||||
|
||||
def _init():
|
||||
global _sd_obj
|
||||
global _llm_obj
|
||||
global _devices
|
||||
global _pipe_kwargs
|
||||
global _prep_kwargs
|
||||
global _gen_kwargs
|
||||
global _schedulers
|
||||
_sd_obj = None
|
||||
_llm_obj = None
|
||||
_devices = None
|
||||
_pipe_kwargs = None
|
||||
_prep_kwargs = None
|
||||
_gen_kwargs = None
|
||||
_schedulers = None
|
||||
set_devices()
|
||||
|
||||
|
||||
def set_sd_obj(value):
|
||||
global _sd_obj
|
||||
global _llm_obj
|
||||
_llm_obj = None
|
||||
_sd_obj = value
|
||||
|
||||
|
||||
def set_llm_obj(value):
|
||||
global _sd_obj
|
||||
global _llm_obj
|
||||
_llm_obj = value
|
||||
_sd_obj = None
|
||||
|
||||
|
||||
def set_devices():
|
||||
global _devices
|
||||
_devices = get_available_devices()
|
||||
|
||||
|
||||
def set_sd_scheduler(key):
|
||||
global _sd_obj
|
||||
_sd_obj.scheduler = _schedulers[key]
|
||||
|
||||
|
||||
def set_sd_status(value):
|
||||
global _sd_obj
|
||||
_sd_obj.status = value
|
||||
|
||||
|
||||
def set_pipe_kwargs(value):
|
||||
global _pipe_kwargs
|
||||
_pipe_kwargs = value
|
||||
|
||||
|
||||
def set_prep_kwargs(value):
|
||||
global _prep_kwargs
|
||||
_prep_kwargs = value
|
||||
|
||||
|
||||
def set_gen_kwargs(value):
|
||||
global _gen_kwargs
|
||||
_gen_kwargs = value
|
||||
|
||||
|
||||
def set_schedulers(value):
|
||||
global _schedulers
|
||||
_schedulers = value
|
||||
|
||||
|
||||
def get_sd_obj():
|
||||
global _sd_obj
|
||||
return _sd_obj
|
||||
|
||||
|
||||
def get_llm_obj():
|
||||
global _llm_obj
|
||||
return _llm_obj
|
||||
|
||||
|
||||
def get_device_list():
|
||||
global _devices
|
||||
return _devices
|
||||
|
||||
|
||||
def get_sd_status():
|
||||
global _sd_obj
|
||||
return _sd_obj.status
|
||||
|
||||
|
||||
def get_pipe_kwargs():
|
||||
global _pipe_kwargs
|
||||
return _pipe_kwargs
|
||||
|
||||
|
||||
def get_prep_kwargs():
|
||||
global _prep_kwargs
|
||||
return _prep_kwargs
|
||||
|
||||
|
||||
def get_gen_kwargs():
|
||||
global _gen_kwargs
|
||||
return _gen_kwargs
|
||||
|
||||
|
||||
def get_scheduler(key):
|
||||
global _schedulers
|
||||
return _schedulers[key]
|
||||
|
||||
|
||||
def clear_cache():
|
||||
global _sd_obj
|
||||
global _llm_obj
|
||||
global _pipe_kwargs
|
||||
global _prep_kwargs
|
||||
global _gen_kwargs
|
||||
global _schedulers
|
||||
del _sd_obj
|
||||
del _llm_obj
|
||||
del _schedulers
|
||||
gc.collect()
|
||||
_sd_obj = None
|
||||
_llm_obj = None
|
||||
_pipe_kwargs = None
|
||||
_prep_kwargs = None
|
||||
_gen_kwargs = None
|
||||
_schedulers = None
|
||||
@@ -29,9 +29,7 @@ def parse_csv(image_filename: str):
|
||||
has_header = csv.Sniffer().has_header(csv_file.read(2048))
|
||||
csv_file.seek(0)
|
||||
|
||||
reader = (
|
||||
csv.DictReader(csv_file) if has_header else csv.reader(csv_file)
|
||||
)
|
||||
reader = csv.DictReader(csv_file) if has_header else csv.reader(csv_file)
|
||||
|
||||
matches = [
|
||||
# we rely on humanize and humanizable to work out the parsing of the individual .csv rows
|
||||
@@ -92,15 +92,11 @@ def compact(metadata: dict) -> dict:
|
||||
result["Hires resize"] = f"{hires_y}x{hires_x}"
|
||||
|
||||
# remove VAE if it exists and is empty
|
||||
if (result.keys() & {"VAE"}) and (
|
||||
not result["VAE"] or result["VAE"] == "None"
|
||||
):
|
||||
if (result.keys() & {"VAE"}) and (not result["VAE"] or result["VAE"] == "None"):
|
||||
result.pop("VAE")
|
||||
|
||||
# remove LoRA if it exists and is empty
|
||||
if (result.keys() & {"LoRA"}) and (
|
||||
not result["LoRA"] or result["LoRA"] == "None"
|
||||
):
|
||||
if (result.keys() & {"LoRA"}) and (not result["LoRA"] or result["LoRA"] == "None"):
|
||||
result.pop("LoRA")
|
||||
|
||||
return result
|
||||
@@ -1,9 +1,12 @@
|
||||
import re
|
||||
from pathlib import Path
|
||||
from apps.stable_diffusion.web.ui.utils import (
|
||||
get_custom_model_pathfile,
|
||||
scheduler_list,
|
||||
predefined_models,
|
||||
from apps.shark_studio.web.utils.file_utils import (
|
||||
get_checkpoint_pathfile,
|
||||
)
|
||||
from apps.shark_studio.api.sd import EMPTY_SD_MAP as sd_model_map
|
||||
|
||||
from apps.shark_studio.modules.schedulers import (
|
||||
scheduler_model_map,
|
||||
)
|
||||
|
||||
re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)'
|
||||
@@ -62,20 +65,16 @@ def parse_generation_parameters(x: str):
|
||||
return res
|
||||
|
||||
|
||||
def try_find_model_base_from_png_metadata(
|
||||
file: str, folder: str = "models"
|
||||
) -> str:
|
||||
def try_find_model_base_from_png_metadata(file: str, folder: str = "models") -> str:
|
||||
custom = ""
|
||||
|
||||
# Remove extension from file info
|
||||
if file.endswith(".safetensors") or file.endswith(".ckpt"):
|
||||
file = Path(file).stem
|
||||
# Check for the file name match with one of the local ckpt or safetensors files
|
||||
if Path(get_custom_model_pathfile(file + ".ckpt", folder)).is_file():
|
||||
if Path(get_checkpoint_pathfile(file + ".ckpt", folder)).is_file():
|
||||
custom = file + ".ckpt"
|
||||
if Path(
|
||||
get_custom_model_pathfile(file + ".safetensors", folder)
|
||||
).is_file():
|
||||
if Path(get_checkpoint_pathfile(file + ".safetensors", folder)).is_file():
|
||||
custom = file + ".safetensors"
|
||||
|
||||
return custom
|
||||
@@ -91,7 +90,7 @@ def find_model_from_png_metadata(
|
||||
model_file = metadata[key]
|
||||
png_custom = try_find_model_base_from_png_metadata(model_file)
|
||||
# Check for a model match with one of the default model list (ex: "Linaqruf/anything-v3.0")
|
||||
if model_file in predefined_models:
|
||||
if model_file in sd_model_map:
|
||||
png_custom = model_file
|
||||
# If nothing had matched, check vendor/hf_model_id
|
||||
if not png_custom and model_file.count("/"):
|
||||
@@ -99,16 +98,13 @@ def find_model_from_png_metadata(
|
||||
# No matching model was found
|
||||
if not png_custom and not png_hf_id:
|
||||
print(
|
||||
"Import PNG info: Unable to find a matching model for %s"
|
||||
% model_file
|
||||
"Import PNG info: Unable to find a matching model for %s" % model_file
|
||||
)
|
||||
|
||||
return png_custom, png_hf_id
|
||||
|
||||
|
||||
def find_vae_from_png_metadata(
|
||||
key: str, metadata: dict[str, str | int]
|
||||
) -> str:
|
||||
def find_vae_from_png_metadata(key: str, metadata: dict[str, str | int]) -> str:
|
||||
vae_custom = ""
|
||||
|
||||
if key in metadata:
|
||||
@@ -149,7 +145,6 @@ def import_png_metadata(
|
||||
width,
|
||||
height,
|
||||
custom_model,
|
||||
hf_model_id,
|
||||
custom_lora,
|
||||
hf_lora_id,
|
||||
custom_vae,
|
||||
@@ -175,10 +170,8 @@ def import_png_metadata(
|
||||
|
||||
if "Model" in metadata and png_custom_model:
|
||||
custom_model = png_custom_model
|
||||
hf_model_id = ""
|
||||
if "Model" in metadata and png_hf_model_id:
|
||||
custom_model = "None"
|
||||
hf_model_id = png_hf_model_id
|
||||
elif "Model" in metadata and png_hf_model_id:
|
||||
custom_model = png_hf_model_id
|
||||
|
||||
if "LoRA" in metadata and lora_custom_model:
|
||||
custom_lora = lora_custom_model
|
||||
@@ -193,7 +186,7 @@ def import_png_metadata(
|
||||
if "Prompt" in metadata:
|
||||
prompt = metadata["Prompt"]
|
||||
if "Sampler" in metadata:
|
||||
if metadata["Sampler"] in scheduler_list:
|
||||
if metadata["Sampler"] in scheduler_model_map:
|
||||
sampler = metadata["Sampler"]
|
||||
else:
|
||||
print(
|
||||
@@ -217,7 +210,6 @@ def import_png_metadata(
|
||||
width,
|
||||
height,
|
||||
custom_model,
|
||||
hf_model_id,
|
||||
custom_lora,
|
||||
hf_lora_id,
|
||||
custom_vae,
|
||||
39
apps/shark_studio/web/utils/state.py
Normal file
39
apps/shark_studio/web/utils/state.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import apps.shark_studio.web.utils.globals as global_obj
|
||||
import gc
|
||||
|
||||
|
||||
def status_label(tab_name, batch_index=0, batch_count=1, batch_size=1):
|
||||
if batch_index < batch_count:
|
||||
bs = f"x{batch_size}" if batch_size > 1 else ""
|
||||
return f"{tab_name} generating {batch_index+1}/{batch_count}{bs}"
|
||||
else:
|
||||
return f"{tab_name} complete"
|
||||
|
||||
|
||||
def get_generation_text_info(seeds, device):
|
||||
cfg_dump = {}
|
||||
for cfg in global_obj.get_config_dict():
|
||||
cfg_dump[cfg] = cfg
|
||||
text_output = f"prompt={cfg_dump['prompts']}"
|
||||
text_output += f"\nnegative prompt={cfg_dump['negative_prompts']}"
|
||||
text_output += (
|
||||
f"\nmodel_id={cfg_dump['hf_model_id']}, " f"ckpt_loc={cfg_dump['ckpt_loc']}"
|
||||
)
|
||||
text_output += f"\nscheduler={cfg_dump['scheduler']}, " f"device={device}"
|
||||
text_output += (
|
||||
f"\nsteps={cfg_dump['steps']}, "
|
||||
f"guidance_scale={cfg_dump['guidance_scale']}, "
|
||||
f"seed={seeds}"
|
||||
)
|
||||
text_output += (
|
||||
f"\nsize={cfg_dump['height']}x{cfg_dump['width']}, "
|
||||
if not cfg_dump.use_hiresfix
|
||||
else f"\nsize={cfg_dump['hiresfix_height']}x{cfg_dump['hiresfix_width']}, "
|
||||
)
|
||||
text_output += (
|
||||
f"batch_count={cfg_dump['batch_count']}, "
|
||||
f"batch_size={cfg_dump['batch_size']}, "
|
||||
f"max_length={cfg_dump['max_length']}"
|
||||
)
|
||||
|
||||
return text_output
|
||||
@@ -2,14 +2,26 @@ import os
|
||||
import shutil
|
||||
from time import time
|
||||
|
||||
shark_tmp = os.path.join(os.getcwd(), "shark_tmp/")
|
||||
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
|
||||
|
||||
shark_tmp = cmd_opts.tmp_dir # os.path.join(os.getcwd(), "shark_tmp/")
|
||||
|
||||
|
||||
def config_gradio_tmp_imgs_folder():
|
||||
# create shark_tmp if it does not exist
|
||||
if not os.path.exists(shark_tmp):
|
||||
os.mkdir(shark_tmp)
|
||||
def clear_tmp_mlir():
|
||||
cleanup_start = time()
|
||||
print("Clearing .mlir temporary files from a prior run. This may take some time...")
|
||||
mlir_files = [
|
||||
filename
|
||||
for filename in os.listdir(shark_tmp)
|
||||
if os.path.isfile(os.path.join(shark_tmp, filename))
|
||||
and filename.endswith(".mlir")
|
||||
]
|
||||
for filename in mlir_files:
|
||||
os.remove(os.path.join(shark_tmp, filename))
|
||||
print(f"Clearing .mlir temporary files took {time() - cleanup_start:.4f} seconds.")
|
||||
|
||||
|
||||
def clear_tmp_imgs():
|
||||
# tell gradio to use a directory under shark_tmp for its temporary
|
||||
# image files unless somewhere else has been set
|
||||
if "GRADIO_TEMP_DIR" not in os.environ:
|
||||
@@ -52,3 +64,12 @@ def config_gradio_tmp_imgs_folder():
|
||||
)
|
||||
else:
|
||||
print("No temporary images files to clear.")
|
||||
|
||||
|
||||
def config_tmp():
|
||||
# create shark_tmp if it does not exist
|
||||
if not os.path.exists(shark_tmp):
|
||||
os.mkdir(shark_tmp)
|
||||
|
||||
clear_tmp_mlir()
|
||||
clear_tmp_imgs()
|
||||
@@ -1,87 +0,0 @@
|
||||
Compile / Run Instructions:
|
||||
|
||||
To compile .vmfb for SD (vae, unet, CLIP), run the following commands with the .mlir in your local shark_tank cache (default location for Linux users is `~/.local/shark_tank`). These will be available once the script from [this README](https://github.com/nod-ai/SHARK/blob/main/shark/examples/shark_inference/stable_diffusion/README.md) is run once.
|
||||
Running the script mentioned above with the `--save_vmfb` flag will also save the .vmfb in your SHARK base directory if you want to skip straight to benchmarks.
|
||||
|
||||
Compile Commands FP32/FP16:
|
||||
|
||||
```shell
|
||||
Vulkan AMD:
|
||||
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna2-unknown-linux /path/to/input/mlir -o /path/to/output/vmfb
|
||||
|
||||
# add --mlir-print-debuginfo --mlir-print-op-on-diagnostic=true for debug
|
||||
# use –iree-input-type=auto or "mhlo_legacy" or "stablehlo" for TF models
|
||||
|
||||
CUDA NVIDIA:
|
||||
iree-compile --iree-input-type=none --iree-hal-target-backends=cuda /path/to/input/mlir -o /path/to/output/vmfb
|
||||
|
||||
CPU:
|
||||
iree-compile --iree-input-type=none --iree-hal-target-backends=llvm-cpu /path/to/input/mlir -o /path/to/output/vmfb
|
||||
```
|
||||
|
||||
|
||||
|
||||
Run / Benchmark Command (FP32 - NCHW):
|
||||
(NEED to use BS=2 since we do two forward passes to unet as a result of classifier free guidance.)
|
||||
|
||||
```shell
|
||||
## Vulkan AMD:
|
||||
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --device=vulkan --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
|
||||
|
||||
## CUDA:
|
||||
iree-benchmark-module --module=/path/to/vmfb --function=forward --device=cuda --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
|
||||
|
||||
## CPU:
|
||||
iree-benchmark-module --module=/path/to/vmfb --function=forward --device=local-task --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
|
||||
|
||||
```
|
||||
|
||||
Run via vulkan_gui for RGP Profiling:
|
||||
|
||||
To build the vulkan app for profiling UNet follow the instructions [here](https://github.com/nod-ai/SHARK/tree/main/cpp) and then run the following command from the cpp directory with your compiled stable_diff.vmfb
|
||||
```shell
|
||||
./build/vulkan_gui/iree-vulkan-gui --module=/path/to/unet.vmfb --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
|
||||
```
|
||||
|
||||
</details>
|
||||
<details>
|
||||
<summary>Debug Commands</summary>
|
||||
|
||||
## Debug commands and other advanced usage follows.
|
||||
|
||||
```shell
|
||||
python txt2img.py --precision="fp32"|"fp16" --device="cpu"|"cuda"|"vulkan" --import_mlir|--no-import_mlir --prompt "enter the text"
|
||||
```
|
||||
|
||||
## dump all dispatch .spv and isa using amdllpc
|
||||
|
||||
```shell
|
||||
python txt2img.py --precision="fp16" --device="vulkan" --iree-vulkan-target-triple=rdna3-unknown-linux --no-load_vmfb --dispatch_benchmarks="all" --dispatch_benchmarks_dir="SD_dispatches" --dump_isa
|
||||
```
|
||||
|
||||
## Compile and save the .vmfb (using vulkan fp16 as an example):
|
||||
|
||||
```shell
|
||||
python txt2img.py --precision=fp16 --device=vulkan --steps=50 --save_vmfb
|
||||
```
|
||||
|
||||
## Capture an RGP trace
|
||||
|
||||
```shell
|
||||
python txt2img.py --precision=fp16 --device=vulkan --steps=50 --save_vmfb --enable_rgp
|
||||
```
|
||||
|
||||
## Run the vae module with iree-benchmark-module (NCHW, fp16, vulkan, for example):
|
||||
|
||||
```shell
|
||||
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --device=vulkan --input=1x4x64x64xf16
|
||||
```
|
||||
|
||||
## Run the unet module with iree-benchmark-module (same config as above):
|
||||
```shell
|
||||
##if you want to use .npz inputs:
|
||||
unzip ~/.local/shark_tank/<your unet>/inputs.npz
|
||||
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --input=@arr_0.npy --input=1xf16 --input=@arr_2.npy --input=@arr_3.npy --input=@arr_4.npy
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -1 +0,0 @@
|
||||
from apps.stable_diffusion.scripts.train_lora_word import lora_train
|
||||
@@ -1,127 +0,0 @@
|
||||
import sys
|
||||
import torch
|
||||
import time
|
||||
from PIL import Image
|
||||
import transformers
|
||||
from apps.stable_diffusion.src import (
|
||||
args,
|
||||
Image2ImagePipeline,
|
||||
StencilPipeline,
|
||||
resize_stencil,
|
||||
get_schedulers,
|
||||
set_init_device_flags,
|
||||
utils,
|
||||
clear_all,
|
||||
save_output_img,
|
||||
)
|
||||
from apps.stable_diffusion.src.utils import get_generation_text_info
|
||||
|
||||
|
||||
def main():
|
||||
if args.clear_all:
|
||||
clear_all()
|
||||
|
||||
if args.img_path is None:
|
||||
print("Flag --img_path is required.")
|
||||
exit()
|
||||
|
||||
image = Image.open(args.img_path).convert("RGB")
|
||||
# When the models get uploaded, it should be default to False.
|
||||
args.import_mlir = True
|
||||
|
||||
use_stencil = args.use_stencil
|
||||
if use_stencil:
|
||||
args.scheduler = "DDIM"
|
||||
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
|
||||
image, args.width, args.height = resize_stencil(image)
|
||||
elif "Shark" in args.scheduler:
|
||||
print(
|
||||
f"Shark schedulers are not supported. Switching to EulerDiscrete scheduler"
|
||||
)
|
||||
args.scheduler = "EulerDiscrete"
|
||||
cpu_scheduling = not args.scheduler.startswith("Shark")
|
||||
dtype = torch.float32 if args.precision == "fp32" else torch.half
|
||||
set_init_device_flags()
|
||||
schedulers = get_schedulers(args.hf_model_id)
|
||||
scheduler_obj = schedulers[args.scheduler]
|
||||
seed = utils.sanitize_seed(args.seed)
|
||||
# Adjust for height and width based on model
|
||||
|
||||
if use_stencil:
|
||||
img2img_obj = StencilPipeline.from_pretrained(
|
||||
scheduler_obj,
|
||||
args.import_mlir,
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
args.precision,
|
||||
args.max_length,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
low_cpu_mem_usage=args.low_cpu_mem_usage,
|
||||
use_stencil=use_stencil,
|
||||
debug=args.import_debug if args.import_mlir else False,
|
||||
use_lora=args.use_lora,
|
||||
ondemand=args.ondemand,
|
||||
)
|
||||
else:
|
||||
img2img_obj = Image2ImagePipeline.from_pretrained(
|
||||
scheduler_obj,
|
||||
args.import_mlir,
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
args.precision,
|
||||
args.max_length,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
low_cpu_mem_usage=args.low_cpu_mem_usage,
|
||||
debug=args.import_debug if args.import_mlir else False,
|
||||
use_lora=args.use_lora,
|
||||
ondemand=args.ondemand,
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
generated_imgs = img2img_obj.generate_images(
|
||||
args.prompts,
|
||||
args.negative_prompts,
|
||||
image,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.steps,
|
||||
args.strength,
|
||||
args.guidance_scale,
|
||||
seed,
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
args.max_embeddings_multiples,
|
||||
use_stencil=use_stencil,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
text_output = f"prompt={args.prompts}"
|
||||
text_output += f"\nnegative prompt={args.negative_prompts}"
|
||||
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
|
||||
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
|
||||
text_output += f"\nsteps={args.steps}, strength={args.strength}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
|
||||
text_output += (
|
||||
f", batch size={args.batch_size}, max_length={args.max_length}"
|
||||
)
|
||||
text_output += img2img_obj.log
|
||||
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
|
||||
|
||||
extra_info = {"STRENGTH": args.strength}
|
||||
save_output_img(generated_imgs[0], seed, extra_info)
|
||||
print(text_output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user