Commit Graph

18 Commits

Author SHA1 Message Date
Kunwar Raj Singh
8391648822 Over 90% on CIFAR with examples/hlb_cifar10.py (#1073)
* fix eval, lr decay, best eval

* 82.27

* 82.64

* 82.79, reproducable

* add lr sched, 85.26

* 87.42

* 87.94

* 87.42

* tta with flip

* training flip aug

* refactor

* using Tensor for LR is faster

* 89.5

* refactor, flip only train set

* 90.01

* 90.64

* eval jit

* refactor

* only JIT model

* fix eval JIT

* fix eval JIT

* 90.82

* STEPS=900 reaches 90.22

* TTA envvar

* TTA default 0

* fully jit training

* refactor optim

* fix sched

* add label smoothing

* param changes

* patial gelu

* OneCycle with pause

* gelu maybe works

* 90.12

* remove pause lr

* maybe fix lr schedulers

* scheduler test passing

* comments

* try mixup

* shuffle!

* add back the missing last eval

* fix shuffle bugs

* add mixup prob

* fix mixup prob

* 90.19

* correct mixup

* correct mixup

* correct mixup

* 90.24

* 90.33

* refactor, add type hints

* add gradient clipping

* maybe fix test

* full JIT

* back to relu for now

* pass mixup prob as param

* add typehints

* maybe CI works

* try erf gelu

* CI, types

* remove useless import/

* refactor optim

* refactor optim

* try leakyrelu

* try celu

* gelu

* 90.67

* remove grad clip

* remove grad clip tests

* revert params

* add test for OneCycleLR

* 90.62

* fix eval timing

* fix eval timing again

* so where i calculate mixup_prob matters

---------

Co-authored-by: Kunwar Raj Singh <kunwar31@pop-os.localdomain>
2023-07-06 20:46:22 -07:00
Eli Frigo
801564f31b Remove POW llop and add SQRT llop (#1104)
* fixed division by zero for fast operations

* made et closer to 0

* replace POW llop with SQRT

* updated mlops to swap SQRT and POW llops

* updated hlops to swap POW and SQRT

* added sqrt llop to cpu runtime

* added sqrt llop to cstyle codegen

* added POW llop to llvm ir codegen

* added SQRT llop to torch runtime

* moved pow from mlops to hlops

* found a better way to do reverse pow

* fixed indentation

* added SQRT llop to triton

* update docs to match new llops

* removed POW operator from assembly codegen

* added sqrt and rsqrt to pow hlop

* rewrote pow function in tensor.py

* Adjust tolerance

* Adjust for adamw

* Reduce for Adam too

* removed accidental leftover code

* removed all of accidental code

* added rsqrt test

* removed pow from mlops again

it was added back when resolving merge conflicts

---------

Co-authored-by: Jacky Lee <jla524@sfu.ca>
2023-07-05 18:07:58 -07:00
Casey Primozic
52b7105f87 Dedup params in Optimizer (#1047)
* Dedup params in optimizer

 * Passing the same tensor multiple times in the set of learnable params passed to optimizers can result in models completely failing to learn, but no errors are produced.  This dedups tensors to avoid the problem.

* Fix types

* Use new variable to satisfy linter

* Use `helpers.dedup` instead of `set()` to dedup params

* Add test for duped params in optimizers
2023-06-26 00:49:23 -07:00
wozeparrot
bfea5215e9 Add weight decay to SGD (#883)
* feat: add weight decay to sgd

* fix: fix tests
2023-06-01 13:13:18 -07:00
George Hotz
30b795874a remove RMSprop, nobody uses it anymore 2023-03-20 12:31:34 -07:00
Cyril Roumégous
b629fd4cd8 add AdamW optimizer (#716)
* add AdamW optimizer

* one liner Adam optimizer
2023-03-19 12:51:06 -07:00
George Hotz
305b9f2d21 multistep optim tests passing 2023-03-11 17:49:53 -08:00
George Hotz
2e56a4793e rename log_softmax, support dim, fix onnx Softmax 2023-02-24 10:11:24 -08:00
Kirill
7944cfdadc Remove Tensor.data (#565) 2023-02-18 16:36:12 -08:00
Jacky Lee
9fd41632c6 Import get_parameters from tinygrad.nn (#559)
* get_parameter is in optim

* Update all imports for get_parameters

* Clean up

* use optim.get_paramters
2023-02-17 15:22:26 -08:00
George Hotz
b132de677d tinygrad.nn (#367)
* tinygrad.nn

* flake8

* working on pylint

* more pylint

* more pylint

* pylint passes

* networkx

* mypy can't infer that type

* junk
2022-08-18 07:41:00 -07:00
Liam
ebd72ff437 Test split (#231)
* Split tests

Split tests into "Test CPU" and "Test GPU".

Add test flag "TEST_DEVICES" which is a comma separated list of devices:
CPU,GPU,ANE

* Run tests based on provided TEST_DEVICES flag

By default will run all "CPU,GPU,ANE"

* fix bad quote

* Revert changes and use GPU=1

This is done through setting the default Tensor Device to Device.CPU of
GPU=1 is set.

Run GPU tests: GPU=1 pytest -s -v
2021-01-01 09:19:03 -05:00
George Hotz
2f1b2c0a3b add transpose, start on transformer 2020-12-27 16:59:12 -05:00
Liam
bcf1518309 All devices are equal! (#196)
* Update all devices to be tested

ANE, CPU and OCL all now support all tests.

However tests are not currently passing on GPU and I cannot test on CPU.

Failing GPU test are not an issue caused by this update. Tests have not
been passing due to a missing "six" required installation.

OpenCL Tests have not been run since commit: 1a1c63a08b

devices have 3 types and are handle by a new DeviceTypes enum. (The goal
is to revert to Tensor.<type>, but this current setup allows for keyword
argument defaults: `device=DeviceType.CPU`)

All references to Tensor.GPU/CPU/ANE as been converted to the
corresponding `DeviceTypes` enum.

Refactor of the conversion code to allow for any device to any device
conversion.

* Add six dependency in requirements.txt

* Resolve failure to run tests

Move six into gpu required installs. Remove six from standard
installation.

* Remove repeated data conversion

* Refactor method names

Also reduce code with .to and .to_

* Dynamic device handlers

* Refactor DeviceTypes -> Device

* Add mem copy profiling back

* test_backward_pass_diamond_model passing

* Resolve Sum issue on GPU

* Revert batchnorm2d tests

* Update README with upadated API

* ANE testing with

* Last minute line gains
2020-12-15 23:44:08 -08:00
George Hotz
1d10559d1d tinygrad.utils -> extra.utils 2020-12-12 15:26:07 -08:00
Liam
89d0ff6989 Consistent testing (#137)
* Consistent GPU classes

Convert the existing GPU classes into one standard format.

Remove duplicated functions in `test_mnist` and create a TestMNISTGPU
class. This reduces line count and ensures consistency.

Use `@unittest.skipUnless(GPU, "Requires GPU")` instead of `if GPU:` to
skip GPU testing. This will ensure that skipped tests are displayed
accordingly in the pytest output.

* Optim Testing now supports GPU

* Tensor testing now supports GPU

jacobian and gradcheck auto skipped until GPU float64 support added.

* GPU support for custom constructor methods

* Remove GPU flag from Model constructors

It was requested that the `gpu` kwarg be removed from the model
constructor. GPU conversion is now handled in the train function.

This also required the conversion of Optimizer parameters as they are
constructed prior to execution of the `train` function and are dependant
on the model GPU state.

* Fix typo: float32->float64

* Clean `get_parameters` utility

Just a quick refactor w/ the new support for optimizers.

* Remove GPU kwarg from TinyNet

Remove `gpu` kwarg from tiny net to match test_mnist `train` function.
2020-12-09 02:25:27 -08:00
adamritter
f190ca446d Detach (#123)
* Detach

* Torch.detach reuses the buffer in the

* Fix test

* wakey wakey GitHub Actions

Co-authored-by: holonomicjl <58403584+holonomicjl@users.noreply.github.com>
2020-11-19 19:03:42 -08:00
Göktuğ Karakaşlı
4b163ee270 efficient version of adam (#20)
* counteracted bias initialization

* test new adam

* add optimizer tests

* rename helper function names to fix the test

* remove redundant import
2020-10-27 15:54:40 -07:00